Free UPSC Mathematics Optional Paper-1 2019 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड-A / SECTION-A
  1. (a) माना कि f : [ 0 , π 2 ] R f : 0 , π 2 R f:[0,(pi)/(2)]rarrRf:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}f:[0,π2]R एक संतत फलन है, जैसा कि
f ( x ) = cos 2 x 4 x 2 π 2 , 0 x < π 2 f ( x ) = cos 2 x 4 x 2 π 2 , 0 x < π 2 f(x)=(cos^(2)x)/(4x^(2)-pi^(2)),quad0 <= x < (pi)/(2)f(x)=\frac{\cos ^2 x}{4 x^2-\pi^2}, \quad 0 \leq x<\frac{\pi}{2}f(x)=cos2x4x2π2,0x<π2
f ( π 2 ) f π 2 f((pi)/(2))f\left(\frac{\pi}{2}\right)f(π2) का मान ज्ञात कीजिए।
Let f : [ 0 , π 2 ] R f : 0 , π 2 R f:[0,(pi)/(2)]rarrRf:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}f:[0,π2]R be a continuous function such that
f ( x ) = cos 2 x 4 x 2 π 2 , 0 x < π 2 f ( x ) = cos 2 x 4 x 2 π 2 , 0 x < π 2 f(x)=(cos^(2)x)/(4x^(2)-pi^(2)),quad0 <= x < (pi)/(2)f(x)=\frac{\cos ^2 x}{4 x^2-\pi^2}, \quad 0 \leq x<\frac{\pi}{2}f(x)=cos2x4x2π2,0x<π2
Find the value of f ( π 2 ) f π 2 f((pi)/(2))f\left(\frac{\pi}{2}\right)f(π2).
Answer:

Introduction

The problem asks us to find the value of f ( π 2 ) f π 2 f((pi)/(2))f\left(\frac{\pi}{2}\right)f(π2) for a given function f ( x ) = cos 2 x 4 x 2 π 2 f ( x ) = cos 2 x 4 x 2 π 2 f(x)=(cos^(2)x)/(4x^(2)-pi^(2))f(x) = \frac{\cos^2 x}{4x^2 – \pi^2}f(x)=cos2x4x2π2 defined on the interval [ 0 , π 2 ] 0 , π 2 [0,(pi)/(2)]\left[0, \frac{\pi}{2}\right][0,π2]. The function is continuous except at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2 because the denominator becomes zero at that point. To find f ( π 2 ) f π 2 f((pi)/(2))f\left(\frac{\pi}{2}\right)f(π2), we’ll need to evaluate the limit of f ( x ) f ( x ) f(x)f(x)f(x) as x x xxx approaches π 2 π 2 (pi)/(2)\frac{\pi}{2}π2.

Work/Calculations

Step 1: Define the Function and the Limit

The function f ( x ) f ( x ) f(x)f(x)f(x) is given as:
f ( x ) = cos 2 x 4 x 2 π 2 f ( x ) = cos 2 x 4 x 2 π 2 f(x)=(cos^(2)x)/(4x^(2)-pi^(2))f(x) = \frac{\cos^2 x}{4x^2 – \pi^2}f(x)=cos2x4x2π2
We need to find:
f ( π 2 ) = lim x π 2 f ( x ) f π 2 = lim x π 2 f ( x ) f((pi)/(2))=lim_(x rarr(pi)/(2))f(x)f\left(\frac{\pi}{2}\right) = \lim_{{x \to \frac{\pi}{2}}} f(x)f(π2)=limxπ2f(x)

Step 2: Simplify the Function

To find the limit, we can use L’Hôpital’s Rule, which states that if lim x a f ( x ) g ( x ) lim x a f ( x ) g ( x ) lim_(x rarr a)(f(x))/(g(x))\lim_{{x \to a}} \frac{f(x)}{g(x)}limxaf(x)g(x) is an indeterminate form 0 0 0 0 (0)/(0)\frac{0}{0}00 or (oo )/(oo)\frac{\infty}{\infty}, then:
lim x a f ( x ) g ( x ) = lim x a f ( x ) g ( x ) lim x a f ( x ) g ( x ) = lim x a f ( x ) g ( x ) lim_(x rarr a)(f(x))/(g(x))=lim_(x rarr a)(f^(‘)(x))/(g^(‘)(x))\lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)}limxaf(x)g(x)=limxaf(x)g(x)
provided the limits on the right-hand side exist.
First, let’s check if the function f ( x ) f ( x ) f(x)f(x)f(x) is in indeterminate form at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2:
Numerator at x = π 2 : cos 2 ( π 2 ) = 0 Numerator at x = π 2 : cos 2 π 2 = 0 “Numerator at “x=(pi)/(2):cos^(2)((pi)/(2))=0\text{Numerator at } x = \frac{\pi}{2}: \cos^2 \left(\frac{\pi}{2}\right) = 0Numerator at x=π2:cos2(π2)=0
Denominator at x = π 2 : 4 ( π 2 ) 2 π 2 = 0 Denominator at x = π 2 : 4 π 2 2 π 2 = 0 “Denominator at “x=(pi)/(2):4((pi)/(2))^(2)-pi^(2)=0\text{Denominator at } x = \frac{\pi}{2}: 4 \left(\frac{\pi}{2}\right)^2 – \pi^2 = 0Denominator at x=π2:4(π2)2π2=0
Both the numerator and the denominator are zero, so we have an indeterminate form 0 0 0 0 (0)/(0)\frac{0}{0}00.

Step 3: Apply L’Hôpital’s Rule

Let’s differentiate the numerator and the denominator with respect to x x xxx.
  • f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) (Derivative of cos 2 x cos 2 x cos^(2)x\cos^2 xcos2x) = 2 cos ( x ) sin ( x ) 2 cos ( x ) sin ( x ) -2cos(x)sin(x)-2 \cos(x) \sin(x)2cos(x)sin(x)
  • g ( x ) g ( x ) g^(‘)(x)g'(x)g(x) (Derivative of 4 x 2 π 2 4 x 2 π 2 4x^(2)-pi^(2)4x^2 – \pi^24x2π2) = 8 x 8 x 8x8x8x
Now, we can find the limit:
lim x π 2 f ( x ) g ( x ) = lim x π 2 2 cos ( x ) sin ( x ) 8 x lim x π 2 f ( x ) g ( x ) = lim x π 2 2 cos ( x ) sin ( x ) 8 x lim_(x rarr(pi)/(2))(f^(‘)(x))/(g^(‘)(x))=lim_(x rarr(pi)/(2))(-2cos(x)sin(x))/(8x)\lim_{{x \to \frac{\pi}{2}}} \frac{f'(x)}{g'(x)} = \lim_{{x \to \frac{\pi}{2}}} \frac{-2 \cos(x) \sin(x)}{8x}limxπ2f(x)g(x)=limxπ22cos(x)sin(x)8x
Let’s substitute the values into the formula and calculate the limit.
After substituting the values, we get:
lim x π 2 2 cos ( x ) sin ( x ) 8 x = 2 cos ( π 2 ) sin ( π 2 ) 8 × π 2 lim x π 2 2 cos ( x ) sin ( x ) 8 x = 2 cos π 2 sin π 2 8 × π 2 lim_(x rarr(pi)/(2))(-2cos(x)sin(x))/(8x)=(-2cos((pi)/(2))sin((pi)/(2)))/(8xx(pi)/(2))\lim_{{x \to \frac{\pi}{2}}} \frac{-2 \cos(x) \sin(x)}{8x} = \frac{-2 \cos\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right)}{8 \times \frac{\pi}{2}}limxπ22cos(x)sin(x)8x=2cos(π2)sin(π2)8×π2
After calculating, we get:
lim x π 2 2 cos ( x ) sin ( x ) 8 x = 0 lim x π 2 2 cos ( x ) sin ( x ) 8 x = 0 lim_(x rarr(pi)/(2))(-2cos(x)sin(x))/(8x)=0\lim_{{x \to \frac{\pi}{2}}} \frac{-2 \cos(x) \sin(x)}{8x} = 0limxπ22cos(x)sin(x)8x=0

Conclusion

The value of f ( π 2 ) f π 2 f((pi)/(2))f\left(\frac{\pi}{2}\right)f(π2) is 0 0 000. We used L’Hôpital’s Rule to evaluate the limit of the function f ( x ) f ( x ) f(x)f(x)f(x) as x x xxx approaches π 2 π 2 (pi)/(2)\frac{\pi}{2}π2, and found that the limit is 0 0 000. Therefore, f ( π 2 ) = 0 f π 2 = 0 f((pi)/(2))=0f\left(\frac{\pi}{2}\right) = 0f(π2)=0.
(b) माना कि f : D ( R 2 ) R f : D R 2 R f:D(subeR^(2))rarrRf: D\left(\subseteq \mathbb{R}^2\right) \rightarrow \mathbb{R}f:D(R2)R एक फलन है और ( a , b ) D ( a , b ) D (a,b)in D(a, b) \in D(a,b)D. अगर f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) बिंदु ( a , b ) ( a , b ) (a,b)(a, b)(a,b) पर संतत है, तो दर्शाइए कि फलन f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) और f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) क्रमशः x = a x = a x=ax=ax=a और y = b y = b y=by=by=b पर संतत हैं।
Let f : D ( R 2 ) R f : D R 2 R f:D(subeR^(2))rarrRf: D\left(\subseteq \mathbb{R}^2\right) \rightarrow \mathbb{R}f:D(R2)R be a function and ( a , b ) D ( a , b ) D (a,b)in D(a, b) \in D(a,b)D. If f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is continuous at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), then show that the functions f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) and f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) are continuous at x = a x = a x=ax=ax=a and at y = b y = b y=by=by=b respectively.
Answer:

Introduction

The problem asks us to prove that if a function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is continuous at a point ( a , b ) ( a , b ) (a,b)(a, b)(a,b), then the functions f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) and f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) are continuous at x = a x = a x=ax = ax=a and y = b y = b y=by = by=b respectively. To prove this, we will use the definition of continuity and manipulate the mathematical expressions accordingly.

Work/Calculations

Step 1: Definition of Continuity

A function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is said to be continuous at ( a , b ) ( a , b ) (a,b)(a, b)(a,b) if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that:
( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ ( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ sqrt((x-a)^(2)+(y-b)^(2)) < deltaLongrightarrow|f(x,y)-f(a,b)| < epsilon\sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x, y) – f(a, b)| < \epsilon(xa)2+(yb)2<δ|f(x,y)f(a,b)|<ϵ

Step 2: Prove Continuity for f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) at x = a x = a x=ax = ax=a

We need to show that for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that:
| x a | < δ | f ( x , b ) f ( a , b ) | < ϵ | x a | < δ | f ( x , b ) f ( a , b ) | < ϵ |x-a| < deltaLongrightarrow|f(x,b)-f(a,b)| < epsilon|x – a| < \delta \implies |f(x, b) – f(a, b)| < \epsilon|xa|<δ|f(x,b)f(a,b)|<ϵ
To prove this, let’s consider ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0. Since f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is continuous at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), there exists δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that:
( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ ( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ sqrt((x-a)^(2)+(y-b)^(2)) < deltaLongrightarrow|f(x,y)-f(a,b)| < epsilon\sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x, y) – f(a, b)| < \epsilon(xa)2+(yb)2<δ|f(x,y)f(a,b)|<ϵ
Now, consider | x a | < δ | x a | < δ |x-a| < delta|x – a| < \delta|xa|<δ. We can rewrite this as ( x a ) 2 + ( b b ) 2 < δ ( x a ) 2 + ( b b ) 2 < δ sqrt((x-a)^(2)+(b-b)^(2)) < delta\sqrt{(x-a)^2 + (b-b)^2} < \delta(xa)2+(bb)2<δ.
By the continuity of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), this implies:
| f ( x , b ) f ( a , b ) | < ϵ | f ( x , b ) f ( a , b ) | < ϵ |f(x,b)-f(a,b)| < epsilon|f(x, b) – f(a, b)| < \epsilon|f(x,b)f(a,b)|<ϵ
Thus, we have shown that f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) is continuous at x = a x = a x=ax = ax=a.

Step 3: Prove Continuity for f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) at y = b y = b y=by = by=b

Similarly, we need to show that for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that:
| y b | < δ | f ( a , y ) f ( a , b ) | < ϵ | y b | < δ | f ( a , y ) f ( a , b ) | < ϵ |y-b| < deltaLongrightarrow|f(a,y)-f(a,b)| < epsilon|y – b| < \delta \implies |f(a, y) – f(a, b)| < \epsilon|yb|<δ|f(a,y)f(a,b)|<ϵ
Again, consider ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0. By the continuity of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), there exists δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that:
( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ ( x a ) 2 + ( y b ) 2 < δ | f ( x , y ) f ( a , b ) | < ϵ sqrt((x-a)^(2)+(y-b)^(2)) < deltaLongrightarrow|f(x,y)-f(a,b)| < epsilon\sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x, y) – f(a, b)| < \epsilon(xa)2+(yb)2<δ|f(x,y)f(a,b)|<ϵ
Now, consider | y b | < δ | y b | < δ |y-b| < delta|y – b| < \delta|yb|<δ. We can rewrite this as ( a a ) 2 + ( y b ) 2 < δ ( a a ) 2 + ( y b ) 2 < δ sqrt((a-a)^(2)+(y-b)^(2)) < delta\sqrt{(a-a)^2 + (y-b)^2} < \delta(aa)2+(yb)2<δ.
By the continuity of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), this implies:
| f ( a , y ) f ( a , b ) | < ϵ | f ( a , y ) f ( a , b ) | < ϵ |f(a,y)-f(a,b)| < epsilon|f(a, y) – f(a, b)| < \epsilon|f(a,y)f(a,b)|<ϵ
Thus, we have shown that f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) is continuous at y = b y = b y=by = by=b.

Conclusion

We have successfully proven that if f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is continuous at ( a , b ) ( a , b ) (a,b)(a, b)(a,b), then f ( x , b ) f ( x , b ) f(x,b)f(x, b)f(x,b) is continuous at x = a x = a x=ax = ax=a and f ( a , y ) f ( a , y ) f(a,y)f(a, y)f(a,y) is continuous at y = b y = b y=by = by=b. We used the definition of continuity to establish these results.
(c) माना कि T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)T: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 एक रैखिक प्रतिचित्र है, जैसा कि T ( 2 , 1 ) = ( 5 , 7 ) T ( 2 , 1 ) = ( 5 , 7 ) T(2,1)=(5,7)T(2,1)=(5,7)T(2,1)=(5,7) एवं T ( 1 , 2 ) = ( 3 , 3 ) T ( 1 , 2 ) = ( 3 , 3 ) T(1,2)=(3,3)T(1,2)=(3,3)T(1,2)=(3,3). अगर A A AAA मानक आधारों e 1 , e 2 e 1 , e 2 e_(1),e_(2)e_1, e_2e1,e2 के सापेक्ष T T TTT के संगत आव्यूह है, तो A A AAA की कोटि ज्ञात कीजिए।
Let T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)T: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 be a linear map such that T ( 2 , 1 ) = ( 5 , 7 ) T ( 2 , 1 ) = ( 5 , 7 ) T(2,1)=(5,7)T(2,1)=(5,7)T(2,1)=(5,7) and T ( 1 , 2 ) = ( 3 , 3 ) T ( 1 , 2 ) = ( 3 , 3 ) T(1,2)=(3,3)T(1,2)=(3,3)T(1,2)=(3,3).
If A A AAA is the matrix corresponding to T T TTT with respect to the standard bases e 1 , e 2 e 1 , e 2 e_(1),e_(2)e_1, e_2e1,e2, then find Rank ( A ) Rank ( A ) Rank(A)\operatorname{Rank}(A)Rank(A).
Answer:
  1. Expressing ( a , b ) ( a , b ) (a,b)(a, b)(a,b) as a Linear Combination
( a , b ) = α ( 2 , 1 ) + β ( 1 , 2 ) ( a , b ) = α ( 2 , 1 ) + β ( 1 , 2 ) (a,b)=alpha(2,1)+beta(1,2)(a, b) = \alpha(2,1) + \beta(1,2)(a,b)=α(2,1)+β(1,2)
a = 2 α + β (Equation 1) a = 2 α + β (Equation 1) a=2alpha+betaquad(Equation 1)a = 2\alpha + \beta \quad \text{(Equation 1)}a=2α+β(Equation 1)
b = α + 2 β (Equation 2) b = α + 2 β (Equation 2) b=alpha+2betaquad(Equation 2)b = \alpha + 2\beta \quad \text{(Equation 2)}b=α+2β(Equation 2)
  1. Solving for α α alpha\alphaα and β β beta\betaβ
From Equation 2 multiplied by 2 minus Equation 1, we get:
3 β = 2 b a 3 β = 2 b a 3beta=2b-a3\beta = 2b – a3β=2ba
β = 2 b a 3 β = 2 b a 3 beta=(2b-a)/(3)\beta = \frac{2b – a}{3}β=2ba3
α = 2 a b 3 α = 2 a b 3 alpha=(2a-b)/(3)\alpha = \frac{2a – b}{3}α=2ab3
  1. Finding T ( a , b ) T ( a , b ) T(a,b)T(a, b)T(a,b) in terms of T ( 2 , 1 ) T ( 2 , 1 ) T(2,1)T(2,1)T(2,1) and T ( 1 , 2 ) T ( 1 , 2 ) T(1,2)T(1,2)T(1,2)
T ( a , b ) = 2 a b 3 T ( 2 , 1 ) + 2 b a 3 T ( 1 , 2 ) T ( a , b ) = 2 a b 3 T ( 2 , 1 ) + 2 b a 3 T ( 1 , 2 ) T(a,b)=(2a-b)/(3)T(2,1)+(2b-a)/(3)T(1,2)T(a, b) = \frac{2a – b}{3} T(2,1) + \frac{2b – a}{3} T(1,2)T(a,b)=2ab3T(2,1)+2ba3T(1,2)
  1. Finding T ( e 1 ) T ( e 1 ) T(e_(1))T(e_1)T(e1) and T ( e 2 ) T ( e 2 ) T(e_(2))T(e_2)T(e2)
T ( 1 , 0 ) = 2 3 ( 5 , 7 ) 1 3 ( 3 , 3 ) = ( 7 3 , 11 3 ) T ( 1 , 0 ) = 2 3 ( 5 , 7 ) 1 3 ( 3 , 3 ) = 7 3 , 11 3 T(1,0)=(2)/(3)(5,7)-(1)/(3)(3,3)=((7)/(3),(11)/(3))T(1,0) = \frac{2}{3}(5,7) – \frac{1}{3}(3,3) = \left(\frac{7}{3}, \frac{11}{3}\right)T(1,0)=23(5,7)13(3,3)=(73,113)
T ( 0 , 1 ) = 1 3 ( 5 , 7 ) + 2 3 ( 3 , 3 ) = ( 1 3 , 1 3 ) T ( 0 , 1 ) = 1 3 ( 5 , 7 ) + 2 3 ( 3 , 3 ) = 1 3 , 1 3 T(0,1)=-(1)/(3)(5,7)+(2)/(3)(3,3)=((1)/(3),-(1)/(3))T(0,1) = -\frac{1}{3}(5,7) + \frac{2}{3}(3,3) = \left(\frac{1}{3}, -\frac{1}{3}\right)T(0,1)=13(5,7)+23(3,3)=(13,13)
  1. Finding Matrix A A AAA
A = [ 7 3 1 3 11 3 1 3 ] A = 7 3 1 3 11 3 1 3 A=[[(7)/(3),(1)/(3)],[(11)/(3),-(1)/(3)]]A = \left[\begin{array}{cc} \frac{7}{3} & \frac{1}{3} \\ \frac{11}{3} & -\frac{1}{3} \end{array}\right]A=[731311313]
  1. Finding the Rank of A A AAA
The determinant of A A AAA is:
Det ( A ) = 7 × ( 1 / 3 ) 11 × 1 / 3 3 = 18 9 = 2 0 Det ( A ) = 7 × ( 1 / 3 ) 11 × 1 / 3 3 = 18 9 = 2 0 “Det”(A)=(-7xx(-1//3)-11 xx1//3)/(3)=-(18)/(9)=-2!=0\text{Det}(A) = \frac{-7 \times (-1/3) – 11 \times 1/3}{3} = -\frac{18}{9} = -2 \neq 0Det(A)=7×(1/3)11×1/33=189=20
Since the determinant is not zero, the matrix is invertible, and its rank is equal to the dimension of the domain, which is 2.

Conclusion

Rank ( A ) = 2 Rank ( A ) = 2 Rank(A)=2\operatorname{Rank}(A) = 2Rank(A)=2
(d) अगर
A = [ 1 2 1 1 4 1 3 0 3 ] और B = [ 2 1 1 1 1 0 2 1 1 ] A = 1      2      1 1      4      1 3      0      3 और B = 2      1      1 1      1      0 2      1      1 A=[[1,2,1],[1,-4,1],[3,0,-3]]” और “B=[[2,1,1],[1,-1,0],[2,1,-1]]A=\left[\begin{array}{rrr} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{array}\right] \text { और } B=\left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{array}\right]A=[121141303] और B=[211110211]
है, तो दर्शाइए कि A B = 6 I 3 A B = 6 I 3 AB=6I_(3)A B=6 I_3AB=6I3. इस परिणाम का उपयोग करते हुए निम्नलिखित समीकरण निकाय को हल कीजिए :
2 x + y + z = 5 x y = 0 2 x + y z = 1 2 x + y + z = 5 x y = 0 2 x + y z = 1 {:[2x+y+z=5],[x-y=0],[2x+y-z=1]:}\begin{array}{r} 2 x+y+z=5 \\ x-y=0 \\ 2 x+y-z=1 \end{array}2x+y+z=5xy=02x+yz=1
If
A = [ 1 2 1 1 4 1 3 0 3 ] and B = [ 2 1 1 1 1 0 2 1 1 ] A = 1      2      1 1      4      1 3      0      3 and B = 2      1      1 1      1      0 2      1      1 A=[[1,2,1],[1,-4,1],[3,0,-3]]quad” and “B=[[2,1,1],[1,-1,0],[2,1,-1]]A=\left[\begin{array}{rrr} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{array}\right] \quad \text { and } B=\left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{array}\right]A=[121141303] and B=[211110211]
then show that A B = 6 I 3 A B = 6 I 3 AB=6I_(3)A B=6 I_3AB=6I3. Use this result to solve the following system of equations :
2 x + y + z = 5 x y = 0 2 x + y z = 1 2 x + y + z = 5 x y = 0 2 x + y z = 1 {:[2x+y+z=5],[x-y=0],[2x+y-z=1]:}\begin{array}{r} 2 x+y+z=5 \\ x-y=0 \\ 2 x+y-z=1 \end{array}2x+y+z=5xy=02x+yz=1
Answer:

Introduction

The problem asks us to show that A B = 6 I 3 A B = 6 I 3 AB=6I_(3)AB = 6I_3AB=6I3 for given matrices A A AAA and B B BBB, and then use this result to solve a system of equations. I 3 I 3 I_(3)I_3I3 is the 3 × 3 3 × 3 3xx33 \times 33×3 identity matrix.

Work/Calculations

Step 1: Calculate A B A B ABABAB

The first task is to calculate A B A B ABABAB. The matrices A A AAA and B B BBB are:
A = ( 1 2 1 1 4 1 3 0 3 ) A = 1 2 1 1 4 1 3 0 3 A=([1,2,1],[1,-4,1],[3,0,-3])A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{pmatrix}A=(121141303)
B = ( 2 1 1 1 1 0 2 1 1 ) B = 2 1 1 1 1 0 2 1 1 B=([2,1,1],[1,-1,0],[2,1,-1])B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{pmatrix}B=(211110211)
A × B = [ 1 2 1 1 4 1 3 0 3 ] × [ 2 1 1 1 1 0 2 1 1 ] = [ 1 × 2 + 2 × 1 + 1 × 2 1 × 1 + 2 × 1 + 1 × 1 1 × 1 + 2 × 0 + 1 × 1 1 × 2 4 × 1 + 1 × 2 1 × 1 4 × 1 + 1 × 1 1 × 1 4 × 0 + 1 × 1 3 × 2 + 0 × 1 3 × 2 3 × 1 + 0 × 1 3 × 1 3 × 1 + 0 × 0 3 × 1 ] = [ 2 + 2 + 2 1 2 + 1 1 + 0 1 2 4 + 2 1 + 4 + 1 1 + 0 1 6 + 0 6 3 + 0 3 3 + 0 + 3 ] = [ 6 0 0 0 6 0 0 0 6 ] A × B = 1 2 1 1 4 1 3 0 3 × 2 1 1 1 1 0 2 1 1 = 1 × 2 + 2 × 1 + 1 × 2 1 × 1 + 2 × 1 + 1 × 1 1 × 1 + 2 × 0 + 1 × 1 1 × 2 4 × 1 + 1 × 2 1 × 1 4 × 1 + 1 × 1 1 × 1 4 × 0 + 1 × 1 3 × 2 + 0 × 1 3 × 2 3 × 1 + 0 × 1 3 × 1 3 × 1 + 0 × 0 3 × 1 = 2 + 2 + 2 1 2 + 1 1 + 0 1 2 4 + 2 1 + 4 + 1 1 + 0 1 6 + 0 6 3 + 0 3 3 + 0 + 3 = 6 0 0 0 6 0 0 0 6 {:[A xx B=[[1,2,1],[1,-4,1],[3,0,-3]]xx[[2,1,1],[1,-1,0],[2,1,-1]]],[=[[1xx2+2xx1+1xx2,1xx1+2xx-1+1xx1,1xx1+2xx0+1xx-1],[1xx2-4xx1+1xx2,1xx1-4xx-1+1xx1,1xx1-4xx0+1xx-1],[3xx2+0xx1-3xx2,3xx1+0xx-1-3xx1,3xx1+0xx0-3xx-1]]],[=[[2+2+2,1-2+1,1+0-1],[2-4+2,1+4+1,1+0-1],[6+0-6,3+0-3,3+0+3]]],[=[[6,0,0],[0,6,0],[0,0,6]]],[]:}\begin{aligned} & A \times B=\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{array}\right] \times\left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{array}\right] \\ & =\left[\begin{array}{llll} 1 \times 2+2 \times 1+1 \times 2 & 1 \times 1+2 \times-1+1 \times 1 & 1 \times 1+2 \times 0+1 \times-1 \\ 1 \times 2-4 \times 1+1 \times 2 & 1 \times 1-4 \times-1+1 \times 1 & 1 \times 1-4 \times 0+1 \times-1 \\ 3 \times 2+0 \times 1-3 \times 2 & 3 \times 1+0 \times-1-3 \times 1 & 3 \times 1+0 \times 0-3 \times-1 \end{array}\right] \\ & =\left[\begin{array}{ccc} 2+2+2 & 1-2+1 & 1+0-1 \\ 2-4+2 & 1+4+1 & 1+0-1 \\ 6+0-6 & 3+0-3 & 3+0+3 \end{array}\right] \\ & =\left[\begin{array}{lll} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right] \\ & \end{aligned}A×B=[121141303]×[211110211]=[1×2+2×1+1×21×1+2×1+1×11×1+2×0+1×11×24×1+1×21×14×1+1×11×14×0+1×13×2+0×13×23×1+0×13×13×1+0×03×1]=[2+2+212+11+0124+21+4+11+016+063+033+0+3]=[600060006]
After calculating, we find that A B A B ABABAB is:
A B = ( 6 0 0 0 6 0 0 0 6 ) A B = 6 0 0 0 6 0 0 0 6 AB=([6,0,0],[0,6,0],[0,0,6])AB = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix}AB=(600060006)
This is equivalent to 6 I 3 6 I 3 6I_(3)6I_36I3, where I 3 I 3 I_(3)I_3I3 is the 3 × 3 3 × 3 3xx33 \times 33×3 identity matrix.

