Sample Solution

bmte-144-sample-solution-00121e82-06b0-4090-b5ab-7e9d6642f92d

bmte-144-sample-solution-00121e82-06b0-4090-b5ab-7e9d6642f92d

  1. a) Find the largest real root α α alpha\alphaα of f ( x ) = x 6 x 1 = 0 f ( x ) = x 6 x 1 = 0 f(x)=x^(6)-x-1=0f(x)=x^6-x-1=0f(x)=x6x1=0 lying between 1 and 2. Perform three iterations by
    i) bisection method
    ii) secant method ( x 0 = 2 , x 1 = 1 ) x 0 = 2 , x 1 = 1 (x_(0)=2,x_(1)=1)\left(x_0=2, x_1=1\right)(x0=2,x1=1).
Answer:
i) Bisection method
Here x 6 x 1 = 0 x 6 x 1 = 0 x^(6)-x-1=0x^6-x-1=0x6x1=0
Let f ( x ) = x 6 x 1 f ( x ) = x 6 x 1 f(x)=x^(6)-x-1f(x)=x^6-x-1f(x)=x6x1
1 st 1 st 1^(“st “)1^{\text {st }}1st iteration :
Here f ( 1 ) = 1 < 0 f ( 1 ) = 1 < 0 f(1)=-1 < 0f(1)=-1<0f(1)=1<0 and f ( 2 ) = 61 > 0 f ( 2 ) = 61 > 0 f(2)=61 > 0f(2)=61>0f(2)=61>0
:.\therefore Now, Root lies between 1 and 2
x 0 = 1 + 2 2 = 1.5 x 0 = 1 + 2 2 = 1.5 x_(0)=(1+2)/(2)=1.5x_0=\frac{1+2}{2}=1.5x0=1+22=1.5
f ( x 0 ) = f ( 1.5 ) = 1.5 6 1.5 1 = 8.8906 > 0 f x 0 = f ( 1.5 ) = 1.5 6 1.5 1 = 8.8906 > 0 f(x_(0))=f(1.5)=1.5^(6)-1.5-1=8.8906 > 0f\left(x_0\right)=f(1.5)=1.5^6-1.5-1=8.8906>0f(x0)=f(1.5)=1.561.51=8.8906>0
2 nd 2 nd 2^(“nd “)2^{\text {nd }}2nd iteration :
Here f ( 1 ) = 1 < 0 f ( 1 ) = 1 < 0 f(1)=-1 < 0f(1)=-1<0f(1)=1<0 and f ( 1.5 ) = 8.8906 > 0 f ( 1.5 ) = 8.8906 > 0 f(1.5)=8.8906 > 0f(1.5)=8.8906>0f(1.5)=8.8906>0
:.\therefore Now, Root lies between 1 and 1.5
x 1 = 1 + 1.5 2 = 1.25 x 1 = 1 + 1.5 2 = 1.25 x_(1)=(1+1.5)/(2)=1.25x_1=\frac{1+1.5}{2}=1.25x1=1+1.52=1.25
f ( x 1 ) = f ( 1.25 ) = 1.25 6 1.25 1 = 1.5647 > 0 f x 1 = f ( 1.25 ) = 1.25 6 1.25 1 = 1.5647 > 0 f(x_(1))=f(1.25)=1.25^(6)-1.25-1=1.5647 > 0f\left(x_1\right)=f(1.25)=1.25^6-1.25-1=1.5647>0f(x1)=f(1.25)=1.2561.251=1.5647>0
3 r d 3 r d 3^(rd)3^{r d}3rd iteration :
Here f ( 1 ) = 1 < 0 f ( 1 ) = 1 < 0 f(1)=-1 < 0f(1)=-1<0f(1)=1<0 and f ( 1.25 ) = 1.5647 > 0 f ( 1.25 ) = 1.5647 > 0 f(1.25)=1.5647 > 0f(1.25)=1.5647>0f(1.25)=1.5647>0
:.\therefore Now, Root lies between 1 and 1.25
x 2 = 1 + 1.25 2 = 1.125 x 2 = 1 + 1.25 2 = 1.125 x_(2)=(1+1.25)/(2)=1.125x_2=\frac{1+1.25}{2}=1.125x2=1+1.252=1.125
f ( x 2 ) = f ( 1.125 ) = 1.125 6 1.125 1 = 0.0977 < 0 f x 2 = f ( 1.125 ) = 1.125 6 1.125 1 = 0.0977 < 0 f(x_(2))=f(1.125)=1.125^(6)-1.125-1=-0.0977 < 0f\left(x_2\right)=f(1.125)=1.125^6-1.125-1=-0.0977<0f(x2)=f(1.125)=1.12561.1251=0.0977<0
After three iterations, the interval containing the largest real root α α alpha\alphaα is narrowed down to [ 1.125 , 1.25 ] [ 1.125 , 1.25 ] [1.125,1.25][1.125,1.25][1.125,1.25]. The midpoint of this interval, x 3 = 1.1875 x 3 = 1.1875 x_(3)=1.1875x_3=1.1875x3=1.1875, is the best approximation of the root after three iterations using the bisection method.
