Sample Solution

BPHCT-131 Solved Assignment

PART A
  1. a) Determine the torque about the point ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0,1,1)(0,1,1) due to a force F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}F=2i^j^+k^ being exerted at the point ( 4 , 2 , 3 ) ( 4 , 2 , 3 ) (4,2,3)(4,2,3)(4,2,3).
    b) Given two vector functions a ( t ) = ( t 3 t ) i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ a ( t ) = t 3 t i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ vec(a)(t)=(t^(3)-t) hat(i)+(3t+4) hat(j)+2t^(2) hat(k)\overrightarrow{\mathbf{a}}(t)=\left(t^3-t\right) \hat{\mathbf{i}}+(3 t+4) \hat{\mathbf{j}}+2 t^2 \hat{\mathbf{k}}a(t)=(t3t)i^+(3t+4)j^+2t2k^ and b ( t ) = ( 7 t 2 ) i ^ + ( 4 + 6 t ) j ^ ( 6 t 3 ) k ^ b ( t ) = 7 t 2 i ^ + ( 4 + 6 t ) j ^ 6 t 3 k ^ vec(b)(t)=(7-t^(2)) hat(i)+(4+6t) hat(j)-(6t^(3)) hat(k)\overrightarrow{\mathbf{b}}(t)=\left(7-t^2\right) \hat{\mathbf{i}}+(4+6 t) \hat{\mathbf{j}}-\left(6 t^3\right) \hat{\mathbf{k}}b(t)=(7t2)i^+(4+6t)j^(6t3)k^, determine the derivative of a ( t ) . b ( t ) a ( t ) . b ( t ) vec(a)(t). vec(b)(t)\overrightarrow{\mathbf{a}}(t) . \overrightarrow{\mathbf{b}}(t)a(t).b(t) at t = 1 t = 1 t=1t=1t=1.
  2. Solve the following ordinary differential equations:
    a) ( 2 y x 2 + 4 ) d y d x + ( 2 y 2 x 3 ) = 0 2 y x 2 + 4 d y d x + 2 y 2 x 3 = 0 (2yx^(2)+4)(dy)/(dx)+(2y^(2)x-3)=0\left(2 y x^2+4\right) \frac{d y}{d x}+\left(2 y^2 x-3\right)=0(2yx2+4)dydx+(2y2x3)=0
    b) d 2 y d x 2 6 d y d x + 13 y = 0 d 2 y d x 2 6 d y d x + 13 y = 0 (d^(2)y)/(dx^(2))-6(dy)/(dx)+13 y=0\frac{d^2 y}{d x^2}-6 \frac{d y}{d x}+13 y=0d2ydx26dydx+13y=0 for y ( 0 ) = 2 , y ( π 4 ) = 3 y ( 0 ) = 2 , y π 4 = 3 y(0)=2,quad y((pi)/(4))=3y(0)=2, \quad y\left(\frac{\pi}{4}\right)=3y(0)=2,y(π4)=3.
  3. a) A box of mass 10 kg is being pulled on the floor by a mass-less rope with a force of 100 N at an angle of 60 60 60^(@)60^{\circ}60 to the horizontal. What is the acceleration of the box if the coefficient of kinetic friction between the floor and the box is μ k = 0.25 μ k = 0.25 mu _(k)=0.25\mu_k=0.25μk=0.25 ? Take g = 10 ms 2 g = 10 ms 2 g=10ms^(-2)g=10 \mathrm{~ms}^{-2}g=10 ms2.
    b) A ball having a mass of 0.5 kg is moving towards the east with a speed of velocity 6.0 ms 1 6.0 ms 1 6.0ms^(-1)6.0 \mathrm{~ms}^{-1}6.0 ms1. After being hit by a bat it changes its direction and starts moving towards the north with a speed of 5.0 ms 1 5.0 ms 1 5.0ms^(-1)5.0 \mathrm{~ms}^{-1}5.0 ms1. If the time of impact is 0.1 s , calculate the impulse and average force acting on the ball.
    c) A block of mass 5.0 kg starts from rest and slides down a surface which corresponds to a quarter of a circle of 3.0 m radius. (i) If the curved surface is smooth, find the speed at the bottom. (ii) If the speed at the bottom is 2.0 ms 1 2.0 ms 1 2.0ms^(-1)2.0 \mathrm{~ms}^{-1}2.0 ms1, calculate the energy dissipated due to friction in the descent. (iii) After the block reaches the horizontal with a speed of 2.0 ms 1 2.0 ms 1 2.0ms^(-1)2.0 \mathrm{~ms}^{-1}2.0 ms1 it slides to a stop in a distance of 1.5 m . calculate the frictional force acting on the horizontal surface. Take g = 10 ms 2 g = 10 ms 2 g=10ms^(-2)g=10 \mathrm{~ms}^{-2}g=10 ms2.
