MMTE-007 Solved Assignment 2024 CS
SOFT COMPUTING AND ITS APPLICATIONS
(Valid from 1st January, 2024 to 31st December, 2024)
a) Two sensors based upon their detection levels and gain settings are compared. The following of gain setting and sensor detection levels with a standard item being monitored provides typical membership values to represent the detection levels for each of the sensors.
Gain Setting
Sensor 1
detection levels
Sensor 1
detection levels | Sensor 1 |
| :—: |
| detection levels |
Sensor 2
detection levels
Sensor 2
detection levels | Sensor 2 |
| :—: |
| detection levels |
0
0
0
20
0.5
0.35
40
0.65
0.5
60
0.85
0.75
80
1
0.90
100
1
1
Gain Setting “Sensor 1
detection levels” “Sensor 2
detection levels”
0 0 0
20 0.5 0.35
40 0.65 0.5
60 0.85 0.75
80 1 0.90
100 1 1 | Gain Setting | Sensor 1 <br> detection levels | Sensor 2 <br> detection levels |
| :—: | :—: | :—: |
| 0 | 0 | 0 |
| 20 | 0.5 | 0.35 |
| 40 | 0.65 | 0.5 |
| 60 | 0.85 | 0.75 |
| 80 | 1 | 0.90 |
| 100 | 1 | 1 |
The universe of discourse is
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x={0,20,40,60,80,100} x=\{0,20,40,60,80,100\} x = { 0 , 20 , 40 , 60 , 80 , 100 } . Find the membership function for the two sensors. Also, verify De-morgon’s laws for these membership functions.
b) Consider a subset of natural numbers from 1 to 30 , as the universe of discourse,
U
U
U U U . Define the fuzzy sets "small" and "medium" by enumeration.
2. a) Construct the
α
α
alpha \alpha α -cut at
α
=
0.4
α
=
0.4
alpha=0.4 \alpha=0.4 α = 0.4 for the fuzzy sets defined in Q. 1(b).
b) Apply the "very" hedge on the fuzzy sets defined in Q. 1(b) to get the new modified fuzzy sets. Show the modified fuzzy sets through numeration.
3. Let A and B are two fuzzy sets and
x
∈
U
x
∈
U
xinU \mathrm{x} \in \mathrm{U} x ∈ U , if
μ
A
(
x
)
=
0.4
μ
A
(
x
)
=
0.4
mu_(A)(x)=0.4 \mu_{\mathrm{A}}(\mathrm{x})=0.4 μ A ( x ) = 0.4 and
μ
B
(
x
)
=
0.8
μ
B
(
x
)
=
0.8
mu_(B)(x)=0.8 \mu_{\mathrm{B}}(\mathrm{x})=0.8 μ B ( x ) = 0.8 then find out the following membership values:
i)
μ
A
(
x
)
μ
A
(
x
)
quadmu_(A)(x) \quad \mu_{\mathrm{A} \mathcal{}}(\mathrm{x}) μ A ( x ) ,
ii)
μ
A
∩
B
(
x
)
μ
A
∩
B
(
x
)
mu_(A nn B)(x) \mu_{A \cap B}(x) μ A ∩ B ( x ) ,
iii)
μ
A
―
∪
B
―
(
x
)
μ
A
¯
∪
B
¯
(
x
)
mu_( bar(A)uu bar(B))(x) \mu_{\overline{\mathrm{A}} \cup \overline{\mathrm{B}}}(\mathrm{x}) μ A ― ∪ B ― ( x ) ,
iv)
μ
A
―
∩
B
―
(
x
)
μ
A
¯
∩
B
¯
(
x
)
mu_( bar(A)nn bar(B))(x) \mu_{\overline{\mathrm{A}} \cap \overline{\mathrm{B}}}(\mathrm{x}) μ A ― ∩ B ― ( x ) ,
v)
μ
A
―
B
―
―
(
x
)
μ
A
¯
B
¯
¯
(
x
)
mu_( bar(A) bar(bar(B)))(x) \mu_{\overline{\mathrm{A}} \overline{\overline{\mathrm{B}}}}(\mathrm{x}) μ A ― B ― ― ( x ) ,
vi)
μ
A
―
B
―
―
(
x
)
μ
A
¯
B
¯
¯
(
x
)
mu_( bar(A) bar(bar(B)))(x) \mu_{\overline{\mathrm{A}} \overline{\overline{\mathrm{B}}}}(\mathrm{x}) μ A ― B ― ― ( x ) ,
Consider a dataset of six points given in the following table, each of which has two features
f
1
f
1
f_(1) f_1 f 1 and
f
2
f
2
f_(2) f_2 f 2 . Assuming the values of the parameters
c
c
c c c and
m
m
m m m as 2 and the initial cluster centers
v
1
=
(
5
,
5
)
v
1
=
(
5
,
5
)
v_(1)=(5,5) \mathrm{v}_1=(5,5) v 1 = ( 5 , 5 ) and
v
2
=
(
10
,
10
)
v
2
=
(
10
,
10
)
v_(2)=(10,10) \mathrm{v}_2=(10,10) v 2 = ( 10 , 10 ) , apply FCm algorithm to find the new cluster center after one iteration.
f
1
f
1
f_(1) \mathrm{f}_1 f 1
f
2
f
2
f_(2) \mathrm{f}_2 f 2
x
1
x
1
x_(1) \mathrm{x}_1 x 1
3
11
x
2
x
2
x_(2) \mathrm{x}_2 x 2
3
10
f_(1) f_(2)
x_(1) 3 11
x_(2) 3 10 | | $\mathrm{f}_1$ | $\mathrm{f}_2$ |
| :— | :— | :— |
| $\mathrm{x}_1$ | 3 | 11 |
| $\mathrm{x}_2$ | 3 | 10 |
x
3
x
3
x_(3) x_3 x 3
8
12
x
4
x
4
x_(4) x_4 x 4
10
6
x
5
x
5
x_(5) x_5 x 5
13
6
x
6
x
6
x_(6) x_6 x 6
13
5
x_(3) 8 12
x_(4) 10 6
x_(5) 13 6
x_(6) 13 5 | $x_3$ | 8 | 12 |
| :— | :— | :— |
| $x_4$ | 10 | 6 |
| $x_5$ | 13 | 6 |
| $x_6$ | 13 | 5 |
a) Define Error Correction Learning with examples.
b) Write the types of Neural Memory Models. Also, give one example of each.
Consider the set of pattern vectors P. Obtain the connectivity matrix (CM) for the patterns in
P
P
P P P (four patterns).
p
=
[
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
]
p
=
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
1
0
p=[[1,1,1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1],[1,1,1,0,0,0,0,0,0,1],[1,0,1,0,1,0,1,0,1,0]] \mathrm{p}=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] p = [ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 ]
a) Define Kohonen networks with examples.
b) Describe the Function Approximation in MLP. Also, explain Generalization of MLP.
a) Find the length and order of the following schema:
i)
S
1
=
(
1
∗
∗
00
∗
1
∗
∗
)
S
1
=
1
∗
∗
00
∗
1
∗
∗
S_(1)=(1^(****)00**1^(****)) \mathrm{S}_1=\left(1^{* *} 00 * 1^{* *}\right) S 1 = ( 1 ∗ ∗ 00 ∗ 1 ∗ ∗ )
ii)
S
2
=
(
∗
00
∗
1
∗
∗
)
S
2
=
∗
00
∗
1
∗
∗
S_(2)=(^(**)00^(**)1^(****)) \mathrm{S}_2=\left({ }^* 00{ }^* 1^{* *}\right) S 2 = ( ∗ 00 ∗ 1 ∗ ∗ )
iii)
S
3
=
(
∗
∗
∗
1
∗
∗
∗
)
S
3
=
∗
∗
∗
1
∗
∗
∗
S_(3)=(******1^(******)) \mathrm{S}_3=\left(* * * 1^{* * *}\right) S 3 = ( ∗ ∗ ∗ 1 ∗ ∗ ∗ )
b) Let an activation function be defined as
ϕ
(
v
)
=
1
1
+
e
−
zv
,
a
>
0
ϕ
(
v
)
=
1
1
+
e
−
zv
,
a
>
0
phi(v)=(1)/(1+e^(-zv)),a > 0 \phi(\mathrm{v})=\frac{1}{1+\mathrm{e}^{-\mathrm{zv}}}, \mathrm{a}>0 ϕ ( v ) = 1 1 + e − zv , a > 0
Show that
d
ϕ
d
v
=
a
ϕ
(
v
)
[
1
−
ϕ
(
v
)
]
d
ϕ
d
v
=
a
ϕ
(
v
)
[
1
−
ϕ
(
v
)
]
(d phi)/(dv)=a phi(v)[1-phi(v)] \frac{d \phi}{d v}=a \phi(v)[1-\phi(v)] d ϕ d v = a ϕ ( v ) [ 1 − ϕ ( v ) ] . What is the value of
ϕ
(
v
)
ϕ
(
v
)
phi(v) \phi(v) ϕ ( v ) at the origin? Also, find the value of
ϕ
(
v
)
ϕ
(
v
)
phi(v) \phi(\mathrm{v}) ϕ ( v ) as
v
v
v v v approaches
+
∞
+
∞
+oo +\infty + ∞ and
−
∞
−
∞
-oo -\infty − ∞ .
9. a) Consider the following travelling salesman problem involving 9 cities.
