Sample Solution

MST-022 Solved Assignment

  1. (a) Using Gram Schmidt orthogonalisation process find orthogonal basis for the subspace of R 4 R 4 R^(4)\mathbb{R}^4R4 having basis w 1 = [ 1 0 1 0 ] , w 2 = [ 2 0 0 2 ] w 1 = 1 0 1 0 , w 2 = 2 0 0 2 w_(1)=[[1],[0],[1],[0]],w_(2)=[[2],[0],[0],[2]]\mathrm{w}_1=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathrm{w}_2=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 2\end{array}\right]w1=[1010],w2=[2002], and w 3 = [ 0 0 4 4 ] w 3 = 0 0 4 4 w_(3)=[[0],[0],[4],[4]]\mathrm{w}_3=\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 4\end{array}\right]w3=[0044].
    (b) Gradient of the function f ( x , y ) = 2 x 2 1 3 y 2 f ( x , y ) = 2 x 2 1 3 y 2 f(x,y)=2x^(2)-(1)/(3)y^(2)f(x, y)=2 x^2-\frac{1}{3} y^2f(x,y)=2x213y2 at the point P ( 1 , 2 ) P ( 1 , 2 ) P(1,2)P(1,2)P(1,2) is:
    (A) 4 i 4 3 j ^ 4 i 4 3 j ^ 4i-(4)/(3) hat(j)4 \mathrm{i}-\frac{4}{3} \hat{\mathrm{j}}4i43j^
    (B) 4 i + 4 3 j ^ 4 i + 4 3 j ^ 4i+(4)/(3) hat(j)4 \mathrm{i}+\frac{4}{3} \hat{\mathrm{j}}4i+43j^
    (C) 4 i 3 4 j ^ 4 i 3 4 j ^ 4i-(3)/(4) hat(j)4 \mathrm{i}-\frac{3}{4} \hat{\mathrm{j}}4i34j^
    (D) 4 i + 3 4 j ^ 4 i + 3 4 j ^ 4i+(3)/(4) hat(j)4 \mathrm{i}+\frac{3}{4} \hat{\mathrm{j}}4i+34j^
    (c) Using Taylor’s formula for f ( x , y ) = x e y f ( x , y ) = x e y f(x,y)=xe^(y)\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x} \mathrm{e}^{\mathrm{y}}f(x,y)=xey the quadratic approximation of f ( x , y ) f ( x , y ) f(x,y)\mathrm{f}(\mathrm{x}, \mathrm{y})f(x,y) near origin is:
    (A) x + x y x + x y x+xyx+x yx+xy
    (B) x x y x x y x-xyx-x yxxy
    (C) 2 x + y 2 x + y 2x+y2 \mathrm{x}+\mathrm{y}2x+y
    (D) x y x x y x xy-xx y-xxyx
    (d) If w = tan ( x y + π ) , x = ln ( 1 + 2 t ) , y = e t / 2 w = tan ( x y + π ) , x = ln ( 1 + 2 t ) , y = e t / 2 w=tan(xy+pi),x=ln(1+2t),y=e^(t//2)w=\tan (x y+\pi), x=\ln (1+2 t), y=e^{t / 2}w=tan(xy+π),x=ln(1+2t),y=et/2, then d w d t d w d t (dw)/(dt)\frac{d w}{d t}dwdt at the point t = 0 t = 0 t=0t=0t=0 is equal to:
    (A) 2
    (B) 0
    (C) 3 4 3 4 -(3)/(4)-\frac{3}{4}34
    (D) -1
  2. Obtain SVD of the matrix A = [ 2 1 1 0 0 1 ] A = 2      1 1      0 0      1 A=[[2,1],[1,0],[0,1]]A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]A=[211001].
  3. Explain how the principle of gradient descent works.
  4. Show that R n R n R^(n)\mathbb{R}^nRn is a vector space over R R R\mathbb{R}R, under the vector addition and scalar multiplication defined as follows.
    For all x = ( x 1 , x 2 , x 3 , , x n ) , y = ( y 1 , y 2 , y 3 , , y n ) R n x = x 1 , x 2 , x 3 , , x n , y = y 1 , y 2 , y 3 , , y n R n x=(x_(1),x_(2),x_(3),dots,x_(n)),y=(y_(1),y_(2),y_(3),dots,y_(n))inR^(n)\mathbf{x}=\left(\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}=\left(\mathrm{y}_1, \mathrm{y}_2, \mathrm{y}_3, \ldots, \mathrm{y}_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}x=(x1,x2,x3,,xn),y=(y1,y2,y3,,yn)Rn and α R α R alpha inR\alpha \in \mathbb{R}αR
x + y = ( x 1 , x 2 , , x n ) + ( y 1 , y 2 , , y n ) = ( x 1 + y 1 , x 2 + y 2 , , x n + y n ) α x = α ( x 1 , x 2 , x 3 , , x n ) = ( α x 1 , α x 2 , α x 3 , , α x n ) x + y = x 1 , x 2 , , x n + y 1 , y 2 , , y n = x 1 + y 1 , x 2 + y 2 , , x n + y n α x = α x 1 , x 2 , x 3 , , x n = α x 1 , α x 2 , α x 3 , , α x n {:[x+y=(x_(1),x_(2),dots,x_(n))+(y_(1),y_(2),dots,y_(n))=(x_(1)+y_(1),x_(2)+y_(2),dots,x_(n)+y_(n))],[alpha x=alpha(x_(1),x_(2),x_(3),dots,x_(n))=(alphax_(1),alphax_(2),alphax_(3),dots,alphax_(n))]:}\begin{aligned} & x+y=\left(x_1, x_2, \ldots, x_n\right)+\left(y_1, y_2, \ldots, y_n\right)=\left(x_1+y_1, x_2+y_2, \ldots, x_n+y_n\right) \\ & \alpha x=\alpha\left(x_1, x_2, x_3, \ldots, x_n\right)=\left(\alpha x_1, \alpha x_2, \alpha x_3, \ldots, \alpha x_n\right) \end{aligned}x+y=(x1,x2,,xn)+(y1,y2,,yn)=(x1+y1,x2+y2,,xn+yn)αx=α(x1,x2,x3,,xn)=(αx1,αx2,αx3,,αxn)