    d) A small satellite is in a circular orbit around a planet at a distance of 4.0 × 10 8 m 4.0 × 10 8 m 4.0 xx10^(8)m4.0 \times 10^8 \mathrm{~m}4.0×108 m from the centre of the planet. The orbital speed of the satellite is 200 ms 1 200 ms 1 200ms^(-1)200 \mathrm{~ms}^{-1}200 ms1. What is the mass of the planet?
PART B
4. a) A solid cylinder of mass 3.0 kg and radius 1.0 m is rotating about its axis with a speed of 40 rad s 1 40 rad s 1 40rads^(-1)40 \mathrm{rad} \mathrm{s}^{-1}40rads1. Calculate the torque which must be applied to bring it to rest in 10s. What would be the power required?
b) A proton undergoes a head on elastic collision with a particle of unknown mass Initially at rest and rebounds with 16 / 25 16 / 25 16//2516 / 2516/25 of its initial kinetic energy. Calculate the ratio of the mass of the unknown particle with respect to the mass of the proton.
c) The planet Jupiter has an elliptical orbit e = .05 e = .05 e=.05e=.05e=.05 and a semi major axis of 7.8 × 10 11 m 7.8 × 10 11 m 7.8 xx10^(11)m7.8 \times 10^{11} \mathrm{~m}7.8×1011 m. Find the energy of the planet and the perihelion and aphelion distances.
(5)
5. a) A simple harmonic oscillator has amplitude 15 cm and it completes 100 oscillations in 50 s . (i) Calculate its time period and angular frequency. (ii) If the initial phase is π / 2 π / 2 pi//2\pi / 2π/2, write expressions for its displacement and velocity. (iii) Calculate the values of maximum velocity and acceleration.
( 2 + 4 + 4 ) ( 2 + 4 + 4 ) (2+4+4)(2+4+4)(2+4+4)
b) For a damped harmonic oscillation, the equation of motion is
m d 2 x d t 2 + γ d x d t + k x = 0 m d 2 x d t 2 + γ d x d t + k x = 0 m(d^(2)x)/(dt^(2))+gamma(dx)/(dt)+kx=0m \frac{d^2 x}{d t^2}+\gamma \frac{d x}{d t}+k x=0md2xdt2+γdxdt+kx=0
with m = 0.25 kg , γ = 0.05 kgs 1 m = 0.25 kg , γ = 0.05 kgs 1 m=0.25kg,gamma=0.05kgs^(-1)m=0.25 \mathrm{~kg}, \gamma=0.05 \mathrm{kgs}^{-1}m=0.25 kg,γ=0.05kgs1 and k = 70 Nm 1 k = 70 Nm 1 k=70Nm^(-1)k=70 \mathrm{Nm}^{-1}k=70Nm1. Calculate (i) the period of motion,
(ii) number of oscillations in which its amplitude will become half of its initial value, and (iii) the number of oscillations in which its mechanical energy will drop to half of its initial value.
c) The equation of transverse wave on a rope is
y ( x , t ) = 10 sin ( 6.0 t 0.05 x ) y ( x , t ) = 10 sin ( 6.0 t 0.05 x ) y(x,t)=10 sin(6.0 t-0.05 x)y(x, t)=10 \sin (6.0 t-0.05 x)y(x,t)=10sin(6.0t0.05x)
where y y yyy and x x xxx are measured in cm and t t ttt is expressed in second. Calculate the maximum speed of a particle on the rope.
(5)

Answer:

Question:-1

a) Determine the torque about the point ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0,1,1)(0,1,1) due to a force F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}F=2i^j^+k^ being exerted at the point ( 4 , 2 , 3 ) ( 4 , 2 , 3 ) (4,2,3)(4,2,3)(4,2,3).

