Sample Solution

mmt-004-solved-assignment-2024-ss-020cab3d-1c01-486f-9bdf-7506d86b97ee

mmt-004-solved-assignment-2024-ss-020cab3d-1c01-486f-9bdf-7506d86b97ee

MMT-004 Solved Assignment 2024 SS
  1. a) Let X = C [ 0 , 1 ] X = C [ 0 , 1 ] X=C[0,1]\mathrm{X}=\mathrm{C}[0,1]X=C[0,1]. Define d : X × X R d : X × X R d:X xx X rarrRd: X \times X \rightarrow \mathbf{R}d:X×XR by d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d(f,g)=int_(0)^(1)|f(t)-g(t)|dt,f,ginX\mathrm{d}(\mathrm{f}, \mathrm{g})=\int_0^1|\mathrm{f}(\mathrm{t})-\mathrm{g}(\mathrm{t})| \mathrm{dt}, \mathrm{f}, \mathrm{g} \in \mathrm{X}d(f,g)=01|f(t)g(t)|dt,f,gX where the integral is the Riemann integral. Show that d d ddd is a metric on X X XXX. Find d ( f , g ) d ( f , g ) d(f,g)d(f, g)d(f,g) where f ( x ) = 4 x f ( x ) = 4 x f(x)=4xf(x)=4 xf(x)=4x and g ( x ) = x 3 , x [ 0 , 1 ] g ( x ) = x 3 , x [ 0 , 1 ] g(x)=x^(3),x in[0,1]g(x)=x^3, x \in[0,1]g(x)=x3,x[0,1].
Answer:
To show that d d ddd is a metric on X X XXX, we need to verify the following properties for all f , g , h X f , g , h X f,g,h in Xf, g, h \in Xf,g,hX:
  1. Non-negativity: d ( f , g ) 0 d ( f , g ) 0 d(f,g) >= 0d(f, g) \geq 0d(f,g)0
  2. Identity of indiscernibles: d ( f , g ) = 0 d ( f , g ) = 0 d(f,g)=0d(f, g) = 0d(f,g)=0 if and only if f = g f = g f=gf = gf=g
  3. Symmetry: d ( f , g ) = d ( g , f ) d ( f , g ) = d ( g , f ) d(f,g)=d(g,f)d(f, g) = d(g, f)d(f,g)=d(g,f)
  4. Triangle inequality: d ( f , h ) d ( f , g ) + d ( g , h ) d ( f , h ) d ( f , g ) + d ( g , h ) d(f,h) <= d(f,g)+d(g,h)d(f, h) \leq d(f, g) + d(g, h)d(f,h)d(f,g)+d(g,h)
Let’s verify each property:
  1. Non-negativity:
    For any f , g X f , g X f,g in Xf, g \in Xf,gX, the absolute value function | | | | |*||\cdot||| ensures that | f ( t ) g ( t ) | 0 | f ( t ) g ( t ) | 0 |f(t)-g(t)| >= 0|f(t) – g(t)| \geq 0|f(t)g(t)|0 for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Therefore, the integral 0 1 | f ( t ) g ( t ) | d t 0 1 | f ( t ) g ( t ) | d t int_(0)^(1)|f(t)-g(t)|dt\int_0^1 |f(t) – g(t)| \, dt01|f(t)g(t)|dt is also non-negative. Hence, d ( f , g ) 0 d ( f , g ) 0 d(f,g) >= 0d(f, g) \geq 0d(f,g)0.
  2. Identity of indiscernibles:
    If f = g f = g f=gf = gf=g, then f ( t ) g ( t ) = 0 f ( t ) g ( t ) = 0 f(t)-g(t)=0f(t) – g(t) = 0f(t)g(t)=0 for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1], so d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 0 d t = 0 d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 0 d t = 0 d(f,g)=int_(0)^(1)|f(t)-g(t)|dt=int_(0)^(1)0dt=0d(f, g) = \int_0^1 |f(t) – g(t)| \, dt = \int_0^1 0 \, dt = 0d(f,g)=01|f(t)g(t)|dt=010dt=0.