Step 2: Solve the System of Equations

The system of equations is:
2 x + y + z = 5 x y = 0 2 x + y z = 1 2 x + y + z = 5 x y = 0 2 x + y z = 1 {:[2x+y+z=5],[x-y=0],[2x+y-z=1]:}\begin{aligned} 2x + y + z &= 5 \\ x – y &= 0 \\ 2x + y – z &= 1 \end{aligned}2x+y+z=5xy=02x+yz=1
We can write this system as A x = b A x = b Ax=bAx = bAx=b, where A A AAA is the matrix from the problem statement, and b = ( 5 0 1 ) b = 5 0 1 b=([5],[0],[1])b = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}b=(501).
Since A B = 6 I 3 , we have A 1 = 1 6 B . Since A B = 6 I 3 , we have A 1 = 1 6 B . ” Since “AB=6I_(3)”, we have “A^(-1)=(1)/(6)B”. “\text { Since } A B=6 I_3 \text {, we have } A^{-1}=\frac{1}{6} B \text {. } Since AB=6I3, we have A1=16B.
Here, X = A 1 × b X = A 1 × b X=A^(-1)xx bX=A^{-1} \times bX=A1×b
X = 1 | A | × Adj ( A ) × b X = 1 6 × [ 1 2 1 1 4 1 3 0 3 ] × [ 5 0 1 ] X = 1 6 × [ 1 × 5 + 2 × 0 + 1 × 1 1 × 5 4 × 0 + 1 × 1 3 × 5 + 0 × 0 3 × 1 ] X = 1 6 × [ 6 6 12 ] X = [ 1 1 2 ] X = 1 | A | × Adj ( A ) × b X = 1 6 × 1 2 1 1 4 1 3 0 3 × 5 0 1 X = 1 6 × 1 × 5 + 2 × 0 + 1 × 1 1 × 5 4 × 0 + 1 × 1 3 × 5 + 0 × 0 3 × 1 X = 1 6 × 6 6 12 X = 1 1 2 {:[:.X=(1)/(|A|)xx Adj(A)xx b],[X=(1)/(6)xx[[1,2,1],[1,-4,1],[3,0,-3]]xx[[5],[0],[1]]],[X=(1)/(6)xx[[1xx5+2xx0+1xx1],[1xx5-4xx0+1xx1],[3xx5+0xx0-3xx1]]],[X=(1)/(6)xx[[6],[6],[12]]],[X=[[1],[1],[2]]]:}\begin{aligned} & \therefore X=\frac{1}{|A|} \times \operatorname{Adj}(A) \times b \\ &X =\frac{1}{6} \times\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{array}\right] \times\left[\begin{array}{l} 5 \\ 0 \\ 1 \end{array}\right] \\ &X =\frac{1}{6}\times\left[\begin{array}{c} 1 \times 5+2 \times 0+1 \times 1 \\ 1 \times 5-4 \times 0+1 \times 1 \\ 3 \times 5+0 \times 0-3 \times 1 \end{array}\right] \\ &X =\frac{1}{6} \times\left[\begin{array}{c} 6 \\ 6 \\ 12 \end{array}\right] \\ &X =\left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right] \end{aligned}X=1|A|×Adj(A)×bX=16×[121141303]×[501]X=16×[1×5+2×0+1×11×54×0+1×13×5+0×03×1]X=16×[6612]X=[112]
Hence ( x y z ) = ( 1 1 2 ) x y z = 1 1 2 ([x],[y],[z])=([1],[1],[2])\begin{pmatrix}x\\ y\\ z\end{pmatrix}=\begin{pmatrix}1\\ 1\\ 2\end{pmatrix}(xyz)=(112)
(e) दर्शाइए कि
x + 1 3 = y 3 2 = z + 2 1 और x 1 = y 7 3 = z + 7 2 x + 1 3 = y 3 2 = z + 2 1 और x 1 = y 7 3 = z + 7 2 (x+1)/(-3)=(y-3)/(2)=(z+2)/(1)” और “(x)/(1)=(y-7)/(-3)=(z+7)/(2)\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \text { और } \frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}x+13=y32=z+21 और x1=y73=z+72
प्रतिच्छेदी रेखाएँ हैं। प्रतिच्छेद बिंदु के निर्देशांकों और उस समतल, जिसमें दोनों रेखाएँ हैं, का समीकरण ज्ञात कीजिए।
Show that the lines
x + 1 3 = y 3 2 = z + 2 1 and x 1 = y 7 3 = z + 7 2 x + 1 3 = y 3 2 = z + 2 1 and x 1 = y 7 3 = z + 7 2 (x+1)/(-3)=(y-3)/(2)=(z+2)/(1)” and “(x)/(1)=(y-7)/(-3)=(z+7)/(2)\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} \text { and } \frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}x+13=y32=z+21 and x1=y73=z+72
intersect. Find the coordinates of the point of intersection and the equation of the plane containing them.
Answer:
Proving Intersection of Lines
Given two lines:
Line 1:
x + 1 3 = y 3 2 = z + 2 1 x + 1 3 = y 3 2 = z + 2 1 (x+1)/(-3)=(y-3)/(2)=(z+2)/(1)\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}x+13=y32=z+21
Line 2:
x 1 = y 7 3 = z + 7 2 x 1 = y 7 3 = z + 7 2 (x)/(1)=(y-7)/(-3)=(z+7)/(2)\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}x1=y73=z+72
Let’s parameterize these lines as follows:
Line 1:
( x , y , z ) = ( 1 3 r , 3 + 2 r , 2 + r ) (1) ( x , y , z ) = ( 1 3 r , 3 + 2 r , 2 + r ) (1) (x,y,z)=(-1-3r,3+2r,-2+r)quad(1)(x, y, z) = (-1-3r, 3+2r, -2+r) \quad \text{(1)}(x,y,z)=(13r,3+2r,2+r)(1)
Line 2:
( x , y , z ) = ( r , 7 3 r , 7 + 2 r ) (2) ( x , y , z ) = ( r , 7 3 r , 7 + 2 r ) (2) (x,y,z)=(r^(‘),7-3r^(‘),-7+2r^(‘))quad(2)(x, y, z) = (r’, 7-3r’, -7+2r’) \quad \text{(2)}(x,y,z)=(r,73r,7+2r)(2)
For the two lines to intersect, there must exist values of r r rrr and r r r^(‘)r’r such that the points on these lines coincide.
Step 1: Setting up Equations
We set up the equations:
1 3 r = r 3 + 2 r = 7 3 r 2 + r = 7 + 2 r 1 3 r = r 3 + 2 r = 7 3 r 2 + r = 7 + 2 r {:[-1-3r=r^(‘)],[3+2r=7-3r^(‘)],[-2+r=-7+2r^(‘)]:}\begin{aligned} & -1-3r = r’ \\ & 3+2r = 7-3r’ \\ & -2+r = -7+2r’ \end{aligned}13r=r3+2r=73r2+r=7+2r
Step 2: Solving Equations
Solving the first two equations:
From the first equation, we get r = 1 r = 1 r=-1r = -1r=1.
Substituting r = 1 r = 1 r=-1r = -1r=1 into the second equation, we find r = 2 r = 2 r^(‘)=2r’ = 2r=2.
Now, we check if these values satisfy the third equation:
2 + ( 1 ) = 7 + 2 ( 2 ) 3 = 3 2 + ( 1 ) = 7 + 2 ( 2 ) 3 = 3 -2+(-1)=-7+2(2)Longrightarrow-3=-3-2 + (-1) = -7 + 2(2) \implies -3 = -32+(1)=7+2(2)3=3
So, the values r = 1 r = 1 r=-1r = -1r=1 and r = 2 r = 2 r^(‘)=2r’ = 2r=2 satisfy all three equations.
Step 3: Finding Intersection Point
Substituting these values of r r rrr and r r r^(‘)r’r into either (1) or (2), we get the coordinates of the point of intersection:
From (1):
( x , y , z ) = ( 2 , 1 , 3 ) ( x , y , z ) = ( 2 , 1 , 3 ) (x,y,z)=(2,1,-3)(x, y, z) = (2, 1, -3)(x,y,z)=(2,1,3)
Step 4: Finding the Equation of the Plane
The equation of the plane containing the given lines can be found using the cross product of the direction ratios of the lines.
Direction ratios of Line 1: ( 3 , 2 , 1 ) ( 3 , 2 , 1 ) (-3,2,1)(-3, 2, 1)(3,2,1)
Direction ratios of Line 2: ( 1 , 3 , 2 ) ( 1 , 3 , 2 ) (1,-3,2)(1, -3, 2)(1,3,2)
Now, we find the cross product of these direction ratios to get the normal vector of the plane:
| i j k 3 2 1 1 3 2 | = i × | 2 1 3 2 | j × | 3 1 1 2 | + k × | 3 2 1 3 | = i × ( 2 × 2 1 × ( 3 ) ) j × ( ( 3 ) × 2 1 × 1 ) + k × ( ( 3 ) × ( 3 ) 2 × 1 ) = i × ( 4 + 3 ) j × ( 6 1 ) + k × ( 9 2 ) = i × ( 7 ) j × ( 7 ) + k × ( 7 ) = 7 i + 7 j + 7 k = 7 i + 7 k + 7 j i j k 3 2 1 1 3 2 = i × 2 1 3 2 j × 3 1 1 2 + k × 3 2 1 3 = i × ( 2 × 2 1 × ( 3 ) ) j × ( ( 3 ) × 2 1 × 1 ) + k × ( ( 3 ) × ( 3 ) 2 × 1 ) = i × ( 4 + 3 ) j × ( 6 1 ) + k × ( 9 2 ) = i × ( 7 ) j × ( 7 ) + k × ( 7 ) = 7 i + 7 j + 7 k = 7 i + 7 k + 7 j {:[|[i,j,k],[-3,2,1],[1,-3,2]|],[=i xx|[2,1],[-3,2]|-j xx|[-3,1],[1,2]|+k xx|[-3,2],[1,-3]|],[=i xx(2xx2-1xx(-3))-j xx((-3)xx2-1xx1)+k xx((-3)xx(-3)-2xx1)],[=i xx(4+3)-j xx(-6-1)+k xx(9-2)],[=i xx(7)-j xx(-7)+k xx(7)],[=7i+7j+7k],[=7i+7k+7j]:}\begin{aligned} &\left|\begin{array}{ccc} i & j & k \\ -3 & 2 & 1 \\ 1 & -3 & 2 \end{array}\right| \\ & =i \times\left|\begin{array}{cc} 2 & 1 \\ -3 & 2 \end{array}\right|-j \times\left|\begin{array}{cc} -3 & 1 \\ 1 & 2 \end{array}\right|+k \times\left|\begin{array}{cc} -3 & 2 \\ 1 & -3 \end{array}\right| \\ & =i \times(2 \times 2-1 \times(-3))-j \times((-3) \times 2-1 \times 1)+k \times((-3) \times(-3)-2 \times 1) \\ & =i \times(4+3)-j \times(-6-1)+k \times(9-2) \\ & =i \times(7)-j \times(-7)+k \times(7) \\ & =7 i+7 j+7 k \\ & =7 i+7 k+7 j \end{aligned}|ijk321132|=i×|2132|j×|3112|+k×|3213|=i×(2×21×(3))j×((3)×21×1)+k×((3)×(3)2×1)=i×(4+3)j×(61)+k×(92)=i×(7)j×(7)+k×(7)=7i+7j+7k=7i+7k+7j
So, the normal vector of the plane is 7 i + 7 j + 7 k 7 i + 7 j + 7 k 7i+7j+7k7 i+7 j+7 k7i+7j+7k.
Now, we can use one of the intersection points, e.g., ( 2 , 1 , 3 ) ( 2 , 1 , 3 ) (2,1,-3)(2, 1, -3)(2,1,3), and the normal vector to find the equation of the plane:
7 ( x 2 ) + 7 ( y 1 ) + 7 ( z + 3 ) = 0 7 ( x 2 ) + 7 ( y 1 ) + 7 ( z + 3 ) = 0 7(x-2)+7(y-1)+7(z+3)=07(x – 2) + 7(y – 1) +7(z + 3) = 07(x2)+7(y1)+7(z+3)=0
Simplifying:
x + y + z = 0 x + y + z = 0 =>x+y+z=0\Rightarrow x+y+z=0x+y+z=0
This is the equation of the plane containing the given lines.
  1. (a) क्या f ( x ) = | cos x | + | sin x | , x = π 2 f ( x ) = | cos x | + | sin x | , x = π 2 f(x)=|cos x|+|sin x|,x=(pi)/(2)f(x)=|\cos x|+|\sin x|, x=\frac{\pi}{2}f(x)=|cosx|+|sinx|,x=π2 पर अवकलनीय है? अगर आपका उत्तर हाँ है, तो f ( x ) f ( x ) f(x)f(x)f(x) का अवकलज x = π 2 x = π 2 x=(pi)/(2)x=\frac{\pi}{2}x=π2 पर ज्ञात कीजिए। अगर आपका उत्तर ना है, तो अपने उत्तर का प्रमाण दीजिए।
Is f ( x ) = | cos x | + | sin x | f ( x ) = | cos x | + | sin x | f(x)=|cos x|+|sin x|f(x)=|\cos x|+|\sin x|f(x)=|cosx|+|sinx| differentiable at x = π 2 x = π 2 x=(pi)/(2)x=\frac{\pi}{2}x=π2 ? If yes, then find its derivative at x = π 2 x = π 2 x=(pi)/(2)x=\frac{\pi}{2}x=π2. If no, then give a proof of it.
Answer:

Introduction

We’re going to look at a pretty cool math problem. We have a function f ( x ) = | cos x | + | sin x | f ( x ) = | cos x | + | sin x | f(x)=|cos x|+|sin x|f(x) = |\cos x| + |\sin x|f(x)=|cosx|+|sinx|, and we want to find out if it’s differentiable at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2. If it is, we’ll also find its derivative at that point. To make things easier, we’ll break down the function into a piecewise function and then check its differentiability.

Work/Calculations

Step 1: Breaking It Down

First, let’s rewrite f ( x ) f ( x ) f(x)f(x)f(x) as a piecewise function around x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2:
f ( x ) = { cos x + sin x if x < π 2 cos x + sin x if x > π 2 1 if x = π 2 f ( x ) = cos x + sin x      if x < π 2 cos x + sin x      if x > π 2 1      if x = π 2 f(x)={[-cos x+sin x,”if “x < (pi)/(2)],[cos x+sin x,”if “x > (pi)/(2)],[1,”if “x=(pi)/(2)]:}f(x) = \begin{cases} -\cos x + \sin x & \text{if } x < \frac{\pi}{2} \\ \cos x + \sin x & \text{if } x > \frac{\pi}{2} \\ 1 & \text{if } x = \frac{\pi}{2} \end{cases}f(x)={cosx+sinxif x<π2cosx+sinxif x>π21if x=π2

Step 2: Checking the Derivative

To see if f ( x ) f ( x ) f(x)f(x)f(x) is differentiable at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2, we need to find the derivative from both sides of that point and see if they match.
  • Left-hand derivative: The derivative of cos x + sin x cos x + sin x -cos x+sin x-\cos x + \sin xcosx+sinx is sin x + cos x sin x + cos x sin x+cos x\sin x + \cos xsinx+cosx.
  • Right-hand derivative: The derivative of cos x + sin x cos x + sin x cos x+sin x\cos x + \sin xcosx+sinx is sin x + cos x sin x + cos x -sin x+cos x-\sin x + \cos xsinx+cosx.
Now, let’s plug x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2 into both of these derivatives and see what we get.
After calculating, we find that both the left-hand and right-hand derivatives at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2 are 1 1 111. That’s awesome because it means the function is differentiable at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2

Conclusion

So, there we have it! The function f ( x ) = | cos x | + | sin x | f ( x ) = | cos x | + | sin x | f(x)=|cos x|+|sin x|f(x) = |\cos x| + |\sin x|f(x)=|cosx|+|sinx| is differentiable at x = π 2 x = π 2 x=(pi)/(2)x = \frac{\pi}{2}x=π2, and its derivative at that point is 1 1 111.
(b) माना कि A A AAA और B B BBB समान कोटि के दो लांबिक आव्यूह हैं तथा det A + det B = 0 det A + det B = 0 det A+det B=0\operatorname{det} A+\operatorname{det} B=0detA+detB=0. दर्शाइए कि A + B A + B A+BA+BA+B एक अव्युत्क्रमणीय (सिंगुलर) आव्यूह है।
Let A A AAA and B B BBB be two orthogonal matrices of same order and det A + det B = 0 det A + det B = 0 det A+det B=0\operatorname{det} A+\operatorname{det} B=0detA+detB=0. Show that A + B A + B A+BA+BA+B is a singular matrix.
Answer:
Proving that A + B is Singular
Given:
  • A A AAA and B B BBB are two orthogonal matrices of the same order.
  • det A + det B = 0 det A + det B = 0 det A+det B=0\det A + \det B = 0detA+detB=0
We want to show that A + B A + B A+BA + BA+B is a singular matrix.
Step 1: Given Orthogonal Matrices
Given that A A T = B B T = I A A T = B B T = I AA^(T)=BB^(T)=IAA^T = BB^T = IAAT=BBT=I, where I I III is the identity matrix.
Also, det A = det B = 1 det A = det B = 1 det A=det B=1\det A = \det B = 1detA=detB=1 because orthogonal matrices have a determinant of 1 1 111 or 1 1 -1-11, and we’re given that det A + det B = 0 det A + det B = 0 det A+det B=0\det A + \det B = 0detA+detB=0, which implies det A = det B det A = det B det A=-det B\det A = -\det BdetA=detB.
Step 2: Determinant of AB
We know that det A det B = 1 det A det B = 1 det A*det B=-1\det A \cdot \det B = -1detAdetB=1. This implies that det ( A B ) = 1 det ( A B ) = 1 det(AB)=-1\det(AB) = -1det(AB)=1. (This is due to the property of determinants that det ( A B ) = det ( A ) det ( B ) det ( A B ) = det ( A ) det ( B ) det(AB)=det(A)*det(B)\det(AB) = \det(A) \cdot \det(B)det(AB)=det(A)det(B).)
Step 3: Expressing A + B
Now, let’s express A + B A + B A+BA + BA+B in terms of A A AAA and B B BBB:
A + B = A I + B I = A ( B T + A T ) B A + B = A I + B I = A ( B T + A T ) B A+B=AI+BI=A(B^(T)+A^(T))BA + B = AI + BI = A(B^T + A^T)BA+B=AI+BI=A(BT+AT)B
Step 4: Determinant of A + B
We want to find the determinant of A + B A + B A+BA + BA+B:
det ( A + B ) = det ( A ) det ( B T + A T ) det ( B ) = det ( A B ) det ( B T + A T ) = ( 1 ) det ( B T + A T ) (From Step 2) = det ( B T + A T ) det ( A + B ) = det ( A ) det ( B T + A T ) det ( B ) = det ( A B ) det ( B T + A T ) = ( 1 ) det ( B T + A T ) (From Step 2) = det ( B T + A T ) {:[det(A+B)=det(A)*det(B^(T)+A^(T))*det(B)],[=det(AB)*det(B^(T)+A^(T))],[=(-1)*det(B^(T)+A^(T))quad(From Step 2)],[=-det(B^(T)+A^(T))]:}\begin{aligned} \det(A + B) &= \det(A) \cdot \det(B^T + A^T) \cdot \det(B) \\ &= \det(AB) \cdot \det(B^T + A^T) \\ &= (-1) \cdot \det(B^T + A^T) \quad \text{(From Step 2)} \\ &= -\det(B^T + A^T) \end{aligned}det(A+B)=det(A)det(BT+AT)det(B)=det(AB)det(BT+AT)=(1)det(BT+AT)(From Step 2)=det(BT+AT)
Step 5: Determinant of Transpose Sum
Now, let’s focus on the determinant of the transpose sum:
det ( B T + A T ) = det ( ( B + A ) T ) (Transpose of a sum) = det ( B + A ) det ( B T + A T ) = det ( ( B + A ) T ) (Transpose of a sum) = det ( B + A ) {:[det(B^(T)+A^(T))=det((B+A)^(T))quad(Transpose of a sum)],[=det(B+A)]:}\begin{aligned} \det(B^T + A^T) &= \det((B + A)^T) \quad \text{(Transpose of a sum)} \\ &= \det(B + A) \end{aligned}det(BT+AT)=det((B+A)T)(Transpose of a sum)=det(B+A)
Step 6: Putting It All Together
Now, we can express det ( A + B ) det ( A + B ) det(A+B)\det(A + B)det(A+B) as:
det ( A + B ) = det ( B + A ) det ( A + B ) = det ( B + A ) det(A+B)=-det(B+A)\det(A + B) = -\det(B + A)det(A+B)=det(B+A)
But A + B = B + A A + B = B + A A+B=B+AA + B = B + AA+B=B+A because matrix addition is commutative.
So, we have:
det ( A + B ) = det ( B + A ) = det ( A + B ) det ( A + B ) = det ( B + A ) = det ( A + B ) det(A+B)=-det(B+A)=-det(A+B)\det(A + B) = -\det(B + A) = -\det(A + B)det(A+B)=det(B+A)=det(A+B)
This implies that 2 det ( A + B ) = 0 2 det ( A + B ) = 0 2det(A+B)=02\det(A + B) = 02det(A+B)=0.
Step 7: Conclusion
From the equation 2 det ( A + B ) = 0 2 det ( A + B ) = 0 2det(A+B)=02\det(A + B) = 02det(A+B)=0, we can conclude that det ( A + B ) = 0 det ( A + B ) = 0 det(A+B)=0\det(A + B) = 0det(A+B)=0.
A matrix is considered singular if its determinant is zero. Therefore, we have shown that A + B A + B A+BA + BA+B is a singular matrix.
(c) (i) समतल x + 2 y + 3 z = 12 x + 2 y + 3 z = 12 x+2y+3z=12x+2 y+3 z=12x+2y+3z=12 निर्देशांक अक्षों को A , B , C A , B , C A,B,CA, B, CA,B,C पर प्रतिच्छेद करता है। त्रिभुज A B C A B C ABCA B CABC के परिवृत्त का समीकरण ज्ञात कीजिए।
(ii) सिद्ध कीजिए कि समतल z = 0 z = 0 z=0z=0z=0 गोलक x 2 + y 2 + z 2 = 11 x 2 + y 2 + z 2 = 11 x^(2)+y^(2)+z^(2)=11x^2+y^2+z^2=11x2+y2+z2=11 के अन्वालोपी शंकु, जिसका शीर्ष ( 2 , 4 , 1 ) ( 2 , 4 , 1 ) (2,4,1)(2,4,1)(2,4,1) पर है, को एक समकोणीय अतिपरवलय पर प्रतिच्छेद करता है।
(i) The plane x + 2 y + 3 z = 12 x + 2 y + 3 z = 12 x+2y+3z=12x+2 y+3 z=12x+2y+3z=12 cuts the axes of coordinates in A , B , C A , B , C A,B,CA, B, CA,B,C. Find the equations of the circle circumscribing the triangle A B C A B C ABCA B CABC.
Answer:
To find the equation of the circle circumscribing the triangle ABC, we start with the given plane equation:
x + 2 y + 3 z = 12 x + 2 y + 3 z = 12 x+2y+3z=12x + 2y + 3z = 12x+2y+3z=12
This plane intersects the x-axis, y-axis, and z-axis at points A, B, and C, respectively. We’ve already found the coordinates of these points:
A(12, 0, 0)
B(0, 6, 0)
C(0, 0, 4)
Now, let’s assume the equation of the circumscribing circle is:
x 2 + y 2 + z 2 + 2 u x + 2 v y + 2 w z + d = 0 x 2 + y 2 + z 2 + 2 u x + 2 v y + 2 w z + d = 0 x^(2)+y^(2)+z^(2)+2ux+2vy+2wz+d=0x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0x2+y2+z2+2ux+2vy+2wz+d=0
We need to find the values of u, v, w, and d.
  1. Using point A(12, 0, 0):
( 12 ) 2 + 2 u ( 12 ) + d = 0 ( 12 ) 2 + 2 u ( 12 ) + d = 0 (12)^(2)+2u(12)+d=0(12)^2 + 2u(12) + d = 0(12)2+2u(12)+d=0
144 + 24 u + d = 0 144 + 24 u + d = 0 144+24 u+d=0144 + 24u + d = 0144+24u+d=0
24 u + d = 144 ( 1 ) 24 u + d = 144 ( 1 ) 24 u+d=-144—-(1)24u + d = -144—- (1)24u+d=144(1)
  1. Using point B(0, 6, 0):
( 6 ) 2 + 2 v ( 6 ) + d = 0 ( 6 ) 2 + 2 v ( 6 ) + d = 0 (6)^(2)+2v(6)+d=0(6)^2 + 2v(6) + d = 0(6)2+2v(6)+d=0
36 + 12 v + d = 0 36 + 12 v + d = 0 36+12 v+d=036 + 12v + d = 036+12v+d=0
12 v + d = 36 ( 2 ) 12 v + d = 36 ( 2 ) 12 v+d=-36—-(2)12v + d = -36—- (2)12v+d=36(2)
  1. Using point C(0, 0, 4):
( 4 ) 2 + 2 w ( 4 ) + d = 0 ( 4 ) 2 + 2 w ( 4 ) + d = 0 (4)^(2)+2w(4)+d=0(4)^2 + 2w(4) + d = 0(4)2+2w(4)+d=0
16 + 8 w + d = 0 16 + 8 w + d = 0 16+8w+d=016 + 8w + d = 016+8w+d=0
8 w + d = 16 ( 3 ) 8 w + d = 16 ( 3 ) 8w+d=-16—-(3)8w + d = -16—- (3)8w+d=16(3)
Now, we can solve equations (1), (2), and (3) for u, v, and w:
  1. 24 u + d = 144 24 u + d = 144 24 u+d=-14424u + d = -14424u+d=144 implies 24 u = 144 d 24 u = 144 d 24 u=-144-d24u = -144 – d24u=144d
  2. 12 v + d = 36 12 v + d = 36 12 v+d=-3612v + d = -3612v+d=36 implies 12 v = 36 d 12 v = 36 d 12 v=-36-d12v = -36 – d12v=36d
  3. 8 w + d = 16 8 w + d = 16 8w+d=-168w + d = -168w+d=16 implies 8 w = 16 d 8 w = 16 d 8w=-16-d8w = -16 – d8w=16d
Now, we can substitute these expressions for 2u, 2v, and 2w back into the equation of the circle:
x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x^(2)+y^(2)+z^(2)-(12-d//12)x-(6-d//6)y-(4-d//4)z+d=0x^2 + y^2 + z^2 – (12 – d/12)x – (6 – d/6)y – (4 – d/4)z + d = 0x2+y2+z2(12d/12)x(6d/6)y(4d/4)z+d=0
Simplify further:
x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x^(2)+y^(2)+z^(2)-(12-d//12)x-(6-d//6)y-(4-d//4)z+d=0x^2 + y^2 + z^2 – (12 – d/12)x – (6 – d/6)y – (4 – d/4)z + d = 0x2+y2+z2(12d/12)x(6d/6)y(4d/4)z+d=0
Now, the equation of the circle is in the form:
x 2 + y 2 + z 2 + A x + B y + C z + D = 0 x 2 + y 2 + z 2 + A x + B y + C z + D = 0 x^(2)+y^(2)+z^(2)+Ax+By+Cz+D=0x^2 + y^2 + z^2 + Ax + By + Cz + D = 0x2+y2+z2+Ax+By+Cz+D=0
Where:
A = ( 12 d / 12 ) A = ( 12 d / 12 ) A=-(12-d//12)A = -(12 – d/12)A=(12d/12)
B = ( 6 d / 6 ) B = ( 6 d / 6 ) B=-(6-d//6)B = -(6 – d/6)B=(6d/6)
C = ( 4 d / 4 ) C = ( 4 d / 4 ) C=-(4-d//4)C = -(4 – d/4)C=(4d/4)
D = d D = d D=dD = dD=d
The values of A, B, C, and D can vary as d takes any real value. So, the equation of the circle circumscribing the triangle ABC is:
x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x 2 + y 2 + z 2 ( 12 d / 12 ) x ( 6 d / 6 ) y ( 4 d / 4 ) z + d = 0 x^(2)+y^(2)+z^(2)-(12-d//12)x-(6-d//6)y-(4-d//4)z+d=0x^2 + y^2 + z^2 – (12 – d/12)x – (6 – d/6)y – (4 – d/4)z + d = 0x2+y2+z2(12d/12)x(6d/6)y(4d/4)z+d=0
Where d can be any real number.
(ii) Prove that the plane z = 0 z = 0 z=0z=0z=0 cuts the enveloping cone of the sphere x 2 + y 2 + z 2 = 11 x 2 + y 2 + z 2 = 11 x^(2)+y^(2)+z^(2)=11x^2+y^2+z^2=11x2+y2+z2=11 which has the vertex at ( 2 , 4 , 1 ) ( 2 , 4 , 1 ) (2,4,1)(2,4,1)(2,4,1) in a rectangular hyperbola.
Answer:
Given the equation of the sphere S = x 2 + y 2 + z 2 11 S = x 2 + y 2 + z 2 11 S=x^(2)+y^(2)+z^(2)-11\mathrm{S}=\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2-11S=x2+y2+z211 and the coordinates of its vertex ( α , β , γ ) = ( 2 , 4 , 1 ) ( α , β , γ ) = ( 2 , 4 , 1 ) (alpha,beta,gamma)=(2,4,1)(\alpha, \beta, \gamma)=(2,4,1)(α,β,γ)=(2,4,1).
  1. Calculate S 1 S 1 S_(1)S_1S1 and the equation of the plane T T TTT:
    S 1 = α 2 + β 2 + γ 2 11 = 2 2 + 4 2 + 1 2 11 = 10 T = 2 x + 4 y + z 11 S 1 = α 2 + β 2 + γ 2 11 = 2 2 + 4 2 + 1 2 11 = 10 T = 2 x + 4 y + z 11 {:[S_(1)=alpha^(2)+beta^(2)+gamma^(2)-11=2^(2)+4^(2)+1^(2)-11=10],[T=2x+4y+z-11]:}\begin{aligned} \mathrm{S}_1 & = \alpha^2+\beta^2+\gamma^2-11 = 2^2+4^2+1^2-11 = 10 \\ \mathrm{T} & = 2\mathrm{x}+4\mathrm{y}+\mathrm{z}-11 \end{aligned}S1=α2+β2+γ211=22+42+1211=10T=2x+4y+z11
  2. Write the equation of the enveloping cone of the sphere:
    The equation of the enveloping cone can be written as T 2 = S S 1 T 2 = S S 1 T^(2)=SS_(1)\mathbf{T}^2 = \mathbf{S}\mathbf{S}_1T2=SS1, where T T T\mathbf{T}T is the equation of the plane and S S S\mathbf{S}S is the equation of the sphere.
    ( 2 x + 4 y + z 11 ) 2 = ( x 2 + y 2 + z 2 11 ) ( 10 ) ( 2 x + 4 y + z 11 ) 2 = ( x 2 + y 2 + z 2 11 ) ( 10 ) (2x+4y+z-11)^(2)=(x^(2)+y^(2)+z^(2)-11)(10)(2\mathrm{x}+4\mathrm{y}+\mathrm{z}-11)^2 = (\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2-11)(10)(2x+4y+z11)2=(x2+y2+z211)(10)
  3. Substitute z = 0 z = 0 z=0z=0z=0 into the equation:
    To check if the plane z = 0 z = 0 z=0z=0z=0 cuts the cone, put z = 0 z = 0 z=0z=0z=0 in the above equation:
    10 ( x 2 + y 2 11 ) = ( 2 x + 4 y 11 ) 2 10 ( x 2 + y 2 11 ) = ( 2 x + 4 y 11 ) 2 10(x^(2)+y^(2)-11)=(2x+4y-11)^(2)10(\mathrm{x}^2+\mathrm{y}^2-11) = (2\mathrm{x}+4\mathrm{y}-11)^210(x2+y211)=(2x+4y11)2
  4. Simplify the equation:
    Further simplify the equation:
    6 x 2 + 6 y 2 16 xy + 44 x 88 y 231 = 0 6 x 2 + 6 y 2 16 xy + 44 x 88 y 231 = 0 6x^(2)+6y^(2)-16xy+44x-88y-231=06\mathrm{x}^2+6\mathrm{y}^2-16\mathrm{xy}+44\mathrm{x}-88\mathrm{y}-231 = 06x2+6y216xy+44x88y231=0
The resulting equation is a rectangular hyperbola, which proves that the plane z = 0 z = 0 z=0z=0z=0 cuts the enveloping cone of the sphere in a rectangular hyperbola.
  1. (a) फलन f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f(x)=2x^(3)-9x^(2)+12 x+6f(x)=2 x^3-9 x^2+12 x+6f(x)=2x39x2+12x+6 का अंतराल [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3][2,3] पर अधिकतम और न्यूनतम मान ज्ञात कीजिए।
Find the maximum and the minimum value of the function f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f(x)=2x^(3)-9x^(2)+12 x+6f(x)=2 x^3-9 x^2+12 x+6f(x)=2x39x2+12x+6 on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3][2,3].
Answer:

Introduction

The problem asks us to find the maximum and minimum values of the function f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f(x)=2x^(3)-9x^(2)+12 x+6f(x) = 2x^3 – 9x^2 + 12x + 6f(x)=2x39x2+12x+6 on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3]. To find these extremum points, we’ll use calculus methods, specifically by finding the derivative of the function and setting it equal to zero to find critical points. We’ll then evaluate the function at these critical points and the endpoints of the interval to determine the maximum and minimum values.

Work/Calculations

Step 1: Find the Derivative of f ( x ) f ( x ) f(x)f(x)f(x)

The first derivative of f ( x ) f ( x ) f(x)f(x)f(x) will give us the rate of change of the function at any given point x x xxx.
f ( x ) = d d x ( 2 x 3 9 x 2 + 12 x + 6 ) f ( x ) = d d x ( 2 x 3 9 x 2 + 12 x + 6 ) f^(‘)(x)=(d)/(dx)(2x^(3)-9x^(2)+12 x+6)f'(x) = \frac{d}{dx}(2x^3 – 9x^2 + 12x + 6)f(x)=ddx(2x39x2+12x+6)
After calculating, we find that the derivative of f ( x ) f ( x ) f(x)f(x)f(x) is:
f ( x ) = 6 x 2 18 x + 12 f ( x ) = 6 x 2 18 x + 12 f^(‘)(x)=6x^(2)-18 x+12f'(x) = 6x^2 – 18x + 12f(x)=6x218x+12

Step 2: Find the Critical Points

To find the critical points, we set f ( x ) = 0 f ( x ) = 0 f^(‘)(x)=0f'(x) = 0f(x)=0 and solve for x x xxx.
6 x 2 18 x + 12 = 0 6 x 2 18 x + 12 = 0 6x^(2)-18 x+12=06x^2 – 18x + 12 = 06x218x+12=0
After solving, we find that the critical points are x = 1 x = 1 x=1x = 1x=1 and x = 2 x = 2 x=2x = 2x=2.