ii) Secant method ( x 0 = 2 , x 1 = 1 ) x 0 = 2 , x 1 = 1 (x_(0)=2,x_(1)=1)\left(x_0=2, x_1=1\right)(x0=2,x1=1).
Let f ( x ) = x 6 x 1 f ( x ) = x 6 x 1 f(x)=x^(6)-x-1f(x)=x^6-x-1f(x)=x6x1
1 st 1 st 1^(“st “)1^{\text {st }}1st iteration :
x 0 = 1 x 0 = 1 x_(0)=1x_0=1x0=1 and x 1 = 2 x 1 = 2 x_(1)=2x_1=2x1=2
f ( x 0 ) = f ( 1 ) = 1 f x 0 = f ( 1 ) = 1 f(x_(0))=f(1)=-1f\left(x_0\right)=f(1)=-1f(x0)=f(1)=1 and f ( x 1 ) = f ( 2 ) = 61 f x 1 = f ( 2 ) = 61 f(x_(1))=f(2)=61f\left(x_1\right)=f(2)=61f(x1)=f(2)=61
x 2 = x 0 f ( x 0 ) x 1 x 0 f ( x 1 ) f ( x 0 ) x 2 = x 0 f x 0 x 1 x 0 f x 1 f x 0 :.x_(2)=x_(0)-f(x_(0))*(x_(1)-x_(0))/(f(x_(1))-f(x_(0)))\therefore x_2=x_0-f\left(x_0\right) \cdot \frac{x_1-x_0}{f\left(x_1\right)-f\left(x_0\right)}x2=x0f(x0)x1x0f(x1)f(x0)
x 2 = 1 ( 1 ) 2 1 61 ( 1 ) x 2 = 1 ( 1 ) 2 1 61 ( 1 ) x_(2)=1-(-1)*(2-1)/(61-(-1))x_2=1-(-1) \cdot \frac{2-1}{61-(-1)}x2=1(1)2161(1)
x 2 = 1.0161 x 2 = 1.0161 x_(2)=1.0161x_2=1.0161x2=1.0161
f ( x 2 ) = f ( 1.0161 ) = 1.0161 6 1.0161 1 = 0.9154 f x 2 = f ( 1.0161 ) = 1.0161 6 1.0161 1 = 0.9154 :.f(x_(2))=f(1.0161)=1.0161^(6)-1.0161-1=-0.9154\therefore f\left(x_2\right)=f(1.0161)=1.0161^6-1.0161-1=-0.9154f(x2)=f(1.0161)=1.016161.01611=0.9154
2 nd 2 nd 2^(“nd “)2^{\text {nd }}2nd iteration :
x 1 = 2 x 1 = 2 x_(1)=2x_1=2x1=2 and x 2 = 1.0161 x 2 = 1.0161 x_(2)=1.0161x_2=1.0161x2=1.0161
f ( x 1 ) = f ( 2 ) = 61 and f ( x 2 ) = f ( 1.0161 ) = 0.9154 f x 1 = f ( 2 ) = 61 and f x 2 = f ( 1.0161 ) = 0.9154 f(x_(1))=f(2)=61″ and “f(x_(2))=f(1.0161)=-0.9154f\left(x_1\right)=f(2)=61 \text { and } f\left(x_2\right)=f(1.0161)=-0.9154f(x1)=f(2)=61 and f(x2)=f(1.0161)=0.9154
x 3 = x 1 f ( x 1 ) x 2 x 1 f ( x 2 ) f ( x 1 ) x 3 = x 1 f x 1 x 2 x 1 f x 2 f x 1 :.x_(3)=x_(1)-f(x_(1))*(x_(2)-x_(1))/(f(x_(2))-f(x_(1)))\therefore x_3=x_1-f\left(x_1\right) \cdot \frac{x_2-x_1}{f\left(x_2\right)-f\left(x_1\right)}x3=x1f(x1)x2x1f(x2)f(x1)
x 3 = 2 61 1.0161 2 0.9154 61 x 3 = 2 61 1.0161 2 0.9154 61 x_(3)=2-61*(1.0161-2)/(-0.9154-61)x_3=2-61 \cdot \frac{1.0161-2}{-0.9154-61}x3=2611.016120.915461
x 3 = 1.0307 x 3 = 1.0307 x_(3)=1.0307x_3=1.0307x3=1.0307
