Sample Solution

  1. (a) State whether the following statements are True or False. Give reason in support of your answer:
    (i) If X 1 , X 2 , X 3 , X 4 X 1 , X 2 , X 3 , X 4 X_(1),X_(2),X_(3),X_(4)X_1, X_2, X_3, X_4X1,X2,X3,X4 and X 5 X 5 X_(5)X_5X5 is a random sample of size 5 taken from an Exponential distribution, then estimator T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.
T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 , T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 , T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T_(1)=(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5),T_(2)=(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)\mathrm{T}_1=\frac{\mathrm{X}_1+\mathrm{X}_2+\mathrm{X}_3+\mathrm{X}_4+\mathrm{X}_5}{5}, \mathrm{~T}_2=\frac{\mathrm{X}_1+2 \mathrm{X}_2+3 \mathrm{X}_3+4 \mathrm{X}_4+5 \mathrm{X}_5}{15}T1=X1+X2+X3+X4+X55, T2=X1+2X2+3X3+4X4+5X515
Answer:
To determine whether T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2, we need to compare the variances of these estimators, since efficiency is related to the variance of an unbiased estimator.
First, let’s recall the properties of an Exponential distribution. Suppose X Exponential ( λ ) X Exponential ( λ ) X∼”Exponential”(lambda)X \sim \text{Exponential}(\lambda)XExponential(λ). The mean of this distribution is E [ X ] = 1 λ E [ X ] = 1 λ E[X]=(1)/(lambda)E[X] = \frac{1}{\lambda}E[X]=1λ, and the variance is Var ( X ) = 1 λ 2 Var ( X ) = 1 λ 2 “Var”(X)=(1)/(lambda^(2))\text{Var}(X) = \frac{1}{\lambda^2}Var(X)=1λ2.

Mean and Variance of T 1 T 1 T_(1)T_1T1

The estimator T 1 T 1 T_(1)T_1T1 is the sample mean:
T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 T 1 = X 1 + X 2 + X 3 + X 4 + X 5 5 T_(1)=(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5)T_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}T1=X1+X2+X3+X4+X55
For the sample mean of a random sample from an Exponential distribution:
  • E [ T 1 ] = E [ X 1 + X 2 + X 3 + X 4 + X 5 5 ] = 1 5 ( E [ X 1 ] + E [ X 2 ] + E [ X 3 ] + E [ X 4 ] + E [ X 5 ] ) = 5 5 1 λ = 1 λ E [ T 1 ] = E X 1 + X 2 + X 3 + X 4 + X 5 5 = 1 5 ( E [ X 1 ] + E [ X 2 ] + E [ X 3 ] + E [ X 4 ] + E [ X 5 ] ) = 5 5 1 λ = 1 λ E[T_(1)]=E[(X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5)]=(1)/(5)(E[X_(1)]+E[X_(2)]+E[X_(3)]+E[X_(4)]+E[X_(5)])=(5)/(5)*(1)/(lambda)=(1)/(lambda)E[T_1] = E\left[\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}\right] = \frac{1}{5}(E[X_1] + E[X_2] + E[X_3] + E[X_4] + E[X_5]) = \frac{5}{5} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}E[T1]=E[X1+X2+X3+X4+X55]=15(E[X1]+E[X2]+E[X3]+E[X4]+E[X5])=551λ=1λ
  • Var ( T 1 ) = Var ( X 1 + X 2 + X 3 + X 4 + X 5 5 ) = 1 25 ( Var ( X 1 ) + Var ( X 2 ) + Var ( X 3 ) + Var ( X 4 ) + Var ( X 5 ) ) = 5 25 1 λ 2 = 1 5 λ 2 Var ( T 1 ) = Var X 1 + X 2 + X 3 + X 4 + X 5 5 = 1 25 Var ( X 1 ) + Var ( X 2 ) + Var ( X 3 ) + Var ( X 4 ) + Var ( X 5 ) = 5 25 1 λ 2 = 1 5 λ 2 “Var”(T_(1))=”Var”((X_(1)+X_(2)+X_(3)+X_(4)+X_(5))/(5))=(1)/(25)(“Var”(X_(1))+”Var”(X_(2))+”Var”(X_(3))+”Var”(X_(4))+”Var”(X_(5)))=(5)/(25)*(1)/(lambda^(2))=(1)/(5lambda^(2))\text{Var}(T_1) = \text{Var}\left(\frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}\right) = \frac{1}{25} \left( \text{Var}(X_1) + \text{Var}(X_2) + \text{Var}(X_3) + \text{Var}(X_4) + \text{Var}(X_5) \right) = \frac{5}{25} \cdot \frac{1}{\lambda^2} = \frac{1}{5\lambda^2}Var(T1)=Var(X1+X2+X3+X4+X55)=125(Var(X1)+Var(X2)+Var(X3)+Var(X4)+Var(X5))=5251λ2=15λ2

