Sample Solution

BMTC-132 Solved Assignment 2025

DIFFERENTIAL EQUATIONS

  1. a) Solve the differential equations:
d y d x = 2 x + y + 1 4 x + 2 y 1 d y d x = 2 x + y + 1 4 x + 2 y 1 (dy)/(dx)=-(2x+y+1)/(4x+2y-1)\frac{d y}{d x}=-\frac{2 x+y+1}{4 x+2 y-1}dydx=2x+y+14x+2y1
b) Solve the simultaneous equations:
d x y z = d y z x = d z x y d x y z = d y z x = d z x y (dx)/(y-z)=(dy)/(z-x)=(dz)/(x-y)\frac{d x}{y-z}=\frac{d y}{z-x}=\frac{d z}{x-y}dxyz=dyzx=dzxy
  1. a) By using the method of variation of parameter, find the general solution of the differential equation:
y + y = sec 2 x y + y = sec 2 x y^(”)+y=sec^(2)xy^{\prime \prime}+y=\sec ^2 xy+y=sec2x
b) If :
Z = x 2 y + 2 x y 4 Z = x 2 y + 2 x y 4 Z=x^(2)y+2xy^(4)Z=x^2 y+2 x y^4Z=x2y+2xy4
where x = sin zt x = sin zt x=sin zt\mathrm{x}=\sin \mathrm{zt}x=sinzt
and y = cos t y = cos t quad y=cos t\quad y=\cos ty=cost
find dz dt dz dt (dz)/(dt)\frac{\mathrm{dz}}{\mathrm{dt}}dzdt when t = 0 t = 0 t=0\mathrm{t}=0t=0 by (i) chain rule and by (ii) the direct substitution.
  1. a) Verify that the differential equation:
z ( x 2 y 2 z 2 ) d x + ( x + z ) x z d y + x ( z 2 x 2 x y ) d z = 0 z x 2 y 2 z 2 d x + ( x + z ) x z d y + x z 2 x 2 x y d z = 0 {:[z(x^(2)-y^(2)-z^(2))dx+(x+z)xzdy],[+x(z^(2)-x^(2)-xy)dz=0]:}\begin{aligned} & z\left(x^2-y^2-z^2\right) d x+(x+z) x z d y \\ & +x\left(z^2-x^2-x y\right) d z=0 \end{aligned}z(x2y2z2)dx+(x+z)xzdy+x(z2x2xy)dz=0
is integrable and find its integral.
b) Solve:
y = z y 4 + x 4 x y 3 y = z y 4 + x 4 x y 3 y^(‘)=(zy^(4)+x^(4))/(xy^(3))y^{\prime}=\frac{z y^4+x^4}{x y^3}y=zy4+x4xy3
  1. a) Find the general solution of the equation:
x ( y 2 z 2 ) u x + y ( z 2 x 2 ) u y + z ( x 2 y 2 ) u z = 0 x y 2 z 2 u x + y z 2 x 2 u y + z x 2 y 2 u z = 0 x(y^(2)-z^(2))u_(x)+y(z^(2)-x^(2))u_(y)+z(x^(2)-y^(2))u_(z)=0x\left(y^2-z^2\right) u_x+y\left(z^2-x^2\right) u_y+z\left(x^2-y^2\right) u_z=0x(y2z2)ux+y(z2x2)uy+z(x2y2)uz=0
b) Show that for the function f f fff given by:
f ( x , y ) = x y x 2 + y 2 lim x 0 lim y 0 f ( x , y ) = lim y 0 lim x 0 f ( x , y ) = 0 f ( x , y ) = x y x 2 + y 2 lim x 0 lim y 0 f ( x , y ) = lim y 0 lim x 0 f ( x , y ) = 0 {:[f(x”,”y)=(xy)/(x^(2)+y^(2))],[lim_(x rarr0)lim_(y rarr0)f(x”,”y)=lim_(y rarr0)lim_(x rarr0)f(x”,”y)=0]:}\begin{gathered} f(x, y)=\frac{x y}{x^2+y^2} \\ \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=0 \end{gathered}f(x,y)=xyx2+y2limx0limy0f(x,y)=limy0limx0f(x,y)=0
