Sample Solution

BPHET-141 Solved Assignment

PART A
  1. a) A spacecraft A A AAA has a speed 0.80 c with respect to the Earth. If the speed of another spacecraft B B BBB with respect to spacecraft A A AAA is 0.50 c , what is the speed of B B BBB with respect to the Earth
    (5)
    b) A particle is travelling through the Earth’s atmosphere at a speed of 0.6 c . To an Earth-bound observer, the distance it travels is 4.0 km . How far does the particle travel in its own frame of reference?
    c) A particle of rest mass 2.0 kg has an initial speed of 2 × 10 8 ms 1 2 × 10 8 ms 1 2xx10^(8)ms^(-1)2 \times 10^8 \mathrm{~ms}^{-1}2×108 ms1. A constant relativistic force of magnitude 1.5 × 10 6 N 1.5 × 10 6 N 1.5 xx10^(6)N1.5 \times 10^6 \mathrm{~N}1.5×106 N is exerted on the particle in the same direction as the initial relativistic momentum for 1000 s . Calculate the magnitudes of the initial and final relativistic linear momentum and its final speed.
    d) A star emits light with wavelength 420 nm . An observer on earth measures the wavelength of the light received from the star to be 600 nm . Calculate the speed with which the star is moving.
  2. a) Determine the wavelengths of the photons scattered at (i) 60 60 60^(@)60^{\circ}60 and (ii) 90 90 90^(@)90^{\circ}90 when X X XXX rays of wavelength 4.5 pm are scattered from a target.
    b) Calculate the de Broglie wavelength of a 87 R b a 87 R b a^(87)Rba{ }^{87} R ba87Rb atom that has been laser cooled to 200 μ K 200 μ K 200 muK200 \mu \mathrm{~K}200μ K. (Assume that the kinetic energy is 3 2 k B T 3 2 k B T (3)/(2)k_(B)T\frac{3}{2} k_B T32kBT ).
    c) Using Heisenberg’s Uncertainty Principle explain whether a particle trapped inside a one dimensional box of finite length can be at rest.
    d) The quantum mechanical wave function for a particle is given by
ψ ( x ) = { N x 3 2 e 2 x , x > 0 0 , x < 0 ψ ( x ) = N x 3 2 e 2 x , x > 0 0 , x < 0 psi(x)={[Nx^((3)/(2))e^(-2x)”,”,x > 0],[0″,”,x < 0]:}\psi(x)=\left\{\begin{array}{cc} N x^{\frac{3}{2}} e^{-2 x}, & x>0 \\ 0, & x<0 \end{array}\right.ψ(x)={Nx32e2x,x>00,x<0
Determine (i) the normalization constant N N NNN and(ii) the most probable position of the particle.
(10)
PART B
3. a) The eigenfunction of a particle confined in a box of length L ( 0 x L ) L ( 0 x L ) L(0 <= x <= L)L(0 \leq x \leq L)L(0xL) is
ψ ( x ) = 2 L sin ( 3 π x L ) ψ ( x ) = 2 L sin 3 π x L psi(x)=sqrt((2)/(L))sin((3pi x)/(L))\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{3 \pi x}{L}\right)ψ(x)=2Lsin(3πxL)
Calculate p ^ x 2 p ^ x 2 (: hat(p)_(x)^(2):)\left\langle\hat{p}_x^2\right\ranglep^x2 and the probability of finding the particle between x = 0 x = 0 x=0x=0x=0 and
x = L / 4 x = L / 4 x=L//4x=L / 4x=L/4
b) A particle encounters a step potential of height V 0 V 0 V_(0)V_0V0. What is the reflection and transmission coefficient if E = 1.5 V 0 E = 1.5 V 0 E=1.5V_(0)E=1.5 \mathrm{~V}_0E=1.5 V0 ? Show that R + T = 1 R + T = 1 R+T=1R+T=1R+T=1.
c) Show that, for a symmetric potential function ( V ( x ) = V ( x ) ) ( V ( x ) = V ( x ) ) (V(x)=V(-x))(V(x)=V(-x))(V(x)=V(x)), the parity operator commutes with the Hamiltonian. What is the parity of the of the following eigenfunctions of a symmetric potential well of width 2a: (i) ψ ( x ) = A cos ( 3 π x 2 a ) ψ ( x ) = A cos 3 π x 2 a psi(x)=A cos((3pi x)/(2a))\psi(x)=A \cos \left(\frac{3 \pi x}{2 a}\right)ψ(x)=Acos(3πx2a) and (ii)
ψ ( x ) = A sin ( π x a ) ψ ( x ) = A sin π x a psi(x)=A sin((pi x)/(a))\psi(x)=A \sin \left(\frac{\pi x}{a}\right)ψ(x)=Asin(πxa)
  1. a) The half life of 51 Cr 51 Cr ^(51)Cr{ }^{51} \mathrm{Cr}51Cr is 27.70 days. After how many days will only 10 % 10 % 10%10 \%10% of the element be left over?
    (5)
    b) Establish the relation for binding energy per nucleon for Z A Z A _(Z)^(A){ }_Z^AZA X nuclei. Calculate the value of binding energy per nucleon for 28 68 Ni 28 68 Ni _(28)^(68)Ni{ }_{28}^{68} \mathrm{Ni}2868Ni. Given:
Mass of Ni : 63.9280 u Mass of proton : 1.007825 u Mass of neutron : 1.008665 u Mass of Ni : 63.9280 u Mass of proton : 1.007825 u Mass of neutron : 1.008665 u {:[” Mass of “Niquad:63.9280u],[” Mass of proton “:1.007825u],[” Mass of neutron : “1.008665u]:}\begin{aligned} & \text { Mass of } \mathrm{Ni} \quad: 63.9280 \mathrm{u} \\ & \text { Mass of proton }: 1.007825 \mathrm{u} \\ & \text { Mass of neutron : } 1.008665 \mathrm{u} \end{aligned} Mass of Ni:63.9280u Mass of proton :1.007825u Mass of neutron : 1.008665u
Is this nucleus stable?
(10)
c) A piece of wood from the ruins of an ancient dwelling was found to have a 14 C 14 C ^(14)C{ }^{14} \mathrm{C}14C activity of 14 disintegrations per minute per gram of its carbon content. The 14 C 14 C ^(14)C{ }^{14} \mathrm{C}14C activity of living wood is 16 disintegrations per minute per gram. How long ago did the tree die from which the wood sample came? Take half-life of radiocarbon as 5760 years.
d) Calculate Q Q QQQ-Value of the reaction:
13 27 Al + 2 4 He 14 30 Si + 1 1 H 13 27 Al + 2 4 He 14 30 Si + 1 1 H _(13)^(27)Al+_(2)^(4)Herarr_(14)^(30)Si+_(1)^(1)H{ }_{13}^{27} \mathrm{Al}+{ }_2^4 \mathrm{He} \rightarrow{ }_{14}^{30} \mathrm{Si}+{ }_1^1 \mathrm{H}1327Al+24He1430Si+11H
Take m ( 13 27 Al ) = 26.9815 u , m ( 1 1 H ) = 1.0078 u , m ( 2 4 He ) = 4.0026 u m 13 27 Al = 26.9815 u , m 1 1 H = 1.0078 u , m 2 4 He = 4.0026 u m(_(13)^(27)Al)=26.9815u,m(_(1)^(1)H)=1.0078u,m(_(2)^(4)He)=4.0026um\left({ }_{13}^{27} \mathrm{Al}\right)=26.9815 \mathrm{u}, m\left({ }_1^1 \mathrm{H}\right)=1.0078 \mathrm{u}, m\left({ }_2^4 \mathrm{He}\right)=4.0026 \mathrm{u}m(1327Al)=26.9815u,m(11H)=1.0078u,m(24He)=4.0026u and 14 30 Si = 29.9738 u 14 30 Si = 29.9738 u _(14)^(30)Si=29.9738u{ }_{14}^{30} \mathrm{Si}=29.9738 \mathrm{u}1430Si=29.9738u.

