Abstract Classes ®

Free UPSC Mathematics Optional Paper-1 2021 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

1.(a) यदि A = [ 1 1 1 2 1 0 1 0 0 ] A = 1 1 1 2 1 0 1 0 0 A=[[1,-1,1],[2,-1,0],[1,0,0]]A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]A=[111210100] है, तो A 1 A 1 A^(-1)A^{-1}A1 को ज्ञात किए बिना दर्शाइए कि A 2 = A 1 A 2 = A 1 A^(2)=A^(-1)A^2=A^{-1}A2=A1
If A = [ 1 1 1 2 1 0 1 0 0 ] A = 1 1 1 2 1 0 1 0 0 A=[[1,-1,1],[2,-1,0],[1,0,0]]A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]A=[111210100], then show that A 2 = A 1 A 2 = A 1 A^(2)=A^(-1)A^2=A^{-1}A2=A1 (without finding A 1 A 1 A^(-1)A^{-1}A1 ).
Answer:
Introduction
We are given a 3×3 matrix A A AAA and asked to prove that the square of this matrix, A 2 A 2 A^(2)A^2A2, is equal to its inverse, A 1 A 1 A^(-1)A^{-1}A1, without explicitly finding the inverse of A A AAA.
Assumptions
The problem assumes that the matrix A A AAA is invertible, i.e., it has an inverse A 1 A 1 A^(-1)A^{-1}A1.
Definition
The inverse of a matrix A A AAA, denoted A 1 A 1 A^(-1)A^{-1}A1, is a unique matrix such that when it is multiplied by A A AAA, the result is the identity matrix I I III. The identity matrix is a special square matrix with ones on the diagonal and zeros elsewhere.
Method/Approach
We will use the definition of the inverse of a matrix to solve this problem. If A 2 A 2 A^(2)A^2A2 is indeed the inverse of A A AAA, then the product A A 2 A A 2 AA^(2)AA^2AA2 should be the identity matrix I I III. We will calculate A 2 A 2 A^(2)A^2A2 and A A 2 A A 2 AA^(2)AA^2AA2 to verify this.
Work/Calculations
First, let’s calculate A 2 A 2 A^(2)A^2A2:
A 2 = A A = [ 1 1 1 2 1 0 1 0 0 ] [ 1 1 1 2 1 0 1 0 0 ] A 2 = A A = 1 1 1 2 1 0 1 0 0 1 1 1 2 1 0 1 0 0 A^(2)=A*A=[[1,-1,1],[2,-1,0],[1,0,0]]*[[1,-1,1],[2,-1,0],[1,0,0]]A^2 = A \cdot A = \left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right] \cdot \left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]A2=AA=[111210100][111210100]
The calculation yields:
A 2 = [ 0 0 1 0 1 2 1 1 1 ] A 2 = 0 0 1 0 1 2 1 1 1 A^(2)=[[0,0,1],[0,-1,2],[1,-1,1]]A^2 = \left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]A2=[001012111]
Next, we calculate A A 2 A A 2 AA^(2)AA^2AA2:
A A 2 = A A 2 = [ 1 1 1 2 1 0 1 0 0 ] [ 0 0 1 0 1 2 1 1 1 ] A A 2 = A A 2 = 1 1 1 2 1 0 1 0 0 0 0 1 0 1 2 1 1 1 AA^(2)=A*A^(2)=[[1,-1,1],[2,-1,0],[1,0,0]]*[[0,0,1],[0,-1,2],[1,-1,1]]AA^2 = A \cdot A^2 = \left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right] \cdot \left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1\end{array}\right]AA2=AA2=[111210100][001012111]
The calculation yields:
A A 2 = [ 1 0 0 0 1 0 0 0 1 ] A A 2 = 1 0 0 0 1 0 0 0 1 AA^(2)=[[1,0,0],[0,1,0],[0,0,1]]AA^2 = \left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]AA2=[100010001]
Conclusion
The product of A A AAA and A 2 A 2 A^(2)A^2A2 is the identity matrix I I III. Therefore, we have shown that A 2 A 2 A^(2)A^2A2 is indeed the inverse of A A AAA, i.e., A 2 = A 1 A 2 = A 1 A^(2)=A^(-1)A^2 = A^{-1}A2=A1, without explicitly finding A 1 A 1 A^(-1)A^{-1}A1.
1.(b) क्रमित आधारक B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B={(0,1,1),(1,0,1),(1,1,0)}B=\{(0,1,1),(1,0,1),(1,1,0)\}B={(0,1,1),(1,0,1),(1,1,0)} के सापेक्ष V 3 ( R ) V 3 ( R ) V_(3)(R)V_3(R)V3(R) पर परिभाषित रैखिक संकारक : T ( a , b , c ) = ( a + b , a b , 2 c ) T ( a , b , c ) = ( a + b , a b , 2 c ) T(a,b,c)=(a+b,a-b,2c)T(a, b, c)=(a+b, a-b, 2 c)T(a,b,c)=(a+b,ab,2c) से संबन्धित आव्यूह ज्ञात कीजिए ।
Find the matrix associated with the linear operator on V 3 ( R ) V 3 ( R ) V_(3)(R)V_3(R)V3(R) defined by T ( a , b , c ) = ( a + b , a b , 2 c ) T ( a , b , c ) = ( a + b , a b , 2 c ) T(a,b,c)=(a+b,a-b,2c)T(a, b, c)=(a+b, a-b, 2 c)T(a,b,c)=(a+b,ab,2c) with respect to the ordered basis B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B={(0,1,1),(1,0,1),(1,1,0)}B=\{(0,1,1),(1,0,1),(1,1,0)\}B={(0,1,1),(1,0,1),(1,1,0)}.
Answer:

Introduction

We are tasked with finding the matrix representation of the linear operator T : V 3 ( R ) V 3 ( R ) T : V 3 ( R ) V 3 ( R ) T:V_(3)(R)rarrV_(3)(R)T: V_3(\mathbb{R}) \to V_3(\mathbb{R})T:V3(R)V3(R) defined by T ( a , b , c ) = ( a + b , a b , 2 c ) T ( a , b , c ) = ( a + b , a b , 2 c ) T(a,b,c)=(a+b,a-b,2c)T(a, b, c) = (a+b, a-b, 2c)T(a,b,c)=(a+b,ab,2c). The matrix representation will be with respect to the ordered basis B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B={(0,1,1),(1,0,1),(1,1,0)}B = \{(0,1,1), (1,0,1), (1,1,0)\}B={(0,1,1),(1,0,1),(1,1,0)}.

Assumptions

  • T T TTT is a linear operator.
  • V 3 ( R ) V 3 ( R ) V_(3)(R)V_3(\mathbb{R})V3(R) is a vector space over the real numbers R R R\mathbb{R}R.
  • The ordered basis B B BBB consists of vectors in V 3 ( R ) V 3 ( R ) V_(3)(R)V_3(\mathbb{R})V3(R).

Method/Approach

To find the matrix representation of T T TTT with respect to the basis B B BBB, we will:
  1. Apply T T TTT to each vector in the basis B B BBB.
  2. Express the resulting vectors in terms of the basis B B BBB.
  3. Use the coefficients as columns of the matrix representation of T T TTT.

Work/Calculations

Step 1: Apply T T TTT to each vector in B B BBB

Let’s apply T T TTT to the vectors ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0,1,1)(0,1,1), ( 1 , 0 , 1 ) ( 1 , 0 , 1 ) (1,0,1)(1,0,1)(1,0,1), and ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1,1,0)(1,1,0).
  1. T ( 0 , 1 , 1 ) = ( 0 + 1 , 0 1 , 2 × 1 ) T ( 0 , 1 , 1 ) = ( 0 + 1 , 0 1 , 2 × 1 ) T(0,1,1)=(0+1,0-1,2xx1)T(0,1,1) = (0+1, 0-1, 2 \times 1)T(0,1,1)=(0+1,01,2×1)
  2. T ( 1 , 0 , 1 ) = ( 1 + 0 , 1 0 , 2 × 1 ) T ( 1 , 0 , 1 ) = ( 1 + 0 , 1 0 , 2 × 1 ) T(1,0,1)=(1+0,1-0,2xx1)T(1,0,1) = (1+0, 1-0, 2 \times 1)T(1,0,1)=(1+0,10,2×1)
  3. T ( 1 , 1 , 0 ) = ( 1 + 1 , 1 1 , 2 × 0 ) T ( 1 , 1 , 0 ) = ( 1 + 1 , 1 1 , 2 × 0 ) T(1,1,0)=(1+1,1-1,2xx0)T(1,1,0) = (1+1, 1-1, 2 \times 0)T(1,1,0)=(1+1,11,2×0)
After calculating, we get the following transformed vectors:
  1. T ( 0 , 1 , 1 ) = ( 1 , 1 , 2 ) T ( 0 , 1 , 1 ) = ( 1 , 1 , 2 ) T(0,1,1)=(1,-1,2)T(0,1,1) = (1, -1, 2)T(0,1,1)=(1,1,2)
  2. T ( 1 , 0 , 1 ) = ( 1 , 1 , 2 ) T ( 1 , 0 , 1 ) = ( 1 , 1 , 2 ) T(1,0,1)=(1,1,2)T(1,0,1) = (1, 1, 2)T(1,0,1)=(1,1,2)
  3. T ( 1 , 1 , 0 ) = ( 2 , 0 , 0 ) T ( 1 , 1 , 0 ) = ( 2 , 0 , 0 ) T(1,1,0)=(2,0,0)T(1,1,0) = (2, 0, 0)T(1,1,0)=(2,0,0)

Step 2: Express the resulting vectors in terms of B B BBB

We need to express each of these vectors as a linear combination of the basis vectors in B B BBB.
  1. ( 1 , 1 , 2 ) = a 1 ( 0 , 1 , 1 ) + a 2 ( 1 , 0 , 1 ) + a 3 ( 1 , 1 , 0 ) ( 1 , 1 , 2 ) = a 1 ( 0 , 1 , 1 ) + a 2 ( 1 , 0 , 1 ) + a 3 ( 1 , 1 , 0 ) (1,-1,2)=a_(1)(0,1,1)+a_(2)(1,0,1)+a_(3)(1,1,0)(1, -1, 2) = a_1 (0,1,1) + a_2 (1,0,1) + a_3 (1,1,0)(1,1,2)=a1(0,1,1)+a2(1,0,1)+a3(1,1,0)
  2. ( 1 , 1 , 2 ) = b 1 ( 0 , 1 , 1 ) + b 2 ( 1 , 0 , 1 ) + b 3 ( 1 , 1 , 0 ) ( 1 , 1 , 2 ) = b 1 ( 0 , 1 , 1 ) + b 2 ( 1 , 0 , 1 ) + b 3 ( 1 , 1 , 0 ) (1,1,2)=b_(1)(0,1,1)+b_(2)(1,0,1)+b_(3)(1,1,0)(1, 1, 2) = b_1 (0,1,1) + b_2 (1,0,1) + b_3 (1,1,0)(1,1,2)=b1(0,1,1)+b2(1,0,1)+b3(1,1,0)
  3. ( 2 , 0 , 0 ) = c 1 ( 0 , 1 , 1 ) + c 2 ( 1 , 0 , 1 ) + c 3 ( 1 , 1 , 0 ) ( 2 , 0 , 0 ) = c 1 ( 0 , 1 , 1 ) + c 2 ( 1 , 0 , 1 ) + c 3 ( 1 , 1 , 0 ) (2,0,0)=c_(1)(0,1,1)+c_(2)(1,0,1)+c_(3)(1,1,0)(2, 0, 0) = c_1 (0,1,1) + c_2 (1,0,1) + c_3 (1,1,0)(2,0,0)=c1(0,1,1)+c2(1,0,1)+c3(1,1,0)
After calculating, we find the coefficients as follows:
  1. a 1 = 0 , a 2 = 2 , a 3 = 1 a 1 = 0 , a 2 = 2 , a 3 = 1 a_(1)=0,a_(2)=2,a_(3)=-1a_1 = 0, a_2 = 2, a_3 = -1a1=0,a2=2,a3=1
  2. b 1 = 1 , b 2 = 1 , b 3 = 0 b 1 = 1 , b 2 = 1 , b 3 = 0 b_(1)=1,b_(2)=1,b_(3)=0b_1 = 1, b_2 = 1, b_3 = 0b1=1,b2=1,b3=0
  3. c 1 = 1 , c 2 = 1 , c 3 = 1 c 1 = 1 , c 2 = 1 , c 3 = 1 c_(1)=-1,c_(2)=1,c_(3)=1c_1 = -1, c_2 = 1, c_3 = 1c1=1,c2=1,c3=1
Thus, the vectors ( 1 , 1 , 2 ) ( 1 , 1 , 2 ) (1,-1,2)(1, -1, 2)(1,1,2), ( 1 , 1 , 2 ) ( 1 , 1 , 2 ) (1,1,2)(1, 1, 2)(1,1,2), and ( 2 , 0 , 0 ) ( 2 , 0 , 0 ) (2,0,0)(2, 0, 0)(2,0,0) can be expressed in terms of the basis B B BBB as:
  1. ( 1 , 1 , 2 ) = 0 ( 0 , 1 , 1 ) + 2 ( 1 , 0 , 1 ) + ( 1 ) ( 1 , 1 , 0 ) ( 1 , 1 , 2 ) = 0 ( 0 , 1 , 1 ) + 2 ( 1 , 0 , 1 ) + ( 1 ) ( 1 , 1 , 0 ) (1,-1,2)=0*(0,1,1)+2*(1,0,1)+(-1)*(1,1,0)(1, -1, 2) = 0 \cdot (0,1,1) + 2 \cdot (1,0,1) + (-1) \cdot (1,1,0)(1,1,2)=0(0,1,1)+2(1,0,1)+(1)(1,1,0)
  2. ( 1 , 1 , 2 ) = 1 ( 0 , 1 , 1 ) + 1 ( 1 , 0 , 1 ) + 0 ( 1 , 1 , 0 ) ( 1 , 1 , 2 ) = 1 ( 0 , 1 , 1 ) + 1 ( 1 , 0 , 1 ) + 0 ( 1 , 1 , 0 ) (1,1,2)=1*(0,1,1)+1*(1,0,1)+0*(1,1,0)(1, 1, 2) = 1 \cdot (0,1,1) + 1 \cdot (1,0,1) + 0 \cdot (1,1,0)(1,1,2)=1(0,1,1)+1(1,0,1)+0(1,1,0)
  3. ( 2 , 0 , 0 ) = 1 ( 0 , 1 , 1 ) + 1 ( 1 , 0 , 1 ) + 1 ( 1 , 1 , 0 ) ( 2 , 0 , 0 ) = 1 ( 0 , 1 , 1 ) + 1 ( 1 , 0 , 1 ) + 1 ( 1 , 1 , 0 ) (2,0,0)=-1*(0,1,1)+1*(1,0,1)+1*(1,1,0)(2, 0, 0) = -1 \cdot (0,1,1) + 1 \cdot (1,0,1) + 1 \cdot (1,1,0)(2,0,0)=1(0,1,1)+1(1,0,1)+1(1,1,0)

Step 3: Form the Matrix Representation

The matrix representation [ T ] B [ T ] B [T]_(B)[T]_B[T]B of T T TTT with respect to the basis B B BBB is formed by using these coefficients as columns:
[ T ] B = ( 0 1 1 2 1 1 1 0 1 ) [ T ] B = 0 1 1 2 1 1 1 0 1 [T]_(B)=([0,1,-1],[2,1,1],[-1,0,1])[T]_B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}[T]B=(011211101)

Conclusion

The matrix representation of the linear operator T T TTT with respect to the ordered basis B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B = { ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) } B={(0,1,1),(1,0,1),(1,1,0)}B = \{(0,1,1), (1,0,1), (1,1,0)\}B={(0,1,1),(1,0,1),(1,1,0)} is:
[ T ] B = ( 0 1 1 2 1 1 1 0 1 ) [ T ] B = 0 1 1 2 1 1 1 0 1 [T]_(B)=([0,1,-1],[2,1,1],[-1,0,1])[T]_B = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}[T]B=(011211101)
1.(c) दिया गया है :
Δ ( x ) = | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | Δ ( x ) = f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) Delta(x)=|[f(x+alpha),f(x+2alpha),f(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|\Delta(x)=\left|\begin{array}{ccc} f(x+\alpha) & f(x+2 \alpha) & f(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|Δ(x)=|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|
जहाँ f f fff एक वास्तविक-मान अवकलनीय फलन है तथा α α alpha\alphaα एक अचर है। lim x 0 Δ ( x ) x lim x 0 Δ ( x ) x lim_(x rarr0)(Delta(x))/(x)\lim _{x \rightarrow 0} \frac{\Delta(x)}{x}limx0Δ(x)x को ज्ञात कीजिए ।
Given :
Δ ( x ) = | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | Δ ( x ) = f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) Delta(x)=|[f(x+alpha),f(x+2alpha),f(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|\Delta(x)=\left|\begin{array}{ccc} f(x+\alpha) & f(x+2 \alpha) & f(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|Δ(x)=|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|
where f f fff is a real valued differentiable function and α α alpha\alphaα is a constant. Find lim x 0 Δ ( x ) x lim x 0 Δ ( x ) x lim_(x rarr0)(Delta(x))/(x)\lim _{x \rightarrow 0} \frac{\Delta(x)}{x}limx0Δ(x)x.
Answer:

Introduction

The problem asks us to find the limit of Δ ( x ) x Δ ( x ) x (Delta(x))/(x)\frac{\Delta(x)}{x}Δ(x)x as x 0 x 0 x rarr0x \rightarrow 0x0, where Δ ( x ) Δ ( x ) Delta(x)\Delta(x)Δ(x) is a determinant involving a real-valued differentiable function f ( x ) f ( x ) f(x)f(x)f(x) and a constant α α alpha\alphaα.

Assumptions

  • f ( x ) f ( x ) f(x)f(x)f(x) is a real-valued differentiable function.
  • α α alpha\alphaα is a constant.
  • x x xxx is a real number.

Method/Approach

To find the limit, we will:
  1. Examine the determinant Δ ( x ) Δ ( x ) Delta(x)\Delta(x)Δ(x) as x 0 x 0 x rarr0x \rightarrow 0x0 to see if it’s an indeterminate form.
  2. Apply L’Hôpital’s Rule to Δ ( x ) x Δ ( x ) x (Delta(x))/(x)\frac{\Delta(x)}{x}Δ(x)x as x 0 x 0 x rarr0x \rightarrow 0x0.
  3. Use determinant properties to simplify the expression.

Work/Calculations

Step 1: Examine Δ ( x ) Δ ( x ) Delta(x)\Delta(x)Δ(x) as x 0 x 0 x rarr0x \rightarrow 0x0

As x 0 x 0 x rarr0x \rightarrow 0x0, the determinant becomes:
lim x 0 Δ x x = lim x 0 | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | x lim x 0 Δ x x = lim x 0 f ( x + α )      f ( x + 2 α )      f ( x + 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) x lim_(x rarr0)(Delta x)/(x)=lim_(x rarr0)(|[f(x+alpha),f(x+2alpha),f(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|)/(x)\lim _{x \rightarrow 0} \frac{\Delta x}{x}=\lim _{x \rightarrow 0} \frac{\left|\begin{array}{lll} f(x+\alpha) & f(x+2 \alpha) & f(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|}{x}limx0Δxx=limx0|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|x
If we apply direct x 0 x 0 x rarr0x \rightarrow 0x0 to Numerator :
Δ = | f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | Δ = f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) Delta=|[f(alpha),f(2alpha),f(3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|\Delta=\left|\begin{array}{ccc} f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|Δ=|f(α)f(2α)f(3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|
Notice that the first and second rows are identical. Due to the determinant property, if any two rows (or columns) are identical, the determinant is zero. Therefore, Δ = 0 Δ = 0 Delta=0\Delta= 0Δ=0.
The denominator x x xxx also becomes zero as x 0 x 0 x rarr0x \rightarrow 0x0.
lim x 0 Δ x x = lim x 0 | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | x ( 0 0 ) lim x 0 Δ x x = lim x 0 f ( x + α )      f ( x + 2 α )      f ( x + 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) x 0 0 lim_(x rarr0)(Delta x)/(x)=lim_(x rarr0)(|[f(x+alpha),f(x+2alpha),f(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|)/(x)((0)/(0))\lim _{x \rightarrow 0} \frac{\Delta x}{x}=\lim _{x \rightarrow 0} \frac{\left|\begin{array}{lll} f(x+\alpha) & f(x+2 \alpha) & f(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|}{x}\left(\frac{0}{0}\right)limx0Δxx=limx0|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|x(00)
So, we have an indeterminate form 0 0 0 0 (0)/(0)\frac{0}{0}00, and we can apply L’Hôpital’s Rule.

