MMT-007 Solved Assignment 2025
a) Solve the differential equation:
x
2
y
′
′
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x
2
y
′
′
+
6
x
y
′
+
6
+
x
2
y
=
0
x^(2)y^(”)+6xy^(‘)+(6+x^(2))y=0 x^2 y^{\prime \prime}+6 x y^{\prime}+\left(6+x^2\right) y=0 x 2 y ′ ′ + 6 x y ′ + ( 6 + x 2 ) y = 0
in series about
x
=
0
x
=
0
x=0 \mathrm{x}=0 x = 0 .
b) Express
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f(x)=x^(4)+3x^(3)+4x^(2)-x+2 f(x)=x^4+3 x^3+4 x^2-x+2 f ( x ) = x 4 + 3 x 3 + 4 x 2 − x + 2 in terms of Legendre polynomials.
a) Using method of Ferobenius, find the solution of the differential equation:
x
2
d
2
y
d
x
2
+
(
x
+
x
2
)
d
y
d
x
+
(
x
−
9
)
y
=
0
x
2
d
2
y
d
x
2
+
x
+
x
2
d
y
d
x
+
(
x
−
9
)
y
=
0
x^(2)(d^(2)y)/(dx^(2))+(x+x^(2))(dy)/(dx)+(x-9)y=0 x^2 \frac{d^2 y}{d x^2}+\left(x+x^2\right) \frac{d y}{d x}+(x-9) y=0 x 2 d 2 y d x 2 + ( x + x 2 ) d y d x + ( x − 9 ) y = 0
near
x
−
0
x
−
0
x-0 \mathrm{x}-0 x − 0 .
b) Find:
L
−
1
{
s
(
s
2
+
4
)
2
}
L
−
1
s
s
2
+
4
2
L^(-1){((s))/((s^(2)+4)^(2))} \mathrm{L}^{-1}\left\{\frac{\mathrm{~s}}{\left(\mathrm{~s}^2+4\right)^2}\right\} L − 1 { s ( s 2 + 4 ) 2 }
c) Find
L
{
F
(
t
)
}
L
{
F
(
t
)
}
L{F(t)} L\{F(t)\} L { F ( t ) } , if:
F
(
t
)
=
{
sin
(
t
−
π
4
)
,
t
>
π
4
0
,
t
<
π
4
F
(
t
)
=
sin
t
−
π
4
,
t
>
π
4
0
,
t
<
π
4
F(t)={[sin(t-(pi)/(4))”,”,t > (pi)/(4)],[0,”,”t < (pi)/(4)]:} \mathrm{F}(\mathrm{t})=\left\{\begin{array}{cc}
\sin \left(\mathrm{t}-\frac{\pi}{4}\right), & \mathrm{t}>\frac{\pi}{4} \\
0 & , \mathrm{t}<\frac{\pi}{4}
\end{array}\right. F ( t ) = { sin ( t − π 4 ) , t > π 4 0 , t < π 4
a) Find the Fourier transform of
e
−
9
x
2
e
−
9
x
2
e^(-9x^(2)) e^{-9 x^2} e − 9 x 2 .
b) Find the solution of the heat conduction equation subject to the given initial and boundary conditions:
∂
u
∂
t
=
∂
2
u
∂
x
2
,
0
≤
x
≤
1
u
(
x
,
0
)
=
sin
(
π
x
)
for
0
≤
x
≤
1
u
(
0
,
t
)
=
0
=
u
(
1
,
t
)
∂
u
∂
t
=
∂
2
u
∂
x
2
,
0
≤
x
≤
1
u
(
x
,
0
)
=
sin
(
π
x
)
for
0
≤
x
≤
1
u
(
0
,
t
)
=
0
=
u
(
1
,
t
)
{:[(delu)/(delt)=(del^(2)u)/(delx^(2))”,”0 <= x <= 1],[u(x”,”0)=sin(pix)” for “0 <= x <= 1],[u(0″,”t)=0=u(1”,”t)]:} \begin{aligned}
& \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^2 \mathrm{u}}{\partial \mathrm{x}^2}, 0 \leq \mathrm{x} \leq 1 \\
& \mathrm{u}(\mathrm{x}, 0)=\sin (\pi \mathrm{x}) \text { for } 0 \leq \mathrm{x} \leq 1 \\
& \mathrm{u}(0, \mathrm{t})=0=\mathrm{u}(1, \mathrm{t})
\end{aligned} ∂ u ∂ t = ∂ 2 u ∂ x 2 , 0 ≤ x ≤ 1 u ( x , 0 ) = sin ( π x ) for 0 ≤ x ≤ 1 u ( 0 , t ) = 0 = u ( 1 , t )
Using Laasonen method with
λ
=
1
6
λ
=
1
6
lambda=(1)/(6) \lambda=\frac{1}{6} λ = 1 6 and
h
=
1
3
h
=
1
3
h=(1)/(3) \mathrm{h}=\frac{1}{3} h = 1 3 . Integrate for two levels.
a) Find the solution of the initial boundary value problem:
∂
u
∂
t
=
∂
2
u
∂
x
2
∂
u
∂
t
=
∂
2
u
∂
x
2
(delu)/(delt)=(del^(2)u)/(delx^(2)) \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^2 \mathrm{u}}{\partial \mathrm{x}^2} ∂ u ∂ t = ∂ 2 u ∂ x 2
subject to given initial and boundary conditions:
u
(
x
,
0
)
=
2
x
for
x
∈
[
0
,
1
2
]
u
(
x
,
0
)
=
2
x
for
x
∈
0
,
1
2
u(x,0)=2x” for “x in[0,(1)/(2)] u(x, 0)=2 x \text { for } x \in\left[0, \frac{1}{2}\right] u ( x , 0 ) = 2 x for x ∈ [ 0 , 1 2 ]
and
2
(
1
−
x
)
2
(
1
−
x
)
2(1-x) 2(1-x) 2 ( 1 − x ) for
[
1
2
,
1
]
1
2
,
1
[(1)/(2),1] \left[\frac{1}{2}, 1\right] [ 1 2 , 1 ]
u
(
0
,
t
)
=
0
=
u
(
1
,
t
)
u
(
0
,
t
)
=
0
=
u
(
1
,
t
)
u(0,t)=0=u(1,t) \mathrm{u}(0, \mathrm{t})=0=\mathrm{u}(1, \mathrm{t}) u ( 0 , t ) = 0 = u ( 1 , t )
You may use step length along x -axis,
h
=
0.2
h
=
0.2
h=0.2 \mathrm{h}=0.2 h = 0.2 and solve by Schmidt method with mesh ratio
λ
=
1
6
λ
=
1
6
lambda=(1)/(6) \lambda=\frac{1}{6} λ = 1 6 .
b) Show that the method.
y
i
+
1
=
4
3
y
i
−
1
3
y
i
−
1
+
2
h
3
y
i
+
1
y
i
+
1
=
4
3
y
i
−
1
3
y
i
−
1
+
2
h
3
y
i
+
1
y_(i+1)=(4)/(3)y_(i)-(1)/(3)y_(i-1)+(2h)/(3)y_(i+1) y_{i+1}=\frac{4}{3} y_i-\frac{1}{3} y_{i-1}+\frac{2 h}{3} y_{i+1} y i + 1 = 4 3 y i − 1 3 y i − 1 + 2 h 3 y i + 1
is A-stable when applied to test equation
y
′
=
λ
y
,
λ
<
0
y
′
=
λ
y
,
λ
<
0
y^(‘)=lambday,lambda < 0 \mathrm{y}^{\prime}=\lambda \mathrm{y}, \lambda<0 y ′ = λ y , λ < 0 .
a) Use Fourier transforms to solve the boundary value problem:
∂
u
∂
t
=
4
∂
2
u
∂
x
2
,
−
∞
<
x
<
∞
,
t
>
0
∂
u
∂
t
=
4
∂
2
u
∂
x
2
,
−
∞
<
x
<
∞
,
t
>
0
(delu)/(delt)=4(del^(2)u)/(delx^(2)),-oo < x < oo,t > 0 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=4 \frac{\partial^2 \mathrm{u}}{\partial \mathrm{x}^2},-\infty<\mathrm{x}<\infty, \mathrm{t}>0 ∂ u ∂ t = 4 ∂ 2 u ∂ x 2 , − ∞ < x < ∞ , t > 0
subject to the conditions:
i)
u
,
∂
u
∂
x
→
0
u
,
∂
u
∂
x
→
0
u,(del u)/(delx)rarr0 u, \frac{\partial u}{\partial \mathrm{x}} \rightarrow 0 u , ∂ u ∂ x → 0 as
x
→
±
∞
x
→
±
∞
xrarr+-oo \mathrm{x} \rightarrow \pm \infty x → ± ∞
ii)
u
(
x
,
0
)
=
f
(
x
)
u
(
x
,
0
)
=
f
(
x
)
u(x,0)=f(x) u(x, 0)=f(x) u ( x , 0 ) = f ( x )
b) Solve the initial value problem
y
′
=
x
2
+
y
2
,
y
(
0
)
=
1
y
′
=
x
2
+
y
2
,
y
(
0
)
=
1
y^(‘)=x^(2)+y^(2),y(0)=1 \mathrm{y}^{\prime}=\mathrm{x}^2+\mathrm{y}^2, \mathrm{y}(0)=1 y ′ = x 2 + y 2 , y ( 0 ) = 1 , upto
x
=
0.2
x
=
0.2
x=0.2 \mathrm{x}=0.2 x = 0.2 using third order Taylor series method with
h
=
0.1
h
=
0.1
h=0.1 \mathrm{h}=0.1 h = 0.1 .
