Sample Solution

Expert Answer
  1. (a) State whether the following statements are True or False. Give reason in support of your answer:
    (i) If X 1 , X 2 , X 3 , X 4 X 1 , X 2 , X 3 , X 4 X_(1),X_(2),X_(3),X_(4)X_1, X_2, X_3, X_4X1,X2,X3,X4 and X 5 X 5 X_(5)X_5X5 is a random sample of size 5 taken from an Exponential distribution, then estimator T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.
T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 , T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 , T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T_(1)=(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5),T_(2)=(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)\mathrm{T}_1=\frac{\mathrm{X}_1+\mathrm{X}_2+\mathrm{X}_3+\mathrm{X}_4+\mathrm{X}_5}{5}, \mathrm{~T}_2=\frac{\mathrm{X}_1+2 \mathrm{X}_2+3 \mathrm{X}_3+4 \mathrm{X}_4+5 \mathrm{X}_5}{15}T1=X1+X2+X3+X4+X55, T2=X1+2X2+3X3+4X4+5X515
Answer:
To determine whether T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2, we need to compare the variances of these estimators, since efficiency is related to the variance of an unbiased estimator.
First, let’s recall the properties of an Exponential distribution. Suppose X Exponential ( λ ) X Exponential ( λ ) X∼”Exponential”(lambda)X \sim \text{Exponential}(\lambda)XExponential(λ). The mean of this distribution is E [ X ] = 1 λ E [ X ] = 1 λ E[X]=(1)/(lambda)E[X] = \frac{1}{\lambda}E[X]=1λ, and the variance is Var ( X ) = 1 λ 2 Var ( X ) = 1 λ 2 “Var”(X)=(1)/(lambda^(2))\text{Var}(X) = \frac{1}{\lambda^2}Var(X)=1λ2.

Mean and Variance of T 1 T 1 T_(1)T_1T1

The estimator T 1 T 1 T_(1)T_1T1 is the sample mean:
T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 T_(1)=(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5)T_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}T1=X1+X2+X3+X4+X55
For the sample mean of a random sample from an Exponential distribution:
  • E [ T 1 ] = E [ X 1 + X 2 + X 3 + X 4 + X 5 5 ] = 1 5 ( E [ X 1 ] + E [ X 2 ] + E [ X 3 ] + E [ X 4 ] + E [ X 5 ] ) = 5 5 1 λ = 1 λ E [ T 1 ] = E X 1 + X 2 + X 3 + X 4 + X 5 5 = 1 5 ( E [ X 1 ] + E [ X 2 ] + E [ X 3 ] + E [ X 4 ] + E [ X 5 ] ) = 5 5 1 λ = 1 λ E[T_(1)]=E[(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5)]=(1)/(5)(E[X_(1)]+E[X_(2)]+E[X_(3)]+E[X_(4)]+E[X_(5)])=(5)/(5)*(1)/(lambda)=(1)/(lambda)E[T_1] = E\left[\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}\right] = \frac{1}{5}(E[X_1] + E[X_2] + E[X_3] + E[X_4] + E[X_5]) = \frac{5}{5} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}E[T1]=E[X1+X2+X3+X4+X55]=15(E[X1]+E[X2]+E[X3]+E[X4]+E[X5])=551λ=1λ
  • Var ( T 1 ) = Var ( X 1 + X 2 + X 3 + X 4 + X 5 5 ) = 1 25 ( Var ( X 1 ) + Var ( X 2 ) + Var ( X 3 ) + Var ( X 4 ) + Var ( X 5 ) ) = 5 25 1 λ 2 = 1 5 λ 2 Var ( T 1 ) = Var X 1 + X 2 + X 3 + X 4 + X 5 5 = 1 25 Var ( X 1 ) + Var ( X 2 ) + Var ( X 3 ) + Var ( X 4 ) + Var ( X 5 ) = 5 25 1 λ 2 = 1 5 λ 2 “Var”(T_(1))=”Var”((X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5))=(1)/(25)(“Var”(X_(1))+”Var”(X_(2))+”Var”(X_(3))+”Var”(X_(4))+”Var”(X_(5)))=(5)/(25)*(1)/(lambda^(2))=(1)/(5lambda^(2))\text{Var}(T_1) = \text{Var}\left(\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}\right) = \frac{1}{25} \left( \text{Var}(X_1) + \text{Var}(X_2) + \text{Var}(X_3) + \text{Var}(X_4) + \text{Var}(X_5) \right) = \frac{5}{25} \cdot \frac{1}{\lambda^2} = \frac{1}{5\lambda^2}Var(T1)=Var(X1+X2+X3+X4+X55)=125(Var(X1)+Var(X2)+Var(X3)+Var(X4)+Var(X5))=5251λ2=15λ2