Answer:

Question:-1

a) A spacecraft A A AAA has a speed 0.80 c with respect to the Earth. If the speed of another spacecraft B B BBB with respect to spacecraft A A AAA is 0.50 c, what is the speed of B B BBB with respect to the Earth?

Answer:

We are tasked with finding the speed of spacecraft B B BBB with respect to the Earth when spacecraft A A AAA has a speed of 0.80c relative to the Earth and spacecraft B B BBB has a speed of 0.50c relative to spacecraft A A AAA.
To solve this problem, we will use the relativistic velocity addition formula, which accounts for the fact that velocities do not simply add up when the objects are moving at significant fractions of the speed of light.

Relativistic Velocity Addition Formula

The relativistic velocity addition formula for two velocities u u uuu and v v vvv in the same direction is given by:
u = u + v 1 + u v c 2 u = u + v 1 + u v c 2 u^(‘)=(u+v)/(1+(uv)/(c^(2)))u’ = \frac{u + v}{1 + \frac{uv}{c^2}}u=u+v1+uvc2
where:
  • u u u^(‘)u’u is the velocity of B B BBB with respect to Earth,
  • u u uuu is the velocity of A A AAA with respect to Earth ( 0.80 c 0.80 c 0.80 c0.80c0.80c),
  • v v vvv is the velocity of B B BBB with respect to A A AAA ( 0.50 c 0.50 c 0.50 c0.50c0.50c),
  • c c ccc is the speed of light.
We need to use this formula to find the velocity of B B BBB with respect to the Earth.

