MPH-008 Sample Solution

MPH-008 Solved Assignment

PART A

Question:-01

  1. a) Write the space translation operator in quantum mechanics for an infinitesimal translation of ε y ε y epsi _(y)\varepsilon_yεy along the y y yyy-direction and ε z ε z epsi _(z)\varepsilon_zεz along the z z zzz-direction. Using the properties of space translation show that [ p ^ y , p ^ z ] = 0 p ^ y , p ^ z = 0 [ hat(p)_(y), hat(p)_(z)]=0\left[\hat{p}_y, \hat{p}_z\right]=0[p^y,p^z]=0.

Answer:

1. Infinitesimal Translation Operators

The space translation operator for an infinitesimal translation along the y y yyy-direction by ε y ε y epsi _(y)\varepsilon_yεy and along the z z zzz-direction by ε z ε z epsi _(z)\varepsilon_zεz can be written as:
T ^ ( ε y , ε z ) = T ^ ( ε y ) T ^ ( ε z ) T ^ ( ε y , ε z ) = T ^ ( ε y ) T ^ ( ε z ) hat(T)(epsi _(y),epsi _(z))= hat(T)(epsi _(y)) hat(T)(epsi _(z))\hat{T}(\varepsilon_y, \varepsilon_z) = \hat{T}(\varepsilon_y) \hat{T}(\varepsilon_z)T^(εy,εz)=T^(εy)T^(εz)
where T ^ ( ε y ) T ^ ( ε y ) hat(T)(epsi _(y))\hat{T}(\varepsilon_y)T^(εy) and T ^ ( ε z ) T ^ ( ε z ) hat(T)(epsi _(z))\hat{T}(\varepsilon_z)T^(εz) are the translation operators along the y y yyy– and z z zzz-directions, respectively.
For infinitesimal translations, these operators can be approximated using the exponential form involving the momentum operators p ^ y p ^ y hat(p)_(y)\hat{p}_yp^y and p ^ z p ^ z hat(p)_(z)\hat{p}_zp^z:
T ^ ( ε y ) = e i ε y p ^ y / T ^ ( ε y ) = e i ε y p ^ y / hat(T)(epsi _(y))=e^(-iepsi _(y) hat(p)_(y)//ℏ)\hat{T}(\varepsilon_y) = e^{-i \varepsilon_y \hat{p}_y / \hbar}T^(εy)=eiεyp^y/
T ^ ( ε z ) = e i ε z p ^ z / T ^ ( ε z ) = e i ε z p ^ z / hat(T)(epsi _(z))=e^(-iepsi _(z) hat(p)_(z)//ℏ)\hat{T}(\varepsilon_z) = e^{-i \varepsilon_z \hat{p}_z / \hbar}T^(εz)=eiεzp^z/

2. Properties of Space Translation Operators

The key properties of the translation operators we will use are:
  • Translation operators are unitary: T ^ ( ε y ) = T ^ ( ε y ) T ^ ( ε y ) = T ^ ( ε y ) hat(T)(epsi _(y))^(†)= hat(T)(-epsi _(y))\hat{T}(\varepsilon_y)^\dagger = \hat{T}(-\varepsilon_y)T^(εy)=T^(εy)
  • The composition of translations is associative: T ^ ( ε y + ε y ) = T ^ ( ε y ) T ^ ( ε y ) T ^ ( ε y + ε y ) = T ^ ( ε y ) T ^ ( ε y ) hat(T)(epsi _(y)+epsi_(y)^(‘))= hat(T)(epsi _(y)) hat(T)(epsi_(y)^(‘))\hat{T}(\varepsilon_y + \varepsilon_y’) = \hat{T}(\varepsilon_y) \hat{T}(\varepsilon_y’)T^(εy+εy)=T^(εy)T^(εy)

3. Commutator of Momentum Operators

We want to show that the commutator of the momentum operators p ^ y p ^ y hat(p)_(y)\hat{p}_yp^y and p ^ z p ^ z hat(p)_(z)\hat{p}_zp^z is zero:
[ p ^ y , p ^ z ] = 0 p ^ y , p ^ z = 0 [ hat(p)_(y), hat(p)_(z)]=0\left[\hat{p}_y, \hat{p}_z\right] = 0[p^y,p^z]=0