Mean and Variance of T 2 T 2 T_(2)T_2T2

The estimator T 2 T 2 T_(2)T_2T2 is a weighted sum of the sample values:
T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T_(2)=(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)T_2 = \frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}T2=X1+2X2+3X3+4X4+5X515
To find the expected value and variance of T 2 T 2 T_(2)T_2T2:
  • E [ T 2 ] = E [ X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 ] = 1 15 ( E [ X 1 ] + 2 E [ X 2 ] + 3 E [ X 3 ] + 4 E [ X 4 ] + 5 E [ X 5 ] ) = 1 15 ( 1 + 2 + 3 + 4 + 5 ) 1 λ = 15 15 1 λ = 1 λ E [ T 2 ] = E X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 = 1 15 E [ X 1 ] + 2 E [ X 2 ] + 3 E [ X 3 ] + 4 E [ X 4 ] + 5 E [ X 5 ] = 1 15 1 + 2 + 3 + 4 + 5 1 λ = 15 15 1 λ = 1 λ E[T_(2)]=E[(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)]=(1)/(15)(E[X_(1)]+2E[X_(2)]+3E[X_(3)]+4E[X_(4)]+5E[X_(5)])=(1)/(15)(1+2+3+4+5)*(1)/(lambda)=(15)/(15)*(1)/(lambda)=(1)/(lambda)E[T_2] = E\left[\frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}\right] = \frac{1}{15} \left( E[X_1] + 2E[X_2] + 3E[X_3] + 4E[X_4] + 5E[X_5] \right) = \frac{1}{15} \left( 1 + 2 + 3 + 4 + 5 \right) \cdot \frac{1}{\lambda} = \frac{15}{15} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}E[T2]=E[X1+2X2+3X3+4X4+5X515]=115(E[X1]+2E[X2]+3E[X3]+4E[X4]+5E[X5])=115(1+2+3+4+5)1λ=15151λ=1λ
  • Var ( T 2 ) = Var ( X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 ) = 1 15 2 ( Var ( X 1 ) + 4 Var ( X 2 ) + 9 Var ( X 3 ) + 16 Var ( X 4 ) + 25 Var ( X 5 ) ) = 1 225 ( 1 + 4 + 9 + 16 + 25 ) 1 λ 2 = 55 225 1 λ 2 = 11 45 λ 2 Var ( T 2 ) = Var X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 = 1 15 2 Var ( X 1 ) + 4 Var ( X 2 ) + 9 Var ( X 3 ) + 16 Var ( X 4 ) + 25 Var ( X 5 ) = 1 225 1 + 4 + 9 + 16 + 25 1 λ 2 = 55 225 1 λ 2 = 11 45 λ 2 “Var”(T_(2))=”Var”((X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15))=(1)/(15^(2))(“Var”(X_(1))+4″Var”(X_(2))+9″Var”(X_(3))+16″Var”(X_(4))+25″Var”(X_(5)))=(1)/(225)(1+4+9+16+25)*(1)/(lambda^(2))=(55)/(225)*(1)/(lambda^(2))=(11)/(45lambda^(2))\text{Var}(T_2) = \text{Var}\left(\frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}\right) = \frac{1}{15^2} \left( \text{Var}(X_1) + 4\text{Var}(X_2) + 9\text{Var}(X_3) + 16\text{Var}(X_4) + 25\text{Var}(X_5) \right) = \frac{1}{225} \left( 1 + 4 + 9 + 16 + 25 \right) \cdot \frac{1}{\lambda^2} = \frac{55}{225} \cdot \frac{1}{\lambda^2} = \frac{11}{45\lambda^2}Var(T2)=Var(X1+2X2+3X3+4X4+5X515)=1152(Var(X1)+4Var(X2)+9Var(X3)+16Var(X4)+25Var(X5))=1225(1+4+9+16+25)1λ2=552251λ2=1145λ2