    Conversely, if d ( f , g ) = 0 d ( f , g ) = 0 d(f,g)=0d(f, g) = 0d(f,g)=0, then 0 1 | f ( t ) g ( t ) | d t = 0 0 1 | f ( t ) g ( t ) | d t = 0 int_(0)^(1)|f(t)-g(t)|dt=0\int_0^1 |f(t) – g(t)| \, dt = 001|f(t)g(t)|dt=0. Since the integrand is non-negative, it must be zero almost everywhere, implying that f ( t ) = g ( t ) f ( t ) = g ( t ) f(t)=g(t)f(t) = g(t)f(t)=g(t) for almost all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Since f f fff and g g ggg are continuous, they must be equal everywhere on [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1], so f = g f = g f=gf = gf=g.
  3. Symmetry:
    By the properties of the absolute value function, | f ( t ) g ( t ) | = | g ( t ) f ( t ) | | f ( t ) g ( t ) | = | g ( t ) f ( t ) | |f(t)-g(t)|=|g(t)-f(t)||f(t) – g(t)| = |g(t) – f(t)||f(t)g(t)|=|g(t)f(t)| for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Therefore, d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 | g ( t ) f ( t ) | d t = d ( g , f ) d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 | g ( t ) f ( t ) | d t = d ( g , f ) d(f,g)=int_(0)^(1)|f(t)-g(t)|dt=int_(0)^(1)|g(t)-f(t)|dt=d(g,f)d(f, g) = \int_0^1 |f(t) – g(t)| \, dt = \int_0^1 |g(t) – f(t)| \, dt = d(g, f)d(f,g)=01|f(t)g(t)|dt=01|g(t)f(t)|dt=d(g,f).
  4. Triangle inequality:
    For any f , g , h X f , g , h X f,g,h in Xf, g, h \in Xf,g,hX and for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1], we have | f ( t ) h ( t ) | = | f ( t ) g ( t ) + g ( t ) h ( t ) | | f ( t ) g ( t ) | + | g ( t ) h ( t ) | | f ( t ) h ( t ) | = | f ( t ) g ( t ) + g ( t ) h ( t ) | | f ( t ) g ( t ) | + | g ( t ) h ( t ) | |f(t)-h(t)|=|f(t)-g(t)+g(t)-h(t)| <= |f(t)-g(t)|+|g(t)-h(t)||f(t) – h(t)| = |f(t) – g(t) + g(t) – h(t)| \leq |f(t) – g(t)| + |g(t) – h(t)||f(t)h(t)|=|f(t)g(t)+g(t)h(t)||f(t)g(t)|+|g(t)h(t)| by the triangle inequality for real numbers. Integrating both sides over [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1] gives:
    0 1 | f ( t ) h ( t ) | d t 0 1 ( | f ( t ) g ( t ) | + | g ( t ) h ( t ) | ) d t = 0 1 | f ( t ) g ( t ) | d t + 0 1 | g ( t ) h ( t ) | d t = d ( f , g ) + d ( g , h ) 0 1 | f ( t ) h ( t ) | d t 0 1 ( | f ( t ) g ( t ) | + | g ( t ) h ( t ) | ) d t = 0 1 | f ( t ) g ( t ) | d t + 0 1 | g ( t ) h ( t ) | d t = d ( f , g ) + d ( g , h ) int_(0)^(1)|f(t)-h(t)|dt <= int_(0)^(1)(|f(t)-g(t)|+|g(t)-h(t)|)dt=int_(0)^(1)|f(t)-g(t)|dt+int_(0)^(1)|g(t)-h(t)|dt=d(f,g)+d(g,h)\int_0^1 |f(t) – h(t)| \, dt \leq \int_0^1 (|f(t) – g(t)| + |g(t) – h(t)|) \, dt = \int_0^1 |f(t) – g(t)| \, dt + \int_0^1 |g(t) – h(t)| \, dt = d(f, g) + d(g, h)01|f(t)h(t)|dt01(|f(t)g(t)|+|g(t)h(t)|)dt=01|f(t)g(t)|dt+01|g(t)h(t)|dt=d(f,g)+d(g,h)
    Thus, d ( f , h ) d ( f , g ) + d ( g , h ) d ( f , h ) d ( f , g ) + d ( g , h ) d(f,h) <= d(f,g)+d(g,h)d(f, h) \leq d(f, g) + d(g, h)d(f,h)d(f,g)+d(g,h).
Since all four properties are satisfied, d d ddd is a metric on X X XXX.