Parent 1
G
J
H
F
E
D
B
I
C
Parent 2
D
C
H
J
I
G
E
F
B
Parent 1 G J H F E D B I C
Parent 2 D C H J I G E F B | Parent 1 | G | J | H | F | E | D | B | I | C |
| :— | :— | :— | :— | :— | :— | :— | :— | :— | :— |
| Parent 2 | D | C | H | J | I | G | E | F | B |
Determine the children solution using.
i) Order crossover #1, assuming
4
th
4
th
4^(“th “) 4^{\text {th }} 4 th and
7
th
7
th
7^(“th “) 7^{\text {th }} 7 th sites as the crossover sites.
ii) Order crossover #2, assuming
3
rd
,
5
th
3
rd
,
5
th
3^(“rd “),5^(“th “) 3^{\text {rd }}, 5^{\text {th }} 3 rd , 5 th and
7
th
7
th
7^(“th “) 7^{\text {th }} 7 th as the key positions.
b) Consider the following single layer perception as shown in the following figure.
and the activation function of each unit is defined as
Φ
(
v
)
=
{
1
,
if
v
≥
0
0
,
otherwise.
Φ
(
v
)
=
1
,
if
v
≥
0
0
,
otherwise.
Phi(v)={[1″,”” if “v >= 0],[0″,”” otherwise. “]:} \Phi(\mathrm{v})=\left\{\begin{array}{l}1, \text { if } \mathrm{v} \geq 0 \\ 0, \text { otherwise. }\end{array}\right. Φ ( v ) = { 1 , if v ≥ 0 0 , otherwise.
Calculate the output
y
y
y y y of the unit for each of the following input patterns:
Patterns
P
1
P
1
P_(1) P_1 P 1
P
2
P
2
P_(2) P_2 P 2
P
3
P
3
P_(3) P_3 P 3
P
4
P
4
P_(4) P_4 P 4
x
1
x
1
x_(1) x_1 x 1
1
0
1
1
x
2
x
2
x_(2) x_2 x 2
0
1
0
1
x
3
x
3
x_(3) x_3 x 3
0
1
1
1
Patterns P_(1) P_(2) P_(3) P_(4)
x_(1) 1 0 1 1
x_(2) 0 1 0 1
x_(3) 0 1 1 1 | Patterns | $P_1$ | $P_2$ | $P_3$ | $P_4$ |
| :— | :— | :— | :— | :— |
| $x_1$ | 1 | 0 | 1 | 1 |
| $x_2$ | 0 | 1 | 0 | 1 |
| $x_3$ | 0 | 1 | 1 | 1 |
Also, find the modified weights after one iteration.
Which of the following statements are true or false? Give a short proof or a counter example in support of your answers.
a) There is chance of occurrence of the premature convergence in Roulett-wheel selection shceme used in GA.
b) Gradient based optimization methods are used when the objective function is not smooth and one needs efficient local optimization.
c) The
α
α
alpha \alpha α -cut of a fuzzy set A in
∪
∪
uu \cup ∪ is defined as
A
α
0
=
{
x
∈
U
∣
μ
A
(
x
)
≤
α
0
}
A
α
0
=
x
∈
U
∣
μ
A
(
x
)
≤
α
0
Aalpha_(0)={xin U∣mu_(A)(x) <= alpha_(0)} \mathrm{A} \alpha_0=\left\{\mathrm{x} \in U \mid \mu_{\mathrm{A}}(\mathrm{x}) \leq \alpha_0\right\} A α 0 = { x ∈ U ∣ μ A ( x ) ≤ α 0 }
d) A single perception with preprocessing is neither an auto associative network nor a multiple layer neural network.
e) If
W
(
k
0
)
=
W
(
k
0
+
1
)
=
W
(
k
0
+
2
)
W
k
0
=
W
k
0
+
1
=
W
k
0
+
2
W(k_(0))=W(k_(0)+1)=W(k_(0)+2) \mathrm{W}\left(\mathrm{k}_0\right)=\mathrm{W}\left(\mathrm{k}_0+1\right)=\mathrm{W}\left(\mathrm{k}_0+2\right) W ( k 0 ) = W ( k 0 + 1 ) = W ( k 0 + 2 ) , then perception is non-linear separable.
Expert Answer
Question:-1(a)
Two sensors based upon their detection levels and gain settings are compared. The following of gain setting and sensor detection levels with a standard item being monitored provides typical membership values to represent the detection levels for each of the sensors.
Gain Setting
Sensor 1
detection levels
Sensor 1
detection levels | Sensor 1 |
| :—: |
| detection levels |
Sensor 2
detection levels
Sensor 2
detection levels | Sensor 2 |
| :—: |
| detection levels |
0
0
0
20
0.5
0.35
40
0.65
0.5
60
0.85
0.75
80
1
0.90
100
1
1
Gain Setting “Sensor 1
detection levels” “Sensor 2
detection levels”
0 0 0
20 0.5 0.35
40 0.65 0.5
60 0.85 0.75
80 1 0.90
100 1 1 | Gain Setting | Sensor 1 <br> detection levels | Sensor 2 <br> detection levels |
| :—: | :—: | :—: |
| 0 | 0 | 0 |
| 20 | 0.5 | 0.35 |
| 40 | 0.65 | 0.5 |
| 60 | 0.85 | 0.75 |
| 80 | 1 | 0.90 |
| 100 | 1 | 1 |
The universe of discourse is
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x={0,20,40,60,80,100} x=\{0,20,40,60,80,100\} x = { 0 , 20 , 40 , 60 , 80 , 100 } . Find the membership function for the two sensors. Also, verify De-morgon’s laws for these membership functions.
Answer:
Step 1: Define the Membership Functions
We are given the detection levels for two sensors at different gain settings. The gain settings are represented as the
universe of discourse
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x
=
{
0
,
20
,
40
,
60
,
80
,
100
}
x={0,20,40,60,80,100} x = \{0, 20, 40, 60, 80, 100\} x = { 0 , 20 , 40 , 60 , 80 , 100 } , and for each gain setting, we have membership values representing the detection levels for each sensor.
Let’s define the membership functions for Sensor 1 and Sensor 2.
Membership Function for Sensor 1,
μ
S1
(
x
)
μ
S1
(
x
)
mu_(“S1”)(x) \mu_{\text{S1}}(x) μ S1 ( x )
The detection levels for Sensor 1 at different gain settings are:
μ
S1
(
0
)
=
0
,
μ
S1
(
20
)
=
0.5
,
μ
S1
(
40
)
=
0.65
,
μ
S1
(
60
)
=
0.85
,
μ
S1
(
80
)
=
1
,
μ
S1
(
100
)
=
1.
μ
S1
(
0
)
=
0
,
μ
S1
(
20
)
=
0.5
,
μ
S1
(
40
)
=
0.65
,
μ
S1
(
60
)
=
0.85
,
μ
S1
(
80
)
=
1
,
μ
S1
(
100
)
=
1.
{:[mu_(“S1″)(0)=0″,”],[mu_(“S1″)(20)=0.5″,”],[mu_(“S1″)(40)=0.65″,”],[mu_(“S1″)(60)=0.85″,”],[mu_(“S1″)(80)=1″,”],[mu_(“S1”)(100)=1.]:} \begin{aligned}
\mu_{\text{S1}}(0) &= 0, \\
\mu_{\text{S1}}(20) &= 0.5, \\
\mu_{\text{S1}}(40) &= 0.65, \\
\mu_{\text{S1}}(60) &= 0.85, \\
\mu_{\text{S1}}(80) &= 1, \\
\mu_{\text{S1}}(100) &= 1.
\end{aligned} μ S1 ( 0 ) = 0 , μ S1 ( 20 ) = 0.5 , μ S1 ( 40 ) = 0.65 , μ S1 ( 60 ) = 0.85 , μ S1 ( 80 ) = 1 , μ S1 ( 100 ) = 1.
Thus, the membership function for Sensor 1 is:
μ
S1
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.5
)
,
(
40
,
0.65
)
,
(
60
,
0.85
)
,
(
80
,
1
)
,
(
100
,
1
)
}
μ
S1
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.5
)
,
(
40
,
0.65
)
,
(
60
,
0.85
)
,
(
80
,
1
)
,
(
100
,
1
)
}
mu_(“S1”)(x)={(0,0),(20,0.5),(40,0.65),(60,0.85),(80,1),(100,1)} \mu_{\text{S1}}(x) = \{(0, 0), (20, 0.5), (40, 0.65), (60, 0.85), (80, 1), (100, 1)\} μ S1 ( x ) = { ( 0 , 0 ) , ( 20 , 0.5 ) , ( 40 , 0.65 ) , ( 60 , 0.85 ) , ( 80 , 1 ) , ( 100 , 1 ) }
Membership Function for Sensor 2,
μ
S2
(
x
)
μ
S2
(
x
)
mu_(“S2”)(x) \mu_{\text{S2}}(x) μ S2 ( x )
The detection levels for Sensor 2 at different gain settings are:
μ
S2
(
0
)
=
0
,
μ
S2
(
20
)
=
0.35
,
μ
S2
(
40
)
=
0.5
,
μ
S2
(
60
)
=
0.75
,
μ
S2
(
80
)
=
0.90
,
μ
S2
(
100
)
=
1.
μ
S2
(
0
)
=
0
,
μ
S2
(
20
)
=
0.35
,
μ
S2
(
40
)
=
0.5
,
μ
S2
(
60
)
=
0.75
,
μ
S2
(
80
)
=
0.90
,
μ
S2
(
100
)
=
1.
{:[mu_(“S2″)(0)=0″,”],[mu_(“S2″)(20)=0.35″,”],[mu_(“S2″)(40)=0.5″,”],[mu_(“S2″)(60)=0.75″,”],[mu_(“S2″)(80)=0.90″,”],[mu_(“S2”)(100)=1.]:} \begin{aligned}
\mu_{\text{S2}}(0) &= 0, \\
\mu_{\text{S2}}(20) &= 0.35, \\
\mu_{\text{S2}}(40) &= 0.5, \\
\mu_{\text{S2}}(60) &= 0.75, \\
\mu_{\text{S2}}(80) &= 0.90, \\
\mu_{\text{S2}}(100) &= 1.
\end{aligned} μ S2 ( 0 ) = 0 , μ S2 ( 20 ) = 0.35 , μ S2 ( 40 ) = 0.5 , μ S2 ( 60 ) = 0.75 , μ S2 ( 80 ) = 0.90 , μ S2 ( 100 ) = 1.