But lim ( x , y ) f ( x , y ) lim ( x , y ) f ( x , y ) lim_((x,y))f(x,y)\lim _{(x, y)} f(x, y)lim(x,y)f(x,y) does not exist.
5. a) Show that the following function f f fff is differentiable at ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) :
f ( x , y ) = { x 2 y 2 x 2 + y 2 , if ( x , y ) ( 0 , 0 ) 0 , if ( x , y ) = ( 0 , 0 ) f ( x , y ) = x 2 y 2 x 2 + y 2 , if ( x , y ) ( 0 , 0 ) 0 , if ( x , y ) = ( 0 , 0 ) f(x,y)={[(x^(2)y^(2))/(x^(2)+y^(2))”,”,” if “(x”,”y)!=(0″,”0)],[0,”,”” if “(x”,”y)=(0″,”0)]:}f(x, y)=\left\{\begin{array}{cc} \frac{x^2 y^2}{x^2+y^2}, & \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0) \end{array}\right.f(x,y)={x2y2x2+y2, if (x,y)(0,0)0, if (x,y)=(0,0)
b) Find the complete solution of the equation p x + q y = p q p x + q y = p q px+qy=pqp x+q y=p qpx+qy=pq.
6. a) Using Charpit’s method, find the complete integral of the differential equation:
p 2 x + q 2 y = z p 2 x + q 2 y = z p^(2)x+q^(2)y=zp^2 x+q^2 y=zp2x+q2y=z
b) Find partial derivatives f x f x f_(x)f_xfx and f y f y f_(y)f_yfy for the function:
f ( x , y ) = 5 x 4 y 2 + 6 x 2 y 3 f ( x , y ) = 5 x 4 y 2 + 6 x 2 y 3 f(x,y)=5x^(4)y^(2)+6x^(2)y^(3)f(x, y)=5 x^4 y^2+6 x^2 y^3f(x,y)=5x4y2+6x2y3
at the point ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1,-1)(1,1).
c) State Euler’s theorem for homogeneous functions and verify it for the function:
u = x 3 + y 3 x + y u = x 3 + y 3 x + y u=(x^(3)+y^(3))/(x+y)u=\frac{x^3+y^3}{x+y}u=x3+y3x+y
  1. a) The population of a town grows at a rate proportional to the population at any time. Its initial population of 500 increases by 15 % 15 % 15%15 \%15% in 10 years. What will be the population in 30 years?
    b) Show that the following function is not continuous at ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) :
f ( x , y ) = { y sin 1 x + x sin 1 y , x 0 , y 0 1 , otherwise f ( x , y ) = y sin 1 x + x sin 1 y , x 0 , y 0 1 , otherwise f(x,y)={[y sin((1)/(x))+x sin((1)/(y))”,”,x!=0″,”y!=0],[1″,”,” otherwise “]:}f(x, y)=\left\{\begin{array}{cc} y \sin \frac{1}{x}+x \sin \frac{1}{y}, & x \neq 0, y \neq 0 \\ 1, & \text { otherwise } \end{array}\right.f(x,y)={ysin1x+xsin1y,x0,y01, otherwise