Comparing Variances

Now, we compare the variances of T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2:
  • Var ( T 1 ) = 1 5 λ 2 Var ( T 1 ) = 1 5 λ 2 “Var”(T_(1))=(1)/(5lambda^(2))\text{Var}(T_1) = \frac{1}{5\lambda^2}Var(T1)=15λ2
  • Var ( T 2 ) = 11 45 λ 2 Var ( T 2 ) = 11 45 λ 2 “Var”(T_(2))=(11)/(45lambda^(2))\text{Var}(T_2) = \frac{11}{45\lambda^2}Var(T2)=1145λ2
To determine which estimator is more efficient, we compare 1 5 1 5 (1)/(5)\frac{1}{5}15 and 11 45 11 45 (11)/(45)\frac{11}{45}1145:
1 5 = 9 45 1 5 = 9 45 (1)/(5)=(9)/(45)\frac{1}{5} = \frac{9}{45}15=945
Since 9 45 < 11 45 9 45 < 11 45 (9)/(45) < (11)/(45)\frac{9}{45} < \frac{11}{45}945<1145, we have:
Var ( T 1 ) < Var ( T 2 ) Var ( T 1 ) < Var ( T 2 ) “Var”(T_(1)) < “Var”(T_(2))\text{Var}(T_1) < \text{Var}(T_2)Var(T1)<Var(T2)
Therefore, the variance of T 1 T 1 T_(1)T_1T1 is smaller than that of T 2 T 2 T_(2)T_2T2, indicating that T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.

Conclusion

The statement "If X 1 , X 2 , X 3 , X 4 X 1 , X 2 , X 3 , X 4 X_(1),X_(2),X_(3),X_(4)X_1, X_2, X_3, X_4X1,X2,X3,X4, and X 5 X 5 X_(5)X_5X5 is a random sample of size 5 taken from an Exponential distribution, then estimator T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2" is true. This conclusion is based on the comparison of their variances, where T 1 T 1 T_(1)T_1T1 has a lower variance than T 2 T 2 T_(2)T_2T2.
(ii) If T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 are two estimators of the parameter θ θ theta\thetaθ such that Var ( T 1 ) = 1 / n Var T 1 = 1 / n Var(T_(1))=1//n\operatorname{Var}\left(T_1\right)=1 / nVar(T1)=1/n and Var ( T 2 ) = n Var T 2 = n Var(T_(2))=n\operatorname{Var}\left(T_2\right)=nVar(T2)=n then T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.
Answer:
The efficiency of an estimator is inversely related to its variance. An estimator with a smaller variance is considered more efficient because it has less variability and, therefore, tends to be closer to the true parameter value.
Given two estimators T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 of the parameter θ θ theta\thetaθ with the following variances:
Var ( T 1 ) = 1 n Var ( T 1 ) = 1 n Var(T_(1))=(1)/(n)\operatorname{Var}(T_1) = \frac{1}{n}Var(T1)=1n
Var ( T 2 ) = n Var ( T 2 ) = n Var(T_(2))=n\operatorname{Var}(T_2) = nVar(T2)=n

Comparison of Variances

To determine which estimator is more efficient, we compare their variances directly.
  1. Variance of T 1 T 1 T_(1)T_1T1:
    Var ( T 1 ) = 1 n Var ( T 1 ) = 1 n Var(T_(1))=(1)/(n)\operatorname{Var}(T_1) = \frac{1}{n}Var(T1)=1n
  2. Variance of T 2 T 2 T_(2)T_2T2:
    Var ( T 2 ) = n Var ( T 2 ) = n Var(T_(2))=n\operatorname{Var}(T_2) = nVar(T2)=n
Since efficiency is related to having a smaller variance, we compare 1 n 1 n (1)/(n)\frac{1}{n}1n and n n nnn.

Analysis:

  • 1 n 1 n (1)/(n)\frac{1}{n}1n is typically much smaller than n n nnn when n > 1 n > 1 n > 1n > 1n>1.
  • For n 1 n 1 n >= 1n \geq 1n1, 1 n 1 1 n 1 (1)/(n) <= 1\frac{1}{n} \leq 11n1 and n 1 n 1 n >= 1n \geq 1n1, hence 1 n < n 1 n < n (1)/(n) < n\frac{1}{n} < n1n<n.

