Sample Solution

bphct-133-solved-assignment-2024–ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

bphct-133-solved-assignment-2024–ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

BPHCT-133 Solved Assignment 2024 SS
PART A
  1. a) Determine the direction in which the scalar field f ( x , y ) = 2 x 2 y 2 + x y f ( x , y ) = 2 x 2 y 2 + x y f(x,y)=2x^(2)-y^(2)+xyf(x, y)=2 x^2-y^2+x yf(x,y)=2x2y2+xy increases most rapidly at the point ( 1 , 1 ) ( 1 , 1 ) (1,1)(1,1)(1,1).
Answer:
The direction in which a scalar field f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) increases most rapidly at a given point is given by the gradient of the field at that point. The gradient is a vector that points in the direction of the greatest increase of the function and its magnitude is the rate of increase in that direction.
The gradient of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is given by:
f ( x , y ) = ( f x , f y ) f ( x , y ) = f x , f y grad f(x,y)=((del f)/(del x),(del f)/(del y))\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)f(x,y)=(fx,fy)
For the given scalar field f ( x , y ) = 2 x 2 y 2 + x y f ( x , y ) = 2 x 2 y 2 + x y f(x,y)=2x^(2)-y^(2)+xyf(x, y) = 2x^2 – y^2 + xyf(x,y)=2x2y2+xy, the partial derivatives are:
f x = 4 x + y f x = 4 x + y (del f)/(del x)=4x+y\frac{\partial f}{\partial x} = 4x + yfx=4x+y
f y = 2 y + x f y = 2 y + x (del f)/(del y)=-2y+x\frac{\partial f}{\partial y} = -2y + xfy=2y+x
At the point ( 1 , 1 ) ( 1 , 1 ) (1,1)(1, 1)(1,1):
f x | ( 1 , 1 ) = 4 ( 1 ) + 1 = 5 f x | ( 1 , 1 ) = 4 ( 1 ) + 1 = 5 (del f)/(del x)|_((1,1))=4(1)+1=5\frac{\partial f}{\partial x}\bigg|_{(1, 1)} = 4(1) + 1 = 5fx|(1,1)=4(1)+1=5
f y | ( 1 , 1 ) = 2 ( 1 ) + 1 = 1 f y | ( 1 , 1 ) = 2 ( 1 ) + 1 = 1 (del f)/(del y)|_((1,1))=-2(1)+1=-1\frac{\partial f}{\partial y}\bigg|_{(1, 1)} = -2(1) + 1 = -1fy|(1,1)=2(1)+1=1
So, the gradient of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) at the point ( 1 , 1 ) ( 1 , 1 ) (1,1)(1, 1)(1,1) is:
f ( 1 , 1 ) = ( 5 , 1 ) f ( 1 , 1 ) = ( 5 , 1 ) grad f(1,1)=(5,-1)\nabla f(1, 1) = (5, -1)f(1,1)=(5,1)
Therefore, the scalar field f ( x , y ) = 2 x 2 y 2 + x y f ( x , y ) = 2 x 2 y 2 + x y f(x,y)=2x^(2)-y^(2)+xyf(x, y) = 2x^2 – y^2 + xyf(x,y)=2x2y2+xy increases most rapidly at the point ( 1 , 1 ) ( 1 , 1 ) (1,1)(1, 1)(1,1) in the direction of the vector ( 5 , 1 ) ( 5 , 1 ) (5,-1)(5, -1)(5,1).
b) Calculate the work done by a force F = 3 x i ^ + 2 y j ^ F = 3 x i ^ + 2 y j ^ vec(F)=3x hat(i)+2y hat(j)\overrightarrow{\mathbf{F}}=3 x \hat{\mathbf{i}}+2 y \hat{\mathbf{j}}F=3xi^+2yj^ in moving a particle once counter-clockwise along the ellipse x 2 4 + y 2 9 = 1 x 2 4 + y 2 9 = 1 (x^(2))/(4)+(y^(2))/(9)=1\frac{x^2}{4}+\frac{y^2}{9}=1x24+y29=1.
Answer:
The work done by a force F F vec(F)\vec{F}F along a path C C CCC is given by the line integral of the force along the path:
W = C F d r W = C F d r W=int _(C) vec(F)*d vec(r)W = \int_C \vec{F} \cdot d\vec{r}W=CFdr
where d r d r d vec(r)d\vec{r}dr is a differential element of the path.