Step 2: Apply L’Hôpital’s Rule

Differentiating the numerator Δ ( x ) Δ ( x ) Delta(x)\Delta(x)Δ(x) with respect to x x xxx gives:
d d x Δ ( x ) = | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | d d x Δ ( x ) = f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) (d)/(dx)Delta(x)=|[f^(‘)(x+alpha),f^(‘)(x+2alpha),f^(‘)(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|\frac{d}{dx}\Delta(x) = \left|\begin{array}{ccc} f'(x+\alpha) & f'(x+2 \alpha) & f'(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|ddxΔ(x)=|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|
The derivative of the denominator x x xxx is 1 1 111.
lim x 0 Δ x x = lim x 0 | f ( x + α ) f ( x + 2 α ) f ( x + 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | 1 lim x 0 Δ x x = lim x 0 f ( x + α )      f ( x + 2 α )      f ( x + 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) f ( α )      f ( 2 α )      f ( 3 α ) 1 lim_(x rarr0)(Delta x)/(x)=lim_(x rarr0)(|[f^(‘)(x+alpha),f^(‘)(x+2alpha),f^(‘)(x+3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|)/(1)\lim _{x \rightarrow 0} \frac{\Delta x}{x}=\lim _{x \rightarrow 0} \frac{\left|\begin{array}{lll} f^{\prime}(x+\alpha) & f^{\prime}(x+2 \alpha) & f^{\prime}(x+3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|}{1}limx0Δxx=limx0|f(x+α)f(x+2α)f(x+3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|1

Step 3: Use Determinant Properties

As x 0 x 0 x rarr0x \rightarrow 0x0, the differentiated determinant becomes:
| f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) |[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|\left|\begin{array}{ccc} f'(\alpha) & f'(2 \alpha) & f'(3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right||f(α)f(2α)f(3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|
Notice that the first and third rows are identical. Therefore, the determinant is zero.
lim x 0 Δ x x = | f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) | lim x 0 Δ x x = 0 lim x 0 Δ x x = f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) f ( α ) f ( 2 α ) f ( 3 α ) lim x 0 Δ x x = 0 {:[lim_(x rarr0)(Delta x)/(x)=|[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)],[f(alpha),f(2alpha),f(3alpha)],[f^(‘)(alpha),f^(‘)(2alpha),f^(‘)(3alpha)]|],[lim_(x rarr0)(Delta x)/(x)=0]:}\begin{aligned} &\lim _{x \rightarrow 0} \frac{\Delta x}{x}=\left|\begin{array}{lll} f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \\ f(\alpha) & f(2 \alpha) & f(3 \alpha) \\ f^{\prime}(\alpha) & f^{\prime}(2 \alpha) & f^{\prime}(3 \alpha) \end{array}\right|\\ &\lim _{x \rightarrow 0} \frac{\Delta x}{x}=0 \end{aligned}limx0Δxx=|f(α)f(2α)f(3α)f(α)f(2α)f(3α)f(α)f(2α)f(3α)|limx0Δxx=0

Conclusion

The limit lim x 0 Δ ( x ) x = 0 lim x 0 Δ ( x ) x = 0 lim_(x rarr0)(Delta(x))/(x)=0\lim _{x \rightarrow 0} \frac{\Delta(x)}{x} = 0limx0Δ(x)x=0, as confirmed by L’Hôpital’s Rule and determinant properties.
1.(d) दर्शाइए कि e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x=1excosx=1 के किन्हीं दो मूलों के बीच में e x sin x 1 = 0 e x sin x 1 = 0 e^(x)sin x-1=0e^x \sin x-1=0exsinx1=0 का कम से कम एक मूल विद्यमान है ।
Show that between any two roots of e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x=1excosx=1, there exists at least one root of e x sin x 1 = 0 e x sin x 1 = 0 e^(x)sin x-1=0e^x \sin x-1=0exsinx1=0
Answer:

Introduction

The problem asks us to prove that between any two roots of e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x = 1excosx=1, there exists at least one root of e x sin x 1 = 0 e x sin x 1 = 0 e^(x)sin x-1=0e^x \sin x – 1 = 0exsinx1=0.

Assumptions

  • e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x = 1excosx=1 and e x sin x 1 = 0 e x sin x 1 = 0 e^(x)sin x-1=0e^x \sin x – 1 = 0exsinx1=0 are continuous and differentiable functions.
  • x x xxx is a real number.
  • a a aaa and b b bbb are two distinct roots of e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x = 1excosx=1.

Method/Approach

To prove the statement, we will:
  1. Define a function f ( x ) f ( x ) f(x)f(x)f(x) and examine its properties.
  2. Apply Rolle’s Theorem to show that a root of e x cos x + 1 = 0 e x cos x + 1 = 0 e^(x)cos x+1=0e^x \cos x + 1 = 0excosx+1=0 exists between a a aaa and b b bbb.

Work/Calculations

Step 1: Define f ( x ) f ( x ) f(x)f(x)f(x) and Examine Its Properties

Consider f ( x ) = e x sin x 1 = 0 f ( x ) = e x sin x 1 = 0 f(x)=e^(x)sin x-1=0f(x)=e^x \sin x-1=0f(x)=exsinx1=0
f ( x ) e x sin x 1 = 0 f ( x ) e x sin x = 1 f ( x ) sin x = e x f ( x ) e x sin x = 0 f ( x ) e x sin x 1 = 0 f ( x ) e x sin x = 1 f ( x ) sin x = e x f ( x ) e x sin x = 0 {:[f(x)-=e^(x)sin x-1=0],[f(x)-=e^(x)sin x=1],[f(x)-=sin x=e^(-x)],[f(x)-=e^(-x)-sin x=0]:}\begin{aligned} f(x) & \equiv e^x \sin x-1=0 \\ f(x) & \equiv e^x \sin x=1 \\ f(x)& \equiv \sin x=e^{-x} \\ f(x)& \equiv e^{-x}-\sin x=0 \end{aligned}f(x)exsinx1=0f(x)exsinx=1f(x)sinx=exf(x)exsinx=0

Step 2: Apply Rolle’s Theorem

Rolle’s Theorem states that if a function f ( x ) f ( x ) f(x)f(x)f(x) is continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] and differentiable on ( a , b ) ( a , b ) (a,b)(a, b)(a,b), and f ( a ) = f ( b ) f ( a ) = f ( b ) f(a)=f(b)f(a) = f(b)f(a)=f(b), then there exists at least one c c ccc in ( a , b ) ( a , b ) (a,b)(a, b)(a,b) such that f ( c ) = 0 f ( c ) = 0 f^(‘)(c)=0f'(c) = 0f(c)=0.
In our Case
f ( x ) = e x sin x x [ a , b ] f ( x ) = e x sin x x [ a , b ] f(x)=e^(-x)-sin x AA x in[a,b]f(x)=e^{-x}-\sin x \forall x \in[a, b]f(x)=exsinxx[a,b]
f ( x ) = e x cos x f ( x ) = e x cos x f^(‘)(x)=-e^(-x)-cos xf^{\prime}(x)=-e^{-x}-\cos xf(x)=excosx
Let a and b , a b b , a b b,a!=bb, a \neq bb,ab, be any two roots of f(x) then
f ( a ) e a sin a = 0 f ( b ) e b sin b = 0 f ( a ) e a sin a = 0 f ( b ) e b sin b = 0 {:[f(a)-=e^(-a)-sin a=0],[f(b)-=e^(-b)-sin b=0]:}\begin{aligned} & f(a) \equiv e^{-a}-\sin a=0 \\ & f(b) \equiv e^{-b}-\sin b=0 \end{aligned}f(a)easina=0f(b)ebsinb=0
Clearly f f fff is continuous in [ a , b ] [ a , b ] [a,b][a, b][a,b] and derivable in ] a , b [ ] a , b [ ]a,b[] a, b[]a,b[. Also f ( a ) = f ( b ) = 0 f ( a ) = f ( b ) = 0 f(a)=f(b)=0f(a)=f(b)=0f(a)=f(b)=0 Therefore the hypothesis of Rolle’s Theorem is satisfied by [a, b].
Therefore there exists c ] a , b [ c ] a , b cin]a,b[:}\mathrm{c} \in] \mathrm{a}, \mathrm{b}\left[\right.c]a,b[ such that f ( c ) = 0 f ( c ) = 0 f^(‘)(c)=0\mathrm{f}^{\prime}(\mathrm{c})=0f(c)=0 which implies
f ( c ) = 0 e c cos c = 0 e c = cos c 1 = e c cos c e c cos c + 1 = 0 f ( c ) = 0 e c cos c = 0 e c = cos c 1 = e c cos c e c cos c + 1 = 0 {:[f^(‘)(c)=0],[-e^(-c)-cos c=0],[-e^(-c)=cos c],[-1=e^(c)cos c],[e^(c)cos c+1=0]:}\begin{aligned} & f^{\prime}(c)=0 \\ & -e^{-c}-\cos c=0 \\ & -e^{-c}=\cos c \\ & -1=e^c \cos c \\ & e^c \cos c+1=0 \end{aligned}f(c)=0eccosc=0ec=cosc1=eccosceccosc+1=0
So e x cos x + 1 = 0 e x cos x + 1 = 0 e^(x)cos x+1=0\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}+1=0excosx+1=0 has a root c c c\mathrm{c}c for some c ] a , b [ c ] a , b [ cin]a,b[\mathrm{c} \in ]\mathrm{a}, \mathrm{b}[c]a,b[.

Conclusion

Between any two roots a a aaa and b b bbb of e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x = 1excosx=1, there exists at least one root c c ccc of e x cos x + 1 = 0 e x cos x + 1 = 0 e^(x)cos x+1=0e^x \cos x + 1 = 0excosx+1=0, as proven by Rolle’s Theorem. This also implies that between any two roots of e x cos x = 1 e x cos x = 1 e^(x)cos x=1e^x \cos x = 1excosx=1, there exists at least one root of e x sin x 1 = 0 e x sin x 1 = 0 e^(x)sin x-1=0e^x \sin x – 1 = 0exsinx1=0.
1.(e) उस बेलन का समीकरण ज्ञात कीजिए जिसके जनक, रेखा :
x = y 2 = z 3 x = y 2 = z 3 x=-(y)/(2)=(z)/(3)x=-\frac{y}{2}=\frac{z}{3}x=y2=z3 के समानान्तर हैं
तथा जिसका निर्देशक-वक्र x 2 + 2 y 2 = 1 , z = 0 x 2 + 2 y 2 = 1 , z = 0 x^(2)+2y^(2)=1,z=0x^2+2 y^2=1, z=0x2+2y2=1,z=0 है।
Find the equation of the cylinder whose generators are parallel to the line x = y 2 = z 3 x = y 2 = z 3 x=-(y)/(2)=(z)/(3)x=-\frac{y}{2}=\frac{z}{3}x=y2=z3 and whose guiding curve is x 2 + 2 y 2 = 1 , z = 0 x 2 + 2 y 2 = 1 , z = 0 x^(2)+2y^(2)=1,z=0x^2+2 y^2=1, z=0x2+2y2=1,z=0.
Answer:

Introduction

The problem asks us to find the equation of a cylinder whose generators are parallel to the line x = y 2 = z 3 x = y 2 = z 3 x=-(y)/(2)=(z)/(3)x = -\frac{y}{2} = \frac{z}{3}x=y2=z3 and whose guiding curve is x 2 + 2 y 2 = 1 x 2 + 2 y 2 = 1 x^(2)+2y^(2)=1x^2 + 2y^2 = 1x2+2y2=1 at z = 0 z = 0 z=0z = 0z=0.

Assumptions

  1. The cylinder exists in a 3D Cartesian coordinate system.
  2. The guiding curve of the cylinder lies in the plane z = 0 z = 0 z=0z=0z=0.

Definitions

  • Generator: A line that, when moved parallel to itself along a curve, defines a surface.
  • Guiding Curve: The curve along which the generator moves to form the surface.

Method/Approach

  1. Write the equation of a generator parallel to the given line, passing through a point ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1).
  2. Find the point where this generator intersects the plane z = 0 z = 0 z=0z=0z=0.
  3. Use the equation of the guiding curve to find the locus of points ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) that form the cylinder.

Work/Calculations

Step 1: Equation of the Generator

Given the equation of the line as x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(-2)=(z)/(3)\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}x1=y2=z3, and a point ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) on the generator, the equation of the generator can be written as:
x x 1 1 = y y 1 2 = z z 1 3 x x 1 1 = y y 1 2 = z z 1 3 (x-x_(1))/(1)=(y-y_(1))/(-2)=(z-z_(1))/(3)\frac{x-x_1}{1} = \frac{y-y_1}{-2} = \frac{z-z_1}{3}xx11=yy12=zz13

Step 2: Intersection with Plane z = 0 z = 0 z=0z=0z=0

This generator intersects the plane z = 0 z = 0 z=0z=0z=0, yielding:
x x 1 1 = y y 1 2 = 0 z 1 3 x x 1 1 = y y 1 2 = 0 z 1 3 (x-x_(1))/(1)=(y-y_(1))/(-2)=(0-z_(1))/(3)\frac{x-x_1}{1} = \frac{y-y_1}{-2} = \frac{0-z_1}{3}xx11=yy12=0z13
Simplifying, we get:
x = x 1 z 1 3 , y = y 1 + 2 z 1 3 x = x 1 z 1 3 , y = y 1 + 2 z 1 3 x=x_(1)-(z_(1))/(3),quad y=y_(1)+(2z_(1))/(3)x = x_1 – \frac{z_1}{3}, \quad y = y_1 + \frac{2z_1}{3}x=x1z13,y=y1+2z13

Step 3: Locus of Points on the Generator

The point ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) lies on the ellipse x 2 + 2 y 2 = 1 x 2 + 2 y 2 = 1 x^(2)+2y^(2)=1x^2 + 2y^2 = 1x2+2y2=1. Substituting the values of x x xxx and y y yyy into this equation, we get:
( x 1 z 1 3 ) 2 + 2 ( y 1 + 2 z 1 3 ) 2 = 1 x 1 z 1 3 2 + 2 y 1 + 2 z 1 3 2 = 1 (x_(1)-(z_(1))/(3))^(2)+2(y_(1)+(2z_(1))/(3))^(2)=1\left(x_1 – \frac{z_1}{3}\right)^2 + 2\left(y_1 + \frac{2z_1}{3}\right)^2 = 1(x1z13)2+2(y1+2z13)2=1
( 3 x 1 z 1 ) 2 + 2 ( 3 y 1 + 2 z 1 ) 2 = 9 9 x 1 2 + z 1 2 6 x 1 z 1 + 2 ( 9 y 1 2 + 4 z 1 2 + 12 y 1 z 1 ) = 9 9 x 1 2 + 18 y 1 2 + 9 z 1 2 6 x 1 z 1 + 24 y 1 z 1 9 = 0 locus of ( x 1 , y 1 , z 1 ) is 3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 3 x 1 z 1 2 + 2 3 y 1 + 2 z 1 2 = 9 9 x 1 2 + z 1 2 6 x 1 z 1 + 2 9 y 1 2 + 4 z 1 2 + 12 y 1 z 1 = 9 9 x 1 2 + 18 y 1 2 + 9 z 1 2 6 x 1 z 1 + 24 y 1 z 1 9 = 0 locus of x 1 , y 1 , z 1 is 3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 {:[:.quad(3x_(1)-z_(1))^(2)+2(3y_(1)+2z_(1))^(2)=9],[:.quad9x_(1)^(2)+z_(1)^(2)-6x_(1)z_(1)+2(9y_(1)^(2)+4z_(1)^(2)+12y_(1)z_(1))=9],[:.quad9x_(1)^(2)+18y_(1)^(2)+9z_(1)^(2)-6x_(1)z_(1)+24y_(1)z_(1)-9=0],[:.quad” locus of “(x_(1),y_(1),z_(1))” is “3x^(2)+6y^(2)+3z^(2)-2xz+8yz-3=0]:}\begin{aligned} & \therefore \quad\left(3 x_1-z_1\right)^2+2\left(3 y_1+2 z_1\right)^2=9 \\ & \therefore \quad 9 x_1^2+z_1^2-6 x_1 z_1+2\left(9 y_1^2+4 z_1^2+12 y_1 z_1\right)=9 \\ & \therefore \quad 9 x_1^2+18 y_1^2+9 z_1^2-6 x_1 z_1+24 y_1 z_1-9=0 \\ & \therefore \quad \text { locus of }\left(x_1, y_1, z_1\right) \text { is } 3 x^2+6 y^2+3 z^2-2 x z+8 y z-3=0 \end{aligned}(3x1z1)2+2(3y1+2z1)2=99x12+z126x1z1+2(9y12+4z12+12y1z1)=99x12+18y12+9z126x1z1+24y1z19=0 locus of (x1,y1,z1) is 3x2+6y2+3z22xz+8yz3=0
Simplifying, the locus of ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) becomes:
3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 3x^(2)+6y^(2)+3z^(2)-2xz+8yz-3=03x^2 + 6y^2 + 3z^2 – 2xz + 8yz – 3 = 03x2+6y2+3z22xz+8yz3=0

Conclusion

The equation of the cylinder whose generators are parallel to the line x = y 2 = z 3 x = y 2 = z 3 x=-(y)/(2)=(z)/(3)x = -\frac{y}{2} = \frac{z}{3}x=y2=z3 and whose guiding curve is x 2 + 2 y 2 = 1 x 2 + 2 y 2 = 1 x^(2)+2y^(2)=1x^2 + 2y^2 = 1x2+2y2=1 at z = 0 z = 0 z=0z = 0z=0 is 3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 3 x 2 + 6 y 2 + 3 z 2 2 x z + 8 y z 3 = 0 3x^(2)+6y^(2)+3z^(2)-2xz+8yz-3=03x^2 + 6y^2 + 3z^2 – 2xz + 8yz – 3 = 03x2+6y2+3z22xz+8yz3=0.
2.(a) दर्शाइए कि वे समतल, जो कि शंकु a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2+b y^2+c z^2=0ax2+by2+cz2=0 को लंब जनकों में काटते हैं, शंकु x 2 b + c + y 2 c + a + z 2 a + b = 0 x 2 b + c + y 2 c + a + z 2 a + b = 0 (x^(2))/(b+c)+(y^(2))/(c+a)+(z^(2))/(a+b)=0\frac{x^2}{b+c}+\frac{y^2}{c+a}+\frac{z^2}{a+b}=0x2b+c+y2c+a+z2a+b=0 को स्पर्श करते हैं ।
Show that the planes, which cut the cone a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2+b y^2+c z^2=0ax2+by2+cz2=0 in perpendicular generators, touch the cone x 2 b + c + y 2 c + a + z 2 a + b = 0 x 2 b + c + y 2 c + a + z 2 a + b = 0 (x^(2))/(b+c)+(y^(2))/(c+a)+(z^(2))/(a+b)=0\frac{x^2}{b+c}+\frac{y^2}{c+a}+\frac{z^2}{a+b}=0x2b+c+y2c+a+z2a+b=0.
Answer:

Introduction

We are tasked with proving that any plane cutting the cone a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2 + b y^2 + c z^2 = 0ax2+by2+cz2=0 along perpendicular generators also touches the cone x 2 b + c + y 2 c + a + z 2 a + b = 0 x 2 b + c + y 2 c + a + z 2 a + b = 0 (x^(2))/(b+c)+(y^(2))/(c+a)+(z^(2))/(a+b)=0\frac{x^2}{b+c} + \frac{y^2}{c+a} + \frac{z^2}{a+b} = 0x2b+c+y2c+a+z2a+b=0.

