Sample Solution

Expert Answer
mph-001-solved-assignment-2024-ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

mph-001-solved-assignment-2024-ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

  1. a) A particle of mass m m mmm moving to the right with an initial velocity u u uuu collides elastically with a particle of unknown mass M M MMM coming from the opposite direction. After the collision m m mmm has a velocity u / 2 u / 2 u//2u / 2u/2 at right angles to the incident direction, and M M MMM is deflected back making an angle of 45 45 45^(@)45^{\circ}45 degrees to its incident direction as shown below. Calculate the ratio M / m M / m M//mM / mM/m.
original image
Answer:
In an elastic collision, both momentum and kinetic energy are conserved. Let’s consider the horizontal (x) and vertical (y) components of the momentum separately:
  1. Momentum Conservation (Horizontal Direction):
    Before the collision, the total horizontal momentum is m u M u m u M u mu-Mumu – MumuMu. After the collision, the horizontal momentum of m m mmm is zero (since it moves at right angles to the incident direction), and the horizontal component of M M MMM‘s momentum is M v cos ( 45 ) M v cos ( 45 ) Mv cos(45^(@))Mv \cos(45^\circ)Mvcos(45), where v v vvv is the final velocity of M M MMM. Therefore, we have:
    m u M u = M v cos ( 45 ) m u M u = M v cos ( 45 ) mu-Mu=Mv cos(45^(@))mu – Mu = Mv \cos(45^\circ)muMu=Mvcos(45)
    Since cos ( 45 ) = 1 2 cos ( 45 ) = 1 2 cos(45^(@))=(1)/(sqrt2)\cos(45^\circ) = \frac{1}{\sqrt{2}}cos(45)=12, this equation simplifies to:
    m u M u = M v 2 m u M u = M v 2 mu-Mu=(Mv)/(sqrt2)mu – Mu = \frac{Mv}{\sqrt{2}}muMu=Mv2
    u ( m M ) = M v 2 (1) u ( m M ) = M v 2 (1) u(m-M)=(Mv)/(sqrt2)quad(1)u(m – M) = \frac{Mv}{\sqrt{2}} \quad \text{(1)}u(mM)=Mv2(1)
  2. Momentum Conservation (Vertical Direction):
    Before the collision, the total vertical momentum is zero. After the collision, the vertical momentum of m m mmm is m u / 2 m u / 2 mu//2mu/2mu/2, and the vertical component of M M MMM‘s momentum is M v sin ( 45 ) M v sin ( 45 ) Mv sin(45^(@))Mv \sin(45^\circ)Mvsin(45). Therefore:
    0 = m u / 2 M v sin ( 45 ) 0 = m u / 2 M v sin ( 45 ) 0=mu//2-Mv sin(45^(@))0 = mu/2 – Mv \sin(45^\circ)0=mu/2Mvsin(45)
    Using sin ( 45 ) = 1 2 sin ( 45 ) = 1 2 sin(45^(@))=(1)/(sqrt2)\sin(45^\circ) = \frac{1}{\sqrt{2}}sin(45)=12, this equation simplifies to:
    m u 2 = M v 2 m u 2 = M v 2 (mu)/(2)=(Mv)/(sqrt2)\frac{mu}{2} = \frac{Mv}{\sqrt{2}}mu2=Mv2
    m u = M v 2 (2) m u = M v 2 (2) mu=Mvsqrt2quad(2)mu = Mv\sqrt{2} \quad \text{(2)}mu=Mv2(2)
  3. Kinetic Energy Conservation:
    The total kinetic energy before and after the collision remains the same. Before the collision, the total kinetic energy is 1 2 m u 2 + 1 2 M u 2 1 2 m u 2 + 1 2 M u 2 (1)/(2)mu^(2)+(1)/(2)Mu^(2)\frac{1}{2}mu^2 + \frac{1}{2}Mu^212mu2+12Mu2. After the collision, it is 1 2 m ( u / 2 ) 2 + 1 2 M v 2 1 2 m ( u / 2 ) 2 + 1 2 M v 2 (1)/(2)m(u//2)^(2)+(1)/(2)Mv^(2)\frac{1}{2}m(u/2)^2 + \frac{1}{2}Mv^212m(u/2)2+12Mv2. Equating these, we get:
    1 2 m u 2 + 1 2 M u 2 = 1 2 m ( u 2 ) 2 + 1 2 M v 2 1 2 m u 2 + 1 2 M u 2 = 1 2 m u 2 2 + 1 2 M v 2 (1)/(2)mu^(2)+(1)/(2)Mu^(2)=(1)/(2)m((u)/(2))^(2)+(1)/(2)Mv^(2)\frac{1}{2}mu^2 + \frac{1}{2}Mu^2 = \frac{1}{2}m\left(\frac{u}{2}\right)^2 + \frac{1}{2}Mv^212mu2+12Mu2=12m(u2)2+12Mv2
    Simplifying, we find:
    m u 2 + M u 2 = 1 4 m u 2 + M v 2 m u 2 + M u 2 = 1 4 m u 2 + M v 2 mu^(2)+Mu^(2)=(1)/(4)mu^(2)+Mv^(2)mu^2 + Mu^2 = \frac{1}{4}mu^2 + Mv^2mu2+Mu2=14mu2+Mv2
    3 4 m u 2 + M u 2 = M v 2 (3) 3 4 m u 2 + M u 2 = M v 2 (3) (3)/(4)mu^(2)+Mu^(2)=Mv^(2)quad(3)\frac{3}{4}mu^2 + Mu^2 = Mv^2 \quad \text{(3)}34mu2+Mu2=Mv2(3)
To find the ratio M / m M / m M//mM/mM/m, we can use equations (2) and (3). From equation (2), we have v = m u M 2 v = m u M 2 v=(mu)/(Msqrt2)v = \frac{mu}{M\sqrt{2}}v=muM2. Substituting this into equation (3), we get:
3 4 m u 2 + M u 2 = M ( m u M 2 ) 2 3 4 m u 2 + M u 2 = M m u M 2 2 (3)/(4)mu^(2)+Mu^(2)=M((mu)/(Msqrt2))^(2)\frac{3}{4}mu^2 + Mu^2 = M\left(\frac{mu}{M\sqrt{2}}\right)^234mu2+Mu2=M(muM2)2
3 4 m u 2 + M u 2 = m 2 u 2 2 M 3 4 m u 2 + M u 2 = m 2 u 2 2 M (3)/(4)mu^(2)+Mu^(2)=(m^(2)u^(2))/(2M)\frac{3}{4}mu^2 + Mu^2 = \frac{m^2u^2}{2M}34mu2+Mu2=m2u22M
3 4 m + M = m 2 2 M 3 4 m + M = m 2 2 M (3)/(4)m+M=(m^(2))/(2M)\frac{3}{4}m + M = \frac{m^2}{2M}34m+M=m22M
3 4 M m + M 2 = m 2 2 3 4 M m + M 2 = m 2 2 (3)/(4)Mm+M^(2)=(m^(2))/(2)\frac{3}{4}Mm + M^2 = \frac{m^2}{2}34Mm+M2=m22
2 M 2 + 3 2 M m m 2 2 = 0 2 M 2 + 3 2 M m m 2 2 = 0 2M^(2)+(3)/(2)Mm-(m^(2))/(2)=02M^2 + \frac{3}{2}Mm – \frac{m^2}{2} = 02M2+32Mmm22=0
Solving this quadratic equation for M / m M / m M//mM/mM/m, we get:
M m = 3 2 ± ( 3 2 ) 2 + 4 × 2 × 1 2 4 = 3 2 ± 9 4 + 4 4 = 3 2 ± 25 4 4 = 3 2 ± 5 2 4 M m = 3 2 ± 3 2 2 + 4 × 2 × 1 2 4 = 3 2 ± 9 4 + 4 4 = 3 2 ± 25 4 4 = 3 2 ± 5 2 4 (M)/(m)=(-(3)/(2)+-sqrt(((3)/(2))^(2)+4xx2xx(1)/(2)))/(4)=(-(3)/(2)+-sqrt((9)/(4)+4))/(4)=(-(3)/(2)+-sqrt((25)/(4)))/(4)=(-(3)/(2)+-(5)/(2))/(4)\frac{M}{m} = \frac{-\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^2 + 4 \times 2 \times \frac{1}{2}}}{4} = \frac{-\frac{3}{2} \pm \sqrt{\frac{9}{4} + 4}}{4} = \frac{-\frac{3}{2} \pm \sqrt{\frac{25}{4}}}{4} = \frac{-\frac{3}{2} \pm \frac{5}{2}}{4}Mm=32±(32)2+4×2×124=32±94+44=32±2544=32±524
Taking the positive solution (since mass cannot be negative), we have:
M m = 2 2 4 = 1 2 M m = 2 2 4 = 1 2 (M)/(m)=((2)/(2))/(4)=(1)/(2)\frac{M}{m} = \frac{\frac{2}{2}}{4} = \frac{1}{2}Mm=224=12
Therefore, the ratio of the masses is M / m = 1 / 2 M / m = 1 / 2 M//m=1//2M/m = 1/2M/m=1/2.
Verified Answer
5/5
Scroll to Top
Scroll to Top