4. Infinitesimal Translation and Commutator

To do this, consider the product of the two translation operators T ^ ( ε y ) T ^ ( ε y ) hat(T)(epsi _(y))\hat{T}(\varepsilon_y)T^(εy) and T ^ ( ε z ) T ^ ( ε z ) hat(T)(epsi _(z))\hat{T}(\varepsilon_z)T^(εz):
T ^ ( ε y ) T ^ ( ε z ) = e i ε y p ^ y / e i ε z p ^ z / T ^ ( ε y ) T ^ ( ε z ) = e i ε y p ^ y / e i ε z p ^ z / hat(T)(epsi _(y)) hat(T)(epsi _(z))=e^(-iepsi _(y) hat(p)_(y)//ℏ)e^(-iepsi _(z) hat(p)_(z)//ℏ)\hat{T}(\varepsilon_y) \hat{T}(\varepsilon_z) = e^{-i \varepsilon_y \hat{p}_y / \hbar} e^{-i \varepsilon_z \hat{p}_z / \hbar}T^(εy)T^(εz)=eiεyp^y/eiεzp^z/

5. Expand the Exponentials

Using the Baker-Campbell-Hausdorff formula for infinitesimal translations, we get:
T ^ ( ε y ) T ^ ( ε z ) ( 1 i ε y p ^ y ) ( 1 i ε z p ^ z ) T ^ ( ε y ) T ^ ( ε z ) 1 i ε y p ^ y 1 i ε z p ^ z hat(T)(epsi _(y)) hat(T)(epsi _(z))~~(1-(iepsi _(y) hat(p)_(y))/(ℏ))(1-(iepsi _(z) hat(p)_(z))/(ℏ))\hat{T}(\varepsilon_y) \hat{T}(\varepsilon_z) \approx \left( 1 – \frac{i \varepsilon_y \hat{p}_y}{\hbar} \right) \left( 1 – \frac{i \varepsilon_z \hat{p}_z}{\hbar} \right)T^(εy)T^(εz)(1iεyp^y)(1iεzp^z)
Expanding this product up to the first order in ε y ε y epsi _(y)\varepsilon_yεy and ε z ε z epsi _(z)\varepsilon_zεz:
T ^ ( ε y ) T ^ ( ε z ) 1 i ε y p ^ y i ε z p ^ z + ε y ε z 2 [ p ^ y , p ^ z ] T ^ ( ε y ) T ^ ( ε z ) 1 i ε y p ^ y i ε z p ^ z + ε y ε z 2 [ p ^ y , p ^ z ] hat(T)(epsi _(y)) hat(T)(epsi _(z))~~1-(iepsi _(y) hat(p)_(y))/(ℏ)-(iepsi _(z) hat(p)_(z))/(ℏ)+(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]\hat{T}(\varepsilon_y) \hat{T}(\varepsilon_z) \approx 1 – \frac{i \varepsilon_y \hat{p}_y}{\hbar} – \frac{i \varepsilon_z \hat{p}_z}{\hbar} + \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z]T^(εy)T^(εz)1iεyp^yiεzp^z+εyεz2[p^y,p^z]
Similarly, the product T ^ ( ε z ) T ^ ( ε y ) T ^ ( ε z ) T ^ ( ε y ) hat(T)(epsi _(z)) hat(T)(epsi _(y))\hat{T}(\varepsilon_z) \hat{T}(\varepsilon_y)T^(εz)T^(εy) can be expanded as:
T ^ ( ε z ) T ^ ( ε y ) ( 1 i ε z p ^ z ) ( 1 i ε y p ^ y ) T ^ ( ε z ) T ^ ( ε y ) 1 i ε z p ^ z 1 i ε y p ^ y hat(T)(epsi _(z)) hat(T)(epsi _(y))~~(1-(iepsi _(z) hat(p)_(z))/(ℏ))(1-(iepsi _(y) hat(p)_(y))/(ℏ))\hat{T}(\varepsilon_z) \hat{T}(\varepsilon_y) \approx \left( 1 – \frac{i \varepsilon_z \hat{p}_z}{\hbar} \right) \left( 1 – \frac{i \varepsilon_y \hat{p}_y}{\hbar} \right)T^(εz)T^(εy)(1iεzp^z)(1iεyp^y)
T ^ ( ε z ) T ^ ( ε y ) 1 i ε z p ^ z i ε y p ^ y + ε y ε z 2 [ p ^ z , p ^ y ] T ^ ( ε z ) T ^ ( ε y ) 1 i ε z p ^ z i ε y p ^ y + ε y ε z 2 [ p ^ z , p ^ y ] hat(T)(epsi _(z)) hat(T)(epsi _(y))~~1-(iepsi _(z) hat(p)_(z))/(ℏ)-(iepsi _(y) hat(p)_(y))/(ℏ)+(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(z), hat(p)_(y)]\hat{T}(\varepsilon_z) \hat{T}(\varepsilon_y) \approx 1 – \frac{i \varepsilon_z \hat{p}_z}{\hbar} – \frac{i \varepsilon_y \hat{p}_y}{\hbar} + \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_z, \hat{p}_y]T^(εz)T^(εy)1iεzp^ziεyp^y+εyεz2[p^z,p^y]
Since the commutator [ p ^ z , p ^ y ] = [ p ^ y , p ^ z ] [ p ^ z , p ^ y ] = [ p ^ y , p ^ z ] [ hat(p)_(z), hat(p)_(y)]=-[ hat(p)_(y), hat(p)_(z)][ \hat{p}_z, \hat{p}_y ] = -[ \hat{p}_y, \hat{p}_z ][p^z,p^y]=[p^y,p^z], the term becomes:
T ^ ( ε z ) T ^ ( ε y ) 1 i ε z p ^ z i ε y p ^ y ε y ε z 2 [ p ^ y , p ^ z ] T ^ ( ε z ) T ^ ( ε y ) 1 i ε z p ^ z i ε y p ^ y ε y ε z 2 [ p ^ y , p ^ z ] hat(T)(epsi _(z)) hat(T)(epsi _(y))~~1-(iepsi _(z) hat(p)_(z))/(ℏ)-(iepsi _(y) hat(p)_(y))/(ℏ)-(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]\hat{T}(\varepsilon_z) \hat{T}(\varepsilon_y) \approx 1 – \frac{i \varepsilon_z \hat{p}_z}{\hbar} – \frac{i \varepsilon_y \hat{p}_y}{\hbar} – \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z]T^(εz)T^(εy)1iεzp^ziεyp^yεyεz2[p^y,p^z]