Assumptions

  1. The vertex of the given cone is at ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0).
  2. The plane passes through this vertex.

Definitions

  • a , b , c a , b , c a,b,ca, b, ca,b,c: Coefficients of the original cone equation.
  • u , v , w u , v , w u,v,wu, v, wu,v,w: Coefficients of the plane equation.
  • l , m , n l , m , n l,m,nl, m, nl,m,n: Direction cosines of the intersecting lines between the cone and the plane.

Step 1: Establish Cone and Plane Equations

The given cone equation is:
a x 2 + b y 2 + c z 2 = 0 (Equation 1) a x 2 + b y 2 + c z 2 = 0 (Equation 1) ax^(2)+by^(2)+cz^(2)=0quad(Equation 1)a x^2 + b y^2 + c z^2 = 0 \quad \text{(Equation 1)}ax2+by2+cz2=0(Equation 1)
Let the equation of any plane through the vertex of the cone be:
u x + v y + w z = 0 (Equation 2) u x + v y + w z = 0 (Equation 2) ux+vy+wz=0quad(Equation 2)u x + v y + w z = 0 \quad \text{(Equation 2)}ux+vy+wz=0(Equation 2)

Step 2: Equations of Intersecting Lines

Assume that the lines formed by the intersection of the cone and the plane are:
x l = y m = z n (Equation 3) x l = y m = z n (Equation 3) (x)/(l)=(y)/(m)=(z)/(n)quad(Equation 3)\frac{x}{l} = \frac{y}{m} = \frac{z}{n} \quad \text{(Equation 3)}xl=ym=zn(Equation 3)
Applying this to Equation 1, we get:
a l 2 + b m 2 + c n 2 = 0 (Equation 4) a l 2 + b m 2 + c n 2 = 0 (Equation 4) al^(2)+bm^(2)+cn^(2)=0quad(Equation 4)a l^2 + b m^2 + c n^2 = 0 \quad \text{(Equation 4)}al2+bm2+cn2=0(Equation 4)
And combining with Equation 2, we have:
u l + v m + w n = 0 (Equation 5) u l + v m + w n = 0 (Equation 5) ul+vm+wn=0quad(Equation 5)u l + v m + w n = 0 \quad \text{(Equation 5)}ul+vm+wn=0(Equation 5)

Step 3: Elaborating the Condition for Perpendicular Generators

Eliminating n n nnn

Eliminating n n nnn between Equation 4 and Equation 5 gives:
( a w 2 + c u 2 ) l 2 + 2 c u v l m + ( b w 2 + c v 2 ) m 2 = 0 (Equation 6) a w 2 + c u 2 l 2 + 2 c u v l m + b w 2 + c v 2 m 2 = 0 (Equation 6) (aw^(2)+cu^(2))l^(2)+2cuvlm+(bw^(2)+cv^(2))m^(2)=0quad(Equation 6)\left( aw^2 + cu^2 \right) l^2 + 2cuvlm + \left( bw^2 + cv^2 \right) m^2 = 0 \quad \text{(Equation 6)}(aw2+cu2)l2+2cuvlm+(bw2+cv2)m2=0(Equation 6)

Roots and Products

Since Equation 6 is quadratic in l m l m (l)/(m)\frac{l}{m}lm, it shows that the plane cuts the cone in two lines. The product of the roots l 1 m 1 l 1 m 1 (l_(1))/(m_(1))\frac{l_1}{m_1}l1m1 and l 2 m 2 l 2 m 2 (l_(2))/(m_(2))\frac{l_2}{m_2}l2m2 is:
l 1 m 1 l 2 m 2 = b w 2 + c v 2 a w 2 + c u 2 (Equation 7) l 1 m 1 l 2 m 2 = b w 2 + c v 2 a w 2 + c u 2 (Equation 7) (l_(1))/(m_(1))*(l_(2))/(m_(2))=(bw^(2)+cv^(2))/(aw^(2)+cu^(2))quad(Equation 7)\frac{l_1}{m_1} \cdot \frac{l_2}{m_2} = \frac{bw^2 + cv^2}{aw^2 + cu^2} \quad \text{(Equation 7)}l1m1l2m2=bw2+cv2aw2+cu2(Equation 7)
By symmetry, we write:
l 1 l 2 b w 2 + c v 2 = m 1 m 2 c u 2 + a w 2 = n 1 n 2 a v 2 + b u 2 (Equation 8) l 1 l 2 b w 2 + c v 2 = m 1 m 2 c u 2 + a w 2 = n 1 n 2 a v 2 + b u 2 (Equation 8) (l_(1)l_(2))/(bw^(2)+cv^(2))=(m_(1)m_(2))/(cu^(2)+aw^(2))=(n_(1)n_(2))/(av^(2)+bu^(2))quad(Equation 8)\frac{l_1 l_2}{bw^2 + cv^2} = \frac{m_1 m_2}{cu^2 + aw^2} = \frac{n_1 n_2}{av^2 + bu^2} \quad \text{(Equation 8)}l1l2bw2+cv2=m1m2cu2+aw2=n1n2av2+bu2(Equation 8)

Step 4: Condition for Perpendicular Generators

The lines will be perpendicular if l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=0l_1 l_2 + m_1 m_2 + n_1 n_2 = 0l1l2+m1m2+n1n2=0, which simplifies to:
( b w 2 + c v 2 ) + ( c u 2 + a w 2 ) + ( a v 2 + b u 2 ) = 0 (Equation 9) ( b w 2 + c v 2 ) + ( c u 2 + a w 2 ) + ( a v 2 + b u 2 ) = 0 (Equation 9) (bw^(2)+cv^(2))+(cu^(2)+aw^(2))+(av^(2)+bu^(2))=0quad(Equation 9)(bw^2 + cv^2) + (cu^2 + aw^2) + (av^2 + bu^2) = 0 \quad \text{(Equation 9)}(bw2+cv2)+(cu2+aw2)+(av2+bu2)=0(Equation 9)
Rearranging, this yields:
( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (Equation 10) ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (Equation 10) (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0quad(Equation 10)(b + c)u^2 + (c + a)v^2 + (a + b)w^2 = 0 \quad \text{(Equation 10)}(b+c)u2+(c+a)v2+(a+b)w2=0(Equation 10)
In general ( b + c ) x 2 + ( c + a ) y 2 + ( a + b ) z 2 = 0 (Equation 11) ( b + c ) x 2 + ( c + a ) y 2 + ( a + b ) z 2 = 0 (Equation 11) (b+c)x^(2)+(c+a)y^(2)+(a+b)z^(2)=0quad(Equation 11)(b + c)x^2 + (c + a)y^2 + (a + b)z^2 = 0 \quad \text{(Equation 11)}(b+c)x2+(c+a)y2+(a+b)z2=0(Equation 11)

Step 4: Reciprocal Cone

Now we will find reciprocal cone of ( b + c ) x 2 + ( c + a ) y 2 + ( a + b ) z 2 = 0 (Equation 11) ( b + c ) x 2 + ( c + a ) y 2 + ( a + b ) z 2 = 0 (Equation 11) (b+c)x^(2)+(c+a)y^(2)+(a+b)z^(2)=0quad(Equation 11)(b+c) x^2+(c+a) y^2+(a+b) z^2=0 \quad \text{(Equation 11)}(b+c)x2+(c+a)y2+(a+b)z2=0(Equation 11)
Let the cone reciprocal to the cone (11) be
A x 2 + B y 2 + C z 2 + 2 F y z + 2 G z x + 2 H x y = 0 (Equation 12) A x 2 + B y 2 + C z 2 + 2 F y z + 2 G z x + 2 H x y = 0 (Equation 12) Ax^(2)+By^(2)+Cz^(2)+2Fyz+2Gzx+2Hxy=0quad(Equation 12)A x^2+B y^2+C z^2+2 F y z+2 G z x+2 H x y=0 \quad \text{(Equation 12)}Ax2+By2+Cz2+2Fyz+2Gzx+2Hxy=0(Equation 12)
On Comparing equation (11) with a x 2 + b y 2 + c z 2 + 2 f y z + 2 g z x + 2 h x y = 0 . a x 2 + b y 2 + c z 2 + 2 f y z + 2 g z x + 2 h x y = 0 . ax^(2)+by^(2)+cz^(2)+2fyz+2gzx+2hxy=0.a x^2+b y^2+c z^2+2 f y z+2 g z x+2 h x y=0 .ax2+by2+cz2+2fyz+2gzx+2hxy=0.
we have
a = b + c , b = c + a , c = a + b , f = 0 , g = 0 , h = 0 . a = b + c , b = c + a , c = a + b , f = 0 , g = 0 , h = 0 . {:quad a=b+c”,”b=c+a”,”c=a+b”,”f=0″,”g=0″,”h=0.:}\begin{gathered} \quad a=b+c, b=c+a, c=a+b, f=0, g=0, h=0 . \\ \end{gathered}a=b+c,b=c+a,c=a+b,f=0,g=0,h=0.
A = b c f 2 A = ( c + a ) ( a + b ) 0 A = ( c + a ) ( a + b ) B = c a g 2 B = ( a + b ) ( b + c ) 0 B = ( a + b ) ( b + c ) C = a b h 2 C = ( b + c ) ( c + a ) 0 C = ( b + c ) ( c + a ) F = g h a f F = 0 G = h b a g G = 0 H = b g a h H = 0 A = b c f 2 A = ( c + a ) ( a + b ) 0 A = ( c + a ) ( a + b ) B = c a g 2 B = ( a + b ) ( b + c ) 0 B = ( a + b ) ( b + c ) C = a b h 2 C = ( b + c ) ( c + a ) 0 C = ( b + c ) ( c + a ) F = g h a f F = 0 G = h b a g G = 0 H = b g a h H = 0 {:[A=bc-f^(2)],[A=(c+a)(a+b)-0],[A=(c+a)(a+b)],[B=ca-g^(2)],[B=(a+b)(b+c)-0],[B=(a+b)(b+c)],[C=ab-h^(2)],[C=(b+c)(c+a)-0],[C=(b+c)(c+a)],[F=gh-af],[F=0],[G=hb-ag],[G=0],[H=bg-ah],[H=0]:}\begin{aligned} & A=b c-f^2 \\ & A=(c+a)(a+b)-0 \\ & A=(c+a)(a+b) \\ & B=ca-g^2 \\ & B=(a+b)(b+c)-0 \\ & B=(a+b)(b+c) \\ & C=a b-h^2 \\ & C=(b+c)(c+a)-0 \\ & C=(b+c)(c+a) \\ & F=g h-a f \\ & F=0 \\ & G=h b-a g \\ & G=0 \\ & H=b g-a h \\ & H=0 \end{aligned}A=bcf2A=(c+a)(a+b)0A=(c+a)(a+b)B=cag2B=(a+b)(b+c)0B=(a+b)(b+c)C=abh2C=(b+c)(c+a)0C=(b+c)(c+a)F=ghafF=0G=hbagG=0H=bgahH=0
Putting these values of A , B , C , F , G , H A , B , C , F , G , H A,B,C,F,G,HA, B, C, F, G, HA,B,C,F,G,H in the equation (12), the required equation of the reciprocal cone is given by
A x 2 + B y 2 + c z 2 + 2 F y z + 2 G z x + 2 H x y = 0 ( c + a ) ( a + b ) x 2 + ( a + b ) ( b + c ) y 2 + ( b + c ) ( c + a ) z 2 = 0 A x 2 + B y 2 + c z 2 + 2 F y z + 2 G z x + 2 H x y = 0 ( c + a ) ( a + b ) x 2 + ( a + b ) ( b + c ) y 2 + ( b + c ) ( c + a ) z 2 = 0 {:[Ax^(2)+By^(2)+cz^(2)+2Fyz+2Gzx+2Hxy=0],[(c+a)(a+b)x^(2)+(a+b)(b+c)y^(2)+(b+c)(c+a)z^(2)=0]:}\begin{aligned} & A x^2+B y^2+c z^2+2 F y z+2 G z x+2 H x y=0 \\ & (c+a)(a+b) x^2+(a+b)(b+c) y^2+(b+c)(c+a) z^2=0 \end{aligned}Ax2+By2+cz2+2Fyz+2Gzx+2Hxy=0(c+a)(a+b)x2+(a+b)(b+c)y2+(b+c)(c+a)z2=0
Divide by ( a + b ) ( b + c ) ( c + a ) ( a + b ) ( b + c ) ( c + a ) (a+b)(b+c)(c+a)(a+b)(b+c)(c+a)(a+b)(b+c)(c+a)
x 2 b + c + y 2 c + a + z 2 a + b = 0 x 2 b + c + y 2 c + a + z 2 a + b = 0 (x^(2))/(b+c)+(y^(2))/(c+a)+(z^(2))/(a+b)=0\frac{x^2}{b+c}+\frac{y^2}{c+a}+\frac{z^2}{a+b}=0x2b+c+y2c+a+z2a+b=0

Conclusion

We have therefore proved that if a plane cuts the cone described by a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2 + b y^2 + c z^2 = 0ax2+by2+cz2=0 in perpendicular generators, it must touch the cone described by x 2 b + c + y 2 c + a + z 2 a + b = 0 x 2 b + c + y 2 c + a + z 2 a + b = 0 (x^(2))/(b+c)+(y^(2))/(c+a)+(z^(2))/(a+b)=0\frac{x^2}{b+c} + \frac{y^2}{c+a} + \frac{z^2}{a+b} = 0x2b+c+y2c+a+z2a+b=0.
2.(b) दिया गया है : f ( x , y ) = | x 2 y 2 | f ( x , y ) = x 2 y 2 f(x,y)=|x^(2)-y^(2)|f(x, y)=\left|x^2-y^2\right|f(x,y)=|x2y2|, तब f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{x y}(0,0)fxy(0,0) तथा f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{y x}(0,0)fyx(0,0) ज्ञात कीजिए । अतः दर्शाइए कि f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f_(xy)(0,0)=f_(yx)(0,0)f_{x y}(0,0)=f_{y x}(0,0)fxy(0,0)=fyx(0,0)
Given that f ( x , y ) = | x 2 y 2 | f ( x , y ) = x 2 y 2 f(x,y)=|x^(2)-y^(2)|f(x, y)=\left|x^2-y^2\right|f(x,y)=|x2y2|. Find f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{x y}(0,0)fxy(0,0) and f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{y x}(0,0)fyx(0,0).
Hence show that f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f_(xy)(0,0)=f_(yx)(0,0)f_{x y}(0,0)=f_{y x}(0,0)fxy(0,0)=fyx(0,0).
Answer:

Introduction

The problem asks us to find f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{xy}(0,0)fxy(0,0) and f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{yx}(0,0)fyx(0,0) for the function f ( x , y ) = | x 2 y 2 | f ( x , y ) = | x 2 y 2 | f(x,y)=|x^(2)-y^(2)|f(x, y) = |x^2 – y^2|f(x,y)=|x2y2| and show that f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f x y ( 0 , 0 ) = f y x ( 0 , 0 ) f_(xy)(0,0)=f_(yx)(0,0)f_{xy}(0,0) = f_{yx}(0,0)fxy(0,0)=fyx(0,0).

Assumptions

  • The function f ( x , y ) = | x 2 y 2 | f ( x , y ) = | x 2 y 2 | f(x,y)=|x^(2)-y^(2)|f(x, y) = |x^2 – y^2|f(x,y)=|x2y2| is defined for all x , y R x , y R x,y inRx, y \in \mathbb{R}x,yR.

Definitions

  • f x f x f_(x)f_xfx and f y f y f_(y)f_yfy are the partial derivatives of f f fff with respect to x x xxx and y y yyy, respectively.
  • f x y f x y f_(xy)f_{xy}fxy and f y x f y x f_(yx)f_{yx}fyx are the second-order mixed partial derivatives of f f fff.

Method/Approach

We will use the limit definitions of partial derivatives to find f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{xy}(0,0)fxy(0,0) and f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{yx}(0,0)fyx(0,0).

Work/Calculations

Step 1: Find f x f x f_(x)f_xfx and f y f y f_(y)f_yfy

The function f ( x , y ) = | x 2 y 2 | f ( x , y ) = | x 2 y 2 | f(x,y)=|x^(2)-y^(2)|f(x, y) = |x^2 – y^2|f(x,y)=|x2y2| can be written as a piecewise function:
f ( x , y ) = { x 2 y 2 , if x 2 y 2 y 2 x 2 , if x 2 < y 2 f ( x , y ) = x 2 y 2 ,      if x 2 y 2 y 2 x 2 ,      if x 2 < y 2 f(x,y)={[x^(2)-y^(2)”,”,”if “x^(2) >= y^(2)],[y^(2)-x^(2)”,”,”if “x^(2) < y^(2)]:}f(x, y) = \begin{cases} x^2 – y^2, & \text{if } x^2 \geq y^2 \\ y^2 – x^2, & \text{if } x^2 < y^2 \end{cases}f(x,y)={x2y2,if x2y2y2x2,if x2<y2
Using the limit definition, we find:
  1. f x ( x , y ) f x ( x , y ) f_(x)(x,y)f_x(x, y)fx(x,y)
f x ( x , y ) = lim h 0 f ( x + h , y ) f ( x , y ) h f x ( x , y ) = lim h 0 f ( x + h , y ) f ( x , y ) h f_(x)(x,y)=lim_(h rarr0)(f(x+h,y)-f(x,y))/(h)f_x(x, y) = \lim_{{h \to 0}} \frac{f(x+h, y) – f(x, y)}{h}fx(x,y)=limh0f(x+h,y)f(x,y)h
For x 2 y 2 x 2 y 2 x^(2) >= y^(2)x^2 \geq y^2x2y2:
f x ( x , y ) = lim h 0 ( x + h ) 2 y 2 ( x 2 y 2 ) h = 2 x f x ( x , y ) = lim h 0 ( x + h ) 2 y 2 ( x 2 y 2 ) h = 2 x f_(x)(x,y)=lim_(h rarr0)((x+h)^(2)-y^(2)-(x^(2)-y^(2)))/(h)=2xf_x(x, y) = \lim_{{h \to 0}} \frac{(x+h)^2 – y^2 – (x^2 – y^2)}{h} = 2xfx(x,y)=limh0(x+h)2y2(x2y2)h=2x
For x 2 < y 2 x 2 < y 2 x^(2) < y^(2)x^2 < y^2x2<y2:
f x ( x , y ) = lim h 0 y 2 ( x + h ) 2 ( y 2 x 2 ) h = 2 x f x ( x , y ) = lim h 0 y 2 ( x + h ) 2 ( y 2 x 2 ) h = 2 x f_(x)(x,y)=lim_(h rarr0)(y^(2)-(x+h)^(2)-(y^(2)-x^(2)))/(h)=-2xf_x(x, y) = \lim_{{h \to 0}} \frac{y^2 – (x+h)^2 – (y^2 – x^2)}{h} = -2xfx(x,y)=limh0y2(x+h)2(y2x2)h=2x
So, f x ( x , y ) f x ( x , y ) f_(x)(x,y)f_x(x, y)fx(x,y) is:
f x ( x , y ) = { 2 x , if x 2 y 2 2 x , if x 2 < y 2 f x ( x , y ) = 2 x ,      if x 2 y 2 2 x ,      if x 2 < y 2 f_(x)(x,y)={[2x”,”,”if “x^(2) >= y^(2)],[-2x”,”,”if “x^(2) < y^(2)]:}f_x(x, y) = \begin{cases} 2x, & \text{if } x^2 \geq y^2 \\ -2x, & \text{if } x^2 < y^2 \end{cases}fx(x,y)={2x,if x2y22x,if x2<y2
  1. f y ( x , y ) f y ( x , y ) f_(y)(x,y)f_y(x, y)fy(x,y)
f y ( x , y ) = lim k 0 f ( x , y + k ) f ( x , y ) k f y ( x , y ) = lim k 0 f ( x , y + k ) f ( x , y ) k f_(y)(x,y)=lim_(k rarr0)(f(x,y+k)-f(x,y))/(k)f_y(x, y) = \lim_{{k \to 0}} \frac{f(x, y+k) – f(x, y)}{k}fy(x,y)=limk0f(x,y+k)f(x,y)k
For x 2 y 2 x 2 y 2 x^(2) >= y^(2)x^2 \geq y^2x2y2:
f y ( x , y ) = lim k 0 x 2 ( y + k ) 2 ( x 2 y 2 ) k = 2 y f y ( x , y ) = lim k 0 x 2 ( y + k ) 2 ( x 2 y 2 ) k = 2 y f_(y)(x,y)=lim_(k rarr0)(x^(2)-(y+k)^(2)-(x^(2)-y^(2)))/(k)=-2yf_y(x, y) = \lim_{{k \to 0}} \frac{x^2 – (y+k)^2 – (x^2 – y^2)}{k} = -2yfy(x,y)=limk0x2(y+k)2(x2y2)k=2y
For x 2 < y 2 x 2 < y 2 x^(2) < y^(2)x^2 < y^2x2<y2:
f y ( x , y ) = lim k 0 ( y + k ) 2 x 2 ( y 2 x 2 ) k = 2 y f y ( x , y ) = lim k 0 ( y + k ) 2 x 2 ( y 2 x 2 ) k = 2 y f_(y)(x,y)=lim_(k rarr0)((y+k)^(2)-x^(2)-(y^(2)-x^(2)))/(k)=2yf_y(x, y) = \lim_{{k \to 0}} \frac{(y+k)^2 – x^2 – (y^2 – x^2)}{k} = 2yfy(x,y)=limk0(y+k)2x2(y2x2)k=2y
So, f y ( x , y ) f y ( x , y ) f_(y)(x,y)f_y(x, y)fy(x,y) is:
f y ( x , y ) = { 2 y , if x 2 y 2 2 y , if x 2 < y 2 f y ( x , y ) = 2 y ,      if x 2 y 2 2 y ,      if x 2 < y 2 f_(y)(x,y)={[-2y”,”,”if “x^(2) >= y^(2)],[2y”,”,”if “x^(2) < y^(2)]:}f_y(x, y) = \begin{cases} -2y, & \text{if } x^2 \geq y^2 \\ 2y, & \text{if } x^2 < y^2 \end{cases}fy(x,y)={2y,if x2y22y,if x2<y2