Given the force F = 3 x i ^ + 2 y j ^ F = 3 x i ^ + 2 y j ^ vec(F)=3x hat(i)+2y hat(j)\vec{F} = 3x \hat{i} + 2y \hat{j}F=3xi^+2yj^, we can express this in terms of the parameterization of the ellipse. The ellipse x 2 4 + y 2 9 = 1 x 2 4 + y 2 9 = 1 (x^(2))/(4)+(y^(2))/(9)=1\frac{x^2}{4} + \frac{y^2}{9} = 1x24+y29=1 can be parameterized as:
x ( t ) = 2 cos ( t ) x ( t ) = 2 cos ( t ) x(t)=2cos(t)x(t) = 2 \cos(t)x(t)=2cos(t)
y ( t ) = 3 sin ( t ) y ( t ) = 3 sin ( t ) y(t)=3sin(t)y(t) = 3 \sin(t)y(t)=3sin(t)
where t t ttt ranges from 0 0 000 to 2 π 2 π 2pi2\pi2π for one complete counter-clockwise traversal of the ellipse.
The differential element of the path in terms of t t ttt is:
d r = d x d t d t i ^ + d y d t d t j ^ = 2 sin ( t ) d t i ^ + 3 cos ( t ) d t j ^ d r = d x d t d t i ^ + d y d t d t j ^ = 2 sin ( t ) d t i ^ + 3 cos ( t ) d t j ^ d vec(r)=(dx)/(dt)dt hat(i)+(dy)/(dt)dt hat(j)=-2sin(t)dt hat(i)+3cos(t)dt hat(j)d\vec{r} = \frac{dx}{dt} dt \hat{i} + \frac{dy}{dt} dt \hat{j} = -2 \sin(t) dt \hat{i} + 3 \cos(t) dt \hat{j}dr=dxdtdti^+dydtdtj^=2sin(t)dti^+3cos(t)dtj^
Substituting the expressions for x ( t ) x ( t ) x(t)x(t)x(t), y ( t ) y ( t ) y(t)y(t)y(t), and d r d r d vec(r)d\vec{r}dr into the integral for work, we get:
W = 0 2 π ( 3 2 cos ( t ) i ^ + 2 3 sin ( t ) j ^ ) ( 2 sin ( t ) d t i ^ + 3 cos ( t ) d t j ^ ) W = 0 2 π ( 3 2 cos ( t ) i ^ + 2 3 sin ( t ) j ^ ) ( 2 sin ( t ) d t i ^ + 3 cos ( t ) d t j ^ ) W=int_(0)^(2pi)(3*2cos(t) hat(i)+2*3sin(t) hat(j))*(-2sin(t)dt hat(i)+3cos(t)dt hat(j))W = \int_0^{2\pi} (3 \cdot 2 \cos(t) \hat{i} + 2 \cdot 3 \sin(t) \hat{j}) \cdot (-2 \sin(t) dt \hat{i} + 3 \cos(t) dt \hat{j})W=02π(32cos(t)i^+23sin(t)j^)(2sin(t)dti^+3cos(t)dtj^)
W = 0 2 π ( 12 cos ( t ) sin ( t ) + 18 sin ( t ) cos ( t ) ) d t W = 0 2 π ( 12 cos ( t ) sin ( t ) + 18 sin ( t ) cos ( t ) ) d t W=int_(0)^(2pi)(-12 cos(t)sin(t)+18 sin(t)cos(t))dtW = \int_0^{2\pi} (-12 \cos(t) \sin(t) + 18 \sin(t) \cos(t)) dtW=02π(12cos(t)sin(t)+18sin(t)cos(t))dt
W = 0 2 π 6 sin ( t ) cos ( t ) d t W = 0 2 π 6 sin ( t ) cos ( t ) d t W=int_(0)^(2pi)6sin(t)cos(t)dtW = \int_0^{2\pi} 6 \sin(t) \cos(t) dtW=02π6sin(t)cos(t)dt
To integrate this, we can use the trigonometric identity sin ( 2 t ) = 2 sin ( t ) cos ( t ) sin ( 2 t ) = 2 sin ( t ) cos ( t ) sin(2t)=2sin(t)cos(t)\sin(2t) = 2 \sin(t) \cos(t)sin(2t)=2sin(t)cos(t), so sin ( t ) cos ( t ) = 1 2 sin ( 2 t ) sin ( t ) cos ( t ) = 1 2 sin ( 2 t ) sin(t)cos(t)=(1)/(2)sin(2t)\sin(t) \cos(t) = \frac{1}{2} \sin(2t)sin(t)cos(t)=12sin(2t):
W = 0 2 π 6 1 2 sin ( 2 t ) d t W = 0 2 π 6 1 2 sin ( 2 t ) d t W=int_(0)^(2pi)6*(1)/(2)sin(2t)dtW = \int_0^{2\pi} 6 \cdot \frac{1}{2} \sin(2t) dtW=02π612sin(2t)dt
W = 3 0 2 π sin ( 2 t ) d t W = 3 0 2 π sin ( 2 t ) d t W=3int_(0)^(2pi)sin(2t)dtW = 3 \int_0^{2\pi} \sin(2t) dtW=302πsin(2t)dt
The integral of sin ( 2 t ) sin ( 2 t ) sin(2t)\sin(2t)sin(2t) over a complete period (from 0 0 000 to 2 π 2 π 2pi2\pi2π) is zero, because the positive and negative areas cancel each other out:
W = 3 0 = 0 W = 3 0 = 0 W=3*0=0W = 3 \cdot 0 = 0W=30=0
Therefore, the work done by the force F = 3 x i ^ + 2 y j ^ F = 3 x i ^ + 2 y j ^ vec(F)=3x hat(i)+2y hat(j)\vec{F} = 3x \hat{i} + 2y \hat{j}F=3xi^+2yj^ in moving a particle once counter-clockwise along the ellipse x 2 4 + y 2 9 = 1 x 2 4 + y 2 9 = 1 (x^(2))/(4)+(y^(2))/(9)=1\frac{x^2}{4} + \frac{y^2}{9} = 1x24+y29=1 is 0 0 000 joules.