Thus, the membership function for Sensor 2 is:
μ
S2
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.35
)
,
(
40
,
0.5
)
,
(
60
,
0.75
)
,
(
80
,
0.90
)
,
(
100
,
1
)
}
μ
S2
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.35
)
,
(
40
,
0.5
)
,
(
60
,
0.75
)
,
(
80
,
0.90
)
,
(
100
,
1
)
}
mu_(“S2”)(x)={(0,0),(20,0.35),(40,0.5),(60,0.75),(80,0.90),(100,1)} \mu_{\text{S2}}(x) = \{(0, 0), (20, 0.35), (40, 0.5), (60, 0.75), (80, 0.90), (100, 1)\} μ S2 ( x ) = { ( 0 , 0 ) , ( 20 , 0.35 ) , ( 40 , 0.5 ) , ( 60 , 0.75 ) , ( 80 , 0.90 ) , ( 100 , 1 ) }
Step 2: Verify De Morgan’s Laws
De Morgan’s laws for fuzzy sets are similar to De Morgan’s laws in classical set theory. For two fuzzy sets
A
A
A A A and
B
B
B B B with membership functions
μ
A
(
x
)
μ
A
(
x
)
mu _(A)(x) \mu_A(x) μ A ( x ) and
μ
B
(
x
)
μ
B
(
x
)
mu _(B)(x) \mu_B(x) μ B ( x ) , De Morgan’s laws are stated as:
First Law:
μ
¬
(
A
∪
B
)
(
x
)
=
μ
¬
A
(
x
)
∩
μ
¬
B
(
x
)
μ
¬
(
A
∪
B
)
(
x
)
=
μ
¬
A
(
x
)
∩
μ
¬
B
(
x
)
mu_(not(A uu B))(x)=mu_(not A)(x)nnmu_(not B)(x) \mu_{\neg(A \cup B)}(x) = \mu_{\neg A}(x) \cap \mu_{\neg B}(x) μ ¬ ( A ∪ B ) ( x ) = μ ¬ A ( x ) ∩ μ ¬ B ( x )
This means:
μ
¬
(
A
∪
B
)
(
x
)
=
min
(
1
−
μ
A
(
x
)
,
1
−
μ
B
(
x
)
)
μ
¬
(
A
∪
B
)
(
x
)
=
min
(
1
−
μ
A
(
x
)
,
1
−
μ
B
(
x
)
)
mu_(not(A uu B))(x)=min(1-mu _(A)(x),1-mu _(B)(x)) \mu_{\neg(A \cup B)}(x) = \min(1 – \mu_A(x), 1 – \mu_B(x)) μ ¬ ( A ∪ B ) ( x ) = min ( 1 − μ A ( x ) , 1 − μ B ( x ) )
Second Law:
μ
¬
(
A
∩
B
)
(
x
)
=
μ
¬
A
(
x
)
∪
μ
¬
B
(
x
)
μ
¬
(
A
∩
B
)
(
x
)
=
μ
¬
A
(
x
)
∪
μ
¬
B
(
x
)
mu_(not(A nn B))(x)=mu_(not A)(x)uumu_(not B)(x) \mu_{\neg(A \cap B)}(x) = \mu_{\neg A}(x) \cup \mu_{\neg B}(x) μ ¬ ( A ∩ B ) ( x ) = μ ¬ A ( x ) ∪ μ ¬ B ( x )
This means:
μ
¬
(
A
∩
B
)
(
x
)
=
max
(
1
−
μ
A
(
x
)
,
1
−
μ
B
(
x
)
)
μ
¬
(
A
∩
B
)
(
x
)
=
max
(
1
−
μ
A
(
x
)
,
1
−
μ
B
(
x
)
)
mu_(not(A nn B))(x)=max(1-mu _(A)(x),1-mu _(B)(x)) \mu_{\neg(A \cap B)}(x) = \max(1 – \mu_A(x), 1 – \mu_B(x)) μ ¬ ( A ∩ B ) ( x ) = max ( 1 − μ A ( x ) , 1 − μ B ( x ) )
Let’s verify these laws using the membership functions for Sensor 1 and Sensor 2.
First Law:
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
mu_(not(S1uu S2))(x)=mu_(not S1)(x)nnmu_(not S2)(x) \mu_{\neg(S1 \cup S2)}(x) = \mu_{\neg S1}(x) \cap \mu_{\neg S2}(x) μ ¬ ( S 1 ∪ S 2 ) ( x ) = μ ¬ S 1 ( x ) ∩ μ ¬ S 2 ( x )
Compute
μ
S
1
∪
S
2
(
x
)
μ
S
1
∪
S
2
(
x
)
mu_(S1uu S2)(x) \mu_{S1 \cup S2}(x) μ S 1 ∪ S 2 ( x ) :
The union of two fuzzy sets is the maximum of the membership values:
μ
S
1
∪
S
2
(
x
)
=
max
(
μ
S1
(
x
)
,
μ
S2
(
x
)
)
μ
S
1
∪
S
2
(
x
)
=
max
(
μ
S1
(
x
)
,
μ
S2
(
x
)
)
mu_(S1uu S2)(x)=max(mu_(“S1”)(x),mu_(“S2”)(x)) \mu_{S1 \cup S2}(x) = \max(\mu_{\text{S1}}(x), \mu_{\text{S2}}(x)) μ S 1 ∪ S 2 ( x ) = max ( μ S1 ( x ) , μ S2 ( x ) )
For each value of
x
x
x x x :
μ
S
1
∪
S
2
(
0
)
=
max
(
0
,
0
)
=
0
,
μ
S
1
∪
S
2
(
20
)
=
max
(
0.5
,
0.35
)
=
0.5
,
μ
S
1
∪
S
2
(
40
)
=
max
(
0.65
,
0.5
)
=
0.65
,
μ
S
1
∪
S
2
(
60
)
=
max
(
0.85
,
0.75
)
=
0.85
,
μ
S
1
∪
S
2
(
80
)
=
max
(
1
,
0.90
)
=
1
,
μ
S
1
∪
S
2
(
100
)
=
max
(
1
,
1
)
=
1.
μ
S
1
∪
S
2
(
0
)
=
max
(
0
,
0
)
=
0
,
μ
S
1
∪
S
2
(
20
)
=
max
(
0.5
,
0.35
)
=
0.5
,
μ
S
1
∪
S
2
(
40
)
=
max
(
0.65
,
0.5
)
=
0.65
,
μ
S
1
∪
S
2
(
60
)
=
max
(
0.85
,
0.75
)
=
0.85
,
μ
S
1
∪
S
2
(
80
)
=
max
(
1
,
0.90
)
=
1
,
μ
S
1
∪
S
2
(
100
)
=
max
(
1
,
1
)
=
1.
{:[mu_(S1uu S2)(0)=max(0″,”0)=0″,”],[mu_(S1uu S2)(20)=max(0.5″,”0.35)=0.5″,”],[mu_(S1uu S2)(40)=max(0.65″,”0.5)=0.65″,”],[mu_(S1uu S2)(60)=max(0.85″,”0.75)=0.85″,”],[mu_(S1uu S2)(80)=max(1″,”0.90)=1″,”],[mu_(S1uu S2)(100)=max(1″,”1)=1.]:} \begin{aligned}
\mu_{S1 \cup S2}(0) &= \max(0, 0) = 0, \\
\mu_{S1 \cup S2}(20) &= \max(0.5, 0.35) = 0.5, \\
\mu_{S1 \cup S2}(40) &= \max(0.65, 0.5) = 0.65, \\
\mu_{S1 \cup S2}(60) &= \max(0.85, 0.75) = 0.85, \\
\mu_{S1 \cup S2}(80) &= \max(1, 0.90) = 1, \\
\mu_{S1 \cup S2}(100) &= \max(1, 1) = 1.
\end{aligned} μ S 1 ∪ S 2 ( 0 ) = max ( 0 , 0 ) = 0 , μ S 1 ∪ S 2 ( 20 ) = max ( 0.5 , 0.35 ) = 0.5 , μ S 1 ∪ S 2 ( 40 ) = max ( 0.65 , 0.5 ) = 0.65 , μ S 1 ∪ S 2 ( 60 ) = max ( 0.85 , 0.75 ) = 0.85 , μ S 1 ∪ S 2 ( 80 ) = max ( 1 , 0.90 ) = 1 , μ S 1 ∪ S 2 ( 100 ) = max ( 1 , 1 ) = 1.
Compute
μ
¬
(
S
1
∪
S
2
)
(
x
)
μ
¬
(
S
1
∪
S
2
)
(
x
)
mu_(not(S1uu S2))(x) \mu_{\neg(S1 \cup S2)}(x) μ ¬ ( S 1 ∪ S 2 ) ( x ) :
The complement of a fuzzy set is
1
−
μ
(
x
)
1
−
μ
(
x
)
1-mu(x) 1 – \mu(x) 1 − μ ( x ) :
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
1
−
μ
S
1
∪
S
2
(
x
)
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
1
−
μ
S
1
∪
S
2
(
x
)
mu_(not(S1uu S2))(x)=1-mu_(S1uu S2)(x) \mu_{\neg(S1 \cup S2)}(x) = 1 – \mu_{S1 \cup S2}(x) μ ¬ ( S 1 ∪ S 2 ) ( x ) = 1 − μ S 1 ∪ S 2 ( x )
For each value of
x
x
x x x :
μ
¬
(
S
1
∪
S
2
)
(
0
)
=
1
−
0
=
1
,
μ
¬
(
S
1
∪
S
2
)
(
20
)
=
1
−
0.5
=
0.5
,
μ
¬
(
S
1
∪
S
2
)
(
40
)
=
1
−
0.65
=
0.35
,
μ
¬
(
S
1
∪
S
2
)
(
60
)
=
1
−
0.85
=
0.15
,
μ
¬
(
S
1
∪
S
2
)
(
80
)
=
1
−
1
=
0
,
μ
¬
(
S
1
∪
S
2
)
(
100
)
=
1
−
1
=
0.