f ( x 3 ) = f ( 1.0307 ) = 1.0307 6 1.0307 1 = 0.8319 f x 3 = f ( 1.0307 ) = 1.0307 6 1.0307 1 = 0.8319 :.f(x_(3))=f(1.0307)=1.0307^(6)-1.0307-1=-0.8319\therefore f\left(x_3\right)=f(1.0307)=1.0307^6-1.0307-1=-0.8319f(x3)=f(1.0307)=1.030761.03071=0.8319
3 r d 3 r d 3^(rd)3^{r d}3rd iteration :
x 2 = 1.0161 and x 3 = 1.0307 x 2 = 1.0161 and x 3 = 1.0307 x_(2)=1.0161″ and “x_(3)=1.0307x_2=1.0161 \text { and } x_3=1.0307x2=1.0161 and x3=1.0307
f ( x 2 ) = f ( 1.0161 ) = 0.9154 and f ( x 3 ) = f ( 1.0307 ) = 0.8319 f x 2 = f ( 1.0161 ) = 0.9154 and f x 3 = f ( 1.0307 ) = 0.8319 f(x_(2))=f(1.0161)=-0.9154″ and “f(x_(3))=f(1.0307)=-0.8319f\left(x_2\right)=f(1.0161)=-0.9154 \text { and } f\left(x_3\right)=f(1.0307)=-0.8319f(x2)=f(1.0161)=0.9154 and f(x3)=f(1.0307)=0.8319
x 4 = x 2 f ( x 2 ) x 3 x 2 f ( x 3 ) f ( x 2 ) x 4 = 1.0161 ( 0.9154 ) 1.0307 1.0161 0.8319 ( 0.9154 ) x 4 = 1.1757 f ( x 4 ) = f ( 1.1757 ) = 1.1757 6 1.1757 1 = 0.4652 x 4 = x 2 f x 2 x 3 x 2 f x 3 f x 2 x 4 = 1.0161 ( 0.9154 ) 1.0307 1.0161 0.8319 ( 0.9154 ) x 4 = 1.1757 f x 4 = f ( 1.1757 ) = 1.1757 6 1.1757 1 = 0.4652 {:[:.x_(4)=x_(2)-f(x_(2))*(x_(3)-x_(2))/(f(x_(3))-f(x_(2)))],[x_(4)=1.0161-(-0.9154)*(1.0307-1.0161)/(-0.8319-(-0.9154))],[x_(4)=1.1757],[:.f(x_(4))=f(1.1757)=1.1757^(6)-1.1757-1=0.4652]:}\begin{aligned} & \therefore x_4=x_2-f\left(x_2\right) \cdot \frac{x_3-x_2}{f\left(x_3\right)-f\left(x_2\right)} \\ & x_4=1.0161-(-0.9154) \cdot \frac{1.0307-1.0161}{-0.8319-(-0.9154)} \\ & x_4=1.1757 \\ & \therefore f\left(x_4\right)=f(1.1757)=1.1757^6-1.1757-1=0.4652 \end{aligned}x4=x2f(x2)x3x2f(x3)f(x2)x4=1.0161(0.9154)1.03071.01610.8319(0.9154)x4=1.1757f(x4)=f(1.1757)=1.175761.17571=0.4652
To summarize, after three iterations of the secant method, the approximation of the largest real root α α alpha\alphaα of the equation f ( x ) = x 6 x 1 = 0 f ( x ) = x 6 x 1 = 0 f(x)=x^(6)-x-1=0f(x)=x^6-x-1=0f(x)=x6x1=0 is x 4 = 1.1757 x 4 = 1.1757 x_(4)=1.1757x_4=1.1757x4=1.1757. The value of the function at this point is f ( x 4 ) = 0.465365 f x 4 = 0.465365 f(x_(4))=0.465365f\left(x_4\right)=0.465365f(x4)=0.465365, indicating that the root is close to this value.