6. Equate the Two Products

Since translations commute, T ^ ( ε y ) T ^ ( ε z ) = T ^ ( ε z ) T ^ ( ε y ) T ^ ( ε y ) T ^ ( ε z ) = T ^ ( ε z ) T ^ ( ε y ) hat(T)(epsi _(y)) hat(T)(epsi _(z))= hat(T)(epsi _(z)) hat(T)(epsi _(y))\hat{T}(\varepsilon_y) \hat{T}(\varepsilon_z) = \hat{T}(\varepsilon_z) \hat{T}(\varepsilon_y)T^(εy)T^(εz)=T^(εz)T^(εy), we have:
1 i ε y p ^ y i ε z p ^ z + ε y ε z 2 [ p ^ y , p ^ z ] = 1 i ε z p ^ z i ε y p ^ y ε y ε z 2 [ p ^ y , p ^ z ] 1 i ε y p ^ y i ε z p ^ z + ε y ε z 2 [ p ^ y , p ^ z ] = 1 i ε z p ^ z i ε y p ^ y ε y ε z 2 [ p ^ y , p ^ z ] 1-(iepsi _(y) hat(p)_(y))/(ℏ)-(iepsi _(z) hat(p)_(z))/(ℏ)+(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]=1-(iepsi _(z) hat(p)_(z))/(ℏ)-(iepsi _(y) hat(p)_(y))/(ℏ)-(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]1 – \frac{i \varepsilon_y \hat{p}_y}{\hbar} – \frac{i \varepsilon_z \hat{p}_z}{\hbar} + \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z] = 1 – \frac{i \varepsilon_z \hat{p}_z}{\hbar} – \frac{i \varepsilon_y \hat{p}_y}{\hbar} – \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z]1iεyp^yiεzp^z+εyεz2[p^y,p^z]=1iεzp^ziεyp^yεyεz2[p^y,p^z]