Answer:

Question:-1(a)

Using Gram Schmidt orthogonalisation process find orthogonal basis for the subspace of R 4 R 4 R^(4)\mathbb{R}^4R4 having basis w 1 = [ 1 0 1 0 ] , w 2 = [ 2 0 0 2 ] w 1 = 1 0 1 0 , w 2 = 2 0 0 2 w_(1)=[[1],[0],[1],[0]],w_(2)=[[2],[0],[0],[2]]\mathrm{w}_1=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right], \mathrm{w}_2=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 2\end{array}\right]w1=[1010],w2=[2002], and w 3 = [ 0 0 4 4 ] w 3 = 0 0 4 4 w_(3)=[[0],[0],[4],[4]]\mathrm{w}_3=\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 4\end{array}\right]w3=[0044].

Answer:

To find an orthogonal basis for the subspace of R 4 R 4 R^(4)\mathbb{R}^4R4 spanned by the vectors w 1 = [ 1 0 1 0 ] w 1 = 1 0 1 0 w_(1)=[[1],[0],[1],[0]]\mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}w1=[1010], w 2 = [ 2 0 0 2 ] w 2 = 2 0 0 2 w_(2)=[[2],[0],[0],[2]]\mathbf{w}_2 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix}w2=[2002], and w 3 = [ 0 0 4 4 ] w 3 = 0 0 4 4 w_(3)=[[0],[0],[4],[4]]\mathbf{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 4 \end{bmatrix}w3=[0044] using the Gram-Schmidt orthogonalization process, we proceed as follows:

Step 1: Set the first orthogonal vector

Start with the first basis vector:
v 1 = w 1 = [ 1 0 1 0 ] . v 1 = w 1 = 1 0 1 0 . v_(1)=w_(1)=[[1],[0],[1],[0]].\mathbf{v}_1 = \mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.v1=w1=[1010].