Step 3: Evaluate f ( x ) f ( x ) f(x)f(x)f(x) at Critical Points and Endpoints

To find the maximum and minimum values of f ( x ) f ( x ) f(x)f(x)f(x) on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3], we need to evaluate f ( x ) f ( x ) f(x)f(x)f(x) at the critical points and the endpoints of the interval. The critical points within the interval are x = 2 x = 2 x=2x = 2x=2 and the endpoints are x = 2 x = 2 x=2x = 2x=2 and x = 3 x = 3 x=3x = 3x=3.
Let’s substitute the values into f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f ( x ) = 2 x 3 9 x 2 + 12 x + 6 f(x)=2x^(3)-9x^(2)+12 x+6f(x) = 2x^3 – 9x^2 + 12x + 6f(x)=2x39x2+12x+6 and calculate:
  1. f ( 2 ) f ( 2 ) f(2)f(2)f(2)
  2. f ( 3 ) f ( 3 ) f(3)f(3)f(3)
Let’s start by calculating f ( 2 ) f ( 2 ) f(2)f(2)f(2).
After substituting the values, we get:
f ( 2 ) = 2 × 2 3 9 × 2 2 + 12 × 2 + 6 = 10 f ( 2 ) = 2 × 2 3 9 × 2 2 + 12 × 2 + 6 = 10 f(2)=2xx2^(3)-9xx2^(2)+12 xx2+6=10f(2) = 2 \times 2^3 – 9 \times 2^2 + 12 \times 2 + 6 = 10f(2)=2×239×22+12×2+6=10
Next, let’s calculate f ( 3 ) f ( 3 ) f(3)f(3)f(3).
After substituting the values, we get:
f ( 3 ) = 2 × 3 3 9 × 3 2 + 12 × 3 + 6 = 15 f ( 3 ) = 2 × 3 3 9 × 3 2 + 12 × 3 + 6 = 15 f(3)=2xx3^(3)-9xx3^(2)+12 xx3+6=15f(3) = 2 \times 3^3 – 9 \times 3^2 + 12 \times 3 + 6 = 15f(3)=2×339×32+12×3+6=15

Conclusion

We evaluated f ( x ) f ( x ) f(x)f(x)f(x) at the critical point x = 2 x = 2 x=2x = 2x=2 and the endpoint x = 3 x = 3 x=3x = 3x=3 within the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3]:
  • f ( 2 ) = 10 f ( 2 ) = 10 f(2)=10f(2) = 10f(2)=10
  • f ( 3 ) = 15 f ( 3 ) = 15 f(3)=15f(3) = 15f(3)=15
Therefore, the maximum value of f ( x ) f ( x ) f(x)f(x)f(x) on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3] is 15 15 151515 at x = 3 x = 3 x=3x = 3x=3, and the minimum value is 10 10 101010 at x = 2 x = 2 x=2x = 2x=2.
(b) सिद्ध कीजिए कि साधारणतः किसी एक बिंदु से परवलयज x 2 + y 2 = 2 a z x 2 + y 2 = 2 a z x^(2)+y^(2)=2azx^2+y^2=2 a zx2+y2=2az पर तीन अभिलंब बनाए जा सकते हैं, लेकिन अगर बिंदु सतह 27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a x 2 + y 2 + 8 ( a z ) 3 = 0 27 a(x^(2)+y^(2))+8(a-z)^(3)=027 a\left(x^2+y^2\right)+8(a-z)^3=027a(x2+y2)+8(az)3=0 पर स्थित है, तो इन तीन अभिलंबों में से दो अभिलंब एक ही हैं।
Prove that, in general, three normals can be drawn from a given point to the paraboloid x 2 + y 2 = 2 a z x 2 + y 2 = 2 a z x^(2)+y^(2)=2azx^2+y^2=2 a zx2+y2=2az, but if the point lies on the surface
27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a x 2 + y 2 + 8 ( a z ) 3 = 0 27 a(x^(2)+y^(2))+8(a-z)^(3)=027 a\left(x^2+y^2\right)+8(a-z)^3=027a(x2+y2)+8(az)3=0
then two of the three normals coincide.
Answer:
Introduction:
We are tasked with proving that, in general, three normals can be drawn from a given point to the paraboloid x 2 + y 2 = 2 a z x 2 + y 2 = 2 a z x^(2)+y^(2)=2azx^2+y^2=2azx2+y2=2az. However, if the point lies on the surface 27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a(x^(2)+y^(2))+8(a-z)^(3)=027a(x^2+y^2)+8(a-z)^3=027a(x2+y2)+8(az)3=0, then two of the three normals coincide.
Work/Calculations:
  1. The equation of the normal at ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) to the paraboloid is given by:
x x 1 x 1 = y y 1 y 1 = z z 1 a x x 1 x 1 = y y 1 y 1 = z z 1 a (x-x_(1))/(x_(1))=(y-y_(1))/(y_(1))=(z-z_(1))/(-a)\frac{x-x_1}{x_1}=\frac{y-y_1}{y_1}=\frac{z-z_1}{-a}xx1x1=yy1y1=zz1a
  1. This passes through a given point ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) if:
α x 1 x 1 = β y 1 y 1 = γ z 1 a = λ α x 1 x 1 = β y 1 y 1 = γ z 1 a = λ (alpha-x_(1))/(x_(1))=(beta-y_(1))/(y_(1))=(gamma-z_(1))/(-a)=lambda\frac{\alpha-x_1}{x_1}=\frac{\beta-y_1}{y_1}=\frac{\gamma-z_1}{-a}=\lambdaαx1x1=βy1y1=γz1a=λ
  1. Solving for x 1 x 1 x_(1)x_1x1, y 1 y 1 y_(1)y_1y1, and z 1 z 1 z_(1)z_1z1 in terms of α α alpha\alphaα, β β beta\betaβ, γ γ gamma\gammaγ, and λ λ lambda\lambdaλ using the above equations:
x 1 = α 1 + λ ; y 1 = β 1 + λ ; z 1 = γ + a λ (from (1)) x 1 = α 1 + λ ; y 1 = β 1 + λ ; z 1 = γ + a λ (from (1)) x_(1)=(alpha)/(1+lambda);quady_(1)=(beta)/(1+lambda);quadz_(1)=gamma+a lambdaquad(from (1))x_1=\frac{\alpha}{1+\lambda}; \quad y_1=\frac{\beta}{1+\lambda}; \quad z_1=\gamma+a\lambda \quad \text{(from (1))}x1=α1+λ;y1=β1+λ;z1=γ+aλ(from (1))
  1. Also, ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) lies on the given paraboloid, so:
x 1 2 + y 1 2 = 2 a z 1 (from the equation of the paraboloid) x 1 2 + y 1 2 = 2 a z 1 (from the equation of the paraboloid) x_(1)^(2)+y_(1)^(2)=2az_(1)quad(from the equation of the paraboloid)x_1^2+y_1^2=2az_1 \quad \text{(from the equation of the paraboloid)}x12+y12=2az1(from the equation of the paraboloid)
  1. Substituting the expressions for x 1 x 1 x_(1)x_1x1, y 1 y 1 y_(1)y_1y1, and z 1 z 1 z_(1)z_1z1 from step 3 into the equation above:
( α 1 + λ ) 2 + ( β 1 + λ ) 2 = 2 a ( γ + a λ ) (from (1)) α 1 + λ 2 + β 1 + λ 2 = 2 a ( γ + a λ ) (from (1)) ((alpha)/(1+lambda))^(2)+((beta)/(1+lambda))^(2)=2a(gamma+a lambda)quad(from (1))\left(\frac{\alpha}{1+\lambda}\right)^2+\left(\frac{\beta}{1+\lambda}\right)^2=2a(\gamma+a\lambda) \quad \text{(from (1))}(α1+λ)2+(β1+λ)2=2a(γ+aλ)(from (1))
  1. This equation can be simplified to:
α 2 + β 2 = 2 a ( γ + a λ ) ( 1 + λ ) 2 (from (2)) α 2 + β 2 = 2 a ( γ + a λ ) ( 1 + λ ) 2 (from (2)) alpha^(2)+beta^(2)=2a(gamma+a lambda)(1+lambda)^(2)quad(from (2))\alpha^2+\beta^2=2a(\gamma+a\lambda)(1+\lambda)^2 \quad \text{(from (2))}α2+β2=2a(γ+aλ)(1+λ)2(from (2))
  1. Equation (2) is a cubic in λ λ lambda\lambdaλ and has three values of λ λ lambda\lambdaλ that satisfy it, leading to three points on the paraboloid normal at which pass through ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ).
  2. Rewriting equation (2) as a function f ( λ ) f ( λ ) f(lambda)f(\lambda)f(λ):
f ( λ ) + 2 a ( 1 + λ ) 2 ( γ + a λ ) ( α 2 β 2 ) = 0 (from (3)) f ( λ ) + 2 a ( 1 + λ ) 2 ( γ + a λ ) ( α 2 β 2 ) = 0 (from (3)) f(lambda)+2a(1+lambda)^(2)(gamma+a lambda)-(alpha^(2)-beta^(2))=0quad(from (3))f(\lambda)+2a(1+\lambda)^2(\gamma+a\lambda)-(\alpha^2-\beta^2)=0 \quad \text{(from (3))}f(λ)+2a(1+λ)2(γ+aλ)(α2β2)=0(from (3))
  1. To find the condition that equation (3) has two equal roots, we need to solve for λ λ lambda\lambdaλ where both f ( λ ) = 0 f ( λ ) = 0 f(lambda)=0f(\lambda)=0f(λ)=0 and f ( λ ) = 0 f ( λ ) = 0 f^(‘)(lambda)=0f'(\lambda)=0f(λ)=0.
  2. Differentiating f ( λ ) f ( λ ) f(lambda)f(\lambda)f(λ) with respect to λ λ lambda\lambdaλ to find f ( λ ) f ( λ ) f^(‘)(lambda)f'(\lambda)f(λ):
f ( λ ) = 2 a ( 1 + λ ) 2 ( a ) + 4 a ( 1 + λ ) ( γ + a λ ) = 0 f ( λ ) = 2 a ( 1 + λ ) 2 ( a ) + 4 a ( 1 + λ ) ( γ + a λ ) = 0 f^(‘)(lambda)=2a(1+lambda)^(2)(a)+4a(1+lambda)(gamma+a lambda)=0f'(\lambda)=2a(1+\lambda)^2(a)+4a(1+\lambda)(\gamma+a\lambda)=0f(λ)=2a(1+λ)2(a)+4a(1+λ)(γ+aλ)=0
  1. Solving for λ λ lambda\lambdaλ in f ( λ ) = 0 f ( λ ) = 0 f^(‘)(lambda)=0f'(\lambda)=0f(λ)=0:
a ( 1 + λ ) + 2 ( γ + a λ ) = 0 (since 1 + λ 0 ) a ( 1 + λ ) + 2 ( γ + a λ ) = 0 (since 1 + λ 0 ) a(1+lambda)+2(gamma+a lambda)=0quad(since 1+lambda!=0″)”a(1+\lambda)+2(\gamma+a\lambda)=0 \quad \text{(since } 1+\lambda \neq 0\text{)}a(1+λ)+2(γ+aλ)=0(since 1+λ0)
  1. Simplifying and solving for λ λ lambda\lambdaλ:
( a + 2 γ ) + λ ( 3 a ) = 0 λ = a + 2 γ 3 a ( a + 2 γ ) + λ ( 3 a ) = 0 λ = a + 2 γ 3 a (a+2gamma)+lambda(3a)=0=>lambda=-(a+2gamma)/(3a)(a+2\gamma)+\lambda(3a)=0 \Rightarrow \lambda=-\frac{a+2\gamma}{3a}(a+2γ)+λ(3a)=0λ=a+2γ3a
  1. Substituting this value of λ λ lambda\lambdaλ into equation (3):
2 a [ 1 a + 2 γ 3 a ] 2 [ γ a ( a + 2 γ ) 3 a ] = α 2 + β 2 2 a 1 a + 2 γ 3 a 2 γ a ( a + 2 γ ) 3 a = α 2 + β 2 2a[1-(a+2gamma)/(3a)]^(2)[gamma-(a(a+2gamma))/(3a)]=alpha^(2)+beta^(2)2a\left[1-\frac{a+2\gamma}{3a}\right]^2\left[\gamma-\frac{a(a+2\gamma)}{3a}\right]=\alpha^2+\beta^22a[1a+2γ3a]2[γa(a+2γ)3a]=α2+β2
  1. Further simplifying this equation:
2 a [ 2 ( a γ ) ] 2 [ a ( γ a ) ] = 27 a 3 ( α 2 + β 2 ) 2 a [ 2 ( a γ ) ] 2 [ a ( γ a ) ] = 27 a 3 ( α 2 + β 2 ) 2a[2(a-gamma)]^(2)[a(gamma-a)]=27a^(3)(alpha^(2)+beta^(2))2a[2(a-\gamma)]^2[a(\gamma-a)]=27a^3(\alpha^2+\beta^2)2a[2(aγ)]2[a(γa)]=27a3(α2+β2)
  1. Finally, the equation simplifies to:
27 a ( α 2 + β 2 ) + 8 ( a γ ) 3 = 0 27 a ( α 2 + β 2 ) + 8 ( a γ ) 3 = 0 27 a(alpha^(2)+beta^(2))+8(a-gamma)^(3)=027a(\alpha^2+\beta^2)+8(a-\gamma)^3=027a(α2+β2)+8(aγ)3=0
Conclusion:
We have successfully shown that the locus of the point ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) is 27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a ( x 2 + y 2 ) + 8 ( a z ) 3 = 0 27 a(x^(2)+y^(2))+8(a-z)^(3)=027a(x^2+y^2)+8(a-z)^3=027a(x2+y2)+8(az)3=0. This proves the given statement.
(c) माना कि
A = ( 5 7 2 1 1 1 8 1 2 3 5 0 3 4 3 1 ) A = 5      7      2      1 1      1      8      1 2      3      5      0 3      4      3      1 A=([5,7,2,1],[1,1,-8,1],[2,3,5,0],[3,4,-3,1])A=\left(\begin{array}{rrrr} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{array}\right)A=(5721118123503431)
(i) आव्यूह A A AAA की कोटि ज्ञात कीजिए।
(ii) उपसमष्टि
V = { ( x 1 , x 2 , x 3 , x 4 ) R 4 A ( x 1 x 2 x 3 x 4 ) = 0 } V = x 1 , x 2 , x 3 , x 4 R 4 A x 1 x 2 x 3 x 4 = 0 V={(x_(1),x_(2),x_(3),x_(4))inR^(4)∣A([x_(1)],[x_(2)],[x_(3)],[x_(4)])=0}V=\left\{\left(x_1, x_2, x_3, x_4\right) \in \mathbb{R}^4 \mid A\left(\begin{array}{l} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right)=0\right\}V={(x1,x2,x3,x4)R4A(x1x2x3x4)=0}
की विमा ज्ञात कीजिए।
Let
A = ( 5 7 2 1 1 1 8 1 2 3 5 0 3 4 3 1 ) A = 5      7      2      1 1      1      8      1 2      3      5      0 3      4      3      1 A=([5,7,2,1],[1,1,-8,1],[2,3,5,0],[3,4,-3,1])A=\left(\begin{array}{rrrr} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{array}\right)A=(5721118123503431)
(i) Find the rank of matrix A A AAA.
(ii) Find the dimension of the subspace
V = { ( x 1 , x 2 , x 3 , x 4 ) R 4 A ( x 1 x 2 x 3 x 4 ) = 0 } V = x 1 , x 2 , x 3 , x 4 R 4 A x 1 x 2 x 3 x 4 = 0 V={(x_(1),x_(2),x_(3),x_(4))inR^(4)∣A([x_(1)],[x_(2)],[x_(3)],[x_(4)])=0}V=\left\{\left(x_1, x_2, x_3, x_4\right) \in \mathbb{R}^4 \mid A\left(\begin{array}{l} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right)=0\right\}V={(x1,x2,x3,x4)R4A(x1x2x3x4)=0}
Answer:
Rank [ 5 7 2 1 1 1 8 1 2 3 5 0 3 4 3 1 ] Rank 5 7 2 1 1 1 8 1 2 3 5 0 3 4 3 1 Rank[[5,7,2,1],[1,1,-8,1],[2,3,5,0],[3,4,-3,1]]\operatorname{Rank}\left[\begin{array}{cccc} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{array}\right]Rank[5721118123503431]
Now, reduce this matrix
R 1 R 1 ÷ 5 = [ 1 7 5 2 5 1 5 1 1 8 1 2 3 5 0 3 4 3 1 ] R 1 R 1 ÷ 5 = 1 7 5 2 5 1 5 1 1 8 1 2 3 5 0 3 4 3 1 {:[R_(1)larrR_(1)-:5],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[1,1,-8,1],[2,3,5,0],[3,4,-3,1]]]:}\begin{aligned} & R_1 \leftarrow R_1 \div 5 \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{array}\right] \end{aligned}R1R1÷5=[1752515118123503431]
R 2 R 2 R 1 = [ 1 7 5 2 5 1 5 0 2 5 42 5 4 5 2 3 5 0 3 4 3 1 ] R 3 R 3 2 × R 1 = [ 1 7 5 2 5 1 5 0 2 5 42 5 4 5 0 1 5 21 5 2 5 3 4 3 1 ] R 2 R 2 R 1 = 1 7 5 2 5 1 5 0 2 5 42 5 4 5 2 3 5 0 3 4 3 1 R 3 R 3 2 × R 1 = 1 7 5 2 5 1 5 0 2 5 42 5 4 5 0 1 5 21 5 2 5 3 4 3 1 {:[{:[R_(2)larrR_(2)-R_(1)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,-(2)/(5),-(42)/(5),(4)/(5)],[2,3,5,0],[3,4,-3,1]]]:}],[{:[R_(3)larrR_(3)-2xxR_(1)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,-(2)/(5),-(42)/(5),(4)/(5)],[0,(1)/(5),(21)/(5),-(2)/(5)],[3,4,-3,1]]]:}]:}\begin{aligned} &\begin{aligned} & R_2 \leftarrow R_2-R_1 \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & -\frac{2}{5} & -\frac{42}{5} & \frac{4}{5} \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{array}\right] \end{aligned}\\ &\begin{aligned} & R_3 \leftarrow R_3-2 \times R_1 \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & -\frac{2}{5} & -\frac{42}{5} & \frac{4}{5} \\ 0 & \frac{1}{5} & \frac{21}{5} & -\frac{2}{5} \\ 3 & 4 & -3 & 1 \end{array}\right] \end{aligned} \end{aligned}R2R2R1=[17525150254254523503431]R3R32×R1=[175251502542545015215253431]
R 4 R 4 3 × R 1 = [ 1 7 5 2 5 1 5 0 2 5 42 5 4 5 0 1 5 21 5 2 5 0 1 5 21 5 2 5 ] R 4 R 4 3 × R 1 = 1 7 5 2 5 1 5 0 2 5 42 5 4 5 0 1 5 21 5 2 5 0 1 5 21 5 2 5 {:[R_(4)larrR_(4)-3xxR_(1)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,-(2)/(5),-(42)/(5),(4)/(5)],[0,(1)/(5),(21)/(5),-(2)/(5)],[0,-(1)/(5),-(21)/(5),(2)/(5)]]]:}\begin{aligned} & R_4 \leftarrow R_4-3 \times R_1 \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & -\frac{2}{5} & -\frac{42}{5} & \frac{4}{5} \\ 0 & \frac{1}{5} & \frac{21}{5} & -\frac{2}{5} \\ 0 & -\frac{1}{5} & -\frac{21}{5} & \frac{2}{5} \end{array}\right] \end{aligned}R4R43×R1=[1752515025425450152152501521525]
R 2 R 2 × 5 2 = [ 1 7 5 2 5 1 5 0 1 21 2 0 1 5 21 5 2 5 0 1 5 21 5 2 5 ] R 3 R 3 1 5 × R 2 = [ 1 7 5 2 5 1 5 0 1 21 2 0 0 0 0 0 1 5 21 5 2 5 ] R 2 R 2 × 5 2 = 1 7 5 2 5 1 5 0 1 21 2 0 1 5 21 5 2 5 0 1 5 21 5 2 5 R 3 R 3 1 5 × R 2 = 1 7 5 2 5 1 5 0 1 21 2 0 0 0 0 0 1 5 21 5 2 5 {:[R_(2)larrR_(2)xx-(5)/(2)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,1,21,-2],[0,(1)/(5),(21)/(5),-(2)/(5)],[0,-(1)/(5),-(21)/(5),(2)/(5)]]],[R_(3)larrR_(3)-(1)/(5)xxR_(2)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,1,21,-2],[0,0,0,0],[0,-(1)/(5),-(21)/(5),(2)/(5)]]],[]:}\begin{aligned} & R_2 \leftarrow R_2 \times-\frac{5}{2} \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & 1 & 21 & -2 \\ 0 & \frac{1}{5} & \frac{21}{5} & -\frac{2}{5} \\ 0 & -\frac{1}{5} & -\frac{21}{5} & \frac{2}{5} \end{array}\right] \\ & R_3 \leftarrow R_3-\frac{1}{5} \times R_2 \\ & =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & 1 & 21 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{5} & -\frac{21}{5} & \frac{2}{5} \end{array}\right] \\ & \end{aligned}R2R2×52=[1752515012120152152501521525]R3R315×R2=[175251501212000001521525]
R 4 R 4 + 1 5 × R 2 = [ 1 7 5 2 5 1 5 0 1 21 2 0 0 0 0 0 0 0 0 ] R 4 R 4 + 1 5 × R 2 = 1 7 5 2 5 1 5 0 1 21 2 0 0 0 0 0 0 0 0 {:[R_(4)larrR_(4)+(1)/(5)xxR_(2)],[=[[1,(7)/(5),(2)/(5),(1)/(5)],[0,1,21,-2],[0,0,0,0],[0,0,0,0]]]:}\begin{gathered} R_4 \leftarrow R_4+\frac{1}{5} \times R_2 \\ =\left[\begin{array}{cccc} 1 & \frac{7}{5} & \frac{2}{5} & \frac{1}{5} \\ 0 & 1 & 21 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{gathered}R4R4+15×R2=[17525150121200000000]
The rank of a matrix is the number of non all-zeros rows
Rank = 2 Rank = 2 :.” Rank “=2\therefore \text { Rank }=2 Rank =2
(ii) Find the dimension of the subspace V V VVV
The dimension of the subspace V V VVV is related to the rank of A A AAA by the formula:
Dimension of V = n Rank ( A ) V = n Rank ( A ) V=n-Rank(A)V=n-\operatorname{Rank}(A)V=nRank(A)
Here, n n nnn is the number of columns in A A AAA, which is 4 .
Dimension of V = 4 2 = 2 V = 4 2 = 2 V=4-2=2V=4-2=2V=42=2
  1. (a) कैले-हैमिल्टन प्रमेय का कथन लिखिए। इस प्रमेय का उपयोग करके A 100 A 100 A^(100)A^{100}A100 का मान ज्ञात कीजिए, जहाँ
A = [ 1 0 0 1 0 1 0 1 0 ] A = 1      0      0 1      0      1 0      1      0 A=[[1,0,0],[1,0,1],[0,1,0]]A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]A=[100101010]
State the Cayley-Hamilton theorem. Use this theorem to find A 100 A 100 A^(100)A^{100}A100, where
A = [ 1 0 0 1 0 1 0 1 0 ] A = 1      0      0 1      0      1 0      1      0 A=[[1,0,0],[1,0,1],[0,1,0]]A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]A=[100101010]
Answer:
Cayley-Hamilton Theorem:
The Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation over a commutative ring, such as the real or complex field. In other words, if λ I A λ I A lambda I-A\lambda I – AλIA is the characteristic equation of a matrix A A AAA, where I I III is the identity matrix and λ λ lambda\lambdaλ is a scalar, then A A AAA satisfies the equation | λ I A | = 0 | λ I A | = 0 |lambda I-A|=0|\lambda I – A| = 0|λIA|=0.
  1. First, let’s find the characteristic equation for matrix A A AAA:
| λ I A | = | λ 1 0 0 1 λ 1 0 1 λ | = ( λ 1 ) | λ 1 1 λ | = ( λ 1 ) ( λ 2 1 ) = ( λ 1 ) ( λ + 1 ) ( λ 1 ) | λ I A | = λ 1 0 0 1 λ 1 0 1 λ = ( λ 1 ) λ 1 1 λ = ( λ 1 ) ( λ 2 1 ) = ( λ 1 ) ( λ + 1 ) ( λ 1 ) {:[|lambda I-A|=|[lambda-1,0,0],[-1,lambda,-1],[0,-1,lambda]|],[=(lambda-1)|[lambda,-1],[-1,lambda]|],[=(lambda-1)(lambda^(2)-1)],[=(lambda-1)(lambda+1)(lambda-1)]:}\begin{aligned} |\lambda I – A| &= \left|\begin{array}{ccc} \lambda – 1 & 0 & 0 \\ -1 & \lambda & -1 \\ 0 & -1 & \lambda \end{array}\right| \\ &= (\lambda – 1) \left|\begin{array}{cc} \lambda & -1 \\ -1 & \lambda \end{array}\right| \\ &= (\lambda – 1)(\lambda^2 – 1) \\ &= (\lambda – 1)(\lambda + 1)(\lambda – 1) \end{aligned}|λIA|=|λ1001λ101λ|=(λ1)|λ11λ|=(λ1)(λ21)=(λ1)(λ+1)(λ1)
  1. Now, according to the Cayley-Hamilton theorem, A A AAA satisfies its characteristic equation, so A A AAA satisfies:
A 3 A 2 A + I = 0 A 3 A 2 A + I = 0 A^(3)-A^(2)-A+I=0A^3 – A^2 – A + I = 0A3A2A+I=0
  1. Rearranging the equation, we find:
A 3 = A 2 + A I A 3 = A 2 + A I A^(3)=A^(2)+A-IA^3 = A^2 + A – IA3=A2+AI
  1. We can now calculate higher powers of A A AAA based on this result:
A 4 = A 3 + A 2 A = ( A 2 + A I ) + A 2 A = 2 A 2 I A 4 = A 3 + A 2 A = ( A 2 + A I ) + A 2 A = 2 A 2 I {:[A^(4)=A^(3)+A^(2)-A],[=(A^(2)+A-I)+A^(2)-A],[=2A^(2)-I]:}\begin{aligned} A^4 &= A^3 + A^2 – A \\ &= (A^2 + A – I) + A^2 – A \\ &= 2A^2 – I \end{aligned}A4=A3+A2A=(A2+AI)+A2A=2A2I
  1. Similarly, we can find A 5 A 5 A^(5)A^5A5 as:
A 5 = 2 A 3 A = 2 ( A 2 + A I ) A = 2 A 2 + 2 A 2 I A = 2 A 2 + A 2 I A 5 = 2 A 3 A = 2 ( A 2 + A I ) A = 2 A 2 + 2 A 2 I A = 2 A 2 + A 2 I {:[A^(5)=2A^(3)-A],[=2(A^(2)+A-I)-A],[=2A^(2)+2A-2I-A],[=2A^(2)+A-2I]:}\begin{aligned} A^5 &= 2A^3 – A \\ &= 2(A^2 + A – I) – A \\ &= 2A^2 + 2A – 2I – A \\ &= 2A^2 + A – 2I \end{aligned}A5=2A3A=2(A2+AI)A=2A2+2A2IA=2A2+A2I
  1. Continuing this pattern, we find:
A 6 = 3 A 2 2 I A 6 = 3 A 2 2 I A^(6)=3A^(2)-2IA^6 = 3A^2 – 2IA6=3A22I

Use the General Form A 2 n = n A 2 ( n 1 ) I A 2 n = n A 2 ( n 1 ) I A^(2n)=nA^(2)-(n-1)IA^{2n} = n A^2 – (n – 1) IA2n=nA2(n1)I

The general form A 2 n = n A 2 ( n 1 ) I A 2 n = n A 2 ( n 1 ) I A^(2n)=nA^(2)-(n-1)IA^{2n} = n A^2 – (n – 1) IA2n=nA2(n1)I can be used to find A 100 A 100 A^(100)A^{100}A100.
For n = 50 n = 50 n=50n = 50n=50, the expression becomes:
A 100 = 50 A 2 49 I A 100 = 50 A 2 49 I A^(100)=50A^(2)-49 IA^{100} = 50 A^2 – 49 IA100=50A249I

Substitute the Values

Let’s substitute the values of A 2 A 2 A^(2)A^2A2 and I I III into the formula:
A 2 = [ 1 0 0 1 1 0 1 0 1 ] A 2 = 1      0      0 1      1      0 1      0      1 A^(2)=[[1,0,0],[1,1,0],[1,0,1]]A^2 = \left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right]A2=[100110101]
I = [ 1 0 0 0 1 0 0 0 1 ] I = 1      0      0 0      1      0 0      0      1 I=[[1,0,0],[0,1,0],[0,0,1]]I = \left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]I=[100010001]
After substituting, we get:
A 100 = 50 [ 1 0 0 1 1 0 1 0 1 ] 49 [ 1 0 0 0 1 0 0 0 1 ] A 100 = 50 1      0      0 1      1      0 1      0      1 49 1      0      0 0      1      0 0      0      1 A^(100)=50[[1,0,0],[1,1,0],[1,0,1]]-49[[1,0,0],[0,1,0],[0,0,1]]A^{100} = 50 \left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right] – 49 \left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]A100=50[100110101]49[100010001]

Calculate A 100 A 100 A^(100)A^{100}A100

After calculating, we find that A 100 A 100 A^(100)A^{100}A100 is:
A 100 = [ 1 0 0 50 1 0 50 0 1 ] A 100 = 1      0      0 50      1      0 50      0      1 A^(100)=[[1,0,0],[50,1,0],[50,0,1]]A^{100} = \left[\begin{array}{lll} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{array}\right]A100=[10050105001]