7. Solve for the Commutator

Comparing the terms on both sides, we get:
ε y ε z 2 [ p ^ y , p ^ z ] = ε y ε z 2 [ p ^ y , p ^ z ] ε y ε z 2 [ p ^ y , p ^ z ] = ε y ε z 2 [ p ^ y , p ^ z ] (epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]=-(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]\frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z] = – \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z]εyεz2[p^y,p^z]=εyεz2[p^y,p^z]
2 ε y ε z 2 [ p ^ y , p ^ z ] = 0 2 ε y ε z 2 [ p ^ y , p ^ z ] = 0 2(epsi _(y)epsi _(z))/(ℏ^(2))[ hat(p)_(y), hat(p)_(z)]=02 \frac{\varepsilon_y \varepsilon_z}{\hbar^2} [\hat{p}_y, \hat{p}_z] = 02εyεz2[p^y,p^z]=0
For this equality to hold for arbitrary ε y ε y epsi _(y)\varepsilon_yεy and ε z ε z epsi _(z)\varepsilon_zεz:
[ p ^ y , p ^ z ] = 0 [ p ^ y , p ^ z ] = 0 [ hat(p)_(y), hat(p)_(z)]=0[\hat{p}_y, \hat{p}_z] = 0[p^y,p^z]=0

Conclusion

We have shown that the commutator of the momentum operators p ^ y p ^ y hat(p)_(y)\hat{p}_yp^y and p ^ z p ^ z hat(p)_(z)\hat{p}_zp^z is zero:
[ p ^ y , p ^ z ] = 0 p ^ y , p ^ z = 0 [ hat(p)_(y), hat(p)_(z)]=0\left[\hat{p}_y, \hat{p}_z\right] = 0[p^y,p^z]=0

b) Show that the angular momentum operator L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y is even under a parity transformation.

Answer:

To show that the angular momentum operator L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y is even under a parity transformation, we need to understand how parity transformations affect the position and momentum operators, and subsequently the angular momentum operator.

1. Parity Transformation

A parity transformation, denoted by P ^ P ^ hat(P)\hat{P}P^, is an operation that inverts the spatial coordinates. For a vector r = ( x , y , z ) r = ( x , y , z ) vec(r)=(x,y,z)\vec{r} = (x, y, z)r=(x,y,z), the parity transformation results in:
P ^ r P ^ 1 = r P ^ r P ^ 1 = r hat(P) vec(r) hat(P)^(-1)=- vec(r)\hat{P} \vec{r} \hat{P}^{-1} = -\vec{r}P^rP^1=r
This implies the following transformations for the components of the position vector:
P ^ x P ^ 1 = x , P ^ y P ^ 1 = y , P ^ z P ^ 1 = z P ^ x P ^ 1 = x , P ^ y P ^ 1 = y , P ^ z P ^ 1 = z hat(P)x hat(P)^(-1)=-x,quad hat(P)y hat(P)^(-1)=-y,quad hat(P)z hat(P)^(-1)=-z\hat{P} x \hat{P}^{-1} = -x, \quad \hat{P} y \hat{P}^{-1} = -y, \quad \hat{P} z \hat{P}^{-1} = -zP^xP^1=x,P^yP^1=y,P^zP^1=z
Similarly, the momentum operator p = ( p x , p y , p z ) p = ( p x , p y , p z ) vec(p)=(p_(x),p_(y),p_(z))\vec{p} = (p_x, p_y, p_z)p=(px,py,pz) transforms under parity as:
P ^ p P ^ 1 = p P ^ p P ^ 1 = p hat(P) vec(p) hat(P)^(-1)=- vec(p)\hat{P} \vec{p} \hat{P}^{-1} = -\vec{p}P^pP^1=p
This implies:
P ^ p x P ^ 1 = p x , P ^ p y P ^ 1 = p y , P ^ p z P ^ 1 = p z P ^ p x P ^ 1 = p x , P ^ p y P ^ 1 = p y , P ^ p z P ^ 1 = p z hat(P)p_(x) hat(P)^(-1)=-p_(x),quad hat(P)p_(y) hat(P)^(-1)=-p_(y),quad hat(P)p_(z) hat(P)^(-1)=-p_(z)\hat{P} p_x \hat{P}^{-1} = -p_x, \quad \hat{P} p_y \hat{P}^{-1} = -p_y, \quad \hat{P} p_z \hat{P}^{-1} = -p_zP^pxP^1=px,P^pyP^1=py,P^pzP^1=pz