Conclusion:

Since 1 n 1 n (1)/(n)\frac{1}{n}1n is significantly smaller than n n nnn, T 1 T 1 T_(1)T_1T1 has a much smaller variance than T 2 T 2 T_(2)T_2T2. Therefore, T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2 because it provides estimates with less variability around the parameter θ θ theta\thetaθ.

Justification:

  • For n > 1 n > 1 n > 1n > 1n>1: 1 n < n 1 n < n (1)/(n) < n\frac{1}{n} < n1n<n, thus Var ( T 1 ) < Var ( T 2 ) Var ( T 1 ) < Var ( T 2 ) Var(T_(1)) < Var(T_(2))\operatorname{Var}(T_1) < \operatorname{Var}(T_2)Var(T1)<Var(T2).
  • For n = 1 n = 1 n=1n = 1n=1: Var ( T 1 ) = 1 Var ( T 1 ) = 1 Var(T_(1))=1\operatorname{Var}(T_1) = 1Var(T1)=1 and Var ( T 2 ) = 1 Var ( T 2 ) = 1 Var(T_(2))=1\operatorname{Var}(T_2) = 1Var(T2)=1, thus they have equal variance.
  • For n < 1 n < 1 n < 1n < 1n<1: This scenario typically does not apply as n n nnn usually represents the sample size, which is a positive integer.
Therefore, given that the usual context implies n > 1 n > 1 n > 1n > 1n>1 or n = 1 n = 1 n=1n = 1n=1 in practical situations, T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2 for any reasonable sample size n n nnn.
Hence, the statement "If T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 are two estimators of the parameter θ θ theta\thetaθ such that Var ( T 1 ) = 1 / n Var T 1 = 1 / n Var(T_(1))=1//n\operatorname{Var}\left(T_1\right)=1 / nVar(T1)=1/n and Var ( T 2 ) = n Var T 2 = n Var(T_(2))=n\operatorname{Var}\left(T_2\right)=nVar(T2)=n then T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2" is true.
(iii) A 95 % 95 % 95%95 \%95% confidence interval is smaller than 99 % 99 % 99%99 \%99% confidence interval.
Answer:
To determine the truth of the statement "A 95 % 95 % 95%95\%95% confidence interval is smaller than a 99 % 99 % 99%99\%99% confidence interval," we need to understand how confidence intervals are constructed and how the confidence level affects their width.

Confidence Intervals

A confidence interval for a parameter is an interval estimate that is likely to contain the parameter with a certain level of confidence. For a given confidence level ( 1 α ) ( 1 α ) (1-alpha)(1 – \alpha)(1α), the confidence interval is typically given by:
Estimate ± z α / 2 × Standard Error Estimate ± z α / 2 × Standard Error “Estimate”+-z_(alpha//2)xx”Standard Error”\text{Estimate} \pm z_{\alpha/2} \times \text{Standard Error}Estimate±zα/2×Standard Error
where z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 is the critical value from the standard normal distribution corresponding to the desired confidence level, and the standard error is a measure of the variability of the estimate.

Comparison of 95% and 99% Confidence Intervals

  1. Critical Values:
    • For a 95 % 95 % 95%95\%95% confidence interval, the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 corresponds to α = 0.05 α = 0.05 alpha=0.05\alpha = 0.05α=0.05. This gives z 0.025 1.96 z 0.025 1.96 z_(0.025)~~1.96z_{0.025} \approx 1.96z0.0251.96.
    • For a 99 % 99 % 99%99\%99% confidence interval, the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 corresponds to α = 0.01 α = 0.01 alpha=0.01\alpha = 0.01α=0.01. This gives z 0.005 2.576 z 0.005 2.576 z_(0.005)~~2.576z_{0.005} \approx 2.576z0.0052.576.
  2. Interval Width:
    • The width of a confidence interval is determined by the product of the critical value and the standard error.
    • For a 95 % 95 % 95%95\%95% confidence interval: Width = 2 × 1.96 × Standard Error Width = 2 × 1.96 × Standard Error “Width”=2xx1.96 xx”Standard Error”\text{Width} = 2 \times 1.96 \times \text{Standard Error}Width=2×1.96×Standard Error.
    • For a 99 % 99 % 99%99\%99% confidence interval: Width = 2 × 2.576 × Standard Error Width = 2 × 2.576 × Standard Error “Width”=2xx2.576 xx”Standard Error”\text{Width} = 2 \times 2.576 \times \text{Standard Error}Width=2×2.576×Standard Error.
Since 2.576 > 1.96 2.576 > 1.96 2.576 > 1.962.576 > 1.962.576>1.96, the multiplier for the standard error in the 99 % 99 % 99%99\%99% confidence interval is larger than that for the 95 % 95 % 95%95\%95% confidence interval.