a) Using Laplace transform, solve the equation:
∂
2
u
∂
t
2
=
9
∂
2
u
∂
x
2
∂
2
u
∂
t
2
=
9
∂
2
u
∂
x
2
(del^(2)u)/(delt^(2))=9(del^(2)u)/(delx^(2)) \frac{\partial^2 u}{\partial t^2}=9 \frac{\partial^2 u}{\partial x^2} ∂ 2 u ∂ t 2 = 9 ∂ 2 u ∂ x 2
given that:
u
(
0
,
t
)
=
u
(
2
,
t
)
=
0
,
u
t
(
x
,
0
)
=
0
u
(
0
,
t
)
=
u
(
2
,
t
)
=
0
,
u
t
(
x
,
0
)
=
0
u(0,t)=u(2,t)=0,u_(t)(x,0)=0 \mathrm{u}(0, \mathrm{t})=\mathrm{u}(2, \mathrm{t})=0, \mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=0 u ( 0 , t ) = u ( 2 , t ) = 0 , u t ( x , 0 ) = 0
and
u
(
x
,
0
)
=
10
sin
2
π
x
−
20
sin
5
π
x
u
(
x
,
0
)
=
10
sin
2
π
x
−
20
sin
5
π
x
u(x,0)=10 sin 2pi x-20 sin 5pi x u(x, 0)=10 \sin 2 \pi x-20 \sin 5 \pi x u ( x , 0 ) = 10 sin 2 π x − 20 sin 5 π x .
b) Using second order finite difference method, solve the boundary value problem:
d
2
y
dx
2
=
3
2
y
2
with
y
(
0
)
=
4
,
y
(
1
)
=
1
d
2
y
dx
2
=
3
2
y
2
with
y
(
0
)
=
4
,
y
(
1
)
=
1
(d^(2)y)/(dx^(2))=(3)/(2)y^(2)” with “y(0)=4,y(1)=1 \frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2}=\frac{3}{2} \mathrm{y}^2 \text { with } \mathrm{y}(0)=4, \mathrm{y}(1)=1 d 2 y dx 2 = 3 2 y 2 with y ( 0 ) = 4 , y ( 1 ) = 1
Using step length
h
=
1
3
h
=
1
3
h=(1)/(3) \mathrm{h}=\frac{1}{3} h = 1 3 .
Find the solution of
∇
2
u
=
0
∇
2
u
=
0
grad^(2)u=0 \nabla^2 \mathrm{u}=0 ∇ 2 u = 0 in R subject to the boundary conditions:
u
(
x
,
y
)
=
x
2
−
y
2
on
x
=
0
,
y
=
0
,
y
=
1
u
+
∂
u
∂
x
=
x
2
+
2
x
−
y
2
on
x
=
1
u
(
x
,
y
)
=
x
2
−
y
2
on
x
=
0
,
y
=
0
,
y
=
1
u
+
∂
u
∂
x
=
x
2
+
2
x
−
y
2
on
x
=
1
{:[u(x”,”y)=x^(2)-y^(2)” on “x=0″,”y=0″,”y=1],[u+(del u)/(del x)=x^(2)+2x-y^(2)” on “x=1]:} \begin{aligned}
& u(x, y)=x^2-y^2 \text { on } x=0, y=0, y=1 \\
& u+\frac{\partial u}{\partial x}=x^2+2 x-y^2 \text { on } x=1
\end{aligned} u ( x , y ) = x 2 − y 2 on x = 0 , y = 0 , y = 1 u + ∂ u ∂ x = x 2 + 2 x − y 2 on x = 1
where R is the square
0
≤
x
≤
1
,
0
≤
y
≤
1
0
≤
x
≤
1
,
0
≤
y
≤
1
0 <= x <= 1,0 <= y <= 1 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 1 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , using the five point formula. Use central difference approximation in the boundary condition. Assume uniform step length
h
=
1
/
2
h
=
1
/
2
h=1//2 h=1 / 2 h = 1 / 2 along the axes.
a) Use finite Fourier transform to solve:
∂
u
∂
t
=
k
∂
2
u
∂
x
2
,
0
<
x
<
4
,
t
>
0
∂
u
∂
t
=
k
∂
2
u
∂
x
2
,
0
<
x
<
4
,
t
>
0
(delu)/(delt)=k(del^(2)u)/(delx^(2)),0 < x < 4,t > 0 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{k} \frac{\partial^2 \mathrm{u}}{\partial \mathrm{x}^2}, 0<\mathrm{x}<4, \mathrm{t}>0 ∂ u ∂ t = k ∂ 2 u ∂ x 2 , 0 < x < 4 , t > 0
Subject to the conditions:
u
(
x
,
0
)
=
2
x
,
0
<
x
<
4
and
u
(
0
,
t
)
=
u
(
4
,
t
)
=
0
u
(
x
,
0
)
=
2
x
,
0
<
x
<
4
and
u
(
0
,
t
)
=
u
(
4
,
t
)
=
0
{:[u(x”,”0)=2x”,”quad0 < x < 4],[” and “u(0″,”t)=u(4”,”t)=0]:} \begin{aligned}
u(x, 0) & =2 x, \quad 0<x<4 \\
\text { and } u(0, t) & =u(4, t)=0
\end{aligned} u ( x , 0 ) = 2 x , 0 < x < 4 and u ( 0 , t ) = u ( 4 , t ) = 0
b) Solve the boundary value problem:
y
′
′
+
y
+
f
(
x
)
=
0
y
′
(
0
)
=
0
,
y
(
1
)
=
0
y
′
′
+
y
+
f
(
x
)
=
0
y
′
(
0
)
=
0
,
y
(
1
)
=
0
{:[y^(”)+y+f(x)=0],[y^(‘)(0)=0″,”y(1)=0]:} \begin{aligned}
& y^{\prime \prime}+\mathrm{y}+\mathrm{f}(\mathrm{x})=0 \\
& \mathrm{y}^{\prime}(0)=0, \mathrm{y}(1)=0
\end{aligned} y ′ ′ + y + f ( x ) = 0 y ′ ( 0 ) = 0 , y ( 1 ) = 0
by determining the appropriate Green’s function by using the method of variation of parameters and expressing the solution as a definite intergral.
Solve the boundary value problem:
y
′
′
−
3
y
′
+
2
y
=
2
y
′
′
−
3
y
′
+
2
y
=
2
y^(”)-3y^(‘)+2y=2 y^{\prime \prime}-3 y^{\prime}+2 y=2 y ′ ′ − 3 y ′ + 2 y = 2
with
y
(
0
)
−
y
′
(
0
)
=
−
1
y
(
1
)
+
y
′
(
1
)
=
1
y
(
0
)
−
y
′
(
0
)
=
−
1
y
(
1
)
+
y
′
(
1
)
=
1
{:[y(0)-y^(‘)(0)=-1],[y(1)+y^(‘)(1)=1]:} \begin{aligned}
& y(0)-y^{\prime}(0)=-1 \\
& y(1)+y^{\prime}(1)=1
\end{aligned} y ( 0 ) − y ′ ( 0 ) = − 1 y ( 1 ) + y ′ ( 1 ) = 1
using the second order finite difference method with step length
h
=
1
2
h
=
1
2
h=(1)/(2) \mathrm{h}=\frac{1}{2} h = 1 2 .
a) Using the generating function
J
n
(
x
)
J
n
(
x
)
J_(n)(x) J_n(x) J n ( x ) , prove that
J
n
−
1
(
x
)
+
J
n
+
1
(
x
)
=
2
n
x
J
n
(
x
)
J
n
−
1
(
x
)
+
J
n
+
1
(
x
)
=
2
n
x
J
n
(
x
)
J_(n-1)(x)+J_(n+1)(x)=(2n)/(x)J_(n)(x) J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_n(x) J n − 1 ( x ) + J n + 1 ( x ) = 2 n x J n ( x ) , for integer values of
n
n
n n n .
b) Evaluate:
∫
−
1
1
P
n
(
x
)
1
−
2
x
t
+
t
2
d
x
∫
−
1
1
P
n
(
x
)
1
−
2
x
t
+
t
2
d
x
int_(-1)^(1)(P_(n)(x))/(sqrt(1-2xt+t^(2)))dx \int_{-1}^1 \frac{P_n(x)}{\sqrt{1-2 x t+t^2}} d x ∫ − 1 1 P n ( x ) 1 − 2 x t + t 2 d x
where
P
n
(
x
)
P
n
(
x
)
P_(n)(x) P_n(x) P n ( x ) is Legendre polynomial.
Question:-1(a)
Solve the differential equation:
x
2
y
′
′
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x
2
y
′
′
+
6
x
y
′
+
6
+
x
2
y
=
0
x^(2)y^(”)+6xy^(‘)+(6+x^(2))y=0 x^2 y^{\prime \prime} + 6 x y^{\prime} + \left(6 + x^2\right) y = 0 x 2 y ′ ′ + 6 x y ′ + ( 6 + x 2 ) y = 0
in series about
x
=
0
x
=
0
x=0 \mathrm{x}=0 x = 0 .