Mean and Variance of T 2 T 2 T_(2)T_2T2

The estimator T 2 T 2 T_(2)T_2T2 is a weighted sum of the sample values:
T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T 2 = X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 T_(2)=(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)T_2 = \frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}T2=X1+2X2+3X3+4X4+5X515
To find the expected value and variance of T 2 T 2 T_(2)T_2T2:
  • E [ T 2 ] = E [ X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 ] = 1 15 ( E [ X 1 ] + 2 E [ X 2 ] + 3 E [ X 3 ] + 4 E [ X 4 ] + 5 E [ X 5 ] ) = 1 15 ( 1 + 2 + 3 + 4 + 5 ) 1 λ = 15 15 1 λ = 1 λ E [ T 2 ] = E X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 = 1 15 E [ X 1 ] + 2 E [ X 2 ] + 3 E [ X 3 ] + 4 E [ X 4 ] + 5 E [ X 5 ] = 1 15 1 + 2 + 3 + 4 + 5 1 λ = 15 15 1 λ = 1 λ E[T_(2)]=E[(X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15)]=(1)/(15)(E[X_(1)]+2E[X_(2)]+3E[X_(3)]+4E[X_(4)]+5E[X_(5)])=(1)/(15)(1+2+3+4+5)*(1)/(lambda)=(15)/(15)*(1)/(lambda)=(1)/(lambda)E[T_2] = E\left[\frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}\right] = \frac{1}{15} \left( E[X_1] + 2E[X_2] + 3E[X_3] + 4E[X_4] + 5E[X_5] \right) = \frac{1}{15} \left( 1 + 2 + 3 + 4 + 5 \right) \cdot \frac{1}{\lambda} = \frac{15}{15} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}E[T2]=E[X1+2X2+3X3+4X4+5X515]=115(E[X1]+2E[X2]+3E[X3]+4E[X4]+5E[X5])=115(1+2+3+4+5)1λ=15151λ=1λ
  • Var ( T 2 ) = Var ( X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 ) = 1 15 2 ( Var ( X 1 ) + 4 Var ( X 2 ) + 9 Var ( X 3 ) + 16 Var ( X 4 ) + 25 Var ( X 5 ) ) = 1 225 ( 1 + 4 + 9 + 16 + 25 ) 1 λ 2 = 55 225 1 λ 2 = 11 45 λ 2 Var ( T 2 ) = Var X 1 + 2 X 2 + 3 X 3 + 4 X 4 + 5 X 5 15 = 1 15 2 Var ( X 1 ) + 4 Var ( X 2 ) + 9 Var ( X 3 ) + 16 Var ( X 4 ) + 25 Var ( X 5 ) = 1 225 1 + 4 + 9 + 16 + 25 1 λ 2 = 55 225 1 λ 2 = 11 45 λ 2 “Var”(T_(2))=”Var”((X_(1)+2X_(2)+3X_(3)+4X_(4)+5X_(5))/(15))=(1)/(15^(2))(“Var”(X_(1))+4″Var”(X_(2))+9″Var”(X_(3))+16″Var”(X_(4))+25″Var”(X_(5)))=(1)/(225)(1+4+9+16+25)*(1)/(lambda^(2))=(55)/(225)*(1)/(lambda^(2))=(11)/(45lambda^(2))\text{Var}(T_2) = \text{Var}\left(\frac{X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{15}\right) = \frac{1}{15^2} \left( \text{Var}(X_1) + 4\text{Var}(X_2) + 9\text{Var}(X_3) + 16\text{Var}(X_4) + 25\text{Var}(X_5) \right) = \frac{1}{225} \left( 1 + 4 + 9 + 16 + 25 \right) \cdot \frac{1}{\lambda^2} = \frac{55}{225} \cdot \frac{1}{\lambda^2} = \frac{11}{45\lambda^2}Var(T2)=Var(X1+2X2+3X3+4X4+5X515)=1152(Var(X1)+4Var(X2)+9Var(X3)+16Var(X4)+25Var(X5))=1225(1+4+9+16+25)1λ2=552251λ2=1145λ2