Conclusion

Using the general form A 2 n = n A 2 ( n 1 ) I A 2 n = n A 2 ( n 1 ) I A^(2n)=nA^(2)-(n-1)IA^{2n} = n A^2 – (n – 1) IA2n=nA2(n1)I, we found that A 100 A 100 A^(100)A^{100}A100 for the given matrix A A AAA is:
A 100 = [ 1 0 0 50 1 0 50 0 1 ] A 100 = 1      0      0 50      1      0 50      0      1 A^(100)=[[1,0,0],[50,1,0],[50,0,1]]A^{100} = \left[\begin{array}{lll} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{array}\right]A100=[10050105001]
(b) बिंदु P P PPP से गुजरने वाली दीर्घवृत्तज
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1x2a2+y2b2+z2c2=1
की अभिलंब जीवा की लंबाई ज्ञात कीजिए और सिद्ध कीजिए कि अगर यह 4 P G 3 4 P G 3 4PG_(3)4 P G_34PG3 के समान है, जहाँ G 3 G 3 G_(3)G_3G3 वह बिंदु है जहाँ P P PPP से गुजरने वाली अभिलंब जीवा x y x y xyx yxy-तल पर मिलती है, तो P P PPP शंकु
x 2 a 6 ( 2 c 2 a 2 ) + y 2 b 6 ( 2 c 2 b 2 ) + z 2 c 4 = 0 x 2 a 6 2 c 2 a 2 + y 2 b 6 2 c 2 b 2 + z 2 c 4 = 0 (x^(2))/(a^(6))(2c^(2)-a^(2))+(y^(2))/(b^(6))(2c^(2)-b^(2))+(z^(2))/(c^(4))=0\frac{x^2}{a^6}\left(2 c^2-a^2\right)+\frac{y^2}{b^6}\left(2 c^2-b^2\right)+\frac{z^2}{c^4}=0x2a6(2c2a2)+y2b6(2c2b2)+z2c4=0
पर स्थित है।
Find the length of the normal chord through a point P P PPP of the ellipsoid
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1x2a2+y2b2+z2c2=1
and prove that if it is equal to 4 P G 3 4 P G 3 4PG_(3)4 P G_34PG3, where G 3 G 3 G_(3)G_3G3 is the point where the normal chord through P P PPP meets the x y x y xyx yxy-plane, then P P PPP lies on the cone
x 2 a 6 ( 2 c 2 a 2 ) + y 2 b 6 ( 2 c 2 b 2 ) + z 2 c 4 = 0 x 2 a 6 2 c 2 a 2 + y 2 b 6 2 c 2 b 2 + z 2 c 4 = 0 (x^(2))/(a^(6))(2c^(2)-a^(2))+(y^(2))/(b^(6))(2c^(2)-b^(2))+(z^(2))/(c^(4))=0\frac{x^2}{a^6}\left(2 c^2-a^2\right)+\frac{y^2}{b^6}\left(2 c^2-b^2\right)+\frac{z^2}{c^4}=0x2a6(2c2a2)+y2b6(2c2b2)+z2c4=0
Answer:
Equation of the Normal:
Let P P P\mathrm{P}P be ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ), then the equation of the normal to the given ellipsoid at P ( α , β , γ ) P ( α , β , γ ) P(alpha,beta,gamma)P(\alpha, \beta, \gamma)P(α,β,γ) are
x α p α a 2 = y β P β b 2 = z r P γ c 2 = r ( 1 ) where 1 P 2 = α 2 a 4 + β 2 b 4 + γ 2 c 4 (2) x α p α a 2 = y β P β b 2 = z r P γ c 2 = r ( 1 ) where 1 P 2 = α 2 a 4 + β 2 b 4 + γ 2 c 4 (2) (x-alpha)/((p alpha)/(a^(2)))=(y-beta)/((P beta)/(b^(2)))=(z-r)/((P gamma)/(c^(2)))=r rarr(1)” where “(1)/(P^(2))=(alpha^(2))/(a^(4))+(beta^(2))/(b^(4))+(gamma^(2))/(c^(4))rarr” (2) “\frac{x-\alpha}{\frac{p \alpha}{a^2}}=\frac{y-\beta}{\frac{P \beta}{b^2}}=\frac{z-r}{\frac{P \gamma}{c^2}}=r \rightarrow(1) \text { where } \frac{1}{P^2}=\frac{\alpha^2}{a^4}+\frac{\beta^2}{b^4}+\frac{\gamma^2}{c^4} \rightarrow \text { (2) }xαpαa2=yβPβb2=zrPγc2=r(1) where 1P2=α2a4+β2b4+γ2c4 (2)
Therefore, the coordinates of any point Q Q QQQ on the normal (1) are ( α + P α a 2 r , β + P β b 2 r , γ + p γ c 2 r ) α + P α a 2 r , β + P β b 2 r , γ + p γ c 2 r (alpha+(P alpha)/(a^(2))r,beta+(P beta)/(b^(2))r,gamma+(p gamma)/(c^(2))r)\left(\alpha+\frac{P \alpha}{a^2} r, \beta+\frac{P \beta}{b^2} r, \gamma+\frac{p \gamma}{c^2} r\right)(α+Pαa2r,β+Pβb2r,γ+pγc2r), where r r rrr is the distance of Q Q QQQ from P P PPP.
If Q Q Q\mathrm{Q}Q lies on the given ellipsoid i.e., PQ PQ PQ\mathrm{PQ}PQ is the normal chord, then
1 a 2 ( α + p α a 2 r ) 2 + 1 b 2 ( β + p β b 2 r ) 2 + 1 c 2 ( γ + p γ c 2 r ) 2 = 1 r 2 P 2 ( α 2 a 6 + β 2 b 6 + γ 2 c 6 ) + 2 r P ( α 2 a 4 + β 2 b 4 + γ 2 c 4 ) + ( α 2 a 2 + β 2 b 2 + γ 2 c 2 ) = 1 1 a 2 α + p α a 2 r 2 + 1 b 2 β + p β b 2 r 2 + 1 c 2 γ + p γ c 2 r 2 = 1 r 2 P 2 α 2 a 6 + β 2 b 6 + γ 2 c 6 + 2 r P α 2 a 4 + β 2 b 4 + γ 2 c 4 + α 2 a 2 + β 2 b 2 + γ 2 c 2 = 1 {:[(1)/(a^(2))(alpha+(p alpha)/(a^(2))r)^(2)+(1)/(b^(2))(beta+(p beta)/(b^(2))r)^(2)+(1)/(c^(2))(gamma+(p gamma)/(c^(2))r)^(2)=1],[=>r^(2)P^(2)((alpha^(2))/(a^(6))+(beta^(2))/(b^(6))+(gamma^(2))/(c^(6)))+2rP((alpha^(2))/(a^(4))+(beta^(2))/(b^(4))+(gamma^(2))/(c^(4)))+((alpha^(2))/(a^(2))+(beta^(2))/(b^(2))+(gamma^(2))/(c^(2)))=1]:}\begin{aligned} & \frac{1}{a^2}\left(\alpha+\frac{p \alpha}{a^2} r\right)^2+\frac{1}{b^2}\left(\beta+\frac{p \beta}{b^2} r\right)^2+\frac{1}{c^2}\left(\gamma+\frac{p \gamma}{c^2} r\right)^2=1 \\ & \Rightarrow r^2 P^2\left(\frac{\alpha^2}{a^6}+\frac{\beta^2}{b^6}+\frac{\gamma^2}{c^6}\right)+2 r P\left(\frac{\alpha^2}{a^4}+\frac{\beta^2}{b^4}+\frac{\gamma^2}{c^4}\right)+\left(\frac{\alpha^2}{a^2}+\frac{\beta^2}{b^2}+\frac{\gamma^2}{c^2}\right)=1 \end{aligned}1a2(α+pαa2r)2+1b2(β+pβb2r)2+1c2(γ+pγc2r)2=1r2P2(α2a6+β2b6+γ2c6)+2rP(α2a4+β2b4+γ2c4)+(α2a2+β2b2+γ2c2)=1
r 2 p 2 ( α 2 a 4 + β 2 b 6 + γ 2 c 6 ) + 2 r p ( 1 p 2 ) = 0 [ r 2 p 2 α 2 a 4 + β 2 b 6 + γ 2 c 6 + 2 r p 1 p 2 = 0 =>r^(2)p^(2)((alpha^(2))/(a^(4))+(beta^(2))/(b^(6))+(gamma^(2))/(c^(6)))+2rp((1)/(p^(2)))=0[:}\Rightarrow r^2 p^2\left(\frac{\alpha^2}{a^4}+\frac{\beta^2}{b^6}+\frac{\gamma^2}{c^6}\right)+2 r p\left(\frac{1}{p^2}\right)=0\left[\right.r2p2(α2a4+β2b6+γ2c6)+2rp(1p2)=0[ from (2) and Σ ( α 2 a 2 ) = 1 Σ α 2 a 2 = 1 Sigma((alpha^(2))/(a^(2)))=1\Sigma\left(\frac{\alpha^2}{a^2}\right)=1Σ(α2a2)=1 as p ( α , β , γ ) p ( α , β , γ ) p(alpha,beta,gamma)p(\alpha, \beta, \gamma)p(α,β,γ) lies on the given conicoid ]
r = 2 p 3 ( α 2 a 6 + β 2 b 6 + γ 2 c 6 ) = length of normal chord P Q ( 3 ) r = 2 p 3 α 2 a 6 + β 2 b 6 + γ 2 c 6 = length of normal chord P Q ( 3 ) =>r=-(2)/(p^(3)((alpha^(2))/(a^(6))+(beta^(2))/(b^(6))+(gamma^(2))/(c^(6))))=” length of normal chord “PQ rarr(3)\Rightarrow r=-\frac{2}{p^3\left(\frac{\alpha^2}{a^6}+\frac{\beta^2}{b^6}+\frac{\gamma^2}{c^6}\right)}=\text { length of normal chord } P Q \rightarrow(3)r=2p3(α2a6+β2b6+γ2c6)= length of normal chord PQ(3)
Also,
Let the normal at P ( α , β , γ ) P ( α , β , γ ) P(alpha,beta,gamma)P(\alpha, \beta, \gamma)P(α,β,γ) meets the coordinate plane viz. y z , z x y z , z x yz,zxy z, z xyz,zx and x y x y xyx yxy planes at G 1 , G 2 , G 3 G 1 , G 2 , G 3 G_(1),G_(2),G_(3)G_1, G_2, G_3G1,G2,G3 Then putting x = 0 , y = 0 x = 0 , y = 0 x=0,y=0x=0, y=0x=0,y=0 and z = 0 z = 0 z=0z=0z=0 in succession in the equation (1), we have respectively,
P G 1 = a 2 P , P G 2 = b 2 p and P G 3 = c 2 p (4) P G 1 = a 2 P , P G 2 = b 2 p and P G 3 = c 2 p (4) PG_(1)=-(a^(2))/(P),PG_(2)=-(b^(2))/(p)” and “PG_(3)=-(c^(2))/(p)rarr” (4) “P G_1=-\frac{a^2}{P}, P G_2=-\frac{b^2}{p} \text { and } P G_3=-\frac{c^2}{p} \rightarrow \text { (4) }PG1=a2P,PG2=b2p and PG3=c2p (4)
Given, P Q = 4 P G 3 P Q = 4 P G 3 PQ=4PG_(3)P Q=4 P G_3PQ=4PG3
p Q = 4 ( c 2 p ) r = 2 p 3 ( α 2 a 6 + β 2 b 6 + γ 2 c 6 ) = 4 ( c 2 p ) 2 c 2 ( α 2 a 6 + β 2 b 6 + γ 2 c 6 ) = 1 p 2 = ( α 2 a 4 + β 2 b 4 + γ 2 c 4 ) from ( 2 ) α 2 a 6 ( 2 c 2 a 2 ) + β 2 b 2 ( 2 c 2 b 2 ) + γ 2 c 6 ( 2 c 2 c 2 ) = 0 α 2 a 6 ( 2 c 2 a 2 ) + β 2 b 2 ( 2 c 2 b 2 ) + γ 2 c 6 ( c 2 ) = 0 α 2 a 6 ( 2 c 2 a 2 ) + β 2 b 2 ( 2 c 2 b 2 ) + γ 2 c 4 = 0 p Q = 4 c 2 p r = 2 p 3 α 2 a 6 + β 2 b 6 + γ 2 c 6 = 4 c 2 p 2 c 2 α 2 a 6 + β 2 b 6 + γ 2 c 6 = 1 p 2 = α 2 a 4 + β 2 b 4 + γ 2 c 4 from ( 2 ) α 2 a 6 2 c 2 a 2 + β 2 b 2 2 c 2 b 2 + γ 2 c 6 2 c 2 c 2 = 0 α 2 a 6 2 c 2 a 2 + β 2 b 2 2 c 2 b 2 + γ 2 c 6 c 2 = 0 α 2 a 6 2 c 2 a 2 + β 2 b 2 2 c 2 b 2 + γ 2 c 4 = 0 {:[=>pQ=4(-(c^(2))/(p))],[=>r=-(2)/(p^(3)((alpha^(2))/(a^(6))+(beta^(2))/(b^(6))+(gamma^(2))/(c^(6))))=4(-(c^(2))/(p))],[=>2c^(2)((alpha^(2))/(a^(6))+(beta^(2))/(b^(6))+(gamma^(2))/(c^(6)))=(1)/(p^(2))],[=((alpha^(2))/(a^(4))+(beta^(2))/(b^(4))+(gamma^(2))/(c^(4)))rarr” from “(2)],[=>(alpha^(2))/(a^(6))(2c^(2)-a^(2))+(beta^(2))/(b^(2))(2c^(2)-b^(2))+(gamma^(2))/(c^(6))(2c^(2)-c^(2))=0],[=>(alpha^(2))/(a^(6))(2c^(2)-a^(2))+(beta^(2))/(b^(2))(2c^(2)-b^(2))+(gamma^(2))/(c^(6))(c^(2))=0],[=>(alpha^(2))/(a^(6))(2c^(2)-a^(2))+(beta^(2))/(b^(2))(2c^(2)-b^(2))+(gamma^(2))/(c^(4))=0]:}\begin{aligned} & \Rightarrow p Q=4\left(-\frac{c^2}{p}\right) \\ & \Rightarrow r=-\frac{2}{p^3\left(\frac{\alpha^2}{a^6}+\frac{\beta^2}{b^6}+\frac{\gamma^2}{c^6}\right)}=4\left(-\frac{c^2}{p}\right) \\ & \Rightarrow 2 c^2\left(\frac{\alpha^2}{a^6}+\frac{\beta^2}{b^6}+\frac{\gamma^2}{c^6}\right)=\frac{1}{p^2} \\ & =\left(\frac{\alpha^2}{a^4}+\frac{\beta^2}{b^4}+\frac{\gamma^2}{c^4}\right) \rightarrow \text { from }(2) \\ & \Rightarrow \frac{\alpha^2}{a^6}\left(2 c^2-a^2\right)+\frac{\beta^2}{b^2}\left(2 c^2-b^2\right)+\frac{\gamma^2}{c^6}\left(2 c^2-c^2\right)=0\\ & \Rightarrow \frac{\alpha^2}{a^6}\left(2 c^2-a^2\right)+\frac{\beta^2}{b^2}\left(2 c^2-b^2\right)+\frac{\gamma^2}{c^6}\left(c^2\right)=0\\ & \Rightarrow \frac{\alpha^2}{a^6}\left(2 c^2-a^2\right)+\frac{\beta^2}{b^2}\left(2 c^2-b^2\right)+\frac{\gamma^2}{c^4}=0 \end{aligned}pQ=4(c2p)r=2p3(α2a6+β2b6+γ2c6)=4(c2p)2c2(α2a6+β2b6+γ2c6)=1p2=(α2a4+β2b4+γ2c4) from (2)α2a6(2c2a2)+β2b2(2c2b2)+γ2c6(2c2c2)=0α2a6(2c2a2)+β2b2(2c2b2)+γ2c6(c2)=0α2a6(2c2a2)+β2b2(2c2b2)+γ2c4=0
Conclusion:
We have found the length of the normal chord through a point P P PPP on the given ellipsoid and proved that if this length is equal to 4 P G 3 4 P G 3 4PG_(3)4PG_34PG3, then P P PPP lies on the cone defined by the equation
α 2 a 6 ( 2 c 2 a 2 ) + β 2 b 2 ( 2 c 2 b 2 ) + γ 2 c 4 = 0 α 2 a 6 2 c 2 a 2 + β 2 b 2 2 c 2 b 2 + γ 2 c 4 = 0 (alpha^(2))/(a^(6))(2c^(2)-a^(2))+(beta^(2))/(b^(2))(2c^(2)-b^(2))+(gamma^(2))/(c^(4))=0\frac{\alpha^2}{a^6}\left(2 c^2-a^2\right)+\frac{\beta^2}{b^2}\left(2 c^2-b^2\right)+\frac{\gamma^2}{c^4}=0α2a6(2c2a2)+β2b2(2c2b2)+γ2c4=0
Hence proved.
(c) (i) अगर
u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u=sin^(-1)sqrt((x^(1//3)+y^(1//3))/(x^(1//2)+y^(1//2)))u=\sin ^{-1} \sqrt{\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}}u=sin1x1/3+y1/3x1/2+y1/2
है, तो दर्शाइए कि sin 2 u , x sin 2 u , x sin^(2)u,x\sin ^2 u, xsin2u,x और y y yyy का 1 6 1 6 -(1)/(6)-\frac{1}{6}16 घातविशिष्ट समांगी फलन है। अतएव दर्शाइए कि
x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 ( 13 12 + tan 2 u 12 ) x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 13 12 + tan 2 u 12 x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(tan u)/(12)((13)/(12)+(tan^(2)u)/(12))x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan ^2 u}{12}\right)x22ux2+2xy2uxy+y22uy2=tanu12(1312+tan2u12)
(ii) जैकोबियन विधि का व्यवहार करते हुए दर्शाइए कि अगर f ( x ) = 1 1 + x 2 f ( x ) = 1 1 + x 2 f^(‘)(x)=(1)/(1+x^(2))f^{\prime}(x)=\frac{1}{1+x^2}f(x)=11+x2 और f ( 0 ) = 0 f ( 0 ) = 0 f(0)=0f(0)=0f(0)=0 है, तो
f ( x ) + f ( y ) = f ( x + y 1 x y ) f ( x ) + f ( y ) = f x + y 1 x y f(x)+f(y)=f((x+y)/(1-xy))f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right)f(x)+f(y)=f(x+y1xy)
(i) If
u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u=sin^(-1)sqrt((x^(1//3)+y^(1//3))/(x^(1//2)+y^(1//2)))u=\sin ^{-1} \sqrt{\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}}u=sin1x1/3+y1/3x1/2+y1/2
then show that sin 2 u sin 2 u sin^(2)u\sin ^2 usin2u is a homogeneous function of x x xxx and y y yyy of degree 1 6 1 6 -(1)/(6)-\frac{1}{6}16.
Hence show that
x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 ( 13 12 + tan 2 u 12 ) x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 13 12 + tan 2 u 12 x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(tan u)/(12)((13)/(12)+(tan^(2)u)/(12))x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan ^2 u}{12}\right)x22ux2+2xy2uxy+y22uy2=tanu12(1312+tan2u12)
Answer:
Introduction:
We are given the equation u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u = sin 1 x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 u=sin^(-1)sqrt((x^(1//3)+y^(1//3))/(x^(1//2)+y^(1//2)))u=\sin ^{-1} \sqrt{\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}}u=sin1x1/3+y1/3x1/2+y1/2 and asked to show that sin 2 u sin 2 u sin^(2)u\sin ^2 usin2u is a homogeneous function of x x xxx and y y yyy of degree 1 6 1 6 -(1)/(6)-\frac{1}{6}16. Additionally, we need to demonstrate that
x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 ( 13 12 + tan 2 u 12 ) x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = tan u 12 13 12 + tan 2 u 12 x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(tan u)/(12)((13)/(12)+(tan^(2)u)/(12))x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan ^2 u}{12}\right)x22ux2+2xy2uxy+y22uy2=tanu12(1312+tan2u12)
Homogeneity Analysis:
Step 1: Defining f f fff and Finding Degree of Homogeneity):
Let’s start by defining f = sin u f = sin u f=sin uf=\sin uf=sinu and then find the degree of homogeneity.
f = sin u = x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 f = sin u = x 1 / 3 + y 1 / 3 x 1 / 2 + y 1 / 2 f=sin u=sqrt((x^(1//3)+y^(1//3))/(x^(1//2)+y^(1//2)))f=\sin u= \sqrt{\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}}f=sinu=x1/3+y1/3x1/2+y1/2
The degree of homogeneity is found as:
Degree = 1 3 1 2 = 1 6 Degree = 1 3 1 2 = 1 6 “Degree”=(1)/(3)-(1)/(2)=-(1)/(6)\text{Degree} = \frac{1}{3} – \frac{1}{2} = -\frac{1}{6}Degree=1312=16
Step 2: Expressing f f fff in terms of x x xxx and y y yyy:
Now, we express f f fff in terms of x x xxx and y y yyy:
f = x 1 12 g ( y x ) f = x 1 12 g y x f=x^(-(1)/(12))g((y)/(x))f = x^{-\frac{1}{12}} g\left(\frac{y}{x}\right)f=x112g(yx)
Step 3: Determining Homogeneous Function of u u uuu:
Next, we find sin 2 u sin 2 u sin^(2)u\sin^2 usin2u as a homogeneous function of x x xxx and y y yyy:
sin 2 u = x ( 1 6 ) g ( y x ) sin 2 u = x 1 6 g y x sin^(2)u=x^((-(1)/(6))g((y)/(x)))\sin ^2 u = x^{\left(-\frac{1}{6}\right) g\left(\frac{y}{x}\right)}sin2u=x(16)g(yx)
The degree is confirmed to be 1 6 1 6 -(1)/(6)-\frac{1}{6}16.
Derivatives and Further Analysis:
Step 4: Partial Derivatives:
Now, let’s calculate the partial derivatives f x f x (del f)/(del x)\frac{\partial f}{\partial x}fx and f y f y (del f)/(del y)\frac{\partial f}{\partial y}fy using the homogeneous function properties:
x f x + y f y = n f where n = 1 6 x f x + y f y = n f where n = 1 6 x(del f)/(del x)+y(del f)/(del y)=n*f quad”where”quad n=-(1)/(6)x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = n \cdot f \quad \text{where} \quad n = -\frac{1}{6}xfx+yfy=nfwheren=16
Step 5: Derivative of sin u sin u sin u\sin usinu and Simplification:
Since f = sin u f = sin u f=sin uf = \sin uf=sinu, we differentiate with respect to x x xxx:
x cos u u x + y cos u u y = 1 12 sin u x cos u u x + y cos u u y = 1 12 sin u x cos u(del u)/(del x)+y cos u(del u)/(del y)=-(1)/(12)sin ux \cos u \frac{\partial u}{\partial x} + y \cos u \frac{\partial u}{\partial y} = -\frac{1}{12} \sin uxcosuux+ycosuuy=112sinu
After some simplification and using trigonometric identities, we get:
x u x + y u y = 1 12 tan u x u x + y u y = 1 12 tan u x(del u)/(del x)+y(del u)/(del y)=-(1)/(12)tan ux \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan uxux+yuy=112tanu
Step 6: Second Derivative and Further Simplification:
Differentiate equation 1 partially with respect to x x xxx and y y yyy and add the resulting equations. Then simplify as follows:
x 2 u x 2 + u x + y 2 u x y = 1 12 sec 2 u u x y 2 u y + y u y + 2 x y 2 u x y = ( x u x + y u y ) ( 1 1 12 sec 2 u ) [ 1 + 1 12 ( tan 2 α + 1 ) ] = 1 12 tan u ( 1 + 1 12 sec 2 u ) = tan u 12 ( 13 12 + tan 2 u 12 ) x 2 u x 2 + u x + y 2 u x y = 1 12 sec 2 u u x y 2 u y + y u y + 2 x y 2 u x y = x u x + y u y 1 1 12 sec 2 u 1 + 1 12 tan 2 α + 1 = 1 12 tan u 1 + 1 12 sec 2 u = tan u 12 13 12 + tan 2 u 12 {:[x(del^(2)u)/(delx^(2))+(del u)/(del x)+y(del^(2)u)/(del x del y)=-(1)/(12)sec^(2)u(del u)/(del x)],[y^(2)(del u)/(del y)+y(del u)/(del y)+2xy(del^(2)u)/(del x del y)=(x(del u)/(del x)+y(del u)/(del y))(1-(1)/(12)sec^(2)u)],[[1+(1)/(12)(tan^(2)alpha+1)]=-(1)/(12)tan u(1+(1)/(12)sec^(2)u)],[=(tan u)/(12)((13)/(12)+(tan^(2)u)/(12))]:}\begin{aligned} & x \frac{\partial^2 u}{\partial x^2}+\frac{\partial u}{\partial x}+y \frac{\partial^2 u}{\partial x \partial y}=-\frac{1}{12} \sec ^2 u \frac{\partial u}{\partial x} \\ & y^2 \frac{\partial u}{\partial y}+y \frac{\partial u}{\partial y}+2 x y \frac{\partial^2 u}{\partial x \partial y}=\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)\left(1-\frac{1}{12} \sec ^2 u\right) \\ & {\left[1+\frac{1}{12}\left(\tan ^2 \alpha+1\right)\right]=-\frac{1}{12} \tan u\left(1+\frac{1}{12} \sec ^2 u\right)} \\ & =\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan ^2 u}{12}\right) \end{aligned}x2ux2+ux+y2uxy=112sec2uuxy2uy+yuy+2xy2uxy=(xux+yuy)(1112sec2u)[1+112(tan2α+1)]=112tanu(1+112sec2u)=tanu12(1312+tan2u12)
Conclusion:
We have shown that sin 2 u sin 2 u sin^(2)u\sin ^2 usin2u is indeed a homogeneous function of x x xxx and y y yyy with a degree of 1 6 1 6 -(1)/(6)-\frac{1}{6}16. Additionally, we have derived and simplified the expression x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}x22ux2+2xy2uxy+y22uy2 as given in the problem statement.
(ii) Using the Jacobian method, show that if f ( x ) = 1 1 + x 2 f ( x ) = 1 1 + x 2 f^(‘)(x)=(1)/(1+x^(2))f^{\prime}(x)=\frac{1}{1+x^2}f(x)=11+x2 and f ( 0 ) = 0 f ( 0 ) = 0 f(0)=0f(0)=0f(0)=0, then
f ( x ) + f ( y ) = f ( x + y 1 x y ) f ( x ) + f ( y ) = f x + y 1 x y f(x)+f(y)=f((x+y)/(1-xy))f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right)f(x)+f(y)=f(x+y1xy)
Answer:

Work/Calculations

Step 1: Integrate f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) to find f ( x ) f ( x ) f(x)f(x)f(x)

Given f ( x ) = 1 1 + x 2 f ( x ) = 1 1 + x 2 f^(‘)(x)=(1)/(1+x^(2))f'(x) = \frac{1}{1 + x^2}f(x)=11+x2, we integrate to find f ( x ) f ( x ) f(x)f(x)f(x):
f ( x ) d x = 1 1 + x 2 d x f ( x ) d x = 1 1 + x 2 d x intf^(‘)(x)dx=int(1)/(1+x^(2))dx\int f'(x) \, dx = \int \frac{1}{1 + x^2} \, dxf(x)dx=11+x2dx
f ( x ) = tan 1 ( x ) + c f ( x ) = tan 1 ( x ) + c f(x)=tan^(-1)(x)+cf(x) = \tan^{-1}(x) + cf(x)=tan1(x)+c
Since f ( 0 ) = 0 f ( 0 ) = 0 f(0)=0f(0) = 0f(0)=0, we find that c = 0 c = 0 c=0c = 0c=0. Therefore, f ( x ) = tan 1 ( x ) f ( x ) = tan 1 ( x ) f(x)=tan^(-1)(x)f(x) = \tan^{-1}(x)f(x)=tan1(x).

Step 2: Define α α alpha\alphaα and β β beta\betaβ

α = f ( x ) + f ( y ) = tan 1 ( x ) + tan 1 ( y ) α = f ( x ) + f ( y ) = tan 1 ( x ) + tan 1 ( y ) alpha=f(x)+f(y)=tan^(-1)(x)+tan^(-1)(y)\alpha = f(x) + f(y) = \tan^{-1}(x) + \tan^{-1}(y)α=f(x)+f(y)=tan1(x)+tan1(y)
β = f ( x + y 1 x y ) = tan 1 ( x + y 1 x y ) β = f x + y 1 x y = tan 1 x + y 1 x y beta=f((x+y)/(1-xy))=tan^(-1)((x+y)/(1-xy))\beta = f\left(\frac{x+y}{1-xy}\right) = \tan^{-1}\left(\frac{x+y}{1-xy}\right)β=f(x+y1xy)=tan1(x+y1xy)

Step 3: Calculate the Partial Derivatives of α α alpha\alphaα and β β beta\betaβ

For α α alpha\alphaα, we have:
α x = 1 1 + x 2 α x = 1 1 + x 2 (del alpha)/(del x)=(1)/(1+x^(2))\frac{\partial \alpha}{\partial x} = \frac{1}{1 + x^2}αx=11+x2
α y = 1 1 + y 2 α y = 1 1 + y 2 (del alpha)/(del y)=(1)/(1+y^(2))\frac{\partial \alpha}{\partial y} = \frac{1}{1 + y^2}αy=11+y2
For β β beta\betaβ, we differentiate β β beta\betaβ with respect to x x xxx:
β x = x [ tan 1 ( x + y 1 x y ) ] β x = x tan 1 x + y 1 x y (del beta)/(del x)=(del)/(del x)[tan^(-1)((x+y)/(1-xy))]\frac{\partial \beta}{\partial x} = \frac{\partial}{\partial x} \left[ \tan^{-1}\left(\frac{x+y}{1-xy}\right) \right]βx=x[tan1(x+y1xy)]
After calculating, we find:
β x = 1 1 + x 2 β x = 1 1 + x 2 (del beta)/(del x)=(1)/(1+x^(2))\frac{\partial \beta}{\partial x} = \frac{1}{1 + x^2}βx=11+x2
Similarly, to find β y β y (del beta)/(del y)\frac{\partial \beta}{\partial y}βy, we differentiate β β beta\betaβ with respect to y y yyy:
β y = y [ tan 1 ( x + y 1 x y ) ] β y = y tan 1 x + y 1 x y (del beta)/(del y)=(del)/(del y)[tan^(-1)((x+y)/(1-xy))]\frac{\partial \beta}{\partial y} = \frac{\partial}{\partial y} \left[ \tan^{-1}\left(\frac{x+y}{1-xy}\right) \right]βy=y[tan1(x+y1xy)]
After calculating, we find:
β y = 1 1 + y 2 β y = 1 1 + y 2 (del beta)/(del y)=(1)/(1+y^(2))\frac{\partial \beta}{\partial y} = \frac{1}{1 + y^2}βy=11+y2

Step 4: Check if the Partial Derivatives are Equal

To prove that f ( x ) + f ( y ) = f ( x + y 1 x y ) f ( x ) + f ( y ) = f x + y 1 x y f(x)+f(y)=f((x+y)/(1-xy))f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)f(x)+f(y)=f(x+y1xy), it’s sufficient to show that α x = β x α x = β x (del alpha)/(del x)=(del beta)/(del x)\frac{\partial \alpha}{\partial x} = \frac{\partial \beta}{\partial x}αx=βx and α y = β y α y = β y (del alpha)/(del y)=(del beta)/(del y)\frac{\partial \alpha}{\partial y} = \frac{\partial \beta}{\partial y}αy=βy.
Since α x = β x α x = β x (del alpha)/(del x)=(del beta)/(del x)\frac{\partial \alpha}{\partial x} = \frac{\partial \beta}{\partial x}αx=βx and α y = β y α y = β y (del alpha)/(del y)=(del beta)/(del y)\frac{\partial \alpha}{\partial y} = \frac{\partial \beta}{\partial y}αy=βy, we can conclude that f ( x ) + f ( y ) = f ( x + y 1 x y ) f ( x ) + f ( y ) = f x + y 1 x y f(x)+f(y)=f((x+y)/(1-xy))f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)f(x)+f(y)=f(x+y1xy).

Conclusion with Jacobian Method

In the Jacobian method, we aim to show that two functions α α alpha\alphaα and β β beta\betaβ are equal by proving that their partial derivatives with respect to the same variables are equal. In this case, α = f ( x ) + f ( y ) α = f ( x ) + f ( y ) alpha=f(x)+f(y)\alpha = f(x) + f(y)α=f(x)+f(y) and β = f ( x + y 1 x y ) β = f x + y 1 x y beta=f((x+y)/(1-xy))\beta = f\left(\frac{x+y}{1-xy}\right)β=f(x+y1xy).
We calculated the partial derivatives α x α x (del alpha)/(del x)\frac{\partial \alpha}{\partial x}αx, α y α y (del alpha)/(del y)\frac{\partial \alpha}{\partial y}αy, β x β x (del beta)/(del x)\frac{\partial \beta}{\partial x}βx, and β y β y (del beta)/(del y)\frac{\partial \beta}{\partial y}βy and found:
α x = 1 1 + x 2 = β x α x = 1 1 + x 2 = β x (del alpha)/(del x)=(1)/(1+x^(2))=(del beta)/(del x)\frac{\partial \alpha}{\partial x} = \frac{1}{1 + x^2} = \frac{\partial \beta}{\partial x}αx=11+x2=βx
α y = 1 1 + y 2 = β y α y = 1 1 + y 2 = β y (del alpha)/(del y)=(1)/(1+y^(2))=(del beta)/(del y)\frac{\partial \alpha}{\partial y} = \frac{1}{1 + y^2} = \frac{\partial \beta}{\partial y}αy=11+y2=βy
Since both sets of partial derivatives are equal, the Jacobian method confirms that α α alpha\alphaα and β β beta\betaβ are indeed the same function under the transformation of variables. Therefore, we can conclude that:
f ( x ) + f ( y ) = f ( x + y 1 x y ) f ( x ) + f ( y ) = f x + y 1 x y f(x)+f(y)=f((x+y)/(1-xy))f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)f(x)+f(y)=f(x+y1xy)
This successfully proves the given equation using the Jacobian method.
खण्ड-B / SECTION-B
  1. (a) अवकल समीकरण
( 2 y sin x + 3 y 4 sin x cos x ) d x ( 4 y 3 cos 2 x + cos x ) d y = 0 2 y sin x + 3 y 4 sin x cos x d x 4 y 3 cos 2 x + cos x d y = 0 (2y sin x+3y^(4)sin x cos x)dx-(4y^(3)cos^(2)x+cos x)dy=0\left(2 y \sin x+3 y^4 \sin x \cos x\right) d x-\left(4 y^3 \cos ^2 x+\cos x\right) d y=0(2ysinx+3y4sinxcosx)dx(4y3cos2x+cosx)dy=0
को हल कीजिए।
Solve the differential equation
( 2 y sin x + 3 y 4 sin x cos x ) d x ( 4 y 3 cos 2 x + cos x ) d y = 0 2 y sin x + 3 y 4 sin x cos x d x 4 y 3 cos 2 x + cos x d y = 0 (2y sin x+3y^(4)sin x cos x)dx-(4y^(3)cos^(2)x+cos x)dy=0\left(2 y \sin x+3 y^4 \sin x \cos x\right) d x-\left(4 y^3 \cos ^2 x+\cos x\right) d y=0(2ysinx+3y4sinxcosx)dx(4y3cos2x+cosx)dy=0
Answer:
Introduction:
We are given the differential equation:
( 2 y sin x + 3 y 4 sin x cos x ) d x ( 4 y 3 cos 2 x + cos x ) d y = 0 2 y sin x + 3 y 4 sin x cos x d x 4 y 3 cos 2 x + cos x d y = 0 (2y sin x+3y^(4)sin x cos x)dx-(4y^(3)cos^(2)x+cos x)dy=0\left(2 y \sin x + 3 y^4 \sin x \cos x\right) dx – \left(4 y^3 \cos^2 x + \cos x\right) dy = 0(2ysinx+3y4sinxcosx)dx(4y3cos2x+cosx)dy=0
Work/Calculations:
Step 1: Identify M M MMM and N N NNN:
In the given equation, we have M = 2 y sin x + 3 y 4 sin x cos x M = 2 y sin x + 3 y 4 sin x cos x M=2y sin x+3y^(4)sin x cos xM = 2y \sin x + 3y^4 \sin x \cos xM=2ysinx+3y4sinxcosx and N = ( 4 y 3 cos 2 x + cos x ) N = 4 y 3 cos 2 x + cos x N=-(4y^(3)cos^(2)x+cos x)N = -\left(4y^3 \cos^2 x + \cos x\right)N=(4y3cos2x+cosx).
Step 2: Calculate Partial Derivatives:
Calculate the partial derivatives of M M MMM and N N NNN:
M y = 2 sin x + 12 y 3 sin x cos x M y = 2 sin x + 12 y 3 sin x cos x (del M)/(del y)=2sin x+12y^(3)sin x cos x\frac{\partial M}{\partial y} = 2 \sin x + 12y^3 \sin x \cos xMy=2sinx+12y3sinxcosx
N x = 8 y 3 sin x cos x + sin x N x = 8 y 3 sin x cos x + sin x (del N)/(del x)=8y^(3)sin x cos x+sin x\frac{\partial N}{\partial x} = 8y^3 \sin x \cos x + \sin xNx=8y3sinxcosx+sinx
Step 3: Check for Exactness:
Now, check if the equation is exact by comparing M y M y (del M)/(del y)\frac{\partial M}{\partial y}My and N x N x (del N)/(del x)\frac{\partial N}{\partial x}Nx:
M y N x N = 2 sin x + 12 y 3 sin x cos x ( 8 y 3 sin x cos x + sin x ) ( 4 y 3 cos 2 x + cos x ) = tan x M y N x N = 2 sin x + 12 y 3 sin x cos x ( 8 y 3 sin x cos x + sin x ) 4 y 3 cos 2 x + cos x = tan x ((del M)/(del y)-(del N)/(del x))/(N)=(2sin x+12y^(3)sin x cos x-(8y^(3)sin x cos x+sin x))/(-(4y^(3)cos^(2)x+cos x))=-tan x\frac{\frac{\partial M}{\partial y} – \frac{\partial N}{\partial x}}{N} = \frac{2 \sin x + 12y^3 \sin x \cos x – (8y^3 \sin x \cos x + \sin x)}{-\left(4y^3 \cos^2 x + \cos x\right)} = -\tan xMyNxN=2sinx+12y3sinxcosx(8y3sinxcosx+sinx)(4y3cos2x+cosx)=tanx
Step 4: Find the Integration Factor:
The integration factor is given by e tan x d x = cos x e tan x d x = cos x e^(-int tan xdx)=cos xe^{-\int \tan x dx} = \cos xetanxdx=cosx.
Step 5: Multiply and Simplify:
Multiply the entire equation by the integration factor cos x cos x cos x\cos xcosx:
cos x ( 2 y sin x + 3 y 4 sin x cos x ) d x cos x ( 4 y 3 cos 2 x + cos x ) d y = 0 cos x 2 y sin x + 3 y 4 sin x cos x d x cos x 4 y 3 cos 2 x + cos x d y = 0 cos x(2y sin x+3y^(4)sin x cos x)dx-cos x(4y^(3)cos^(2)x+cos x)dy=0\cos x \left(2y \sin x + 3y^4 \sin x \cos x\right) dx – \cos x \left(4y^3 \cos^2 x + \cos x\right) dy = 0cosx(2ysinx+3y4sinxcosx)dxcosx(4y3cos2x+cosx)dy=0
This makes the equation exact.
Step 6: Integrate:
Now, integrate both sides with respect to x x xxx to find the solution:
( y sin 2 x + 3 y 2 2 sin 2 x cos x ) d x = C y sin 2 x + 3 y 2 2 sin 2 x cos x d x = C int(y sin 2x+(3y^(2))/(2)sin 2x cos x)dx=C\int \left(y \sin 2x + \frac{3y^2}{2} \sin 2x \cos x\right) dx = C(ysin2x+3y22sin2xcosx)dx=C
Further integrate and simplify to find the solution:
y cos 2 x 2 3 y 2 4 cos 3 x 3 3 y 2 4 cos x = C y cos 2 x 2 3 y 2 4 cos 3 x 3 3 y 2 4 cos x = C -(y cos 2x)/(2)-(3y^(2))/(4)*(cos 3x)/(3)-(3y^(2))/(4)cos x=C-\frac{y \cos 2x}{2} – \frac{3y^2}{4} \cdot \frac{\cos 3x}{3} – \frac{3y^2}{4} \cos x = Cycos2x23y24cos3x33y24cosx=C
Conclusion:
The solution to the given differential equation is:
y cos 2 x 2 3 y 2 4 cos 3 x 3 3 y 2 4 cos x = C y cos 2 x 2 3 y 2 4 cos 3 x 3 3 y 2 4 cos x = C -(y cos 2x)/(2)-(3y^(2))/(4)*(cos 3x)/(3)-(3y^(2))/(4)cos x=C-\frac{y \cos 2x}{2} – \frac{3y^2}{4} \cdot \frac{\cos 3x}{3} – \frac{3y^2}{4} \cos x = Cycos2x23y24cos3x33y24cosx=C
(b) अवकल समीकरण
d 2 y d x 2 4 d y d x + 4 y = 3 x 2 e 2 x sin 2 x d 2 y d x 2 4 d y d x + 4 y = 3 x 2 e 2 x sin 2 x (d^(2)y)/(dx^(2))-4(dy)/(dx)+4y=3x^(2)e^(2x)sin 2x\frac{d^2 y}{d x^2}-4 \frac{d y}{d x}+4 y=3 x^2 e^{2 x} \sin 2 xd2ydx24dydx+4y=3x2e2xsin2x
का पूर्ण हल ज्ञात कीजिए।
Determine the complete solution of the differential equation
d 2 y d x 2 4 d y d x + 4 y = 3 x 2 e 2 x sin 2 x d 2 y d x 2 4 d y d x + 4 y = 3 x 2 e 2 x sin 2 x (d^(2)y)/(dx^(2))-4(dy)/(dx)+4y=3x^(2)e^(2x)sin 2x\frac{d^2 y}{d x^2}-4 \frac{d y}{d x}+4 y=3 x^2 e^{2 x} \sin 2 xd2ydx24dydx+4y=3x2e2xsin2x
Answer:

Auxiliary Equation:

To solve the given differential equation, we start by finding the auxiliary equation, which is given by
D 2 4 D + 4 = 0 D 2 4 D + 4 = 0 D^(2)-4D+4=0D^2-4 D+4=0D24D+4=0
where D D DDD represents the derivative operator. Solving this equation yields two identical roots, D = 2 D = 2 D=2D=2D=2. Thus, the complementary function (C.F.) is expressed as:
C . F . = ( c 1 + c 2 x ) e 2 x C . F . = c 1 + c 2 x e 2 x C.F.=(c_(1)+c_(2)x)e^(2x)C . F .=\left(c_1+c_2 x\right) e^{2 x}C.F.=(c1+c2x)e2x
where c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2 are arbitrary constants.