Conclusion

The 99 % 99 % 99%99\%99% confidence interval has a larger critical value, resulting in a wider interval compared to the 95 % 95 % 95%95\%95% confidence interval, assuming the same data and variability. Therefore, the statement "A 95 % 95 % 95%95\%95% confidence interval is smaller than a 99 % 99 % 99%99\%99% confidence interval" is true.

Proof

  • The width of a confidence interval is proportional to the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2.
  • For 95 % 95 % 95%95\%95% confidence level, the critical value is approximately 1.96.
  • For 99 % 99 % 99%99\%99% confidence level, the critical value is approximately 2.576.
  • Since 2.576 > 1.96 2.576 > 1.96 2.576 > 1.962.576 > 1.962.576>1.96, the width of the 99 % 99 % 99%99\%99% confidence interval will be greater than the width of the 95 % 95 % 95%95\%95% confidence interval.
Hence, a 95 % 95 % 95%95\%95% confidence interval is indeed smaller than a 99 % 99 % 99%99\%99% confidence interval, making the statement true.
(iv) If the probability density function of a random variable X X X\mathrm{X}X follows F F F\mathrm{F}F-distribution is
f ( x ) = 1 ( 1 + x ) 2 , x 0 f ( x ) = 1 ( 1 + x ) 2 , x 0 f(x)=(1)/((1+x)^(2)),x >= 0f(x)=\frac{1}{(1+x)^2}, x \geq 0f(x)=1(1+x)2,x0
then degrees of freedom of the distribution will be ( 2 , 2 ) ( 2 , 2 ) (2,2)(2,2)(2,2).
Answer:
The given probability density function (pdf) is:
f ( x ) = 1 ( 1 + x ) 2 , x 0 f ( x ) = 1 ( 1 + x ) 2 , x 0 f(x)=(1)/((1+x)^(2)),quad x >= 0f(x) = \frac{1}{(1+x)^2}, \quad x \geq 0f(x)=1(1+x)2,x0
We need to determine whether this pdf corresponds to an F F FFF-distribution with degrees of freedom ( 2 , 2 ) ( 2 , 2 ) (2,2)(2,2)(2,2).

Form of the F F FFF-Distribution

The pdf of an F F FFF-distribution with degrees of freedom d 1 d 1 d_(1)d_1d1 and d 2 d 2 d_(2)d_2d2 is given by:
f ( x ) = Γ ( d 1 + d 2 2 ) Γ ( d 1 2 ) Γ ( d 2 2 ) ( d 1 d 2 ) d 1 / 2 x d 1 / 2 1 ( 1 + d 1 d 2 x ) ( d 1 + d 2 ) / 2 , x 0 f ( x ) = Γ d 1 + d 2 2 Γ d 1 2 Γ d 2 2 d 1 d 2 d 1 / 2 x d 1 / 2 1 1 + d 1 d 2 x ( d 1 + d 2 ) / 2 , x 0 f(x)=(Gamma((d_(1)+d_(2))/(2)))/(Gamma((d_(1))/(2))Gamma((d_(2))/(2)))((d_(1))/(d_(2)))^(d_(1)//2)(x^(d_(1)//2-1))/((1+(d_(1))/(d_(2))x)^((d_(1)+d_(2))//2)),quad x >= 0f(x) = \frac{\Gamma\left(\frac{d_1 + d_2}{2}\right)}{\Gamma\left(\frac{d_1}{2}\right)\Gamma\left(\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{d_1/2} \frac{x^{d_1/2 – 1}}{\left(1 + \frac{d_1}{d_2} x\right)^{(d_1 + d_2)/2}}, \quad x \geq 0f(x)=Γ(d1+d22)Γ(d12)Γ(d22)(d1d2)d1/2xd1/21(1+d1d2x)(d1+d2)/2,x0
To match the given pdf f ( x ) = 1 ( 1 + x ) 2 f ( x ) = 1 ( 1 + x ) 2 f(x)=(1)/((1+x)^(2))f(x) = \frac{1}{(1+x)^2}f(x)=1(1+x)2 with the form of the F F FFF-distribution, let’s compare the forms:
  • The given pdf does not have a term involving x d 1 / 2 1 x d 1 / 2 1 x^(d_(1)//2-1)x^{d_1/2 – 1}xd1/21.
  • The given pdf has the form 1 ( 1 + x ) 2 1 ( 1 + x ) 2 (1)/((1+x)^(2))\frac{1}{(1+x)^2}1(1+x)2, which suggests that the exponent in the denominator should match ( d 1 + d 2 ) / 2 = 2 ( d 1 + d 2 ) / 2 = 2 (d_(1)+d_(2))//2=2(d_1 + d_2)/2 = 2(d1+d2)/2=2.