Answer:

To determine the torque τ τ vec(tau)\overrightarrow{\mathbf{\tau}}τ about the point ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0, 1, 1)(0,1,1) due to a force F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}} = 2 \hat{\mathbf{i}} – \hat{\mathbf{j}} + \hat{\mathbf{k}}F=2i^j^+k^ exerted at the point ( 4 , 2 , 3 ) ( 4 , 2 , 3 ) (4,2,3)(4, 2, 3)(4,2,3), we use the formula for torque:
τ = r × F τ = r × F vec(tau)= vec(r)xx vec(F)\overrightarrow{\mathbf{\tau}} = \overrightarrow{r} \times \overrightarrow{\mathbf{F}}τ=r×F
where:
  • r r vec(r)\overrightarrow{r}r is the position vector from the point about which we’re calculating the torque to the point where the force is applied.
  • F F vec(F)\overrightarrow{\mathbf{F}}F is the force vector.

Step 1: Calculate the position vector r r vec(r)\overrightarrow{r}r

The position vector r r vec(r)\overrightarrow{r}r is the vector from the point ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0, 1, 1)(0,1,1) to the point ( 4 , 2 , 3 ) ( 4 , 2 , 3 ) (4,2,3)(4, 2, 3)(4,2,3). This is computed as:
r = ( 4 0 ) i ^ + ( 2 1 ) j ^ + ( 3 1 ) k ^ = 4 i ^ + 1 j ^ + 2 k ^ r = ( 4 0 ) i ^ + ( 2 1 ) j ^ + ( 3 1 ) k ^ = 4 i ^ + 1 j ^ + 2 k ^ vec(r)=(4-0) hat(i)+(2-1) hat(j)+(3-1) hat(k)=4 hat(i)+1 hat(j)+2 hat(k)\overrightarrow{r} = (4 – 0) \hat{\mathbf{i}} + (2 – 1) \hat{\mathbf{j}} + (3 – 1) \hat{\mathbf{k}} = 4 \hat{\mathbf{i}} + 1 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}}r=(40)i^+(21)j^+(31)k^=4i^+1j^+2k^

Step 2: Write the force vector F F vec(F)\overrightarrow{\mathbf{F}}F

The force vector is given as:
F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}} = 2 \hat{\mathbf{i}} – \hat{\mathbf{j}} + \hat{\mathbf{k}}F=2i^j^+k^

Step 3: Compute the cross product r × F r × F vec(r)xx vec(F)\overrightarrow{r} \times \overrightarrow{\mathbf{F}}r×F