Answer:

Question:-1(a)

Solve the differential equation:

d y d x = 2 x + y + 1 4 x + 2 y 1 d y d x = 2 x + y + 1 4 x + 2 y 1 (dy)/(dx)=-(2x+y+1)/(4x+2y-1)\frac{d y}{d x} = -\frac{2 x + y + 1}{4 x + 2 y – 1}dydx=2x+y+14x+2y1

Answer:

To solve the differential equation d y d x = 2 x + y + 1 4 x + 2 y 1 d y d x = 2 x + y + 1 4 x + 2 y 1 (dy)/(dx)=-(2x+y+1)/(4x+2y-1)\frac{dy}{dx} = -\frac{2x + y + 1}{4x + 2y – 1}dydx=2x+y+14x+2y1, we observe that it is of the form d y d x = f ( x , y ) d y d x = f ( x , y ) (dy)/(dx)=f(x,y)\frac{dy}{dx} = f(x, y)dydx=f(x,y). The right-hand side suggests a possible homogeneous structure, so let’s explore that.
First, rewrite the equation. The numerator is 2 x + y + 1 2 x + y + 1 2x+y+12x + y + 12x+y+1, and the denominator is 4 x + 2 y 1 4 x + 2 y 1 4x+2y-14x + 2y – 14x+2y1. Notice that the coefficients suggest a linear form. Let’s test if the equation is homogeneous by examining the function:
f ( x , y ) = 2 x + y + 1 4 x + 2 y 1 f ( x , y ) = 2 x + y + 1 4 x + 2 y 1 f(x,y)=-(2x+y+1)/(4x+2y-1)f(x, y) = -\frac{2x + y + 1}{4x + 2y – 1}f(x,y)=2x+y+14x+2y1
To check for homogeneity, substitute x t x x t x x rarr txx \to txxtx, y t y y t y y rarr tyy \to tyyty:
Numerator: 2 ( t x ) + ( t y ) + 1 = 2 t x + t y + 1 2 ( t x ) + ( t y ) + 1 = 2 t x + t y + 1 2(tx)+(ty)+1=2tx+ty+12(tx) + (ty) + 1 = 2tx + ty + 12(tx)+(ty)+1=2tx+ty+1
Denominator: 4 ( t x ) + 2 ( t y ) 1 = 4 t x + 2 t y 1 4 ( t x ) + 2 ( t y ) 1 = 4 t x + 2 t y 1 4(tx)+2(ty)-1=4tx+2ty-14(tx) + 2(ty) – 1 = 4tx + 2ty – 14(tx)+2(ty)1=4tx+2ty1
So,
f ( t x , t y ) = 2 t x + t y + 1 4 t x + 2 t y 1 f ( t x , t y ) = 2 t x + t y + 1 4 t x + 2 t y 1 f(tx,ty)=-(2tx+ty+1)/(4tx+2ty-1)f(tx, ty) = -\frac{2tx + ty + 1}{4tx + 2ty – 1}f(tx,ty)=2tx+ty+14tx+2ty1
This is not equal to f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) due to the constant terms + 1 + 1 +1+1+1 and 1 1 -1-11, indicating the equation is not homogeneous in the standard sense. However, the structure resembles a linear or exact form, so let’s try a substitution to simplify it.
Notice the numerator and denominator are linear in x x xxx and y y yyy. Let’s try a substitution that aligns the variables. Define:
u = 2 x + y u = 2 x + y u=2x+yu = 2x + yu=2x+y
Then, y = u 2 x y = u 2 x y=u-2xy = u – 2xy=u2x, and differentiate with respect to x x xxx:
d y d x = d u d x 2 d y d x = d u d x 2 (dy)/(dx)=(du)/(dx)-2\frac{dy}{dx} = \frac{du}{dx} – 2dydx=dudx2
Now, compute the numerator and denominator in terms of u u uuu:
Numerator: 2 x + y + 1 = 2 x + ( u 2 x ) + 1 = u + 1 2 x + y + 1 = 2 x + ( u 2 x ) + 1 = u + 1 2x+y+1=2x+(u-2x)+1=u+12x + y + 1 = 2x + (u – 2x) + 1 = u + 12x+y+1=2x+(u2x)+1=u+1
Denominator: 4 x + 2 y 1 = 4 x + 2 ( u 2 x ) 1 = 4 x + 2 u 4 x 1 = 2 u 1 4 x + 2 y 1 = 4 x + 2 ( u 2 x ) 1 = 4 x + 2 u 4 x 1 = 2 u 1 4x+2y-1=4x+2(u-2x)-1=4x+2u-4x-1=2u-14x + 2y – 1 = 4x + 2(u – 2x) – 1 = 4x + 2u – 4x – 1 = 2u – 14x+2y1=4x+2(u2x)1=4x+2u4x1=2u1
The differential equation becomes:
d u d x 2 = u + 1 2 u 1 d u d x 2 = u + 1 2 u 1 (du)/(dx)-2=-(u+1)/(2u-1)\frac{du}{dx} – 2 = -\frac{u + 1}{2u – 1}dudx2=u+12u1
Rearrange:
d u d x = 2 u + 1 2 u 1 d u d x = 2 u + 1 2 u 1 (du)/(dx)=2-(u+1)/(2u-1)\frac{du}{dx} = 2 – \frac{u + 1}{2u – 1}dudx=2u+12u1
Combine terms over a common denominator:
2 = 2 ( 2 u 1 ) 2 u 1 2 = 2 ( 2 u 1 ) 2 u 1 2=(2(2u-1))/(2u-1)2 = \frac{2(2u – 1)}{2u – 1}2=2(2u1)2u1
So,
2 u + 1 2 u 1 = 2 ( 2 u 1 ) ( u + 1 ) 2 u 1 = 4 u 2 u 1 2 u 1 = 3 u 3 2 u 1 = 3 ( u 1 ) 2 u 1 2 u + 1 2 u 1 = 2 ( 2 u 1 ) ( u + 1 ) 2 u 1 = 4 u 2 u 1 2 u 1 = 3 u 3 2 u 1 = 3 ( u 1 ) 2 u 1 2-(u+1)/(2u-1)=(2(2u-1)-(u+1))/(2u-1)=(4u-2-u-1)/(2u-1)=(3u-3)/(2u-1)=(3(u-1))/(2u-1)2 – \frac{u + 1}{2u – 1} = \frac{2(2u – 1) – (u + 1)}{2u – 1} = \frac{4u – 2 – u – 1}{2u – 1} = \frac{3u – 3}{2u – 1} = \frac{3(u – 1)}{2u – 1}2u+12u1=2(2u1)(u+1)2u1=4u2u12u1=3u32u1=3(u1)2u1
Thus, the equation is:
d u d x = 3 ( u 1 ) 2 u 1 d u d x = 3 ( u 1 ) 2 u 1 (du)/(dx)=(3(u-1))/(2u-1)\frac{du}{dx} = \frac{3(u – 1)}{2u – 1}dudx=3(u1)2u1
This is a separable equation. Rewrite it:
d u u 1 = 3 2 u 1 d x d u u 1 = 3 2 u 1 d x (du)/(u-1)=(3)/(2u-1)dx\frac{du}{u – 1} = \frac{3}{2u – 1} \, dxduu1=32u1dx
Integrate both sides:
Left-hand side: d u u 1 = ln | u 1 | d u u 1 = ln | u 1 | int(du)/(u-1)=ln |u-1|\int \frac{du}{u – 1} = \ln|u – 1|duu1=ln|u1|
Right-hand side: 3 2 u 1 d x 3 2 u 1 d x int(3)/(2u-1)dx\int \frac{3}{2u – 1} \, dx32u1dx. Let v = 2 u 1 v = 2 u 1 v=2u-1v = 2u – 1v=2u1, so d v = 2 d u d v = 2 d u dv=2dudv = 2 \, dudv=2du, d u = d v 2 d u = d v 2 du=(dv)/(2)du = \frac{dv}{2}du=dv2. Then:
3 2 u 1 d x = 3 v 1 2 d v = 3 2 1 v d v = 3 2 ln | v | = 3 2 ln | 2 u 1 | 3 2 u 1 d x = 3 v 1 2 d v = 3 2 1 v d v = 3 2 ln | v | = 3 2 ln | 2 u 1 | int(3)/(2u-1)dx=int(3)/(v)*(1)/(2)dv=(3)/(2)int(1)/(v)dv=(3)/(2)ln |v|=(3)/(2)ln |2u-1|\int \frac{3}{2u – 1} \, dx = \int \frac{3}{v} \cdot \frac{1}{2} \, dv = \frac{3}{2} \int \frac{1}{v} \, dv = \frac{3}{2} \ln|v| = \frac{3}{2} \ln|2u – 1|32u1dx=3v12dv=321vdv=32ln|v|=32ln|2u1|
Since u u uuu is a function of x x xxx, the right-hand side is 3 2 ln | 2 u 1 | = 3 2 u 1 d u 3 2 ln | 2 u 1 | = 3 2 u 1 d u (3)/(2)ln |2u-1|=int(3)/(2u-1)du\frac{3}{2} \ln|2u – 1| = \int \frac{3}{2u – 1} \, du32ln|2u1|=32u1du, and we treat x x xxx implicitly. The equation becomes:
ln | u 1 | = 3 2 ln | 2 u 1 | + C ln | u 1 | = 3 2 ln | 2 u 1 | + C ln |u-1|=(3)/(2)ln |2u-1|+C\ln|u – 1| = \frac{3}{2} \ln|2u – 1| + Cln|u1|=32ln|2u1|+C
Exponentiate both sides:
| u 1 | = e C | 2 u 1 | 3 / 2 | u 1 | = e C | 2 u 1 | 3 / 2 |u-1|=e^(C)|2u-1|^(3//2)|u – 1| = e^C |2u – 1|^{3/2}|u1|=eC|2u1|3/2
Let k = e C k = e C k=e^(C)k = e^Ck=eC, a positive constant, and handle absolute values by considering signs later:
u 1 = ± k ( 2 u 1 ) 3 / 2 u 1 = ± k ( 2 u 1 ) 3 / 2 u-1=+-k(2u-1)^(3//2)u – 1 = \pm k (2u – 1)^{3/2}u1=±k(2u1)3/2
Substitute back u = 2 x + y u = 2 x + y u=2x+yu = 2x + yu=2x+y:
2 x + y 1 = ± k ( 4 x + 2 y 1 ) 3 / 2 2 x + y 1 = ± k ( 4 x + 2 y 1 ) 3 / 2 2x+y-1=+-k(4x+2y-1)^(3//2)2x + y – 1 = \pm k (4x + 2y – 1)^{3/2}2x+y1=±k(4x+2y1)3/2
The solution is:
2 x + y 1 ( 4 x + 2 y 1 ) 3 / 2 = C 2 x + y 1 ( 4 x + 2 y 1 ) 3 / 2 = C (2x+y-1)/((4x+2y-1)^(3//2))=C\boxed{\frac{2x + y – 1}{(4x + 2y – 1)^{3/2}} = C}2x+y1(4x+2y1)3/2=C
where C C CCC is an arbitrary constant.