Next, let’s find d ( f , g ) d ( f , g ) d(f,g)d(f, g)d(f,g) where f ( x ) = 4 x f ( x ) = 4 x f(x)=4xf(x) = 4xf(x)=4x and g ( x ) = x 3 g ( x ) = x 3 g(x)=x^(3)g(x) = x^3g(x)=x3 for x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in [0, 1]x[0,1]:
d ( f , g ) = 0 1 | 4 x x 3 | d x d ( f , g ) = 0 1 | 4 x x 3 | d x d(f,g)=int_(0)^(1)|4x-x^(3)|dxd(f, g) = \int_0^1 |4x – x^3| \, dxd(f,g)=01|4xx3|dx
To evaluate this integral, we can split it into regions where the integrand is positive or negative:
  1. For 0 x 2 0 x 2 0 <= x <= 20 \leq x \leq 20x2, 4 x x 3 4 x x 3 4x >= x^(3)4x \geq x^34xx3, so | 4 x x 3 | = 4 x x 3 | 4 x x 3 | = 4 x x 3 |4x-x^(3)|=4x-x^(3)|4x – x^3| = 4x – x^3|4xx3|=4xx3.
  2. For 2 < x 1 2 < x 1 2 < x <= 12 < x \leq 12<x1, 4 x < x 3 4 x < x 3 4x < x^(3)4x < x^34x<x3, so | 4 x x 3 | = x 3 4 x | 4 x x 3 | = x 3 4 x |4x-x^(3)|=x^(3)-4x|4x – x^3| = x^3 – 4x|4xx3|=x34x.
Thus, we can rewrite the integral as:
d ( f , g ) = 0 2 ( 4 x x 3 ) d x + 2 1 ( x 3 4 x ) d x d ( f , g ) = 0 2 ( 4 x x 3 ) d x + 2 1 ( x 3 4 x ) d x d(f,g)=int_(0)^(2)(4x-x^(3))dx+int_(2)^(1)(x^(3)-4x)dxd(f, g) = \int_0^{2} (4x – x^3) \, dx + \int_{2}^1 (x^3 – 4x)\, dxd(f,g)=02(4xx3)dx+21(x34x)dx
Now, we can calculate these integrals:
d ( f , g ) = [ 2 x 2 1 4 x 4 ] 0 2 + [ 1 4 x 4 2 x 2 ] 2 1 = ( 2 ( 2 ) 2 1 4 ( 2 ) 4 ) ( 0 0 ) + ( 1 4 ( 1 ) 4 2 ( 1 ) 2 ) ( 1 4 ( 2 ) 4 2 ( 2 ) 2 ) = ( 8 4 ) + ( 1 4 2 ) ( 4 8 ) = 4 7 4 ( 4 ) = 16 4 7 4 + 16 4 = 25 4 = 6.25 d ( f , g ) = 2 x 2 1 4 x 4 0 2 + 1 4 x 4 2 x 2 2 1 = 2 ( 2 ) 2 1 4 ( 2 ) 4 0 0 + 1 4 ( 1 ) 4 2 ( 1 ) 2 1 4 ( 2 ) 4 2 ( 2 ) 2 = 8 4 + 1 4 2 4 8 = 4 7 4 ( 4 ) = 16 4 7 4 + 16 4 = 25 4 = 6.25 {:[d(f”,”g)=[2x^(2)-(1)/(4)x^(4)]_(0)^(2)+[(1)/(4)x^(4)-2x^(2)]_(2)^(1)],[=(2(2)^(2)-(1)/(4)(2)^(4))-(0-0)+((1)/(4)(1)^(4)-2(1)^(2))-((1)/(4)(2)^(4)-2(2)^(2))],[=(8-4)+((1)/(4)-2)-(4-8)],[=4-(7)/(4)-(-4)],[=(16)/(4)-(7)/(4)+(16)/(4)],[=(25)/(4)],[=6.25]:}\begin{align*} d(f, g) &= \left[2x^2 – \frac{1}{4}x^4\right]_0^{2} + \left[\frac{1}{4}x^4 – 2x^2\right]_{2}^1 \\ &= \left(2(2)^2 – \frac{1}{4}(2)^4\right) – \left(0 – 0\right) + \left(\frac{1}{4}(1)^4 – 2(1)^2\right) – \left(\frac{1}{4}(2)^4 – 2(2)^2\right) \\ &= \left(8 – 4\right) + \left(\frac{1}{4} – 2\right) – \left(4 – 8\right) \\ &= 4 – \frac{7}{4} – (-4) \\ &= \frac{16}{4} – \frac{7}{4} + \frac{16}{4} \\ &= \frac{25}{4} \\ &= 6.25 \end{align*}d(f,g)=[2x214x4]02+[14x42x2]21=(2(2)214(2)4)(00)+(14(1)42(1)2)(14(2)42(2)2)=(84)+(142)(48)=474(4)=16474+164=254=6.25
Therefore, d ( f , g ) = 6.25 d ( f , g ) = 6.25 d(f,g)=6.25d(f, g) = 6.25d(f,g)=6.25.