Step 2: Compute the second orthogonal vector

To find v 2 v 2 v_(2)\mathbf{v}_2v2, subtract the projection of w 2 w 2 w_(2)\mathbf{w}_2w2 onto v 1 v 1 v_(1)\mathbf{v}_1v1 from w 2 w 2 w_(2)\mathbf{w}_2w2:
v 2 = w 2 proj v 1 w 2 . v 2 = w 2 proj v 1 w 2 . v_(2)=w_(2)-“proj”_(v_(1))w_(2).\mathbf{v}_2 = \mathbf{w}_2 – \text{proj}_{\mathbf{v}_1} \mathbf{w}_2.v2=w2projv1w2.
The projection is given by:
proj v 1 w 2 = w 2 v 1 v 1 v 1 v 1 . proj v 1 w 2 = w 2 v 1 v 1 v 1 v 1 . “proj”_(v_(1))w_(2)=(w_(2)*v_(1))/(v_(1)*v_(1))v_(1).\text{proj}_{\mathbf{v}_1} \mathbf{w}_2 = \frac{\mathbf{w}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.projv1w2=w2v1v1v1v1.
Compute the dot products:
  • w 2 v 1 = [ 2 0 0 2 ] [ 1 0 1 0 ] = 2 1 + 0 0 + 0 1 + 2 0 = 2 w 2 v 1 = 2 0 0 2 1 0 1 0 = 2 1 + 0 0 + 0 1 + 2 0 = 2 w_(2)*v_(1)=[[2],[0],[0],[2]]*[[1],[0],[1],[0]]=2*1+0*0+0*1+2*0=2\mathbf{w}_2 \cdot \mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 2 \cdot 1 + 0 \cdot 0 + 0 \cdot 1 + 2 \cdot 0 = 2w2v1=[2002][1010]=21+00+01+20=2,
  • v 1 v 1 = [ 1 0 1 0 ] [ 1 0 1 0 ] = 1 2 + 0 2 + 1 2 + 0 2 = 2 v 1 v 1 = 1 0 1 0 1 0 1 0 = 1 2 + 0 2 + 1 2 + 0 2 = 2 v_(1)*v_(1)=[[1],[0],[1],[0]]*[[1],[0],[1],[0]]=1^(2)+0^(2)+1^(2)+0^(2)=2\mathbf{v}_1 \cdot \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 1^2 + 0^2 + 1^2 + 0^2 = 2v1v1=[1010][1010]=12+02+12+02=2.
Thus:
proj v 1 w 2 = 2 2 v 1 = v 1 = [ 1 0 1 0 ] . proj v 1 w 2 = 2 2 v 1 = v 1 = 1 0 1 0 . “proj”_(v_(1))w_(2)=(2)/(2)v_(1)=v_(1)=[[1],[0],[1],[0]].\text{proj}_{\mathbf{v}_1} \mathbf{w}_2 = \frac{2}{2} \mathbf{v}_1 = \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.projv1w2=22v1=v1=[1010].
Now compute:
v 2 = w 2 proj v 1 w 2 = [ 2 0 0 2 ] [ 1 0 1 0 ] = [ 2 1 0 0 0 1 2 0 ] = [ 1 0 1 2 ] . v 2 = w 2 proj v 1 w 2 = 2 0 0 2 1 0 1 0 = 2 1 0 0 0 1 2 0 = 1 0 1 2 . v_(2)=w_(2)-“proj”_(v_(1))w_(2)=[[2],[0],[0],[2]]-[[1],[0],[1],[0]]=[[2-1],[0-0],[0-1],[2-0]]=[[1],[0],[-1],[2]].\mathbf{v}_2 = \mathbf{w}_2 – \text{proj}_{\mathbf{v}_1} \mathbf{w}_2 = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix} – \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 – 1 \\ 0 – 0 \\ 0 – 1 \\ 2 – 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}.v2=w2projv1w2=[2002][1010]=[21000120]=[1012].
Verify orthogonality: v 1 v 2 = 1 1 + 0 0 + 1 ( 1 ) + 0 2 = 1 1 = 0 v 1 v 2 = 1 1 + 0 0 + 1 ( 1 ) + 0 2 = 1 1 = 0 v_(1)*v_(2)=1*1+0*0+1*(-1)+0*2=1-1=0\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 \cdot 1 + 0 \cdot 0 + 1 \cdot (-1) + 0 \cdot 2 = 1 – 1 = 0v1v2=11+00+1(1)+02=11=0, so v 1 v 1 v_(1)\mathbf{v}_1v1 and v 2 v 2 v_(2)\mathbf{v}_2v2 are orthogonal.