Now we calculate the cross product of r = 4 i ^ + 1 j ^ + 2 k ^ r = 4 i ^ + 1 j ^ + 2 k ^ vec(r)=4 hat(i)+1 hat(j)+2 hat(k)\overrightarrow{r} = 4 \hat{\mathbf{i}} + 1 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}}r=4i^+1j^+2k^ and F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}} = 2 \hat{\mathbf{i}} – \hat{\mathbf{j}} + \hat{\mathbf{k}}F=2i^j^+k^. We use the determinant formula for the cross product:
r × F = | i ^ j ^ k ^ 4 1 2 2 1 1 | r × F = i ^ j ^ k ^ 4 1 2 2 1 1 vec(r)xx vec(F)=|[ hat(i), hat(j), hat(k)],[4,1,2],[2,-1,1]|\overrightarrow{r} \times \overrightarrow{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 4 & 1 & 2 \\ 2 & -1 & 1 \end{vmatrix}r×F=|i^j^k^412211|
Expanding this determinant:
r × F = i ^ | 1 2 1 1 | j ^ | 4 2 2 1 | + k ^ | 4 1 2 1 | r × F = i ^ 1 2 1 1 j ^ 4 2 2 1 + k ^ 4 1 2 1 vec(r)xx vec(F)= hat(i)|[1,2],[-1,1]|- hat(j)|[4,2],[2,1]|+ hat(k)|[4,1],[2,-1]|\overrightarrow{r} \times \overrightarrow{\mathbf{F}} = \hat{\mathbf{i}} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} – \hat{\mathbf{j}} \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} + \hat{\mathbf{k}} \begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix}r×F=i^|1211|j^|4221|+k^|4121|
Now calculate each of the 2×2 determinants:
  • For i ^ i ^ hat(i)\hat{\mathbf{i}}i^:
    | 1 2 1 1 | = ( 1 ) ( 1 ) ( 1 ) ( 2 ) = 1 + 2 = 3 1 2 1 1 = ( 1 ) ( 1 ) ( 1 ) ( 2 ) = 1 + 2 = 3 |[1,2],[-1,1]|=(1)(1)-(-1)(2)=1+2=3\begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) – (-1)(2) = 1 + 2 = 3|1211|=(1)(1)(1)(2)=1+2=3
  • For j ^ j ^ hat(j)\hat{\mathbf{j}}j^:
    | 4 2 2 1 | = ( 4 ) ( 1 ) ( 2 ) ( 2 ) = 4 4 = 0 4 2 2 1 = ( 4 ) ( 1 ) ( 2 ) ( 2 ) = 4 4 = 0 |[4,2],[2,1]|=(4)(1)-(2)(2)=4-4=0\begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = (4)(1) – (2)(2) = 4 – 4 = 0|4221|=(4)(1)(2)(2)=44=0
  • For k ^ k ^ hat(k)\hat{\mathbf{k}}k^:
    | 4 1 2 1 | = ( 4 ) ( 1 ) ( 1 ) ( 2 ) = 4 2 = 6 4 1 2 1 = ( 4 ) ( 1 ) ( 1 ) ( 2 ) = 4 2 = 6 |[4,1],[2,-1]|=(4)(-1)-(1)(2)=-4-2=-6\begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix} = (4)(-1) – (1)(2) = -4 – 2 = -6|4121|=(4)(1)(1)(2)=42=6
Putting everything together:
r × F = 3 i ^ 0 j ^ 6 k ^ r × F = 3 i ^ 0 j ^ 6 k ^ vec(r)xx vec(F)=3 hat(i)-0 hat(j)-6 hat(k)\overrightarrow{r} \times \overrightarrow{\mathbf{F}} = 3 \hat{\mathbf{i}} – 0 \hat{\mathbf{j}} – 6 \hat{\mathbf{k}}r×F=3i^0j^6k^
Thus, the torque vector is:
τ = 3 i ^ 6 k ^ τ = 3 i ^ 6 k ^ vec(tau)=3 hat(i)-6 hat(k)\overrightarrow{\mathbf{\tau}} = 3 \hat{\mathbf{i}} – 6 \hat{\mathbf{k}}τ=3i^6k^

Final Answer:

The torque about the point ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0, 1, 1)(0,1,1) due to the force F = 2 i ^ j ^ + k ^ F = 2 i ^ j ^ + k ^ vec(F)=2 hat(i)- hat(j)+ hat(k)\overrightarrow{\mathbf{F}} = 2 \hat{\mathbf{i}} – \hat{\mathbf{j}} + \hat{\mathbf{k}}F=2i^j^+k^ being exerted at the point ( 4 , 2 , 3 ) ( 4 , 2 , 3 ) (4,2,3)(4, 2, 3)(4,2,3) is:
τ = 3 i ^ 6 k ^ τ = 3 i ^ 6 k ^ vec(tau)=3 hat(i)-6 hat(k)\overrightarrow{\mathbf{\tau}} = 3 \hat{\mathbf{i}} – 6 \hat{\mathbf{k}}τ=3i^6k^