b) Let ( X , d ) X , d ) X,d)X, d)X,d) be a metric space and a X a X a in Xa \in XaX be a fixed point of X X XXX. Show that the function f a : X R f a : X R f_(a):X rarrRf_a: X \rightarrow \mathbf{R}fa:XR given by f a ( x ) = d ( x , a ) f a ( x ) = d ( x , a ) f_(a)(x)=d(x,a)\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{d}(\mathrm{x}, \mathrm{a})fa(x)=d(x,a) is continuous. Is it uniformly continuous? Justify you answer.
Answer:
To show that the function f a : X R f a : X R f_(a):X rarrRf_a: X \rightarrow \mathbf{R}fa:XR given by f a ( x ) = d ( x , a ) f a ( x ) = d ( x , a ) f_(a)(x)=d(x,a)f_a(x) = d(x, a)fa(x)=d(x,a) is continuous, we need to show that for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y X x , y X x,y in Xx, y \in Xx,yX, if d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, then | f a ( x ) f a ( y ) | < ϵ | f a ( x ) f a ( y ) | < ϵ |f_(a)(x)-f_(a)(y)| < epsilon|f_a(x) – f_a(y)| < \epsilon|fa(x)fa(y)|<ϵ.
Let ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0 be given. Set δ = ϵ δ = ϵ delta=epsilon\delta = \epsilonδ=ϵ. Then, for any x , y X x , y X x,y in Xx, y \in Xx,yX such that d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, we have:
| f a ( x ) f a ( y ) | = | d ( x , a ) d ( y , a ) | d ( x , y ) (by the triangle inequality) < δ = ϵ | f a ( x ) f a ( y ) | = | d ( x , a ) d ( y , a ) | d ( x , y ) (by the triangle inequality) < δ = ϵ {:[|f_(a)(x)-f_(a)(y)|=|d(x”,”a)-d(y”,”a)|],[ <= d(x”,”y)quad(by the triangle inequality)],[ < delta],[=epsilon]:}\begin{align*} |f_a(x) – f_a(y)| &= |d(x, a) – d(y, a)| \\ &\leq d(x, y) \quad \text{(by the triangle inequality)} \\ &< \delta \\ &= \epsilon \end{align*}|fa(x)fa(y)|=|d(x,a)d(y,a)|d(x,y)(by the triangle inequality)<δ=ϵ
Hence, f a f a f_(a)f_afa is continuous.
Now, let’s consider whether f a f a f_(a)f_afa is uniformly continuous. A function is uniformly continuous if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y X x , y X x,y in Xx, y \in Xx,yX, if d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, then | f a ( x ) f a ( y ) | < ϵ | f a ( x ) f a ( y ) | < ϵ |f_(a)(x)-f_(a)(y)| < epsilon|f_a(x) – f_a(y)| < \epsilon|fa(x)fa(y)|<ϵ, where δ δ delta\deltaδ does not depend on the choice of x x xxx or y y yyy.
In metric spaces, continuity and uniform continuity are not always equivalent. However, if the metric space X X XXX is compact, then every continuous function from X X XXX to R R R\mathbf{R}R is uniformly continuous. This is a consequence of the Heine-Cantor theorem.
If the metric space X X XXX is not compact, we cannot guarantee that f a f a f_(a)f_afa is uniformly continuous. For example, consider the metric space ( R , d ) ( R , d ) (R,d)(\mathbf{R}, d)(R,d) where d ( x , y ) = | x y | d ( x , y ) = | x y | d(x,y)=|x-y|d(x, y) = |x – y|d(x,y)=|xy| is the standard metric on R R R\mathbf{R}R. The function f a ( x ) = | x a | f a ( x ) = | x a | f_(a)(x)=|x-a|f_a(x) = |x – a|fa(x)=|xa| is continuous but not uniformly continuous on R R R\mathbf{R}R.
In conclusion, the function f a f a f_(a)f_afa is continuous, but it is not necessarily uniformly continuous unless the metric space X X XXX has additional properties, such as compactness.
Verified Answer
5/5
Scroll to Top
Scroll to Top