μ
¬
(
S
1
∪
S
2
)
(
0
)
=
1
−
0
=
1
,
μ
¬
(
S
1
∪
S
2
)
(
20
)
=
1
−
0.5
=
0.5
,
μ
¬
(
S
1
∪
S
2
)
(
40
)
=
1
−
0.65
=
0.35
,
μ
¬
(
S
1
∪
S
2
)
(
60
)
=
1
−
0.85
=
0.15
,
μ
¬
(
S
1
∪
S
2
)
(
80
)
=
1
−
1
=
0
,
μ
¬
(
S
1
∪
S
2
)
(
100
)
=
1
−
1
=
0.
{:[mu_(not(S1uu S2))(0)=1-0=1″,”],[mu_(not(S1uu S2))(20)=1-0.5=0.5″,”],[mu_(not(S1uu S2))(40)=1-0.65=0.35″,”],[mu_(not(S1uu S2))(60)=1-0.85=0.15″,”],[mu_(not(S1uu S2))(80)=1-1=0″,”],[mu_(not(S1uu S2))(100)=1-1=0.]:} \begin{aligned}
\mu_{\neg(S1 \cup S2)}(0) &= 1 – 0 = 1, \\
\mu_{\neg(S1 \cup S2)}(20) &= 1 – 0.5 = 0.5, \\
\mu_{\neg(S1 \cup S2)}(40) &= 1 – 0.65 = 0.35, \\
\mu_{\neg(S1 \cup S2)}(60) &= 1 – 0.85 = 0.15, \\
\mu_{\neg(S1 \cup S2)}(80) &= 1 – 1 = 0, \\
\mu_{\neg(S1 \cup S2)}(100) &= 1 – 1 = 0.
\end{aligned} μ ¬ ( S 1 ∪ S 2 ) ( 0 ) = 1 − 0 = 1 , μ ¬ ( S 1 ∪ S 2 ) ( 20 ) = 1 − 0.5 = 0.5 , μ ¬ ( S 1 ∪ S 2 ) ( 40 ) = 1 − 0.65 = 0.35 , μ ¬ ( S 1 ∪ S 2 ) ( 60 ) = 1 − 0.85 = 0.15 , μ ¬ ( S 1 ∪ S 2 ) ( 80 ) = 1 − 1 = 0 , μ ¬ ( S 1 ∪ S 2 ) ( 100 ) = 1 − 1 = 0.
Compute
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
mu_(not S1)(x)nnmu_(not S2)(x) \mu_{\neg S1}(x) \cap \mu_{\neg S2}(x) μ ¬ S 1 ( x ) ∩ μ ¬ S 2 ( x ) :
The complement of Sensor 1 and Sensor 2 is:
μ
¬
S
1
(
x
)
=
1
−
μ
S1
(
x
)
,
μ
¬
S
2
(
x
)
=
1
−
μ
S2
(
x
)
μ
¬
S
1
(
x
)
=
1
−
μ
S1
(
x
)
,
μ
¬
S
2
(
x
)
=
1
−
μ
S2
(
x
)
mu_(not S1)(x)=1-mu_(“S1”)(x),quadmu_(not S2)(x)=1-mu_(“S2”)(x) \mu_{\neg S1}(x) = 1 – \mu_{\text{S1}}(x), \quad \mu_{\neg S2}(x) = 1 – \mu_{\text{S2}}(x) μ ¬ S 1 ( x ) = 1 − μ S1 ( x ) , μ ¬ S 2 ( x ) = 1 − μ S2 ( x )
For each value of
x
x
x x x :
μ
¬
S
1
(
0
)
=
1
−
0
=
1
,
μ
¬
S
2
(
0
)
=
1
−
0
=
1
,
μ
¬
S
1
(
20
)
=
1
−
0.5
=
0.5
,
μ
¬
S
2
(
20
)
=
1
−
0.35
=
0.65
,
μ
¬
S
1
(
40
)
=
1
−
0.65
=
0.35
,
μ
¬
S
2
(
40
)
=
1
−
0.5
=
0.5
,
μ
¬
S
1
(
60
)
=
1
−
0.85
=
0.15
,
μ
¬
S
2
(
60
)
=
1
−
0.75
=
0.25
,
μ
¬
S
1
(
80
)
=
1
−
1
=
0
,
μ
¬
S
2
(
80
)
=
1
−
0.90
=
0.1
,
μ
¬
S
1
(
100
)
=
1
−
1
=
0
,
μ
¬
S
2
(
100
)
=
1
−
1
=
0.
μ
¬
S
1
(
0
)
=
1
−
0
=
1
,
μ
¬
S
2
(
0
)
=
1
−
0
=
1
,
μ
¬
S
1
(
20
)
=
1
−
0.5
=
0.5
,
μ
¬
S
2
(
20
)
=
1
−
0.35
=
0.65
,
μ
¬
S
1
(
40
)
=
1
−
0.65
=
0.35
,
μ
¬
S
2
(
40
)
=
1
−
0.5
=
0.5
,
μ
¬
S
1
(
60
)
=
1
−
0.85
=
0.15
,
μ
¬
S
2
(
60
)
=
1
−
0.75
=
0.25
,
μ
¬
S
1
(
80
)
=
1
−
1
=
0
,
μ
¬
S
2
(
80
)
=
1
−
0.90
=
0.1
,
μ
¬
S
1
(
100
)
=
1
−
1
=
0
,
μ
¬
S
2
(
100
)
=
1
−
1
=
0.
{:[mu_(not S1)(0)=1-0=1″,”quadmu_(not S2)(0)=1-0=1″,”],[mu_(not S1)(20)=1-0.5=0.5″,”quadmu_(not S2)(20)=1-0.35=0.65″,”],[mu_(not S1)(40)=1-0.65=0.35″,”quadmu_(not S2)(40)=1-0.5=0.5″,”],[mu_(not S1)(60)=1-0.85=0.15″,”quadmu_(not S2)(60)=1-0.75=0.25″,”],[mu_(not S1)(80)=1-1=0″,”quadmu_(not S2)(80)=1-0.90=0.1″,”],[mu_(not S1)(100)=1-1=0″,”quadmu_(not S2)(100)=1-1=0.]:} \begin{aligned}
\mu_{\neg S1}(0) &= 1 – 0 = 1, \quad &\mu_{\neg S2}(0) &= 1 – 0 = 1, \\
\mu_{\neg S1}(20) &= 1 – 0.5 = 0.5, \quad &\mu_{\neg S2}(20) &= 1 – 0.35 = 0.65, \\
\mu_{\neg S1}(40) &= 1 – 0.65 = 0.35, \quad &\mu_{\neg S2}(40) &= 1 – 0.5 = 0.5, \\
\mu_{\neg S1}(60) &= 1 – 0.85 = 0.15, \quad &\mu_{\neg S2}(60) &= 1 – 0.75 = 0.25, \\
\mu_{\neg S1}(80) &= 1 – 1 = 0, \quad &\mu_{\neg S2}(80) &= 1 – 0.90 = 0.1, \\
\mu_{\neg S1}(100) &= 1 – 1 = 0, \quad &\mu_{\neg S2}(100) &= 1 – 1 = 0.
\end{aligned} μ ¬ S 1 ( 0 ) = 1 − 0 = 1 , μ ¬ S 2 ( 0 ) = 1 − 0 = 1 , μ ¬ S 1 ( 20 ) = 1 − 0.5 = 0.5 , μ ¬ S 2 ( 20 ) = 1 − 0.35 = 0.65 , μ ¬ S 1 ( 40 ) = 1 − 0.65 = 0.35 , μ ¬ S 2 ( 40 ) = 1 − 0.5 = 0.5 , μ ¬ S 1 ( 60 ) = 1 − 0.85 = 0.15 , μ ¬ S 2 ( 60 ) = 1 − 0.75 = 0.25 , μ ¬ S 1 ( 80 ) = 1 − 1 = 0 , μ ¬ S 2 ( 80 ) = 1 − 0.90 = 0.1 , μ ¬ S 1 ( 100 ) = 1 − 1 = 0 , μ ¬ S 2 ( 100 ) = 1 − 1 = 0.
Now, compute the intersection (minimum):
μ
¬
S
1
(
0
)
∩
μ
¬
S
2
(
0
)
=
min
(
1
,
1
)
=
1
,
μ
¬
S
1
(
20
)
∩
μ
¬
S
2
(
20
)
=
min
(
0.5
,
0.65
)
=
0.5
,
μ
¬
S
1
(
40
)
∩
μ
¬
S
2
(
40
)
=
min
(
0.35
,
0.5
)
=
0.35
,
μ
¬
S
1
(
60
)
∩
μ
¬
S
2
(
60
)
=
min
(
0.15
,
0.25
)
=
0.15
,
μ
¬
S
1
(
80
)
∩
μ
¬
S
2
(
80
)
=
min
(
0
,
0.1
)
=
0
,
μ
¬
S
1
(
100
)
∩
μ
¬
S
2
(
100
)
=
min
(
0
,
0
)
=
0.
μ
¬
S
1
(
0
)
∩
μ
¬
S
2
(
0
)
=
min
(
1
,
1
)
=
1
,
μ
¬
S
1
(
20
)
∩
μ
¬
S
2
(
20
)
=
min
(
0.5
,
0.65
)
=
0.5
,
μ
¬
S
1
(
40
)
∩
μ
¬
S
2
(
40
)
=
min
(
0.35
,
0.5
)
=
0.35
,
μ
¬
S
1
(
60
)
∩
μ
¬
S
2
(
60
)
=
min
(
0.15
,
0.25
)
=
0.15
,
μ
¬
S
1
(
80
)
∩
μ
¬
S
2
(
80
)
=
min
(
0
,
0.1
)
=
0
,
μ
¬
S
1
(
100
)
∩
μ
¬
S
2
(
100
)
=
min
(
0
,
0
)
=
0.