Determining d 1 d 1 d_(1)d_1d1 and d 2 d 2 d_(2)d_2d2

To determine the degrees of freedom, let’s compare the denominator term:
( 1 + d 1 d 2 x ) ( d 1 + d 2 ) / 2 = ( 1 + x ) 2 1 + d 1 d 2 x ( d 1 + d 2 ) / 2 = ( 1 + x ) 2 (1+(d_(1))/(d_(2))x)^((d_(1)+d_(2))//2)=(1+x)^(2)\left(1 + \frac{d_1}{d_2} x\right)^{(d_1 + d_2)/2} = (1 + x)^2(1+d1d2x)(d1+d2)/2=(1+x)2
By comparing the exponents:
d 1 + d 2 2 = 2 d 1 + d 2 = 4 d 1 + d 2 2 = 2 d 1 + d 2 = 4 (d_(1)+d_(2))/(2)=2Longrightarrowd_(1)+d_(2)=4\frac{d_1 + d_2}{2} = 2 \implies d_1 + d_2 = 4d1+d22=2d1+d2=4
Next, let’s consider the term involving x x xxx. For an F F FFF-distribution:
f ( x ) = 1 ( 1 + x ) 2 f ( x ) = 1 ( 1 + x ) 2 f(x)=(1)/((1+x)^(2))f(x) = \frac{1}{(1+x)^2}f(x)=1(1+x)2
We do not have an x d 1 / 2 1 x d 1 / 2 1 x^(d_(1)//2-1)x^{d_1/2 – 1}xd1/21 term, which means d 1 / 2 1 = 0 d 1 / 2 = 1 d 1 = 2 d 1 / 2 1 = 0 d 1 / 2 = 1 d 1 = 2 d_(1)//2-1=0Longrightarrowd_(1)//2=1Longrightarrowd_(1)=2d_1/2 – 1 = 0 \implies d_1/2 = 1 \implies d_1 = 2d1/21=0d1/2=1d1=2.
Using d 1 = 2 d 1 = 2 d_(1)=2d_1 = 2d1=2 in d 1 + d 2 = 4 d 1 + d 2 = 4 d_(1)+d_(2)=4d_1 + d_2 = 4d1+d2=4:
2 + d 2 = 4 d 2 = 2 2 + d 2 = 4 d 2 = 2 2+d_(2)=4Longrightarrowd_(2)=22 + d_2 = 4 \implies d_2 = 22+d2=4d2=2
Thus, the degrees of freedom are d 1 = 2 d 1 = 2 d_(1)=2d_1 = 2d1=2 and d 2 = 2 d 2 = 2 d_(2)=2d_2 = 2d2=2.