Step 1: Apply the Formula

We substitute the given values into the formula:
u = 0.80 c + 0.50 c 1 + ( 0.80 c ) ( 0.50 c ) c 2 u = 0.80 c + 0.50 c 1 + ( 0.80 c ) ( 0.50 c ) c 2 u^(‘)=(0.80 c+0.50 c)/(1+((0.80 c)(0.50 c))/(c^(2)))u’ = \frac{0.80c + 0.50c}{1 + \frac{(0.80c)(0.50c)}{c^2}}u=0.80c+0.50c1+(0.80c)(0.50c)c2

Step 2: Simplify the Expression

First, simplify the numerator and the denominator:
u = 1.30 c 1 + 0.80 × 0.50 1 = 1.30 c 1 + 0.40 u = 1.30 c 1 + 0.80 × 0.50 1 = 1.30 c 1 + 0.40 u^(‘)=(1.30 c)/(1+(0.80 xx0.50)/(1))=(1.30 c)/(1+0.40)u’ = \frac{1.30c}{1 + \frac{0.80 \times 0.50}{1}} = \frac{1.30c}{1 + 0.40}u=1.30c1+0.80×0.501=1.30c1+0.40
u = 1.30 c 1.40 u = 1.30 c 1.40 u^(‘)=(1.30 c)/(1.40)u’ = \frac{1.30c}{1.40}u=1.30c1.40

Step 3: Final Calculation

Now, divide 1.30 1.30 1.301.301.30 by 1.40 1.40 1.401.401.40:
u = 0.92857 c u = 0.92857 c u^(‘)=0.92857 cu’ = 0.92857cu=0.92857c
Thus, the speed of spacecraft B B BBB with respect to Earth is approximately:
u 0.93 c u 0.93 c u^(‘)~~0.93 cu’ \approx 0.93cu0.93c

Conclusion

The speed of spacecraft B B BBB with respect to Earth is approximately 0.93 c 0.93 c 0.93 c0.93c0.93c.

b) A particle is traveling through the Earth’s atmosphere at a speed of 0.6 c. To an Earth-bound observer, the distance it travels is 4.0 km. How far does the particle travel in its own frame of reference?

Answer:

To solve this problem, we need to apply length contraction, which is a relativistic effect that occurs when an object is moving at a significant fraction of the speed of light relative to an observer. The length contraction formula is:
L = L 1 v 2 c 2 L = L 1 v 2 c 2 L^(‘)=Lsqrt(1-(v^(2))/(c^(2)))L’ = L \sqrt{1 – \frac{v^2}{c^2}}L=L1v2c2
where:
  • L L L^(‘)L’L is the length of the object (or distance traveled) in the object’s rest frame (i.e., the particle’s frame),
  • L L LLL is the length of the object (or distance traveled) in the Earth-bound observer’s frame (4.0 km),
  • v v vvv is the speed of the object relative to the observer (0.6c),
  • c c ccc is the speed of light.

Step 1: Apply the Length Contraction Formula

Given:
  • L = 4.0 km L = 4.0 km L=4.0″km”L = 4.0 \, \text{km}L=4.0km,
  • v = 0.6 c v = 0.6 c v=0.6 cv = 0.6cv=0.6c,
  • c = 3.0 × 10 8 m/s c = 3.0 × 10 8 m/s c=3.0 xx10^(8)”m/s”c = 3.0 \times 10^8 \, \text{m/s}c=3.0×108m/s (speed of light, but it will cancel out in the equation).
We substitute these values into the length contraction formula:
L = 4.0 km × 1 ( 0.6 c ) 2 c 2 L = 4.0 km × 1 ( 0.6 c ) 2 c 2 L^(‘)=4.0″km”xxsqrt(1-((0.6 c)^(2))/(c^(2)))L’ = 4.0 \, \text{km} \times \sqrt{1 – \frac{(0.6c)^2}{c^2}}L=4.0km×1(0.6c)2c2

Step 2: Simplify the Expression

First, simplify the term inside the square root:
L = 4.0 km × 1 ( 0.6 ) 2 L = 4.0 km × 1 ( 0.6 ) 2 L^(‘)=4.0″km”xxsqrt(1-(0.6)^(2))L’ = 4.0 \, \text{km} \times \sqrt{1 – (0.6)^2}L=4.0km×1(0.6)2
L = 4.0 km × 1 0.36 L = 4.0 km × 1 0.36 L^(‘)=4.0″km”xxsqrt(1-0.36)L’ = 4.0 \, \text{km} \times \sqrt{1 – 0.36}L=4.0km×10.36
L = 4.0 km × 0.64 L = 4.0 km × 0.64 L^(‘)=4.0″km”xxsqrt0.64L’ = 4.0 \, \text{km} \times \sqrt{0.64}L=4.0km×0.64
L = 4.0 km × 0.8 L = 4.0 km × 0.8 L^(‘)=4.0″km”xx0.8L’ = 4.0 \, \text{km} \times 0.8L=4.0km×0.8