b) Find the number of positive and negative roots of the polynomial P ( x ) = x 3 3 x 2 + 4 x 5 P ( x ) = x 3 3 x 2 + 4 x 5 P(x)=x^(3)-3x^(2)+4x-5P(x)=x^3-3 x^2+4 x-5P(x)=x33x2+4x5. Find P ( 2 ) P ( 2 ) P(2)P(2)P(2) and P ( 2 ) P ( 2 ) P^(‘)(2)P^{\prime}(2)P(2) using synthetic division method.
Answer:
To find the number of positive and negative roots of the polynomial P ( x ) = x 3 3 x 2 + 4 x 5 P ( x ) = x 3 3 x 2 + 4 x 5 P(x)=x^(3)-3x^(2)+4x-5P(x) = x^3 – 3x^2 + 4x – 5P(x)=x33x2+4x5, we can use Descartes’ Rule of Signs. This rule states that the number of positive real roots of a polynomial is either equal to the number of sign changes between consecutive coefficients or less than that by an even number. Similarly, the number of negative real roots is determined by the number of sign changes in the coefficients of the polynomial with each x x xxx replaced by x x -x-xx.
Finding the Number of Positive Roots:
The given polynomial is P ( x ) = x 3 3 x 2 + 4 x 5 P ( x ) = x 3 3 x 2 + 4 x 5 P(x)=x^(3)-3x^(2)+4x-5P(x) = x^3 – 3x^2 + 4x – 5P(x)=x33x2+4x5. The coefficients are 1, -3, 4, -5. The sign changes in the coefficients are from 1 to -3, -3 to 4, and 4 to -5. So, there are 3 sign changes.
Number of Positive Roots: 3 or 1 (since it can be less by an even number).
Finding the Number of Negative Roots:
Replace x x xxx with x x -x-xx in P ( x ) P ( x ) P(x)P(x)P(x), we get P ( x ) = x 3 3 x 2 4 x 5 P ( x ) = x 3 3 x 2 4 x 5 P(-x)=-x^(3)-3x^(2)-4x-5P(-x) = -x^3 – 3x^2 – 4x – 5P(x)=x33x24x5. The coefficients are -1, -3, -4, -5. There are no sign changes.
Number of Negative Roots: 0 (since there are no sign changes).
Calculating P ( 2 ) P ( 2 ) P(2)P(2)P(2) and P ( 2 ) P ( 2 ) P^(‘)(2)P'(2)P(2) using Synthetic Division:
  1. Calculate P ( 2 ) P ( 2 ) P(2)P(2)P(2):
    We use synthetic division to divide P ( x ) P ( x ) P(x)P(x)P(x) by x 2 x 2 x-2x – 2x2.