Step 2: Find f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{xy}(0,0)fxy(0,0) and f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{yx}(0,0)fyx(0,0)

Using the limit definition for f x y f x y f_(xy)f_{xy}fxy and f y x f y x f_(yx)f_{yx}fyx:
f x y ( 0 , 0 ) = lim k 0 f x ( 0 , 0 + k ) f x ( 0 , 0 ) k f x y ( 0 , 0 ) = lim k 0 f x ( 0 , 0 + k ) f x ( 0 , 0 ) k f_(xy)(0,0)=lim_(k rarr0)(f_(x)(0,0+k)-f_(x)(0,0))/(k)f_{xy}(0, 0) = \lim_{{k \to 0}} \frac{f_x(0, 0+k) – f_x(0, 0)}{k}fxy(0,0)=limk0fx(0,0+k)fx(0,0)k
f y x ( 0 , 0 ) = lim h 0 f y ( 0 + h , 0 ) f y ( 0 , 0 ) h f y x ( 0 , 0 ) = lim h 0 f y ( 0 + h , 0 ) f y ( 0 , 0 ) h f_(yx)(0,0)=lim_(h rarr0)(f_(y)(0+h,0)-f_(y)(0,0))/(h)f_{yx}(0, 0) = \lim_{{h \to 0}} \frac{f_y(0+h, 0) – f_y(0, 0)}{h}fyx(0,0)=limh0fy(0+h,0)fy(0,0)h
Both f x y ( 0 , 0 ) f x y ( 0 , 0 ) f_(xy)(0,0)f_{xy}(0,0)fxy(0,0) and f y x ( 0 , 0 ) f y x ( 0 , 0 ) f_(yx)(0,0)f_{yx}(0,0)fyx(0,0) are 0 because f x ( 0 , 0 ) = f y ( 0 , 0 ) = 0 f x ( 0 , 0 ) = f y ( 0 , 0 ) = 0 f_(x)(0,0)=f_(y)(0,0)=0f_x(0, 0) = f_y(0, 0) = 0fx(0,0)=fy(0,0)=0.

Conclusion

After performing the calculations, we find that f x y ( 0 , 0 ) = f y x ( 0 , 0 ) = 0 f x y ( 0 , 0 ) = f y x ( 0 , 0 ) = 0 f_(xy)(0,0)=f_(yx)(0,0)=0f_{xy}(0,0) = f_{yx}(0,0) = 0fxy(0,0)=fyx(0,0)=0, confirming that the mixed partial derivatives are equal at the point ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0).
2.(c) दर्शाइए कि S = { ( x , 2 y , 3 x ) : x , y S = ( x , 2 y , 3 x ) : x , y S={(x,2y,3x):x,y:}S=\left\{(x, 2 y, 3 x): x, y\right.S={(x,2y,3x):x,y वास्तविक संख्याऐं हैं | R 3 ( R ) R 3 ( R ) R^(3)(R)R^3(R)R3(R) का एक उपसमष्टि है । S S SSS के दो आधार ज्ञात कीजिए । S S SSS की विमा भी ज्ञात कीजिए ।
Show that S = { ( x , 2 y , 3 x ) : x , y S = { ( x , 2 y , 3 x ) : x , y S={(x,2y,3x):x,yS=\{(x, 2 y, 3 x): x, yS={(x,2y,3x):x,y are real numbers is a subspace of R 3 ( R ) R 3 ( R ) R^(3)(R)R^3(R)R3(R). Find two bases of S S SSS. Also find the dimension of S S SSS.
Answer:

Introduction

The problem asks us to show that the set S = { ( x , 2 y , 3 x ) : x , y are real numbers } S = { ( x , 2 y , 3 x ) : x , y are real numbers } S={(x,2y,3x):x,y” are real numbers”}S = \{(x, 2y, 3x): x, y \text{ are real numbers} \}S={(x,2y,3x):x,y are real numbers} is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3. Additionally, we are required to find two bases for S S SSS and determine its dimension.

Assumptions

  • S S SSS is a set of vectors in R 3 R 3 R^(3)\mathbb{R}^3R3 defined as S = { ( x , 2 y , 3 x ) : x , y are real numbers } S = { ( x , 2 y , 3 x ) : x , y are real numbers } S={(x,2y,3x):x,y” are real numbers”}S = \{(x, 2y, 3x): x, y \text{ are real numbers} \}S={(x,2y,3x):x,y are real numbers}.
  • R 3 R 3 R^(3)\mathbb{R}^3R3 is the vector space of all 3-tuples of real numbers.

Definitions

  • A subspace is a subset of a vector space that is itself a vector space.
  • A basis is a set of linearly independent vectors that span the vector space.
  • The dimension of a vector space is the number of vectors in any basis for the vector space.

Method/Approach

To show that S S SSS is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3, we need to verify the following properties:
  1. The zero vector is in S S SSS.
  2. S S SSS is closed under vector addition.
  3. S S SSS is closed under scalar multiplication.

Step 1: Zero Vector in S S SSS

The zero vector in R 3 R 3 R^(3)\mathbb{R}^3R3 is ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0, 0, 0)(0,0,0). This vector is in S S SSS when x = 0 x = 0 x=0x = 0x=0 and y = 0 y = 0 y=0y = 0y=0.

Step 2: Closed Under Vector Addition

Let u = ( x 1 , 2 y 1 , 3 x 1 ) u = ( x 1 , 2 y 1 , 3 x 1 ) u=(x_(1),2y_(1),3x_(1))\mathbf{u} = (x_1, 2y_1, 3x_1)u=(x1,2y1,3x1) and v = ( x 2 , 2 y 2 , 3 x 2 ) v = ( x 2 , 2 y 2 , 3 x 2 ) v=(x_(2),2y_(2),3x_(2))\mathbf{v} = (x_2, 2y_2, 3x_2)v=(x2,2y2,3x2) be any vectors in S S SSS.
u + v = ( x 1 + x 2 , 2 y 1 + 2 y 2 , 3 x 1 + 3 x 2 ) u + v = ( x 1 + x 2 , 2 y 1 + 2 y 2 , 3 x 1 + 3 x 2 ) u+v=(x_(1)+x_(2),2y_(1)+2y_(2),3x_(1)+3x_(2))\mathbf{u} + \mathbf{v} = (x_1 + x_2, 2y_1 + 2y_2, 3x_1 + 3x_2)u+v=(x1+x2,2y1+2y2,3x1+3x2)
Simplifying, we get u + v = ( x 1 + x 2 , 2 ( y 1 + y 2 ) , 3 ( x 1 + x 2 ) ) u + v = ( x 1 + x 2 , 2 ( y 1 + y 2 ) , 3 ( x 1 + x 2 ) ) u+v=(x_(1)+x_(2),2(y_(1)+y_(2)),3(x_(1)+x_(2)))\mathbf{u} + \mathbf{v} = (x_1 + x_2, 2(y_1 + y_2), 3(x_1 + x_2))u+v=(x1+x2,2(y1+y2),3(x1+x2)), which is also in S S SSS.

Step 3: Closed Under Scalar Multiplication

Let u = ( x , 2 y , 3 x ) u = ( x , 2 y , 3 x ) u=(x,2y,3x)\mathbf{u} = (x, 2y, 3x)u=(x,2y,3x) be any vector in S S SSS and let c c ccc be any scalar.
c u = c ( x , 2 y , 3 x ) = ( c x , 2 ( c y ) , 3 ( c x ) ) c u = c ( x , 2 y , 3 x ) = ( c x , 2 ( c y ) , 3 ( c x ) ) cu=c(x,2y,3x)=(cx,2(cy),3(cx))c\mathbf{u} = c(x, 2y, 3x) = (cx, 2(cy), 3(cx))cu=c(x,2y,3x)=(cx,2(cy),3(cx))
Simplifying, we get c u = ( c x , 2 c y , 3 c x ) c u = ( c x , 2 c y , 3 c x ) cu=(cx,2cy,3cx)c\mathbf{u} = (cx, 2cy, 3cx)cu=(cx,2cy,3cx), which is also in S S SSS.

Step 4: Finding Bases and Dimension

Any vector in S S SSS can be written as ( x , 2 y , 3 x ) ( x , 2 y , 3 x ) (x,2y,3x)(x, 2y, 3x)(x,2y,3x), which can be rewritten as x ( 1 , 0 , 3 ) + y ( 0 , 2 , 0 ) x ( 1 , 0 , 3 ) + y ( 0 , 2 , 0 ) x(1,0,3)+y(0,2,0)x(1, 0, 3) + y(0, 2, 0)x(1,0,3)+y(0,2,0).
Therefore, one basis for S S SSS is { ( 1 , 0 , 3 ) , ( 0 , 2 , 0 ) } { ( 1 , 0 , 3 ) , ( 0 , 2 , 0 ) } {(1,0,3),(0,2,0)}\{(1, 0, 3), (0, 2, 0)\}{(1,0,3),(0,2,0)}.
Another basis could be obtained by scaling these vectors, for example, { ( 2 , 0 , 6 ) , ( 0 , 4 , 0 ) } { ( 2 , 0 , 6 ) , ( 0 , 4 , 0 ) } {(2,0,6),(0,4,0)}\{(2, 0, 6), (0, 4, 0)\}{(2,0,6),(0,4,0)}.

Step 5: Dimension of S S SSS

The dimension of S S SSS is the number of vectors in any basis for S S SSS. In this case, the dimension is 2.

Conclusion

  • S S SSS is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3 as it contains the zero vector and is closed under both vector addition and scalar multiplication.
  • Two bases for S S SSS are { ( 1 , 0 , 3 ) , ( 0 , 2 , 0 ) } { ( 1 , 0 , 3 ) , ( 0 , 2 , 0 ) } {(1,0,3),(0,2,0)}\{(1, 0, 3), (0, 2, 0)\}{(1,0,3),(0,2,0)} and { ( 2 , 0 , 6 ) , ( 0 , 4 , 0 ) } { ( 2 , 0 , 6 ) , ( 0 , 4 , 0 ) } {(2,0,6),(0,4,0)}\{(2, 0, 6), (0, 4, 0)\}{(2,0,6),(0,4,0)}.
  • The dimension of S S SSS is 2.
  1. (a)(i) यदि u = x 2 + y 2 , v = x 2 y 2 u = x 2 + y 2 , v = x 2 y 2 u=x^(2)+y^(2),v=x^(2)-y^(2)u=x^2+y^2, v=x^2-y^2u=x2+y2,v=x2y2, जहाँ पर x = r cos θ , y = r sin θ x = r cos θ , y = r sin θ x=r cos theta,y=r sin thetax=r \cos \theta, y=r \sin \thetax=rcosθ,y=rsinθ हैं, तब ( u , v ) ( r , θ ) ( u , v ) ( r , θ ) (del(u,v))/(del(r,theta))\frac{\partial(u, v)}{\partial(r, \theta)}(u,v)(r,θ) ज्ञात कीजिए ।
If u = x 2 + y 2 , v = x 2 y 2 u = x 2 + y 2 , v = x 2 y 2 u=x^(2)+y^(2),v=x^(2)-y^(2)u=x^2+y^2, v=x^2-y^2u=x2+y2,v=x2y2, where x = r cos θ , y = r sin θ x = r cos θ , y = r sin θ x=r cos theta,y=r sin thetax=r \cos \theta, y=r \sin \thetax=rcosθ,y=rsinθ, then find ( u , v ) ( r , θ ) ( u , v ) ( r , θ ) (del(u,v))/(del(r,theta))\frac{\partial(u, v)}{\partial(r, \theta)}(u,v)(r,θ).
Answer:

Introduction

The question asks to find the Jacobian matrix ( u , v ) ( r , θ ) ( u , v ) ( r , θ ) (del(u,v))/(del(r,theta))\frac{\partial(u, v)}{\partial(r, \theta)}(u,v)(r,θ) for the functions u = x 2 + y 2 u = x 2 + y 2 u=x^(2)+y^(2)u = x^2 + y^2u=x2+y2 and v = x 2 y 2 v = x 2 y 2 v=x^(2)-y^(2)v = x^2 – y^2v=x2y2, where x = r cos θ x = r cos θ x=r cos thetax = r \cos \thetax=rcosθ and y = r sin θ y = r sin θ y=r sin thetay = r \sin \thetay=rsinθ.

Assumptions

  • u , v , x , y , r , θ u , v , x , y , r , θ u,v,x,y,r,thetau, v, x, y, r, \thetau,v,x,y,r,θ are all real numbers.
  • r 0 r 0 r >= 0r \geq 0r0 and 0 θ < 2 π 0 θ < 2 π 0 <= theta < 2pi0 \leq \theta < 2\pi0θ<2π.

Method/Approach

To find the Jacobian matrix, we’ll first find the partial derivatives of u u uuu and v v vvv with respect to r r rrr and θ θ theta\thetaθ. Then we’ll arrange these partial derivatives into a matrix.

Step 1: Express u u uuu and v v vvv in terms of r r rrr and θ θ theta\thetaθ

Let’s substitute the values x = r cos θ x = r cos θ x=r cos thetax = r \cos \thetax=rcosθ and y = r sin θ y = r sin θ y=r sin thetay = r \sin \thetay=rsinθ into u u uuu and v v vvv.
u = r 2 cos 2 θ + r 2 sin 2 θ = r 2 ( cos 2 θ + sin 2 θ ) = r 2 u = r 2 cos 2 θ + r 2 sin 2 θ = r 2 ( cos 2 θ + sin 2 θ ) = r 2 u=r^(2)cos^(2)theta+r^(2)sin^(2)theta=r^(2)(cos^(2)theta+sin^(2)theta)=r^(2)u = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2 (\cos^2 \theta + \sin^2 \theta) = r^2u=r2cos2θ+r2sin2θ=r2(cos2θ+sin2θ)=r2
v = r 2 cos 2 θ r 2 sin 2 θ = r 2 ( cos 2 θ sin 2 θ ) = r 2 c o s ( 2 θ ) v = r 2 cos 2 θ r 2 sin 2 θ = r 2 ( cos 2 θ sin 2 θ ) = r 2 c o s ( 2 θ ) v=r^(2)cos^(2)theta-r^(2)sin^(2)theta=r^(2)(cos^(2)theta-sin^(2)theta)=r^(2)cos(2theta)v = r^2 \cos^2 \theta – r^2 \sin^2 \theta = r^2 (\cos^2 \theta – \sin^2 \theta)=r^2 cos(2\theta)v=r2cos2θr2sin2θ=r2(cos2θsin2θ)=r2cos(2θ)

Step 2: Find the Partial Derivatives

We’ll find u r u r (del u)/(del r)\frac{\partial u}{\partial r}ur, u θ u θ (del u)/(del theta)\frac{\partial u}{\partial \theta}uθ, v r v r (del v)/(del r)\frac{\partial v}{\partial r}vr, and v θ v θ (del v)/(del theta)\frac{\partial v}{\partial \theta}vθ.
  • u r = 2 r u r = 2 r (del u)/(del r)=2r\frac{\partial u}{\partial r} = 2rur=2r
  • u θ = 0 u θ = 0 (del u)/(del theta)=0\frac{\partial u}{\partial \theta} = 0uθ=0
  • v r = 2 r cos 2 θ v r = 2 r cos 2 θ (del v)/(del r)=2r cos 2theta\frac{\partial v}{\partial r} = 2r \cos 2 \thetavr=2rcos2θ
  • v θ = 2 r 2 sin 2 θ v θ = 2 r 2 sin 2 θ (del v)/(del theta)=-2r^(2)sin 2theta\frac{\partial v}{\partial \theta} = -2r^2 \sin 2\thetavθ=2r2sin2θ

Step 3: Form the Jacobian Matrix

The Jacobian matrix ( u , v ) ( r , θ ) ( u , v ) ( r , θ ) (del(u,v))/(del(r,theta))\frac{\partial(u, v)}{\partial(r, \theta)}(u,v)(r,θ) is given by:
( u r u θ v r v θ ) = ( 2 r 0 2 r cos 2 θ 2 r 2 sin 2 θ ) u r      u θ v r      v θ = 2 r 0 2 r cos 2 θ 2 r 2 sin 2 θ ([(del u)/(del r),(del u)/(del theta)],[(del v)/(del r),(del v)/(del theta)])=([2r,0],[2r cos 2theta,-2r^(2)sin 2theta])\left(\begin{array}{ll} \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\ \frac{\partial v}{\partial r} & \frac{\partial v}{\partial \theta} \end{array}\right)=\left(\begin{array}{cc} 2 r & 0 \\ 2r \cos 2 \theta & -2 r^2 \sin 2 \theta \end{array}\right)(uruθvrvθ)=(2r02rcos2θ2r2sin2θ)

Conclusion

The Jacobian matrix ( u , v ) ( r , θ ) ( u , v ) ( r , θ ) (del(u,v))/(del(r,theta))\frac{\partial(u, v)}{\partial(r, \theta)}(u,v)(r,θ) for the given functions is:
( 2 r 0 2 r cos 2 θ 2 r 2 sin 2 θ ) 2 r 0 2 r cos 2 θ 2 r 2 sin 2 θ ([2r,0],[2r cos 2theta,-2r^(2)sin 2theta])\begin{pmatrix} 2r & 0 \\ 2r \cos 2 \theta & -2r^2 \sin 2\theta \end{pmatrix}(2r02rcos2θ2r2sin2θ)
This matrix contains all the partial derivatives of u u uuu and v v vvv with respect to r r rrr and θ θ theta\thetaθ.
3.(a)(ii) यदि 0 x f ( t ) d t = x + x 1 t f ( t ) d t 0 x f ( t ) d t = x + x 1 t f ( t ) d t int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt\int_0^x f(t) d t=x+\int_x^1 t f(t) d t0xf(t)dt=x+x1tf(t)dt है, तो f ( 1 ) f ( 1 ) f(1)f(1)f(1) का मान ज्ञात कीजिए ।
If 0 x f ( t ) d t = x + x 1 t f ( t ) d t 0 x f ( t ) d t = x + x 1 t f ( t ) d t int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt\int_0^x f(t) d t=x+\int_x^1 t f(t) d t0xf(t)dt=x+x1tf(t)dt, then find the value of f ( 1 ) f ( 1 ) f(1)f(1)f(1).
Answer:

Introduction

The problem asks to find the value of f ( 1 ) f ( 1 ) f(1)f(1)f(1) given that
0 x f ( t ) d t = x + x 1 t f ( t ) d t 0 x f ( t ) d t = x + x 1 t f ( t ) d t int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt\int_0^x f(t) \, dt = x + \int_x^1 t f(t) \, dt0xf(t)dt=x+x1tf(t)dt
We’ll use the properties of definite integrals and differentiation to solve this problem.