Comparing Variances

Now, we compare the variances of T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2:
  • Var ( T 1 ) = 1 5 λ 2 Var ( T 1 ) = 1 5 λ 2 “Var”(T_(1))=(1)/(5lambda^(2))\text{Var}(T_1) = \frac{1}{5\lambda^2}Var(T1)=15λ2
  • Var ( T 2 ) = 11 45 λ 2 Var ( T 2 ) = 11 45 λ 2 “Var”(T_(2))=(11)/(45lambda^(2))\text{Var}(T_2) = \frac{11}{45\lambda^2}Var(T2)=1145λ2
To determine which estimator is more efficient, we compare 1 5 1 5 (1)/(5)\frac{1}{5}15 and 11 45 11 45 (11)/(45)\frac{11}{45}1145:
1 5 = 9 45 1 5 = 9 45 (1)/(5)=(9)/(45)\frac{1}{5} = \frac{9}{45}15=945
Since 9 45 < 11 45 9 45 < 11 45 (9)/(45) < (11)/(45)\frac{9}{45} < \frac{11}{45}945<1145, we have:
Var ( T 1 ) < Var ( T 2 ) Var ( T 1 ) < Var ( T 2 ) “Var”(T_(1)) < “Var”(T_(2))\text{Var}(T_1) < \text{Var}(T_2)Var(T1)<Var(T2)
Therefore, the variance of T 1 T 1 T_(1)T_1T1 is smaller than that of T 2 T 2 T_(2)T_2T2, indicating that T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.

Conclusion

The statement "If X 1 , X 2 , X 3 , X 4 X 1 , X 2 , X 3 , X 4 X_(1),X_(2),X_(3),X_(4)X_1, X_2, X_3, X_4X1,X2,X3,X4, and X 5 X 5 X_(5)X_5X5 is a random sample of size 5 taken from an Exponential distribution, then estimator T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2" is true. This conclusion is based on the comparison of their variances, where T 1 T 1 T_(1)T_1T1 has a lower variance than T 2 T 2 T_(2)T_2T2.
(ii) If T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 are two estimators of the parameter θ θ theta\thetaθ such that Var ( T 1 ) = 1 / n Var T 1 = 1 / n Var(T_(1))=1//n\operatorname{Var}\left(T_1\right)=1 / nVar(T1)=1/n and Var ( T 2 ) = n Var T 2 = n Var(T_(2))=n\operatorname{Var}\left(T_2\right)=nVar(T2)=n then T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2.
Answer:
The efficiency of an estimator is inversely related to its variance. An estimator with a smaller variance is considered more efficient because it has less variability and, therefore, tends to be closer to the true parameter value.
Given two estimators T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 of the parameter θ θ theta\thetaθ with the following variances:
Var ( T 1 ) = 1 n Var ( T 1 ) = 1 n Var(T_(1))=(1)/(n)\operatorname{Var}(T_1) = \frac{1}{n}Var(T1)=1n
Var ( T 2 ) = n Var ( T 2 ) = n Var(T_(2))=n\operatorname{Var}(T_2) = nVar(T2)=n