2. Angular Momentum Operator

The angular momentum operator L ^ L ^ hat(vec(L))\hat{\vec{L}}L^ is given by:
L ^ = r × p L ^ = r × p hat(vec(L))= vec(r)xx vec(p)\hat{\vec{L}} = \vec{r} \times \vec{p}L^=r×p
For the y y yyy-component of the angular momentum operator, L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y, we have:
L ^ y = x p z z p x L ^ y = x p z z p x hat(L)_(y)=xp_(z)-zp_(x)\hat{L}_y = x p_z – z p_xL^y=xpzzpx

3. Parity Transformation on L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y

We now apply the parity transformation to L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y:
P ^ L ^ y P ^ 1 = P ^ ( x p z z p x ) P ^ 1 P ^ L ^ y P ^ 1 = P ^ ( x p z z p x ) P ^ 1 hat(P) hat(L)_(y) hat(P)^(-1)= hat(P)(xp_(z)-zp_(x)) hat(P)^(-1)\hat{P} \hat{L}_y \hat{P}^{-1} = \hat{P} (x p_z – z p_x) \hat{P}^{-1}P^L^yP^1=P^(xpzzpx)P^1
Using the transformations of the position and momentum operators under parity:
P ^ x P ^ 1 = x , P ^ p z P ^ 1 = p z P ^ x P ^ 1 = x , P ^ p z P ^ 1 = p z hat(P)x hat(P)^(-1)=-x,quad hat(P)p_(z) hat(P)^(-1)=-p_(z)\hat{P} x \hat{P}^{-1} = -x, \quad \hat{P} p_z \hat{P}^{-1} = -p_zP^xP^1=x,P^pzP^1=pz
P ^ z P ^ 1 = z , P ^ p x P ^ 1 = p x P ^ z P ^ 1 = z , P ^ p x P ^ 1 = p x hat(P)z hat(P)^(-1)=-z,quad hat(P)p_(x) hat(P)^(-1)=-p_(x)\hat{P} z \hat{P}^{-1} = -z, \quad \hat{P} p_x \hat{P}^{-1} = -p_xP^zP^1=z,P^pxP^1=px
Substituting these into the expression for L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y:
P ^ ( x p z z p x ) P ^ 1 = ( P ^ x P ^ 1 ) ( P ^ p z P ^ 1 ) ( P ^ z P ^ 1 ) ( P ^ p x P ^ 1 ) P ^ ( x p z z p x ) P ^ 1 = ( P ^ x P ^ 1 ) ( P ^ p z P ^ 1 ) ( P ^ z P ^ 1 ) ( P ^ p x P ^ 1 ) hat(P)(xp_(z)-zp_(x)) hat(P)^(-1)=( hat(P)x hat(P)^(-1))( hat(P)p_(z) hat(P)^(-1))-( hat(P)z hat(P)^(-1))( hat(P)p_(x) hat(P)^(-1))\hat{P} (x p_z – z p_x) \hat{P}^{-1} = (\hat{P} x \hat{P}^{-1})(\hat{P} p_z \hat{P}^{-1}) – (\hat{P} z \hat{P}^{-1})(\hat{P} p_x \hat{P}^{-1})P^(xpzzpx)P^1=(P^xP^1)(P^pzP^1)(P^zP^1)(P^pxP^1)
= ( x ) ( p z ) ( z ) ( p x ) = ( x ) ( p z ) ( z ) ( p x ) =(-x)(-p_(z))-(-z)(-p_(x))= (-x)(-p_z) – (-z)(-p_x)=(x)(pz)(z)(px)
= x p z z p x = x p z z p x =xp_(z)-zp_(x)= x p_z – z p_x=xpzzpx

4. Conclusion

We find that:
P ^ L ^ y P ^ 1 = L ^ y P ^ L ^ y P ^ 1 = L ^ y hat(P) hat(L)_(y) hat(P)^(-1)= hat(L)_(y)\hat{P} \hat{L}_y \hat{P}^{-1} = \hat{L}_yP^L^yP^1=L^y
This shows that the angular momentum operator L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y is invariant under the parity transformation, which means it is even under parity. Therefore, L ^ y L ^ y hat(L)_(y)\hat{L}_yL^y is an even operator under parity transformation.

Verified Answer
5/5
Scroll to Top
Scroll to Top