Step 3: Final Calculation

Now, multiply:
L = 3.2 km L = 3.2 km L^(‘)=3.2″km”L’ = 3.2 \, \text{km}L=3.2km

Conclusion

In the particle’s own frame of reference, the distance it travels is 3.2 km. This is shorter than the distance observed by the Earth-bound observer due to the relativistic length contraction.

c) A particle of rest mass 2.0 kg has an initial speed of 2 × 10 8 ms 1 2 × 10 8 ms 1 2xx10^(8)ms^(-1)2 \times 10^8 \, \mathrm{ms}^{-1}2×108ms1. A constant relativistic force of magnitude 1.5 × 10 6 N 1.5 × 10 6 N 1.5 xx10^(6)N1.5 \times 10^6 \, \mathrm{N}1.5×106N is exerted on the particle in the same direction as the initial relativistic momentum for 1000 s. Calculate the magnitudes of the initial and final relativistic linear momentum and its final speed.

Answer:

Given Data:

  • Rest mass of the particle m 0 = 2.0 kg m 0 = 2.0 kg m_(0)=2.0″kg”m_0 = 2.0 \, \text{kg}m0=2.0kg
  • Initial speed v i = 2 × 10 8 m/s v i = 2 × 10 8 m/s v_(i)=2xx10^(8)”m/s”v_i = 2 \times 10^8 \, \text{m/s}vi=2×108m/s
  • Relativistic force F = 1.5 × 10 6 N F = 1.5 × 10 6 N F=1.5 xx10^(6)”N”F = 1.5 \times 10^6 \, \text{N}F=1.5×106N
  • Time t = 1000 s t = 1000 s t=1000″s”t = 1000 \, \text{s}t=1000s
  • Speed of light c = 3.0 × 10 8 m/s c = 3.0 × 10 8 m/s c=3.0 xx10^(8)”m/s”c = 3.0 \times 10^8 \, \text{m/s}c=3.0×108m/s
We will calculate the initial relativistic linear momentum, final relativistic linear momentum, and the final speed of the particle.

Step 1: Calculate the Initial Relativistic Linear Momentum

The relativistic momentum p p ppp is given by the formula:
p = m 0 v 1 v 2 c 2 p = m 0 v 1 v 2 c 2 p=(m_(0)v)/(sqrt(1-(v^(2))/(c^(2))))p = \frac{m_0 v}{\sqrt{1 – \frac{v^2}{c^2}}}p=m0v1v2c2
Substitute the given values:
  • Rest mass m 0 = 2.0 kg m 0 = 2.0 kg m_(0)=2.0″kg”m_0 = 2.0 \, \text{kg}m0=2.0kg,
  • Initial velocity v i = 2 × 10 8 m/s v i = 2 × 10 8 m/s v_(i)=2xx10^(8)”m/s”v_i = 2 \times 10^8 \, \text{m/s}vi=2×108m/s,
  • Speed of light c = 3.0 × 10 8 m/s c = 3.0 × 10 8 m/s c=3.0 xx10^(8)”m/s”c = 3.0 \times 10^8 \, \text{m/s}c=3.0×108m/s.
We need to first calculate the Lorentz factor γ i γ i gamma _(i)\gamma_iγi for the initial velocity v i v i v_(i)v_ivi:
γ i = 1 1 v i 2 c 2 γ i = 1 1 v i 2 c 2 gamma _(i)=(1)/(sqrt(1-(v_(i)^(2))/(c^(2))))\gamma_i = \frac{1}{\sqrt{1 – \frac{v_i^2}{c^2}}}γi=11vi2c2
Substitute v i = 2 × 10 8 m/s v i = 2 × 10 8 m/s v_(i)=2xx10^(8)”m/s”v_i = 2 \times 10^8 \, \text{m/s}vi=2×108m/s:
γ i = 1 1 ( 2 × 10 8 ) 2 ( 3 × 10 8 ) 2 γ i = 1 1 ( 2 × 10 8 ) 2 ( 3 × 10 8 ) 2 gamma _(i)=(1)/(sqrt(1-((2xx10^(8))^(2))/((3xx10^(8))^(2))))\gamma_i = \frac{1}{\sqrt{1 – \frac{(2 \times 10^8)^2}{(3 \times 10^8)^2}}}γi=11(2×108)2(3×108)2
γ i = 1 1 4 × 10 16 9 × 10 16 = 1 1 0.4444 = 1 0.5556 1.336 γ i = 1 1 4 × 10 16 9 × 10 16 = 1 1 0.4444 = 1 0.5556 1.336 gamma _(i)=(1)/(sqrt(1-(4xx10^(16))/(9xx10^(16))))=(1)/(sqrt(1-0.4444))=(1)/(sqrt0.5556)~~1.336\gamma_i = \frac{1}{\sqrt{1 – \frac{4 \times 10^{16}}{9 \times 10^{16}}}} = \frac{1}{\sqrt{1 – 0.4444}} = \frac{1}{\sqrt{0.5556}} \approx 1.336γi=114×10169×1016=110.4444=10.55561.336
Now, calculate the initial relativistic momentum:
p i = γ i m 0 v i = 1.336 × 2.0 kg × 2 × 10 8 m/s p i = γ i m 0 v i = 1.336 × 2.0 kg × 2 × 10 8 m/s p_(i)=gamma _(i)m_(0)v_(i)=1.336 xx2.0″kg”xx2xx10^(8)”m/s”p_i = \gamma_i m_0 v_i = 1.336 \times 2.0 \, \text{kg} \times 2 \times 10^8 \, \text{m/s}pi=γim0vi=1.336×2.0kg×2×108m/s
p i = 1.336 × 4.0 × 10 8 kg m/s p i = 1.336 × 4.0 × 10 8 kg m/s p_(i)=1.336 xx4.0 xx10^(8)”kg””m/s”p_i = 1.336 \times 4.0 \times 10^8 \, \text{kg} \, \text{m/s}pi=1.336×4.0×108kgm/s
p i = 5.344 × 10 8 kg m/s 5.34 × 10 8 kg m/s p i = 5.344 × 10 8 kg m/s 5.34 × 10 8 kg m/s p_(i)=5.344 xx10^(8)”kg””m/s”~~5.34 xx10^(8)”kg””m/s”p_i = 5.344 \times 10^8 \, \text{kg} \, \text{m/s} \approx 5.34 \times 10^8 \, \text{kg} \, \text{m/s}pi=5.344×108kgm/s5.34×108kgm/s
So, the initial relativistic momentum is:
p i 5.34 × 10 8 kg m/s p i 5.34 × 10 8 kg m/s p_(i)~~5.34 xx10^(8)”kg””m/s”p_i \approx 5.34 \times 10^8 \, \text{kg} \, \text{m/s}pi5.34×108kgm/s