Question:-1(b)

Solve the simultaneous equations:

d x y z = d y z x = d z x y d x y z = d y z x = d z x y (dx)/(y-z)=(dy)/(z-x)=(dz)/(x-y)\frac{d x}{y – z} = \frac{d y}{z – x} = \frac{d z}{x – y}dxyz=dyzx=dzxy

Answer:

To solve the simultaneous differential equations:
d x y z = d y z x = d z x y , d x y z = d y z x = d z x y , (dx)/(y-z)=(dy)/(z-x)=(dz)/(x-y),\frac{dx}{y – z} = \frac{dy}{z – x} = \frac{dz}{x – y},dxyz=dyzx=dzxy,
we aim to find relationships between x x xxx, y y yyy, and z z zzz that satisfy all equations.
Solution:
  1. First Integral:
    Consider the multipliers 1 , 1 , 1 1 , 1 , 1 1,1,11, 1, 11,1,1 for the numerators d x , d y , d z d x , d y , d z dx,dy,dzdx, dy, dzdx,dy,dz. Multiply each term of the given equations accordingly:
    d x y z = d y z x = d z x y = k . d x y z = d y z x = d z x y = k . (dx)/(y-z)=(dy)/(z-x)=(dz)/(x-y)=k.\frac{dx}{y – z} = \frac{dy}{z – x} = \frac{dz}{x – y} = k.dxyz=dyzx=dzxy=k.
    This gives:
    d x = k ( y z ) , d y = k ( z x ) , d z = k ( x y ) . d x = k ( y z ) , d y = k ( z x ) , d z = k ( x y ) . dx=k(y-z),quad dy=k(z-x),quad dz=k(x-y).dx = k(y – z), \quad dy = k(z – x), \quad dz = k(x – y).dx=k(yz),dy=k(zx),dz=k(xy).
    Sum the numerators:
    d x + d y + d z = k ( y z + z x + x y ) = k ( 0 ) = 0. d x + d y + d z = k ( y z + z x + x y ) = k ( 0 ) = 0. dx+dy+dz=k(y-z+z-x+x-y)=k(0)=0.dx + dy + dz = k(y – z + z – x + x – y) = k(0) = 0.dx+dy+dz=k(yz+zx+xy)=k(0)=0.
    Thus:
    d x + d y + d z = 0. d x + d y + d z = 0. dx+dy+dz=0.dx + dy + dz = 0.dx+dy+dz=0.
    Integrate this differential:
    x + y + z = c 1 , x + y + z = c 1 , x+y+z=c_(1),x + y + z = c_1,x+y+z=c1,
    where c 1 c 1 c_(1)c_1c1 is an arbitrary constant. This is the first integral, indicating that the sum of x , y , z x , y , z x,y,zx, y, zx,y,z is constant.
  2. Second Integral:
    Now, choose multipliers x , y , z x , y , z x,y,zx, y, zx,y,z for d x , d y , d z d x , d y , d z dx,dy,dzdx, dy, dzdx,dy,dz. Multiply each term:
    x d x y z = y d y z x = z d z x y = m . x d x y z = y d y z x = z d z x y = m . x*(dx)/(y-z)=y*(dy)/(z-x)=z*(dz)/(x-y)=m.x \cdot \frac{dx}{y – z} = y \cdot \frac{dy}{z – x} = z \cdot \frac{dz}{x – y} = m.xdxyz=ydyzx=zdzxy=m.
    This yields:
    x d x = m ( y z ) , y d y = m ( z x ) , z d z = m ( x y ) . x d x = m ( y z ) , y d y = m ( z x ) , z d z = m ( x y ) . xdx=m(y-z),quad ydy=m(z-x),quad zdz=m(x-y).x dx = m(y – z), \quad y dy = m(z – x), \quad z dz = m(x – y).xdx=m(yz),ydy=m(zx),zdz=m(xy).