{:[mu_(not S1)(0)nnmu_(not S2)(0)=min(1″,”1)=1″,”],[mu_(not S1)(20)nnmu_(not S2)(20)=min(0.5″,”0.65)=0.5″,”],[mu_(not S1)(40)nnmu_(not S2)(40)=min(0.35″,”0.5)=0.35″,”],[mu_(not S1)(60)nnmu_(not S2)(60)=min(0.15″,”0.25)=0.15″,”],[mu_(not S1)(80)nnmu_(not S2)(80)=min(0″,”0.1)=0″,”],[mu_(not S1)(100)nnmu_(not S2)(100)=min(0″,”0)=0.]:} \begin{aligned}
\mu_{\neg S1}(0) \cap \mu_{\neg S2}(0) &= \min(1, 1) = 1, \\
\mu_{\neg S1}(20) \cap \mu_{\neg S2}(20) &= \min(0.5, 0.65) = 0.5, \\
\mu_{\neg S1}(40) \cap \mu_{\neg S2}(40) &= \min(0.35, 0.5) = 0.35, \\
\mu_{\neg S1}(60) \cap \mu_{\neg S2}(60) &= \min(0.15, 0.25) = 0.15, \\
\mu_{\neg S1}(80) \cap \mu_{\neg S2}(80) &= \min(0, 0.1) = 0, \\
\mu_{\neg S1}(100) \cap \mu_{\neg S2}(100) &= \min(0, 0) = 0.
\end{aligned} μ ¬ S 1 ( 0 ) ∩ μ ¬ S 2 ( 0 ) = min ( 1 , 1 ) = 1 , μ ¬ S 1 ( 20 ) ∩ μ ¬ S 2 ( 20 ) = min ( 0.5 , 0.65 ) = 0.5 , μ ¬ S 1 ( 40 ) ∩ μ ¬ S 2 ( 40 ) = min ( 0.35 , 0.5 ) = 0.35 , μ ¬ S 1 ( 60 ) ∩ μ ¬ S 2 ( 60 ) = min ( 0.15 , 0.25 ) = 0.15 , μ ¬ S 1 ( 80 ) ∩ μ ¬ S 2 ( 80 ) = min ( 0 , 0.1 ) = 0 , μ ¬ S 1 ( 100 ) ∩ μ ¬ S 2 ( 100 ) = min ( 0 , 0 ) = 0.
Compare Results for the First Law:
We can see that the results match for all values of
x
x
x x x , so the first De Morgan law holds:
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
μ
¬
(
S
1
∪
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∩
μ
¬
S
2
(
x
)
mu_(not(S1uu S2))(x)=mu_(not S1)(x)nnmu_(not S2)(x) \mu_{\neg(S1 \cup S2)}(x) = \mu_{\neg S1}(x) \cap \mu_{\neg S2}(x) μ ¬ ( S 1 ∪ S 2 ) ( x ) = μ ¬ S 1 ( x ) ∩ μ ¬ S 2 ( x )
Second Law:
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
mu_(not(S1nn S2))(x)=mu_(not S1)(x)uumu_(not S2)(x) \mu_{\neg(S1 \cap S2)}(x) = \mu_{\neg S1}(x) \cup \mu_{\neg S2}(x) μ ¬ ( S 1 ∩ S 2 ) ( x ) = μ ¬ S 1 ( x ) ∪ μ ¬ S 2 ( x )
Compute
μ
S
1
∩
S
2
(
x
)
μ
S
1
∩
S
2
(
x
)
mu_(S1nn S2)(x) \mu_{S1 \cap S2}(x) μ S 1 ∩ S 2 ( x ) :
The intersection of two fuzzy sets is the minimum of the membership values:
μ
S
1
∩
S
2
(
x
)
=
min
(
μ
S1
(
x
)
,
μ
S2
(
x
)
)
μ
S
1
∩
S
2
(
x
)
=
min
(
μ
S1
(
x
)
,
μ
S2
(
x
)
)
mu_(S1nn S2)(x)=min(mu_(“S1”)(x),mu_(“S2”)(x)) \mu_{S1 \cap S2}(x) = \min(\mu_{\text{S1}}(x), \mu_{\text{S2}}(x)) μ S 1 ∩ S 2 ( x ) = min ( μ S1 ( x ) , μ S2 ( x ) )
For each value of
x
x
x x x :
μ
S
1
∩
S
2
(
0
)
=
min
(
0
,
0
)
=
0
,
μ
S
1
∩
S
2
(
20
)
=
min
(
0.5
,
0.35
)
=
0.35
,
μ
S
1
∩
S
2
(
40
)
=
min
(
0.65
,
0.5
)
=
0.5
,
μ
S
1
∩
S
2
(
60
)
=
min
(
0.85
,
0.75
)
=
0.75
,
μ
S
1
∩
S
2
(
80
)
=
min
(
1
,
0.90
)
=
0.90
,
μ
S
1
∩
S
2
(
100
)
=
min
(
1
,
1
)
=
1.
μ
S
1
∩
S
2
(
0
)
=
min
(
0
,
0
)
=
0
,
μ
S
1
∩
S
2
(
20
)
=
min
(
0.5
,
0.35
)
=
0.35
,
μ
S
1
∩
S
2
(
40
)
=
min
(
0.65
,
0.5
)
=
0.5
,
μ
S
1
∩
S
2
(
60
)
=
min
(
0.85
,
0.75
)
=
0.75
,
μ
S
1
∩
S
2
(
80
)
=
min
(
1
,
0.90
)
=
0.90
,
μ
S
1
∩
S
2
(
100
)
=
min
(
1
,
1
)
=
1.
{:[mu_(S1nn S2)(0)=min(0″,”0)=0″,”],[mu_(S1nn S2)(20)=min(0.5″,”0.35)=0.35″,”],[mu_(S1nn S2)(40)=min(0.65″,”0.5)=0.5″,”],[mu_(S1nn S2)(60)=min(0.85″,”0.75)=0.75″,”],[mu_(S1nn S2)(80)=min(1″,”0.90)=0.90″,”],[mu_(S1nn S2)(100)=min(1″,”1)=1.]:} \begin{aligned}
\mu_{S1 \cap S2}(0) &= \min(0, 0) = 0, \\
\mu_{S1 \cap S2}(20) &= \min(0.5, 0.35) = 0.35, \\
\mu_{S1 \cap S2}(40) &= \min(0.65, 0.5) = 0.5, \\
\mu_{S1 \cap S2}(60) &= \min(0.85, 0.75) = 0.75, \\
\mu_{S1 \cap S2}(80) &= \min(1, 0.90) = 0.90, \\
\mu_{S1 \cap S2}(100) &= \min(1, 1) = 1.
\end{aligned} μ S 1 ∩ S 2 ( 0 ) = min ( 0 , 0 ) = 0 , μ S 1 ∩ S 2 ( 20 ) = min ( 0.5 , 0.35 ) = 0.35 , μ S 1 ∩ S 2 ( 40 ) = min ( 0.65 , 0.5 ) = 0.5 , μ S 1 ∩ S 2 ( 60 ) = min ( 0.85 , 0.75 ) = 0.75 , μ S 1 ∩ S 2 ( 80 ) = min ( 1 , 0.90 ) = 0.90 , μ S 1 ∩ S 2 ( 100 ) = min ( 1 , 1 ) = 1.
Compute
μ
¬
(
S
1
∩
S
2
)
(
x
)
μ
¬
(
S
1
∩
S
2
)
(
x
)
mu_(not(S1nn S2))(x) \mu_{\neg(S1 \cap S2)}(x) μ ¬ ( S 1 ∩ S 2 ) ( x ) :
The complement of
S
1
∩
S
2
S
1
∩
S
2
S1nn S2 S1 \cap S2 S 1 ∩ S 2 is:
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
1
−
μ
S
1
∩
S
2
(
x
)
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
1
−
μ
S
1
∩
S
2
(
x
)
mu_(not(S1nn S2))(x)=1-mu_(S1nn S2)(x) \mu_{\neg(S1 \cap S2)}(x) = 1 – \mu_{S1 \cap S2}(x) μ ¬ ( S 1 ∩ S 2 ) ( x ) = 1 − μ S 1 ∩ S 2 ( x )
For each value of
x
x
x x x :
μ
¬
(
S
1
∩
S
2
)
(
0
)
=
1
−
0
=
1
,
μ
¬
(
S
1
∩
S
2
)
(
20
)
=
1
−
0.35
=
0.65
,
μ
¬
(
S
1
∩
S
2
)
(
40
)
=
1
−
0.5
=
0.5
,
μ
¬
(
S
1
∩
S
2
)
(
60
)
=
1
−
0.75
=
0.25
,
μ
¬
(
S
1
∩
S
2
)
(
80
)
=
1
−
0.90
=
0.10
,
μ
¬
(
S
1
∩
S
2
)
(
100
)
=
1
−
1
=
0.
μ
¬
(
S
1
∩
S
2
)
(
0
)
=
1
−
0
=
1
,
μ
¬
(
S
1
∩
S
2
)
(
20
)
=
1
−
0.35
=
0.65
,
μ
¬
(
S
1
∩
S
2
)
(
40
)
=
1
−
0.5
=
0.5
,
μ
¬
(
S
1
∩
S
2
)
(
60
)
=
1
−
0.75
=
0.25
,
μ
¬
(
S
1
∩
S
2
)
(
80
)
=
1
−
0.90
=
0.10
,
μ
¬
(
S
1
∩
S
2
)
(
100
)
=
1
−
1
=
0.