Step 2: Calculate the Change in Relativistic Momentum

We can find the change in relativistic momentum Δ p Δ p Delta p\Delta pΔp using the relation:
Δ p = F t Δ p = F t Delta p=F*t\Delta p = F \cdot tΔp=Ft
where:
  • F = 1.5 × 10 6 N F = 1.5 × 10 6 N F=1.5 xx10^(6)”N”F = 1.5 \times 10^6 \, \text{N}F=1.5×106N is the constant force,
  • t = 1000 s t = 1000 s t=1000″s”t = 1000 \, \text{s}t=1000s is the duration of the force.
Substitute the given values:
Δ p = 1.5 × 10 6 N × 1000 s = 1.5 × 10 9 kg m/s Δ p = 1.5 × 10 6 N × 1000 s = 1.5 × 10 9 kg m/s Delta p=1.5 xx10^(6)”N”xx1000″s”=1.5 xx10^(9)”kg””m/s”\Delta p = 1.5 \times 10^6 \, \text{N} \times 1000 \, \text{s} = 1.5 \times 10^9 \, \text{kg} \, \text{m/s}Δp=1.5×106N×1000s=1.5×109kgm/s
Thus, the change in relativistic momentum is:
Δ p = 1.5 × 10 9 kg m/s Δ p = 1.5 × 10 9 kg m/s Delta p=1.5 xx10^(9)”kg””m/s”\Delta p = 1.5 \times 10^9 \, \text{kg} \, \text{m/s}Δp=1.5×109kgm/s

Step 3: Calculate the Final Relativistic Momentum

The final relativistic momentum p f p f p_(f)p_fpf is the sum of the initial momentum p i p i p_(i)p_ipi and the change in momentum Δ p Δ p Delta p\Delta pΔp:
p f = p i + Δ p p f = p i + Δ p p_(f)=p_(i)+Delta pp_f = p_i + \Delta ppf=pi+Δp
Substitute the values:
p f = 5.34 × 10 8 kg m/s + 1.5 × 10 9 kg m/s p f = 5.34 × 10 8 kg m/s + 1.5 × 10 9 kg m/s p_(f)=5.34 xx10^(8)”kg””m/s”+1.5 xx10^(9)”kg””m/s”p_f = 5.34 \times 10^8 \, \text{kg} \, \text{m/s} + 1.5 \times 10^9 \, \text{kg} \, \text{m/s}pf=5.34×108kgm/s+1.5×109kgm/s
p f = 2.03 × 10 9 kg m/s p f = 2.03 × 10 9 kg m/s p_(f)=2.03 xx10^(9)”kg””m/s”p_f = 2.03 \times 10^9 \, \text{kg} \, \text{m/s}pf=2.03×109kgm/s
Thus, the final relativistic momentum is:
p f = 2.03 × 10 9 kg m/s p f = 2.03 × 10 9 kg m/s p_(f)=2.03 xx10^(9)”kg””m/s”p_f = 2.03 \times 10^9 \, \text{kg} \, \text{m/s}pf=2.03×109kgm/s

