MPH-006 Sample Solution

MPH-006 Solved Assignment

PART A

Question:-01

  1. a) Obtain the Lagrangian, the Hamiltonian and the equations of motion for a projectile near the surface of the earth. Take the mass of the projectile to be m m mmm and the z z zzz axis as the upward vertical axis.

Answer:

To solve for the Lagrangian, Hamiltonian, and equations of motion for a projectile near the surface of the Earth, we follow these steps:

1. Lagrangian

The Lagrangian L L LLL is defined as the difference between the kinetic energy T T TTT and the potential energy V V VVV:
L = T V L = T V L=T-VL = T – VL=TV

Kinetic Energy ( T T TTT):

The kinetic energy of a projectile of mass m m mmm moving with velocity v = ( v x , v y , v z ) v = ( v x , v y , v z ) v=(v_(x),v_(y),v_(z))\mathbf{v} = (v_x, v_y, v_z)v=(vx,vy,vz) is given by:
T = 1 2 m ( v x 2 + v y 2 + v z 2 ) T = 1 2 m ( v x 2 + v y 2 + v z 2 ) T=(1)/(2)m(v_(x)^(2)+v_(y)^(2)+v_(z)^(2))T = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)T=12m(vx2+vy2+vz2)
Expressing velocity components in terms of the time derivatives of the coordinates:
T = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) T = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) T=(1)/(2)m(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)T=12m(x˙2+y˙2+z˙2)

Potential Energy ( V V VVV):

The potential energy of a projectile in a uniform gravitational field near the surface of the Earth is given by:
V = m g z V = m g z V=mgzV = mgzV=mgz
where g g ggg is the acceleration due to gravity, and z z zzz is the height above the reference point.

Lagrangian ( L L LLL):

Combining the kinetic and potential energies, we get the Lagrangian:
L = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L=(1)/(2)m(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgzL = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) – mgzL=12m(x˙2+y˙2+z˙2)mgz

2. Hamiltonian

The Hamiltonian H H HHH is the total energy of the system and is given by the Legendre transform of the Lagrangian. It is expressed in terms of the generalized coordinates q i q i q_(i)q_iqi and the conjugate momenta p i p i p_(i)p_ipi.

Conjugate Momenta ( p i p i p_(i)p_ipi):

The conjugate momenta are defined as:
p x = L x ˙ = m x ˙ p x = L x ˙ = m x ˙ p_(x)=(del L)/(del(x^(˙)))=mx^(˙)p_x = \frac{\partial L}{\partial \dot{x}} = m\dot{x}px=Lx˙=mx˙
p y = L y ˙ = m y ˙ p y = L y ˙ = m y ˙ p_(y)=(del L)/(del(y^(˙)))=my^(˙)p_y = \frac{\partial L}{\partial \dot{y}} = m\dot{y}py=Ly˙=my˙
p z = L z ˙ = m z ˙ p z = L z ˙ = m z ˙ p_(z)=(del L)/(del(z^(˙)))=mz^(˙)p_z = \frac{\partial L}{\partial \dot{z}} = m\dot{z}pz=Lz˙=mz˙

Hamiltonian ( H H HHH):