{:[mu_(not(S1nn S2))(0)=1-0=1″,”],[mu_(not(S1nn S2))(20)=1-0.35=0.65″,”],[mu_(not(S1nn S2))(40)=1-0.5=0.5″,”],[mu_(not(S1nn S2))(60)=1-0.75=0.25″,”],[mu_(not(S1nn S2))(80)=1-0.90=0.10″,”],[mu_(not(S1nn S2))(100)=1-1=0.]:} \begin{aligned}
\mu_{\neg(S1 \cap S2)}(0) &= 1 – 0 = 1, \\
\mu_{\neg(S1 \cap S2)}(20) &= 1 – 0.35 = 0.65, \\
\mu_{\neg(S1 \cap S2)}(40) &= 1 – 0.5 = 0.5, \\
\mu_{\neg(S1 \cap S2)}(60) &= 1 – 0.75 = 0.25, \\
\mu_{\neg(S1 \cap S2)}(80) &= 1 – 0.90 = 0.10, \\
\mu_{\neg(S1 \cap S2)}(100) &= 1 – 1 = 0.
\end{aligned} μ ¬ ( S 1 ∩ S 2 ) ( 0 ) = 1 − 0 = 1 , μ ¬ ( S 1 ∩ S 2 ) ( 20 ) = 1 − 0.35 = 0.65 , μ ¬ ( S 1 ∩ S 2 ) ( 40 ) = 1 − 0.5 = 0.5 , μ ¬ ( S 1 ∩ S 2 ) ( 60 ) = 1 − 0.75 = 0.25 , μ ¬ ( S 1 ∩ S 2 ) ( 80 ) = 1 − 0.90 = 0.10 , μ ¬ ( S 1 ∩ S 2 ) ( 100 ) = 1 − 1 = 0.
Compute
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
mu_(not S1)(x)uumu_(not S2)(x) \mu_{\neg S1}(x) \cup \mu_{\neg S2}(x) μ ¬ S 1 ( x ) ∪ μ ¬ S 2 ( x ) :
The union (maximum) is:
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
=
max
(
1
−
μ
S1
(
x
)
,
1
−
μ
S2
(
x
)
)
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
=
max
(
1
−
μ
S1
(
x
)
,
1
−
μ
S2
(
x
)
)
mu_(not S1)(x)uumu_(not S2)(x)=max(1-mu_(“S1”)(x),1-mu_(“S2”)(x)) \mu_{\neg S1}(x) \cup \mu_{\neg S2}(x) = \max(1 – \mu_{\text{S1}}(x), 1 – \mu_{\text{S2}}(x)) μ ¬ S 1 ( x ) ∪ μ ¬ S 2 ( x ) = max ( 1 − μ S1 ( x ) , 1 − μ S2 ( x ) )
For each value of
x
x
x x x :
μ
¬
S
1
(
0
)
∪
μ
¬
S
2
(
0
)
=
max
(
1
,
1
)
=
1
,
μ
¬
S
1
(
20
)
∪
μ
¬
S
2
(
20
)
=
max
(
0.5
,
0.65
)
=
0.65
,
μ
¬
S
1
(
40
)
∪
μ
¬
S
2
(
40
)
=
max
(
0.35
,
0.5
)
=
0.5
,
μ
¬
S
1
(
60
)
∪
μ
¬
S
2
(
60
)
=
max
(
0.15
,
0.25
)
=
0.25
,
μ
¬
S
1
(
80
)
∪
μ
¬
S
2
(
80
)
=
max
(
0
,
0.1
)
=
0.1
,
μ
¬
S
1
(
100
)
∪
μ
¬
S
2
(
100
)
=
max
(
0
,
0
)
=
0.
μ
¬
S
1
(
0
)
∪
μ
¬
S
2
(
0
)
=
max
(
1
,
1
)
=
1
,
μ
¬
S
1
(
20
)
∪
μ
¬
S
2
(
20
)
=
max
(
0.5
,
0.65
)
=
0.65
,
μ
¬
S
1
(
40
)
∪
μ
¬
S
2
(
40
)
=
max
(
0.35
,
0.5
)
=
0.5
,
μ
¬
S
1
(
60
)
∪
μ
¬
S
2
(
60
)
=
max
(
0.15
,
0.25
)
=
0.25
,
μ
¬
S
1
(
80
)
∪
μ
¬
S
2
(
80
)
=
max
(
0
,
0.1
)
=
0.1
,
μ
¬
S
1
(
100
)
∪
μ
¬
S
2
(
100
)
=
max
(
0
,
0
)
=
0.
{:[mu_(not S1)(0)uumu_(not S2)(0)=max(1″,”1)=1″,”],[mu_(not S1)(20)uumu_(not S2)(20)=max(0.5″,”0.65)=0.65″,”],[mu_(not S1)(40)uumu_(not S2)(40)=max(0.35″,”0.5)=0.5″,”],[mu_(not S1)(60)uumu_(not S2)(60)=max(0.15″,”0.25)=0.25″,”],[mu_(not S1)(80)uumu_(not S2)(80)=max(0″,”0.1)=0.1″,”],[mu_(not S1)(100)uumu_(not S2)(100)=max(0″,”0)=0.]:} \begin{aligned}
\mu_{\neg S1}(0) \cup \mu_{\neg S2}(0) &= \max(1, 1) = 1, \\
\mu_{\neg S1}(20) \cup \mu_{\neg S2}(20) &= \max(0.5, 0.65) = 0.65, \\
\mu_{\neg S1}(40) \cup \mu_{\neg S2}(40) &= \max(0.35, 0.5) = 0.5, \\
\mu_{\neg S1}(60) \cup \mu_{\neg S2}(60) &= \max(0.15, 0.25) = 0.25, \\
\mu_{\neg S1}(80) \cup \mu_{\neg S2}(80) &= \max(0, 0.1) = 0.1, \\
\mu_{\neg S1}(100) \cup \mu_{\neg S2}(100) &= \max(0, 0) = 0.
\end{aligned} μ ¬ S 1 ( 0 ) ∪ μ ¬ S 2 ( 0 ) = max ( 1 , 1 ) = 1 , μ ¬ S 1 ( 20 ) ∪ μ ¬ S 2 ( 20 ) = max ( 0.5 , 0.65 ) = 0.65 , μ ¬ S 1 ( 40 ) ∪ μ ¬ S 2 ( 40 ) = max ( 0.35 , 0.5 ) = 0.5 , μ ¬ S 1 ( 60 ) ∪ μ ¬ S 2 ( 60 ) = max ( 0.15 , 0.25 ) = 0.25 , μ ¬ S 1 ( 80 ) ∪ μ ¬ S 2 ( 80 ) = max ( 0 , 0.1 ) = 0.1 , μ ¬ S 1 ( 100 ) ∪ μ ¬ S 2 ( 100 ) = max ( 0 , 0 ) = 0.
Compare Results for the Second Law:
We can see that the results match for all values of
x
x
x x x , so the second De Morgan law holds:
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
μ
¬
(
S
1
∩
S
2
)
(
x
)
=
μ
¬
S
1
(
x
)
∪
μ
¬
S
2
(
x
)
mu_(not(S1nn S2))(x)=mu_(not S1)(x)uumu_(not S2)(x) \mu_{\neg(S1 \cap S2)}(x) = \mu_{\neg S1}(x) \cup \mu_{\neg S2}(x) μ ¬ ( S 1 ∩ S 2 ) ( x ) = μ ¬ S 1 ( x ) ∪ μ ¬ S 2 ( x )
Final Answer:
The membership functions for the two sensors are:
For Sensor 1:
μ
S1
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.5
)
,
(
40
,
0.65
)
,
(
60
,
0.85
)
,
(
80
,
1
)
,
(
100
,
1
)
}
μ
S1
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.5
)
,
(
40
,
0.65
)
,
(
60
,
0.85
)
,
(
80
,
1
)
,
(
100
,
1
)
}
mu_(“S1”)(x)={(0,0),(20,0.5),(40,0.65),(60,0.85),(80,1),(100,1)} \mu_{\text{S1}}(x) = \{(0, 0), (20, 0.5), (40, 0.65), (60, 0.85), (80, 1), (100, 1)\} μ S1 ( x ) = { ( 0 , 0 ) , ( 20 , 0.5 ) , ( 40 , 0.65 ) , ( 60 , 0.85 ) , ( 80 , 1 ) , ( 100 , 1 ) }
For Sensor 2:
μ
S2
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.35
)
,
(
40
,
0.5
)
,
(
60
,
0.75
)
,
(
80
,
0.90
)
,
(
100
,
1
)
}
μ
S2
(
x
)
=
{
(
0
,
0
)
,
(
20
,
0.35
)
,
(
40
,
0.5
)
,
(
60
,
0.75
)
,
(
80
,
0.90
)
,
(
100
,
1
)
}
mu_(“S2”)(x)={(0,0),(20,0.35),(40,0.5),(60,0.75),(80,0.90),(100,1)} \mu_{\text{S2}}(x) = \{(0, 0), (20, 0.35), (40, 0.5), (60, 0.75), (80, 0.90), (100, 1)\} μ S2 ( x ) = { ( 0 , 0 ) , ( 20 , 0.35 ) , ( 40 , 0.5 ) , ( 60 , 0.75 ) , ( 80 , 0.90 ) , ( 100 , 1 ) }
We have also verified that both De Morgan’s laws hold for these membership functions.
Question:-1(b)
Consider a subset of natural numbers from 1 to 30, as the universe of discourse,
U
U
U U U . Define the fuzzy sets "small" and "medium" by enumeration.
Answer:
We are given a
universe of discourse
U
U
U U U , which is the set of natural numbers from 1 to 30:
U
=
{
1
,
2
,
3
,
…
,
30
}
U
=
{
1
,
2
,
3
,
…
,
30
}
U={1,2,3,dots,30} U = \{1, 2, 3, \dots, 30\} U = { 1 , 2 , 3 , … , 30 }
We are tasked with defining two fuzzy sets: "small" and "medium" . A fuzzy set is characterized by a membership function that assigns each element in the universe a membership value between 0 and 1, indicating the degree to which that element belongs to the set.