b) Given two vector functions a ( t ) = ( t 3 t ) i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ a ( t ) = t 3 t i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ vec(a)(t)=(t^(3)-t) hat(i)+(3t+4) hat(j)+2t^(2) hat(k)\overrightarrow{\mathbf{a}}(t)=\left(t^3-t\right) \hat{\mathbf{i}}+(3 t+4) \hat{\mathbf{j}}+2 t^2 \hat{\mathbf{k}}a(t)=(t3t)i^+(3t+4)j^+2t2k^ and b ( t ) = ( 7 t 2 ) i ^ + ( 4 + 6 t ) j ^ ( 6 t 3 ) k ^ b ( t ) = 7 t 2 i ^ + ( 4 + 6 t ) j ^ 6 t 3 k ^ vec(b)(t)=(7-t^(2)) hat(i)+(4+6t) hat(j)-(6t^(3)) hat(k)\overrightarrow{\mathbf{b}}(t)=\left(7-t^2\right) \hat{\mathbf{i}}+(4+6 t) \hat{\mathbf{j}}-\left(6 t^3\right) \hat{\mathbf{k}}b(t)=(7t2)i^+(4+6t)j^(6t3)k^, determine the derivative of a ( t ) . b ( t ) a ( t ) . b ( t ) vec(a)(t). vec(b)(t)\overrightarrow{\mathbf{a}}(t) . \overrightarrow{\mathbf{b}}(t)a(t).b(t) at t = 1 t = 1 t=1t=1t=1.

Answer:

We are tasked with determining the derivative of the dot product a ( t ) b ( t ) a ( t ) b ( t ) vec(a)(t)* vec(b)(t)\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t)a(t)b(t) at t = 1 t = 1 t=1t = 1t=1.

Step 1: Find the dot product a ( t ) b ( t ) a ( t ) b ( t ) vec(a)(t)* vec(b)(t)\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t)a(t)b(t)