    Sum the numerators:
    x d x + y d y + z d z . x d x + y d y + z d z . xdx+ydy+zdz.x dx + y dy + z dz.xdx+ydy+zdz.
    Compute the denominator after scaling:
    x ( y z ) + y ( z x ) + z ( x y ) = x y x z + y z y x + z x z y = 0. x ( y z ) + y ( z x ) + z ( x y ) = x y x z + y z y x + z x z y = 0. x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-yx+zx-zy=0.x(y – z) + y(z – x) + z(x – y) = xy – xz + yz – yx + zx – zy = 0.x(yz)+y(zx)+z(xy)=xyxz+yzyx+zxzy=0.
    Thus:
    x d x + y d y + z d z = m 0 = 0. x d x + y d y + z d z = m 0 = 0. xdx+ydy+zdz=m*0=0.x dx + y dy + z dz = m \cdot 0 = 0.xdx+ydy+zdz=m0=0.
    So:
    x d x + y d y + z d z = 0. x d x + y d y + z d z = 0. xdx+ydy+zdz=0.x dx + y dy + z dz = 0.xdx+ydy+zdz=0.
    Rewrite as:
    1 2 ( 2 x d x + 2 y d y + 2 z d z ) = 0. 1 2 ( 2 x d x + 2 y d y + 2 z d z ) = 0. (1)/(2)(2xdx+2ydy+2zdz)=0.\frac{1}{2} (2x dx + 2y dy + 2z dz) = 0.12(2xdx+2ydy+2zdz)=0.
    Integrate:
    ( 2 x d x + 2 y d y + 2 z d z ) = 2 x d x + 2 y d y + 2 z d z = 2 x 2 2 + 2 y 2 2 + 2 z 2 2 = x 2 + y 2 + z 2 . ( 2 x d x + 2 y d y + 2 z d z ) = 2 x d x + 2 y d y + 2 z d z = 2 x 2 2 + 2 y 2 2 + 2 z 2 2 = x 2 + y 2 + z 2 . int(2xdx+2ydy+2zdz)=2int xdx+2int ydy+2int zdz=2*(x^(2))/(2)+2*(y^(2))/(2)+2*(z^(2))/(2)=x^(2)+y^(2)+z^(2).\int (2x dx + 2y dy + 2z dz) = 2 \int x dx + 2 \int y dy + 2 \int z dz = 2 \cdot \frac{x^2}{2} + 2 \cdot \frac{y^2}{2} + 2 \cdot \frac{z^2}{2} = x^2 + y^2 + z^2.(2xdx+2ydy+2zdz)=2xdx+2ydy+2zdz=2x22+2y22+2z22=x2+y2+z2.
    Thus:
    x 2 + y 2 + z 2 = c 2 , x 2 + y 2 + z 2 = c 2 , x^(2)+y^(2)+z^(2)=c_(2),x^2 + y^2 + z^2 = c_2,x2+y2+z2=c2,
    where c 2 c 2 c_(2)c_2c2 is another arbitrary constant. This is the second integral, indicating that the sum of the squares of x , y , z x , y , z x,y,zx, y, zx,y,z is constant.
Final Solution:
The general solution to the given system of differential equations is given by the two independent integrals:
x + y + z = c 1 , x 2 + y 2 + z 2 = c 2 , x + y + z = c 1 , x 2 + y 2 + z 2 = c 2 , x+y+z=c_(1),quadx^(2)+y^(2)+z^(2)=c_(2),x + y + z = c_1, \quad x^2 + y^2 + z^2 = c_2,x+y+z=c1,x2+y2+z2=c2,
where c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2 are arbitrary constants determined by initial conditions. These equations describe the relationships between x , y , z x , y , z x,y,zx, y, zx,y,z that satisfy the original system.

Scroll to Top
Scroll to Top