Step 4: Calculate the Final Speed of the Particle

To find the final speed v f v f v_(f)v_fvf, we use the relativistic momentum formula:
p f = m 0 v f 1 v f 2 c 2 p f = m 0 v f 1 v f 2 c 2 p_(f)=(m_(0)v_(f))/(sqrt(1-(v_(f)^(2))/(c^(2))))p_f = \frac{m_0 v_f}{\sqrt{1 – \frac{v_f^2}{c^2}}}pf=m0vf1vf2c2
We can solve for v f v f v_(f)v_fvf by rearranging this equation:
p f 2 = ( m 0 v f ) 2 1 v f 2 c 2 p f 2 = ( m 0 v f ) 2 1 v f 2 c 2 p_(f)^(2)=((m_(0)v_(f))^(2))/(1-(v_(f)^(2))/(c^(2)))p_f^2 = \frac{(m_0 v_f)^2}{1 – \frac{v_f^2}{c^2}}pf2=(m0vf)21vf2c2
Multiplying both sides by 1 v f 2 c 2 1 v f 2 c 2 1-(v_(f)^(2))/(c^(2))1 – \frac{v_f^2}{c^2}1vf2c2:
p f 2 ( 1 v f 2 c 2 ) = m 0 2 v f 2 p f 2 1 v f 2 c 2 = m 0 2 v f 2 p_(f)^(2)(1-(v_(f)^(2))/(c^(2)))=m_(0)^(2)v_(f)^(2)p_f^2 \left( 1 – \frac{v_f^2}{c^2} \right) = m_0^2 v_f^2pf2(1vf2c2)=m02vf2
Simplifying:
p f 2 p f 2 v f 2 c 2 = m 0 2 v f 2 p f 2 p f 2 v f 2 c 2 = m 0 2 v f 2 p_(f)^(2)-(p_(f)^(2)v_(f)^(2))/(c^(2))=m_(0)^(2)v_(f)^(2)p_f^2 – \frac{p_f^2 v_f^2}{c^2} = m_0^2 v_f^2pf2pf2vf2c2=m02vf2
p f 2 = v f 2 ( m 0 2 + p f 2 c 2 ) p f 2 = v f 2 m 0 2 + p f 2 c 2 p_(f)^(2)=v_(f)^(2)(m_(0)^(2)+(p_(f)^(2))/(c^(2)))p_f^2 = v_f^2 \left( m_0^2 + \frac{p_f^2}{c^2} \right)pf2=vf2(m02+pf2c2)
Solving for v f v f v_(f)v_fvf:
v f = p f m 0 2 + p f 2 c 2 v f = p f m 0 2 + p f 2 c 2 v_(f)=(p_(f))/(sqrt(m_(0)^(2)+(p_(f)^(2))/(c^(2))))v_f = \frac{p_f}{\sqrt{m_0^2 + \frac{p_f^2}{c^2}}}vf=pfm02+pf2c2
Substitute the known values:
v f = 2.03 × 10 9 kg m/s ( 2.0 kg ) 2 + ( 2.03 × 10 9 kg m/s ) 2 ( 3.0 × 10 8 m/s ) 2 v f = 2.03 × 10 9 kg m/s ( 2.0 kg ) 2 + ( 2.03 × 10 9 kg m/s ) 2 ( 3.0 × 10 8 m/s ) 2 v_(f)=(2.03 xx10^(9)”kg””m/s”)/(sqrt((2.0″kg”)^(2)+((2.03 xx10^(9)”kg””m/s”)^(2))/((3.0 xx10^(8)”m/s”)^(2))))v_f = \frac{2.03 \times 10^9 \, \text{kg} \, \text{m/s}}{\sqrt{(2.0 \, \text{kg})^2 + \frac{(2.03 \times 10^9 \, \text{kg} \, \text{m/s})^2}{(3.0 \times 10^8 \, \text{m/s})^2}}}vf=2.03×109kgm/s(2.0kg)2+(2.03×109kgm/s)2(3.0×108m/s)2
First, calculate p f 2 c 2 p f 2 c 2 (p_(f)^(2))/(c^(2))\frac{p_f^2}{c^2}pf2c2:
( 2.03 × 10 9 ) 2 ( 3.0 × 10 8 ) 2 = 4.1209 × 10 18 9 × 10 16 = 45.79 ( 2.03 × 10 9 ) 2 ( 3.0 × 10 8 ) 2 = 4.1209 × 10 18 9 × 10 16 = 45.79 ((2.03 xx10^(9))^(2))/((3.0 xx10^(8))^(2))=(4.1209 xx10^(18))/(9xx10^(16))=45.79\frac{(2.03 \times 10^9)^2}{(3.0 \times 10^8)^2} = \frac{4.1209 \times 10^{18}}{9 \times 10^{16}} = 45.79(2.03×109)2(3.0×108)2=4.1209×10189×1016=45.79
Now, calculate the denominator:
m 0 2 + p f 2 c 2 = ( 2.0 ) 2 + 45.79 = 4.0 + 45.79 = 49.79 m 0 2 + p f 2 c 2 = ( 2.0 ) 2 + 45.79 = 4.0 + 45.79 = 49.79 m_(0)^(2)+(p_(f)^(2))/(c^(2))=(2.0)^(2)+45.79=4.0+45.79=49.79m_0^2 + \frac{p_f^2}{c^2} = (2.0)^2 + 45.79 = 4.0 + 45.79 = 49.79m02+pf2c2=(2.0)2+45.79=4.0+45.79=49.79
Thus, the final speed v f v f v_(f)v_fvf is:
v f = 2.03 × 10 9 49.79 = 2.03 × 10 9 7.06 2.87 × 10 8 m/s v f = 2.03 × 10 9 49.79 = 2.03 × 10 9 7.06 2.87 × 10 8 m/s v_(f)=(2.03 xx10^(9))/(sqrt49.79)=(2.03 xx10^(9))/(7.06)~~2.87 xx10^(8)”m/s”v_f = \frac{2.03 \times 10^9}{\sqrt{49.79}} = \frac{2.03 \times 10^9}{7.06} \approx 2.87 \times 10^8 \, \text{m/s}vf=2.03×10949.79=2.03×1097.062.87×108m/s
Thus, the final speed of the particle is:
v f 2.87 × 10 8 m/s v f 2.87 × 10 8 m/s v_(f)~~2.87 xx10^(8)”m/s”v_f \approx 2.87 \times 10^8 \, \text{m/s}vf2.87×108m/s