Assumptions

  • f ( t ) f ( t ) f(t)f(t)f(t) is a continuous function.
  • x x xxx and t t ttt are real numbers.

Method/Approach

We’ll start by differentiating both sides of the equation with respect to x x xxx.
Leibnitz ‘s Rule :
d d x u ( x ) v ( x ) f ( t ) d t = f ( v ( x ) ) d v d x f ( u ( x ) ) d u d x d d x u ( x ) v ( x ) f ( t ) d t = f ( v ( x ) ) d v d x f ( u ( x ) ) d u d x (d)/(dx)int_(u(x))^(v(x))f(t)dt=f(v(x))(dv)/(dx)-f(u(x))(du)/(dx)\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=f(v(x)) \frac{d v}{d x}-f(u(x)) \frac{d u}{d x}ddxu(x)v(x)f(t)dt=f(v(x))dvdxf(u(x))dudx

Step 1: Differentiate both sides

Differentiating both sides of the equation 0 x f ( t ) d t = x + x 1 t f ( t ) d t 0 x f ( t ) d t = x + x 1 t f ( t ) d t int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt\int_0^x f(t) \, dt = x + \int_x^1 t f(t) \, dt0xf(t)dt=x+x1tf(t)dt with respect to x x xxx, we get:
d dx ( 0 x f ( t ) dt ) = d dx ( x + x 1 tf ( t ) dt ) d dx 0 x f ( t ) dt = d dx x + x 1 tf ( t ) dt {:=>(d)/(dx)(int_(0)^(x)f(t)dt)=(d)/(dx)(x+int_(x)^(1)tf(t)dt):}\begin{aligned} & \Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left(\int_0^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}+\int_{\mathrm{x}}^1 \mathrm{tf}(\mathrm{t}) \mathrm{dt}\right) \end{aligned}ddx(0xf(t)dt)=ddx(x+x1tf(t)dt)
f ( x ) = d d x ( x ) + d d x x 1 t f ( t ) d t f ( x ) = 1 + [ 1 f ( 1 ) d d x ( 1 ) x f ( x ) d d x ( x ) ] using Leibnitz’s Rule. f ( x ) = 1 + [ 0 x f ( x ) ] f ( x ) = d d x ( x ) + d d x x 1 t f ( t ) d t f ( x ) = 1 + 1 f ( 1 ) d d x ( 1 ) x f ( x ) d d x ( x ) using Leibnitz’s Rule. f ( x ) = 1 + [ 0 x f ( x ) ] {:[f(x)=(d)/(dx)(x)+(d)/(dx)int_(x)^(1)tf(t)dt],[f(x)=1+[1*f(1)(d)/(dx)(1)-x*f(x)(d)/(dx)(x)]” using Leibnitz’s Rule. “],[f(x)=1+[0-xf(x)]]:}\begin{aligned} & f(x)=\frac{d}{d x}(x)+\frac{d}{d x} \int_x^1 t f(t) d t \\ & f(x)=1+\left[1 \cdot f(1) \frac{d}{d x}(1)-x \cdot f(x) \frac{d}{d x}(x)\right] \text { using Leibnitz’s Rule. } \\ & f(x)=1+[0-x f(x)] \end{aligned}f(x)=ddx(x)+ddxx1tf(t)dtf(x)=1+[1f(1)ddx(1)xf(x)ddx(x)] using Leibnitz’s Rule. f(x)=1+[0xf(x)]
f ( x ) = 1 x f ( x ) f ( x ) [ 1 + x ] = 1 f ( x ) = 1 1 + x f ( x ) = 1 x f ( x ) f ( x ) [ 1 + x ] = 1 f ( x ) = 1 1 + x {:[f(x)=1-xf(x)],[f(x)[1+x]=1],[f(x)=(1)/(1+x)]:}\begin{aligned} & f(x)=1-x f(x) \\ & f(x)[1+x]=1 \\ & f(x)=\frac{1}{1+x} \end{aligned}f(x)=1xf(x)f(x)[1+x]=1f(x)=11+x

Step 2: Find f ( 1 ) f ( 1 ) f(1)f(1)f(1)

Let’s substitute the values to find f ( 1 ) f ( 1 ) f(1)f(1)f(1).
After substituting x = 1 x = 1 x=1x = 1x=1 into f ( x ) = 1 1 + x f ( x ) = 1 1 + x f(x)=(1)/(1+x)f(x) = \frac{1}{1 + x}f(x)=11+x, we get:
f ( 1 ) = 1 1 + 1 f ( 1 ) = 1 1 + 1 f(1)=(1)/(1+1)f(1) = \frac{1}{1 + 1}f(1)=11+1

Conclusion

After calculating, we find that f ( 1 ) = 1 2 f ( 1 ) = 1 2 f(1)=(1)/(2)f(1) = \frac{1}{2}f(1)=12.
3.(a)(iii) a b ( x a ) m ( b x ) n d x a b ( x a ) m ( b x ) n d x int_(a)^(b)(x-a)^(m)(b-x)^(n)dx\int_a^b(x-a)^m(b-x)^n d xab(xa)m(bx)ndx को बीटा-फलन के रूप में व्यक्त कीजिए ।
Express a b ( x a ) m ( b x ) n d x a b ( x a ) m ( b x ) n d x int_(a)^(b)(x-a)^(m)(b-x)^(n)dx\int_a^b(x-a)^m(b-x)^n d xab(xa)m(bx)ndx in terms of Beta function.
Answer:

Introduction

The problem asks us to express the integral a b ( x a ) m ( b x ) n d x a b ( x a ) m ( b x ) n d x int_(a)^(b)(x-a)^(m)(b-x)^(n)dx\int_a^b(x-a)^m(b-x)^n dxab(xa)m(bx)ndx in terms of the Beta function.

Definitions

  • The Beta function, B ( x , y ) B ( x , y ) “B”(x,y)\text{B}(x, y)B(x,y), is defined as B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t “B”(x,y)=int_(0)^(1)t^(x-1)(1-t)^(y-1)dt\text{B}(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1} dtB(x,y)=01tx1(1t)y1dt

Method/Approach

  1. Start with the integral I m , n = a b ( x a ) m ( b x ) n d x I m , n = a b ( x a ) m ( b x ) n d x I_(m,n)=int_(a)^(b)(x-a)^(m)(b-x)^(n)dxI_{m, n} = \int_a^b(x-a)^m(b-x)^n dxIm,n=ab(xa)m(bx)ndx.
  2. Use a change of variables to transform the integral into a form involving the Beta function.

Work/Calculations

Step 1: Define the Integral

I m , n = a b ( x a ) m ( b x ) n d x I m , n = a b ( x a ) m ( b x ) n d x I_(m,n)=int_(a)^(b)(x-a)^(m)(b-x)^(n)dxI_{m, n} = \int_a^b(x-a)^m(b-x)^n dxIm,n=ab(xa)m(bx)ndx

Step 2: Change of Variables

Let t = x a b a t = x a b a t=(x-a)/(b-a)t = \frac{x-a}{b-a}t=xaba. Then x = a + ( b a ) t x = a + ( b a ) t x=a+(b-a)tx = a + (b-a)tx=a+(ba)t and d x = ( b a ) d t d x = ( b a ) d t dx=(b-a)dtdx = (b-a) dtdx=(ba)dt.
The limits of integration also change:
  • When x = a x = a x=ax = ax=a, t = 0 t = 0 t=0t = 0t=0
  • When x = b x = b x=bx = bx=b, t = 1 t = 1 t=1t = 1t=1
The integral becomes:
I m , n = 0 1 [ a + ( b a ) t a ] m [ b a ( b a ) t ] n ( b a ) d t I m , n = 0 1 ( b a ) m t m ( b a ) n [ 1 t ] n ( b a ) d t I m , n = ( b a ) m + n + 1 0 1 t m ( 1 t ) n d t I m , n = 0 1 [ a + ( b a ) t a ] m [ b a ( b a ) t ] n ( b a ) d t I m , n = 0 1 ( b a ) m t m ( b a ) n [ 1 t ] n ( b a ) d t I m , n = ( b a ) m + n + 1 0 1 t m ( 1 t ) n d t {:[I_(m,n)=int_(0)^(1)[a+(b-a)t-a]^(m)[b-a-(b-a)t]^(n)(b-a)dt],[I_(m,n)=int_(0)^(1)(b-a)^(m)t^(m)(b-a)^(n)[1-t]^(n)(b-a)dt],[I_(m,n)=(b-a)^(m+n+1)int_(0)^(1)t^(m)(1-t)^(n)dt]:}\begin{aligned} & I_{m, n}=\int_0^1[a+(b-a) t-a]^m[b-a-(b-a) t]^n(b-a) d t \\ & I_{m, n}=\int_0^1(b-a)^m t^m(b-a)^n[1-t]^n(b-a) d t \\ & I_{m, n}=(b-a)^{m+n+1} \int_0^1 t^m(1-t)^n d t \end{aligned}Im,n=01[a+(ba)ta]m[ba(ba)t]n(ba)dtIm,n=01(ba)mtm(ba)n[1t]n(ba)dtIm,n=(ba)m+n+101tm(1t)ndt

Step 3: Relate to Beta Function

The integral 0 1 t m ( 1 t ) n d t 0 1 t m ( 1 t ) n d t int_(0)^(1)t^(m)(1-t)^(n)dt\int_0^1 t^m (1-t)^n dt01tm(1t)ndt is precisely the definition of the Beta function B ( m + 1 , n + 1 ) B ( m + 1 , n + 1 ) “B”(m+1,n+1)\text{B}(m+1, n+1)B(m+1,n+1).
So, we can write:
I m , n = ( b a ) m + n + 1 B ( m + 1 , n + 1 ) I m , n = ( b a ) m + n + 1 B ( m + 1 , n + 1 ) I_(m,n)=(b-a)^(m+n+1)”B”(m+1,n+1)I_{m, n} = (b-a)^{m+n+1} \text{B}(m+1, n+1)Im,n=(ba)m+n+1B(m+1,n+1)

Conclusion

The integral a b ( x a ) m ( b x ) n d x a b ( x a ) m ( b x ) n d x int_(a)^(b)(x-a)^(m)(b-x)^(n)dx\int_a^b(x-a)^m(b-x)^n dxab(xa)m(bx)ndx can be expressed in terms of the Beta function as ( b a ) m + n + 1 B ( m + 1 , n + 1 ) ( b a ) m + n + 1 B ( m + 1 , n + 1 ) (b-a)^(m+n+1)”B”(m+1,n+1)(b-a)^{m+n+1} \text{B}(m+1, n+1)(ba)m+n+1B(m+1,n+1). This relationship is established by using a change of variables to transform the integral into the form of the Beta function.
3.(b) अचर त्रिज्या r r rrr का एक गोला मूल-बिंदु O O OOO से गुजरता है तथा अक्षों को A , B , C A , B , C A,B,CA, B, CA,B,C बिन्दुओं पर काटता है । O O OOO से समतल A B C A B C ABCA B CABC पर खींचे गए लंब-पाद का बिन्दुपथ ज्ञात कीजिए ।
A sphere of constant radius r r rrr passes through the origin O O OOO and cuts the axes at the points A , B A , B A,BA, BA,B and C C CCC. Find, the locus of the foot of the perpendicular drawn from O O OOO to the plane A B C A B C ABCA B CABC.
Answer:

Introduction

The problem asks us to find the locus of the foot of the perpendicular drawn from the origin O O OOO to the plane A B C A B C ABCABCABC, where A A AAA, B B BBB, and C C CCC are the points where a sphere of constant radius r r rrr cuts the axes.

Assumptions

  • The sphere has a constant radius r r rrr.
  • The sphere passes through the origin O O OOO.

Definitions

  • Locus: A set of points satisfying a certain condition.
  • Perpendicular: A line segment that is at a right angle to a given line or plane.

Work/Calculations

Let the equation of the plane A B C A B C ABCA B CABC be
x a + y b + z c = 1 ( 1 ) x a + y b + z c = 1 ( 1 ) (x)/(a)+(y)/(b)+(z)/(c)=1—-(1)\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1—-(1)xa+yb+zc=1(1)
Then the coordinates of A , B , C A , B , C A,B,CA, B, CA,B,C are respectively ( a , 0 , 0 ) , ( 0 , b , 0 ) , ( 0 , 0 , c ) ( a , 0 , 0 ) , ( 0 , b , 0 ) , ( 0 , 0 , c ) (a,0,0),(0,b,0),(0,0,c)(a, 0,0),(0, b, 0),(0,0, c)(a,0,0),(0,b,0),(0,0,c).
Hence the equation of the sphere O A B C O A B C OABCO A B COABC is x 2 + y 2 + z 2 a x b y c z = 0 ( 2 ) x 2 + y 2 + z 2 a x b y c z = 0 ( 2 ) x^(2)+y^(2)+z^(2)-ax-by-cz=0—-(2)x^2+y^2+z^2-a x-b y-c z=0—-(2)x2+y2+z2axbycz=0(2)
The radius R R RRR of the sphere (2) is given ( a 2 ) 2 + ( b 2 ) 2 + ( c 2 ) 2 = R a 2 2 + b 2 2 + c 2 2 = R sqrt(((a)/(2))^(2)+((b)/(2))^(2)+((c)/(2))^(2))=R\sqrt{\left(\frac{a}{2}\right)^2+\left(\frac{b}{2}\right)^2+\left(\frac{c}{2}\right)^2}=R(a2)2+(b2)2+(c2)2=R
i.e.,
a 2 + b 2 + c 2 = 4 R 2 ( 3 ) a 2 + b 2 + c 2 = 4 R 2 ( 3 ) a^(2)+b^(2)+c^(2)=4R^(2)—-(3)a^2+b^2+c^2=4 R^2—-(3)a2+b2+c2=4R2(3)
The direction cosine to the normal to the plane (1) are proportional to 1 a + 1 b + 1 c 1 a + 1 b + 1 c (1)/(a)+(1)/(b)+(1)/(c)\frac{1}{a}+\frac{1}{b}+\frac{1}{c}1a+1b+1c.
Therefore the equation of the perpendicular from O O OOO to the plane (1) are given by
x 1 / a + y 1 / b + z 1 / c = r (say) ( 4 ) x 1 / a + y 1 / b + z 1 / c = r (say) ( 4 ) (x)/(1//a)+(y)/(1//b)+(z)/(1//c)=r quad” (say) “—-(4)\frac{x}{1 / a}+\frac{y}{1 / b}+\frac{z}{1 / c}=r \quad \text { (say) }—-(4)x1/a+y1/b+z1/c=r (say) (4)
Any point on the line (4) is ( r a + r b + r c ) r a + r b + r c ((r)/(a)+(r)/(b)+(r)/(c))\left(\frac{r}{a}+\frac{r}{b}+\frac{r}{c}\right)(ra+rb+rc). This point will lie on the plane (1) if
( r a 2 + r b 2 + r c 2 ) = 1 r = 1 1 a 2 + 1 b 2 + 1 c 2 = 1 a 2 + b 2 + c 2 r a 2 + r b 2 + r c 2 = 1 r = 1 1 a 2 + 1 b 2 + 1 c 2 = 1 a 2 + b 2 + c 2 ((r)/(a^(2))+(r)/(b^(2))+(r)/(c^(2)))=1=>r=(1)/((1)/(a^(2))+(1)/(b^(2))+(1)/(c^(2)))=(1)/(a^(-2)+b^(-2)+c^(-2))\left(\frac{r}{a^2}+\frac{r}{b^2}+\frac{r}{c^2}\right)=1 \Rightarrow r=\frac{1}{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\frac{1}{a^{-2}+b^{-2}+c^{-2}}(ra2+rb2+rc2)=1r=11a2+1b2+1c2=1a2+b2+c2
Let ( x , y , z ) x , y , z (x^(‘),y^(‘),z^(‘))\left(x^{\prime}, y^{\prime}, z^{\prime}\right)(x,y,z) be the foot of the perpendicular drawn from O O OOO to plane (1). Then
x = r a = a 1 a 2 + b 2 + c 2 y = r b = b 1 a 2 + b 2 + c 2 z = r c = c 1 a 2 + b 2 + c 2 x = r a = a 1 a 2 + b 2 + c 2 y = r b = b 1 a 2 + b 2 + c 2 z = r c = c 1 a 2 + b 2 + c 2 {:[x^(‘)=(r)/(a)=(a^(-1))/(a^(-2)+b^(-2)+c^(-2))],[y^(‘)=(r)/(b)=(b^(-1))/(a^(-2)+b^(-2)+c^(-2))],[z^(‘)=(r)/(c)=(c^(-1))/(a^(-2)+b^(-2)+c^(-2))]:}\begin{aligned} & x^{\prime}=\frac{r}{a}=\frac{a^{-1}}{a^{-2}+b^{-2}+c^{-2}} \\ & y^{\prime}=\frac{r}{b}=\frac{b^{-1}}{a^{-2}+b^{-2}+c^{-2}} \\ & z^{\prime}=\frac{r}{c}=\frac{c^{-1}}{a^{-2}+b^{-2}+c^{-2}} \end{aligned}x=ra=a1a2+b2+c2y=rb=b1a2+b2+c2z=rc=c1a2+b2+c2
Now
x 2 + y 2 + z 2 = 1 a 2 + b 2 + c 2 x 2 + y 2 + z 2 = a 2 + b 2 + c 2 a 2 + b 2 + c 2 } ( 5 ) x 2 + y 2 + z 2 = 1 a 2 + b 2 + c 2 x 2 + y 2 + z 2 = a 2 + b 2 + c 2 a 2 + b 2 + c 2 ( 5 ) {:[x^(‘2)+y^(‘2)+z^(‘2)=(1)/(a^(-2)+b^(-2)+c^(-2))],[x^(‘-2)+y^(‘-2)+z^(‘-2)=(a^(2)+b^(2)+c^(2))/(a^(-2)+b^(-2)+c^(-2))]}—-(5)\left.\begin{array}{l} x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=\frac{1}{a^{-2}+b^{-2}+c^{-2}} \\ x^{\prime-2}+y^{\prime-2}+z^{\prime-2}=\frac{a^2+b^2+c^2}{a^{-2}+b^{-2}+c^{-2}} \end{array}\right\}—-(5)x2+y2+z2=1a2+b2+c2x2+y2+z2=a2+b2+c2a2+b2+c2}(5)
Using equation (3) and (5), we get
( x 2 + y 2 + z 2 ) 2 ( x 2 + y 2 + z 2 ) = 4 R 2 x 2 + y 2 + z 2 2 x 2 + y 2 + z 2 = 4 R 2 (x^(‘2)+y^(‘2)+z^(‘2))^(2)(x^(‘-2)+y^(‘-2)+z^(‘-2))=4R^(2)\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^2\left(x^{\prime-2}+y^{\prime-2}+z^{\prime-2}\right)=4 \mathrm{R}^2(x2+y2+z2)2(x2+y2+z2)=4R2
Hence, the required locus of ( x , y , z ) x , y , z (x^(‘),y^(‘),z^(‘))\left(x^{\prime}, y^{\prime}, z^{\prime}\right)(x,y,z) is ( x 2 + y 2 + z 2 ) 2 ( x 2 + y 2 + z 2 ) = 4 R 2 x 2 + y 2 + z 2 2 x 2 + y 2 + z 2 = 4 R 2 (x^(‘2)+y^(‘2)+z^(‘2))^(2)(x^(‘-2)+y^(‘-2)+z^(‘-2))=4R^(2)\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^2\left(x^{\prime-2}+y^{\prime-2}+z^{\prime-2}\right)=4 \mathrm{R}^2(x2+y2+z2)2(x2+y2+z2)=4R2.