c) Use the divergence theorem to calculate the flux of a vector field A = 2 x i ^ y j ^ + 3 z k ^ A = 2 x i ^ y j ^ + 3 z k ^ vec(A)=2x hat(i)-y hat(j)+3z hat(k)\overrightarrow{\mathbf{A}}=2 x \hat{\mathbf{i}}-y \hat{\mathbf{j}}+3 z \hat{\mathbf{k}}A=2xi^yj^+3zk^ over a cube of side 2 a 2 a 2a2 a2a which has its vertices at ( ± a , ± a , ± a ) ( ± a , ± a , ± a ) (+-a,+-a,+-a)( \pm a, \pm a, \pm a)(±a,±a,±a).
Answer:
The divergence theorem states that the flux of a vector field A A vec(A)\vec{A}A through a closed surface S S SSS is equal to the volume integral of the divergence of A A vec(A)\vec{A}A over the volume V V VVV enclosed by S S SSS:
S A d S = V ( A ) d V S A d S = V ( A ) d V ∬_(S) vec(A)*d vec(S)=∭_(V)(grad* vec(A))dV\iint_S \vec{A} \cdot d\vec{S} = \iiint_V (\nabla \cdot \vec{A}) dVSAdS=V(A)dV
Given the vector field A = 2 x i ^ y j ^ + 3 z k ^ A = 2 x i ^ y j ^ + 3 z k ^ vec(A)=2x hat(i)-y hat(j)+3z hat(k)\vec{A} = 2x \hat{i} – y \hat{j} + 3z \hat{k}A=2xi^yj^+3zk^, we first need to calculate its divergence:
A = x ( 2 x ) + y ( y ) + z ( 3 z ) = 2 1 + 3 = 4 A = x ( 2 x ) + y ( y ) + z ( 3 z ) = 2 1 + 3 = 4 grad* vec(A)=(del)/(del x)(2x)+(del)/(del y)(-y)+(del)/(del z)(3z)=2-1+3=4\nabla \cdot \vec{A} = \frac{\partial}{\partial x}(2x) + \frac{\partial}{\partial y}(-y) + \frac{\partial}{\partial z}(3z) = 2 – 1 + 3 = 4A=x(2x)+y(y)+z(3z)=21+3=4
Since the divergence is a constant, the volume integral becomes:
V ( A ) d V = 4 V d V V ( A ) d V = 4 V d V ∭_(V)(grad* vec(A))dV=4∭_(V)dV\iiint_V (\nabla \cdot \vec{A}) dV = 4 \iiint_V dVV(A)dV=4VdV
The volume V V VVV is a cube with side length 2 a 2 a 2a2a2a, so its volume is ( 2 a ) 3 = 8 a 3 ( 2 a ) 3 = 8 a 3 (2a)^(3)=8a^(3)(2a)^3 = 8a^3(2a)3=8a3. Therefore, the flux of the vector field A A vec(A)\vec{A}A over the cube is:
S A d S = 4 × 8 a 3 = 32 a 3 S A d S = 4 × 8 a 3 = 32 a 3 ∬_(S) vec(A)*d vec(S)=4xx8a^(3)=32a^(3)\iint_S \vec{A} \cdot d\vec{S} = 4 \times 8a^3 = 32a^3SAdS=4×8a3=32a3
Hence, the flux of the vector field A A vec(A)\vec{A}A over the cube of side 2 a 2 a 2a2a2a with vertices at ( ± a , ± a , ± a ) ( ± a , ± a , ± a ) (+-a,+-a,+-a)(\pm a, \pm a, \pm a)(±a,±a,±a) is 32 a 3 32 a 3 32a^(3)32a^332a3.
Verified Answer
5/5
Scroll to Top
Scroll to Top