2018 (Section-A)
2018 (Section-B)
2019 (Section-A)
2019 (Section-B)
2020 (Section-A)
1 of 2

Question:-1(b)

\(a=b\:cos\:C+c\:cos\:B\)
Prove the inequality : \(\frac{\pi^2}{9}<\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} d x<\frac{2 \pi^2}{9}\),
Expert Answer
untitled-document-15-c4a14609-db5c-41e1-99f0-81aab3fdac8f
Introduction:
We have the inequality:
1 1 sin x 2 for all x [ π 6 , π 2 ] . 1 1 sin x 2  for all  x π 6 , π 2 1 <= (1)/(sin x) <= 2″ for all “x in[(pi)/(6),(pi)/(2)]”. “1 \leq \frac{1}{\sin x} \leq 2 \text { for all } x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right] \text {. }11sinx2 for all x[π6,π2]
Multiply by x x xxx
Therefore, it follows that:
x x sin x 2 x for all x [ π 6 , π 2 ] x x sin x 2 x  for all  x π 6 , π 2 x <= (x)/(sin x) <= 2x” for all “x in[(pi)/(6),(pi)/(2)]x \leq \frac{x}{\sin x} \leq 2x \text { for all } x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]xxsinx2x for all x[π6,π2]
Step 1: Defining f ( x ) f ( x ) f(x)f(x)f(x):
Let’s define a function f ( x ) = x sin x f ( x ) = x sin x f(x)=(x)/(sin x)f(x)=\frac{x}{\sin x}f(x)=xsinx.
Step 2: Defining ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) and ψ ( x ) ψ ( x ) psi(x)\psi(x)ψ(x):
We define two more functions as follows:
ϕ ( x ) = x ψ ( x ) = 2 x , x [ π / 6 , π / 2 ] ϕ ( x ) = x ψ ( x ) = 2 x , x [ π / 6 , π / 2 ] {:[phi(x)=x],[psi(x)=2x”,”quad x in[pi//6″,”pi//2]]:}\begin{aligned} & \phi(x)=x \\ & \psi(x)=2x, \quad x \in[\pi / 6, \pi / 2] \end{aligned}ϕ(x)=xψ(x)=2x,x[π/6,π/2]
Step 3: Boundedness and Integrability:
Both f f fff and ϕ ϕ phi\phiϕ are bounded and integrable on [ π / 6 , π / 2 ] [ π / 6 , π / 2 ] [pi//6,pi//2][\pi / 6, \pi / 2][π/6,π/2], and f ( x ) ϕ ( x ) f ( x ) ϕ ( x ) f(x) >= phi(x)f(x) \geq \phi(x)f(x)ϕ(x) for all x [ π / 6 , π / 2 ] x [ π / 6 , π / 2 ] x in[pi//6,pi//2]x \in[\pi / 6, \pi / 2]x[π/6,π/2].
Step 4: Continuity at π / 3 π / 3 pi//3\pi / 3π/3:
Furthermore, f f fff and ϕ ϕ phi\phiϕ are both continuous at x = π / 3 x = π / 3 x=pi//3x = \pi / 3x=π/3, and f ( π / 3 ) > ϕ ( π / 3 ) f ( π / 3 ) > ϕ ( π / 3 ) f(pi//3) > phi(pi//3)f(\pi / 3)>\phi(\pi / 3)f(π/3)>ϕ(π/3).
Step 5: Integral Comparison:
Hence, we can compare the integrals:
π / 6 π / 2 f ( x ) d x > π / 6 π / 2 ϕ ( x ) d x = π / 6 π / 2 x d x = π 2 9 π / 6 π / 2 f ( x ) d x > π / 6 π / 2 ϕ ( x ) d x = π / 6 π / 2 x d x = π 2 9 {:[int_(pi//6)^(pi//2)f(x)dx > int_(pi//6)^(pi//2)phi(x)dx],[=int_(pi//6)^(pi//2)xdx],[=(pi^(2))/(9)]:}\begin{aligned} & \int_{\pi / 6}^{\pi / 2} f(x) d x>\int_{\pi / 6}^{\pi / 2} \phi(x) d x \\ & =\int_{\pi / 6}^{\pi / 2} x d x \\ & =\frac{\pi^2}{9} \end{aligned}π/6π/2f(x)dx>π/6π/2ϕ(x)dx=π/6π/2xdx=π29
Step 6: Comparing with ψ ψ psi\psiψ:
Similarly, we have:
π / 6 π / 2 f ( x ) d x < π / 6 π / 2 ψ ( x ) d x = 2 π / 6 π / 2 x d x = 2 π 2 9 π / 6 π / 2 f ( x ) d x < π / 6 π / 2 ψ ( x ) d x = 2 π / 6 π / 2 x d x = 2 π 2 9 {:[int_(pi//6)^(pi//2)f(x)dx < int_(pi//6)^(pi//2)psi(x)dx],[=2int_(pi//6)^(pi//2)xdx],[=(2pi^(2))/(9)]:}\begin{aligned} \int_{\pi / 6}^{\pi / 2} f(x) d x & <\int_{\pi / 6}^{\pi / 2} \psi(x) d x \\ & =2 \int_{\pi / 6}^{\pi / 2} x d x \\ & =\frac{2 \pi^2}{9} \end{aligned}π/6π/2f(x)dx<π/6π/2ψ(x)dx=2π/6π/2xdx=2π29
Conclusion:
Consequently, we can conclude that:
π 2 9 < π / 6 π / 2 x sin x d x < 2 π 2 9 π 2 9 < π / 6 π / 2 x sin x d x < 2 π 2 9 (pi^(2))/(9) < int_(pi//6)^(pi//2)(x)/(sin x)dx < (2pi^(2))/(9)\frac{\pi^2}{9}<\int_{\pi / 6}^{\pi / 2} \frac{x}{\sin x} d x<\frac{2 \pi^2}{9}π29<π/6π/2xsinxdx<2π29
Verified Answer
5/5
\(2\:cos\:\theta \:sin\:\phi =sin\:\left(\theta +\phi \right)-sin\:\left(\theta -\phi \right)\)
Scroll to Top
Scroll to Top