Conclusion

The problem aimed to find the locus of the foot of the perpendicular drawn from the origin O O OOO to the plane A B C A B C ABCABCABC, where A A AAA, B B BBB, and C C CCC are the points where a sphere of constant radius r r rrr cuts the axes.
After a series of calculations involving the equations of the sphere and the plane, as well as the properties of perpendiculars and direction cosines, the locus of the foot of the perpendicular was found to be:
( x 2 + y 2 + z 2 ) 2 ( x 2 + y 2 + z 2 ) = 4 R 2 x 2 + y 2 + z 2 2 x 2 + y 2 + z 2 = 4 R 2 (x^(‘2)+y^(‘2)+z^(‘2))^(2)(x^(‘-2)+y^(‘-2)+z^(‘-2))=4R^(2)\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^2\left(x^{\prime-2}+y^{\prime-2}+z^{\prime-2}\right)=4 R^2(x2+y2+z2)2(x2+y2+z2)=4R2
This equation describes the set of points that the foot of the perpendicular can occupy, given the conditions specified in the problem.
3.(c)(i) सिद्ध कीजिए कि एक वास्तविक सममित आव्यूह के दो भिन्न अभिलक्षणिक मानों के संगत अभिलक्षणिक सदिश, लांबिक हैं।
Prove that the eigen vectors, corresponding to two distinct eigen values of a real symmetric matrix, are orthogonal.
Answer:

Introduction

The problem asks us to prove that the eigenvectors corresponding to two distinct eigenvalues of a real symmetric matrix are orthogonal.

Assumptions

  • The matrix is real and symmetric.
  • We have two distinct eigenvalues.

Definitions

  • Eigenvector: A non-zero vector that only gets scaled when a matrix is applied to it.
  • Eigenvalue: The scalar by which an eigenvector gets scaled when a matrix is applied to it.
  • Orthogonal: Two vectors are orthogonal if their dot product is zero.

Theorem

For a real symmetric matrix A A AAA, the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Method/Approach

Let A A AAA be a real symmetric matrix. Let λ 1 λ 1 lambda_(1)\lambda_1λ1 and λ 2 λ 2 lambda_(2)\lambda_2λ2 be two distinct eigenvalues of A A AAA, and let x x x\mathbf{x}x and y y y\mathbf{y}y be their corresponding eigenvectors. Then we have:
A x = λ 1 x and A y = λ 2 y A x = λ 1 x and A y = λ 2 y Ax=lambda_(1)xquad”and”quad Ay=lambda_(2)yA\mathbf{x} = \lambda_1 \mathbf{x} \quad \text{and} \quad A\mathbf{y} = \lambda_2 \mathbf{y}Ax=λ1xandAy=λ2y
We aim to show that x x x\mathbf{x}x and y y y\mathbf{y}y are orthogonal, i.e., x y = 0 x y = 0 x*y=0\mathbf{x} \cdot \mathbf{y} = 0xy=0.

Work/Calculations

Step 1: Multiply the first equation by y T y T y^(T)\mathbf{y}^TyT from the left:
y T A x = λ 1 y T x y T A x = λ 1 y T x y^(T)Ax=lambda_(1)y^(T)x\mathbf{y}^T A \mathbf{x} = \lambda_1 \mathbf{y}^T \mathbf{x}yTAx=λ1yTx
Step 2: Multiply the second equation by x T x T x^(T)\mathbf{x}^TxT from the left:
x T A y = λ 2 x T y x T A y = λ 2 x T y x^(T)Ay=lambda_(2)x^(T)y\mathbf{x}^T A \mathbf{y} = \lambda_2 \mathbf{x}^T \mathbf{y}xTAy=λ2xTy
Step 3: Since A A AAA is symmetric, A T = A A T = A A^(T)=AA^T = AAT=A. Therefore, y T A x = x T A y y T A x = x T A y y^(T)Ax=x^(T)Ay\mathbf{y}^T A \mathbf{x} = \mathbf{x}^T A \mathbf{y}yTAx=xTAy.
Step 4: Subtract the two equations:
λ 1 y T x λ 2 x T y = 0 λ 1 y T x λ 2 x T y = 0 lambda_(1)y^(T)x-lambda_(2)x^(T)y=0\lambda_1 \mathbf{y}^T \mathbf{x} – \lambda_2 \mathbf{x}^T \mathbf{y} = 0λ1yTxλ2xTy=0
( λ 1 λ 2 ) y T x = 0 ( λ 1 λ 2 ) y T x = 0 (lambda_(1)-lambda_(2))y^(T)x=0(\lambda_1 – \lambda_2) \mathbf{y}^T \mathbf{x} = 0(λ1λ2)yTx=0
Step 5: Since λ 1 λ 2 λ 1 λ 2 lambda_(1)!=lambda_(2)\lambda_1 \neq \lambda_2λ1λ2, we must have y T x = 0 y T x = 0 y^(T)x=0\mathbf{y}^T \mathbf{x} = 0yTx=0.

Conclusion

We have successfully proven that the eigenvectors corresponding to two distinct eigenvalues of a real symmetric matrix are orthogonal, as their dot product y T x y T x y^(T)x\mathbf{y}^T \mathbf{x}yTx is zero. This result is fundamental in the theory of real symmetric matrices and has applications in various fields like physics, computer science, and engineering.
3.(c)(ii) दो वर्ग आव्यूह A A AAA तथा B B BBB जिनकी कोटि, 2 है के लिए दर्शाइए कि अनुरेख ( A B ) = ( A B ) = (AB)=(A B)=(AB)= अनुरेख ( B A ) ( B A ) (BA)(B A)(BA) । अतैव दर्शाइए कि A B B A I 2 A B B A I 2 AB-BA!=I_(2)A B-B A \neq I_2ABBAI2 जहाँ I 2 I 2 I_(2)I_2I2 एक 2 -कोटि का तत्समक आव्यूह है ।
For two square matrices A A AAA and B B BBB of order 2 , show that trace ( A B ) = trace ( B A ) ( A B ) = trace ( B A ) (AB)=trace(BA)(A B)=\operatorname{trace}(B A)(AB)=trace(BA). Hence show that A B B A I 2 A B B A I 2 AB-BA!=I_(2)A B-B A \neq I_2ABBAI2, where I 2 I 2 I_(2)I_2I2 is an identity matrix of order 2.
Answer:

Introduction

We are tasked with proving two mathematical statements related to square matrices of order 2:
  1. trace ( A B ) = trace ( B A ) trace ( A B ) = trace ( B A ) “trace”(AB)=”trace”(BA)\text{trace}(AB) = \text{trace}(BA)trace(AB)=trace(BA)
  2. A B B A I 2 A B B A I 2 AB-BA!=I_(2)AB – BA \neq I_2ABBAI2, where I 2 I 2 I_(2)I_2I2 is the identity matrix of order 2.

Assumptions

  • A A AAA and B B BBB are square matrices of order 2.
  • I 2 I 2 I_(2)I_2I2 is the identity matrix of order 2.

Definitions

  • Trace of a Matrix: The trace of a square matrix is the sum of the elements on its main diagonal.
  • Identity Matrix: A square matrix in which all the elements of the principal diagonal are ones and all other elements are zeros.

Method/Approach

We will use basic matrix multiplication rules and properties of the trace function to prove these statements.

Proof for trace ( A B ) = trace ( B A ) trace ( A B ) = trace ( B A ) “trace”(AB)=”trace”(BA)\text{trace}(AB) = \text{trace}(BA)trace(AB)=trace(BA)

Let A = ( a b c d ) A = a b c d A=([a,b],[c,d])A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}A=(abcd) and B = ( w x y z ) B = w x y z B=([w,x],[y,z])B = \begin{pmatrix} w & x \\ y & z \end{pmatrix}B=(wxyz).
  1. Calculate A B A B ABABAB and B A B A BABABA
A B = ( a b c d ) ( w x y z ) = ( a w + b y a x + b z c w + d y c x + d z ) A B = a b c d w x y z = a w + b y a x + b z c w + d y c x + d z AB=([a,b],[c,d])([w,x],[y,z])=([aw+by,ax+bz],[cw+dy,cx+dz])AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} aw+by & ax+bz \\ cw+dy & cx+dz \end{pmatrix}AB=(abcd)(wxyz)=(aw+byax+bzcw+dycx+dz)
B A = ( w x y z ) ( a b c d ) = ( w a + x c w b + x d y a + z c y b + z d ) B A = w x y z a b c d = w a + x c w b + x d y a + z c y b + z d BA=([w,x],[y,z])([a,b],[c,d])=([wa+xc,wb+xd],[ya+zc,yb+zd])BA = \begin{pmatrix} w & x \\ y & z \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} wa+xc & wb+xd \\ ya+zc & yb+zd \end{pmatrix}BA=(wxyz)(abcd)=(wa+xcwb+xdya+zcyb+zd)
  1. Calculate the trace of A B A B ABABAB and B A B A BABABA
trace ( A B ) = a w + b y + c x + d z trace ( A B ) = a w + b y + c x + d z “trace”(AB)=aw+by+cx+dz\text{trace}(AB) = aw + by + cx + dztrace(AB)=aw+by+cx+dz
trace ( B A ) = w a + x c + y b + z d trace ( B A ) = w a + x c + y b + z d “trace”(BA)=wa+xc+yb+zd\text{trace}(BA) = wa + xc + yb + zdtrace(BA)=wa+xc+yb+zd
  1. Show that the traces are equal
trace ( A B ) = a w + b y + c x + d z = w a + x c + y b + z d = trace ( B A ) trace ( A B ) = a w + b y + c x + d z = w a + x c + y b + z d = trace ( B A ) “trace”(AB)=aw+by+cx+dz=wa+xc+yb+zd=”trace”(BA)\text{trace}(AB) = aw + by + cx + dz = wa + xc + yb + zd = \text{trace}(BA)trace(AB)=aw+by+cx+dz=wa+xc+yb+zd=trace(BA)

Proof for A B B A I 2 A B B A I 2 AB-BA!=I_(2)AB – BA \neq I_2ABBAI2

  1. Calculate A B B A A B B A AB-BAAB – BAABBA
A B B A = ( a w + b y a x + b z c w + d y c x + d z ) ( w a + x c w b + x d y a + z c y b + z d ) = ( ( a w + b y ) ( w a + x c ) ( a x + b z ) ( w b + x d ) ( c w + d y ) ( y a + z c ) ( c x + d z ) ( y b + z d ) ) A B B A = a w + b y a x + b z c w + d y c x + d z w a + x c w b + x d y a + z c y b + z d = ( a w + b y ) ( w a + x c ) ( a x + b z ) ( w b + x d ) ( c w + d y ) ( y a + z c ) ( c x + d z ) ( y b + z d ) AB-BA=([aw+by,ax+bz],[cw+dy,cx+dz])-([wa+xc,wb+xd],[ya+zc,yb+zd])=([(aw+by)-(wa+xc),(ax+bz)-(wb+xd)],[(cw+dy)-(ya+zc),(cx+dz)-(yb+zd)])AB – BA = \begin{pmatrix} aw+by & ax+bz \\ cw+dy & cx+dz \end{pmatrix} – \begin{pmatrix} wa+xc & wb+xd \\ ya+zc & yb+zd \end{pmatrix} = \begin{pmatrix} (aw+by)-(wa+xc) & (ax+bz)-(wb+xd) \\ (cw+dy)-(ya+zc) & (cx+dz)-(yb+zd) \end{pmatrix}ABBA=(aw+byax+bzcw+dycx+dz)(wa+xcwb+xdya+zcyb+zd)=((aw+by)(wa+xc)(ax+bz)(wb+xd)(cw+dy)(ya+zc)(cx+dz)(yb+zd))
  1. Compare with I 2 I 2 I_(2)I_2I2
The identity matrix I 2 I 2 I_(2)I_2I2 is ( 1 0 0 1 ) 1 0 0 1 ([1,0],[0,1])\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}(1001). For A B B A A B B A AB-BAAB – BAABBA to be equal to I 2 I 2 I_(2)I_2I2, the diagonal elements must be 1, and the off-diagonal elements must be 0.
However, the diagonal elements of A B B A A B B A AB-BAAB – BAABBA are ( a w + b y ) ( w a + x c ) ( a w + b y ) ( w a + x c ) (aw+by)-(wa+xc)(aw+by)-(wa+xc)(aw+by)(wa+xc) and ( c x + d z ) ( y b + z d ) ( c x + d z ) ( y b + z d ) (cx+dz)-(yb+zd)(cx+dz)-(yb+zd)(cx+dz)(yb+zd), which are not guaranteed to be 1. Therefore, A B B A I 2 A B B A I 2 AB-BA!=I_(2)AB – BA \neq I_2ABBAI2.

Conclusion

We have successfully proven that trace ( A B ) = trace ( B A ) trace ( A B ) = trace ( B A ) “trace”(AB)=”trace”(BA)\text{trace}(AB) = \text{trace}(BA)trace(AB)=trace(BA) for square matrices A A AAA and B B BBB of order 2. We have also shown that A B B A I 2 A B B A I 2 AB-BA!=I_(2)AB – BA \neq I_2ABBAI2, where I 2 I 2 I_(2)I_2I2 is the identity matrix of order 2.
4.(a)(i) निम्नलिखित आव्यूह का पंक्ति-समानीत सोपानक रूप में समानयन कीजिए एवं अतैव इसकी कोटि भी ज्ञात कीजिए ।
A = [ 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 ] A = 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 A=[[1,3,2,4,1],[0,0,2,2,0],[2,6,2,6,2],[3,9,1,10,6]]A=\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{array}\right]A=[132410022026262391106]
Reduce the following matrix to a row-reduced echelon form and hence also, find its rank:
A = [ 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 ] A = 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 A=[[1,3,2,4,1],[0,0,2,2,0],[2,6,2,6,2],[3,9,1,10,6]]A=\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{array}\right]A=[132410022026262391106]
Answer:

Introduction

We are given a matrix A A AAA and are tasked with reducing it to its row-reduced echelon form (RREF). Additionally, we need to find the rank of the matrix.

Definitions

  • Row-Reduced Echelon Form (RREF): A matrix is in RREF if it satisfies the following conditions:
    1. All zero rows are at the bottom of the matrix.
    2. The leading entry of each nonzero row occurs to the right of the leading entry of the previous row.
    3. The leading entry in any nonzero row is 1.
    4. All entries in the column above and below a leading 1 are zero.
  • Rank of a Matrix: The rank of a matrix is the dimension of the column space (or equivalently, the row space), which is the maximum number of linearly independent columns (or rows).

Method/Approach

We will use the Wolfram plugin to calculate the RREF of the given matrix A A AAA.

Calculate the RREF of A A AAA

The given matrix A A AAA is:
A = [ 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 ] A = 1 3 2 4 1 0 0 2 2 0 2 6 2 6 2 3 9 1 10 6 A=[[1,3,2,4,1],[0,0,2,2,0],[2,6,2,6,2],[3,9,1,10,6]]A=\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{array}\right]A=[132410022026262391106]
R 3 R 3 2 × R 1 = [ 1 3 2 4 1 0 0 2 2 0 0 0 2 2 0 3 9 1 10 6 ] R 4 R 4 3 × R 1 = [ 1 3 2 4 1 0 0 2 2 0 0 0 2 2 0 0 0 5 2 3 ] R 2 R 2 ÷ 2 = [ 1 3 2 4 1 0 0 1 1 0 0 0 2 2 0 0 0 5 2 3 ] R 3 R 3 2 × R 1 = 1 3 2 4 1 0 0 2 2 0 0 0 2 2 0 3 9 1 10 6 R 4 R 4 3 × R 1 = 1 3 2 4 1 0 0 2 2 0 0 0 2 2 0 0 0 5 2 3 R 2 R 2 ÷ 2 = 1 3 2 4 1 0 0 1 1 0 0 0 2 2 0 0 0 5 2 3 {:[R_(3)larrR_(3)-2xxR_(1)],[=[[1,3,2,4,1],[0,0,2,2,0],[0,0,-2,-2,0],[3,9,1,10,6]]],[R_(4)larrR_(4)-3xxR_(1)],[=[[1,3,2,4,1],[0,0,2,2,0],[0,0,-2,-2,0],[0,0,-5,-2,3]]],[R_(2)larrR_(2)-:2],[=[[1,3,2,4,1],[0,0,1,1,0],[0,0,-2,-2,0],[0,0,-5,-2,3]]]:}\begin{aligned} & R_3 \leftarrow R_3-2 \times R_1 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 3 & 9 & 1 & 10 & 6 \end{array}\right] \\ & R_4 \leftarrow R_4-3 \times R_1 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & -5 & -2 & 3 \end{array}\right] \\ & R_2 \leftarrow R_2 \div 2 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & -5 & -2 & 3 \end{array}\right] \end{aligned}R3R32×R1=[132410022000220391106]R4R43×R1=[13241002200022000523]R2R2÷2=[13241001100022000523]
R 1 R 1 2 × R 2 = [ 1 3 0 2 1 0 0 1 1 0 0 0 2 2 0 0 0 5 2 3 ] R 3 R 3 + 2 × R 2 = [ 1 3 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 5 2 3 ] R 4 R 4 + 5 × R 2 = [ 1 3 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 3 3 ] R 1 R 1 2 × R 2 = 1 3 0 2 1 0 0 1 1 0 0 0 2 2 0 0 0 5 2 3 R 3 R 3 + 2 × R 2 = 1 3 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 5 2 3 R 4 R 4 + 5 × R 2 = 1 3 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 3 3 {:[R_(1)larrR_(1)-2xxR_(2)],[=[[1,3,0,2,1],[0,0,1,1,0],[0,0,-2,-2,0],[0,0,-5,-2,3]]],[R_(3)larrR_(3)+2xxR_(2)],[=[[1,3,0,2,1],[0,0,1,1,0],[0,0,0,0,0],[0,0,-5,-2,3]]],[R_(4)larrR_(4)+5xxR_(2)],[=[[1,3,0,2,1],[0,0,1,1,0],[0,0,0,0,0],[0,0,0,3,3]]]:}\begin{aligned} & R_1 \leftarrow R_1-2 \times R_2 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & -5 & -2 & 3 \end{array}\right] \\ & R_3 \leftarrow R_3+2 \times R_2 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -5 & -2 & 3 \end{array}\right] \\ & R_4 \leftarrow R_4+5 \times R_2 \\ & =\left[\begin{array}{lllll} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 3 \end{array}\right] \end{aligned}R1R12×R2=[13021001100022000523]R3R3+2×R2=[13021001100000000523]R4R4+5×R2=[13021001100000000033]
After interchanging rows R 3 R 4 R 3 R 4 R_(3)harrR_(4)R_3 \leftrightarrow R_4R3R4
= [ 1 3 0 2 1 0 0 1 1 0 0 0 0 3 3 0 0 0 0 0 ] = 1      3      0      2      1 0      0      1      1      0 0      0      0      3      3 0      0      0      0      0 =[[1,3,0,2,1],[0,0,1,1,0],[0,0,0,3,3],[0,0,0,0,0]]=\left[\begin{array}{lllll} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]=[13021001100003300000]
R 3 R 3 ÷ 3 = [ 1 3 0 2 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 ] R 3 R 3 ÷ 3 = 1 3 0 2 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 {:[R_(3)larrR_(3)-:3],[=[[1,3,0,2,1],[0,0,1,1,0],[0,0,0,1,1],[0,0,0,0,0]]]:}\begin{aligned} & R_3 \leftarrow R_3 \div 3 \\ & =\left[\begin{array}{lllll} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \end{aligned}R3R3÷3=[13021001100001100000]
R 1 R 1 2 × R 3 = [ 1 3 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 ] R 1 R 1 2 × R 3 = 1 3 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 {:[R_(1)larrR_(1)-2xxR_(3)],[=[[1,3,0,0,-1],[0,0,1,1,0],[0,0,0,1,1],[0,0,0,0,0]]]:}\begin{aligned} & R_1 \leftarrow R_1-2 \times R_3 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \end{aligned}R1R12×R3=[13001001100001100000]
R 2 R 2 R 3 = [ 1 3 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 ] R 2 R 2 R 3 = 1 3 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 {:[R_(2)larrR_(2)-R_(3)],[=[[1,3,0,0,-1],[0,0,1,0,-1],[0,0,0,1,1],[0,0,0,0,0]]]:}\begin{aligned} & R_2 \leftarrow R_2-R_3 \\ & =\left[\begin{array}{ccccc} 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \end{aligned}R2R2R3=[13001001010001100000]

Find the Rank of A A AAA

The rank of a matrix is equal to the number of nonzero rows in its RREF. In this case, there are 3 nonzero rows, so the rank of A A AAA is 3.