Step 3: Compute the third orthogonal vector

To find v 3 v 3 v_(3)\mathbf{v}_3v3, subtract the projections of w 3 w 3 w_(3)\mathbf{w}_3w3 onto v 1 v 1 v_(1)\mathbf{v}_1v1 and v 2 v 2 v_(2)\mathbf{v}_2v2 from w 3 w 3 w_(3)\mathbf{w}_3w3:
v 3 = w 3 proj v 1 w 3 proj v 2 w 3 . v 3 = w 3 proj v 1 w 3 proj v 2 w 3 . v_(3)=w_(3)-“proj”_(v_(1))w_(3)-“proj”_(v_(2))w_(3).\mathbf{v}_3 = \mathbf{w}_3 – \text{proj}_{\mathbf{v}_1} \mathbf{w}_3 – \text{proj}_{\mathbf{v}_2} \mathbf{w}_3.v3=w3projv1w3projv2w3.
  • Projection onto v 1 v 1 v_(1)\mathbf{v}_1v1:
proj v 1 w 3 = w 3 v 1 v 1 v 1 v 1 . proj v 1 w 3 = w 3 v 1 v 1 v 1 v 1 . “proj”_(v_(1))w_(3)=(w_(3)*v_(1))/(v_(1)*v_(1))v_(1).\text{proj}_{\mathbf{v}_1} \mathbf{w}_3 = \frac{\mathbf{w}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.projv1w3=w3v1v1v1v1.
Compute:
  • w 3 v 1 = [ 0 0 4 4 ] [ 1 0 1 0 ] = 0 1 + 0 0 + 4 1 + 4 0 = 4 w 3 v 1 = 0 0 4 4 1 0 1 0 = 0 1 + 0 0 + 4 1 + 4 0 = 4 w_(3)*v_(1)=[[0],[0],[4],[4]]*[[1],[0],[1],[0]]=0*1+0*0+4*1+4*0=4\mathbf{w}_3 \cdot \mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0 \cdot 1 + 0 \cdot 0 + 4 \cdot 1 + 4 \cdot 0 = 4w3v1=[0044][1010]=01+00+41+40=4,
  • v 1 v 1 = 2 v 1 v 1 = 2 v_(1)*v_(1)=2\mathbf{v}_1 \cdot \mathbf{v}_1 = 2v1v1=2 (from before).
Thus:
proj v 1 w 3 = 4 2 v 1 = 2 v 1 = 2 [ 1 0 1 0 ] = [ 2 0 2 0 ] . proj v 1 w 3 = 4 2 v 1 = 2 v 1 = 2 1 0 1 0 = 2 0 2 0 . “proj”_(v_(1))w_(3)=(4)/(2)v_(1)=2v_(1)=2[[1],[0],[1],[0]]=[[2],[0],[2],[0]].\text{proj}_{\mathbf{v}_1} \mathbf{w}_3 = \frac{4}{2} \mathbf{v}_1 = 2 \mathbf{v}_1 = 2 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}.projv1w3=42v1=2v1=2[1010]=[2020].
  • Projection onto v 2 v 2 v_(2)\mathbf{v}_2v2:
proj v 2 w 3 = w 3 v 2 v 2 v 2 v 2 . proj v 2 w 3 = w 3 v 2 v 2 v 2 v 2 . “proj”_(v_(2))w_(3)=(w_(3)*v_(2))/(v_(2)*v_(2))v_(2).\text{proj}_{\mathbf{v}_2} \mathbf{w}_3 = \frac{\mathbf{w}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2.projv2w3=w3v2v2v2v2.
Compute:
  • w 3 v 2 = [ 0 0 4 4 ] [ 1 0 1 2 ] = 0 1 + 0 0 + 4 ( 1 ) + 4 2 = 4 + 8 = 4 w 3 v 2 = 0 0 4 4 1 0 1 2 = 0 1 + 0 0 + 4 ( 1 ) + 4 2 = 4 + 8 = 4 w_(3)*v_(2)=[[0],[0],[4],[4]]*[[1],[0],[-1],[2]]=0*1+0*0+4*(-1)+4*2=-4+8=4\mathbf{w}_3 \cdot \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} = 0 \cdot 1 + 0 \cdot 0 + 4 \cdot (-1) + 4 \cdot 2 = -4 + 8 = 4w3v2=[0044][1012]=01+00+4(1)+42=4+8=4,
  • v 2 v 2 = [ 1 0 1 2 ] [ 1 0 1 2 ] = 1 2 + 0 2 + ( 1 ) 2 + 2 2 = 1 + 1 + 4 = 6 v 2 v 2 = 1 0 1 2 1 0 1 2 = 1 2 + 0 2 + ( 1 ) 2 + 2 2 = 1 + 1 + 4 = 6 v_(2)*v_(2)=[[1],[0],[-1],[2]]*[[1],[0],[-1],[2]]=1^(2)+0^(2)+(-1)^(2)+2^(2)=1+1+4=6\mathbf{v}_2 \cdot \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} = 1^2 + 0^2 + (-1)^2 + 2^2 = 1 + 1 + 4 = 6v2v2=[1012][1012]=12+02+(1)2+22=1+1+4=6.
Thus:
proj v 2 w 3 = 4 6 v 2 = 2 3 [ 1 0 1 2 ] = [ 2 3 0 2 3 4 3 ] . proj v 2 w 3 = 4 6 v 2 = 2 3 1 0 1 2 = 2 3 0 2 3 4 3 . “proj”_(v_(2))w_(3)=(4)/(6)v_(2)=(2)/(3)[[1],[0],[-1],[2]]=[[(2)/(3)],[0],[-(2)/(3)],[(4)/(3)]].\text{proj}_{\mathbf{v}_2} \mathbf{w}_3 = \frac{4}{6} \mathbf{v}_2 = \frac{2}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ 0 \\ -\frac{2}{3} \\ \frac{4}{3} \end{bmatrix}.projv2w3=46v2=23[1012]=[2302343].
Now compute:
v 3 = w 3 proj v 1 w 3 proj v 2 w 3 = [ 0 0 4 4 ] [ 2 0 2 0 ] [ 2 3 0 2 3 4 3 ] . v 3 = w 3 proj v 1 w 3 proj v 2 w 3 = 0 0 4 4 2 0 2 0 2 3 0 2 3 4 3 . v_(3)=w_(3)-“proj”_(v_(1))w_(3)-“proj”_(v_(2))w_(3)=[[0],[0],[4],[4]]-[[2],[0],[2],[0]]-[[(2)/(3)],[0],[-(2)/(3)],[(4)/(3)]].\mathbf{v}_3 = \mathbf{w}_3 – \text{proj}_{\mathbf{v}_1} \mathbf{w}_3 – \text{proj}_{\mathbf{v}_2} \mathbf{w}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 4 \end{bmatrix} – \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} – \begin{bmatrix} \frac{2}{3} \\ 0 \\ -\frac{2}{3} \\ \frac{4}{3} \end{bmatrix}.v3=w3projv1w3projv2w3=[0044][2020][2302343].
First, compute w 3 proj v 1 w 3 w 3 proj v 1 w 3 w_(3)-“proj”_(v_(1))w_(3)\mathbf{w}_3 – \text{proj}_{\mathbf{v}_1} \mathbf{w}_3w3projv1w3:
[ 0 0 4 4 ] [ 2 0 2 0 ] = [ 0 2 0 0 4 2 4 0 ] = [ 2 0 2 4 ] . 0 0 4 4 2 0 2 0 = 0 2 0 0 4 2 4 0 = 2 0 2 4 . [[0],[0],[4],[4]]-[[2],[0],[2],[0]]=[[0-2],[0-0],[4-2],[4-0]]=[[-2],[0],[2],[4]].\begin{bmatrix} 0 \\ 0 \\ 4 \\ 4 \end{bmatrix} – \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 – 2 \\ 0 – 0 \\ 4 – 2 \\ 4 – 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \\ 4 \end{bmatrix}.[0044][2020]=[02004240]=[2024].
Then subtract proj v 2 w 3 proj v 2 w 3 “proj”_(v_(2))w_(3)\text{proj}_{\mathbf{v}_2} \mathbf{w}_3projv2w3:
[ 2 0 2 4 ] [ 2 3 0 2 3 4 3 ] = [ 2 2 3 0 0 2 ( 2 3 ) 4 4 3 ] = [ 6 3 2 3 0 6 3 + 2 3 12 3 4 3 ] = [ 8 3 0 8 3 8 3 ] . 2 0 2 4 2 3 0 2 3 4 3 = 2 2 3 0 0 2 ( 2 3 ) 4 4 3 = 6 3 2 3 0 6 3 + 2 3 12 3 4 3 = 8 3 0 8 3 8 3 . [[-2],[0],[2],[4]]-[[(2)/(3)],[0],[-(2)/(3)],[(4)/(3)]]=[[-2-(2)/(3)],[0-0],[2-(-(2)/(3))],[4-(4)/(3)]]=[[-(6)/(3)-(2)/(3)],[0],[(6)/(3)+(2)/(3)],[(12)/(3)-(4)/(3)]]=[[-(8)/(3)],[0],[(8)/(3)],[(8)/(3)]].\begin{bmatrix} -2 \\ 0 \\ 2 \\ 4 \end{bmatrix} – \begin{bmatrix} \frac{2}{3} \\ 0 \\ -\frac{2}{3} \\ \frac{4}{3} \end{bmatrix} = \begin{bmatrix} -2 – \frac{2}{3} \\ 0 – 0 \\ 2 – (-\frac{2}{3}) \\ 4 – \frac{4}{3} \end{bmatrix} = \begin{bmatrix} -\frac{6}{3} – \frac{2}{3} \\ 0 \\ \frac{6}{3} + \frac{2}{3} \\ \frac{12}{3} – \frac{4}{3} \end{bmatrix} = \begin{bmatrix} -\frac{8}{3} \\ 0 \\ \frac{8}{3} \\ \frac{8}{3} \end{bmatrix}.[2024][2302343]=[223002(23)443]=[6323063+2312343]=[8308383].
To simplify, factor out 8 3 8 3 (8)/(3)\frac{8}{3}83:
v 3 = 8 3 [ 1 0 1 1 ] = [ 8 3 0 8 3 8 3 ] . v 3 = 8 3 1 0 1 1 = 8 3 0 8 3 8 3 . v_(3)=(8)/(3)[[-1],[0],[1],[1]]=[[-(8)/(3)],[0],[(8)/(3)],[(8)/(3)]].\mathbf{v}_3 = \frac{8}{3} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{8}{3} \\ 0 \\ \frac{8}{3} \\ \frac{8}{3} \end{bmatrix}.v3=83[1011]=[8308383].
We can use [ 1 0 1 1 ] 1 0 1 1 [[-1],[0],[1],[1]]\begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}[1011] as v 3 v 3 v_(3)\mathbf{v}_3v3 since scalar multiples are equivalent for the basis. Verify orthogonality:
  • v 1 v 3 = [ 1 0 1 0 ] [ 1 0 1 1 ] = 1 ( 1 ) + 0 0 + 1 1 + 0 1 = 1 + 1 = 0 v 1 v 3 = 1 0 1 0 1 0 1 1 = 1 ( 1 ) + 0 0 + 1 1 + 0 1 = 1 + 1 = 0 v_(1)*v_(3)=[[1],[0],[1],[0]]*[[-1],[0],[1],[1]]=1*(-1)+0*0+1*1+0*1=-1+1=0\mathbf{v}_1 \cdot \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = 1 \cdot (-1) + 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = -1 + 1 = 0v1v3=[1010][1011]=1(1)+00+11+01=1+1=0,
  • v 2 v 3 = [ 1 0 1 2 ] [ 1 0 1 1 ] = 1 ( 1 ) + 0 0 + ( 1 ) 1 + 2 1 = 1 1 + 2 = 0 v 2 v 3 = 1 0 1 2 1 0 1 1 = 1 ( 1 ) + 0 0 + ( 1 ) 1 + 2 1 = 1 1 + 2 = 0 v_(2)*v_(3)=[[1],[0],[-1],[2]]*[[-1],[0],[1],[1]]=1*(-1)+0*0+(-1)*1+2*1=-1-1+2=0\mathbf{v}_2 \cdot \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = 1 \cdot (-1) + 0 \cdot 0 + (-1) \cdot 1 + 2 \cdot 1 = -1 – 1 + 2 = 0v2v3=[1012][1011]=1(1)+00+(1)1+21=11+2=0.
All vectors are orthogonal.

