Question Paper: MCS-212 Discrete Mathematics Question:-1 Prove by mathematical induction that ∑ i = 1 n 1 i ( i + 1 ) = n n + 1 ∑ i = 1 n 1 i ( i + 1 ) = n n + 1 sum_(i=1)^(n)(1)/(i(i+1))=(n)/(n+1)sum_{i=1}^{n} frac{1}{i(i+1)} = frac{n}{n+1}∑i=1n1i(i+1)=nn+1. Answer: ???? Step 1: Base
To prevent spam restrictions, please save our number to start a chat.