Conclusion

The given pdf f ( x ) = 1 ( 1 + x ) 2 f ( x ) = 1 ( 1 + x ) 2 f(x)=(1)/((1+x)^(2))f(x) = \frac{1}{(1+x)^2}f(x)=1(1+x)2 matches the form of an F F FFF-distribution with degrees of freedom ( 2 , 2 ) ( 2 , 2 ) (2,2)(2,2)(2,2).
Therefore, the statement "If the probability density function of a random variable X X X\mathrm{X}X follows F F F\mathrm{F}F-distribution is f ( x ) = 1 ( 1 + x ) 2 , x 0 f ( x ) = 1 ( 1 + x ) 2 , x 0 f(x)=(1)/((1+x)^(2)),x >= 0f(x)=\frac{1}{(1+x)^2}, x \geq 0f(x)=1(1+x)2,x0, then degrees of freedom of the distribution will be ( 2 , 2 ) ( 2 , 2 ) (2,2)(2,2)(2,2)" is true.
(v) A patient suffering from fever reaches to a doctor and suppose the doctor formulate the hypotheses as
H 0 H 0 H_(0)\mathrm{H}_0H0 : The patient is a chikunguniya patient
H 1 H 1 H_(1)\mathrm{H}_1H1 : The patient is not a chikunguniya patient
If the doctor rejects H 0 H 0 H_(0)\mathrm{H}_0H0 when the patient is actually a chikunguniya patient, then the doctor commits type II error.
Answer:
Let’s review the hypothesis testing framework first:
  • H 0 H 0 H_(0)\mathrm{H}_0H0: The patient is a chikungunya patient.
  • H 1 H 1 H_(1)\mathrm{H}_1H1: The patient is not a chikungunya patient.
In hypothesis testing, we have two types of errors:
  1. Type I error (False Positive): Rejecting H 0 H 0 H_(0)\mathrm{H}_0H0 when H 0 H 0 H_(0)\mathrm{H}_0H0 is true. In this context, it means the doctor concludes that the patient does not have chikungunya when the patient actually has chikungunya.
  2. Type II error (False Negative): Failing to reject H 0 H 0 H_(0)\mathrm{H}_0H0 when H 0 H 0 H_(0)\mathrm{H}_0H0 is false. In this context, it means the doctor concludes that the patient has chikungunya when the patient actually does not have chikungunya.
Now, let’s analyze the given statement:
"If the doctor rejects H 0 H 0 H_(0)\mathrm{H}_0H0 when the patient is actually a chikungunya patient, then the doctor commits a type II error."
This statement is incorrect because:
  • Rejecting H 0 H 0 H_(0)\mathrm{H}_0H0 when H 0 H 0 H_(0)\mathrm{H}_0H0 is actually true is committing a Type I error, not a Type II error.
Thus, if the doctor rejects H 0 H 0 H_(0)\mathrm{H}_0H0 when the patient is actually a chikungunya patient, the doctor is committing a Type I error.
(b) Describe the various forms of the sampling distribution of ratio of two sample variances.
Answer:

Sampling Distribution of the Ratio of Two Sample Variances

When dealing with the ratio of two sample variances, we’re typically interested in understanding the behavior of this ratio under repeated sampling from normally distributed populations. This leads us to the concept of the F-distribution. Here’s a detailed explanation of the various forms and properties of the sampling distribution of the ratio of two sample variances.

1. Basic Concept

Suppose we have two independent random samples from two normally distributed populations. Let:
  • S 1 2 S 1 2 S_(1)^(2)S_1^2S12 be the variance of the first sample of size n 1 n 1 n_(1)n_1n1.
  • S 2 2 S 2 2 S_(2)^(2)S_2^2S22 be the variance of the second sample of size n 2 n 2 n_(2)n_2n2.
The ratio of the two sample variances F F FFF is given by:
F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 F=(S_(1)^(2)//sigma_(1)^(2))/(S_(2)^(2)//sigma_(2)^(2))F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2}F=S12/σ12S22/σ22
where σ 1 2 σ 1 2 sigma_(1)^(2)\sigma_1^2σ12 and σ 2 2 σ 2 2 sigma_(2)^(2)\sigma_2^2σ22 are the population variances of the two samples.

2. F-Distribution

Under the null hypothesis that the population variances are equal (i.e., σ 1 2 = σ 2 2 σ 1 2 = σ 2 2 sigma_(1)^(2)=sigma_(2)^(2)\sigma_1^2 = \sigma_2^2σ12=σ22), the ratio F F FFF follows an F-distribution with ( n 1 1 ) ( n 1 1 ) (n_(1)-1)(n_1 – 1)(n11) and ( n 2 1 ) ( n 2 1 ) (n_(2)-1)(n_2 – 1)(n21) degrees of freedom. The F-distribution is defined as:
F F ( n 1 1 ) , ( n 2 1 ) F F ( n 1 1 ) , ( n 2 1 ) F∼F_((n_(1)-1),(n_(2)-1))F \sim F_{(n_1 – 1), (n_2 – 1)}FF(n11),(n21)