    2 1 3 4 5 2 2 4 1 1 2 1 2 1 3 4 5 2 2 4 1 1 2 1 {:[2,1,-3,4,-5],[,,2,-2,4],[,1,-1,2,-1]:}\begin{array}{c|ccc} 2 & 1 & -3 & 4 & -5 \\ \hline & & 2 & -2 & 4 \\ \hline & 1 & -1 & 2 & -1 \end{array}213452241121
    The remainder is -1, so P ( 2 ) = 1 P ( 2 ) = 1 P(2)=-1P(2) = -1P(2)=1.
  2. Calculate P ( 2 ) P ( 2 ) P^(‘)(2)P'(2)P(2):
    The derivative of a polynomial can be found by multiplying each term by its degree and reducing the degree by one. For P ( x ) = x 3 3 x 2 + 4 x 5 P ( x ) = x 3 3 x 2 + 4 x 5 P(x)=x^(3)-3x^(2)+4x-5P(x) = x^3 – 3x^2 + 4x – 5P(x)=x33x2+4x5, the derivative is P ( x ) = 3 x 2 6 x + 4 P ( x ) = 3 x 2 6 x + 4 P^(‘)(x)=3x^(2)-6x+4P'(x) = 3x^2 – 6x + 4P(x)=3x26x+4.
    Now, we use synthetic division to find P ( 2 ) P ( 2 ) P^(‘)(2)P'(2)P(2) by dividing P ( x ) P ( x ) P^(‘)(x)P'(x)P(x) by x 2 x 2 x-2x – 2x2.
    2 3 6 4 6 0 3 0 4 2 3 6 4 6 0 3 0 4 {:[2,3,-6,4],[,,6,0],[,3,0,4]:}\begin{array}{c|cc} 2 & 3 & -6 & 4 \\ \hline & & 6 & 0 \\ \hline & 3 & 0 & 4 \end{array}236460304
    The remainder is 4, so P ( 2 ) = 4 P ( 2 ) = 4 P^(‘)(2)=4P'(2) = 4P(2)=4.
To summarize, the polynomial P ( x ) = x 3 3 x 2 + 4 x 5 P ( x ) = x 3 3 x 2 + 4 x 5 P(x)=x^(3)-3x^(2)+4x-5P(x) = x^3 – 3x^2 + 4x – 5P(x)=x33x2+4x5 has either 3 or 1 positive real roots and 0 negative real roots. Additionally, P ( 2 ) = 1 P ( 2 ) = 1 P(2)=-1P(2) = -1P(2)=1 and P ( 2 ) = 4 P ( 2 ) = 4 P^(‘)(2)=4P'(2) = 4P(2)=4.
c) Solve x 3 9 x + 1 = 0 x 3 9 x + 1 = 0 x^(3)-9x+1=0x^3-9 x+1=0x39x+1=0 for the root lying between 2 and 4 by the method of false position. Perform two iterations.
Answer:
Let f ( x ) = x 3 9 x + 1 f ( x ) = x 3 9 x + 1 f(x)=x^(3)-9x+1f(x)=x^3-9 x+1f(x)=x39x+1
Here
x x xxx 2 3 4
f ( x ) f ( x ) f(x)f(x)f(x) -9 1 29
x 2 3 4 f(x) -9 1 29| $x$ | 2 | 3 | 4 | | :—: | :—: | :—: | :—: | | $f(x)$ | -9 | 1 | 29 |
Here f ( 2 ) = 9 < 0 f ( 2 ) = 9 < 0 f(2)=-9 < 0f(2)=-9<0f(2)=9<0 and f ( 3 ) = 1 > 0 f ( 3 ) = 1 > 0 f(3)=1 > 0f(3)=1>0f(3)=1>0
:.\therefore Root lies between 2 and 3
1 s t 1 s t 1^(st)1^{s t}1st iteration :