Step 4: Verify linear independence

The vectors v 1 = [ 1 0 1 0 ] v 1 = 1 0 1 0 v_(1)=[[1],[0],[1],[0]]\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}v1=[1010], v 2 = [ 1 0 1 2 ] v 2 = 1 0 1 2 v_(2)=[[1],[0],[-1],[2]]\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}v2=[1012], v 3 = [ 1 0 1 1 ] v 3 = 1 0 1 1 v_(3)=[[-1],[0],[1],[1]]\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}v3=[1011] are orthogonal and non-zero, hence linearly independent. They span the same subspace as w 1 , w 2 , w 3 w 1 , w 2 , w 3 w_(1),w_(2),w_(3)\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3w1,w2,w3 since each v i v i v_(i)\mathbf{v}_ivi is a linear combination of w 1 , , w i w 1 , , w i w_(1),dots,w_(i)\mathbf{w}_1, \ldots, \mathbf{w}_iw1,,wi.

Final Answer

An orthogonal basis for the subspace is:
{ [ 1 0 1 0 ] , [ 1 0 1 2 ] , [ 1 0 1 1 ] } . 1 0 1 0 , 1 0 1 2 , 1 0 1 1 . {[[1],[0],[1],[0]],[[1],[0],[-1],[2]],[[-1],[0],[1],[1]]}.\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}.{[1010],[1012],[1011]}.

Scroll to Top
Scroll to Top