2018 (Section-A)
2018 (Section-B)
2019 (Section-A)
2019 (Section-B)
2020 (Section-A)
1 of 2

Question:-1(d)

\(2\:sin\:\theta \:sin\:\phi =-cos\:\left(\theta +\phi \right)+cos\:\left(\theta -\phi \right)\)
Find the limit \(\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}\).
Expert Answer
untitled-document-15-c4a14609-db5c-41e1-99f0-81aab3fdac8f
We start by rewriting the given limit as follows:
lim n 1 n 2 a = 0 n 1 n 2 r 2 lim n 1 n 2 a = 0 n 1 n 2 r 2 lim_(n rarr oo)(1)/(n^(2))sum_(a=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow \infty} \frac{1}{n^2} \sum_{a=0}^{n-1} \sqrt{n^2-r^2}limn1n2a=0n1n2r2
Next, we’ll express n 2 r 2 n 2 n 2 r 2 n 2 (sqrt(n^(2)-r^(2)))/(n^(2))\frac{\sqrt{n^2-r^2}}{n^2}n2r2n2 as:
1 n [ 1 ( r n ) 2 ] 1 n 1 r n 2 (1)/(n)[sqrt(1-((r)/(n))^(2))]\frac{1}{n}\left[\sqrt{1-\left(\frac{r}{n}\right)^2}\right]1n[1(rn)2]
Now, we rewrite the limit as a sum:
lim n r = 0 n 1 1 n [ 1 ( r n ) 2 ] = lim n r = 1 n 1 n 1 ( r n ) 2 = 0 1 1 x 2 d x = [ x 1 x 2 2 + 1 2 sin 1 x ] 0 1 = 1 2 sin 1 ( 1 ) lim n r = 0 n 1 1 n 1 r n 2 = lim n r = 1 n 1 n 1 r n 2 = 0 1 1 x 2 d x = x 1 x 2 2 + 1 2 sin 1 x 0 1 = 1 2 sin 1 ( 1 ) {:[lim_(n rarr oo)sum_(r=0)^(n-1)(1)/(n)[sqrt(1-((r)/(n))^(2))]=lim_(n rarr oo)sum_(r=1)^(n)(1)/(n)sqrt(1-((r)/(n))^(2))],[=int_(0)^(1)sqrt(1-x^(2))dx],[=[(xsqrt(1-x^(2)))/(2)+(1)/(2)sin^(-1)x]_(0)^(1)],[=(1)/(2)sin^(-1)(1)]:}\begin{aligned} \lim _{n \rightarrow \infty} \sum_{r=0}^{n-1}\frac{1}{n}\left[\sqrt{1-\left(\frac{r}{n}\right)^2}\right] &= \lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{1}{n} \sqrt{1-\left(\frac{r}{n}\right)^2} \\ & = \int_0^1 \sqrt{1-x^2} dx \\ & = \left[\frac{x \sqrt{1-x^2}}{2}+\frac{1}{2} \sin ^{-1} x\right]_0^1 \\ & = \frac{1}{2} \sin ^{-1}(1) \end{aligned}limnr=0n11n[1(rn)2]=limnr=1n1n1(rn)2=011x2dx=[x1x22+12sin1x]01=12sin1(1)
Now, we calculate sin 1 ( 1 ) sin 1 ( 1 ) sin^(-1)(1)\sin^{-1}(1)sin1(1):
1 2 sin 1 ( 1 ) = 1 2 × π 2 = π 4 1 2 sin 1 ( 1 ) = 1 2 × π 2 = π 4 (1)/(2)sin^(-1)(1)=(1)/(2)xx(pi)/(2)=(pi)/(4)\frac{1}{2} \sin ^{-1}(1) = \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4}12sin1(1)=12×π2=π4
Hence, the limit lim n 1 n 2 r = 0 n 1 n 2 r 2 lim n 1 n 2 r = 0 n 1 n 2 r 2 lim_(n rarr-oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}limn1n2r=0n1n2r2 is π 4 π 4 (pi)/(4)\frac{\pi}{4}π4.
Verified Answer
5/5
\(c^2=a^2+b^2-2ab\:Cos\left(C\right)\)
Scroll to Top
Scroll to Top