Answer:
To solve the differential equation
x
2
y
″
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x
2
y
″
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x^(2)y^(″)+6xy^(‘)+(6+x^(2))y=0 x^2 y” + 6x y’ + (6 + x^2) y = 0 x 2 y ″ + 6 x y ′ + ( 6 + x 2 ) y = 0 using a series solution about
x
=
0
x
=
0
x=0 x = 0 x = 0 , we recognize that
x
=
0
x
=
0
x=0 x = 0 x = 0 is a regular point (though the equation resembles a form that might suggest a singular point due to the
x
2
x
2
x^(2) x^2 x 2 coefficient, we’ll proceed with a power series and adjust if necessary). We assume a Frobenius-type series solution of the form:
y
(
x
)
=
∑
n
=
0
∞
a
n
x
n
+
r
,
y
(
x
)
=
∑
n
=
0
∞
a
n
x
n
+
r
,
y(x)=sum_(n=0)^(oo)a_(n)x^(n+r), y(x) = \sum_{n=0}^\infty a_n x^{n+r}, y ( x ) = ∑ n = 0 ∞ a n x n + r ,
where
r
r
r r r is the indicial exponent to be determined, and
a
n
a
n
a_(n) a_n a n are the coefficients, with
a
0
≠
0
a
0
≠
0
a_(0)!=0 a_0 \neq 0 a 0 ≠ 0 .
Step 1: Compute the derivatives
First, compute the first and second derivatives of
y
y
y y y :
y
′
=
∑
n
=
0
∞
(
n
+
r
)
a
n
x
n
+
r
−
1
,
y
′
=
∑
n
=
0
∞
(
n
+
r
)
a
n
x
n
+
r
−
1
,
y^(‘)=sum_(n=0)^(oo)(n+r)a_(n)x^(n+r-1), y’ = \sum_{n=0}^\infty (n + r) a_n x^{n + r – 1}, y ′ = ∑ n = 0 ∞ ( n + r ) a n x n + r − 1 ,
y
″
=
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
−
2
.
y
″
=
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
−
2
.
y^(″)=sum_(n=0)^(oo)(n+r)(n+r-1)a_(n)x^(n+r-2). y” = \sum_{n=0}^\infty (n + r)(n + r – 1) a_n x^{n + r – 2}. y ″ = ∑ n = 0 ∞ ( n + r ) ( n + r − 1 ) a n x n + r − 2 .
Step 2: Substitute into the differential equation
Substitute
y
y
y y y ,
y
′
y
′
y^(‘) y’ y ′ , and
y
″
y
″
y^(″) y” y ″ into the given equation
x
2
y
″
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x
2
y
″
+
6
x
y
′
+
(
6
+
x
2
)
y
=
0
x^(2)y^(″)+6xy^(‘)+(6+x^(2))y=0 x^2 y” + 6x y’ + (6 + x^2) y = 0 x 2 y ″ + 6 x y ′ + ( 6 + x 2 ) y = 0 .
Term 1:
x
2
y
″
=
x
2
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
−
2
=
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
x
2
y
″
=
x
2
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
−
2
=
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
x^(2)y^(″)=x^(2)sum_(n=0)^(oo)(n+r)(n+r-1)a_(n)x^(n+r-2)=sum_(n=0)^(oo)(n+r)(n+r-1)a_(n)x^(n+r) x^2 y” = x^2 \sum_{n=0}^\infty (n + r)(n + r – 1) a_n x^{n + r – 2} = \sum_{n=0}^\infty (n + r)(n + r – 1) a_n x^{n + r} x 2 y ″ = x 2 ∑ n = 0 ∞ ( n + r ) ( n + r − 1 ) a n x n + r − 2 = ∑ n = 0 ∞ ( n + r ) ( n + r − 1 ) a n x n + r ,
Term 2:
6
x
y
′
=
6
x
∑
n
=
0
∞
(
n
+
r
)
a
n
x
n
+
r
−
1
=
∑
n
=
0
∞
6
(
n
+
r
)
a
n
x
n
+
r
6
x
y
′
=
6
x
∑
n
=
0
∞
(
n
+
r
)
a
n
x
n
+
r
−
1
=
∑
n
=
0
∞
6
(
n
+
r
)
a
n
x
n
+
r
6xy^(‘)=6xsum_(n=0)^(oo)(n+r)a_(n)x^(n+r-1)=sum_(n=0)^(oo)6(n+r)a_(n)x^(n+r) 6x y’ = 6x \sum_{n=0}^\infty (n + r) a_n x^{n + r – 1} = \sum_{n=0}^\infty 6 (n + r) a_n x^{n + r} 6 x y ′ = 6 x ∑ n = 0 ∞ ( n + r ) a n x n + r − 1 = ∑ n = 0 ∞ 6 ( n + r ) a n x n + r ,
Term 3:
(
6
+
x
2
)
y
=
(
6
+
x
2
)
∑
n
=
0
∞
a
n
x
n
+
r
=
6
∑
n
=
0
∞
a
n
x
n
+
r
+
∑
n
=
0
∞
a
n
x
n
+
r
+
2
(
6
+
x
2
)
y
=
(
6
+
x
2
)
∑
n
=
0
∞
a
n
x
n
+
r
=
6
∑
n
=
0
∞
a
n
x
n
+
r
+
∑
n
=
0
∞
a
n
x
n
+
r
+
2
(6+x^(2))y=(6+x^(2))sum_(n=0)^(oo)a_(n)x^(n+r)=6sum_(n=0)^(oo)a_(n)x^(n+r)+sum_(n=0)^(oo)a_(n)x^(n+r+2) (6 + x^2) y = (6 + x^2) \sum_{n=0}^\infty a_n x^{n + r} = 6 \sum_{n=0}^\infty a_n x^{n + r} + \sum_{n=0}^\infty a_n x^{n + r + 2} ( 6 + x 2 ) y = ( 6 + x 2 ) ∑ n = 0 ∞ a n x n + r = 6 ∑ n = 0 ∞ a n x n + r + ∑ n = 0 ∞ a n x n + r + 2 .
The full equation becomes:
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
+
∑
n
=
0
∞
6
(
n
+
r
)
a
n
x
n
+
r
+
6
∑
n
=
0
∞
a
n
x
n
+
r
+
∑
n
=
0
∞
a
n
x
n
+
r
+
2
=
0.
∑
n
=
0
∞
(
n
+
r
)
(
n
+
r
−
1
)
a
n
x
n
+
r
+
∑
n
=
0
∞
6
(
n
+
r
)
a
n
x
n
+
r
+
6
∑
n
=
0
∞
a
n
x
n
+
r
+
∑
n
=
0
∞
a
n
x
n
+
r
+
2
=
0.
sum_(n=0)^(oo)(n+r)(n+r-1)a_(n)x^(n+r)+sum_(n=0)^(oo)6(n+r)a_(n)x^(n+r)+6sum_(n=0)^(oo)a_(n)x^(n+r)+sum_(n=0)^(oo)a_(n)x^(n+r+2)=0. \sum_{n=0}^\infty (n + r)(n + r – 1) a_n x^{n + r} + \sum_{n=0}^\infty 6 (n + r) a_n x^{n + r} + 6 \sum_{n=0}^\infty a_n x^{n + r} + \sum_{n=0}^\infty a_n x^{n + r + 2} = 0. ∑ n = 0 ∞ ( n + r ) ( n + r − 1 ) a n x n + r + ∑ n = 0 ∞ 6 ( n + r ) a n x n + r + 6 ∑ n = 0 ∞ a n x n + r + ∑ n = 0 ∞ a n x n + r + 2 = 0.
Step 3: Align the indices
The powers of
x
x
x x x are
x
n
+
r
x
n
+
r
x^(n+r) x^{n + r} x n + r and
x
n
+
r
+
2
x
n
+
r
+
2
x^(n+r+2) x^{n + r + 2} x n + r + 2 . To combine terms, shift the index in the last sum. Let
k
=
n
+
2
k
=
n
+
2
k=n+2 k = n + 2 k = n + 2 in the last term, so
n
=
k
−
2
n
=
k
−
2
n=k-2 n = k – 2 n = k − 2 , and when
n
=
0
n
=
0
n=0 n = 0 n = 0 ,
k
=
2
k
=
2
k=2 k = 2 k = 2 . Adjust the summation:
∑
n
=
0
∞
a
n
x
n
+
r
+
2
=
∑
k
=
2
∞
a
k
−
2
x
k
+
r
.
∑
n
=
0
∞
a
n
x
n
+
r
+
2
=
∑
k
=
2
∞
a
k
−
2
x
k
+
r
.
sum_(n=0)^(oo)a_(n)x^(n+r+2)=sum_(k=2)^(oo)a_(k-2)x^(k+r). \sum_{n=0}^\infty a_n x^{n + r + 2} = \sum_{k=2}^\infty a_{k-2} x^{k + r}. ∑ n = 0 ∞ a n x n + r + 2 = ∑ k = 2 ∞ a k − 2 x k + r .
Now, write the equation, separating the first two terms (
n
=
0
n
=
0
n=0 n = 0 n = 0 and
n
=
1
n
=
1
n=1 n = 1 n = 1 ) where the
x
n
+
r
+
2
x
n
+
r
+
2
x^(n+r+2) x^{n + r + 2} x n + r + 2 term doesn’t contribute yet:
For
n
=
0
n
=
0
n=0 n = 0 n = 0 :
(
0
+
r
)
(
0
+
r
−
1
)
a
0
+
6
(
0
+
r
)
a
0
+
6
a
0
=
[
r
(
r
−
1
)
+
6
r
+
6
]
a
0
x
r
.
(
0
+
r
)
(
0
+
r
−
1
)
a
0
+
6
(
0
+
r
)
a
0
+
6
a
0
=
[
r
(
r
−
1
)
+
6
r
+
6
]
a
0
x
r
.
(0+r)(0+r-1)a_(0)+6(0+r)a_(0)+6a_(0)=[r(r-1)+6r+6]a_(0)x^(r). (0 + r)(0 + r – 1) a_0 + 6 (0 + r) a_0 + 6 a_0 = [r(r – 1) + 6r + 6] a_0 x^r. ( 0 + r ) ( 0 + r − 1 ) a 0 + 6 ( 0 + r ) a 0 + 6 a 0 = [ r ( r − 1 ) + 6 r + 6 ] a 0 x r .