The dot product of two vectors a ( t ) a ( t ) vec(a)(t)\overrightarrow{\mathbf{a}}(t)a(t) and b ( t ) b ( t ) vec(b)(t)\overrightarrow{\mathbf{b}}(t)b(t) is given by:
a ( t ) b ( t ) = a 1 ( t ) b 1 ( t ) + a 2 ( t ) b 2 ( t ) + a 3 ( t ) b 3 ( t ) a ( t ) b ( t ) = a 1 ( t ) b 1 ( t ) + a 2 ( t ) b 2 ( t ) + a 3 ( t ) b 3 ( t ) vec(a)(t)* vec(b)(t)=a_(1)(t)b_(1)(t)+a_(2)(t)b_(2)(t)+a_(3)(t)b_(3)(t)\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t) = a_1(t) b_1(t) + a_2(t) b_2(t) + a_3(t) b_3(t)a(t)b(t)=a1(t)b1(t)+a2(t)b2(t)+a3(t)b3(t)
where:
  • a 1 ( t ) a 1 ( t ) a_(1)(t)a_1(t)a1(t), a 2 ( t ) a 2 ( t ) a_(2)(t)a_2(t)a2(t), a 3 ( t ) a 3 ( t ) a_(3)(t)a_3(t)a3(t) are the components of a ( t ) a ( t ) vec(a)(t)\overrightarrow{\mathbf{a}}(t)a(t)
  • b 1 ( t ) b 1 ( t ) b_(1)(t)b_1(t)b1(t), b 2 ( t ) b 2 ( t ) b_(2)(t)b_2(t)b2(t), b 3 ( t ) b 3 ( t ) b_(3)(t)b_3(t)b3(t) are the components of b ( t ) b ( t ) vec(b)(t)\overrightarrow{\mathbf{b}}(t)b(t)
From the given vector functions:
  • a ( t ) = ( t 3 t ) i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ a ( t ) = ( t 3 t ) i ^ + ( 3 t + 4 ) j ^ + 2 t 2 k ^ vec(a)(t)=(t^(3)-t) hat(i)+(3t+4) hat(j)+2t^(2) hat(k)\overrightarrow{\mathbf{a}}(t) = (t^3 – t) \hat{\mathbf{i}} + (3t + 4) \hat{\mathbf{j}} + 2t^2 \hat{\mathbf{k}}a(t)=(t3t)i^+(3t+4)j^+2t2k^
  • b ( t ) = ( 7 t 2 ) i ^ + ( 4 + 6 t ) j ^ 6 t 3 k ^ b ( t ) = ( 7 t 2 ) i ^ + ( 4 + 6 t ) j ^ 6 t 3 k ^ vec(b)(t)=(7-t^(2)) hat(i)+(4+6t) hat(j)-6t^(3) hat(k)\overrightarrow{\mathbf{b}}(t) = (7 – t^2) \hat{\mathbf{i}} + (4 + 6t) \hat{\mathbf{j}} – 6t^3 \hat{\mathbf{k}}b(t)=(7t2)i^+(4+6t)j^6t3k^
Thus, the components are:
  • a 1 ( t ) = t 3 t a 1 ( t ) = t 3 t a_(1)(t)=t^(3)-ta_1(t) = t^3 – ta1(t)=t3t
  • a 2 ( t ) = 3 t + 4 a 2 ( t ) = 3 t + 4 a_(2)(t)=3t+4a_2(t) = 3t + 4a2(t)=3t+4
  • a 3 ( t ) = 2 t 2 a 3 ( t ) = 2 t 2 a_(3)(t)=2t^(2)a_3(t) = 2t^2a3(t)=2t2
  • b 1 ( t ) = 7 t 2 b 1 ( t ) = 7 t 2 b_(1)(t)=7-t^(2)b_1(t) = 7 – t^2b1(t)=7t2
  • b 2 ( t ) = 4 + 6 t b 2 ( t ) = 4 + 6 t b_(2)(t)=4+6tb_2(t) = 4 + 6tb2(t)=4+6t
  • b 3 ( t ) = 6 t 3 b 3 ( t ) = 6 t 3 b_(3)(t)=-6t^(3)b_3(t) = -6t^3b3(t)=6t3
Now, we calculate the dot product:
a ( t ) b ( t ) = ( t 3 t ) ( 7 t 2 ) + ( 3 t + 4 ) ( 4 + 6 t ) + ( 2 t 2 ) ( 6 t 3 ) a ( t ) b ( t ) = ( t 3 t ) ( 7 t 2 ) + ( 3 t + 4 ) ( 4 + 6 t ) + ( 2 t 2 ) ( 6 t 3 ) vec(a)(t)* vec(b)(t)=(t^(3)-t)(7-t^(2))+(3t+4)(4+6t)+(2t^(2))(-6t^(3))\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t) = (t^3 – t)(7 – t^2) + (3t + 4)(4 + 6t) + (2t^2)(-6t^3)a(t)b(t)=(t3t)(7t2)+(3t+4)(4+6t)+(2t2)(6t3)
Let’s expand each term:
  • First term: ( t 3 t ) ( 7 t 2 ) ( t 3 t ) ( 7 t 2 ) (t^(3)-t)(7-t^(2))(t^3 – t)(7 – t^2)(t3t)(7t2)
    = t 3 ( 7 t 2 ) t ( 7 t 2 ) = 7 t 3 t 5 7 t + t 3 = 8 t 3 t 5 7 t = t 3 ( 7 t 2 ) t ( 7 t 2 ) = 7 t 3 t 5 7 t + t 3 = 8 t 3 t 5 7 t =t^(3)(7-t^(2))-t(7-t^(2))=7t^(3)-t^(5)-7t+t^(3)=8t^(3)-t^(5)-7t= t^3(7 – t^2) – t(7 – t^2) = 7t^3 – t^5 – 7t + t^3 = 8t^3 – t^5 – 7t=t3(7t2)t(7t2)=7t3t57t+t3=8t3t57t
  • Second term: ( 3 t + 4 ) ( 4 + 6 t ) ( 3 t + 4 ) ( 4 + 6 t ) (3t+4)(4+6t)(3t + 4)(4 + 6t)(3t+4)(4+6t)
    = 3 t ( 4 + 6 t ) + 4 ( 4 + 6 t ) = 12 t + 18 t 2 + 16 + 24 t = 18 t 2 + 36 t + 16 = 3 t ( 4 + 6 t ) + 4 ( 4 + 6 t ) = 12 t + 18 t 2 + 16 + 24 t = 18 t 2 + 36 t + 16 =3t(4+6t)+4(4+6t)=12 t+18t^(2)+16+24 t=18t^(2)+36 t+16= 3t(4 + 6t) + 4(4 + 6t) = 12t + 18t^2 + 16 + 24t = 18t^2 + 36t + 16=3t(4+6t)+4(4+6t)=12t+18t2+16+24t=18t2+36t+16
  • Third term: ( 2 t 2 ) ( 6 t 3 ) ( 2 t 2 ) ( 6 t 3 ) (2t^(2))(-6t^(3))(2t^2)(-6t^3)(2t2)(6t3)
    = 12 t 5 = 12 t 5 =-12t^(5)= -12t^5=12t5
Now, combine all terms:
a ( t ) b ( t ) = t 5 + 8 t 3 7 t + 18 t 2 + 36 t + 16 12 t 5 a ( t ) b ( t ) = t 5 + 8 t 3 7 t + 18 t 2 + 36 t + 16 12 t 5 vec(a)(t)* vec(b)(t)=-t^(5)+8t^(3)-7t+18t^(2)+36 t+16-12t^(5)\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t) = -t^5 + 8t^3 – 7t + 18t^2 + 36t + 16 – 12t^5a(t)b(t)=t5+8t37t+18t2+36t+1612t5
= 13 t 5 + 8 t 3 + 18 t 2 + 29 t + 16 = 13 t 5 + 8 t 3 + 18 t 2 + 29 t + 16 =-13t^(5)+8t^(3)+18t^(2)+29 t+16= -13t^5 + 8t^3 + 18t^2 + 29t + 16=13t5+8t3+18t2+29t+16