3. Properties of the F-Distribution

  • Non-Negative: Since variances are always non-negative, the ratio F F FFF is always non-negative.
  • Skewness: The F-distribution is positively skewed, especially for smaller sample sizes.
  • Mean: For an F-distribution with d 1 d 1 d_(1)d_1d1 and d 2 d 2 d_(2)d_2d2 degrees of freedom, the mean is given by d 2 d 2 2 d 2 d 2 2 (d_(2))/(d_(2)-2)\frac{d_2}{d_2 – 2}d2d22 for d 2 > 2 d 2 > 2 d_(2) > 2d_2 > 2d2>2.
  • Mode: The mode of the F-distribution is given by d 1 2 d 1 ( d 2 + 2 ) d 1 2 d 1 ( d 2 + 2 ) (d_(1)-2)/(d_(1)(d_(2)+2))\frac{d_1 – 2}{d_1 (d_2 + 2)}d12d1(d2+2) for d 1 > 2 d 1 > 2 d_(1) > 2d_1 > 2d1>2.
  • Variance: The variance of the F-distribution is given by: Var ( F ) = 2 d 2 2 ( d 1 + d 2 2 ) d 1 ( d 2 2 ) 2 ( d 2 4 ) Var ( F ) = 2 d 2 2 ( d 1 + d 2 2 ) d 1 ( d 2 2 ) 2 ( d 2 4 ) “Var”(F)=(2d_(2)^(2)(d_(1)+d_(2)-2))/(d_(1)(d_(2)-2)^(2)(d_(2)-4))\text{Var}(F) = \frac{2 d_2^2 (d_1 + d_2 – 2)}{d_1 (d_2 – 2)^2 (d_2 – 4)}Var(F)=2d22(d1+d22)d1(d22)2(d24)for d 2 > 4 d 2 > 4 d_(2) > 4d_2 > 4d2>4.

4. Applications

The F-distribution is commonly used in:
  • Analysis of Variance (ANOVA): To compare the variances across multiple groups.
  • Regression Analysis: To test the overall significance of a regression model.
  • Hypothesis Testing: For testing the equality of two variances.

5. Example

Suppose we have two independent samples with the following properties:
  • Sample 1: Size n 1 = 10 n 1 = 10 n_(1)=10n_1 = 10n1=10, variance S 1 2 S 1 2 S_(1)^(2)S_1^2S12.
  • Sample 2: Size n 2 = 15 n 2 = 15 n_(2)=15n_2 = 15n2=15, variance S 2 2 S 2 2 S_(2)^(2)S_2^2S22.
To test whether the population variances are equal, we calculate the F-statistic:
F = S 1 2 S 2 2 F = S 1 2 S 2 2 F=(S_(1)^(2))/(S_(2)^(2))F = \frac{S_1^2}{S_2^2}F=S12S22
We then compare this calculated F-statistic to the critical value from the F-distribution table with ( n 1 1 ) ( n 1 1 ) (n_(1)-1)(n_1 – 1)(n11) and ( n 2 1 ) ( n 2 1 ) (n_(2)-1)(n_2 – 1)(n21) degrees of freedom. If the calculated F-statistic is greater than the critical value, we reject the null hypothesis that the population variances are equal.

6. Assumptions

For the F-distribution to be a valid approximation of the distribution of the ratio of two sample variances, the following assumptions must hold:
  • The samples are independent.
  • Each sample is drawn from a normally distributed population.

7. Limitations

  • Normality Assumption: The F-distribution relies on the assumption that the populations from which samples are drawn are normally distributed. If this assumption is violated, the distribution of the ratio may not follow an F-distribution.
  • Sensitivity to Outliers: Sample variances are sensitive to outliers. Thus, the F-statistic can be heavily influenced by extreme values.
In conclusion, the ratio of two sample variances follows an F-distribution under the assumption of normality and independence of samples. The F-distribution is characterized by its positive skewness and is widely used in various statistical tests, including ANOVA and hypothesis testing for equality of variances. Understanding the properties and limitations of this distribution is crucial for correctly interpreting the results of such tests.
Verified Answer
5/5
Scroll to Top
Scroll to Top