Summary of Results:

  • Initial relativistic momentum: p i 5.34 × 10 8 kg m/s p i 5.34 × 10 8 kg m/s p_(i)~~5.34 xx10^(8)”kg””m/s”p_i \approx 5.34 \times 10^8 \, \text{kg} \, \text{m/s}pi5.34×108kgm/s
  • Final relativistic momentum: p f 2.03 × 10 9 kg m/s p f 2.03 × 10 9 kg m/s p_(f)~~2.03 xx10^(9)”kg””m/s”p_f \approx 2.03 \times 10^9 \, \text{kg} \, \text{m/s}pf2.03×109kgm/s
  • Final speed: v f 2.87 × 10 8 m/s v f 2.87 × 10 8 m/s v_(f)~~2.87 xx10^(8)”m/s”v_f \approx 2.87 \times 10^8 \, \text{m/s}vf2.87×108m/s
These results show the changes in momentum and speed due to the application of a constant relativistic force over a time interval of 1000 seconds.

d) A star emits light with a wavelength of 420 nm. An observer on Earth measures the wavelength of the light received from the star to be 600 nm. Calculate the speed with which the star is moving.

Answer:

To solve this problem, we need to use the Doppler effect for light. The Doppler shift in the wavelength of light observed from a star depends on whether the star is moving toward or away from the observer. In this case, since the wavelength observed on Earth is longer than the emitted wavelength, it indicates that the star is moving away from the observer. This is known as redshift.

Given:

  • Emitted wavelength λ emitted = 420 nm λ emitted = 420 nm lambda_(“emitted”)=420″nm”\lambda_{\text{emitted}} = 420 \, \text{nm}λemitted=420nm
  • Observed wavelength λ observed = 600 nm λ observed = 600 nm lambda_(“observed”)=600″nm”\lambda_{\text{observed}} = 600 \, \text{nm}λobserved=600nm
  • Speed of light c = 3.0 × 10 8 m/s c = 3.0 × 10 8 m/s c=3.0 xx10^(8)”m/s”c = 3.0 \times 10^8 \, \text{m/s}c=3.0×108m/s

Step 1: Use the Doppler Formula for Relativistic Speeds

The relativistic Doppler shift formula is:
λ observed λ emitted = 1 + β 1 β λ observed λ emitted = 1 + β 1 β (lambda_(“observed”))/(lambda_(“emitted”))=sqrt((1+beta)/(1-beta))\frac{\lambda_{\text{observed}}}{\lambda_{\text{emitted}}} = \sqrt{\frac{1 + \beta}{1 – \beta}}λobservedλemitted=1+β1β
where:
  • β = v c β = v c beta=(v)/(c)\beta = \frac{v}{c}β=vc is the ratio of the star’s velocity v v vvv to the speed of light c c ccc,
  • λ observed λ observed lambda_(“observed”)\lambda_{\text{observed}}λobserved is the observed wavelength,
  • λ emitted λ emitted lambda_(“emitted”)\lambda_{\text{emitted}}λemitted is the emitted wavelength.
We are given the wavelengths, and we need to solve for v v vvv, the velocity of the star.