For
n
=
1
n
=
1
n=1 n = 1 n = 1 :
(
1
+
r
)
(
1
+
r
−
1
)
a
1
+
6
(
1
+
r
)
a
1
+
6
a
1
=
[
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
]
a
1
x
r
+
1
.
(
1
+
r
)
(
1
+
r
−
1
)
a
1
+
6
(
1
+
r
)
a
1
+
6
a
1
=
[
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
]
a
1
x
r
+
1
.
(1+r)(1+r-1)a_(1)+6(1+r)a_(1)+6a_(1)=[(1+r)r+6(1+r)+6]a_(1)x^(r+1). (1 + r)(1 + r – 1) a_1 + 6 (1 + r) a_1 + 6 a_1 = [(1 + r)r + 6(1 + r) + 6] a_1 x^{r + 1}. ( 1 + r ) ( 1 + r − 1 ) a 1 + 6 ( 1 + r ) a 1 + 6 a 1 = [ ( 1 + r ) r + 6 ( 1 + r ) + 6 ] a 1 x r + 1 .
For
n
≥
2
n
≥
2
n >= 2 n \geq 2 n ≥ 2 :
∑
n
=
2
∞
[
(
n
+
r
)
(
n
+
r
−
1
)
a
n
+
6
(
n
+
r
)
a
n
+
6
a
n
]
x
n
+
r
+
∑
n
=
2
∞
a
n
−
2
x
n
+
r
.
∑
n
=
2
∞
[
(
n
+
r
)
(
n
+
r
−
1
)
a
n
+
6
(
n
+
r
)
a
n
+
6
a
n
]
x
n
+
r
+
∑
n
=
2
∞
a
n
−
2
x
n
+
r
.
sum_(n=2)^(oo)[(n+r)(n+r-1)a_(n)+6(n+r)a_(n)+6a_(n)]x^(n+r)+sum_(n=2)^(oo)a_(n-2)x^(n+r). \sum_{n=2}^\infty [(n + r)(n + r – 1) a_n + 6 (n + r) a_n + 6 a_n] x^{n + r} + \sum_{n=2}^\infty a_{n-2} x^{n + r}. ∑ n = 2 ∞ [ ( n + r ) ( n + r − 1 ) a n + 6 ( n + r ) a n + 6 a n ] x n + r + ∑ n = 2 ∞ a n − 2 x n + r .
Combine all terms:
[
r
(
r
−
1
)
+
6
r
+
6
]
a
0
x
r
+
[
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
]
a
1
x
r
+
1
+
∑
n
=
2
∞
[
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
]
a
n
+
a
n
−
2
x
n
+
r
=
0.
[
r
(
r
−
1
)
+
6
r
+
6
]
a
0
x
r
+
[
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
]
a
1
x
r
+
1
+
∑
n
=
2
∞
[
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
]
a
n
+
a
n
−
2
x
n
+
r
=
0.
[r(r-1)+6r+6]a_(0)x^(r)+[(1+r)r+6(1+r)+6]a_(1)x^(r+1)+sum_(n=2)^(oo)[(n+r)(n+r-1)+6(n+r)+6]a_(n)+a_(n-2)x^(n+r)=0. [r(r – 1) + 6r + 6] a_0 x^r + [(1 + r)r + 6(1 + r) + 6] a_1 x^{r + 1} + \sum_{n=2}^\infty [(n + r)(n + r – 1) + 6 (n + r) + 6] a_n + a_{n-2} x^{n + r} = 0. [ r ( r − 1 ) + 6 r + 6 ] a 0 x r + [ ( 1 + r ) r + 6 ( 1 + r ) + 6 ] a 1 x r + 1 + ∑ n = 2 ∞ [ ( n + r ) ( n + r − 1 ) + 6 ( n + r ) + 6 ] a n + a n − 2 x n + r = 0.
Step 4: Indicial equation
For the coefficient of
x
r
x
r
x^(r) x^r x r to be zero:
r
(
r
−
1
)
+
6
r
+
6
=
r
2
−
r
+
6
r
+
6
=
r
2
+
5
r
+
6
=
0.
r
(
r
−
1
)
+
6
r
+
6
=
r
2
−
r
+
6
r
+
6
=
r
2
+
5
r
+
6
=
0.
r(r-1)+6r+6=r^(2)-r+6r+6=r^(2)+5r+6=0. r(r – 1) + 6r + 6 = r^2 – r + 6r + 6 = r^2 + 5r + 6 = 0. r ( r − 1 ) + 6 r + 6 = r 2 − r + 6 r + 6 = r 2 + 5 r + 6 = 0.
Solve the quadratic:
r
2
+
5
r
+
6
=
(
r
+
2
)
(
r
+
3
)
=
0
,
r
2
+
5
r
+
6
=
(
r
+
2
)
(
r
+
3
)
=
0
,
r^(2)+5r+6=(r+2)(r+3)=0, r^2 + 5r + 6 = (r + 2)(r + 3) = 0, r 2 + 5 r + 6 = ( r + 2 ) ( r + 3 ) = 0 ,
r
=
−
2
or
r
=
−
3.
r
=
−
2
or
r
=
−
3.
r=-2″ or “r=-3. r = -2 \text{ or } r = -3. r = − 2 or r = − 3.
The roots differ by an integer (1), suggesting a second solution may involve a logarithmic term, but let’s first try the power series for both roots.
Step 5: Recurrence relation
From the general term (
n
≥
2
n
≥
2
n >= 2 n \geq 2 n ≥ 2 ):
[
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
]
a
n
+
a
n
−
2
=
0.
[
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
]
a
n
+
a
n
−
2
=
0.
[(n+r)(n+r-1)+6(n+r)+6]a_(n)+a_(n-2)=0. [(n + r)(n + r – 1) + 6 (n + r) + 6] a_n + a_{n-2} = 0. [ ( n + r ) ( n + r − 1 ) + 6 ( n + r ) + 6 ] a n + a n − 2 = 0.
Simplify the coefficient:
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
=
n
2
+
2
n
r
+
r
2
−
n
−
r
+
6
n
+
6
r
+
6
=
n
2
+
(
2
r
+
5
)
n
+
(
r
2
+
5
r
+
6
)
.
(
n
+
r
)
(
n
+
r
−
1
)
+
6
(
n
+
r
)
+
6
=
n
2
+
2
n
r
+
r
2
−
n
−
r
+
6
n
+
6
r
+
6
=
n
2
+
(
2
r
+
5
)
n
+
(
r
2
+
5
r
+
6
)
.
(n+r)(n+r-1)+6(n+r)+6=n^(2)+2nr+r^(2)-n-r+6n+6r+6=n^(2)+(2r+5)n+(r^(2)+5r+6). (n + r)(n + r – 1) + 6 (n + r) + 6 = n^2 + 2nr + r^2 – n – r + 6n + 6r + 6 = n^2 + (2r + 5)n + (r^2 + 5r + 6). ( n + r ) ( n + r − 1 ) + 6 ( n + r ) + 6 = n 2 + 2 n r + r 2 − n − r + 6 n + 6 r + 6 = n 2 + ( 2 r + 5 ) n + ( r 2 + 5 r + 6 ) .
Since
r
2
+
5
r
+
6
=
0
r
2
+
5
r
+
6
=
0
r^(2)+5r+6=0 r^2 + 5r + 6 = 0 r 2 + 5 r + 6 = 0 for
r
=
−
2
r
=
−
2
r=-2 r = -2 r = − 2 or
r
=
−
3
r
=
−
3
r=-3 r = -3 r = − 3 , this becomes:
n
2
+
(
2
r
+
5
)
n
=
n
[
n
+
(
2
r
+
5
)
]
.
n
2
+
(
2
r
+
5
)
n
=
n
[
n
+
(
2
r
+
5
)
]
.
n^(2)+(2r+5)n=n[n+(2r+5)]. n^2 + (2r + 5)n = n [n + (2r + 5)]. n 2 + ( 2 r + 5 ) n = n [ n + ( 2 r + 5 ) ] .
So the recurrence is:
a
n
=
−
a
n
−
2
n
(
n
+
2
r
+
5
)
,
n
≥
2.
a
n
=
−
a
n
−
2
n
(
n
+
2
r
+
5
)
,
n
≥
2.
a_(n)=-(a_(n-2))/(n(n+2r+5)),quad n >= 2. a_n = -\frac{a_{n-2}}{n (n + 2r + 5)}, \quad n \geq 2. a n = − a n − 2 n ( n + 2 r + 5 ) , n ≥ 2.