The Hamiltonian is given by:
H = i p i q ˙ i L H = i p i q ˙ i L H=sum _(i)p_(i)q^(˙)_(i)-LH = \sum_i p_i \dot{q}_i – LH=ipiq˙iL
Substitute the momenta and velocities into the Hamiltonian:
H = p x x ˙ + p y y ˙ + p z z ˙ ( 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z ) H = p x x ˙ + p y y ˙ + p z z ˙ 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z H=p_(x)x^(˙)+p_(y)y^(˙)+p_(z)z^(˙)-((1)/(2)m(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgz)H = p_x \dot{x} + p_y \dot{y} + p_z \dot{z} – \left( \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) – mgz \right)H=pxx˙+pyy˙+pzz˙(12m(x˙2+y˙2+z˙2)mgz)
Since x ˙ = p x m x ˙ = p x m x^(˙)=(p_(x))/(m)\dot{x} = \frac{p_x}{m}x˙=pxm, y ˙ = p y m y ˙ = p y m y^(˙)=(p_(y))/(m)\dot{y} = \frac{p_y}{m}y˙=pym, and z ˙ = p z m z ˙ = p z m z^(˙)=(p_(z))/(m)\dot{z} = \frac{p_z}{m}z˙=pzm, we have:
H = p x 2 m + p y 2 m + p z 2 m ( 1 2 m ( p x 2 m 2 + p y 2 m 2 + p z 2 m 2 ) m g z ) H = p x 2 m + p y 2 m + p z 2 m 1 2 m p x 2 m 2 + p y 2 m 2 + p z 2 m 2 m g z H=(p_(x)^(2))/(m)+(p_(y)^(2))/(m)+(p_(z)^(2))/(m)-((1)/(2)m((p_(x)^(2))/(m^(2))+(p_(y)^(2))/(m^(2))+(p_(z)^(2))/(m^(2)))-mgz)H = \frac{p_x^2}{m} + \frac{p_y^2}{m} + \frac{p_z^2}{m} – \left( \frac{1}{2}m\left(\frac{p_x^2}{m^2} + \frac{p_y^2}{m^2} + \frac{p_z^2}{m^2}\right) – mgz \right)H=px2m+py2m+pz2m(12m(px2m2+py2m2+pz2m2)mgz)
Simplifying:
H = p x 2 2 m + p y 2 2 m + p z 2 2 m + m g z H = p x 2 2 m + p y 2 2 m + p z 2 2 m + m g z H=(p_(x)^(2))/(2m)+(p_(y)^(2))/(2m)+(p_(z)^(2))/(2m)+mgzH = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + mgzH=px22m+py22m+pz22m+mgz

3. Equations of Motion

The equations of motion can be derived using the Euler-Lagrange equations for the Lagrangian formulation or Hamilton’s equations for the Hamiltonian formulation.

Euler-Lagrange Equations:

The Euler-Lagrange equations are given by:
d d t ( L q ˙ i ) L q i = 0 d d t L q ˙ i L q i = 0 (d)/(dt)((del L)/(delq^(˙)_(i)))-(del L)/(delq_(i))=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) – \frac{\partial L}{\partial q_i} = 0ddt(Lq˙i)Lqi=0
For the coordinates x , y , z x , y , z x,y,zx, y, zx,y,z:
  • For x x xxx:
d d t ( m x ˙ ) = 0 m x ¨ = 0 x ¨ = 0 d d t ( m x ˙ ) = 0 m x ¨ = 0 x ¨ = 0 (d)/(dt)(mx^(˙))=0Longrightarrowmx^(¨)=0Longrightarrowx^(¨)=0\frac{d}{dt} (m\dot{x}) = 0 \implies m\ddot{x} = 0 \implies \ddot{x} = 0ddt(mx˙)=0mx¨=0x¨=0
  • For y y yyy:
d d t ( m y ˙ ) = 0 m y ¨ = 0 y ¨ = 0 d d t ( m y ˙ ) = 0 m y ¨ = 0 y ¨ = 0 (d)/(dt)(my^(˙))=0Longrightarrowmy^(¨)=0Longrightarrowy^(¨)=0\frac{d}{dt} (m\dot{y}) = 0 \implies m\ddot{y} = 0 \implies \ddot{y} = 0ddt(my˙)=0my¨=0y¨=0
  • For z z zzz:
d d t ( m z ˙ ) = m g m z ¨ = m g z ¨ = g d d t ( m z ˙ ) = m g m z ¨ = m g z ¨ = g (d)/(dt)(mz^(˙))=-mgLongrightarrowmz^(¨)=-mgLongrightarrowz^(¨)=-g\frac{d}{dt} (m\dot{z}) = -mg \implies m\ddot{z} = -mg \implies \ddot{z} = -gddt(mz˙)=mgmz¨=mgz¨=g
Thus, the equations of motion are:
x ¨ = 0 x ¨ = 0 x^(¨)=0\ddot{x} = 0x¨=0
y ¨ = 0 y ¨ = 0 y^(¨)=0\ddot{y} = 0y¨=0
z ¨ = g z ¨ = g z^(¨)=-g\ddot{z} = -gz¨=g

Hamilton’s Equations:

Hamilton’s equations are given by:
q ˙ i = H p i q ˙ i = H p i q^(˙)_(i)=(del H)/(delp_(i))\dot{q}_i = \frac{\partial H}{\partial p_i}q˙i=Hpi
p ˙ i = H q i p ˙ i = H q i p^(˙)_(i)=-(del H)/(delq_(i))\dot{p}_i = -\frac{\partial H}{\partial q_i}p˙i=Hqi
For the coordinates x , y , z x , y , z x,y,zx, y, zx,y,z:
  • For x x xxx:
x ˙ = H p x = p x m x ˙ = H p x = p x m x^(˙)=(del H)/(delp_(x))=(p_(x))/(m)\dot{x} = \frac{\partial H}{\partial p_x} = \frac{p_x}{m}x˙=Hpx=pxm
p ˙ x = H x = 0 p ˙ x = H x = 0 p^(˙)_(x)=-(del H)/(del x)=0\dot{p}_x = -\frac{\partial H}{\partial x} = 0p˙x=Hx=0
  • For y y yyy:
y ˙ = H p y = p y m y ˙ = H p y = p y m y^(˙)=(del H)/(delp_(y))=(p_(y))/(m)\dot{y} = \frac{\partial H}{\partial p_y} = \frac{p_y}{m}y˙=Hpy=pym
p ˙ y = H y = 0 p ˙ y = H y = 0 p^(˙)_(y)=-(del H)/(del y)=0\dot{p}_y = -\frac{\partial H}{\partial y} = 0p˙y=Hy=0
  • For z z zzz:
z ˙ = H p z = p z m z ˙ = H p z = p z m z^(˙)=(del H)/(delp_(z))=(p_(z))/(m)\dot{z} = \frac{\partial H}{\partial p_z} = \frac{p_z}{m}z˙=Hpz=pzm
p ˙ z = H z = m g p ˙ z = H z = m g p^(˙)_(z)=-(del H)/(del z)=-mg\dot{p}_z = -\frac{\partial H}{\partial z} = -mgp˙z=Hz=mg
Thus, we have:
x ˙ = p x m , y ˙ = p y m , z ˙ = p z m x ˙ = p x m , y ˙ = p y m , z ˙ = p z m x^(˙)=(p_(x))/(m),quady^(˙)=(p_(y))/(m),quadz^(˙)=(p_(z))/(m)\dot{x} = \frac{p_x}{m}, \quad \dot{y} = \frac{p_y}{m}, \quad \dot{z} = \frac{p_z}{m}x˙=pxm,y˙=pym,z˙=pzm
p ˙ x = 0 , p ˙ y = 0 , p ˙ z = m g p ˙ x = 0 , p ˙ y = 0 , p ˙ z = m g p^(˙)_(x)=0,quadp^(˙)_(y)=0,quadp^(˙)_(z)=-mg\dot{p}_x = 0, \quad \dot{p}_y = 0, \quad \dot{p}_z = -mgp˙x=0,p˙y=0,p˙z=mg
These equations confirm the same equations of motion derived from the Euler-Lagrange equations.

Summary

  • Lagrangian: L = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L=(1)/(2)m(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgzL = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) – mgzL=12m(x˙2+y˙2+z˙2)mgz
  • Hamiltonian: H = p x 2 2 m + p y 2 2 m + p z 2 2 m + m g z H = p x 2 2 m + p y 2 2 m + p z 2 2 m + m g z H=(p_(x)^(2))/(2m)+(p_(y)^(2))/(2m)+(p_(z)^(2))/(2m)+mgzH = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + mgzH=px22m+py22m+pz22m+mgz
  • Equations of Motion: x ¨ = 0 , y ¨ = 0 , z ¨ = g x ¨ = 0 , y ¨ = 0 , z ¨ = g x^(¨)=0,quady^(¨)=0,quadz^(¨)=-g\ddot{x} = 0, \quad \ddot{y} = 0, \quad \ddot{z} = -gx¨=0,y¨=0,z¨=g
b) A particle of mass m m mmm has the Lagrangian:
L = 1 2 μ ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L = 1 2 μ x ˙ 2 + y ˙ 2 + z ˙ 2 m g z L=(1)/(2)mu(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgzL=\frac{1}{2} \mu\left(\dot{x}^2+\dot{y}^2+\dot{z}^2\right)-m g zL=12μ(x˙2+y˙2+z˙2)mgz
where μ = m M M + m μ = m M M + m mu=(mM)/(M+m)\mu=\frac{m M}{M+m}μ=mMM+m.
Determine the Routhian and the equation of motion.