Here f ( 2 ) = 9 < 0 f ( 2 ) = 9 < 0 f(2)=-9 < 0f(2)=-9<0f(2)=9<0 and f ( 3 ) = 1 > 0 f ( 3 ) = 1 > 0 f(3)=1 > 0f(3)=1>0f(3)=1>0
:.\therefore Now, Root lies between x 0 = 2 x 0 = 2 x_(0)=2x_0=2x0=2 and x 1 = 3 x 1 = 3 x_(1)=3x_1=3x1=3
x 2 = x 0 f ( x 0 ) x 1 x 0 f ( x 1 ) f ( x 0 ) x 2 = 2 ( 9 ) 3 2 1 ( 9 ) x 2 = 2.9 x 2 = x 0 f x 0 x 1 x 0 f x 1 f x 0 x 2 = 2 ( 9 ) 3 2 1 ( 9 ) x 2 = 2.9 {:[x_(2)=x_(0)-f(x_(0))*(x_(1)-x_(0))/(f(x_(1))-f(x_(0)))],[x_(2)=2-(-9)*(3-2)/(1-(-9))],[x_(2)=2.9]:}\begin{aligned} & x_2=x_0-f\left(x_0\right) \cdot \frac{x_1-x_0}{f\left(x_1\right)-f\left(x_0\right)} \\ & x_2=2-(-9) \cdot \frac{3-2}{1-(-9)} \\ & x_2=2.9 \end{aligned}x2=x0f(x0)x1x0f(x1)f(x0)x2=2(9)321(9)x2=2.9
f ( x 2 ) = f ( 2.9 ) = 2.9 3 9 2.9 + 1 = 0.711 < 0 f x 2 = f ( 2.9 ) = 2.9 3 9 2.9 + 1 = 0.711 < 0 f(x_(2))=f(2.9)=2.9^(3)-9*2.9+1=-0.711 < 0f\left(x_2\right)=f(2.9)=2.9^3-9 \cdot 2.9+1=-0.711<0f(x2)=f(2.9)=2.9392.9+1=0.711<0
2 nd 2 nd 2^(“nd “)2^{\text {nd }}2nd iteration :
Here f ( 2.9 ) = 0.711 < 0 f ( 2.9 ) = 0.711 < 0 f(2.9)=-0.711 < 0f(2.9)=-0.711<0f(2.9)=0.711<0 and f ( 3 ) = 1 > 0 f ( 3 ) = 1 > 0 f(3)=1 > 0f(3)=1>0f(3)=1>0
:.\therefore Now, Root lies between x 0 = 2.9 x 0 = 2.9 x_(0)=2.9x_0=2.9x0=2.9 and x 1 = 3 x 1 = 3 x_(1)=3x_1=3x1=3
x 3 = x 0 f ( x 0 ) x 1 x 0 f ( x 1 ) f ( x 0 ) x 3 = 2.9 ( 0.711 ) 3 2.9 1 ( 0.711 ) x 3 = 2.9416 x 3 = x 0 f x 0 x 1 x 0 f x 1 f x 0 x 3 = 2.9 ( 0.711 ) 3 2.9 1 ( 0.711 ) x 3 = 2.9416 {:[x_(3)=x_(0)-f(x_(0))*(x_(1)-x_(0))/(f(x_(1))-f(x_(0)))],[x_(3)=2.9-(-0.711)*(3-2.9)/(1-(-0.711))],[x_(3)=2.9416]:}\begin{aligned} & x_3=x_0-f\left(x_0\right) \cdot \frac{x_1-x_0}{f\left(x_1\right)-f\left(x_0\right)} \\ & x_3=2.9-(-0.711) \cdot \frac{3-2.9}{1-(-0.711)} \\ & x_3=2.9416 \end{aligned}x3=x0f(x0)x1x0f(x1)f(x0)x3=2.9(0.711)32.91(0.711)x3=2.9416
f ( x 3 ) = f ( 2.9416 ) = 2.9416 3 9 2.9416 + 1 = 0.0215 < 0 f x 3 = f ( 2.9416 ) = 2.9416 3 9 2.9416 + 1 = 0.0215 < 0 f(x_(3))=f(2.9416)=2.9416^(3)-9*2.9416+1=-0.0215 < 0f\left(x_3\right)=f(2.9416)=2.9416^3-9 \cdot 2.9416+1=-0.0215<0f(x3)=f(2.9416)=2.9416392.9416+1=0.0215<0
Verified Answer
5/5
Scroll to Top
Scroll to Top