For
n
=
1
n
=
1
n=1 n = 1 n = 1 :
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
=
r
+
r
2
+
6
+
6
r
+
6
=
r
2
+
7
r
+
12
=
(
r
+
3
)
(
r
+
4
)
,
(
1
+
r
)
r
+
6
(
1
+
r
)
+
6
=
r
+
r
2
+
6
+
6
r
+
6
=
r
2
+
7
r
+
12
=
(
r
+
3
)
(
r
+
4
)
,
(1+r)r+6(1+r)+6=r+r^(2)+6+6r+6=r^(2)+7r+12=(r+3)(r+4), (1 + r)r + 6(1 + r) + 6 = r + r^2 + 6 + 6r + 6 = r^2 + 7r + 12 = (r + 3)(r + 4), ( 1 + r ) r + 6 ( 1 + r ) + 6 = r + r 2 + 6 + 6 r + 6 = r 2 + 7 r + 12 = ( r + 3 ) ( r + 4 ) ,
If
r
=
−
3
r
=
−
3
r=-3 r = -3 r = − 3 :
(
−
3
+
3
)
(
−
3
+
4
)
=
0
⋅
1
=
0
(
−
3
+
3
)
(
−
3
+
4
)
=
0
⋅
1
=
0
(-3+3)(-3+4)=0*1=0 (-3 + 3)(-3 + 4) = 0 \cdot 1 = 0 ( − 3 + 3 ) ( − 3 + 4 ) = 0 ⋅ 1 = 0 ,
If
r
=
−
2
r
=
−
2
r=-2 r = -2 r = − 2 :
(
−
2
+
3
)
(
−
2
+
4
)
=
1
⋅
2
=
2
(
−
2
+
3
)
(
−
2
+
4
)
=
1
⋅
2
=
2
(-2+3)(-2+4)=1*2=2 (-2 + 3)(-2 + 4) = 1 \cdot 2 = 2 ( − 2 + 3 ) ( − 2 + 4 ) = 1 ⋅ 2 = 2 .
This suggests
a
1
=
0
a
1
=
0
a_(1)=0 a_1 = 0 a 1 = 0 when
r
=
−
3
r
=
−
3
r=-3 r = -3 r = − 3 , but we need to check consistency.
Step 6: Solve for
r
=
−
2
r
=
−
2
r=-2 r = -2 r = − 2
Recurrence:
a
n
=
−
a
n
−
2
n
(
n
+
2
(
−
2
)
+
5
)
=
−
a
n
−
2
n
(
n
+
1
)
a
n
=
−
a
n
−
2
n
(
n
+
2
(
−
2
)
+
5
)
=
−
a
n
−
2
n
(
n
+
1
)
a_(n)=-(a_(n-2))/(n(n+2(-2)+5))=-(a_(n-2))/(n(n+1)) a_n = -\frac{a_{n-2}}{n (n + 2(-2) + 5)} = -\frac{a_{n-2}}{n (n + 1)} a n = − a n − 2 n ( n + 2 ( − 2 ) + 5 ) = − a n − 2 n ( n + 1 ) .
n
=
1
n
=
1
n=1 n = 1 n = 1 :
(
r
+
3
)
(
r
+
4
)
a
1
=
(
−
2
+
3
)
(
−
2
+
4
)
a
1
=
2
a
1
=
0
(
r
+
3
)
(
r
+
4
)
a
1
=
(
−
2
+
3
)
(
−
2
+
4
)
a
1
=
2
a
1
=
0
(r+3)(r+4)a_(1)=(-2+3)(-2+4)a_(1)=2a_(1)=0 (r + 3)(r + 4) a_1 = (-2 + 3)(-2 + 4) a_1 = 2 a_1 = 0 ( r + 3 ) ( r + 4 ) a 1 = ( − 2 + 3 ) ( − 2 + 4 ) a 1 = 2 a 1 = 0 only if
a
1
=
0
a
1
=
0
a_(1)=0 a_1 = 0 a 1 = 0 ,
n
=
2
n
=
2
n=2 n = 2 n = 2 :
a
2
=
−
a
0
2
(
2
+
1
)
=
−
a
0
6
a
2
=
−
a
0
2
(
2
+
1
)
=
−
a
0
6
a_(2)=-(a_(0))/(2(2+1))=-(a_(0))/(6) a_2 = -\frac{a_0}{2 (2 + 1)} = -\frac{a_0}{6} a 2 = − a 0 2 ( 2 + 1 ) = − a 0 6 ,
n
=
3
n
=
3
n=3 n = 3 n = 3 :
a
3
=
−
a
1
3
(
3
+
1
)
=
0
a
3
=
−
a
1
3
(
3
+
1
)
=
0
a_(3)=-(a_(1))/(3(3+1))=0 a_3 = -\frac{a_1}{3 (3 + 1)} = 0 a 3 = − a 1 3 ( 3 + 1 ) = 0 (since
a
1
=
0
a
1
=
0
a_(1)=0 a_1 = 0 a 1 = 0 ),
n
=
4
n
=
4
n=4 n = 4 n = 4 :
a
4
=
−
a
2
4
(
4
+
1
)
=
−
−
a
0
6
20
=
a
0
120
a
4
=
−
a
2
4
(
4
+
1
)
=
−
−
a
0
6
20
=
a
0
120
a_(4)=-(a_(2))/(4(4+1))=-(-(a_(0))/(6))/(20)=(a_(0))/(120) a_4 = -\frac{a_2}{4 (4 + 1)} = -\frac{-\frac{a_0}{6}}{20} = \frac{a_0}{120} a 4 = − a 2 4 ( 4 + 1 ) = − − a 0 6 20 = a 0 120 .
Series:
y
1
=
x
−
2
(
a
0
−
a
0
6
x
2
+
a
0
120
x
4
−
⋯
)
=
a
0
x
−
2
(
1
−
x
2
6
+
x
4
120
−
⋯
)
y
1
=
x
−
2
a
0
−
a
0
6
x
2
+
a
0
120
x
4
−
⋯
=
a
0
x
−
2
1
−
x
2
6
+
x
4
120
−
⋯
y_(1)=x^(-2)(a_(0)-(a_(0))/(6)x^(2)+(a_(0))/(120)x^(4)-cdots)=a_(0)x^(-2)(1-(x^(2))/(6)+(x^(4))/(120)-cdots) y_1 = x^{-2} \left( a_0 – \frac{a_0}{6} x^2 + \frac{a_0}{120} x^4 – \cdots \right) = a_0 x^{-2} \left( 1 – \frac{x^2}{6} + \frac{x^4}{120} – \cdots \right) y 1 = x − 2 ( a 0 − a 0 6 x 2 + a 0 120 x 4 − ⋯ ) = a 0 x − 2 ( 1 − x 2 6 + x 4 120 − ⋯ ) .
Step 7: Solve for
r
=
−
3
r
=
−
3
r=-3 r = -3 r = − 3
Recurrence:
a
n
=
−
a
n
−
2
n
(
n
+
2
(
−
3
)
+
5
)
=
−
a
n
−
2
n
(
n
−
1
)
a
n
=
−
a
n
−
2
n
(
n
+
2
(
−
3
)
+
5
)
=
−
a
n
−
2
n
(
n
−
1
)
a_(n)=-(a_(n-2))/(n(n+2(-3)+5))=-(a_(n-2))/(n(n-1)) a_n = -\frac{a_{n-2}}{n (n + 2(-3) + 5)} = -\frac{a_{n-2}}{n (n – 1)} a n = − a n − 2 n ( n + 2 ( − 3 ) + 5 ) = − a n − 2 n ( n − 1 ) .
n
=
1
n
=
1
n=1 n = 1 n = 1 :
(
r
+
3
)
(
r
+
4
)
a
1
=
0
⋅
1
a
1
=
0
(
r
+
3
)
(
r
+
4
)
a
1
=
0
⋅
1
a
1
=
0
(r+3)(r+4)a_(1)=0*1a_(1)=0 (r + 3)(r + 4) a_1 = 0 \cdot 1 a_1 = 0 ( r + 3 ) ( r + 4 ) a 1 = 0 ⋅ 1 a 1 = 0 ,
a
1
a
1
a_(1) a_1 a 1 is free,
n
=
2
n
=
2
n=2 n = 2 n = 2 :
a
2
=
−
a
0
2
(
2
−
1
)
=
−
a
0
2
a
2
=
−
a
0
2
(
2
−
1
)
=
−
a
0
2
a_(2)=-(a_(0))/(2(2-1))=-(a_(0))/(2) a_2 = -\frac{a_0}{2 (2 – 1)} = -\frac{a_0}{2} a 2 = − a 0 2 ( 2 − 1 ) = − a 0 2 ,
n
=
3
n
=
3
n=3 n = 3 n = 3 :
a
3
=
−
a
1
3
(
3
−
1
)
=
−
a
1
6
a
3
=
−
a
1
3
(
3
−
1
)
=
−
a
1
6
a_(3)=-(a_(1))/(3(3-1))=-(a_(1))/(6) a_3 = -\frac{a_1}{3 (3 – 1)} = -\frac{a_1}{6} a 3 = − a 1 3 ( 3 − 1 ) = − a 1 6 ,
n
=
4
n
=
4
n=4 n = 4 n = 4 :
a
4
=
−
a
2
4
(
4
−
1
)
=
−
−
a
0
2
12
=
a
0
24
a
4
=
−
a
2
4
(
4
−
1
)
=
−
−
a
0
2
12
=
a
0
24
a_(4)=-(a_(2))/(4(4-1))=-(-(a_(0))/(2))/(12)=(a_(0))/(24) a_4 = -\frac{a_2}{4 (4 – 1)} = -\frac{-\frac{a_0}{2}}{12} = \frac{a_0}{24} a 4 = − a 2 4 ( 4 − 1 ) = − − a 0 2 12 = a 0 24 .
Series:
y
2
=
x
−
3
(
a
0
+
a
1
x
−
a
0
2
x
2
−
a
1
6
x
3
+
a
0
24
x
4
−
⋯
)
y
2
=
x
−
3
a
0
+
a
1
x
−
a
0
2
x
2
−
a
1
6
x
3
+
a
0
24
x
4
−
⋯
y_(2)=x^(-3)(a_(0)+a_(1)x-(a_(0))/(2)x^(2)-(a_(1))/(6)x^(3)+(a_(0))/(24)x^(4)-cdots) y_2 = x^{-3} \left( a_0 + a_1 x – \frac{a_0}{2} x^2 – \frac{a_1}{6} x^3 + \frac{a_0}{24} x^4 – \cdots \right) y 2 = x − 3 ( a 0 + a 1 x − a 0 2 x 2 − a 1 6 x 3 + a 0 24 x 4 − ⋯ ) .