Answer:

To determine the Routhian and the equations of motion for the given Lagrangian, we need to follow these steps:

1. Routhian

The Routhian R R RRR is a function similar to the Hamiltonian but is used in problems with cyclic (ignorable) coordinates. It’s defined for a system where some coordinates are cyclic, meaning their corresponding conjugate momenta are constants of motion.
Given the Lagrangian:
L = 1 2 μ ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z L = 1 2 μ x ˙ 2 + y ˙ 2 + z ˙ 2 m g z L=(1)/(2)mu(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgzL = \frac{1}{2} \mu \left( \dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) – mgzL=12μ(x˙2+y˙2+z˙2)mgz
where μ = m M M + m μ = m M M + m mu=(mM)/(M+m)\mu = \frac{mM}{M + m}μ=mMM+m, we note that x x xxx and y y yyy are cyclic coordinates because they do not appear explicitly in the Lagrangian.

Conjugate Momenta:

For the cyclic coordinates x x xxx and y y yyy:
p x = L x ˙ = μ x ˙ p x = L x ˙ = μ x ˙ p_(x)=(del L)/(del(x^(˙)))=mux^(˙)p_x = \frac{\partial L}{\partial \dot{x}} = \mu \dot{x}px=Lx˙=μx˙
p y = L y ˙ = μ y ˙ p y = L y ˙ = μ y ˙ p_(y)=(del L)/(del(y^(˙)))=muy^(˙)p_y = \frac{\partial L}{\partial \dot{y}} = \mu \dot{y}py=Ly˙=μy˙
For the non-cyclic coordinate z z zzz:
p z = L z ˙ = μ z ˙ p z = L z ˙ = μ z ˙ p_(z)=(del L)/(del(z^(˙)))=muz^(˙)p_z = \frac{\partial L}{\partial \dot{z}} = \mu \dot{z}pz=Lz˙=μz˙

Velocity in terms of momenta:

x ˙ = p x μ x ˙ = p x μ x^(˙)=(p_(x))/(mu)\dot{x} = \frac{p_x}{\mu}x˙=pxμ
y ˙ = p y μ y ˙ = p y μ y^(˙)=(p_(y))/(mu)\dot{y} = \frac{p_y}{\mu}y˙=pyμ

Routhian R R RRR:

The Routhian is defined by treating the cyclic coordinates as constants and is given by:
R = i cyclic p i q ˙ i L R = i cyclic p i q ˙ i L R=sum_(i in”cyclic”)p_(i)q^(˙)_(i)-LR = \sum_{i \in \text{cyclic}} p_i \dot{q}_i – LR=icyclicpiq˙iL
For our system:
R = p x x ˙ + p y y ˙ ( 1 2 μ ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z ) R = p x x ˙ + p y y ˙ 1 2 μ ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) m g z R=p_(x)x^(˙)+p_(y)y^(˙)-((1)/(2)mu(x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2))-mgz)R = p_x \dot{x} + p_y \dot{y} – \left( \frac{1}{2} \mu (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) – mgz \right)R=pxx˙+pyy˙(12μ(x˙2+y˙2+z˙2)mgz)
Substitute x ˙ x ˙ x^(˙)\dot{x}x˙ and y ˙ y ˙ y^(˙)\dot{y}y˙ in terms of the momenta:
R = p x p x μ + p y p y μ ( 1 2 μ ( p x 2 μ 2 + p y 2 μ 2 + z ˙ 2 ) m g z ) R = p x p x μ + p y p y μ 1 2 μ p x 2 μ 2 + p y 2 μ 2 + z ˙ 2 m g z R=p_(x)(p_(x))/(mu)+p_(y)(p_(y))/(mu)-((1)/(2)mu((p_(x)^(2))/(mu^(2))+(p_(y)^(2))/(mu^(2))+z^(˙)^(2))-mgz)R = p_x \frac{p_x}{\mu} + p_y \frac{p_y}{\mu} – \left( \frac{1}{2} \mu \left( \frac{p_x^2}{\mu^2} + \frac{p_y^2}{\mu^2} + \dot{z}^2 \right) – mgz \right)R=pxpxμ+pypyμ(12μ(px2μ2+py2μ2+z˙2)mgz)
Simplifying:
R = p x 2 μ + p y 2 μ ( 1 2 ( p x 2 μ + p y 2 μ + μ z ˙ 2 ) m g z ) R = p x 2 μ + p y 2 μ 1 2 p x 2 μ + p y 2 μ + μ z ˙ 2 m g z R=(p_(x)^(2))/(mu)+(p_(y)^(2))/(mu)-((1)/(2)((p_(x)^(2))/(mu)+(p_(y)^(2))/(mu)+muz^(˙)^(2))-mgz)R = \frac{p_x^2}{\mu} + \frac{p_y^2}{\mu} – \left( \frac{1}{2} \left( \frac{p_x^2}{\mu} + \frac{p_y^2}{\mu} + \mu \dot{z}^2 \right) – mgz \right)R=px2μ+py2μ(12(px2μ+py2μ+μz˙2)mgz)
R = 1 2 ( p x 2 μ + p y 2 μ ) + 1 2 μ z ˙ 2 + m g z R = 1 2 p x 2 μ + p y 2 μ + 1 2 μ z ˙ 2 + m g z R=(1)/(2)((p_(x)^(2))/(mu)+(p_(y)^(2))/(mu))+(1)/(2)muz^(˙)^(2)+mgzR = \frac{1}{2} \left( \frac{p_x^2}{\mu} + \frac{p_y^2}{\mu} \right) + \frac{1}{2} \mu \dot{z}^2 + mgzR=12(px2μ+py2μ)+12μz˙2+mgz