Step 2: Rearrange the Doppler Formula

Rearranging the formula to solve for β β beta\betaβ:
λ observed λ emitted = 1 + β 1 β λ observed λ emitted = 1 + β 1 β (lambda_(“observed”))/(lambda_(“emitted”))=sqrt((1+beta)/(1-beta))\frac{\lambda_{\text{observed}}}{\lambda_{\text{emitted}}} = \sqrt{\frac{1 + \beta}{1 – \beta}}λobservedλemitted=1+β1β
Squaring both sides:
( λ observed λ emitted ) 2 = 1 + β 1 β λ observed λ emitted 2 = 1 + β 1 β ((lambda_(“observed”))/(lambda_(“emitted”)))^(2)=(1+beta)/(1-beta)\left( \frac{\lambda_{\text{observed}}}{\lambda_{\text{emitted}}} \right)^2 = \frac{1 + \beta}{1 – \beta}(λobservedλemitted)2=1+β1β
1 + β 1 β = ( λ observed λ emitted ) 2 1 + β 1 β = λ observed λ emitted 2 (1+beta)/(1-beta)=((lambda_(“observed”))/(lambda_(“emitted”)))^(2)\frac{1 + \beta}{1 – \beta} = \left( \frac{\lambda_{\text{observed}}}{\lambda_{\text{emitted}}} \right)^21+β1β=(λobservedλemitted)2
Substitute the values:
1 + β 1 β = ( 600 420 ) 2 = ( 1.4286 ) 2 = 2.0408 1 + β 1 β = 600 420 2 = 1.4286 2 = 2.0408 (1+beta)/(1-beta)=((600)/(420))^(2)=(1.4286)^(2)=2.0408\frac{1 + \beta}{1 – \beta} = \left( \frac{600}{420} \right)^2 = \left( 1.4286 \right)^2 = 2.04081+β1β=(600420)2=(1.4286)2=2.0408

Step 3: Solve for β β beta\betaβ

Now we can solve for β β beta\betaβ:
1 + β = 2.0408 ( 1 β ) 1 + β = 2.0408 ( 1 β ) 1+beta=2.0408(1-beta)1 + \beta = 2.0408 (1 – \beta)1+β=2.0408(1β)
Expanding the right-hand side:
1 + β = 2.0408 2.0408 β 1 + β = 2.0408 2.0408 β 1+beta=2.0408-2.0408 beta1 + \beta = 2.0408 – 2.0408\beta1+β=2.04082.0408β
Move the terms involving β β beta\betaβ to one side:
1 + β + 2.0408 β = 2.0408 1 + β + 2.0408 β = 2.0408 1+beta+2.0408 beta=2.04081 + \beta + 2.0408\beta = 2.04081+β+2.0408β=2.0408
1 + 3.0408 β = 2.0408 1 + 3.0408 β = 2.0408 1+3.0408 beta=2.04081 + 3.0408\beta = 2.04081+3.0408β=2.0408
Now subtract 1 from both sides:
3.0408 β = 1.0408 3.0408 β = 1.0408 3.0408 beta=1.04083.0408\beta = 1.04083.0408β=1.0408
Solve for β β beta\betaβ:
β = 1.0408 3.0408 0.342 β = 1.0408 3.0408 0.342 beta=(1.0408)/(3.0408)~~0.342\beta = \frac{1.0408}{3.0408} \approx 0.342β=1.04083.04080.342

Step 4: Calculate the Speed of the Star

Now, we can calculate the velocity v v vvv of the star using β = v c β = v c beta=(v)/(c)\beta = \frac{v}{c}β=vc:
β = v c β = v c beta=(v)/(c)\beta = \frac{v}{c}β=vc
v = β × c = 0.342 × 3.0 × 10 8 m/s v = β × c = 0.342 × 3.0 × 10 8 m/s v=beta xx c=0.342 xx3.0 xx10^(8)”m/s”v = \beta \times c = 0.342 \times 3.0 \times 10^8 \, \text{m/s}v=β×c=0.342×3.0×108m/s
v 1.026 × 10 8 m/s v 1.026 × 10 8 m/s v~~1.026 xx10^(8)”m/s”v \approx 1.026 \times 10^8 \, \text{m/s}v1.026×108m/s

Final Answer:

The speed of the star is approximately:
v 1.03 × 10 8 m/s v 1.03 × 10 8 m/s v~~1.03 xx10^(8)”m/s”v \approx 1.03 \times 10^8 \, \text{m/s}v1.03×108m/s

Scroll to Top
Scroll to Top