Final Answer
The general solution is:
y
(
x
)
=
c
1
x
−
2
(
1
−
x
2
6
+
x
4
120
−
⋯
)
+
c
2
x
−
3
(
1
+
a
x
−
1
2
x
2
−
a
6
x
3
+
1
24
x
4
−
⋯
)
,
y
(
x
)
=
c
1
x
−
2
1
−
x
2
6
+
x
4
120
−
⋯
+
c
2
x
−
3
1
+
a
x
−
1
2
x
2
−
a
6
x
3
+
1
24
x
4
−
⋯
,
y(x)=c_(1)x^(-2)(1-(x^(2))/(6)+(x^(4))/(120)-cdots)+c_(2)x^(-3)(1+ax-(1)/(2)x^(2)-(a)/(6)x^(3)+(1)/(24)x^(4)-cdots), y(x) = c_1 x^{-2} \left( 1 – \frac{x^2}{6} + \frac{x^4}{120} – \cdots \right) + c_2 x^{-3} \left( 1 + a x – \frac{1}{2} x^2 – \frac{a}{6} x^3 + \frac{1}{24} x^4 – \cdots \right), y ( x ) = c 1 x − 2 ( 1 − x 2 6 + x 4 120 − ⋯ ) + c 2 x − 3 ( 1 + a x − 1 2 x 2 − a 6 x 3 + 1 24 x 4 − ⋯ ) ,
where
c
1
c
1
c_(1) c_1 c 1 and
c
2
c
2
c_(2) c_2 c 2 are constants, and
a
=
a
1
/
a
0
a
=
a
1
/
a
0
a=a_(1)//a_(0) a = a_1/a_0 a = a 1 / a 0 is an arbitrary constant for the second solution. Note that
x
=
0
x
=
0
x=0 x = 0 x = 0 is a singular point, and these solutions are valid for
x
≠
0
x
≠
0
x!=0 x \neq 0 x ≠ 0 .
Question:-1(b)
Express
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f(x)=x^(4)+3x^(3)+4x^(2)-x+2 f(x) = x^4 + 3 x^3 + 4 x^2 – x + 2 f ( x ) = x 4 + 3 x 3 + 4 x 2 − x + 2 in terms of Legendre polynomials.
Answer:
To express the polynomial
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f(x)=x^(4)+3x^(3)+4x^(2)-x+2 f(x) = x^4 + 3x^3 + 4x^2 – x + 2 f ( x ) = x 4 + 3 x 3 + 4 x 2 − x + 2 in terms of Legendre polynomials, we need to write it as a linear combination of the form:
f
(
x
)
=
c
0
P
0
(
x
)
+
c
1
P
1
(
x
)
+
c
2
P
2
(
x
)
+
c
3
P
3
(
x
)
+
c
4
P
4
(
x
)
,
f
(
x
)
=
c
0
P
0
(
x
)
+
c
1
P
1
(
x
)
+
c
2
P
2
(
x
)
+
c
3
P
3
(
x
)
+
c
4
P
4
(
x
)
,
f(x)=c_(0)P_(0)(x)+c_(1)P_(1)(x)+c_(2)P_(2)(x)+c_(3)P_(3)(x)+c_(4)P_(4)(x), f(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + c_3 P_3(x) + c_4 P_4(x), f ( x ) = c 0 P 0 ( x ) + c 1 P 1 ( x ) + c 2 P 2 ( x ) + c 3 P 3 ( x ) + c 4 P 4 ( x ) ,
where
P
n
(
x
)
P
n
(
x
)
P_(n)(x) P_n(x) P n ( x ) are the Legendre polynomials, and since
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is a polynomial of degree 4, we only need terms up to
P
4
(
x
)
P
4
(
x
)
P_(4)(x) P_4(x) P 4 ( x ) . The Legendre polynomials are orthogonal on
[
−
1
,
1
]
[
−
1
,
1
]
[-1,1] [-1, 1] [ − 1 , 1 ] with respect to the weight function 1, and we can find the coefficients
c
n
c
n
c_(n) c_n c n using the orthogonality property:
c
n
=
⟨
f
,
P
n
⟩
⟨
P
n
,
P
n
⟩
=
∫
−
1
1
f
(
x
)
P
n
(
x
)
d
x
∫
−
1
1
[
P
n
(
x
)
]
2
d
x
.
c
n
=
⟨
f
,
P
n
⟩
⟨
P
n
,
P
n
⟩
=
∫
−
1
1
f
(
x
)
P
n
(
x
)
d
x
∫
−
1
1
[
P
n
(
x
)
]
2
d
x
.
c_(n)=((:f,P_(n):))/((:P_(n),P_(n):))=(int_(-1)^(1)f(x)P_(n)(x)dx)/(int_(-1)^(1)[P_(n)(x)]^(2)dx). c_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle} = \frac{\int_{-1}^{1} f(x) P_n(x) \, dx}{\int_{-1}^{1} [P_n(x)]^2 \, dx}. c n = ⟨ f , P n ⟩ ⟨ P n , P n ⟩ = ∫ − 1 1 f ( x ) P n ( x ) d x ∫ − 1 1 [ P n ( x ) ] 2 d x .
The standard Legendre polynomials (normalized such that
P
n
(
1
)
=
1
P
n
(
1
)
=
1
P_(n)(1)=1 P_n(1) = 1 P n ( 1 ) = 1 ) are:
P
0
(
x
)
=
1
P
0
(
x
)
=
1
P_(0)(x)=1 P_0(x) = 1 P 0 ( x ) = 1 ,
P
1
(
x
)
=
x
P
1
(
x
)
=
x
P_(1)(x)=x P_1(x) = x P 1 ( x ) = x ,
P
2
(
x
)
=
1
2
(
3
x
2
−
1
)
P
2
(
x
)
=
1
2
(
3
x
2
−
1
)
P_(2)(x)=(1)/(2)(3x^(2)-1) P_2(x) = \frac{1}{2}(3x^2 – 1) P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) ,
P
3
(
x
)
=
1
2
(
5
x
3
−
3
x
)
P
3
(
x
)
=
1
2
(
5
x
3
−
3
x
)
P_(3)(x)=(1)/(2)(5x^(3)-3x) P_3(x) = \frac{1}{2}(5x^3 – 3x) P 3 ( x ) = 1 2 ( 5 x 3 − 3 x ) ,
P
4
(
x
)
=
1
8
(
35
x
4
−
30
x
2
+
3
)
P
4
(
x
)
=
1
8
(
35
x
4
−
30
x
2
+
3
)
P_(4)(x)=(1)/(8)(35x^(4)-30x^(2)+3) P_4(x) = \frac{1}{8}(35x^4 – 30x^2 + 3) P 4 ( x ) = 1 8 ( 35 x 4 − 30 x 2 + 3 ) .
The norm of each is:
⟨
P
n
,
P
n
⟩
=
∫
−
1
1
[
P
n
(
x
)
]
2
d
x
=
2
2
n
+
1
.
⟨
P
n
,
P
n
⟩
=
∫
−
1
1
[
P
n
(
x
)
]
2
d
x
=
2
2
n
+
1
.
(:P_(n),P_(n):)=int_(-1)^(1)[P_(n)(x)]^(2)dx=(2)/(2n+1). \langle P_n, P_n \rangle = \int_{-1}^{1} [P_n(x)]^2 \, dx = \frac{2}{2n + 1}. ⟨ P n , P n ⟩ = ∫ − 1 1 [ P n ( x ) ] 2 d x = 2 2 n + 1 .
However, a more practical approach for a finite polynomial is to match coefficients by expressing the Legendre polynomials in terms of powers of
x
x
x x x and solving a system of equations, since
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is a degree-4 polynomial.
Step 1: Write the Legendre polynomials as power series
P
0
(
x
)
=
1
P
0
(
x
)
=
1
P_(0)(x)=1 P_0(x) = 1 P 0 ( x ) = 1 ,
P
1
(
x
)
=
x
P
1
(
x
)
=
x
P_(1)(x)=x P_1(x) = x P 1 ( x ) = x ,
P
2
(
x
)
=
1
2
(
3
x
2
−
1
)
=
3
2
x
2
−
1
2
P
2
(
x
)
=
1
2
(
3
x
2
−
1
)
=
3
2
x
2
−
1
2
P_(2)(x)=(1)/(2)(3x^(2)-1)=(3)/(2)x^(2)-(1)/(2) P_2(x) = \frac{1}{2}(3x^2 – 1) = \frac{3}{2}x^2 – \frac{1}{2} P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) = 3 2 x 2 − 1 2 ,
P
3
(
x
)
=
1
2
(
5
x
3
−
3
x
)
=
5
2
x
3
−
3
2
x
P
3
(
x
)
=
1
2
(
5
x
3
−
3
x
)
=
5
2
x
3
−
3
2
x
P_(3)(x)=(1)/(2)(5x^(3)-3x)=(5)/(2)x^(3)-(3)/(2)x P_3(x) = \frac{1}{2}(5x^3 – 3x) = \frac{5}{2}x^3 – \frac{3}{2}x P 3 ( x ) = 1 2 ( 5 x 3 − 3 x ) = 5 2 x 3 − 3 2 x ,
P
4
(
x
)
=
1
8
(
35
x
4
−
30
x
2
+
3
)
=
35
8
x
4
−
30
8
x
2
+
3
8
=
35
8
x
4
−
15
4
x
2
+
3
8
P
4
(
x
)
=
1
8
(
35
x
4
−
30
x
2
+
3
)
=
35
8
x
4
−
30
8
x
2
+
3
8
=
35
8
x
4
−
15
4
x
2
+
3
8
P_(4)(x)=(1)/(8)(35x^(4)-30x^(2)+3)=(35)/(8)x^(4)-(30)/(8)x^(2)+(3)/(8)=(35)/(8)x^(4)-(15)/(4)x^(2)+(3)/(8) P_4(x) = \frac{1}{8}(35x^4 – 30x^2 + 3) = \frac{35}{8}x^4 – \frac{30}{8}x^2 + \frac{3}{8} = \frac{35}{8}x^4 – \frac{15}{4}x^2 + \frac{3}{8} P 4 ( x ) = 1 8 ( 35 x 4 − 30 x 2 + 3 ) = 35 8 x 4 − 30 8 x 2 + 3 8 = 35 8 x 4 − 15 4 x 2 + 3 8 .