Conclusion

The row-reduced echelon form of the given matrix A A AAA is:
[ 1 3 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 ] 1 3 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 [[1,3,0,0,-1],[0,0,1,0,-1],[0,0,0,1,1],[0,0,0,0,0]]\left[\begin{array}{ccccc} 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right][13001001010001100000]
The rank of the matrix A A AAA is 3.
4.(a)(ii) सम्मिश्र संख्या क्षेत्र पर आव्यूह A = ( 0 i i 0 ) A = 0 i i 0 A=([0,-i],[i,0])A=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)A=(0ii0) के अभिलक्षणिक मान तथा संगत अभिलक्षणिक सदिशों को ज्ञात कीजिए ।
Find the eigen values and the corresponding eigen vectors of the matrix A = ( 0 i i 0 ) A = 0 i i 0 A=([0,-i],[i,0])A=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)A=(0ii0), over the complex-number field.
Answer:

Introduction

We are tasked with finding the eigenvalues and corresponding eigenvectors of the given 2 × 2 2 × 2 2xx22 \times 22×2 matrix A A AAA over the complex-number field. The matrix A A AAA is:
A = ( 0 i i 0 ) A = 0 i i 0 A=([0,-i],[i,0])A = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)A=(0ii0)

Definitions

  • Eigenvalue: A scalar λ λ lambda\lambdaλ is an eigenvalue of a matrix A A AAA if there exists a nonzero vector x x x\mathbf{x}x such that A x = λ x A x = λ x Ax=lambdaxA\mathbf{x} = \lambda \mathbf{x}Ax=λx.
  • Eigenvector: A vector x x x\mathbf{x}x is an eigenvector corresponding to an eigenvalue λ λ lambda\lambdaλ if A x = λ x A x = λ x Ax=lambdaxA\mathbf{x} = \lambda \mathbf{x}Ax=λx and x 0 x 0 x!=0\mathbf{x} \neq \mathbf{0}x0.

Method/Approach

To find the eigenvalues and eigenvectors, we will solve the characteristic equation det ( A λ I ) = 0 det ( A λ I ) = 0 “det”(A-lambda I)=0\text{det}(A – \lambda I) = 0det(AλI)=0 and then find the eigenvectors corresponding to each eigenvalue.

Eigenvalues

| A λ I | = 0 | ( λ ) i i ( λ ) | = 0 ( λ ) × ( λ ) i × i = 0 ( λ 2 ) 1 = 0 ( λ 2 1 ) = 0 ( λ 1 ) ( λ + 1 ) = 0 ( λ 1 ) = 0 or ( λ + 1 ) = 0 | A λ I | = 0 ( λ ) i i ( λ ) = 0 ( λ ) × ( λ ) i × i = 0 λ 2 1 = 0 λ 2 1 = 0 ( λ 1 ) ( λ + 1 ) = 0 ( λ 1 ) = 0 or ( λ + 1 ) = 0 {:[|A-lambda I|=0],[|[(-lambda),-i],[i,(-lambda)]|=0],[:.(-lambda)xx(-lambda)–i xx i=0],[:.(lambda^(2))-1=0],[:.(lambda^(2)-1)=0],[:.(lambda-1)(lambda+1)=0],[:.(lambda-1)=0″ or “(lambda+1)=0]:}\begin{aligned} & |A-\lambda I|=0 \\ & \left|\begin{array}{cc} (-\lambda) & -i \\ i & (-\lambda) \end{array}\right|=0 \\ & \therefore(-\lambda) \times(-\lambda)–i \times i=0 \\ & \therefore\left(\lambda^2\right)-1=0 \\ & \therefore\left(\lambda^2-1\right)=0 \\ & \therefore(\lambda-1)(\lambda+1)=0 \\ & \therefore(\lambda-1)=0 \text { or }(\lambda+1)=0 \end{aligned}|AλI|=0|(λ)ii(λ)|=0(λ)×(λ)i×i=0(λ2)1=0(λ21)=0(λ1)(λ+1)=0(λ1)=0 or (λ+1)=0
:.\therefore The eigenvalues of the matrix A A AAA are given by λ = 1 , 1 λ = 1 , 1 lambda=1,-1\lambda=1,-1λ=1,1

Eigenvector for λ 1 = 1 λ 1 = 1 lambda_(1)=1\lambda_1 = 1λ1=1

  1. Substitute the Eigenvalue into the Equation
( A λ I ) x = ( 0 1 i i 0 1 ) x = 0 ( A λ I ) x = 0 1 i i 0 1 x = 0 (A-lambda I)x=([0-1,-i],[i,0-1])x=0(A – \lambda I)\mathbf{x} = \left(\begin{array}{cc} 0-1 & -i \\ i & 0-1 \end{array}\right)\mathbf{x} = \mathbf{0}(AλI)x=(01ii01)x=0
( 1 i i 1 ) ( x y ) = 0 1 i i 1 x y = 0 =>([-1,-i],[i,-1])([x],[y])=0\Rightarrow \left(\begin{array}{cc} -1 & -i \\ i & -1 \end{array}\right)\left(\begin{array}{c} x \\ y \end{array}\right) = \mathbf{0}(1ii1)(xy)=0
  1. Solve the System of Equations
1 x i y = 0 (Equation 1) 1 x i y = 0 (Equation 1) -1x-iy=0quad(Equation 1)-1x – iy = 0 \quad \text{(Equation 1)}1xiy=0(Equation 1)
i x 1 y = 0 (Equation 2) i x 1 y = 0 (Equation 2) ix-1y=0quad(Equation 2)ix – 1y = 0 \quad \text{(Equation 2)}ix1y=0(Equation 2)
From Equation 1, we get x = i y x = i y x=-iyx = -iyx=iy.
If we choose y = 1 y = 1 y=1y = 1y=1, then x = i x = i x=-ix = -ix=i.
So, a possible eigenvector corresponding to λ 1 = 1 λ 1 = 1 lambda_(1)=1\lambda_1 = 1λ1=1 is v 1 = [ i 1 ] v 1 = i 1 v_(1)=[[-i],[1]]\mathbf{v}_1 = \left[\begin{array}{c} -i \\ 1 \end{array}\right]v1=[i1].

Eigenvector for λ 2 = 1 λ 2 = 1 lambda_(2)=-1\lambda_2 = -1λ2=1

  1. Substitute the Eigenvalue into the Equation
( A λ I ) x = ( 0 + 1 i i 0 + 1 ) x = 0 ( A λ I ) x = 0 + 1 i i 0 + 1 x = 0 (A-lambda I)x=([0+1,-i],[i,0+1])x=0(A – \lambda I)\mathbf{x} = \left(\begin{array}{cc} 0+1 & -i \\ i & 0+1 \end{array}\right)\mathbf{x} = \mathbf{0}(AλI)x=(0+1ii0+1)x=0
( 1 i i 1 ) ( x y ) = 0 1 i i 1 x y = 0 =>([1,-i],[i,1])([x],[y])=0\Rightarrow \left(\begin{array}{cc} 1 & -i \\ i & 1 \end{array}\right)\left(\begin{array}{c} x \\ y \end{array}\right) = \mathbf{0}(1ii1)(xy)=0
  1. Solve the System of Equations
1 x i y = 0 (Equation 3) 1 x i y = 0 (Equation 3) 1x-iy=0quad(Equation 3)1x – iy = 0 \quad \text{(Equation 3)}1xiy=0(Equation 3)
i x + 1 y = 0 (Equation 4) i x + 1 y = 0 (Equation 4) ix+1y=0quad(Equation 4)ix + 1y = 0 \quad \text{(Equation 4)}ix+1y=0(Equation 4)
From Equation 3, we get x = i y x = i y x=iyx = iyx=iy.
If we choose y = 1 y = 1 y=1y = 1y=1, then x = i x = i x=ix = ix=i.
So, a possible eigenvector corresponding to λ 2 = 1 λ 2 = 1 lambda_(2)=-1\lambda_2 = -1λ2=1 is v 2 = [ i 1 ] v 2 = i 1 v_(2)=[[i],[1]]\mathbf{v}_2 = \left[\begin{array}{c} i \\ 1 \end{array}\right]v2=[i1].

Conclusion

The eigenvalues of the given matrix A A AAA are λ 1 = 1 λ 1 = 1 lambda_(1)=1\lambda_1 = 1λ1=1 and λ 2 = 1 λ 2 = 1 lambda_(2)=-1\lambda_2 = -1λ2=1. The corresponding eigenvectors are v 1 = [ i 1 ] v 1 = i 1 v_(1)=[[-i],[1]]\mathbf{v}_1 = \left[\begin{array}{c} -i \\ 1 \end{array}\right]v1=[i1] and v 2 = [ i 1 ] v 2 = i 1 v_(2)=[[i],[1]]\mathbf{v}_2 = \left[\begin{array}{c} i \\ 1 \end{array}\right]v2=[i1], respectively.
4.(b) दर्शाइए कि ऐस्ट्रॉइड : x 2 / 3 + y 2 / 3 = a 2 / 3 x 2 / 3 + y 2 / 3 = a 2 / 3 x^(2//3)+y^(2//3)=a^(2//3)x^{2 / 3}+y^{2 / 3}=a^{2 / 3}x2/3+y2/3=a2/3 का पूरा क्षेत्रफल 3 8 π a 2 3 8 π a 2 (3)/(8)pia^(2)\frac{3}{8} \pi a^238πa2 है।
Show that the entire area of the Astroid : x 2 / 3 + y 2 / 3 = a 2 / 3 x 2 / 3 + y 2 / 3 = a 2 / 3 x^(2//3)+y^(2//3)=a^(2//3)x^{2 / 3}+y^{2 / 3}=a^{2 / 3}x2/3+y2/3=a2/3 is 3 8 π a 2 3 8 π a 2 (3)/(8)pia^(2)\frac{3}{8} \pi a^238πa2.
Answer:

Introduction

We are tasked with finding the area of the astroid curve defined by x 2 / 3 + y 2 / 3 = a 2 / 3 x 2 / 3 + y 2 / 3 = a 2 / 3 x^(2//3)+y^(2//3)=a^(2//3)x^{2/3} + y^{2/3} = a^{2/3}x2/3+y2/3=a2/3.

Assumptions

  • a > 0 a > 0 a > 0a > 0a>0
  • The curve is symmetric about both the x-axis and y-axis.

Method/Approach

To find the area of the astroid, we can integrate the function that defines the curve. The equation of the astroid is x 2 / 3 + y 2 / 3 = a 2 / 3 x 2 / 3 + y 2 / 3 = a 2 / 3 x^(2//3)+y^(2//3)=a^(2//3)x^{2/3} + y^{2/3} = a^{2/3}x2/3+y2/3=a2/3. Solving for y y yyy, we get:
y = ( a 2 / 3 x 2 / 3 ) 3 / 2 y = a 2 / 3 x 2 / 3 3 / 2 y=(a^(2//3)-x^(2//3))^(3//2)y = \left(a^{2/3} – x^{2/3}\right)^{3/2}y=(a2/3x2/3)3/2
original image
Since the curve is symmetric about both axes, we can find the area of one quadrant and then multiply it by 4.
Required Area = 4 0 a y d x = 4 0 a ( a 2 / 3 x 2 / 3 ) 3 / 2 d x = 4 π 2 0 ( a sin 3 θ ) ( 3 a cos 2 θ sin θ ) d θ Required Area = 4 0 a y d x = 4 0 a a 2 / 3 x 2 / 3 3 / 2 d x = 4 π 2 0 ( a sin 3 θ ) 3 a cos 2 θ sin θ d θ {:[” Required Area”=4int_(0)^(a)ydx],[=4int_(0)^(a)(a^(2//3)-x^(2//3))^(3//2)dx],[=4int_((pi)/(2))^(0)(a sin 3theta)(-3acos^(2)theta sin theta)d theta]:}\begin{aligned} & \text { Required Area}=4 \int_0^a y d x \\ & =4 \int_0^a\left(a^{2 / 3}-x^{2 / 3}\right)^{3 / 2} d x \\ & =4 \int_{\frac{\pi}{2}}^0(a \sin 3 \theta)\left(-3 a \cos ^2 \theta \sin \theta\right) d \theta \end{aligned} Required Area=40aydx=40a(a2/3x2/3)3/2dx=4π20(asin3θ)(3acos2θsinθ)dθ
(Let x = a cos 2 θ x = a cos 2 θ x=acos^(2)thetax=a \cos ^2 \thetax=acos2θ )
= 12 a 2 0 π 2 sin 4 θ cos 2 θ d θ = 12 a 2 × 3 6 1 4 1 2 π 2 = ( 3 π a 2 8 ) square unit = 12 a 2 0 π 2 sin 4 θ cos 2 θ d θ = 12 a 2 × 3 6 1 4 1 2 π 2 = 3 π a 2 8 square unit {:[=12a^(2)int_(0)^((pi)/(2))sin^(4)thetacos^(2)theta d theta],[=12a^(2)xx(3)/(6)*(1)/(4)*(1)/(2)*(pi)/(2)],[=((3pia^(2))/(8))” square unit”]:}\begin{aligned} & =12 a^2 \int_0^{\frac{\pi}{2}} \sin ^4 \theta \cos ^2 \theta d \theta \\ & =12 a^2 \times \frac{3}{6} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ & =\left(\frac{3 \pi a^2}{8}\right) \text { square unit} \end{aligned}=12a20π2sin4θcos2θdθ=12a2×361412π2=(3πa28) square unit

Conclusion

The entire area of the astroid x 2 / 3 + y 2 / 3 = a 2 / 3 x 2 / 3 + y 2 / 3 = a 2 / 3 x^(2//3)+y^(2//3)=a^(2//3)x^{2 / 3}+y^{2 / 3}=a^{2 / 3}x2/3+y2/3=a2/3 is 3 8 π a 2 3 8 π a 2 (3)/(8)pia^(2)\frac{3}{8} \pi a^238πa2.
(c) रेखाओं
x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 {:[(x+1)/(3)=(y+3)/(5)=(z+5)/(7)”,”],[(x-2)/(1)=(y-4)/(3)=(z-6)/(5)]:}\begin{aligned} &\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}, \\ &\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} \end{aligned}x+13=y+35=z+57,x21=y43=z65
को अंतर्विष्ट करने वाले समतल का समीकरण ज्ञात कीजिए । दी गई रेखाओं के प्रतिच्छेद बिंदु को भी ज्ञात कीजिए।
Find equation of the plane containing the lines
x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 . x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 . {:[(x+1)/(3)=(y+3)/(5)=(z+5)/(7)”,”],[(x-2)/(1)=(y-4)/(3)=(z-6)/(5).]:}\begin{aligned} &\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}, \\ &\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} . \end{aligned}x+13=y+35=z+57,x21=y43=z65.
Also find the point of intersection of the given lines.
Answer:

Introduction

The problem is to find the equation of the plane containing two given lines and to find their point of intersection. The lines are given as:
x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 . x + 1 3 = y + 3 5 = z + 5 7 , x 2 1 = y 4 3 = z 6 5 . {:[(x+1)/(3)=(y+3)/(5)=(z+5)/(7)”,”],[(x-2)/(1)=(y-4)/(3)=(z-6)/(5).]:}\begin{aligned} &\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}, \\ &\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} . \end{aligned}x+13=y+35=z+57,x21=y43=z65.

Definitions

  • Line in 3D Space: A line in 3D space can be represented using parametric equations.
  • Plane in 3D Space: A plane in 3D space can be represented using the equation A x + B y + C z + D = 0 A x + B y + C z + D = 0 Ax+By+Cz+D=0Ax + By + Cz + D = 0Ax+By+Cz+D=0.

Method/Approach

Step 1: Find the Equation of the Plane

The equation of the plane containing the given lines can be found using the determinant method:
| x x 1 y y 1 z z 1 l 1 m 1 n 1 l 2 m 2 n 2 | = 0 x x 1 y y 1 z z 1 l 1 m 1 n 1 l 2 m 2 n 2 = 0 |[x-x_(1),y-y_(1),z-z_(1)],[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)]|=0\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0|xx1yy1zz1l1m1n1l2m2n2|=0
For the given lines, this becomes:
| x + 1 y + 3 z + 5 3 5 7 1 3 5 | = 0 x + 1 y + 3 z + 5 3 5 7 1 3 5 = 0 |[x+1,y+3,z+5],[3,5,7],[1,3,5]|=0\begin{vmatrix} x+1 & y+3 & z+5 \\ 3 & 5 & 7 \\ 1 & 3 & 5 \end{vmatrix} = 0|x+1y+3z+5357135|=0
After expanding the determinant, we get:
4 ( x + 1 ) 8 ( y + 3 ) + 4 ( z + 5 ) = 0 4 ( x + 1 ) 8 ( y + 3 ) + 4 ( z + 5 ) = 0 4(x+1)-8(y+3)+4(z+5)=04(x+1)-8(y+3)+4(z+5) = 04(x+1)8(y+3)+4(z+5)=0
4 x 8 y + 4 z = 0 4 x 8 y + 4 z = 0 =>4x-8y+4z=0\Rightarrow 4x – 8y + 4z = 04x8y+4z=0
x 2 y + z = 0 x 2 y + z = 0 =>x-2y+z=0\Rightarrow x – 2y + z = 0x2y+z=0

Step 2: Find the Point of Intersection

Express the Lines in Parametric Form

First, let’s express the lines in parametric form:
  1. Line 1: x = 3 t 1 1 x = 3 t 1 1 x=3t_(1)-1x = 3t_1 – 1x=3t11, y = 5 t 1 3 y = 5 t 1 3 y=5t_(1)-3y = 5t_1 – 3y=5t13, z = 7 t 1 5 z = 7 t 1 5 z=7t_(1)-5z = 7t_1 – 5z=7t15
  2. Line 2: x = t 2 + 2 x = t 2 + 2 x=t_(2)+2x = t_2 + 2x=t2+2, y = 3 t 2 + 4 y = 3 t 2 + 4 y=3t_(2)+4y = 3t_2 + 4y=3t2+4, z = 5 t 2 + 6 z = 5 t 2 + 6 z=5t_(2)+6z = 5t_2 + 6z=5t2+6

Equate the Parametric Equations

To find the point of intersection, we equate the parametric equations of the two lines:
  1. 3 t 1 1 = t 2 + 2 3 t 1 1 = t 2 + 2 3t_(1)-1=t_(2)+23t_1 – 1 = t_2 + 23t11=t2+2
  2. 5 t 1 3 = 3 t 2 + 4 5 t 1 3 = 3 t 2 + 4 5t_(1)-3=3t_(2)+45t_1 – 3 = 3t_2 + 45t13=3t2+4
  3. 7 t 1 5 = 5 t 2 + 6 7 t 1 5 = 5 t 2 + 6 7t_(1)-5=5t_(2)+67t_1 – 5 = 5t_2 + 67t15=5t2+6

Solve for t 1 t 1 t_(1)t_1t1 and t 2 t 2 t_(2)t_2t2

Solve these equations to find t 1 t 1 t_(1)t_1t1 and t 2 t 2 t_(2)t_2t2:
3 t 1 t 2 = 3 , 5 t 1 3 t 2 = 7 , 7 t 1 5 t 2 = 11 , 3 t 1 t 2 = 3 , 5 t 1 3 t 2 = 7 , 7 t 1 5 t 2 = 11 , {:[3t_(1)-t_(2)=3″,”],[5t_(1)-3t_(2)=7″,”],[7t_(1)-5t_(2)=11″,”]:}\begin{aligned} & 3t_1 – t_2 = 3, \\ & 5t_1 – 3t_2 = 7, \\ & 7t_1 – 5t_2 = 11, \end{aligned}3t1t2=3,5t13t2=7,7t15t2=11,
We find t 1 = 1 2 t 1 = 1 2 t_(1)=(1)/(2)t_1 = \frac{1}{2}t1=12 and t 2 = 3 2 t 2 = 3 2 t_(2)=-(3)/(2)t_2 = -\frac{3}{2}t2=32.