Particular Integral (P.I.):

P.I. = 1 ( D 2 ) 2 3 x 2 e 2 x sin 2 x = 3 e 2 x 1 ( D + 2 2 ) 2 x 2 sin 2 x = 3 e 2 x 1 D 2 x 2 sin 2 x = 3 e 2 x 1 D x 2 sin 2 x d x = 8 e 2 x 1 D [ x 2 ( cos 2 x 2 ) ( 2 x ) ( cos 2 x 2 ) d x ] , integrating by parts = 3 e 2 x 1 D [ 1 2 x 2 cos 2 x + x cos 2 x d x ] = 8 e 2 x 1 D [ 1 2 x 2 cos 2 x + x ( sin 2 x 2 ) 1 sin 2 x 2 d x ] = 3 e 2 x 1 D [ 1 2 x 2 cos 2 x + 1 2 x sin 2 x + 1 4 cos 2 x ] = 8 e 2 x ( 1 2 x 2 cos 2 x + 1 2 x sin 2 x + 1 4 cos 2 x ) d x = 3 e 2 x [ 1 2 x 2 cos 2 x d x + 1 2 x sin 2 x d x + 1 4 cos 2 x d x ] = 3 e 2 x [ 1 2 { x 2 ( 1 2 sin 2 x ) 2 x ( 1 2 sin 2 x ) d x } + 1 2 x sin 2 x d x + 1 8 sin 2 x ] = 3 e 2 x [ 1 4 x 2 sin 2 x d x + 1 2 x sin 2 x d x + 1 2 x sin 2 x d x + ( 1 / 8 ) × sin 2 x ] P.I. = 1 ( D 2 ) 2 3 x 2 e 2 x sin 2 x = 3 e 2 x 1 ( D + 2 2 ) 2 x 2 sin 2 x = 3 e 2 x 1 D 2 x 2 sin 2 x = 3 e 2 x 1 D x 2 sin 2 x d x = 8 e 2 x 1 D x 2 cos 2 x 2 ( 2 x ) cos 2 x 2 d x , integrating by parts = 3 e 2 x 1 D 1 2 x 2 cos 2 x + x cos 2 x d x = 8 e 2 x 1 D 1 2 x 2 cos 2 x + x sin 2 x 2 1 sin 2 x 2 d x = 3 e 2 x 1 D 1 2 x 2 cos 2 x + 1 2 x sin 2 x + 1 4 cos 2 x = 8 e 2 x 1 2 x 2 cos 2 x + 1 2 x sin 2 x + 1 4 cos 2 x d x = 3 e 2 x 1 2 x 2 cos 2 x d x + 1 2 x sin 2 x d x + 1 4 cos 2 x d x = 3 e 2 x 1 2 x 2 1 2 sin 2 x 2 x 1 2 sin 2 x d x + 1 2 x sin 2 x d x + 1 8 sin 2 x = 3 e 2 x 1 4 x 2 sin 2 x d x + 1 2 x sin 2 x d x + 1 2 x sin 2 x d x + ( 1 / 8 ) × sin 2 x {:[” P.I. “=(1)/((D-2)^(2))3x^(2)e^(2x)sin 2x=3e^(2x)(1)/((D+2-2)^(2))x^(2)sin 2x=3e^(2x)(1)/(D^(2))x^(2)sin 2x],[=3e^(2x)(1)/(D)intx^(2)sin 2xdx=8e^(2x)(1)/(D)[x^(2)(-(cos 2x)/(2))-int(2x)(-(cos 2x)/(2))dx]”,”” integrating by parts “],[=3e^(2x)(1)/(D)[-(1)/(2)x^(2)cos 2x+int x cos 2xdx]=8e^(2x)(1)/(D)[-(1)/(2)x^(2)cos 2x+x((sin 2x)/(2))-int1*(sin 2x)/(2)dx]],[=3e^(2x)(1)/(D)[-(1)/(2)x^(2)cos 2x+(1)/(2)x sin 2x+(1)/(4)cos 2x]=8e^(2x)int(-(1)/(2)x^(2)cos 2x+(1)/(2)x sin 2x+(1)/(4)cos 2x)dx],[=3e^(2x)[-(1)/(2)intx^(2)cos 2xdx+(1)/(2)int x sin 2xdx+(1)/(4)int cos 2xdx]],[=3e^(2x)[-(1)/(2){x^(2)((1)/(2)sin 2x)-int2x((1)/(2)sin 2x)dx}+(1)/(2)int x sin 2xdx+(1)/(8)sin 2x]],[=3e^(2x)[-(1)/(4)x^(2)sin 2xdx+(1)/(2)int x sin 2xdx+(1)/(2)int x sin 2xdx+(1//8)xx sin 2x]]:}\begin{aligned} & \text { P.I. }=\frac{1}{(D-2)^2} 3 x^2 e^{2 x} \sin 2 x=3 e^{2 x} \frac{1}{(D+2-2)^2} x^2 \sin 2 x=3 e^{2 x} \frac{1}{D^2} x^2 \sin 2 x \\ = & 3 e^{2 x} \frac{1}{D} \int x^2 \sin 2 x d x=8 e^{2 x} \frac{1}{D}\left[x^2\left(-\frac{\cos 2 x}{2}\right)-\int(2 x)\left(-\frac{\cos 2 x}{2}\right) d x\right], \text { integrating by parts } \\ = & 3 e^{2 x} \frac{1}{D}\left[-\frac{1}{2} x^2 \cos 2 x+\int x \cos 2 x d x\right]=8 e^{2 x} \frac{1}{D}\left[-\frac{1}{2} x^2 \cos 2 x+x\left(\frac{\sin 2 x}{2}\right)-\int 1 \cdot \frac{\sin 2 x}{2} d x\right] \\ = & 3 e^{2 x} \frac{1}{D}\left[-\frac{1}{2} x^2 \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x\right]=8 e^{2 x} \int\left(-\frac{1}{2} x^2 \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x\right) d x \\ = & 3 e^{2 x}\left[-\frac{1}{2} \int x^2 \cos 2 x d x+\frac{1}{2} \int x \sin 2 x d x+\frac{1}{4} \int \cos 2 x d x\right] \\ = & 3 e^{2 x}\left[-\frac{1}{2}\left\{x^2\left(\frac{1}{2} \sin 2 x\right)-\int 2 x\left(\frac{1}{2} \sin 2 x\right) d x\right\}+\frac{1}{2} \int x \sin 2 x d x+\frac{1}{8} \sin 2 x\right] \\ = & 3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x d x+\frac{1}{2} \int x \sin 2 x d x+\frac{1}{2} \int x \sin 2 x d x+(1 / 8) \times \sin 2 x\right] \end{aligned} P.I. =1(D2)23x2e2xsin2x=3e2x1(D+22)2x2sin2x=3e2x1D2x2sin2x=3e2x1Dx2sin2xdx=8e2x1D[x2(cos2x2)(2x)(cos2x2)dx], integrating by parts =3e2x1D[12x2cos2x+xcos2xdx]=8e2x1D[12x2cos2x+x(sin2x2)1sin2x2dx]=3e2x1D[12x2cos2x+12xsin2x+14cos2x]=8e2x(12x2cos2x+12xsin2x+14cos2x)dx=3e2x[12x2cos2xdx+12xsin2xdx+14cos2xdx]=3e2x[12{x2(12sin2x)2x(12sin2x)dx}+12xsin2xdx+18sin2x]=3e2x[14x2sin2xdx+12xsin2xdx+12xsin2xdx+(1/8)×sin2x]
= 3 e 2 x [ 1 4 x 2 sin 2 x + x sin 2 x d x + 1 8 sin 2 x ] = 3 e 2 x [ 1 4 x 2 sin 2 x + x ( 1 2 cos 2 x ) 1 ( 1 2 cos 2 x ) d x + 1 8 sin 2 x ] = 3 e 2 x [ 1 4 x 2 sin 2 x 1 2 x cos 2 x + 1 4 sin 2 x + 1 8 sin 2 x ] = 3 e 2 x [ 1 4 x 2 sin 2 x 1 2 x cos 2 x + 3 8 sin 2 x ] = 3 e 2 x 1 4 x 2 sin 2 x + x sin 2 x d x + 1 8 sin 2 x = 3 e 2 x 1 4 x 2 sin 2 x + x 1 2 cos 2 x 1 1 2 cos 2 x d x + 1 8 sin 2 x = 3 e 2 x 1 4 x 2 sin 2 x 1 2 x cos 2 x + 1 4 sin 2 x + 1 8 sin 2 x = 3 e 2 x 1 4 x 2 sin 2 x 1 2 x cos 2 x + 3 8 sin 2 x {:[=3e^(2x)[-(1)/(4)x^(2)sin 2x+int x sin 2xdx+(1)/(8)sin 2x]],[=3e^(2x)[-(1)/(4)x^(2)sin 2x+x(-(1)/(2)cos 2x)-int1*(-(1)/(2)cos 2x)dx+(1)/(8)sin 2x]],[=3e^(2x)[-(1)/(4)x^(2)sin 2x-(1)/(2)x cos 2x+(1)/(4)sin 2x+(1)/(8)sin 2x]],[=3e^(2x)[-(1)/(4)x^(2)sin 2x-(1)/(2)x cos 2x+(3)/(8)sin 2x]]:}\begin{aligned} & =3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x+\int x \sin 2 x d x+\frac{1}{8} \sin 2 x\right] \\ & =3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x+x\left(-\frac{1}{2} \cos 2 x\right)-\int 1 \cdot\left(-\frac{1}{2} \cos 2 x\right) d x+\frac{1}{8} \sin 2 x\right] \\ & =3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x+\frac{1}{8} \sin 2 x\right] \\ & =3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x-\frac{1}{2} x \cos 2 x+\frac{3}{8} \sin 2 x\right] \end{aligned}=3e2x[14x2sin2x+xsin2xdx+18sin2x]=3e2x[14x2sin2x+x(12cos2x)1(12cos2x)dx+18sin2x]=3e2x[14x2sin2x12xcos2x+14sin2x+18sin2x]=3e2x[14x2sin2x12xcos2x+38sin2x]

Conclusion:

In conclusion, the complete solution to the given differential equation is:
y = ( c 1 + c 2 x ) e 2 x + 3 e 2 x [ 1 4 x 2 sin 2 x 1 2 x cos 2 x + 3 8 sin 2 x ] y = c 1 + c 2 x e 2 x + 3 e 2 x 1 4 x 2 sin 2 x 1 2 x cos 2 x + 3 8 sin 2 x y=(c_(1)+c_(2)x)e^(2x)+3e^(2x)[-(1)/(4)x^(2)sin 2x-(1)/(2)x cos 2x+(3)/(8)sin 2x]y=\left(c_1+c_2 x\right) e^{2 x}+3 e^{2 x}\left[-\frac{1}{4} x^2 \sin 2 x-\frac{1}{2} x \cos 2 x+\frac{3}{8} \sin 2 x\right]y=(c1+c2x)e2x+3e2x[14x2sin2x12xcos2x+38sin2x]
This solution encompasses both the complementary function (C.F.) and the particular integral (P.I.).
(c) एक भारी एकसमान छड़ A B A B ABA BAB का एक सिरा एक रूक्ष क्षैतिज छड़ A C A C ACA CAC, जिसके साथ वह वलय (रिंग) के द्वारा जुड़ी हुई है, पर सरक सकती है। B B BBB एवं C C CCC एक रस्सी से जुड़े हैं। जब छड़ सर्पण बिंदु पर है, तब A C 2 A B 2 = B C 2 A C 2 A B 2 = B C 2 AC^(2)-AB^(2)=BC^(2)A C^2-A B^2=B C^2AC2AB2=BC2 है। यदि क्षैतिज रेखा व A B A B ABA BAB के बीच का कोण θ θ theta\thetaθ है, तो सिद्ध कीजिए कि घर्षण गुणांक cot θ 2 + cot 2 θ cot θ 2 + cot 2 θ (cot theta)/(2+cot^(2)theta)\frac{\cot \theta}{2+\cot ^2 \theta}cotθ2+cot2θ है।
One end of a heavy uniform rod A B A B ABA BAB can slide along a rough horizontal rod A C A C ACA CAC, to which it is attached by a ring. B B BBB and C C CCC are joined by a string. When the rod is on the point of sliding, then A C 2 A B 2 = B C 2 A C 2 A B 2 = B C 2 AC^(2)-AB^(2)=BC^(2)A C^2-A B^2=B C^2AC2AB2=BC2. If θ θ theta\thetaθ is the angle between A B A B ABA BAB and the horizontal line, then prove that the coefficient of friction is cot θ 2 + cot 2 θ cot θ 2 + cot 2 θ (cot theta)/(2+cot^(2)theta)\frac{\cot \theta}{2+\cot ^2 \theta}cotθ2+cot2θ.
Answer:
Given: One end of a heavy uniform rod A B A B ABABAB can slide along a rough horizontal rod A C A C ACACAC, to which it is attached by a ring. B B BBB and C C CCC are joined by a string. When the rod is on the point of sliding, we have A C 2 A B 2 = B C 2 A C 2 A B 2 = B C 2 AC^(2)-AB^(2)=BC^(2)AC^2-AB^2=BC^2AC2AB2=BC2.
Let m m mmm be the mass of the rod, g g ggg the acceleration due to gravity, N N NNN the normal force acting on the ring in a clockwise direction, T T TTT the force on the string, and f f fff the frictional force.
original image
In equilibrium, we have:
Horizontal net force F H = 0 F H = 0 sumF_(H)=0\sum F_H = 0FH=0
Vertical net force F V = 0 F V = 0 sumF_(V)=0\sum F_V = 0FV=0
Net torque τ = 0 τ = 0 sum tau=0\sum \tau = 0τ=0
Then, the force on the rod is given by m g = T sin θ + N m g = T sin θ + N mg=T sin theta+Nmg = T \sin \theta + Nmg=Tsinθ+N, which can be written as:
T sin θ = m g N ( 1 ) T sin θ = m g N ( 1 ) T sin theta=mg-N—-(1)T \sin \theta = mg – N—- (1)Tsinθ=mgN(1)
The force in the horizontal direction ( f f fff) is equal to μ N μ N mu N\mu NμN, where μ μ mu\muμ is the coefficient of friction. This can be expressed as:
T cos θ = μ N ( 2 ) T cos θ = μ N ( 2 ) T cos theta=mu N—-(2)T \cos \theta = \mu N—- (2)Tcosθ=μN(2)
Dividing equation (2) by equation (1), we get:
cot θ = μ m g N ( 3 ) cot θ = μ m g N ( 3 ) cot theta=(mu)/(mg-N)—-(3)\cot \theta = \frac{\mu}{mg – N}—- (3)cotθ=μmgN(3)
Now, let’s consider the torque balance:
τ c w = τ A C W τ c w = τ A C W tau_(cw)=tau_(ACW)\tau_{cw} = \tau_{ACW}τcw=τACW
m g ( ρ 2 sin θ ) + μ N l cos θ = N l sin θ m g ρ 2 sin θ + μ N l cos θ = N l sin θ mg((rho)/(2)sin theta)+mu N*l cos theta=N*l sin thetamg\left(\frac{\rho}{2}\sin \theta\right) + \mu N \cdot l \cos \theta = N \cdot l \sin \thetamg(ρ2sinθ)+μNlcosθ=Nlsinθ
μ N cos θ = ( N m g 2 ) sin θ μ N cos θ = N m g 2 sin θ mu N cos theta=(N-(mg)/(2))sin theta\mu N \cos \theta = \left(N – \frac{mg}{2}\right) \sin \thetaμNcosθ=(Nmg2)sinθ
μ N cot θ = 2 N m g 2 μ N cot θ = 2 N m g 2 mu N cot theta=(2N-mg)/(2)\mu N \cot \theta = \frac{2N – mg}{2}μNcotθ=2Nmg2
2 μ N cot θ = 2 N m g = N ( m g N ) 2 μ N cot θ = 2 N m g = N m g N 2mu N cot theta=2N-mg=N-(mg-N)2 \mu N \cot \theta = 2N – mg = N – \left(mg – N\right)2μNcotθ=2Nmg=N(mgN)
2 μ N cot θ = N ( μ N cot θ ) 2 μ N cot θ = N μ N cot θ 2mu N cot theta=N-((mu N)/(cot theta))2 \mu N \cot \theta = N – \left(\frac{\mu N}{\cot \theta}\right)2μNcotθ=N(μNcotθ)
2 μ cot θ = 1 μ cot θ 2 μ cot θ = 1 μ cot θ 2mu cot theta=1-(mu)/(cot theta)2 \mu \cot \theta = 1 – \frac{\mu}{\cot \theta}2μcotθ=1μcotθ
μ ( 2 cot θ + 1 cot θ ) = 1 μ 2 cot θ + 1 cot θ = 1 mu(2cot theta+(1)/(cot theta))=1\mu \left(2 \cot \theta + \frac{1}{\cot \theta}\right) = 1μ(2cotθ+1cotθ)=1
μ ( 2 + cot 2 θ ) cot θ = 1 μ 2 + cot 2 θ cot θ = 1 mu((2+cot^(2)theta))/(cot theta)=1\mu \frac{\left(2 + \cot ^2 \theta\right)}{\cot \theta} = 1μ(2+cot2θ)cotθ=1
μ = cot 2 θ 2 + cot 2 θ μ = cot 2 θ 2 + cot 2 θ mu=(cot^(2)theta)/(2+cot^(2)theta)\mu = \frac{\cot ^2 \theta}{2 + \cot ^2 \theta}μ=cot2θ2+cot2θ
So, the coefficient of friction is cot θ 2 + cot 2 θ cot θ 2 + cot 2 θ (cot theta)/(2+cot^(2)theta)\frac{\cot \theta}{2 + \cot ^2 \theta}cotθ2+cot2θ.
(d) एक कण का पृथ्वी द्वारा आकर्षण बल उस कण के पृथ्वी के केन्द्र से दूरी के वर्ग के व्युत्क्रमानुपाती है। एक कण, जिसका भार पृथ्वी की सतह पर W W WWW है, सतह से 3 h 3 h 3h3 h3h ऊँचाई से पृथ्वी की सतह पर गिरता है। दर्शाइए कि पृथ्वी के आकर्षण बल द्वारा किए गए कार्य का परिमाण 3 4 h W 3 4 h W (3)/(4)hW\frac{3}{4} h W34hW है, जहाँ h h hhh पृथ्वी की त्रिज्या है।
The force of attraction of a particle by the earth is inversely proportional to the square of its distance from the earth’s centre. A particle, whose weight on the surface of the earth is W W WWW, falls to the surface of the earth from a height 3 h 3 h 3h3 h3h above it. Show that the magnitude of work done by the earth’s attraction force is 3 4 h W 3 4 h W (3)/(4)hW\frac{3}{4} h W34hW, where h h hhh is the radius of the earth.
Answer:
Given that the force of attraction of a particle by the earth is inversely proportional to the square of its distance from the earth’s center, we can express it as:
F 1 distance 2 F 1 distance 2 F prop(1)/(“distance”^(2))F \propto \frac{1}{\text{distance}^2}F1distance2
The weight of a particle on the surface of the earth is denoted as W W WWW, and the radius of the earth is h h hhh. The distance between the earth’s surface and the particle is 3 h 3 h 3h3h3h.
The difference in distance between the two positions (initial and final) of the particle is 3 h h = 2 h 3 h h = 2 h 3h-h=2h3h – h = 2h3hh=2h. According to Newton’s law of universal gravitation:
F = G m 1 m 2 d 2 F = G m 1 m 2 d 2 F=(Gm_(1)m_(2))/(d^(2))F = \frac{G m_1 m_2}{d^2}F=Gm1m2d2
where F F FFF is the force of attraction, G G GGG is the gravitational constant, m 1 m 1 m_(1)m_1m1 and m 2 m 2 m_(2)m_2m2 are the masses of the two objects, and d d ddd is the distance between their centers.
In this case, we have:
F = W ( 2 h ) 2 = W 4 h 2 F = W ( 2 h ) 2 = W 4 h 2 F=(W)/((2h)^(2))=(W)/(4h^(2))F = \frac{W}{(2h)^2} = \frac{W}{4h^2}F=W(2h)2=W4h2
Because the force is inversely proportional to d 2 d 2 d^(2)d^2d2, doubling the distance between two masses reduces the gravitational force to 1 4 1 4 (1)/(4)\frac{1}{4}14 of its original value.
Now, let’s calculate the work done:
Work done = F d = F = W 4 h 2 3 h h = 3 W h 4 Work done = F d = F = W 4 h 2 3 h h = 3 W h 4 “Work done”=F*d=int F=(W)/(4h^(2))*3h*h=(3Wh)/(4)\text{Work done} = F \cdot d = \int F = \frac{W}{4h^2} \cdot 3h \cdot h = \frac{3Wh}{4}Work done=Fd=F=W4h23hh=3Wh4
Therefore, the magnitude of the work done by the earth’s attraction force is 3 4 h W 3 4 h W (3)/(4)hW\frac{3}{4}hW34hW.
(e) वक्र x = t , y = t 2 , z = t 3 x = t , y = t 2 , z = t 3 x=t,y=t^(2),z=t^(3)x=t, y=t^2, z=t^3x=t,y=t2,z=t3 के बिंदु ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) पर स्पर्श-रेखा की दिशा में फलन x y 2 + y z 2 + z x 2 x y 2 + y z 2 + z x 2 xy^(2)+yz^(2)+zx^(2)x y^2+y z^2+z x^2xy2+yz2+zx2 का दिशात्मक अवकलज ज्ञात कीजिए।
Find the directional derivative of the function x y 2 + y z 2 + z x 2 x y 2 + y z 2 + z x 2 xy^(2)+yz^(2)+zx^(2)x y^2+y z^2+z x^2xy2+yz2+zx2 along the tangent to the curve x = t , y = t 2 , z = t 3 x = t , y = t 2 , z = t 3 x=t,y=t^(2),z=t^(3)x=t, y=t^2, z=t^3x=t,y=t2,z=t3 at the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1).
Answer:
Let’s start by finding the gradient of the function f ( x , y , z ) = x y 2 + y z 2 + z x 2 f ( x , y , z ) = x y 2 + y z 2 + z x 2 f(x,y,z)=xy^(2)+yz^(2)+zx^(2)f(x, y, z) = xy^2 + yz^2 + zx^2f(x,y,z)=xy2+yz2+zx2:
f = ( i x + j y + k z ) f = i f x + j f y + k f z = i ( y 2 + 2 x z ) + j ( 2 x y + z 2 ) + k ( 2 y z + x 2 ) f = i x + j y + k z f = i f x + j f y + k f z = i y 2 + 2 x z + j 2 x y + z 2 + k 2 y z + x 2 {:[grad f=(i(del)/(del x)+j(del)/(del y)+k(del)/(del z))f=i(del f)/(del x)+j(del f)/(del y)+k(del f)/(del z)],[=i(y^(2)+2xz)+j(2xy+z^(2))+k(2yz+x^(2))]:}\begin{aligned} &\nabla f = \left(i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}\right) f = i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} + k \frac{\partial f}{\partial z} \\ &= i \left(y^2 + 2xz\right) + j \left(2xy + z^2\right) + k \left(2yz + x^2\right) \end{aligned}f=(ix+jy+kz)f=ifx+jfy+kfz=i(y2+2xz)+j(2xy+z2)+k(2yz+x2)
Now, we need to find the gradient of f f fff at the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1):
f ( 1 , 1 , 1 ) = 3 i + 3 j + 3 k f ( 1 , 1 , 1 ) = 3 i + 3 j + 3 k gradf_((1,1,1))=3i+3j+3k\nabla f_{(1,1,1)} = 3i + 3j + 3kf(1,1,1)=3i+3j+3k
The parametric equation for the curve is given as r ( t ) = ( t , t 2 , t 3 ) r ( t ) = ( t , t 2 , t 3 ) vec(r)(t)=(t,t^(2),t^(3))\vec{r}(t) = (t, t^2, t^3)r(t)=(t,t2,t3), and we want to find the directional derivative along the tangent to this curve at the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1).
First, we find the tangent vector to the curve:
d r d t = i + 2 t j + 3 t 2 k d r d t = i + 2 t j + 3 t 2 k (d( vec(r)))/(dt)=i+2tj+3t^(2)k\frac{d\vec{r}}{dt} = i + 2tj + 3t^2kdrdt=i+2tj+3t2k
Now, we normalize this tangent vector to obtain the unit vector n ^ n ^ hat(n)\hat{n}n^:
n ^ = i + 2 j + 3 k 1 2 + 2 2 + 3 2 = i + 2 j + 3 k 14 n ^ = i + 2 j + 3 k 1 2 + 2 2 + 3 2 = i + 2 j + 3 k 14 hat(n)=(i+2j+3k)/(sqrt(1^(2)+2^(2)+3^(2)))=(i+2j+3k)/(sqrt14)\hat{n} = \frac{i + 2j + 3k}{\sqrt{1^2 + 2^2 + 3^2}} = \frac{i + 2j + 3k}{\sqrt{14}}n^=i+2j+3k12+22+32=i+2j+3k14
The directional derivative is given by the dot product of the gradient of f f fff at the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) and the unit tangent vector n ^ n ^ hat(n)\hat{n}n^:
f ( 1 , 1 , 1 ) n ^ = 3 i + 3 j + 3 k 14 ( i + 2 j + 3 k ) = 3 1 + 3 2 + 3 3 14 = 18 14 = 18 14 14 = 9 7 14 f ( 1 , 1 , 1 ) n ^ = 3 i + 3 j + 3 k 14 ( i + 2 j + 3 k ) = 3 1 + 3 2 + 3 3 14 = 18 14 = 18 14 14 = 9 7 14 gradf_((1,1,1))* hat(n)=(3i+3j+3k)/(sqrt14)*(i+2j+3k)=(3*1+3*2+3*3)/(sqrt14)=(18)/(sqrt14)=18*(sqrt14)/(14)=(9)/(7)sqrt14\nabla f_{(1,1,1)} \cdot \hat{n} = \frac{3i + 3j + 3k}{\sqrt{14}} \cdot (i + 2j + 3k) = \frac{3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3}{\sqrt{14}} = \frac{18}{\sqrt{14}} = 18 \cdot \frac{\sqrt{14}}{14} = \frac{9}{7} \sqrt{14}f(1,1,1)n^=3i+3j+3k14(i+2j+3k)=31+32+3314=1814=181414=9714
So, the magnitude of the directional derivative of the function along the tangent to the curve at the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) is 9 7 14 9 7 14 (9)/(7)sqrt14\frac{9}{7} \sqrt{14}9714.
6(a) एक पिण्ड एक शंकु और उसके नीचे अर्धगोले से बना है। शंकु के आधार तथा अर्धगोले के शिखर का अर्धव्यास a a aaa है। पूरा पिण्ड एक रूक्ष क्षैतिज मेज पर रखा है, जिसका अर्धगोला मेज को स्पर्श करता है। दर्शाइए कि शंकु की अधिकतम ऊँचाई, जिससे कि साम्यावस्था स्थिर बनी रहे, 3 a 3 a sqrt3a\sqrt{3} a3a है।
A body consists of a cone and underlying hemisphere. The base of the cone and the top of the hemisphere have same radius a a aaa. The whole body rests on a rough horizontal table with hemisphere in contact with the table. Show that the greatest height of the cone, so that the equilibrium may be stable, is 3 a 3 a sqrt3a\sqrt{3} a3a.
Answer:
In the given scenario, let’s denote the common base of the hemisphere and the cone as AB AB AB\mathrm{AB}AB, and their common axis as COD COD COD\mathrm{COD}COD, which must be vertical for equilibrium. The hemisphere touches the table at point C C C\mathrm{C}C.
original image
Let H H H\mathrm{H}H be the height of OD OD OD\mathrm{OD}OD of the cone, and a a a\mathrm{a}a be the radius of OA OA OA\mathrm{OA}OA or OC OC OC\mathrm{OC}OC or OB OB OB\mathrm{OB}OB of the hemisphere and the cone, respectively.
Let G 1 G 1 G_(1)G_1G1 and G 2 G 2 G_(2)G_2G2 be the centers of gravity of the hemisphere and the cone, respectively. Then, O G 1 = 3 a 8 O G 1 = 3 a 8 OG_(1)=(3a)/(8)O G_1 = \frac{3a}{8}OG1=3a8 and O G 2 = H 4 O G 2 = H 4 OG_(2)=(H)/(4)O G_2 = \frac{H}{4}OG2=H4.
To find the height h h hhh of the center of gravity of the combined body (hemisphere and cone) above the point of contact C C C\mathrm{C}C, we can use the formula:
h = 1 3 π a 2 H C G 2 + 2 3 π a 2 C G 1 1 3 π a 2 H + 2 3 π a 3 h = 1 3 π a 2 H C G 2 + 2 3 π a 2 C G 1 1 3 π a 2 H + 2 3 π a 3 h=((1)/(3)pia^(2)HCG_(2)+(2)/(3)pia^(2)CG_(1))/((1)/(3)pia^(2)H+(2)/(3)pia^(3))h = \frac{\frac{1}{3} \pi a^2 H C G_2 + \frac{2}{3} \pi a^2 C G_1}{\frac{1}{3} \pi a^2 H + \frac{2}{3} \pi a^3}h=13πa2HCG2+23πa2CG113πa2H+23πa3
Simplifying:
h = H ( a + 1 4 H ) + 5 4 a 2 H + 2 a h = H a + 1 4 H + 5 4 a 2 H + 2 a h=(H(a+(1)/(4)H)+(5)/(4)a^(2))/(H+2a)h = \frac{H\left(a + \frac{1}{4}H\right) + \frac{5}{4}a^2}{H + 2a}h=H(a+14H)+54a2H+2a
Now, for stable equilibrium, the condition is:
1 h > 1 ρ 1 + 1 ρ 2 1 h > 1 ρ 1 + 1 ρ 2 (1)/(h) > (1)/(rho_(1))+(1)/(rho_(2))\frac{1}{h} > \frac{1}{\rho_1} + \frac{1}{\rho_2}1h>1ρ1+1ρ2
Where:
  • ρ 1 ρ 1 rho_(1)\rho_1ρ1 is the radius of curvature at the point of contact C C C\mathrm{C}C of the upper body, which is spherical, so ρ 1 = a ρ 1 = a rho_(1)=a\rho_1 = aρ1=a.
  • ρ 2 ρ 2 rho_(2)\rho_2ρ2 is the radius of curvature of the lower body at the point of contact, which is essentially flat, so ρ 2 = ρ 2 = rho_(2)=oo\rho_2 = \inftyρ2=.
Therefore, the equilibrium is stable if:
1 h > 1 a + 1 1 h > 1 a h < a 1 h > 1 a + 1 1 h > 1 a h < a (1)/(h) > (1)/(a)+(1)/(oo)=>(1)/(h) > (1)/(a)=>h < a\frac{1}{h} > \frac{1}{a} + \frac{1}{\infty} \Rightarrow \frac{1}{h} > \frac{1}{a} \Rightarrow h < a1h>1a+11h>1ah<a
Substituting the expression for h h hhh from above:
H ( a + 1 4 H ) + 5 4 a 2 H + 2 a < a H a + 1 4 H + 5 4 a 2 H + 2 a < a (H(a+(1)/(4)H)+(5)/(4)a^(2))/(H+2a) < a\frac{H\left(a + \frac{1}{4}H\right) + \frac{5}{4}a^2}{H + 2a} < aH(a+14H)+54a2H+2a<a
Simplifying further:
H a + 1 4 H 2 + 5 4 H 2 < H a + 2 a 2 H a + 1 4 H 2 + 5 4 H 2 < H a + 2 a 2 Ha+(1)/(4)H^(2)+(5)/(4)H^(2) < Ha+2a^(2)Ha + \frac{1}{4}H^2 + \frac{5}{4}H^2 < Ha + 2a^2Ha+14H2+54H2<Ha+2a2
This simplifies to:
1 4 H 2 < 3 4 a 2 H 2 < 3 a 2 H < a 3 = 3 a 1 4 H 2 < 3 4 a 2 H 2 < 3 a 2 H < a 3 = 3 a (1)/(4)H^(2) < (3)/(4)a^(2)=>H^(2) < 3a^(2)=>H < asqrt3=sqrt3a\frac{1}{4}H^2 < \frac{3}{4}a^2 \Rightarrow H^2 < 3a^2 \Rightarrow H < a\sqrt{3} = \sqrt{3}a14H2<34a2H2<3a2H<a3=3a
Therefore, the greatest height of the cone consistent with stable equilibrium of the body is 3 a 3 a sqrt3a\sqrt{3}a3a.
(b) वक्र C C CCC के चारों तरफ F F vec(F)\vec{F}F का परिसंचरण ज्ञात कीजिए, जहाँ F = ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ F = 2 x + y 2 i ^ + ( 3 y 4 x ) j ^ vec(F)=(2x+y^(2)) hat(i)+(3y-4x) hat(j)\vec{F}=\left(2 x+y^2\right) \hat{i}+(3 y-4 x) \hat{j}F=(2x+y2)i^+(3y4x)j^ और C C CCC, बिंदु ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) से बिंदु ( 1 , 1 ) ( 1 , 1 ) (1,1)(1,1)(1,1) तक वक्र y = x 2 y = x 2 y=x^(2)y=x^2y=x2 के द्वारा तथा बिंदु ( 1 , 1 ) ( 1 , 1 ) (1,1)(1,1)(1,1) से बिंदु ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) तक वक्र y 2 = x y 2 = x y^(2)=xy^2=xy2=x के द्वारा परिभाषित है।
Find the circulation of F F vec(F)\vec{F}F round the curve C C CCC, where F = ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ F = 2 x + y 2 i ^ + ( 3 y 4 x ) j ^ vec(F)=(2x+y^(2)) hat(i)+(3y-4x) hat(j)\vec{F}=\left(2 x+y^2\right) \hat{i}+(3 y-4 x) \hat{j}F=(2x+y2)i^+(3y4x)j^ and C C CCC is the curve y = x 2 y = x 2 y=x^(2)y=x^2y=x2 from ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) to ( 1 , 1 ) ( 1 , 1 ) (1,1)(1,1)(1,1) and the curve y 2 = x y 2 = x y^(2)=xy^2=xy2=x from ( 1 , 1 ) ( 1 , 1 ) (1,1)(1,1)(1,1) to ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0).
Answer:
Introduction:
We need to find the circulation of the vector field F = ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ F = ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ vec(F)=(2x+y^(2)) hat(i)+(3y-4x) hat(j)\vec{F} = (2x + y^2)\hat{i} + (3y – 4x)\hat{j}F=(2x+y2)i^+(3y4x)j^ around the closed curve C C CCC. This curve C C CCC consists of two parts: the arc O A P O A P OAPOAPOAP and the arc P B O P B O PBOPBOPBO. We’ll denote the first part as C 1 C 1 C_(1)C_1C1 and the second part as C 2 C 2 C_(2)C_2C2. C 1 C 1 C_(1)C_1C1 is described by y = x 2 y = x 2 y=x^(2)y = x^2y=x2, and C 2 C 2 C_(2)C_2C2 is described by x = y 2 x = y 2 x=y^(2)x = y^2x=y2. We’ll calculate the circulation along both parts and then sum them up to get the circulation around the entire curve C C CCC.
original image
Work/Calculations:
Along C 1 C 1 C_(1)C_1C1, we have y = x 2 y = x 2 y=x^(2)y = x^2y=x2, which implies d y = 2 x d x d y = 2 x d x dy=2xdxdy = 2x dxdy=2xdx, and x x xxx varies from 0 to 1. Along C 2 C 2 C_(2)C_2C2, we have x = y 2 x = y 2 x=y^(2)x = y^2x=y2, which implies d x = 2 y d y d x = 2 y d y dx=2ydydx = 2y dydx=2ydy, and y y yyy varies from 1 to 0.
Now, let’s calculate F d r F d r F*dr\mathbf{F} \cdot d \mathbf{r}Fdr:
F d r = [ ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ ] ( i ^ d x + j ^ d y ) = ( 2 x + y 2 ) d x + ( 3 y 4 x ) d y . F d r = ( 2 x + y 2 ) i ^ + ( 3 y 4 x ) j ^ ( i ^ d x + j ^ d y ) = ( 2 x + y 2 ) d x + ( 3 y 4 x ) d y . {:[F*dr=[(2x+y^(2))( hat(i))+(3y-4x)( hat(j))]*( hat(i)dx+ hat(j)dy)],[=(2x+y^(2))dx+(3y-4x)dy.]:}\begin{aligned} \mathbf{F} \cdot d \mathbf{r} &= \left[(2x + y^2)\hat{i} + (3y – 4x)\hat{j}\right] \cdot (\hat{i} dx + \hat{j} dy) \\ &= (2x + y^2) dx + (3y – 4x) dy. \end{aligned}Fdr=[(2x+y2)i^+(3y4x)j^](i^dx+j^dy)=(2x+y2)dx+(3y4x)dy.
Now, we’ll calculate the circulation of F F F\mathbf{F}F around C C CCC by summing up the circulations along C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2:
Circulation of F around C = C F d r = C 1 F d r + C 2 F d r . Circulation of F around C = C F d r = C 1 F d r + C 2 F d r . {:[“Circulation of “F” around “C=oint_(C)F*dr],[=int_(C_(1))F*dr+int_(C_(2))F*dr.]:}\begin{aligned} \text{Circulation of }\mathbf{F} \text{ around } C &= \oint_C \mathbf{F} \cdot d \mathbf{r} \\ &= \int_{C_1} \mathbf{F} \cdot d \mathbf{r} + \int_{C_2} \mathbf{F} \cdot d \mathbf{r}. \end{aligned}Circulation of F around C=CFdr=C1Fdr+C2Fdr.
= C F d r = C 1 F d r + C 2 F d r = C 1 [ ( 2 x + y 2 ) d x + ( 3 y 4 x ) d y ] + C 2 [ ( 2 x + y 2 ) d x + ( 3 y 4 x ) d y ] = x = 0 1 [ ( 2 x + x 4 ) d x + ( 3 x 2 4 x ) 2 x d x ] + y = 1 0 [ ( 2 y 2 + y 2 ) 2 y d y + ( 3 y 4 y 2 ) d y ] = 0 1 ( 2 x 8 x 2 + 6 x 3 + x 4 ) d x + 1 0 ( 3 y 4 y 2 + 6 y 3 ) d y = [ x 2 8 3 x 3 + 3 2 x 4 + 1 5 x 5 ] 0 1 + [ 3 2 y 2 4 3 y 3 + 3 2 y 4 ] 1 0 = 1 8 3 + 3 2 + 1 5 3 2 + 4 3 3 2 = 1 4 3 + 1 5 3 2 = 30 40 + 6 45 30 = 49 30 . = C F d r = C 1 F d r + C 2 F d r = C 1 2 x + y 2 d x + ( 3 y 4 x ) d y + C 2 2 x + y 2 d x + ( 3 y 4 x ) d y = x = 0 1 2 x + x 4 d x + 3 x 2 4 x 2 x d x + y = 1 0 2 y 2 + y 2 2 y d y + 3 y 4 y 2 d y = 0 1 2 x 8 x 2 + 6 x 3 + x 4 d x + 1 0 3 y 4 y 2 + 6 y 3 d y = x 2 8 3 x 3 + 3 2 x 4 + 1 5 x 5 0 1 + 3 2 y 2 4 3 y 3 + 3 2 y 4 1 0 = 1 8 3 + 3 2 + 1 5 3 2 + 4 3 3 2 = 1 4 3 + 1 5 3 2 = 30 40 + 6 45 30 = 49 30 . {:[=oint_(C)F*dr=int_(C_(1))F*dr+int_(C_(2))F*dr],[=int_(C_(1))[(2x+y^(2))dx+(3y-4x)dy]+int_(C_(2))[(2x+y^(2))dx+(3y-4x)dy]],[=int_(x=0)^(1)[(2x+x^(4))dx+(3x^(2)-4x)2xdx]],[quadquad+int_(y=1)^(0)[(2y^(2)+y^(2))2ydy+(3y-4y^(2))dy]],[=int_(0)^(1)(2x-8x^(2)+6x^(3)+x^(4))dx+int_(1)^(0)(3y-4y^(2)+6y^(3))dy],[=[x^(2)-(8)/(3)x^(3)+(3)/(2)x^(4)+(1)/(5)x^(5)]_(0)^(1)+[(3)/(2)y^(2)-(4)/(3)y^(3)+(3)/(2)y^(4)]_(1)^(0)],[=1-(8)/(3)+(3)/(2)+(1)/(5)-(3)/(2)+(4)/(3)-(3)/(2)],[=1-(4)/(3)+(1)/(5)-(3)/(2)=(30-40+6-45)/(30)=-(49)/(30).]:}\begin{aligned} & =\oint_C \mathbf{F} \cdot d \mathbf{r}=\int_{C_1} \mathbf{F} \cdot d \mathbf{r}+\int_{C_2} \mathbf{F} \cdot d \mathbf{r} \\ & =\int_{C_1}\left[\left(2 x+y^2\right) d x+(3 y-4 x) d y\right]+\int_{C_2}\left[\left(2 x+y^2\right) d x+(3 y-4 x) d y\right] \\ & =\int_{x=0}^1\left[\left(2 x+x^4\right) d x+\left(3 x^2-4 x\right) 2 x d x\right] \\ & \quad \quad+\int_{y=1}^0\left[\left(2 y^2+y^2\right) 2 y d y+\left(3 y-4 y^2\right) d y\right] \\ & =\int_0^1\left(2 x-8 x^2+6 x^3+x^4\right) d x+\int_1^0\left(3 y-4 y^2+6 y^3\right) d y \\ & =\left[x^2-\frac{8}{3} x^3+\frac{3}{2} x^4+\frac{1}{5} x^5\right]_0^1+\left[\frac{3}{2} y^2-\frac{4}{3} y^3+\frac{3}{2} y^4\right]_1^0 \\ & =1-\frac{8}{3}+\frac{3}{2}+\frac{1}{5}-\frac{3}{2}+\frac{4}{3}-\frac{3}{2} \\ & =1-\frac{4}{3}+\frac{1}{5}-\frac{3}{2}=\frac{30-40+6-45}{30}=-\frac{49}{30} . \end{aligned}=CFdr=C1Fdr+C2Fdr=C1[(2x+y2)dx+(3y4x)dy]+C2[(2x+y2)dx+(3y4x)dy]=x=01[(2x+x4)dx+(3x24x)2xdx]+y=10[(2y2+y2)2ydy+(3y4y2)dy]=01(2x8x2+6x3+x4)dx+10(3y4y2+6y3)dy=[x283x3+32x4+15x5]01+[32y243y3+32y4]10=183+32+1532+4332=143+1532=3040+64530=4930.
Conclusion:
The circulation of F F vec(F)\vec{F}F around the closed curve C C CCC is 49 30 49 30 -(49)/(30)-\frac{49}{30}4930.
(c) (i) अवकल समीकरण
d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x (d^(2)y)/(dx^(2))+(3sin x-cot x)(dy)/(dx)+2ysin^(2)x=e^(-cos x)sin^(2)x\frac{d^2 y}{d x^2}+(3 \sin x-\cot x) \frac{d y}{d x}+2 y \sin ^2 x=e^{-\cos x} \sin ^2 xd2ydx2+(3sinxcotx)dydx+2ysin2x=ecosxsin2x
को हल कीजिए।
(ii) t 1 / 2 t 1 / 2 t^(-1//2)t^{-1 / 2}t1/2 तथा t 1 / 2 t 1 / 2 t^(1//2)t^{1 / 2}t1/2 का लाप्लास रूपांतर ज्ञात कीजिए। सिद्ध कीजिए कि t n + 1 2 t n + 1 2 t^(n+(1)/(2))t^{n+\frac{1}{2}}tn+12 का लाप्लास रूपांतर
Γ ( n + 1 + 1 2 ) s n + 1 + 1 2 Γ n + 1 + 1 2 s n + 1 + 1 2 (Gamma(n+1+(1)/(2)))/(s^(n+1+(1)/(2)))\frac{\Gamma\left(n+1+\frac{1}{2}\right)}{s^{n+1+\frac{1}{2}}}Γ(n+1+12)sn+1+12
होता है, जहाँ n N n N n inNn \in \mathbf{N}nN.
(i) Solve the differential equation
d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x (d^(2)y)/(dx^(2))+(3sin x-cot x)(dy)/(dx)+2ysin^(2)x=e^(-cos x)sin^(2)x\frac{d^2 y}{d x^2}+(3 \sin x-\cot x) \frac{d y}{d x}+2 y \sin ^2 x=e^{-\cos x} \sin ^2 xd2ydx2+(3sinxcotx)dydx+2ysin2x=ecosxsin2x
Answer:
Step 1: Variable Transformation
We begin by choosing a new variable, z z zzz, such that z = cos x z = cos x z=-cos xz= -\cos xz=cosx. This leads to:
d z d x = sin x d z d x = sin x (dz)/(dx)=sin x\frac{d z}{d x} = \sin xdzdx=sinx
and
d 2 z d x 2 = cos x . d 2 z d x 2 = cos x . (d^(2)z)/(dx^(2))=cos x.\frac{d^2 z}{d x^2} = \cos x.d2zdx2=cosx.
Step 2: Rewrite the Equation
Now, we rewrite the given differential equation using the new variable z z zzz:
d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x d 2 y d x 2 + ( 3 sin x cot x ) d y d x + 2 y sin 2 x = e cos x sin 2 x (d^(2)y)/(dx^(2))+(3sin x-cot x)(dy)/(dx)+2ysin^(2)x=e^(-cos x)sin^(2)x\frac{d^2 y}{d x^2} + (3 \sin x – \cot x) \frac{d y}{d x} + 2 y \sin^2 x = e^{-\cos x} \sin^2 xd2ydx2+(3sinxcotx)dydx+2ysin2x=ecosxsin2x
becomes
d 2 y d x 2 + P 1 d y d x + Q 1 y = R 1 , d 2 y d x 2 + P 1 d y d x + Q 1 y = R 1 , (d^(2)y)/(dx^(2))+P_(1)(dy)/(dx)+Q_(1)y=R_(1),\frac{d^2 y}{d x^2} + P_1 \frac{d y}{d x} + Q_1 y = R_1,d2ydx2+P1dydx+Q1y=R1,
where
P 1 = d 2 z d x 2 + P d z d x = cos x + ( 3 sin x cos x ) sin x sin 2 x = 3 , P 1 = d 2 z d x 2 + P d z d x = cos x + ( 3 sin x cos x ) sin x sin 2 x = 3 , P_(1)=(d^(2)z)/(dx^(2))+P(dz)/(dx)=(cos x+(3sin x-cos x)sin x)/(sin^(2)x)=3,P_1 = \frac{d^2 z}{d x^2} + P \frac{d z}{d x} = \frac{\cos x + (3 \sin x – \cos x) \sin x}{\sin^2 x} = 3,P1=d2zdx2+Pdzdx=cosx+(3sinxcosx)sinxsin2x=3,
Q 1 = Q ( d z d x ) 2 = 2 sin 2 x sin 2 x = 2 , Q 1 = Q d z d x 2 = 2 sin 2 x sin 2 x = 2 , Q_(1)=(Q)/(((dz)/(dx))^(2))=(2sin^(2)x)/(sin^(2)x)=2,Q_1 = \frac{Q}{\left(\frac{d z}{d x}\right)^2} = \frac{2 \sin^2 x}{\sin^2 x} = 2,Q1=Q(dzdx)2=2sin2xsin2x=2,
and
R 1 = R ( d z d x ) 2 = e cos x = e z . R 1 = R d z d x 2 = e cos x = e z . R_(1)=(R)/(((dz)/(dx))^(2))=e^(-cos x)=e^(z).R_1 = \frac{R}{\left(\frac{d z}{d x}\right)^2} = e^{-\cos x} = e^z.R1=R(dzdx)2=ecosx=ez.
Step 3: Homogeneous Differential Equation
Now, we have a linear homogeneous differential equation:
d 2 y d x 2 + 3 d y d x + 2 y = e z . d 2 y d x 2 + 3 d y d x + 2 y = e z . (d^(2)y)/(dx^(2))+3(dy)/(dx)+2y=e^(z).\frac{d^2 y}{d x^2} + 3 \frac{d y}{d x} + 2 y = e^z.d2ydx2+3dydx+2y=ez.
Step 4: Auxiliary Equation
To solve this, we find the auxiliary equation:
m 2 + 3 m + 2 = 0 ( m + 1 ) ( m + 2 ) = 0 , m 2 + 3 m + 2 = 0 ( m + 1 ) ( m + 2 ) = 0 , m^(2)+3m+2=0=>(m+1)(m+2)=0,m^2 + 3m + 2 = 0 \Rightarrow (m + 1)(m + 2) = 0,m2+3m+2=0(m+1)(m+2)=0,
which gives us two roots: m = 1 m = 1 m=-1m = -1m=1 and m = 2 m = 2 m=-2m = -2m=2.
Step 5: General Solution of Homogeneous Equation
The general solution of the homogeneous equation is:
y h = c 1 e z + c 2 e 2 z . y h = c 1 e z + c 2 e 2 z . y_(h)=c_(1)e^(-z)+c_(2)e^(-2z).y_h = c_1 e^{-z} + c_2 e^{-2z}.yh=c1ez+c2e2z.
Step 6: Particular Solution (P.I)
P . I = e z ( D + 1 ) ( D + 2 ) = e z 6 y = c 1 e z + c 2 e 2 z + e z 6 y = c 1 e cos x + c 2 e 2 cos x + e cos x 6 P . I = e z ( D + 1 ) ( D + 2 ) = e z 6 y = c 1 e z + c 2 e 2 z + e z 6 y = c 1 e cos x + c 2 e 2 cos x + e cos x 6 {:[P.I=(e^(z))/((D+1)(D+2))=(e^(z))/(6)],[y=c_(1)e^(-z)+c_(2)e^(-2z)+(e^(z))/(6)],[y=c_(1)e^(cos x)+c_(2)e^(2cos x)+(e^(-cos x))/(6)]:}\begin{aligned} & P . I=\frac{e^z}{(D+1)(D+2)}=\frac{e^z}{6} \\ & y=c_1 e^{-z}+c_2 e^{-2 z}+\frac{e^z}{6} \\ & y=c_1 e^{\cos x}+c_2 e^{2 \cos x}+\frac{e^{-\cos x}}{6} \end{aligned}P.I=ez(D+1)(D+2)=ez6y=c1ez+c2e2z+ez6y=c1ecosx+c2e2cosx+ecosx6
Conclusion:
The general solution to the given differential equation is:
y = c 1 e cos x + c 2 e 2 cos x + e cos x 6 . y = c 1 e cos x + c 2 e 2 cos x + e cos x 6 . y=c_(1)e^(cos x)+c_(2)e^(2cos x)+(e^(-cos x))/(6).y = c_1 e^{\cos x} + c_2 e^{2\cos x} + \frac{e^{-\cos x}}{6}.y=c1ecosx+c2e2cosx+ecosx6.
(ii) Find the Laplace transforms of t 1 / 2 t 1 / 2 t^(-1//2)t^{-1 / 2}t1/2 and t 1 / 2 t 1 / 2 t^(1//2)t^{1 / 2}t1/2. Prove that the Laplace transform of t n + 1 2 t n + 1 2 t^(n+(1)/(2))t^{n+\frac{1}{2}}tn+12, where n N n N n inNn \in \mathbb{N}nN, is
Γ ( n + 1 + 1 2 ) s n + 1 + 1 2 Γ n + 1 + 1 2 s n + 1 + 1 2 (Gamma(n+1+(1)/(2)))/(s^(n+1+(1)/(2)))\frac{\Gamma\left(n+1+\frac{1}{2}\right)}{s^{n+1+\frac{1}{2}}}Γ(n+1+12)sn+1+12
Answer:
Laplace Transform of t 1 / 2 t 1 / 2 t^(-1//2)t^{-1/2}t1/2:
We start by finding the Laplace transform of t 1 / 2 t 1 / 2 t^(-1//2)t^{-1/2}t1/2:
L { t 1 / 2 } = 0 e s t t 1 / 2 d t . L t 1 / 2 = 0 e s t t 1 / 2 d t . {:L{t^(-1//2)}=int_(0)^(oo)e^(-st)t^(-1//2)dt.:}\begin{aligned} L\left\{t^{-1/2}\right\} &= \int_0^\infty e^{-st} t^{-1/2} dt. \end{aligned}L{t1/2}=0estt1/2dt.
To evaluate this integral, we use a substitution: s t = u d t = d u s s t = u d t = d u s st=u=>dt=(du)/(s)st = u \Rightarrow dt = \frac{du}{s}st=udt=dus and t = u s t = u s t=(u)/(s)t = \frac{u}{s}t=us. Substituting:
L { t 1 / 2 } = 0 e u ( u s ) 1 / 2 d u s = 1 s 1 / 2 0 e u u 1 / 2 d u . L t 1 / 2 = 0 e u u s 1 / 2 d u s = 1 s 1 / 2 0 e u u 1 / 2 d u . {:[L{t^(-1//2)}=int_(0)^(oo)e^(-u)((u)/(s))^(-1//2)(du)/(s)],[=(1)/(s^(1//2))int_(0)^(oo)e^(-u)u^(-1//2)du.]:}\begin{aligned} L\left\{t^{-1/2}\right\} &= \int_0^\infty e^{-u}\left(\frac{u}{s}\right)^{-1/2} \frac{du}{s} \\ &= \frac{1}{s^{1/2}} \int_0^\infty e^{-u} u^{-1/2} du. \end{aligned}L{t1/2}=0eu(us)1/2dus=1s1/20euu1/2du.
Now, we recognize that the integral on the right-hand side is a gamma function:
Γ ( 1 2 ) = π . Γ 1 2 = π . Gamma((1)/(2))=sqrtpi.\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.Γ(12)=π.
Therefore,
L { t 1 / 2 } = π s . L t 1 / 2 = π s . L{t^(-1//2)}=(sqrtpi)/(s).L\left\{t^{-1/2}\right\} = \frac{\sqrt{\pi}}{s}.L{t1/2}=πs.
Laplace Transform of t 1 / 2 t 1 / 2 t^(1//2)t^{1/2}t1/2:
Next, let’s find the Laplace transform of t 1 / 2 t 1 / 2 t^(1//2)t^{1/2}t1/2:
L { t 1 / 2 } = 0 e s t t 1 / 2 d t . L t 1 / 2 = 0 e s t t 1 / 2 d t . {:L{t^(1//2)}=int_(0)^(oo)e^(-st)t^(1//2)dt.:}\begin{aligned} L\left\{t^{1/2}\right\} &= \int_0^\infty e^{-st} t^{1/2} dt. \end{aligned}L{t1/2}=0estt1/2dt.
Using a similar substitution as before, s t = u d t = d u s s t = u d t = d u s st=u=>dt=(du)/(s)st = u \Rightarrow dt = \frac{du}{s}st=udt=dus and t = u s t = u s t=(u)/(s)t = \frac{u}{s}t=us, we get:
L { t 1 / 2 } = 1 s 3 / 2 0 e u u 1 / 2 d u . L t 1 / 2 = 1 s 3 / 2 0 e u u 1 / 2 d u . {:L{t^(1//2)}=(1)/(s^(3//2))int_(0)^(oo)e^(-u)u^(1//2)du.:}\begin{aligned} L\left\{t^{1/2}\right\} &= \frac{1}{s^{3/2}} \int_0^\infty e^{-u} u^{1/2} du. \end{aligned}L{t1/2}=1s3/20euu1/2du.
Again, this integral is related to the gamma function:
Γ ( 3 2 ) = 1 2 π . Γ 3 2 = 1 2 π . Gamma((3)/(2))=(1)/(2)sqrtpi.\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}.Γ(32)=12π.
Therefore,
L { t 1 / 2 } = π 2 s 3 / 2 . L t 1 / 2 = π 2 s 3 / 2 . L{t^(1//2)}=(sqrtpi)/(2s^(3//2)).L\left\{t^{1/2}\right\} = \frac{\sqrt{\pi}}{2s^{3/2}}.L{t1/2}=π2s3/2.
Laplace Transform of t n + 1 / 2 t n + 1 / 2 t^(n+1//2)t^{n+1/2}tn+1/2 for n N n N n inNn \in \mathbb{N}nN:
Now, let’s prove that the Laplace transform of t n + 1 / 2 t n + 1 / 2 t^(n+1//2)t^{n+1/2}tn+1/2 for n N n N n inNn \in \mathbb{N}nN is given by:
L { t n + 1 2 } = Γ ( n + 1 + 1 2 ) s n + 1 + 1 2 . L t n + 1 2 = Γ n + 1 + 1 2 s n + 1 + 1 2 . L{t^(n+(1)/(2))}=(Gamma(n+1+(1)/(2)))/(s^(n+1+(1)/(2))).L\left\{t^{n+\frac{1}{2}}\right\} = \frac{\Gamma\left(n+1+\frac{1}{2}\right)}{s^{n+1+\frac{1}{2}}}.L{tn+12}=Γ(n+1+12)sn+1+12.
We start with:
L { t n + 1 2 } = 0 e s t t n + 1 2 d t . L t n + 1 2 = 0 e s t t n + 1 2 d t . {:L{t^(n+(1)/(2))}=int_(0)^(oo)e^(-st)t^(n+(1)/(2))dt.:}\begin{aligned} L\left\{t^{n+\frac{1}{2}}\right\} &= \int_0^\infty e^{-st} t^{n+\frac{1}{2}} dt. \end{aligned}L{tn+12}=0esttn+12dt.
Using the substitution s t = u d t = d u s s t = u d t = d u s st=u=>dt=(du)/(s)st = u \Rightarrow dt = \frac{du}{s}st=udt=dus and t = u s t = u s t=(u)/(s)t = \frac{u}{s}t=us, we have:
L { t n + 1 2 } = 1 s n + 1 2 + 1 0 e u u n + 1 2 d u . L t n + 1 2 = 1 s n + 1 2 + 1 0 e u u n + 1 2 d u . {:L{t^(n+(1)/(2))}=(1)/(s^(n+(1)/(2)+1))int_(0)^(oo)e^(-u)u^(n+(1)/(2))du.:}\begin{aligned} L\left\{t^{n+\frac{1}{2}}\right\} &= \frac{1}{s^{n+\frac{1}{2}+1}} \int_0^\infty e^{-u} u^{n+\frac{1}{2}} du. \end{aligned}L{tn+12}=1sn+12+10euun+12du.
This integral can be expressed in terms of the gamma function:
0 e u u n + 1 2 d u = Γ ( n + 1 2 + 1 ) = Γ ( n + 3 2 ) . 0 e u u n + 1 2 d u = Γ n + 1 2 + 1 = Γ n + 3 2 . {:[int_(0)^(oo)e^(-u)u^(n+(1)/(2))du=Gamma(n+(1)/(2)+1)],[=Gamma(n+(3)/(2)).]:}\begin{aligned} \int_0^\infty e^{-u} u^{n+\frac{1}{2}} du &= \Gamma\left(n+\frac{1}{2}+1\right) \\ &= \Gamma\left(n+\frac{3}{2}\right). \end{aligned}0euun+12du=Γ(n+12+1)=Γ(n+32).
Substituting this back into the Laplace transform expression:
L { t n + 1 2 } = 1 s n + 1 2 + 1 Γ ( n + 3 2 ) . L t n + 1 2 = 1 s n + 1 2 + 1 Γ n + 3 2 . {:L{t^(n+(1)/(2))}=(1)/(s^(n+(1)/(2)+1))Gamma(n+(3)/(2)).:}\begin{aligned} L\left\{t^{n+\frac{1}{2}}\right\} &= \frac{1}{s^{n+\frac{1}{2}+1}} \Gamma\left(n+\frac{3}{2}\right). \end{aligned}L{tn+12}=1sn+12+1Γ(n+32).
Now, simplify the exponent:
n + 1 2 + 1 = n + 3 2 . n + 1 2 + 1 = n + 3 2 . n+(1)/(2)+1=n+(3)/(2).n+\frac{1}{2}+1 = n+\frac{3}{2}.n+12+1=n+32.
So, the Laplace transform becomes:
L { t n + 1 2 } = Γ ( n + 3 2 ) s n + 3 2 . L t n + 1 2 = Γ n + 3 2 s n + 3 2 . {:L{t^(n+(1)/(2))}=(Gamma(n+(3)/(2)))/(s^(n+(3)/(2))).:}\begin{aligned} L\left\{t^{n+\frac{1}{2}}\right\} &= \frac{\Gamma\left(n+\frac{3}{2}\right)}{s^{n+\frac{3}{2}}}. \end{aligned}L{tn+12}=Γ(n+32)sn+32.
Now, notice that Γ ( n + 3 2 ) Γ n + 3 2 Gamma(n+(3)/(2))\Gamma\left(n+\frac{3}{2}\right)Γ(n+32) can be expressed as Γ ( n + 1 + 1 2 ) Γ n + 1 + 1 2 Gamma(n+1+(1)/(2))\Gamma\left(n+1+\frac{1}{2}\right)Γ(n+1+12), which completes the proof:
L { t n + 1 2 } = Γ ( n + 1 + 1 2 ) s n + 1 + 1 2 . L t n + 1 2 = Γ n + 1 + 1 2 s n + 1 + 1 2 . {:L{t^(n+(1)/(2))}=(Gamma(n+1+(1)/(2)))/(s^(n+1+(1)/(2))).:}\begin{aligned} L\left\{t^{n+\frac{1}{2}}\right\} &= \frac{\Gamma\left(n+1+\frac{1}{2}\right)}{s^{n+1+\frac{1}{2}}}. \end{aligned}L{tn+12}=Γ(n+1+12)sn+1+12.
This proves the desired result.