Step 2: Set up the linear combination
Let:
f
(
x
)
=
c
0
P
0
(
x
)
+
c
1
P
1
(
x
)
+
c
2
P
2
(
x
)
+
c
3
P
3
(
x
)
+
c
4
P
4
(
x
)
.
f
(
x
)
=
c
0
P
0
(
x
)
+
c
1
P
1
(
x
)
+
c
2
P
2
(
x
)
+
c
3
P
3
(
x
)
+
c
4
P
4
(
x
)
.
f(x)=c_(0)P_(0)(x)+c_(1)P_(1)(x)+c_(2)P_(2)(x)+c_(3)P_(3)(x)+c_(4)P_(4)(x). f(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + c_3 P_3(x) + c_4 P_4(x). f ( x ) = c 0 P 0 ( x ) + c 1 P 1 ( x ) + c 2 P 2 ( x ) + c 3 P 3 ( x ) + c 4 P 4 ( x ) .
Substitute and expand:
f
(
x
)
=
c
0
(
1
)
+
c
1
(
x
)
+
c
2
(
3
2
x
2
−
1
2
)
+
c
3
(
5
2
x
3
−
3
2
x
)
+
c
4
(
35
8
x
4
−
15
4
x
2
+
3
8
)
.
f
(
x
)
=
c
0
(
1
)
+
c
1
(
x
)
+
c
2
3
2
x
2
−
1
2
+
c
3
5
2
x
3
−
3
2
x
+
c
4
35
8
x
4
−
15
4
x
2
+
3
8
.
f(x)=c_(0)(1)+c_(1)(x)+c_(2)((3)/(2)x^(2)-(1)/(2))+c_(3)((5)/(2)x^(3)-(3)/(2)x)+c_(4)((35)/(8)x^(4)-(15)/(4)x^(2)+(3)/(8)). f(x) = c_0 (1) + c_1 (x) + c_2 \left( \frac{3}{2}x^2 – \frac{1}{2} \right) + c_3 \left( \frac{5}{2}x^3 – \frac{3}{2}x \right) + c_4 \left( \frac{35}{8}x^4 – \frac{15}{4}x^2 + \frac{3}{8} \right). f ( x ) = c 0 ( 1 ) + c 1 ( x ) + c 2 ( 3 2 x 2 − 1 2 ) + c 3 ( 5 2 x 3 − 3 2 x ) + c 4 ( 35 8 x 4 − 15 4 x 2 + 3 8 ) .
Collect terms by powers of
x
x
x x x :
x
4
x
4
x^(4) x^4 x 4 :
c
4
⋅
35
8
c
4
⋅
35
8
c_(4)*(35)/(8) c_4 \cdot \frac{35}{8} c 4 ⋅ 35 8 ,
x
3
x
3
x^(3) x^3 x 3 :
c
3
⋅
5
2
c
3
⋅
5
2
c_(3)*(5)/(2) c_3 \cdot \frac{5}{2} c 3 ⋅ 5 2 ,
x
2
x
2
x^(2) x^2 x 2 :
c
2
⋅
3
2
+
c
4
⋅
(
−
15
4
)
c
2
⋅
3
2
+
c
4
⋅
−
15
4
c_(2)*(3)/(2)+c_(4)*(-(15)/(4)) c_2 \cdot \frac{3}{2} + c_4 \cdot \left( -\frac{15}{4} \right) c 2 ⋅ 3 2 + c 4 ⋅ ( − 15 4 ) ,
x
1
x
1
x^(1) x^1 x 1 :
c
1
+
c
3
⋅
(
−
3
2
)
c
1
+
c
3
⋅
−
3
2
c_(1)+c_(3)*(-(3)/(2)) c_1 + c_3 \cdot \left( -\frac{3}{2} \right) c 1 + c 3 ⋅ ( − 3 2 ) ,
x
0
x
0
x^(0) x^0 x 0 :
c
0
+
c
2
⋅
(
−
1
2
)
+
c
4
⋅
3
8
c
0
+
c
2
⋅
−
1
2
+
c
4
⋅
3
8
c_(0)+c_(2)*(-(1)/(2))+c_(4)*(3)/(8) c_0 + c_2 \cdot \left( -\frac{1}{2} \right) + c_4 \cdot \frac{3}{8} c 0 + c 2 ⋅ ( − 1 2 ) + c 4 ⋅ 3 8 .
Equate to
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f
(
x
)
=
x
4
+
3
x
3
+
4
x
2
−
x
+
2
f(x)=x^(4)+3x^(3)+4x^(2)-x+2 f(x) = x^4 + 3x^3 + 4x^2 – x + 2 f ( x ) = x 4 + 3 x 3 + 4 x 2 − x + 2 :
x
4
x
4
x^(4) x^4 x 4 :
35
8
c
4
=
1
35
8
c
4
=
1
(35)/(8)c_(4)=1 \frac{35}{8} c_4 = 1 35 8 c 4 = 1 ,
x
3
x
3
x^(3) x^3 x 3 :
5
2
c
3
=
3
5
2
c
3
=
3
(5)/(2)c_(3)=3 \frac{5}{2} c_3 = 3 5 2 c 3 = 3 ,
x
2
x
2
x^(2) x^2 x 2 :
3
2
c
2
−
15
4
c
4
=
4
3
2
c
2
−
15
4
c
4
=
4
(3)/(2)c_(2)-(15)/(4)c_(4)=4 \frac{3}{2} c_2 – \frac{15}{4} c_4 = 4 3 2 c 2 − 15 4 c 4 = 4 ,
x
x
x x x :
c
1
−
3
2
c
3
=
−
1
c
1
−
3
2
c
3
=
−
1
c_(1)-(3)/(2)c_(3)=-1 c_1 – \frac{3}{2} c_3 = -1 c 1 − 3 2 c 3 = − 1 ,
Constant:
c
0
−
1
2
c
2
+
3
8
c
4
=
2
c
0
−
1
2
c
2
+
3
8
c
4
=
2
c_(0)-(1)/(2)c_(2)+(3)/(8)c_(4)=2 c_0 – \frac{1}{2} c_2 + \frac{3}{8} c_4 = 2 c 0 − 1 2 c 2 + 3 8 c 4 = 2 .
Step 3: Solve the system
From (1):
35
8
c
4
=
1
35
8
c
4
=
1
(35)/(8)c_(4)=1 \frac{35}{8} c_4 = 1 35 8 c 4 = 1 , so
c
4
=
8
35
c
4
=
8
35
c_(4)=(8)/(35) c_4 = \frac{8}{35} c 4 = 8 35 .
From (2):
5
2
c
3
=
3
5
2
c
3
=
3
(5)/(2)c_(3)=3 \frac{5}{2} c_3 = 3 5 2 c 3 = 3 , so
c
3
=
3
⋅
2
5
=
6
5
c
3
=
3
⋅
2
5
=
6
5
c_(3)=3*(2)/(5)=(6)/(5) c_3 = 3 \cdot \frac{2}{5} = \frac{6}{5} c 3 = 3 ⋅ 2 5 = 6 5 .
From (3):
3
2
c
2
−
15
4
⋅
8
35
=
4
3
2
c
2
−
15
4
⋅
8
35
=
4
(3)/(2)c_(2)-(15)/(4)*(8)/(35)=4 \frac{3}{2} c_2 – \frac{15}{4} \cdot \frac{8}{35} = 4 3 2 c 2 − 15 4 ⋅ 8 35 = 4 ,
15
4
⋅
8
35
=
120
140
=
6
7
,
15
4
⋅
8
35
=
120
140
=
6
7
,
(15)/(4)*(8)/(35)=(120)/(140)=(6)/(7), \frac{15}{4} \cdot \frac{8}{35} = \frac{120}{140} = \frac{6}{7}, 15 4 ⋅ 8 35 = 120 140 = 6 7 ,
3
2
c
2
−
6
7
=
4
,
3
2
c
2
−
6
7
=
4
,
(3)/(2)c_(2)-(6)/(7)=4, \frac{3}{2} c_2 – \frac{6}{7} = 4, 3 2 c 2 − 6 7 = 4 ,
3
2
c
2
=
4
+
6
7
=
28
7
+
6
7
=
34
7
,
3
2
c
2
=
4
+
6
7
=
28
7
+
6
7
=
34
7
,
(3)/(2)c_(2)=4+(6)/(7)=(28)/(7)+(6)/(7)=(34)/(7), \frac{3}{2} c_2 = 4 + \frac{6}{7} = \frac{28}{7} + \frac{6}{7} = \frac{34}{7}, 3 2 c 2 = 4 + 6 7 = 28 7 + 6 7 = 34 7 ,
c
2
=
34
7
⋅
2
3
=
68
21
c
2
=
34
7
⋅
2
3
=
68
21
c_(2)=(34)/(7)*(2)/(3)=(68)/(21) c_2 = \frac{34}{7} \cdot \frac{2}{3} = \frac{68}{21} c 2 = 34 7 ⋅ 2 3 = 68 21 .