Comparison of Variances

To determine which estimator is more efficient, we compare their variances directly.
  1. Variance of T 1 T 1 T_(1)T_1T1:
    Var ( T 1 ) = 1 n Var ( T 1 ) = 1 n Var(T_(1))=(1)/(n)\operatorname{Var}(T_1) = \frac{1}{n}Var(T1)=1n
  2. Variance of T 2 T 2 T_(2)T_2T2:
    Var ( T 2 ) = n Var ( T 2 ) = n Var(T_(2))=n\operatorname{Var}(T_2) = nVar(T2)=n
Since efficiency is related to having a smaller variance, we compare 1 n 1 n (1)/(n)\frac{1}{n}1n and n n nnn.

Analysis:

  • 1 n 1 n (1)/(n)\frac{1}{n}1n is typically much smaller than n n nnn when n > 1 n > 1 n > 1n > 1n>1.
  • For n 1 n 1 n >= 1n \geq 1n1, 1 n 1 1 n 1 (1)/(n) <= 1\frac{1}{n} \leq 11n1 and n 1 n 1 n >= 1n \geq 1n1, hence 1 n < n 1 n < n (1)/(n) < n\frac{1}{n} < n1n<n.

Conclusion:

Since 1 n 1 n (1)/(n)\frac{1}{n}1n is significantly smaller than n n nnn, T 1 T 1 T_(1)T_1T1 has a much smaller variance than T 2 T 2 T_(2)T_2T2. Therefore, T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2 because it provides estimates with less variability around the parameter θ θ theta\thetaθ.

Justification:

  • For n > 1 n > 1 n > 1n > 1n>1: 1 n < n 1 n < n (1)/(n) < n\frac{1}{n} < n1n<n, thus Var ( T 1 ) < Var ( T 2 ) Var ( T 1 ) < Var ( T 2 ) Var(T_(1)) < Var(T_(2))\operatorname{Var}(T_1) < \operatorname{Var}(T_2)Var(T1)<Var(T2).
  • For n = 1 n = 1 n=1n = 1n=1: Var ( T 1 ) = 1 Var ( T 1 ) = 1 Var(T_(1))=1\operatorname{Var}(T_1) = 1Var(T1)=1 and Var ( T 2 ) = 1 Var ( T 2 ) = 1 Var(T_(2))=1\operatorname{Var}(T_2) = 1Var(T2)=1, thus they have equal variance.
  • For n < 1 n < 1 n < 1n < 1n<1: This scenario typically does not apply as n n nnn usually represents the sample size, which is a positive integer.
Therefore, given that the usual context implies n > 1 n > 1 n > 1n > 1n>1 or n = 1 n = 1 n=1n = 1n=1 in practical situations, T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2 for any reasonable sample size n n nnn.
Hence, the statement "If T 1 T 1 T_(1)T_1T1 and T 2 T 2 T_(2)T_2T2 are two estimators of the parameter θ θ theta\thetaθ such that Var ( T 1 ) = 1 / n Var T 1 = 1 / n Var(T_(1))=1//n\operatorname{Var}\left(T_1\right)=1 / nVar(T1)=1/n and Var ( T 2 ) = n Var T 2 = n Var(T_(2))=n\operatorname{Var}\left(T_2\right)=nVar(T2)=n then T 1 T 1 T_(1)T_1T1 is more efficient than T 2 T 2 T_(2)T_2T2" is true.
(iii) A 95 % 95 % 95%95 \%95% confidence interval is smaller than 99 % 99 % 99%99 \%99% confidence interval.
Answer:
To determine the truth of the statement "A 95 % 95 % 95%95\%95% confidence interval is smaller than a 99 % 99 % 99%99\%99% confidence interval," we need to understand how confidence intervals are constructed and how the confidence level affects their width.