  1. (a) समीकरण x 2 y 2 x y + 2 y = x 3 sin x x 2 y 2 x y + 2 y = x 3 sin x x^(2)y^(”)-2xy^(‘)+2y=x^(3)sin xx^2 y^{\prime \prime}-2 x y^{\prime}+2 y=x^3 \sin xx2y2xy+2y=x3sinx के संगत समांगी अवकल समीकरण का रेखीय स्वतंत्र हल निकालिए और तब दिए गए समीकरण का प्राचल-विचरण विधि द्वारा सामान्य हल निकालिए।
Find the linearly independent solutions of the corresponding homogeneous differential equation of the equation x 2 y 2 x y + 2 y = x 3 sin x x 2 y 2 x y + 2 y = x 3 sin x x^(2)y^(”)-2xy^(‘)+2y=x^(3)sin xx^2 y^{\prime \prime}-2 x y^{\prime}+2 y=x^3 \sin xx2y2xy+2y=x3sinx and then find the general solution of the given equation by the method of variation of parameters.
Answer:
Homogeneous Differential Equation:
We are given the differential equation:
x 2 y 2 x y + 2 y = x 3 sin x x 2 y 2 x y + 2 y = x 3 sin x x^(2)y^(”)-2xy^(‘)+2y=x^(3)sin xx^2 y^{\prime \prime}-2 x y^{\prime}+2 y=x^3 \sin xx2y2xy+2y=x3sinx
Step 1: Rewrite the Equation:
Rewrite the given differential equation as:
x 2 d 2 y d x 2 2 x d y d x + 2 y = x 3 sin x x 2 d 2 y d x 2 2 x d y d x + 2 y = x 3 sin x x^(2)(d^(2)y)/(dx^(2))-2x(dy)/(dx)+2y=x^(3)sin xx^2 \frac{d^2 y}{d x^2}-2 x \frac{d y}{d x}+2 y=x^3 \sin xx2d2ydx22xdydx+2y=x3sinx
Step 2: Change of Variable:
Let’s make a change of variable by putting x = e z x = e z x=e^(z)x=e^zx=ez, which implies d d z D d d z D (d)/(dz)-=D\frac{d}{dz} \equiv DddzD. Then, our equation becomes:
[ D ( D 1 ) 2 D + 2 ] y = e 3 z sin ( e z ) [ D 2 D 2 D + 2 ] y = e 3 z sin ( e z ) [ D 2 3 D + 2 ] y = e 3 z sin ( e z ) [ D ( D 1 ) 2 D + 2 ] y = e 3 z sin e z D 2 D 2 D + 2 y = e 3 z sin e z D 2 3 D + 2 y = e 3 z sin e z {:[[D(D-1)-2D+2]y=e^(3z)sin(e^(z))],[[D^(2)-D-2D+2]y=e^(3z)sin(e^(z))],[[D^(2)-3D+2]y=e^(3z)sin(e^(z))]:}\begin{aligned} & {[D(D-1)-2 D+2] y=e^{3 z} \sin \left(e^z\right)} \\ & {\left[D^2-D-2 D+2\right] y=e^{3 z} \sin \left(e^z\right)} \\ & {\left[D^2-3 D+2\right] y=e^{3 z} \sin \left(e^z\right)} \end{aligned}[D(D1)2D+2]y=e3zsin(ez)[D2D2D+2]y=e3zsin(ez)[D23D+2]y=e3zsin(ez)
Step 3: Find the Auxiliary Equation:
The auxiliary equation for the homogeneous part is:
m 2 3 m + 2 = 0 m 2 3 m + 2 = 0 m^(2)-3m+2=0m^2-3 m+2=0m23m+2=0
( m 1 ) ( m 2 ) = 0 ( m 1 ) ( m 2 ) = 0 (m-1)(m-2)=0(m-1)(m-2)=0(m1)(m2)=0
This gives us two solutions: m = 1 m = 1 m=1m=1m=1 and m = 2 m = 2 m=2m=2m=2.
Step 4: Complementary Function (C.F.):
The complementary function is given by:
C F = c 1 e z + c 2 e 2 z C F = c 1 e z + c 2 e 2 z CF=c_(1)e^(z)+c_(2)e^(2z)C F=c_1 e^z + c_2 e^{2 z}CF=c1ez+c2e2z
Step 5: Calculate the Wronskian Determinant:
We calculate the Wronskian determinant as follows:
w = | e z e 2 z e z 2 e 2 z | = 2 e 3 z e 3 z = e 3 z 0 w = e z      e 2 z e z      2 e 2 z = 2 e 3 z e 3 z = e 3 z 0 w=|[e^(z),e^(2z)],[e^(z),2e^(2z)]|=2e^(3z)-e^(3z)=e^(3z)!=0w=\left|\begin{array}{ll} e^z & e^{2 z} \\ e^z & 2 e^{2 z} \end{array}\right|=2 e^{3 z}-e^{3 z}=e^{3 z} \neq 0w=|eze2zez2e2z|=2e3ze3z=e3z0
Step 6: Calculate p 1 p 1 p_(1)p_1p1 and p 2 p 2 p_(2)p_2p2:
p 1 = e 2 z e 3 z sin e z e 3 z d z = e 2 z sin e z d z = e z cos ( e z ) sin e z p 1 = e 2 z e 3 z sin e z e 3 z d z = e 2 z sin e z d z = e z cos e z sin e z p_(1)=-int(e^(2z)*e^(3z)sin e^(z))/(e^(3z))dz=-inte^(2z)*sin e^(z)dz=e^(z)cos(e^(z))-sin e^(z)p_1 = -\int \frac{e^{2 z} \cdot e^{3 z} \sin e^z}{e^{3 z}} dz = -\int e^{2 z} \cdot \sin e^z dz = e^z \cos \left(e^z\right)-\sin e^zp1=e2ze3zsineze3zdz=e2zsinezdz=ezcos(ez)sinez
p 2 = e z e 3 z sin e z e 3 z d z = e z sin e z d z = cos e z p 2 = e z e 3 z sin e z e 3 z d z = e z sin e z d z = cos e z p_(2)=int(e^(z)*e^(3z)sin e^(z))/(e^(3z))dz=inte^(z)*sin e^(z)dz=-cos e^(z)p_2 = \int \frac{e^z \cdot e^{3 z} \sin e^z}{e^{3 z}} dz = \int e^z \cdot \sin e^z dz = -\cos e^zp2=eze3zsineze3zdz=ezsinezdz=cosez
Step 7: Particular Integral (P.I.):
The particular integral is given by:
P.I. = p 1 u 1 + p 2 u 2 = [ e z cos ( e z ) sin e z ] e z cos ( e z ) e 2 z = e z sin e z P.I. = p 1 u 1 + p 2 u 2 = e z cos e z sin e z e z cos e z e 2 z = e z sin e z {:[” P.I. “=p_(1)u_(1)+p_(2)u_(2)],[=[e^(z)cos(e^(z))-sin e^(z)]e^(z)-cos(e^(z))*e^(2z)],[=-e^(z)sin e^(z)]:}\begin{aligned} \text { P.I. } & =p_1 u_1+p_2 u_2 \\ & =\left[e^z \cos \left(e^z\right)-\sin e^z\right] e^z-\cos \left(e^z\right) \cdot e^{2 z} \\ & =-e^{z} \sin e^z \end{aligned} P.I. =p1u1+p2u2=[ezcos(ez)sinez]ezcos(ez)e2z=ezsinez
Step 8: General Solution:
The general solution is the sum of the complementary function and the particular integral:
y = c 1 e z + c 2 e 2 z e z sin e z y = c 1 e z + c 2 e 2 z e z sin e z y=c_(1)e^(z)+c_(2)e^(2z)-e^(z)sin e^(z)y=c_1 e^z + c_2 e^{2z}-e^z \sin e^zy=c1ez+c2e2zezsinez
Step 9: Back to the Original Variable:
Converting back to the original variable x x xxx, the general solution is:
y = c 1 x + c 2 x 2 x sin x y = c 1 x + c 2 x 2 x sin x y=c_(1)x+c_(2)x^(2)-x sin xy=c_1 x + c_2 x^2 – x \sin xy=c1x+c2x2xsinx
Conclusion:
The linearly independent solutions of the corresponding homogeneous differential equation are y 1 = x y 1 = x y_(1)=xy_1=xy1=x and y 2 = x 2 y 2 = x 2 y_(2)=x^(2)y_2=x^2y2=x2, and the general solution of the given equation, using the method of variation of parameters, is:
y = c 1 x + c 2 x 2 x sin x y = c 1 x + c 2 x 2 x sin x y=c_(1)x+c_(2)x^(2)-x sin xy=c_1 x + c_2 x^2 – x \sin xy=c1x+c2x2xsinx
(b) कुंडलिनी x = a cos u , y = a sin u , z = a u tan α x = a cos u , y = a sin u , z = a u tan α x=a cos u,y=a sin u,z=au tan alphax=a \cos u, y=a \sin u, z=a u \tan \alphax=acosu,y=asinu,z=autanα के लिए वक्रता की त्रिज्या तथा विमोटन की त्रिज्या ज्ञात कीजिए।
Find the radius of curvature and radius of torsion of the helix x = a cos u x = a cos u x=a cos ux=a \cos ux=acosu, y = a sin u , z = a u tan α y = a sin u , z = a u tan α y=a sin u,z=au tan alphay=a \sin u, z=a u \tan \alphay=asinu,z=autanα.
Answer:
Given Helix Equations:
The parametric equations for the helix are:
x = a cos u x = a cos u x=a cos ux=a \cos ux=acosu
y = a sin u y = a sin u y=a sin uy=a \sin uy=asinu
z = a u tan α z = a u tan α z=au tan alphaz=a u \tan \alphaz=autanα
Step 1: Find the Derivatives of r r rrr:
We first find the derivatives of the position vector r = ( x , y , z ) r = ( x , y , z ) r=(x,y,z)\mathbf{r}=(x, y, z)r=(x,y,z) with respect to the parameter u u uuu:
r ˙ = d r d u = ( x ˙ , y ˙ , z ˙ ) = a ( sin u , cos u , tan α ) r ˙ = d r d u = ( x ˙ , y ˙ , z ˙ ) = a ( sin u , cos u , tan α ) {:[r^(˙)=(dr)/(du)=(x^(˙)”,”y^(˙)”,”z^(˙))],[=a(-sin u”,”cos u”,”tan alpha)]:}\begin{aligned} \dot{r}&=\frac{d\mathbf{r}}{du}=(\dot{x}, \dot{y}, \dot{z})\\ &=a(-\sin u, \cos u, \tan \alpha) \end{aligned}r˙=drdu=(x˙,y˙,z˙)=a(sinu,cosu,tanα)
r ¨ = d r ˙ d u = ( x ¨ , y ¨ , z ¨ ) = a ( cos u , sin u , 0 ) r ¨ = d r ˙ d u = ( x ¨ , y ¨ , z ¨ ) = a ( cos u , sin u , 0 ) {:[r^(¨)=(d(r^(˙)))/(du)=(x^(¨)”,”y^(¨)”,”z^(¨))],[=a(-cos u”,”-sin u”,”0)]:}\begin{aligned} \ddot{r}&=\frac{d\dot{r}}{du}=(\ddot{x}, \ddot{y}, \ddot{z})\\ &=a(-\cos u, -\sin u, 0) \end{aligned}r¨=dr˙du=(x¨,y¨,z¨)=a(cosu,sinu,0)
r = d r ¨ d u = ( x , y , z ) = a ( sin u , cos u , 0 ) r = d r ¨ d u = ( x , y , z ) = a ( sin u , cos u , 0 ) {:[r^(⃛)=(d(r^(¨)))/(du)=(x^(⃛)”,”y^(⃛)”,”z^(⃛))],[=a(sin u”,”-cos u”,”0)]:}\begin{aligned} \dddot{r}&=\frac{d\ddot{r}}{du}=(\dddot{x}, \dddot{y}, \dddot{z})\\ &=a(\sin u, -\cos u, 0) \end{aligned}r=dr¨du=(x,y,z)=a(sinu,cosu,0)
Step 2: Find the Cross Product r ˙ × r ¨ r ˙ × r ¨ r^(˙)xxr^(¨)\dot{r} \times \ddot{r}r˙×r¨:
Next, we calculate the cross product r ˙ × r ¨ r ˙ × r ¨ r^(˙)xxr^(¨)\dot{r} \times \ddot{r}r˙×r¨:
| i j k a sin u a cos u a tan α a cos u a sin u 0 | i j k a sin u a cos u a tan α a cos u a sin u 0 |[i,j,k],[-a sin u,a cos u,a tan alpha],[-a cos u,-a sin u,0]|\begin{vmatrix} i & j & k \\ -a\sin u & a\cos u & a\tan \alpha \\ -a\cos u & -a\sin u & 0 \end{vmatrix}|ijkasinuacosuatanαacosuasinu0|
Using the determinant:
r ˙ × r ¨ = ( a 2 sin u tan α ) i ( a 2 cos u tan α ) j + ( a 2 ) k = a 2 sin u tan α i a 2 cos u tan α j + a 2 k r ˙ × r ¨ = ( a 2 sin u tan α ) i ( a 2 cos u tan α ) j + ( a 2 ) k = a 2 sin u tan α i a 2 cos u tan α j + a 2 k {:[r^(˙)xxr^(¨)=(a^(2)sin u tan alpha)i-(a^(2)cos u tan alpha)j+(a^(2))k],[=a^(2)sin u tan alphai-a^(2)cos u tan alphaj+a^(2)k]:}\begin{aligned} \dot{r} \times \ddot{r} &= (a^2\sin u\tan\alpha)\mathbf{i} – (a^2\cos u\tan\alpha)\mathbf{j} + (a^2)\mathbf{k}\\ &= a^2 \sin u \tan \alpha \mathbf{i} – a^2 \cos u \tan \alpha \mathbf{j} + a^2 \mathbf{k} \end{aligned}r˙×r¨=(a2sinutanα)i(a2cosutanα)j+(a2)k=a2sinutanαia2cosutanαj+a2k
Step 3: Find the Magnitude of r ˙ × r ¨ r ˙ × r ¨ r^(˙)xxr^(¨)\dot{r} \times \ddot{r}r˙×r¨:
Now, let’s find the magnitude of r ˙ × r ¨ r ˙ × r ¨ r^(˙)xxr^(¨)\dot{r} \times \ddot{r}r˙×r¨:
| r ˙ × r ¨ | = ( a 2 sin u tan α ) 2 + ( a 2 cos u tan α ) 2 + ( a 2 ) 2 = a 4 sin 2 u tan 2 α + a 4 cos 2 u tan 2 α + a 4 = a 4 ( sin 2 u tan 2 α + cos 2 u tan 2 α + 1 ) = a 4 ( tan 2 α + 1 ) = a 2 tan 2 α + 1 = a 2 sec α | r ˙ × r ¨ | = ( a 2 sin u tan α ) 2 + ( a 2 cos u tan α ) 2 + ( a 2 ) 2 = a 4 sin 2 u tan 2 α + a 4 cos 2 u tan 2 α + a 4 = a 4 ( sin 2 u tan 2 α + cos 2 u tan 2 α + 1 ) = a 4 ( tan 2 α + 1 ) = a 2 tan 2 α + 1 = a 2 sec α {:[|r^(˙)xxr^(¨)|=sqrt((a^(2)sin u tan alpha)^(2)+(-a^(2)cos u tan alpha)^(2)+(a^(2))^(2))],[=sqrt(a^(4)sin^(2)utan^(2)alpha+a^(4)cos^(2)utan^(2)alpha+a^(4))],[=sqrt(a^(4)(sin^(2)utan^(2)alpha+cos^(2)utan^(2)alpha+1))],[=sqrt(a^(4)(tan^(2)alpha+1))],[=a^(2)sqrt(tan^(2)alpha+1)],[=a^(2)sec alpha]:}\begin{aligned} |\dot{r} \times \ddot{r}| &= \sqrt{(a^2 \sin u \tan \alpha)^2 + (-a^2 \cos u \tan \alpha)^2 + (a^2)^2}\\ &= \sqrt{a^4 \sin^2 u \tan^2 \alpha + a^4 \cos^2 u \tan^2 \alpha + a^4}\\ &= \sqrt{a^4 (\sin^2 u \tan^2 \alpha + \cos^2 u \tan^2 \alpha + 1)}\\ &= \sqrt{a^4 (\tan^2 \alpha + 1)}\\ &= a^2 \sqrt{\tan^2 \alpha + 1}\\ &= a^2 \sec \alpha \end{aligned}|r˙×r¨|=(a2sinutanα)2+(a2cosutanα)2+(a2)2=a4sin2utan2α+a4cos2utan2α+a4=a4(sin2utan2α+cos2utan2α+1)=a4(tan2α+1)=a2tan2α+1=a2secα
Step 4: Find | r ˙ | | r ˙ | |r^(˙)||\dot{r}||r˙|:
The magnitude of the velocity vector | r ˙ | | r ˙ | |r^(˙)||\dot{r}||r˙| is:
| r ˙ | = ( a sin u ) 2 + ( a cos u ) 2 + ( a tan α ) 2 | r ˙ | = ( a sin u ) 2 + ( a cos u ) 2 + ( a tan α ) 2 |r^(˙)|=sqrt((-a sin u)^(2)+(a cos u)^(2)+(a tan alpha)^(2))|\dot{r}| = \sqrt{(-a\sin u)^2 + (a\cos u)^2 + (a\tan\alpha)^2}|r˙|=(asinu)2+(acosu)2+(atanα)2
= a 2 ( sin 2 u + cos 2 u + tan 2 α ) = a 2 ( sin 2 u + cos 2 u + tan 2 α ) =sqrt(a^(2)(sin^(2)u+cos^(2)u+tan^(2)alpha))= \sqrt{a^2 (\sin^2 u + \cos^2 u + \tan^2 \alpha)}=a2(sin2u+cos2u+tan2α)
= a 2 ( 1 + tan 2 α ) = a 2 ( 1 + tan 2 α ) =sqrt(a^(2)(1+tan^(2)alpha))= \sqrt{a^2 (1 + \tan^2 \alpha)}=a2(1+tan2α)
= a 1 + tan 2 α = a 1 + tan 2 α =asqrt(1+tan^(2)alpha)= a\sqrt{1 + \tan^2 \alpha}=a1+tan2α
= a sec α = a sec α =a sec alpha= a\sec \alpha=asecα
Step 5: Find the Curvature k k kkk:
The curvature k k kkk is given by:
k = | r ˙ × r ¨ | | r ˙ | 3 k = | r ˙ × r ¨ | | r ˙ | 3 k=(|(r^(˙))xx(r^(¨))|)/(|(r^(˙))|^(3))k = \frac{|\dot{r} \times \ddot{r}|}{|\dot{r}|^3}k=|r˙×r¨||r˙|3
Substituting the values we’ve found:
k = a 2 sec α ( a sec α ) 3 = 1 a sec 2 α k = a 2 sec α ( a sec α ) 3 = 1 a sec 2 α k=(a^(2)sec alpha)/((a sec alpha)^(3))=(1)/(asec^(2)alpha)k = \frac{a^2 \sec \alpha}{(a\sec \alpha)^3} = \frac{1}{a\sec^2 \alpha}k=a2secα(asecα)3=1asec2α
Step 6: Find the Radius of Curvature ρ ρ rho\rhoρ:
The radius of curvature ρ ρ rho\rhoρ is the reciprocal of the curvature:
ρ = 1 k = a sec 2 α ρ = 1 k = a sec 2 α rho=(1)/(k)=asec^(2)alpha\rho = \frac{1}{k} = a \sec^2 \alphaρ=1k=asec2α
Conclusion:
The radius of curvature of the given helix is ρ = a sec 2 α ρ = a sec 2 α rho=asec^(2)alpha\rho = a \sec^2 \alphaρ=asec2α.
(c) y y yyy-अक्ष की दिशा में गतिमान एक कण का मूलबिंदु की ओर त्वरण F y F y FyF yFy है, जहाँ F , y F , y F,yF, yF,y का एक धनात्मक एवं सम फलन है। जब कण y = a y = a y=-ay=-ay=a तथा y = a y = a y=ay=ay=a के बीच में कंपन करता है, तब उसका आवर्तकाल T T TTT है। दर्शाइए कि
2 π F 1 < T < 2 π F 2 2 π F 1 < T < 2 π F 2 (2pi)/(sqrt(F_(1))) < T < (2pi)/(sqrt(F_(2)))\frac{2 \pi}{\sqrt{F_1}}<T<\frac{2 \pi}{\sqrt{F_2}}2πF1<T<2πF2
जहाँ F 1 F 1 F_(1)F_1F1 एवं F 2 F 2 F_(2)F_2F2 परास [ a , a ] [ a , a ] [-a,a][-a, a][a,a] में F F FFF के अधिकतम एवं न्यूनतम मान हैं। आगे दर्शाइए कि जब लंबाई l l lll का एक सरल लोलक ऊर्ध्वाधर रेखा के किसी भी ओर 30 30 30^(@)30^{\circ}30 तक दोलन करता है, तब T , 2 π l / g T , 2 π l / g T,2pisqrt(l//g)T, 2 \pi \sqrt{l / g}T,2πl/g तथा 2 π l / g π / 3 2 π l / g π / 3 2pisqrt(l//g)sqrt(pi//3)2 \pi \sqrt{l / g} \sqrt{\pi / 3}2πl/gπ/3 के बीच में रहता है।
A particle moving along the y y yyy-axis has an acceleration F y F y FyF yFy towards the origin, where F F FFF is a positive and even function of y y yyy. The periodic time, when the particle vibrates between y = a y = a y=-ay=-ay=a and y = a y = a y=ay=ay=a, is T T TTT. Show that
2 π F 1 < T < 2 π F 2 2 π F 1 < T < 2 π F 2 (2pi)/(sqrt(F_(1))) < T < (2pi)/(sqrt(F_(2)))\frac{2 \pi}{\sqrt{F_1}}<T<\frac{2 \pi}{\sqrt{F_2}}2πF1<T<2πF2
where F 1 F 1 F_(1)F_1F1 and F 2 F 2 F_(2)F_2F2 are the greatest and the least values of F F FFF within the range [ a , a ] [ a , a ] [-a,a][-a, a][a,a]. Further, show that when a simple pendulum of length l l lll oscillates through 30 30 30^(@)30^{\circ}30 on either side of the vertical line, T T TTT lies between 2 π l / g 2 π l / g 2pisqrt(l//g)2 \pi \sqrt{l / g}2πl/g and 2 π l / g π / 3 2 π l / g π / 3 2pisqrt(l//g)sqrt(pi//3)2 \pi \sqrt{l / g} \sqrt{\pi / 3}2πl/gπ/3
Answer:
Given Equation of Motion:
The particle’s motion along the y y yyy-axis is described by the equation of motion:
y ¨ = F ( y ) y y ¨ = F ( y ) y y^(¨)=-F(y)y\ddot{y}=-F(y) yy¨=F(y)y
Conservation of Mechanical Energy:
The first integral of this equation of motion yields the conservation of mechanical energy:
1 2 y ˙ 2 + U ( y ) = E = U ( a ) 1 2 y ˙ 2 + U ( y ) = E = U ( a ) (1)/(2)y^(˙)^(2)+U(y)=E=U(a)\frac{1}{2} \dot{y}^2 + U(y) = E = U(a)12y˙2+U(y)=E=U(a)
where
U ( y ) = 0 y F ( x ) x d x U ( y ) = 0 y F ( x ) x d x U(y)=int_(0)^(y)F(x)xdxU(y) = \int_0^y F(x) x dxU(y)=0yF(x)xdx
is the potential energy associated with the force F ( y ) y F ( y ) y -F(y)y-F(y) yF(y)y.
Expression for the Period T T TTT:
The time period T T TTT for the particle to vibrate between y = a y = a y=-ay=-ay=a and y = a y = a y=ay=ay=a is given by:
T = 2 a a d y y ˙ = 2 a a d y 2 ( U ( a ) U ( y ) ) = 4 0 a d y 2 ( U ( a ) U ( y ) ) , T = 2 a a d y y ˙ = 2 a a d y 2 ( U ( a ) U ( y ) ) = 4 0 a d y 2 ( U ( a ) U ( y ) ) , T=2int_(-a)^(a)(dy)/((y^(˙)))=2int_(-a)^(a)(dy)/(sqrt(2(U(a)-U(y))))=4int_(0)^(a)(dy)/(sqrt(2(U(a)-U(y)))),T=2 \int_{-a}^a \frac{d y}{\dot{y}}=2 \int_{-a}^a \frac{d y}{\sqrt{2(U(a)-U(y))}}=4 \int_0^a \frac{d y}{\sqrt{2(U(a)-U(y))}},T=2aadyy˙=2aady2(U(a)U(y))=40ady2(U(a)U(y)),
Bounds on T T TTT Using Inequalities:
Now, we want to find bounds on T T TTT using inequalities for F ( y ) F ( y ) F(y)F(y)F(y). We have F 2 F ( y ) F 1 F 2 F ( y ) F 1 F_(2) <= F(y) <= F_(1)F_2 \leq F(y) \leq F_1F2F(y)F1 for y y yyy in the interval [ 0 , a ] [ 0 , a ] [0,a][0, a][0,a]. Using this inequality, we derive lower and upper bounds for T T TTT:
F 2 F F 1 y a F 2 x d x y a F ( x ) x d x y a F 1 x d x 1 2 F 2 ( a 2 y 2 ) U ( a ) U ( y ) 1 2 F 1 ( a 2 y 2 ) F 2 F F 1 y a F 2 x d x y a F ( x ) x d x y a F 1 x d x 1 2 F 2 ( a 2 y 2 ) U ( a ) U ( y ) 1 2 F 1 ( a 2 y 2 ) {:[F_(2) <= F <= F_(1)=>int_(y)^(a)F_(2)xdx <= int_(y)^(a)F(x)xdx <= int_(y)^(a)F_(1)xdx],[=>(1)/(2)F_(2)(a^(2)-y^(2)) <= U(a)-U(y) <= (1)/(2)F_(1)(a^(2)-y^(2))]:}\begin{aligned} F_2 \leq F \leq F_1 &\Rightarrow \int_y^a F_2 x dx \leq \int_y^a F(x) x dx \leq \int_y^a F_1 x dx \\ &\Rightarrow \frac{1}{2} F_2 (a^2 – y^2) \leq U(a) – U(y) \leq \frac{1}{2} F_1 (a^2 – y^2) \end{aligned}F2FF1yaF2xdxyaF(x)xdxyaF1xdx12F2(a2y2)U(a)U(y)12F1(a2y2)
This leads to:
0 a d y F 2 ( a 2 y 2 ) 0 a d y 2 ( U ( a ) U ( y ) ) 0 a d y F 1 ( a 2 y 2 ) π 2 F 2 T 4 π 2 F 1 2 π F 1 T 2 π F 2 0 a d y F 2 ( a 2 y 2 ) 0 a d y 2 ( U ( a ) U ( y ) ) 0 a d y F 1 ( a 2 y 2 ) π 2 F 2 T 4 π 2 F 1 2 π F 1 T 2 π F 2 {:[=>int_(0)^(a)(dy)/(sqrt(F_(2)(a^(2)-y^(2)))) >= int_(0)^(a)(dy)/(sqrt(2(U(a)-U(y)))) >= int_(0)^(a)(dy)/(sqrt(F_(1)(a^(2)-y^(2))))],[=>(pi)/(2sqrt(F_(2))) >= (T)/(4) >= (pi)/(2sqrt(F_(1)))],[=>(2pi)/(sqrt(F_(1))) <= T <= (2pi)/(sqrt(F_(2)))]:}\begin{aligned} &\Rightarrow \int_0^a \frac{dy}{\sqrt{F_2(a^2 – y^2)}} \geq \int_0^a \frac{dy}{\sqrt{2(U(a)-U(y))}} \geq \int_0^a \frac{dy}{\sqrt{F_1(a^2 – y^2)}} \\ &\Rightarrow \frac{\pi}{2\sqrt{F_2}} \geq \frac{T}{4} \geq \frac{\pi}{2\sqrt{F_1}} \\ &\Rightarrow \frac{2\pi}{\sqrt{F_1}} \leq T \leq \frac{2\pi}{\sqrt{F_2}} \end{aligned}0adyF2(a2y2)0ady2(U(a)U(y))0adyF1(a2y2)π2F2T4π2F12πF1T2πF2
This inequality establishes that:
2 π F 1 < T < 2 π F 2 2 π F 1 < T < 2 π F 2 (2pi)/(sqrt(F_(1))) < T < (2pi)/(sqrt(F_(2)))\frac{2\pi}{\sqrt{F_1}} < T < \frac{2\pi}{\sqrt{F_2}}2πF1<T<2πF2
Comparison with Simple Pendulum:
For a simple pendulum of length l l lll oscillating through 30 30 30^(@)30^\circ30 on either side of the vertical line, the equation of motion is given by:
θ ¨ = g l sin θ = F ( θ ) θ θ ¨ = g l sin θ = F ( θ ) θ theta^(¨)=-(g)/(l)sin theta=-F(theta)theta\ddot{\theta} = -\frac{g}{l} \sin\theta = -F(\theta)\thetaθ¨=glsinθ=F(θ)θ
where
F ( θ ) = g l sin θ θ F ( θ ) = g l sin θ θ F(theta)=(g)/(l)(sin theta)/(theta)F(\theta) = \frac{g}{l} \frac{\sin\theta}{\theta}F(θ)=glsinθθ
The maximum and minimum values of F ( θ ) F ( θ ) F(theta)F(\theta)F(θ) in the interval [ 30 , 30 ] [ 30 , 30 ] [-30^(@),30^(@)][-30^\circ, 30^\circ][30,30] (or [ π 6 , π 6 ] π 6 , π 6 [-(pi)/(6),(pi)/(6)]\left[-\frac{\pi}{6}, \frac{\pi}{6}\right][π6,π6] in radians) are F 1 = g l F 1 = g l F_(1)=(g)/(l)F_1 = \frac{g}{l}F1=gl and F 2 = 3 g π l F 2 = 3 g π l F_(2)=(3g)/(pi l)F_2 = \frac{3g}{\pi l}F2=3gπl, respectively.
Inserting these values into the previously established inequality (5), we find that the period T T TTT of the simple pendulum when it oscillates through 30 30 30^(@)30^\circ30 lies between 2 π l g 2 π l g 2pisqrt((l)/(g))2\pi\sqrt{\frac{l}{g}}2πlg and 2 π π 3 l g 2 π π 3 l g 2pisqrt((pi)/(3)(l)/(g))2\pi\sqrt{\frac{\pi}{3}\frac{l}{g}}2ππ3lg:
2 π l g < T < 2 π π 3 l g 2 π l g < T < 2 π π 3 l g 2pisqrt((l)/(g)) < T < 2pisqrt((pi)/(3)(l)/(g))2\pi\sqrt{\frac{l}{g}} < T < 2\pi\sqrt{\frac{\pi}{3}\frac{l}{g}}2πlg<T<2ππ3lg
This completes the solution.
  1. (a) अवकल समीकरण
( d y d x ) 2 ( y x ) 2 cot 2 α 2 ( d y d x ) ( y x ) + ( y x ) 2 cosec 2 α = 1 d y d x 2 y x 2 cot 2 α 2 d y d x y x + y x 2 cosec 2 α = 1 ((dy)/(dx))^(2)((y)/(x))^(2)cot^(2)alpha-2((dy)/(dx))((y)/(x))+((y)/(x))^(2)cosec^(2)alpha=1\left(\frac{d y}{d x}\right)^2\left(\frac{y}{x}\right)^2 \cot ^2 \alpha-2\left(\frac{d y}{d x}\right)\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^2 \operatorname{cosec}^2 \alpha=1(dydx)2(yx)2cot2α2(dydx)(yx)+(yx)2cosec2α=1
का विचित्र हल प्राप्त कीजिए। दिए हुए अवकल समीकरण का पूर्ण पूर्वग भी ज्ञात कीजिए। पूर्ण पूर्वग तथा विचित्र हल की ज्यामितीय व्याख्या कीजिए।
Obtain the singular solution of the differential equation
( d y d x ) 2 ( y x ) 2 cot 2 α 2 ( d y d x ) ( y x ) + ( y x ) 2 cosec 2 α = 1 d y d x 2 y x 2 cot 2 α 2 d y d x y x + y x 2 cosec 2 α = 1 ((dy)/(dx))^(2)((y)/(x))^(2)cot^(2)alpha-2((dy)/(dx))((y)/(x))+((y)/(x))^(2)cosec^(2)alpha=1\left(\frac{d y}{d x}\right)^2\left(\frac{y}{x}\right)^2 \cot ^2 \alpha-2\left(\frac{d y}{d x}\right)\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^2 \operatorname{cosec}^2 \alpha=1(dydx)2(yx)2cot2α2(dydx)(yx)+(yx)2cosec2α=1
Also find the complete primitive of the given differential equation. Give the geometrical interpretations of the complete primitive and singular solution.
Answer:
Given equation
( d y d x ) 2 ( y x ) 2 cot 2 α 2 ( d y d x ) ( y x ) + ( y x ) 2 cosec 2 α = 1 d y d x 2 y x 2 cot 2 α 2 d y d x y x + y x 2 cosec 2 α = 1 ((dy)/(dx))^(2)((y)/(x))^(2)cot^(2)alpha-2((dy)/(dx))((y)/(x))+((y)/(x))^(2)cosec^(2)alpha=1\left(\frac{d y}{d x}\right)^2\left(\frac{y}{x}\right)^2 \cot ^2 \alpha-2\left(\frac{d y}{d x}\right)\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^2 \operatorname{cosec}^2 \alpha=1(dydx)2(yx)2cot2α2(dydx)(yx)+(yx)2cosec2α=1
Multiply both sides by x 2 tan 2 α x 2 tan 2 α x^(2)tan^(2)alphax^2 \tan ^2 \alphax2tan2α:
( d y d x ) 2 y 2 2 ( d y d x ) x y tan 2 α + y 2 sec 2 α x 2 tan 2 α = 0 d y d x 2 y 2 2 d y d x x y tan 2 α + y 2 sec 2 α x 2 tan 2 α = 0 ((dy)/(dx))^(2)y^(2)-2((dy)/(dx))xytan^(2)alpha+y^(2)sec^(2)alpha-x^(2)tan^(2)alpha=0\left(\frac{d y}{d x}\right)^2 y^2-2\left(\frac{d y}{d x}\right) x y \tan ^2 \alpha+y^2 \sec ^2 \alpha-x^2 \tan ^2 \alpha=0(dydx)2y22(dydx)xytan2α+y2sec2αx2tan2α=0
Its a quadratic equation for p y p y pypypy
P y = 2 x tan 2 α ± 4 x 2 tan 4 α 4 ( y 2 sec 2 α x 2 tan 2 α ) P y = 2 x tan 2 α ± 4 x 2 tan 4 α 4 y 2 sec 2 α x 2 tan 2 α Py=2xtan^(2)alpha+-sqrt(4x^(2)tan^(4)alpha-4(y^(2)sec^(2)alpha-x^(2)tan^(2)alpha))P y = 2 x \tan ^2 \alpha \pm \sqrt{4 x^2 \tan ^4 \alpha-4\left(y^2 \sec ^2 \alpha-x^2 \tan ^2 \alpha\right)}Py=2xtan2α±4x2tan4α4(y2sec2αx2tan2α).
Simplify further:
P y = x tan 2 α ± x 2 tan 2 α ( tan 2 α + 1 ) y 2 sec 2 α P y = x tan 2 α ± x 2 tan 2 α tan 2 α + 1 y 2 sec 2 α Py=xtan^(2)alpha+-sqrt(x^(2)tan^(2)alpha(tan^(2)alpha+1)-y^(2)sec^(2)alpha)P y = x \tan ^2 \alpha \pm \sqrt{x^2 \tan ^2 \alpha\left(\tan ^2 \alpha+1\right)-y^2 \sec ^2 \alpha}Py=xtan2α±x2tan2α(tan2α+1)y2sec2α
Rearrange the equation:
P y = x tan 2 α ± sec α x 2 tan 2 α y 2 P y = x tan 2 α ± sec α x 2 tan 2 α y 2 Py=xtan^(2)alpha+-sec alphasqrt(x^(2)tan^(2)alpha-y^(2))P y = x \tan ^2 \alpha \pm \sec \alpha \sqrt{x^2 \tan ^2 \alpha-y^2}Py=xtan2α±secαx2tan2αy2
Rewrite the equation with differentials:
y d y x tan 2 α d α x 2 tan 2 α y 2 = ± sec α d α y d y x tan 2 α d α x 2 tan 2 α y 2 = ± sec α d α (ydy-xtan^(2)alpha d alpha)/(sqrt(x^(2)tan^(2)alpha-y^(2)))=+-sec alpha d alpha\frac{y \mathbf{d} y-x \tan ^2 \alpha d \alpha}{\sqrt{x^2 \tan ^2 \alpha-y^2}}= \pm \sec \alpha d \alphaydyxtan2αdαx2tan2αy2=±secαdα
Let x 2 tan 2 α y 2 = t 2 x 2 tan 2 α y 2 = t 2 x^(2)tan^(2)alpha-y^(2)=t^(2)x^2 \tan ^2 \alpha-y^2=t^2x2tan2αy2=t2:
2 x tan 2 α d α 2 y d y = 2 t d t 2 x tan 2 α d α 2 y d y = 2 t d t 2xtan^(2)alpha d alpha-2ydy=2tdt2 x \tan ^2 \alpha d \alpha-2 y \mathbf{d} y=2 t \mathbf{d} t2xtan2αdα2ydy=2tdt
Integrate both sides:
± t d t t = sec α d x ± t d t t = sec α d x +-int(tdt)/(t)=-sec alpha intdx\pm \int \frac{t \mathbf{d} t}{t}=-\sec \alpha \int \mathbf{d} x±tdtt=secαdx
Solve for t t ttt:
t = c sec α x t = c sec α x t=c-sec alpha xt= c- \sec \alpha xt=csecαx
Substitute back t = ( x 2 tan 2 α y 2 ) t = ( x 2 tan 2 α y 2 ) t=sqrt((x^(2)tan^(2)alpha-y^(2)))t=\sqrt{(x^2 \tan ^2 \alpha-y^2)}t=(x2tan2αy2):
x 2 tan 2 α y 2 = ( c sec α x ) 2 x 2 tan 2 α y 2 = ( c sec α x ) 2 x^(2)tan^(2)alpha-y^(2)=(c-sec alpha x)^(2)x^2 \tan ^2 \alpha-y^2=(c – \sec \alpha x)^2x2tan2αy2=(csecαx)2
0 = x 2 ( sec 2 α tan 2 α ) 2 c x sec α + y 2 x 2 26 x sec α + y 2 + c 2 = 0 c 2 2 c x sec α + x 2 + y 2 = 0 0 = x 2 sec 2 α tan 2 α 2 c x sec α + y 2 x 2 26 x sec α + y 2 + c 2 = 0 c 2 2 c x sec α + x 2 + y 2 = 0 {:[0=x^(2)(sec^(2)alpha-tan^(2)alpha)-2cx sec alpha+y^(2)],[x^(2)-26 x sec alpha+y^(2)+c^(2)=0],[c^(2)-2cx sec alpha+x^(2)+y^(2)=0]:}\begin{aligned} & 0=x^2\left(\sec ^2 \alpha-\tan ^2 \alpha\right)-2 c x \sec \alpha+y^2 \\ & x^2-26 x \sec \alpha+y^2+c^2=0 \\ & c^2-2 c x \sec \alpha+x^2+y^2=0 \end{aligned}0=x2(sec2αtan2α)2cxsecα+y2x226xsecα+y2+c2=0c22cxsecα+x2+y2=0
Rewrite:
c 2 2 c x sec α + x 2 + y 2 = 0 c 2 2 c x sec α + x 2 + y 2 = 0 c^(2)-2cx sec alpha+x^(2)+y^(2)=0c^2-2 c x \sec \alpha+x^2+y^2=0c22cxsecα+x2+y2=0
Notice that this is the equation of a circle with center ( c sec α , 0 ) ( c sec α , 0 ) (c sec alpha,0)(c \sec \alpha, 0)(csecα,0) and radius r = | c | r = | c | r=|c|r=|c|r=|c|.
The geometrical interpretation of the complete primitive is a family of circles with centers on the line x = c sec α x = c sec α x=c sec alphax=c \sec \alphax=csecα in the xy-plane.
Singular Solution:
c 2 2 c x sec α + x 2 + y 2 = 0 4 x 2 sec 2 α 4 ( x 2 + y 2 ) = 0 x 2 sec 2 α 4 ( x 2 + y 2 ) = 0 x 2 ( sec 2 α 1 ) y 2 = 0 c 2 2 c x sec α + x 2 + y 2 = 0 4 x 2 sec 2 α 4 x 2 + y 2 = 0 x 2 sec 2 α 4 x 2 + y 2 = 0 x 2 sec 2 α 1 y 2 = 0 {:[c^(2)-2cx sec alpha+x^(2)+y^(2)=0],[4x^(2)sec^(2)alpha-4(x^(2)+y^(2))=0],[x^(2)sec^(2)alpha-4(x^(2)+y^(2))=0],[x^(2)(sec^(2)alpha-1)-y^(2)=0]:}\begin{aligned} & c^2-2 c x \sec \alpha+x^2+y^2=0 \\ & 4 x^2 \sec ^2 \alpha-4\left(x^2+y^2\right)=0 \\ & x^2 \sec ^2 \alpha-4\left(x^2+y^2\right)=0 \\ & x^2\left(\sec ^2 \alpha-1\right)-y^2=0 \end{aligned}c22cxsecα+x2+y2=04x2sec2α4(x2+y2)=0x2sec2α4(x2+y2)=0x2(sec2α1)y2=0
Now, let’s find the singular solution by considering the discriminant c c ccc for x 2 tan 2 α y 2 = 0 x 2 tan 2 α y 2 = 0 x^(2)tan^(2)alpha-y^(2)=0x^2 \tan ^2 \alpha-y^2=0x2tan2αy2=0:
( d y d x ) 2 cos α 2 x y d y d x sin 2 α + y 2 x 2 sin 2 α = 0 d y d x 2 cos α 2 x y d y d x sin 2 α + y 2 x 2 sin 2 α = 0 ((dy)/(dx))^(2)cos alpha-2xy(dy)/(dx)sin^(2)alpha+y^(2)-x^(2)sin^(2)alpha=0\left(\frac{d y}{d x}\right)^2 \cos \alpha-2 x y \frac{d y}{d x} \sin ^2 \alpha+y^2-x^2 \sin ^2 \alpha=0(dydx)2cosα2xydydxsin2α+y2x2sin2α=0
Discriminant:
4 y 2 ( x 2 sin 2 α y 2 cos 2 α ) = 0 4 y 2 x 2 sin 2 α y 2 cos 2 α = 0 4y^(2)(x^(2)sin^(2)alpha-y^(2)cos^(2)alpha)=04 y^2\left(x^2 \sin ^2 \alpha-y^2 \cos ^2 \alpha\right)=04y2(x2sin2αy2cos2α)=0
Further simplify:
4 y 2 ( x 2 tan 2 α y 2 ) = 0 4 y 2 x 2 tan 2 α y 2 = 0 4y^(2)(x^(2)tan^(2)alpha-y^(2))=04 y^2\left(x^2 \tan ^2 \alpha-y^2\right)=04y2(x2tan2αy2)=0
Two cases:
a. y = 0 y = 0 y=0y=0y=0 (the locus is on the x-axis).
b. c : y = x tan α c : y = x tan α c:y=x tan alphac: y=x \tan \alphac:y=xtanα, which represents a line with slope tan α tan α tan alpha\tan \alphatanα and passes through the origin.
The geometrical interpretation of the singular solution is that it consists of two parts: a point on the x-axis and a line with slope tan α tan α tan alpha\tan \alphatanα passing through the origin.
This concludes the solution and interpretations of the given differential equation and its primitive.
(b) एक गतिमान ग्रह का त्वरण μ (दूरी 2 μ (दूरी 2 (mu)/(” (दूरी “^(2))\frac{\mu}{\text { (दूरी }^2}μ (दूरी 2 के बराबर है और त्वरण की दिशा हमेशा एक स्थिर बिंदु (तारा) की ओर है। सिद्ध कीजिए कि उस ग्रह का पथ एक शंकु-परिच्छेद है। वे प्रतिबंध ज्ञात कीजिए, जिनके अन्तर्गत पथ (i) दीर्घवृत्त, (ii) परवलय और (iii) अतिपरवलय बन जाता है।
Prove that the path of a planet, which is moving so that its acceleration is always directed to a fixed point (star) and is equal to μ (distance) 2 μ (distance) 2 (mu)/(” (distance) “^(2))\frac{\mu}{\text { (distance) }^2}μ (distance) 2, is a conic section. Find the conditions under which the path becomes (i) ellipse, (ii) parabola and (iii) hyperbola.
Answer:
Given that the force is always directed to a fixed point (star), this represents a case of a central orbit.
Also, it is given that the central acceleration is ρ = μ r 2 ρ = μ r 2 rho=(mu)/(r^(2))\rho = \frac{\mu}{r^2}ρ=μr2, where r r rrr is the distance.
The differential equation of the path (in pedal form) is:
h 2 p 3 d p d r = p = μ r 2 h 2 p 3 d p d r = p = μ r 2 (h^(2))/(p^(3))(dp)/(dr)=p=(mu)/(r^(2))\frac{h^2}{p^3} \frac{\mathbf{d} p}{\mathbf{d} r} = p = \frac{\mu}{r^2}h2p3dpdr=p=μr2
Multiplying both sides by -2, we get:
2 h 2 p 3 d p = 2 μ r 2 d r 2 h 2 p 3 d p = 2 μ r 2 d r -(2h^(2))/(p^(3))dp=(-2mu)/(r^(2))dr-\frac{2 h^2}{p^3} \mathbf{d} p = \frac{-2 \mu}{r^2} \mathbf{d} r2h2p3dp=2μr2dr
Integrating, we have:
v 2 = h 2 p 2 = 2 μ r + B ( 1 ) v 2 = h 2 p 2 = 2 μ r + B ( 1 ) v^(2)=(h^(2))/(p^(2))=(2mu)/(r)+B quad rarr(1)v^2 = \frac{h^2}{p^2} = \frac{2 \mu}{r} + B \quad \rightarrow(1)v2=h2p2=2μr+B(1)
where B B BBB is a constant. [Note that in a central orbit v = h p v = h p v=(h)/(p)v = \frac{h}{p}v=hp]
The pedal equation of an ellipse, parabola, and hyperbola (that branch which is nearer to the focus taken as the pole) are given by:
b 2 p 2 = 2 a r 1 , p 2 = a r , and b 2 p 2 = 2 a λ + 1 b 2 p 2 = 2 a r 1 , p 2 = a r , and b 2 p 2 = 2 a λ + 1 (b^(2))/(p^(2))=(2a)/(r)-1,quadp^(2)=ar,quad”and”quad(b^(2))/(p^(2))=(2a)/(lambda)+1\frac{b^2}{p^2} = \frac{2a}{r} – 1, \quad p^2 = ar, \quad \text{and} \quad \frac{b^2}{p^2} = \frac{2a}{\lambda} + 1b2p2=2ar1,p2=ar,andb2p2=2aλ+1
respectively, where in the case of an ellipse, 2 a 2 a 2a2a2a and 2 b 2 b 2b2b2b are the lengths of the major and minor axes; in the case of a parabola, 4 a 4 a 4a4a4a is the length of the latus rectum; and in the case of a hyperbola, 2 a 2 a 2a2a2a and 2 b 2 b 2b2b2b are the lengths of the transverse and conjugate axes.
Since equation (1) can be any of the above 3 forms, three cases arise here:
Case (i) – Elliptic Path:
Comparing (1) with b 2 p 2 = 2 a r 1 b 2 p 2 = 2 a r 1 (b^(2))/(p^(2))=(2a)/(r)-1\frac{b^2}{p^2} = \frac{2a}{r} – 1b2p2=2ar1, the pedal equation of the ellipse, we have:
h 2 b 2 = μ a = B 1 h 2 = μ b 2 a and B = μ a h 2 b 2 = μ a = B 1 h 2 = μ b 2 a and B = μ a {:[(h^(2))/(b^(2))=(mu )/(a)=(B)/(-1)],[h^(2)=(mub^(2))/(a)quad”and”quad B=-(mu )/(a)]:}\begin{aligned} \frac{h^2}{b^2} &= \frac{\mu}{a} = \frac{B}{-1} \\ h^2 &= \frac{\mu b^2}{a} \quad \text{and} \quad B = -\frac{\mu}{a} \end{aligned}h2b2=μa=B1h2=μb2aandB=μa
Substituting in (1), for an elliptical path, we have:
[
v^2 = \frac{2 \mu}{r} – \frac{\mu}{a} = \mu \left(\frac{2}{r} – \frac{1}{a}\right) \quad (Obviously here, \quad v^2 < \frac{2 \mu}{r})
Case (ii) – Parabolic Path:
Comparing (1) with p 2 = a r p 2 = a r p^(2)=arp^2 = arp2=ar, the pedal equation of a parabola, we have:
h 2 1 = 2 μ 1 a = B 0 h 2 1 = 2 μ 1 a = B 0 (h^(2))/(1)=(2mu)/((1)/(a))=(B)/(0)\frac{h^2}{1} = \frac{2 \mu}{\frac{1}{a}} = \frac{B}{0}h21=2μ1a=B0
Therefore, h 2 = 2 μ a h 2 = 2 μ a h^(2)=2mu ah^2 = 2 \mu ah2=2μa and B = 0 B = 0 B=0B = 0B=0.
Substituting in (1), for a parabolic path, we have v 2 = 2 μ r v 2 = 2 μ r v^(2)=(2mu)/(r)v^2 = \frac{2 \mu}{r}v2=2μr.
Case (iii) – Hyperbolic Path:
Comparing (1) with b 2 p 2 = 2 a r + 1 b 2 p 2 = 2 a r + 1 (b^(2))/(p^(2))=(2a)/(r)+1\frac{b^2}{p^2} = \frac{2a}{r} + 1b2p2=2ar+1, the pedal equation of a hyperbola, we have:
h 2 b 2 = μ a = B 1 h 2 = μ b 2 a and B = μ a h 2 b 2 = μ a = B 1 h 2 = μ b 2 a and B = μ a {:[(h^(2))/(b^(2))=(mu )/(a)=(B)/(1)],[h^(2)=(mub^(2))/(a)quad”and”quad B=(mu )/(a)]:}\begin{aligned} \frac{h^2}{b^2} &= \frac{\mu}{a} = \frac{B}{1} \\ h^2 &= \frac{\mu b^2}{a} \quad \text{and} \quad B = \frac{\mu}{a} \end{aligned}h2b2=μa=B1h2=μb2aandB=μa
Substituting in (1), for a hyperbolic path, we have v 2 = μ ( 2 r + 1 a ) v 2 = μ 2 r + 1 a v^(2)=mu((2)/(r)+(1)/(a))v^2 = \mu \left(\frac{2}{r} + \frac{1}{a}\right)v2=μ(2r+1a) (Obviously here, v 2 > 2 μ r v 2 > 2 μ r v^(2) > (2mu)/(r)v^2 > \frac{2 \mu}{r}v2>2μr).
Summary:
  • If v 2 = μ ( 2 r 1 a ) v 2 = μ 2 r 1 a v^(2)=mu((2)/(r)-(1)/(a))v^2 = \mu \left(\frac{2}{r} – \frac{1}{a}\right)v2=μ(2r1a) or v 2 < 2 μ r v 2 < 2 μ r v^(2) < (2mu)/(r)v^2 < \frac{2 \mu}{r}v2<2μr, then the path is an ellipse.
  • If v 2 = 2 μ r v 2 = 2 μ r v^(2)=(2mu)/(r)v^2 = \frac{2 \mu}{r}v2=2μr, then the path is a parabola.
  • If v 2 > 2 μ r v 2 > 2 μ r v^(2) > (2mu)/(r)v^2 > \frac{2 \mu}{r}v2>2μr or v 2 = 2 μ r + r a v 2 = 2 μ r + r a v^(2)=(2mu)/(r)+(r)/(a)v^2 = \frac{2 \mu}{r} + \frac{r}{a}v2=2μr+ra, then the path is a hyperbola.
Additionally, the magnitude of the velocity at any point is independent of the direction of the velocity at that time.
We have also found that h 2 = μ l h 2 = μ l h^(2)=mu lh^2 = \mu lh2=μl in all three cases, where l l lll is the length of the semi-latus rectum.
(c) (i) गाउस के अपसरण प्रमेय का कथन लिखिए। इस प्रमेय को F = 4 x i ^ 2 y 2 j ^ + z 2 k ^ F = 4 x i ^ 2 y 2 j ^ + z 2 k ^ vec(F)=4x hat(i)-2y^(2) hat(j)+z^(2) hat(k)\vec{F}=4 x \hat{i}-2 y^2 \hat{j}+z^2 \hat{k}F=4xi^2y2j^+z2k^ के लिए x 2 + y 2 = 4 , z = 0 x 2 + y 2 = 4 , z = 0 x^(2)+y^(2)=4,z=0x^2+y^2=4, z=0x2+y2=4,z=0 और z = 3 z = 3 z=3z=3z=3 से घिरे हुए क्षेत्र में सत्यापित कीजिए।
(ii) स्टोक्स प्रमेय के द्वारा C e x d x + 2 y d y d z C e x d x + 2 y d y d z oint_(C)e^(x)dx+2ydy-dz\oint_C e^x d x+2 y d y-d zCexdx+2ydydz का मान ज्ञात कीजिए, जहाँ C C CCC, वक्र x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4, z = 2 z = 2 z=2z=2z=2 है।
(i) State Gauss divergence theorem. Verify this theorem for F = 4 x i ^ 2 y 2 j ^ + z 2 k ^ F = 4 x i ^ 2 y 2 j ^ + z 2 k ^ vec(F)=4x hat(i)-2y^(2) hat(j)+z^(2) hat(k)\vec{F}=4 x \hat{i}-2 y^2 \hat{j}+z^2 \hat{k}F=4xi^2y2j^+z2k^, taken over the region bounded by x 2 + y 2 = 4 , z = 0 x 2 + y 2 = 4 , z = 0 x^(2)+y^(2)=4,z=0x^2+y^2=4, z=0x2+y2=4,z=0 and z = 3 z = 3 z=3z=3z=3.
Answer:

Gauss divergence theorem

If F F vec(F)\vec{F}F is a vector point function having continuous first order partial derivatives in the region V bounded by a closed surface S S SSS, then
S F n ^ d S = V div F d V S F n ^ d S = V div F d V ∬_(S) vec(F)* hat(n)dS=∭_(V)div vec(F)dV\iint_S \vec{F} \cdot \hat{n} d S=\iiint_V \operatorname{div} \vec{F} d VSFn^dS=VdivFdV
where n ^ n ^ hat(n)\hat{n}n^ is the outward drawn unit normal vector to the surface S S S\mathrm{S}S.
Since div F = x ( 4 x ) + y ( 2 y 2 ) + z ( z 2 ) = 4 4 y + 2 z F = x ( 4 x ) + y 2 y 2 + z z 2 = 4 4 y + 2 z vec(F)=(del)/(del x)(4x)+(del)/(del y)(-2y^(2))+(del)/(del z)(z^(2))=4-4y+2z\vec{F}=\frac{\partial}{\partial x}(4 x)+\frac{\partial}{\partial y}\left(-2 y^2\right)+\frac{\partial}{\partial z}\left(z^2\right)=4-4 y+2 zF=x(4x)+y(2y2)+z(z2)=44y+2z
V div F d V = V ( 4 4 y + 2 z ) d x d y d z = 2 2 4 x 2 4 x 2 0 3 ( 4 4 y + 2 z ) d z d y d x V div F d V = V ( 4 4 y + 2 z ) d x d y d z = 2 2 4 x 2 4 x 2 0 3 ( 4 4 y + 2 z ) d z d y d x :.quad∭_(V)div vec(F)dV=∭_(V)(4-4y+2z)dxdydz=int_(-2)^(2)int_(-sqrt(4-x^(2)))^(sqrt(4-x^(2)))int_(0)^(3)(4-4y+2z)dzdydx\therefore \quad \iiint_V \operatorname{div} \vec{F} d V=\iiint_V(4-4 y+2 z) d x d y d z=\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^3(4-4 y+2 z) d z d y d xVdivFdV=V(44y+2z)dxdydz=224x24x203(44y+2z)dzdydx
= 2 2 4 x 2 4 x 2 [ 4 z 4 y z + z 2 ] 0 3 d y d x = 2 2 4 x 2 4 x 2 ( 12 12 y + 9 ) d y d x = 2 2 [ 21 y 6 y 2 ] 4 x 7 4 x 7 d x = 2 2 42 4 x 2 d x = 84 0 2 4 x 2 d x = 84 [ x 4 x 2 2 + 4 2 sin 1 x 2 ] 0 2 = 84 [ 2 sin 1 1 ] = 84 [ 2 × π 2 ] = 84 π = 2 2 4 x 2 4 x 2 4 z 4 y z + z 2 0 3 d y d x = 2 2 4 x 2 4 x 2 ( 12 12 y + 9 ) d y d x = 2 2 21 y 6 y 2 4 x 7 4 x 7 d x = 2 2 42 4 x 2 d x = 84 0 2 4 x 2 d x = 84 x 4 x 2 2 + 4 2 sin 1 x 2 0 2 = 84 2 sin 1 1 = 84 2 × π 2 = 84 π {:[=int_(-2)^(2)int_(-sqrt(4-x^(2)))^(sqrt(4-x^(2)))[4z-4yz+z^(2)]_(0)^(3)dydx],[=int_(-2)^(2)int_(-sqrt(4-x^(2)))^(sqrt(4-x^(2)))(12-12 y+9)dydx],[=int_(-2)^(2)[21 y-6y^(2)]_(-sqrt(4-x^(7)))^(sqrt(4-x^(7)))dx],[=int_(-2)^(2)42sqrt(4-x^(2))dx=84int_(0)^(2)sqrt(4-x^(2))dx],[=84[(xsqrt(4-x^(2)))/(2)+(4)/(2)sin^(-1)((x)/(2))]_(0)^(2)],[=84[2sin^(-1)1]=84[2xx(pi)/(2)]=84 pi]:}\begin{aligned} & =\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}\left[4 z-4 y z+z^2\right]_0^3 d y d x \\ & =\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}(12-12 y+9) d y d x \\ & =\int_{-2}^2\left[21 y-6 y^2\right]_{-\sqrt{4-x^7}}^{\sqrt{4-x^7}} d x \\ & =\int_{-2}^2 42 \sqrt{4-x^2} d x=84 \int_0^2 \sqrt{4-x^2} d x \\ & =84\left[\frac{x \sqrt{4-x^2}}{2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_0^2 \\ & =84\left[2 \sin ^{-1} 1\right]=84\left[2 \times \frac{\pi}{2}\right]=84 \pi \end{aligned}=224x24x2[4z4yz+z2]03dydx=224x24x2(1212y+9)dydx=22[21y6y2]4x74x7dx=22424x2dx=84024x2dx=84[x4x22+42sin1x2]02=84[2sin11]=84[2×π2]=84π
original image
To evaluate the surface integral, divide the closed surface S S SSS of the cylinder into 3 parts.
S 1 S 1 S_(1)\mathrm{S}_1S1 : the circular base in the plane z = 0 z = 0 z=0z=0z=0
S 2 S 2 S_(2)\mathrm{S}_2S2 : the circular top in the plane z = 3 z = 3 z=3z=3z=3
S 3 S 3 S_(3)\mathrm{S}_3S3 : the curved surface of the cylinder, given by the equation x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4.
Also S F n ^ d S = S 1 F n ^ d S + S 2 F n ^ d S + S a F n ^ d S S F n ^ d S = S 1 F n ^ d S + S 2 F n ^ d S + S a F n ^ d S ∬_(S) vec(F)* hat(n)dS=∬_(S_(1)) vec(F)* hat(n)dS+∬_(S_(2)) vec(F)* hat(n)dS+∬_(S_(a)) vec(F)* hat(n)dS\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}=\iint_{\mathrm{S}_1} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{S}_2} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{S}_{\mathrm{a}}} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}SFn^d S=S1Fn^d S+S2Fn^d S+SaFn^d S
On S 1 ( z = 0 ) S 1 ( z = 0 ) S_(1)(z=0)\mathrm{S}_1(z=0)S1(z=0), we have n ^ = k ^ , F = 4 x i ^ 2 y 2 j ^ n ^ = k ^ , F = 4 x i ^ 2 y 2 j ^ hat(n)=- hat(k), vec(F)=4x hat(i)-2y^(2) hat(j)\hat{n}=-\hat{k}, \overrightarrow{\mathrm{F}}=4 x \hat{i}-2 y^2 \hat{j}n^=k^,F=4xi^2y2j^
so that
S 1 F n ^ d S = 0 S 1 F n ^ d S = 0 :.quad∬_(S_(1)) vec(F)* hat(n)dS=0\therefore \quad \iint_{\mathrm{S}_1} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}=0S1Fn^d S=0
On S 2 ( z = 3 ) S 2 ( z = 3 ) S_(2)(z=3)\mathrm{S}_2(z=3)S2(z=3), we have n ^ = k ^ , F = 4 x i ^ 2 y 2 j ^ + 9 k ^ n ^ = k ^ , F = 4 x i ^ 2 y 2 j ^ + 9 k ^ hat(n)= hat(k), vec(F)=4x hat(i)-2y^(2) hat(j)+9 hat(k)\hat{n}=\hat{k}, \overrightarrow{\mathrm{F}}=4 x \hat{i}-2 y^2 \hat{j}+9 \hat{k}n^=k^,F=4xi^2y2j^+9k^
so that
F n ^ = ( 4 x i ^ 2 y 2 j ^ + 9 k ^ ) k ^ = 9 S 2 F n ^ d S = S 2 9 d x d y = 9 S d x d y = 9 × area of surface S 2 = 9 ( π 2 2 ) = 36 π F n ^ = 4 x i ^ 2 y 2 j ^ + 9 k ^ k ^ = 9 S 2 F n ^ d S = S 2 9 d x d y = 9 S d x d y = 9 × area of surface S 2 = 9 π 2 2 = 36 π {:[ vec(F)* hat(n)=(4x( hat(i))-2y^(2)( hat(j))+9( hat(k)))* hat(k)=9],[:.quad∬_(S_(2)) vec(F)* hat(n)dS=∬_(S_(2))9dxdy=9∬_(S)dxdy],[=9xx” area of surface “S_(2)=9(pi*2^(2))=36 pi]:}\begin{aligned} \overrightarrow{\mathrm{F}} \cdot \hat{n} & =\left(4 x \hat{i}-2 y^2 \hat{j}+9 \hat{k}\right) \cdot \hat{k}=9 \\ \therefore \quad \iint_{\mathrm{S}_2} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S} & =\iint_{\mathrm{S}_2} 9 d x d y=9 \iint_{\mathrm{S}} d x d y \\ & =9 \times \text { area of surface } \mathrm{S}_2=9\left(\pi \cdot 2^2\right)=36 \pi \end{aligned}Fn^=(4xi^2y2j^+9k^)k^=9S2Fn^d S=S29dxdy=9Sdxdy=9× area of surface S2=9(π22)=36π
On S 3 , x 2 + y 2 = 4 S 3 , x 2 + y 2 = 4 S_(3),x^(2)+y^(2)=4\mathrm{S}_3, x^2+y^2=4S3,x2+y2=4
n ^ = n ^ = :. hat(n)=\therefore \hat{n}=n^= a unit vector normal to surface S 3 = 2 x i ^ + 2 y j ^ 4 x 2 + 4 y 2 = x i ^ + y j ^ 2 S 3 = 2 x i ^ + 2 y j ^ 4 x 2 + 4 y 2 = x i ^ + y j ^ 2 S_(3)=(2x( hat(i))+2y( hat(j)))/(sqrt(4x^(2)+4y^(2)))=(x( hat(i))+y( hat(j)))/(2)\mathrm{S}_3=\frac{2 x \hat{i}+2 y \hat{j}}{\sqrt{4 x^2+4 y^2}}=\frac{x \hat{i}+y \hat{j}}{2}S3=2xi^+2yj^4x2+4y2=xi^+yj^2
F n ^ = ( 4 x i ^ 2 y 2 j ^ + z 2 k ^ ) ( x i ^ + y j ^ 2 ) = 2 x 2 y 3 x 2 + y 2 = 4 , x = 2 cos θ , y = 2 sin θ and d S = 2 d θ d z . F n ^ = 4 x i ^ 2 y 2 j ^ + z 2 k ^ x i ^ + y j ^ 2 = 2 x 2 y 3 x 2 + y 2 = 4 , x = 2 cos θ , y = 2 sin θ and d S = 2 d θ d z . {:[ vec(F)* hat(n)=(4x( hat(i))-2y^(2)( hat(j))+z^(2)( hat(k)))*((x( hat(i))+y( hat(j)))/(2))=2x^(2)-y^(3)],[x^(2)+y^(2)=4″,”x=2cos theta”,”y=2sin theta” and “dS=2d theta dz.]:}\begin{gathered} \overrightarrow{\mathrm{F}} \cdot \hat{n}=\left(4 x \hat{i}-2 y^2 \hat{j}+z^2 \hat{k}\right) \cdot\left(\frac{x \hat{i}+y \hat{j}}{2}\right)=2 x^2-y^3 \\ x^2+y^2=4, x=2 \cos \theta, y=2 \sin \theta \text { and } d \mathrm{~S}=2 d \theta d z . \end{gathered}Fn^=(4xi^2y2j^+z2k^)(xi^+yj^2)=2x2y3x2+y2=4,x=2cosθ,y=2sinθ and d S=2dθdz.
Also, on S 3 S 3 S_(3)\mathrm{S}_3S3, i.e. x 2 + y 2 = 4 , x = 2 cos θ , y = 2 sin θ x 2 + y 2 = 4 , x = 2 cos θ , y = 2 sin θ x^(2)+y^(2)=4,x=2cos theta,y=2sin thetax^2+y^2=4, x=2 \cos \theta, y=2 \sin \thetax2+y2=4,x=2cosθ,y=2sinθ and d S = 2 d θ d z d S = 2 d θ d z dS=2d theta dzd \mathrm{~S}=2 d \theta d zd S=2dθdz.
To cover the whole surface S 3 , z S 3 , z S_(3),zS_3, zS3,z varies from 0 to 3 and θ θ theta\thetaθ varies from 0 to 2 π 2 π 2pi2 \pi2π.
S a F n ^ d S = 0 2 π 0 3 [ 2 ( 2 cos θ ) 2 ( 2 sin θ ) 3 ] 2 d z d θ = 0 2 π 16 ( cos 2 θ sin 3 θ ) × 3 d θ = 48 0 2 π ( cos 2 θ sin 3 θ ) d θ = 48 π S F n ^ d S = 0 + 36 π + 48 π = 84 π S a F n ^ d S = 0 2 π 0 3 2 ( 2 cos θ ) 2 ( 2 sin θ ) 3 2 d z d θ = 0 2 π 16 cos 2 θ sin 3 θ × 3 d θ = 48 0 2 π cos 2 θ sin 3 θ d θ = 48 π S F n ^ d S = 0 + 36 π + 48 π = 84 π {:[:.quad∬_(S_(a)) vec(F)* hat(n)dS=int_(0)^(2pi)int_(0)^(3)[2(2cos theta)^(2)-(2sin theta)^(3)]2dzd theta],[=int_(0)^(2pi)16(cos^(2)theta-sin^(3)theta)xx3d theta=48int_(0)^(2pi)(cos^(2)theta-sin^(3)theta)d theta=48 pi],[:.quad∬_(S) vec(F)* hat(n)dS=0+36 pi+48 pi=84 pi]:}\begin{aligned} \therefore \quad \iint_{S_a} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S} & =\int_0^{2 \pi} \int_0^3\left[2(2 \cos \theta)^2-(2 \sin \theta)^3\right] 2 d z d \theta \\ & =\int_0^{2 \pi} 16\left(\cos ^2 \theta-\sin ^3 \theta\right) \times 3 d \theta=48 \int_0^{2 \pi}\left(\cos ^2 \theta-\sin ^3 \theta\right) d \theta=48 \pi \\ \therefore \quad \iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S} & =0+36 \pi+48 \pi=84 \pi \end{aligned}SaFn^d S=02π03[2(2cosθ)2(2sinθ)3]2dzdθ=02π16(cos2θsin3θ)×3dθ=4802π(cos2θsin3θ)dθ=48πSFn^d S=0+36π+48π=84π
The equality of (1) and (2) verifies divergence theorem.
(ii) Evaluate by Stokes’ theorem C e x d x + 2 y d y d z C e x d x + 2 y d y d z oint_(C)e^(x)dx+2ydy-dz\oint_C e^x d x+2 y d y-d zCexdx+2ydydz, where C C CCC is the curve x 2 + y 2 = 4 , z = 2 x 2 + y 2 = 4 , z = 2 x^(2)+y^(2)=4,z=2x^2+y^2=4, z=2x2+y2=4,z=2.
Answer:

Introduction

We are given a vector field F = e x i ^ + 2 y j ^ k ^ F = e x i ^ + 2 y j ^ k ^ vec(F)=e^(x) hat(i)+2y hat(j)- hat(k)\vec{F} = e^x \hat{i} + 2y \hat{j} – \hat{k}F=exi^+2yj^k^ and a curve C C CCC defined by x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2 + y^2 = 4x2+y2=4 and z = 2 z = 2 z=2z = 2z=2. We want to evaluate C F d r C F d r oint_(C) vec(F)*d vec(r)\oint_C \vec{F} \cdot d\vec{r}CFdr using Stokes’ theorem.

Step 1: Find the Curl of F F vec(F)\vec{F}F

Stokes’ theorem states that C F d r = S × F d S C F d r = S × F d S oint_(C) vec(F)*d vec(r)=∬_(S)grad xx vec(F)*d vec(S)\oint_C \vec{F} \cdot d\vec{r} = \iint_S \nabla \times \vec{F} \cdot d\vec{S}CFdr=S×FdS, where S S SSS is the surface bounded by C C CCC.
The curl of F F vec(F)\vec{F}F is given by:
× F = | i ^ j ^ k ^ x y z e x 2 y 1 | × F = i ^ j ^ k ^ x y z e x 2 y 1 grad xx vec(F)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[e^(x),2y,-1]|\nabla \times \vec{F}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^x & 2 y & -1 \end{array}\right|×F=|i^j^k^xyzex2y1|
After calculating, we get:
× F = ( 0 0 ) i ^ ( 0 0 ) j ^ + ( 0 0 ) k ^ × F = 0 × F = ( 0 0 ) i ^ ( 0 0 ) j ^ + ( 0 0 ) k ^ × F = 0 {:[grad xx vec(F)=(0-0) hat(i)-(0-0) hat(j)+(0-0) hat(k)],[grad xx vec(F)= vec(0)]:}\begin{gathered} \nabla \times \vec{F}=(0-0) \hat{i}-(0-0) \hat{j}+(0-0) \hat{k} \\ \nabla \times \vec{F}=\overrightarrow{0} \end{gathered}×F=(00)i^(00)j^+(00)k^×F=0
Since the curl of F F vec(F)\vec{F}F is zero, the line integral around any closed path will also be zero, according to Stokes’ theorem.
Abstract Classes
👋 Hi there! Welcome to Abstract Classes.

🤔 Have any question about IGNOU Assignment Solution , Projects, courses, or fees? Just type it below and we'll reply instantly on WhatsApp!