Step 2: Differentiate the dot product

To find the derivative of the dot product with respect to t t ttt, differentiate each term:
d d t ( 13 t 5 + 8 t 3 + 18 t 2 + 29 t + 16 ) d d t 13 t 5 + 8 t 3 + 18 t 2 + 29 t + 16 (d)/(dt)(-13t^(5)+8t^(3)+18t^(2)+29 t+16)\frac{d}{dt}\left( -13t^5 + 8t^3 + 18t^2 + 29t + 16 \right)ddt(13t5+8t3+18t2+29t+16)
Using the power rule ( d d t t n = n t n 1 d d t t n = n t n 1 (d)/(dt)t^(n)=nt^(n-1)\frac{d}{dt}t^n = n t^{n-1}ddttn=ntn1):
= 65 t 4 + 24 t 2 + 36 t + 29 = 65 t 4 + 24 t 2 + 36 t + 29 =-65t^(4)+24t^(2)+36 t+29= -65t^4 + 24t^2 + 36t + 29=65t4+24t2+36t+29

Step 3: Evaluate the derivative at t = 1 t = 1 t=1t = 1t=1

Substitute t = 1 t = 1 t=1t = 1t=1 into the derivative:
d d t ( a ( t ) b ( t ) ) | t = 1 = 65 ( 1 ) 4 + 24 ( 1 ) 2 + 36 ( 1 ) + 29 d d t a ( t ) b ( t ) | t = 1 = 65 ( 1 ) 4 + 24 ( 1 ) 2 + 36 ( 1 ) + 29 (d)/(dt)( vec(a)(t)* vec(b)(t))|_(t=1)=-65(1)^(4)+24(1)^(2)+36(1)+29\frac{d}{dt} \left( \overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t) \right) \Bigg|_{t=1} = -65(1)^4 + 24(1)^2 + 36(1) + 29ddt(a(t)b(t))|t=1=65(1)4+24(1)2+36(1)+29
= 65 + 24 + 36 + 29 = 65 + 24 + 36 + 29 =-65+24+36+29= -65 + 24 + 36 + 29=65+24+36+29
= 24 = 24 =24= 24=24

Final Answer:

The derivative of a ( t ) b ( t ) a ( t ) b ( t ) vec(a)(t)* vec(b)(t)\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{b}}(t)a(t)b(t) at t = 1 t = 1 t=1t = 1t=1 is 24 24 242424.

Scroll to Top
Scroll to Top