Confidence Intervals

A confidence interval for a parameter is an interval estimate that is likely to contain the parameter with a certain level of confidence. For a given confidence level ( 1 α ) ( 1 α ) (1-alpha)(1 – \alpha)(1α), the confidence interval is typically given by:
Estimate ± z α / 2 × Standard Error Estimate ± z α / 2 × Standard Error “Estimate”+-z_(alpha//2)xx”Standard Error”\text{Estimate} \pm z_{\alpha/2} \times \text{Standard Error}Estimate±zα/2×Standard Error
where z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 is the critical value from the standard normal distribution corresponding to the desired confidence level, and the standard error is a measure of the variability of the estimate.

Comparison of 95% and 99% Confidence Intervals

  1. Critical Values:
    • For a 95 % 95 % 95%95\%95% confidence interval, the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 corresponds to α = 0.05 α = 0.05 alpha=0.05\alpha = 0.05α=0.05. This gives z 0.025 1.96 z 0.025 1.96 z_(0.025)~~1.96z_{0.025} \approx 1.96z0.0251.96.
    • For a 99 % 99 % 99%99\%99% confidence interval, the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2 corresponds to α = 0.01 α = 0.01 alpha=0.01\alpha = 0.01α=0.01. This gives z 0.005 2.576 z 0.005 2.576 z_(0.005)~~2.576z_{0.005} \approx 2.576z0.0052.576.
  2. Interval Width:
    • The width of a confidence interval is determined by the product of the critical value and the standard error.
    • For a 95 % 95 % 95%95\%95% confidence interval: Width = 2 × 1.96 × Standard Error Width = 2 × 1.96 × Standard Error “Width”=2xx1.96 xx”Standard Error”\text{Width} = 2 \times 1.96 \times \text{Standard Error}Width=2×1.96×Standard Error.
    • For a 99 % 99 % 99%99\%99% confidence interval: Width = 2 × 2.576 × Standard Error Width = 2 × 2.576 × Standard Error “Width”=2xx2.576 xx”Standard Error”\text{Width} = 2 \times 2.576 \times \text{Standard Error}Width=2×2.576×Standard Error.
Since 2.576 > 1.96 2.576 > 1.96 2.576 > 1.962.576 > 1.962.576>1.96, the multiplier for the standard error in the 99 % 99 % 99%99\%99% confidence interval is larger than that for the 95 % 95 % 95%95\%95% confidence interval.

Conclusion

The 99 % 99 % 99%99\%99% confidence interval has a larger critical value, resulting in a wider interval compared to the 95 % 95 % 95%95\%95% confidence interval, assuming the same data and variability. Therefore, the statement "A 95 % 95 % 95%95\%95% confidence interval is smaller than a 99 % 99 % 99%99\%99% confidence interval" is true.

Proof

  • The width of a confidence interval is proportional to the critical value z α / 2 z α / 2 z_(alpha//2)z_{\alpha/2}zα/2.
  • For 95 % 95 % 95%95\%95% confidence level, the critical value is approximately 1.96.
  • For 99 % 99 % 99%99\%99% confidence level, the critical value is approximately 2.576.
  • Since 2.576 > 1.96 2.576 > 1.96 2.576 > 1.962.576 > 1.962.576>1.96, the width of the 99 % 99 % 99%99\%99% confidence interval will be greater than the width of the 95 % 95 % 95%95\%95% confidence interval.
Hence, a 95 % 95 % 95%95\%95% confidence interval is indeed smaller than a 99 % 99 % 99%99\%99% confidence interval, making the statement true.
Scroll to Top
Scroll to Top