Define the Fuzzy Set "Small"
The fuzzy set "small" should intuitively have higher membership values for smaller numbers and lower values as the numbers increase. A possible definition could be:
For numbers near 1, the membership value is close to 1.
For numbers near 30, the membership value is close to 0.
One possible membership function for "small" could be defined as:
μ
small
(
x
)
=
{
1
if
1
≤
x
≤
10
20
−
x
10
if
11
≤
x
≤
20
0
if
21
≤
x
≤
30
μ
small
(
x
)
=
1
if
1
≤
x
≤
10
20
−
x
10
if
11
≤
x
≤
20
0
if
21
≤
x
≤
30
mu_(“small”)(x)={[1,”if “1 <= x <= 10],[(20-x)/(10),”if “11 <= x <= 20],[0,”if “21 <= x <= 30]:} \mu_{\text{small}}(x) =
\begin{cases}
1 & \text{if } 1 \leq x \leq 10 \\
\frac{20 – x}{10} & \text{if } 11 \leq x \leq 20 \\
0 & \text{if } 21 \leq x \leq 30
\end{cases} μ small ( x ) = { 1 if 1 ≤ x ≤ 10 20 − x 10 if 11 ≤ x ≤ 20 0 if 21 ≤ x ≤ 30
Thus, by enumeration, the fuzzy set "small" is:
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
,
(
17
,
0.3
)
,
(
18
,
0.2
)
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
,
(
17
,
0.3
)
,
(
18
,
0.2
)
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“small”)(x)={(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,0.9),(12,0.8),(13,0.7),(14,0.6),(15,0.5),(16,0.4),(17,0.3),(18,0.2),(19,0.1),(20,0),(21,0),dots,(30,0)} \mu_{\text{small}}(x) = \{ (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1),
(11, 0.9), (12, 0.8), (13, 0.7), (14, 0.6), (15, 0.5), (16, 0.4), (17, 0.3), (18, 0.2), (19, 0.1), (20, 0), (21, 0), \dots, (30, 0) \} μ small ( x ) = { ( 1 , 1 ) , ( 2 , 1 ) , ( 3 , 1 ) , ( 4 , 1 ) , ( 5 , 1 ) , ( 6 , 1 ) , ( 7 , 1 ) , ( 8 , 1 ) , ( 9 , 1 ) , ( 10 , 1 ) , ( 11 , 0.9 ) , ( 12 , 0.8 ) , ( 13 , 0.7 ) , ( 14 , 0.6 ) , ( 15 , 0.5 ) , ( 16 , 0.4 ) , ( 17 , 0.3 ) , ( 18 , 0.2 ) , ( 19 , 0.1 ) , ( 20 , 0 ) , ( 21 , 0 ) , … , ( 30 , 0 ) }
Define the Fuzzy Set "Medium"
The fuzzy set "medium" should intuitively have higher membership values for numbers in the middle range (e.g., around 15) and lower membership values for smaller and larger numbers.
One possible membership function for "medium" could be defined as:
The membership value is 0 for numbers below 5 and above 25.
The membership value increases from 0 to 1 as numbers go from 5 to 15.
The membership value decreases from 1 to 0 as numbers go from 15 to 25.
Mathematically, we can define the membership function for "medium" as:
μ
medium
(
x
)
=
{
0
if
x
≤
5
or
x
≥
25
x
−
5
10
if
6
≤
x
≤
15
25
−
x
10
if
16
≤
x
≤
24
μ
medium
(
x
)
=
0
if
x
≤
5
or
x
≥
25
x
−
5
10
if
6
≤
x
≤
15
25
−
x
10
if
16
≤
x
≤
24
mu_(“medium”)(x)={[0,”if “x <= 5” or “x >= 25],[(x-5)/(10),”if “6 <= x <= 15],[(25-x)/(10),”if “16 <= x <= 24]:} \mu_{\text{medium}}(x) =
\begin{cases}
0 & \text{if } x \leq 5 \text{ or } x \geq 25 \\
\frac{x – 5}{10} & \text{if } 6 \leq x \leq 15 \\
\frac{25 – x}{10} & \text{if } 16 \leq x \leq 24
\end{cases} μ medium ( x ) = { 0 if x ≤ 5 or x ≥ 25 x − 5 10 if 6 ≤ x ≤ 15 25 − x 10 if 16 ≤ x ≤ 24
Thus, by enumeration, the fuzzy set "medium" is:
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
(
4
,
0
)
,
(
5
,
0
)
,
(
6
,
0.1
)
,
(
7
,
0.2
)
,
(
8
,
0.3
)
,
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
,
(
22
,
0.3
)
,
(
23
,
0.2
)
,
(
24
,
0.1
)
,
(
25
,
0
)
,
(
26
,
0
)
,
…
,
(
30
,
0
)
}
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
(
4
,
0
)
,
(
5
,
0
)
,
(
6
,
0.1
)
,
(
7
,
0.2
)
,
(
8
,
0.3
)
,
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
,
(
22
,
0.3
)
,
(
23
,
0.2
)
,
(
24
,
0.1
)
,
(
25
,
0
)
,
(
26
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“medium”)(x)={(1,0),(2,0),(3,0),(4,0),(5,0),(6,0.1),(7,0.2),(8,0.3),(9,0.4),(10,0.5),(11,0.6),(12,0.7),(13,0.8),(14,0.9),(15,1),(16,0.9),(17,0.8),(18,0.7),(19,0.6),(20,0.5),(21,0.4),(22,0.3),(23,0.2),(24,0.1),(25,0),(26,0),dots,(30,0)} \mu_{\text{medium}}(x) = \{ (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0.1), (7, 0.2), (8, 0.3), (9, 0.4), (10, 0.5),
(11, 0.6), (12, 0.7), (13, 0.8), (14, 0.9), (15, 1), (16, 0.9), (17, 0.8), (18, 0.7), (19, 0.6), (20, 0.5), (21, 0.4), (22, 0.3), (23, 0.2), (24, 0.1), (25, 0), (26, 0), \dots, (30, 0) \} μ medium ( x ) = { ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ( 4 , 0 ) , ( 5 , 0 ) , ( 6 , 0.1 ) , ( 7 , 0.2 ) , ( 8 , 0.3 ) , ( 9 , 0.4 ) , ( 10 , 0.5 ) , ( 11 , 0.6 ) , ( 12 , 0.7 ) , ( 13 , 0.8 ) , ( 14 , 0.9 ) , ( 15 , 1 ) , ( 16 , 0.9 ) , ( 17 , 0.8 ) , ( 18 , 0.7 ) , ( 19 , 0.6 ) , ( 20 , 0.5 ) , ( 21 , 0.4 ) , ( 22 , 0.3 ) , ( 23 , 0.2 ) , ( 24 , 0.1 ) , ( 25 , 0 ) , ( 26 , 0 ) , … , ( 30 , 0 ) }
Final Answer
Fuzzy set "small" : Membership values decrease as
x
x
x x x increases.
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
…
,
(
10
,
1
)
,
(
11
,
0.9
)
,
…
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
…
,
(
10
,
1
)
,
(
11
,
0.9
)
,
…
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“small”)(x)={(1,1),(2,1),(3,1),dots,(10,1),(11,0.9),dots,(19,0.1),(20,0),(21,0),dots,(30,0)} \mu_{\text{small}}(x) = \{(1, 1), (2, 1), (3, 1), \dots, (10, 1), (11, 0.9), \dots, (19, 0.1), (20, 0), (21, 0), \dots, (30, 0)\} μ small ( x ) = { ( 1 , 1 ) , ( 2 , 1 ) , ( 3 , 1 ) , … , ( 10 , 1 ) , ( 11 , 0.9 ) , … , ( 19 , 0.1 ) , ( 20 , 0 ) , ( 21 , 0 ) , … , ( 30 , 0 ) }
Fuzzy set "medium" : Membership values peak around 15 and decrease towards the edges.
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
…
,
(
6
,
0.1
)
,
(
10
,
0.5
)
,
(
15
,
1
)
,
(
20
,
0.5
)
,
(
25
,
0
)
,
…
,
(
30
,
0
)
}
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
…
,
(
6
,
0.1
)
,
(
10
,
0.5
)
,
(
15
,
1
)
,
(
20
,
0.5
)
,
(
25
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“medium”)(x)={(1,0),(2,0),(3,0),dots,(6,0.1),(10,0.5),(15,1),(20,0.5),(25,0),dots,(30,0)} \mu_{\text{medium}}(x) = \{(1, 0), (2, 0), (3, 0), \dots, (6, 0.1), (10, 0.5), (15, 1), (20, 0.5), (25, 0), \dots, (30, 0)\} μ medium ( x ) = { ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , … , ( 6 , 0.1 ) , ( 10 , 0.5 ) , ( 15 , 1 ) , ( 20 , 0.5 ) , ( 25 , 0 ) , … , ( 30 , 0 ) }
Question:-2(a)
Construct the
α
α
alpha \alpha α -cut at
α
=
0.4
α
=
0.4
alpha=0.4 \alpha=0.4 α = 0.4 for the fuzzy sets defined in Q. 1(b).
Answer:
To construct the
α
α
alpha \alpha α -cut for the fuzzy sets
"small" and
"medium" at
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 , we need to identify all the elements in the universe of discourse
U
=
{
1
,
2
,
…
,
30
}
U
=
{
1
,
2
,
…
,
30
}
U={1,2,dots,30} U = \{1, 2, \dots, 30\} U = { 1 , 2 , … , 30 } where the membership values are
greater than or equal to 0.4.