From (4):
c
1
−
3
2
⋅
6
5
=
−
1
c
1
−
3
2
⋅
6
5
=
−
1
c_(1)-(3)/(2)*(6)/(5)=-1 c_1 – \frac{3}{2} \cdot \frac{6}{5} = -1 c 1 − 3 2 ⋅ 6 5 = − 1 ,
3
2
⋅
6
5
=
9
5
,
3
2
⋅
6
5
=
9
5
,
(3)/(2)*(6)/(5)=(9)/(5), \frac{3}{2} \cdot \frac{6}{5} = \frac{9}{5}, 3 2 ⋅ 6 5 = 9 5 ,
c
1
−
9
5
=
−
1
,
c
1
−
9
5
=
−
1
,
c_(1)-(9)/(5)=-1, c_1 – \frac{9}{5} = -1, c 1 − 9 5 = − 1 ,
c
1
=
−
1
+
9
5
=
−
5
5
+
9
5
=
4
5
c
1
=
−
1
+
9
5
=
−
5
5
+
9
5
=
4
5
c_(1)=-1+(9)/(5)=-(5)/(5)+(9)/(5)=(4)/(5) c_1 = -1 + \frac{9}{5} = -\frac{5}{5} + \frac{9}{5} = \frac{4}{5} c 1 = − 1 + 9 5 = − 5 5 + 9 5 = 4 5 .
From (5):
c
0
−
1
2
⋅
68
21
+
3
8
⋅
8
35
=
2
c
0
−
1
2
⋅
68
21
+
3
8
⋅
8
35
=
2
c_(0)-(1)/(2)*(68)/(21)+(3)/(8)*(8)/(35)=2 c_0 – \frac{1}{2} \cdot \frac{68}{21} + \frac{3}{8} \cdot \frac{8}{35} = 2 c 0 − 1 2 ⋅ 68 21 + 3 8 ⋅ 8 35 = 2 ,
1
2
⋅
68
21
=
34
21
,
1
2
⋅
68
21
=
34
21
,
(1)/(2)*(68)/(21)=(34)/(21), \frac{1}{2} \cdot \frac{68}{21} = \frac{34}{21}, 1 2 ⋅ 68 21 = 34 21 ,
3
8
⋅
8
35
=
3
35
,
3
8
⋅
8
35
=
3
35
,
(3)/(8)*(8)/(35)=(3)/(35), \frac{3}{8} \cdot \frac{8}{35} = \frac{3}{35}, 3 8 ⋅ 8 35 = 3 35 ,
c
0
−
34
21
+
3
35
=
2
,
c
0
−
34
21
+
3
35
=
2
,
c_(0)-(34)/(21)+(3)/(35)=2, c_0 – \frac{34}{21} + \frac{3}{35} = 2, c 0 − 34 21 + 3 35 = 2 ,
34
21
=
170
105
,
3
35
=
9
105
,
34
21
=
170
105
,
3
35
=
9
105
,
(34)/(21)=(170)/(105),quad(3)/(35)=(9)/(105), \frac{34}{21} = \frac{170}{105}, \quad \frac{3}{35} = \frac{9}{105}, 34 21 = 170 105 , 3 35 = 9 105 ,
c
0
−
170
105
+
9
105
=
2
,
c
0
−
170
105
+
9
105
=
2
,
c_(0)-(170)/(105)+(9)/(105)=2, c_0 – \frac{170}{105} + \frac{9}{105} = 2, c 0 − 170 105 + 9 105 = 2 ,
c
0
−
161
105
=
2
,
c
0
−
161
105
=
2
,
c_(0)-(161)/(105)=2, c_0 – \frac{161}{105} = 2, c 0 − 161 105 = 2 ,
c
0
=
2
+
161
105
=
210
105
+
161
105
=
371
105
c
0
=
2
+
161
105
=
210
105
+
161
105
=
371
105
c_(0)=2+(161)/(105)=(210)/(105)+(161)/(105)=(371)/(105) c_0 = 2 + \frac{161}{105} = \frac{210}{105} + \frac{161}{105} = \frac{371}{105} c 0 = 2 + 161 105 = 210 105 + 161 105 = 371 105 .
Step 4: Verify
f
(
x
)
=
371
105
P
0
+
4
5
P
1
+
68
21
P
2
+
6
5
P
3
+
8
35
P
4
.
f
(
x
)
=
371
105
P
0
+
4
5
P
1
+
68
21
P
2
+
6
5
P
3
+
8
35
P
4
.
f(x)=(371)/(105)P_(0)+(4)/(5)P_(1)+(68)/(21)P_(2)+(6)/(5)P_(3)+(8)/(35)P_(4). f(x) = \frac{371}{105} P_0 + \frac{4}{5} P_1 + \frac{68}{21} P_2 + \frac{6}{5} P_3 + \frac{8}{35} P_4. f ( x ) = 371 105 P 0 + 4 5 P 1 + 68 21 P 2 + 6 5 P 3 + 8 35 P 4 .
Compute:
x
4
x
4
x^(4) x^4 x 4 :
8
35
⋅
35
8
=
1
8
35
⋅
35
8
=
1
(8)/(35)*(35)/(8)=1 \frac{8}{35} \cdot \frac{35}{8} = 1 8 35 ⋅ 35 8 = 1 ,
x
3
x
3
x^(3) x^3 x 3 :
6
5
⋅
5
2
=
3
6
5
⋅
5
2
=
3
(6)/(5)*(5)/(2)=3 \frac{6}{5} \cdot \frac{5}{2} = 3 6 5 ⋅ 5 2 = 3 ,
x
2
x
2
x^(2) x^2 x 2 :
68
21
⋅
3
2
−
8
35
⋅
15
4
=
102
21
−
120
140
=
340
70
−
60
70
=
280
70
=
4
68
21
⋅
3
2
−
8
35
⋅
15
4
=
102
21
−
120
140
=
340
70
−
60
70
=
280
70
=
4
(68)/(21)*(3)/(2)-(8)/(35)*(15)/(4)=(102)/(21)-(120)/(140)=(340)/(70)-(60)/(70)=(280)/(70)=4 \frac{68}{21} \cdot \frac{3}{2} – \frac{8}{35} \cdot \frac{15}{4} = \frac{102}{21} – \frac{120}{140} = \frac{340}{70} – \frac{60}{70} = \frac{280}{70} = 4 68 21 ⋅ 3 2 − 8 35 ⋅ 15 4 = 102 21 − 120 140 = 340 70 − 60 70 = 280 70 = 4 ,
x
x
x x x :
4
5
−
6
5
⋅
3
2
=
4
5
−
9
5
=
−
1
4
5
−
6
5
⋅
3
2
=
4
5
−
9
5
=
−
1
(4)/(5)-(6)/(5)*(3)/(2)=(4)/(5)-(9)/(5)=-1 \frac{4}{5} – \frac{6}{5} \cdot \frac{3}{2} = \frac{4}{5} – \frac{9}{5} = -1 4 5 − 6 5 ⋅ 3 2 = 4 5 − 9 5 = − 1 ,
Constant:
371
105
−
68
21
⋅
1
2
+
8
35
⋅
3
8
=
371
105
−
34
21
+
3
35
=
371
105
−
170
105
+
9
105
=
210
105
=
2
371
105
−
68
21
⋅
1
2
+
8
35
⋅
3
8
=
371
105
−
34
21
+
3
35
=
371
105
−
170
105
+
9
105
=
210
105
=
2
(371)/(105)-(68)/(21)*(1)/(2)+(8)/(35)*(3)/(8)=(371)/(105)-(34)/(21)+(3)/(35)=(371)/(105)-(170)/(105)+(9)/(105)=(210)/(105)=2 \frac{371}{105} – \frac{68}{21} \cdot \frac{1}{2} + \frac{8}{35} \cdot \frac{3}{8} = \frac{371}{105} – \frac{34}{21} + \frac{3}{35} = \frac{371}{105} – \frac{170}{105} + \frac{9}{105} = \frac{210}{105} = 2 371 105 − 68 21 ⋅ 1 2 + 8 35 ⋅ 3 8 = 371 105 − 34 21 + 3 35 = 371 105 − 170 105 + 9 105 = 210 105 = 2 .
All coefficients match.
Final Answer
f
(
x
)
=
371
105
P
0
(
x
)
+
4
5
P
1
(
x
)
+
68
21
P
2
(
x
)
+
6
5
P
3
(
x
)
+
8
35
P
4
(
x
)
.
f
(
x
)
=
371
105
P
0
(
x
)
+
4
5
P
1
(
x
)
+
68
21
P
2
(
x
)
+
6
5
P
3
(
x
)
+
8
35
P
4
(
x
)
.
f(x)=(371)/(105)P_(0)(x)+(4)/(5)P_(1)(x)+(68)/(21)P_(2)(x)+(6)/(5)P_(3)(x)+(8)/(35)P_(4)(x). f(x) = \frac{371}{105} P_0(x) + \frac{4}{5} P_1(x) + \frac{68}{21} P_2(x) + \frac{6}{5} P_3(x) + \frac{8}{35} P_4(x). f ( x ) = 371 105 P 0 ( x ) + 4 5 P 1 ( x ) + 68 21 P 2 ( x ) + 6 5 P 3 ( x ) + 8 35 P 4 ( x ) .