2. Equations of Motion

The equations of motion for z z zzz can be derived from the Lagrangian.

Euler-Lagrange Equation for z z zzz:

d d t ( L z ˙ ) L z = 0 d d t L z ˙ L z = 0 (d)/(dt)((del L)/(del(z^(˙))))-(del L)/(del z)=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{z}} \right) – \frac{\partial L}{\partial z} = 0ddt(Lz˙)Lz=0
Since:
L z ˙ = μ z ˙ L z ˙ = μ z ˙ (del L)/(del(z^(˙)))=muz^(˙)\frac{\partial L}{\partial \dot{z}} = \mu \dot{z}Lz˙=μz˙
L z = m g L z = m g (del L)/(del z)=-mg\frac{\partial L}{\partial z} = -mgLz=mg
The equation of motion is:
d d t ( μ z ˙ ) + m g = 0 d d t ( μ z ˙ ) + m g = 0 (d)/(dt)(muz^(˙))+mg=0\frac{d}{dt} (\mu \dot{z}) + mg = 0ddt(μz˙)+mg=0
μ z ¨ = m g μ z ¨ = m g muz^(¨)=-mg\mu \ddot{z} = -mgμz¨=mg
z ¨ = m g μ z ¨ = m g μ z^(¨)=-(mg)/(mu)\ddot{z} = -\frac{mg}{\mu}z¨=mgμ
Substitute μ = m M M + m μ = m M M + m mu=(mM)/(M+m)\mu = \frac{mM}{M + m}μ=mMM+m:
z ¨ = g M + m M z ¨ = g M + m M z^(¨)=-g((M+m)/(M))\ddot{z} = -g \frac{M + m}{M}z¨=gM+mM
So, the equations of motion are:
z ¨ = g M + m M z ¨ = g M + m M z^(¨)=-g((M+m)/(M))\ddot{z} = -g \frac{M + m}{M}z¨=gM+mM

Summary

  • Routhian:
    R = 1 2 ( p x 2 μ + p y 2 μ ) + 1 2 μ z ˙ 2 + m g z R = 1 2 p x 2 μ + p y 2 μ + 1 2 μ z ˙ 2 + m g z R=(1)/(2)((p_(x)^(2))/(mu)+(p_(y)^(2))/(mu))+(1)/(2)muz^(˙)^(2)+mgzR = \frac{1}{2} \left( \frac{p_x^2}{\mu} + \frac{p_y^2}{\mu} \right) + \frac{1}{2} \mu \dot{z}^2 + mgzR=12(px2μ+py2μ)+12μz˙2+mgz
  • Equations of Motion:
    z ¨ = g M + m M z ¨ = g M + m M z^(¨)=-g((M+m)/(M))\ddot{z} = -g \frac{M + m}{M}z¨=gM+mM

Verified Answer
5/5
Scroll to Top
Scroll to Top