Recap of the Membership Functions
Fuzzy Set "Small" Membership Function:
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
,
(
17
,
0.3
)
,
(
18
,
0.2
)
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
,
(
17
,
0.3
)
,
(
18
,
0.2
)
,
(
19
,
0.1
)
,
(
20
,
0
)
,
(
21
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“small”)(x)={(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,0.9),(12,0.8),(13,0.7),(14,0.6),(15,0.5),(16,0.4),(17,0.3),(18,0.2),(19,0.1),(20,0),(21,0),dots,(30,0)} \mu_{\text{small}}(x) = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1),
(11, 0.9), (12, 0.8), (13, 0.7), (14, 0.6), (15, 0.5), (16, 0.4), (17, 0.3), (18, 0.2), (19, 0.1), (20, 0), (21, 0), \dots, (30, 0)\} μ small ( x ) = { ( 1 , 1 ) , ( 2 , 1 ) , ( 3 , 1 ) , ( 4 , 1 ) , ( 5 , 1 ) , ( 6 , 1 ) , ( 7 , 1 ) , ( 8 , 1 ) , ( 9 , 1 ) , ( 10 , 1 ) , ( 11 , 0.9 ) , ( 12 , 0.8 ) , ( 13 , 0.7 ) , ( 14 , 0.6 ) , ( 15 , 0.5 ) , ( 16 , 0.4 ) , ( 17 , 0.3 ) , ( 18 , 0.2 ) , ( 19 , 0.1 ) , ( 20 , 0 ) , ( 21 , 0 ) , … , ( 30 , 0 ) }
Fuzzy Set "Medium" Membership Function:
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
(
4
,
0
)
,
(
5
,
0
)
,
(
6
,
0.1
)
,
(
7
,
0.2
)
,
(
8
,
0.3
)
,
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
,
(
22
,
0.3
)
,
(
23
,
0.2
)
,
(
24
,
0.1
)
,
(
25
,
0
)
,
(
26
,
0
)
,
…
,
(
30
,
0
)
}
μ
medium
(
x
)
=
{
(
1
,
0
)
,
(
2
,
0
)
,
(
3
,
0
)
,
(
4
,
0
)
,
(
5
,
0
)
,
(
6
,
0.1
)
,
(
7
,
0.2
)
,
(
8
,
0.3
)
,
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
,
(
22
,
0.3
)
,
(
23
,
0.2
)
,
(
24
,
0.1
)
,
(
25
,
0
)
,
(
26
,
0
)
,
…
,
(
30
,
0
)
}
mu_(“medium”)(x)={(1,0),(2,0),(3,0),(4,0),(5,0),(6,0.1),(7,0.2),(8,0.3),(9,0.4),(10,0.5),(11,0.6),(12,0.7),(13,0.8),(14,0.9),(15,1),(16,0.9),(17,0.8),(18,0.7),(19,0.6),(20,0.5),(21,0.4),(22,0.3),(23,0.2),(24,0.1),(25,0),(26,0),dots,(30,0)} \mu_{\text{medium}}(x) = \{(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0.1), (7, 0.2), (8, 0.3), (9, 0.4), (10, 0.5),
(11, 0.6), (12, 0.7), (13, 0.8), (14, 0.9), (15, 1), (16, 0.9), (17, 0.8), (18, 0.7), (19, 0.6), (20, 0.5), (21, 0.4), (22, 0.3), (23, 0.2), (24, 0.1), (25, 0), (26, 0), \dots, (30, 0)\} μ medium ( x ) = { ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) , ( 4 , 0 ) , ( 5 , 0 ) , ( 6 , 0.1 ) , ( 7 , 0.2 ) , ( 8 , 0.3 ) , ( 9 , 0.4 ) , ( 10 , 0.5 ) , ( 11 , 0.6 ) , ( 12 , 0.7 ) , ( 13 , 0.8 ) , ( 14 , 0.9 ) , ( 15 , 1 ) , ( 16 , 0.9 ) , ( 17 , 0.8 ) , ( 18 , 0.7 ) , ( 19 , 0.6 ) , ( 20 , 0.5 ) , ( 21 , 0.4 ) , ( 22 , 0.3 ) , ( 23 , 0.2 ) , ( 24 , 0.1 ) , ( 25 , 0 ) , ( 26 , 0 ) , … , ( 30 , 0 ) }
Definition of
α
α
alpha \alpha α -cut
The
α
α
alpha \alpha α -cut of a fuzzy set is the
crisp set of all elements in the universe of discourse whose membership values are greater than or equal to
α
α
alpha \alpha α .
A
α
=
{
x
∈
U
∣
μ
A
(
x
)
≥
α
}
A
α
=
{
x
∈
U
∣
μ
A
(
x
)
≥
α
}
A_(alpha)={x in U∣mu _(A)(x) >= alpha} A_{\alpha} = \{ x \in U \mid \mu_A(x) \geq \alpha \} A α = { x ∈ U ∣ μ A ( x ) ≥ α }
For
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 , we need to find all the elements
x
x
x x x such that their membership values in the fuzzy sets "small" and "medium" are greater than or equal to 0.4.
1.
α
α
alpha \alpha α -cut for the Fuzzy Set "Small" at
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4
Looking at the fuzzy set "small", we select all the values of
x
x
x x x where
μ
small
(
x
)
≥
0.4
μ
small
(
x
)
≥
0.4
mu_(“small”)(x) >= 0.4 \mu_{\text{small}}(x) \geq 0.4 μ small ( x ) ≥ 0.4 :
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
}
μ
small
(
x
)
=
{
(
1
,
1
)
,
(
2
,
1
)
,
(
3
,
1
)
,
(
4
,
1
)
,
(
5
,
1
)
,
(
6
,
1
)
,
(
7
,
1
)
,
(
8
,
1
)
,
(
9
,
1
)
,
(
10
,
1
)
,
(
11
,
0.9
)
,
(
12
,
0.8
)
,
(
13
,
0.7
)
,
(
14
,
0.6
)
,
(
15
,
0.5
)
,
(
16
,
0.4
)
}
mu_(“small”)(x)={(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,0.9),(12,0.8),(13,0.7),(14,0.6),(15,0.5),(16,0.4)} \mu_{\text{small}}(x) = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1),
(11, 0.9), (12, 0.8), (13, 0.7), (14, 0.6), (15, 0.5), (16, 0.4)\} μ small ( x ) = { ( 1 , 1 ) , ( 2 , 1 ) , ( 3 , 1 ) , ( 4 , 1 ) , ( 5 , 1 ) , ( 6 , 1 ) , ( 7 , 1 ) , ( 8 , 1 ) , ( 9 , 1 ) , ( 10 , 1 ) , ( 11 , 0.9 ) , ( 12 , 0.8 ) , ( 13 , 0.7 ) , ( 14 , 0.6 ) , ( 15 , 0.5 ) , ( 16 , 0.4 ) }
So, the
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 cut for the fuzzy set "small" is:
A
0.4
small
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
}
A
0.4
small
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
}
A_(0.4)^(“small”)={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} A_{0.4}^{\text{small}} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\} A 0.4 small = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 }
2.
α
α
alpha \alpha α -cut for the Fuzzy Set "Medium" at
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4
Looking at the fuzzy set "medium", we select all the values of
x
x
x x x where
μ
medium
(
x
)
≥
0.4
μ
medium
(
x
)
≥
0.4
mu_(“medium”)(x) >= 0.4 \mu_{\text{medium}}(x) \geq 0.4 μ medium ( x ) ≥ 0.4 :
μ
medium
(
x
)
=
{
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
}
μ
medium
(
x
)
=
{
(
9
,
0.4
)
,
(
10
,
0.5
)
,
(
11
,
0.6
)
,
(
12
,
0.7
)
,
(
13
,
0.8
)
,
(
14
,
0.9
)
,
(
15
,
1
)
,
(
16
,
0.9
)
,
(
17
,
0.8
)
,
(
18
,
0.7
)
,
(
19
,
0.6
)
,
(
20
,
0.5
)
,
(
21
,
0.4
)
}
mu_(“medium”)(x)={(9,0.4),(10,0.5),(11,0.6),(12,0.7),(13,0.8),(14,0.9),(15,1),(16,0.9),(17,0.8),(18,0.7),(19,0.6),(20,0.5),(21,0.4)} \mu_{\text{medium}}(x) = \{(9, 0.4), (10, 0.5), (11, 0.6), (12, 0.7), (13, 0.8), (14, 0.9), (15, 1), (16, 0.9), (17, 0.8), (18, 0.7), (19, 0.6), (20, 0.5), (21, 0.4)\} μ medium ( x ) = { ( 9 , 0.4 ) , ( 10 , 0.5 ) , ( 11 , 0.6 ) , ( 12 , 0.7 ) , ( 13 , 0.8 ) , ( 14 , 0.9 ) , ( 15 , 1 ) , ( 16 , 0.9 ) , ( 17 , 0.8 ) , ( 18 , 0.7 ) , ( 19 , 0.6 ) , ( 20 , 0.5 ) , ( 21 , 0.4 ) }
So, the
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 cut for the fuzzy set "medium" is:
A
0.4
medium
=
{
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
}
A
0.4
medium
=
{
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
}
A_(0.4)^(“medium”)={9,10,11,12,13,14,15,16,17,18,19,20,21} A_{0.4}^{\text{medium}} = \{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\} A 0.4 medium = { 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 }
Final Answer
The
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 -cut for the fuzzy set
"small" is:
A
0.4
small
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
}
A
0.4
small
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
}
A_(0.4)^(“small”)={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} A_{0.4}^{\text{small}} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\} A 0.4 small = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 }
The
α
=
0.4
α
=
0.4
alpha=0.4 \alpha = 0.4 α = 0.4 -cut for the fuzzy set
"medium" is:
A
0.4
medium
=
{
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
}
A
0.4
medium
=
{
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
}
A_(0.4)^(“medium”)={9,10,11,12,13,14,15,16,17,18,19,20,21} A_{0.4}^{\text{medium}} = \{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\} A 0.4 medium = { 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 }