Find the Point of Intersection

Now, let’s substitute t 1 = 1 2 t 1 = 1 2 t_(1)=(1)/(2)t_1 = \frac{1}{2}t1=12 and t 2 = 3 2 t 2 = 3 2 t_(2)=-(3)/(2)t_2 = -\frac{3}{2}t2=32 back into the parametric equations of the lines to find the point of intersection.
For Line 1, the parametric equations are:
x = 3 t 1 1 , y = 5 t 1 3 , z = 7 t 1 5 x = 3 t 1 1 , y = 5 t 1 3 , z = 7 t 1 5 x=3t_(1)-1,quad y=5t_(1)-3,quad z=7t_(1)-5x = 3t_1 – 1, \quad y = 5t_1 – 3, \quad z = 7t_1 – 5x=3t11,y=5t13,z=7t15
After substituting t 1 = 1 2 t 1 = 1 2 t_(1)=(1)/(2)t_1 = \frac{1}{2}t1=12, we get:
( x , y , z ) = ( 3 × 1 2 1 , 5 × 1 2 3 , 7 × 1 2 5 ) ( x , y , z ) = 3 × 1 2 1 , 5 × 1 2 3 , 7 × 1 2 5 (x,y,z)=(3xx(1)/(2)-1,5xx(1)/(2)-3,7xx(1)/(2)-5)(x, y, z) = \left(3 \times \frac{1}{2} – 1, 5 \times \frac{1}{2} – 3, 7 \times \frac{1}{2} – 5\right)(x,y,z)=(3×121,5×123,7×125)
( x , y , z ) = ( 1 2 , 1 2 , 3 2 ) ( x , y , z ) = 1 2 , 1 2 , 3 2 (x,y,z)=((1)/(2),-(1)/(2),-(3)/(2))(x, y, z) = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)(x,y,z)=(12,12,32)

Conclusion

The equation of the plane containing the given lines is x 2 y + z = 0 x 2 y + z = 0 x-2y+z=0x – 2y + z = 0x2y+z=0.
The point of intersection of the given lines is ( 1 2 , 1 2 , 3 2 ) 1 2 , 1 2 , 3 2 ((1)/(2),-(1)/(2),-(3)/(2))\left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)(12,12,32).
खण्ड ‘B’ SECTION ‘ B B BBB
5.(a) अवकल समीकरण :
d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x (d^(2)y)/(dx^(2))+2y=x^(2)e^(3x)+e^(x)cos 2x\frac{d^2 y}{d x^2}+2 y=x^2 e^{3 x}+e^x \cos 2 xd2ydx2+2y=x2e3x+excos2x
को हल कीजिए ।
Solve the differential equation :
d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x (d^(2)y)/(dx^(2))+2y=x^(2)e^(3x)+e^(x)cos 2x\frac{d^2 y}{d x^2}+2 y=x^2 e^{3 x}+e^x \cos 2 xd2ydx2+2y=x2e3x+excos2x
Answer:

Introduction

The problem asks to solve the second-order linear differential equation:
d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x (d^(2)y)/(dx^(2))+2y=x^(2)e^(3x)+e^(x)cos 2x\frac{d^2 y}{d x^2} + 2y = x^2 e^{3x} + e^x \cos 2xd2ydx2+2y=x2e3x+excos2x

Method/Approach

To solve this differential equation, we use symbolic operators to find the general solution.

Solve the Differential Equation

The differential equation is:
d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x d 2 y d x 2 + 2 y = x 2 e 3 x + e x cos 2 x (d^(2)y)/(dx^(2))+2y=x^(2)e^(3x)+e^(x)cos 2x\frac{d^2 y}{d x^2} + 2y = x^2 e^{3x} + e^x \cos 2xd2ydx2+2y=x2e3x+excos2x
( D 2 + 2 ) y = x 2 e 3 x + e x cos ( 2 x ) D 2 + 2 y = x 2 e 3 x + e x cos ( 2 x ) (D^(2)+2)y=x^(2)e^(3x)+e^(x)cos(2x)\left(D^2+2\right) y=x^2 e^{3 x}+e^x \cos (2 x)(D2+2)y=x2e3x+excos(2x)
The Auxiliary equation is m 2 + 2 = 0 m 2 + 2 = 0 m^(2)+2=0m^2+2=0m2+2=0
m 2 = 2 m = ± 2 m = ± i 2 m 2 = 2 m = ± 2 m = ± i 2 {:[m^(2)=-2],[m=+-sqrt(-2)],[m=+-isqrt2]:}\begin{aligned} & m^2=-2 \\ & m= \pm \sqrt{-2} \\ & m= \pm i \sqrt{2} \end{aligned}m2=2m=±2m=±i2
Complementary function ( C F ) = c 1 Cos ( 2 x ) + c 2 Sin ( 2 x ) ( C F ) = c 1 Cos ( 2 x ) + c 2 Sin ( 2 x ) (C*F*)=c_(1)Cos(sqrt2x)+c_(2)Sin(sqrt2x)(C \cdot F \cdot)=c_1 \operatorname{Cos}(\sqrt{2} x)+c_2 \operatorname{Sin}(\sqrt{2} x)(CF)=c1Cos(2x)+c2Sin(2x)
Particular Integral (P.I.) = 1 ( D 2 + 2 ) [ x 2 e 3 x + e x cos ( 2 x ) ] = 1 D 2 + 2 [ x 2 e 3 x + e x cos ( 2 x ) ] =(1)/((D^(2)+2))[x^(2)e^(3x)+e^(x)cos(2x)]=\frac{1}{\left(D^2+2\right)} [x^2 e^{3 x}+e^x \cos (2 x)]=1(D2+2)[x2e3x+excos(2x)]
P . I . = 1 ( D 2 + 2 ) x 2 e 3 x + 1 ( D 2 + 2 ) e x cos ( 2 x ) D D + 3 D D + 1 P . I . = 1 D 2 + 2 x 2 e 3 x + 1 D 2 + 2 e x cos ( 2 x ) D D + 3 D D + 1 {:[P.I.=(1)/((D^(2)+2))x^(2)e^(3x)+(1)/((D^(2)+2))e^(x)cos(2x)],[D rarr D+3quad D rarr D+1]:}\begin{gathered} P.I.=\frac{1}{\left(D^2+2\right)} x^2 e^{3 x}+\frac{1}{\left(D^2+2\right)} e^x \cos (2 x) \\ D \rightarrow D+3 \quad D \rightarrow D+1 \end{gathered}P.I.=1(D2+2)x2e3x+1(D2+2)excos(2x)DD+3DD+1
P . I . = e 3 x 1 ( D + 3 ) 2 + 2 x 2 + e x 1 ( D + 1 ) 2 + 2 cos 2 x P . I . = e 3 x 1 D 2 + 9 + 6 D + 2 x 2 + e x 1 D 2 + 1 + 2 D + 2 cos 2 x P . I . = e 3 x 1 D 2 + 6 D + 11 x 2 + e x 1 D 2 + 2 D + 3 cos 2 x D 2 4 in Second Term P . I . = e 3 x 1 ( D + 3 ) 2 + 2 x 2 + e x 1 ( D + 1 ) 2 + 2 cos 2 x P . I . = e 3 x 1 D 2 + 9 + 6 D + 2 x 2 + e x 1 D 2 + 1 + 2 D + 2 cos 2 x P . I . = e 3 x 1 D 2 + 6 D + 11 x 2 + e x 1 D 2 + 2 D + 3 cos 2 x D 2 4 in Second Term {:[P.I.=e^(3x)*(1)/((D+3)^(2)+2)*x^(2)+(e^(x)*1)/((D+1)^(2)+2)cos 2x],[P.I.=e^(3x)*(1)/(D^(2)+9+6D+2)*x^(2)+e^(x)*(1)/(D^(2)+1+2D+2)cos 2x],[P.I.=e^(3x)*(1)/(D^(2)+6D+11)*x^(2)+e^(x)*(1)/(D^(2)+2D+3)cos 2x],[D^(2)longrightarrow-4″in Second Term”]:}\begin{aligned} &P.I. =e^{3 x} \cdot \frac{1}{(D+3)^2+2} \cdot x^2+\frac{e^x \cdot 1}{(D+1)^2+2} \cos 2 x \\ & P.I.=e^{3 x} \cdot \frac{1}{D^2+9+6 D+2} \cdot x^2+e^x \cdot \frac{1}{D^2+1+2 D+2} \cos 2 x \\ & P.I.=e^{3 x} \cdot \frac{1}{D^2+6 D+11} \cdot x^2+e^x \cdot \frac{1}{D^2+2 D+3} \cos 2 x \\ & D^2 \longrightarrow-4 \text {in Second Term} \end{aligned}P.I.=e3x1(D+3)2+2x2+ex1(D+1)2+2cos2xP.I.=e3x1D2+9+6D+2x2+ex1D2+1+2D+2cos2xP.I.=e3x1D2+6D+11x2+ex1D2+2D+3cos2xD24in Second Term
P . I . = e 3 x 1 11 [ 1 + D 2 + 6 D 11 ] x 2 + e x 1 4 + 2 D + 3 cos ( 2 x ) P . I . = e 3 x 11 [ 1 + D 2 + 6 D 11 ] 1 x 2 + e x 1 2 D 1 cos ( 2 x ) P . I . = e 3 x 11 [ 1 D 2 + 6 D 11 + ( D 2 + 6 D 11 ) 2 ] x 2 + e x 2 D + 1 4 D 2 1 cos ( 2 x ) P . I . = e 3 x 11 [ x 2 1 11 [ D 2 x 2 + 6 D x 2 ] + 1 121 [ D 4 + 36 D 2 + 12 D 3 ] x 2 ] + e x ( 2 D + 1 ) 17 cos 2 x P . I . = e 3 x 11 [ x 2 1 11 [ 2 + 12 x ] + 1 121 [ 0 + 72 + 0 ] ] e x 17 [ 2 D cos ( 2 x ) + cos ( 2 x ) ] P . I . = e 3 x 1 11 1 + D 2 + 6 D 11 x 2 + e x 1 4 + 2 D + 3 cos ( 2 x ) P . I . = e 3 x 11 1 + D 2 + 6 D 11 1 x 2 + e x 1 2 D 1 cos ( 2 x ) P . I . = e 3 x 11 1 D 2 + 6 D 11 + D 2 + 6 D 11 2 x 2 + e x 2 D + 1 4 D 2 1 cos ( 2 x ) P . I . = e 3 x 11 x 2 1 11 D 2 x 2 + 6 D x 2 + 1 121 D 4 + 36 D 2 + 12 D 3 x 2 + e x ( 2 D + 1 ) 17 cos 2 x P . I . = e 3 x 11 x 2 1 11 [ 2 + 12 x ] + 1 121 [ 0 + 72 + 0 ] e x 17 [ 2 D cos ( 2 x ) + cos ( 2 x ) ] {:[P.I.=e^(3x)*(1)/(11[1+(D^(2)+6D)/(11)])*x^(2)+(e^(x)*1)/(-4+2D+3)*cos(2x)],[P.I.=(e^(3x))/(11)*[1+(D^(2)+6D)/(11)]^(-1)*x^(2)+e^(x)*(1)/(2D-1)*cos(2x)],[P.I.=(e^(3x))/(11)*[1-(D^(2)+6D)/(11)+((D^(2)+6D)/(11))^(2)-dots]*x^(2)+e^(x)*(2D+1)/(4D^(2)-1)*cos(2x)],[P.I.=(e^(3x))/(11)[x^(2)-(1)/(11)[D^(2)x^(2)+6Dx^(2)]+(1)/(121)[D^(4)+36D^(2)+12D^(3)]x^(2)-dots]+e^(x)((2D+1))/(-17)cos 2x],[P.I.=(e^(3x))/(11)[x^(2)-(1)/(11)[2+12 x]+(1)/(121)[0+72+0]]-(e^(x))/(17)[2D cos(2x)+cos(2x)]]:}\begin{aligned} &P.I. =e^{3 x} \cdot \frac{1}{11\left[1+\frac{D^2+6 D}{11}\right]} \cdot x^2+\frac{e^x \cdot 1}{-4+2 D+3} \cdot \cos (2 x) \\ &P.I. =\frac{e^{3 x}}{11} \cdot\left[1+\frac{D^2+6 D}{11}\right]^{-1} \cdot x^2+e^x \cdot \frac{1}{2 D-1} \cdot \cos (2 x) \\ &P.I. =\frac{e^{3 x}}{11} \cdot\left[1-\frac{D^2+6 D}{11}+\left(\frac{D^2+6 D}{11}\right)^2-\ldots\right] \cdot x^2+e^x \cdot \frac{2 D+1}{4 D^2-1} \cdot \cos (2 x) \\ & P.I.=\frac{e^{3 x}}{11}\left[x^2-\frac{1}{11}\left[D^2 x^2+6 D x^2\right]+\frac{1}{121}\left[D^4+36 D^2+12 D^3\right] x^2-\ldots\right]+e^x \frac{(2 D+1)}{-17} \cos 2 x \\ &P.I. =\frac{e^{3 x}}{11}\left[x^2-\frac{1}{11}[2+12 x]+\frac{1}{121}[0+72+0]\right]-\frac{e^x}{17}[2 D \cos (2 x)+\cos (2 x)] \\ \end{aligned}P.I.=e3x111[1+D2+6D11]x2+ex14+2D+3cos(2x)P.I.=e3x11[1+D2+6D11]1x2+ex12D1cos(2x)P.I.=e3x11[1D2+6D11+(D2+6D11)2]x2+ex2D+14D21cos(2x)P.I.=e3x11[x2111[D2x2+6Dx2]+1121[D4+36D2+12D3]x2]+ex(2D+1)17cos2xP.I.=e3x11[x2111[2+12x]+1121[0+72+0]]ex17[2Dcos(2x)+cos(2x)]
P . I . = e 3 x 11 [ x 2 12 x + 2 11 + 72 121 ] e x 17 [ cos ( 2 x ) 4 sin ( 2 x ) ] P . I . = e 3 x 11 x 2 12 x + 2 11 + 72 121 e x 17 [ cos ( 2 x ) 4 sin ( 2 x ) ] P.I.=(e^(3x))/(11)[x^(2)-(12 x+2)/(11)+(72)/(121)]-(e^(x))/(17)[cos(2x)-4sin(2x)]P.I.=\frac{e^{3 x}}{11}\left[x^2-\frac{12 x+2}{11}+\frac{72}{121}\right]-\frac{e^x}{17}[\cos (2 x)-4 \sin (2 x)]P.I.=e3x11[x212x+211+72121]ex17[cos(2x)4sin(2x)]
P . I . = e 3 x ( 121 x 2 132 x + 50 ) 1331 e x ( cos ( 2 x ) 4 sin ( 2 x ) ) 17 P . I . = e 3 x 121 x 2 132 x + 50 1331 e x cos 2 x 4 sin 2 x 17 P.I.=(e^(3x)(121x^(2)-132 x+50))/(1331)-(e^(x)(cos(2x)-4sin(2x)))/(17)P.I.=\frac{e^{3x}\left(121x^2-132x+50\right)}{1331}-\frac{e^x\left(\cos \left(2x\right)-4\sin \left(2x\right)\right)}{17}P.I.=e3x(121x2132x+50)1331ex(cos(2x)4sin(2x))17
General Solution = Complementary function + Particular Integral
y ( x ) = C 1 cos ( 2 x ) + C 2 sin ( 2 x ) + e 3 x ( 121 x 2 132 x + 50 ) 1331 e x ( cos ( 2 x ) 4 sin ( 2 x ) ) 17 y ( x ) = C 1 cos ( 2 x ) + C 2 sin ( 2 x ) + e 3 x 121 x 2 132 x + 50 1331 e x cos 2 x 4 sin 2 x 17 y(x)=C_(1)cos(sqrt2x)+C_(2)sin(sqrt2x)+(e^(3x)(121x^(2)-132 x+50))/(1331)-(e^(x)(cos(2x)-4sin(2x)))/(17)y(x) = C_1 \cos(\sqrt{2} x) + C_2 \sin(\sqrt{2} x) + \frac{e^{3x}\left(121x^2-132x+50\right)}{1331}-\frac{e^x\left(\cos \left(2x\right)-4\sin \left(2x\right)\right)}{17}y(x)=C1cos(2x)+C2sin(2x)+e3x(121x2132x+50)1331ex(cos(2x)4sin(2x))17

Conclusion

The general solution of the given second-order linear differential equation is:
y ( x ) = C 1 cos ( 2 x ) + C 2 sin ( 2 x ) + e 3 x ( 121 x 2 132 x + 50 ) 1331 e x ( cos ( 2 x ) 4 sin ( 2 x ) ) 17 y ( x ) = C 1 cos ( 2 x ) + C 2 sin ( 2 x ) + e 3 x 121 x 2 132 x + 50 1331 e x cos 2 x 4 sin 2 x 17 y(x)=C_(1)cos(sqrt2x)+C_(2)sin(sqrt2x)+(e^(3x)(121x^(2)-132 x+50))/(1331)-(e^(x)(cos(2x)-4sin(2x)))/(17)y(x) = C_1 \cos(\sqrt{2} x) + C_2 \sin(\sqrt{2} x) + \frac{e^{3x}\left(121x^2-132x+50\right)}{1331}-\frac{e^x\left(\cos \left(2x\right)-4\sin \left(2x\right)\right)}{17}y(x)=C1cos(2x)+C2sin(2x)+e3x(121x2132x+50)1331ex(cos(2x)4sin(2x))17
Here, C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2 are arbitrary constants.
5.(b) लाप्लास रूपान्तर विधि का उपयोग करते हुए प्रारम्भिक मान समस्या :
d 2 y d x 2 + 4 y = e 2 x sin 2 x ; y ( 0 ) = y ( 0 ) = 0 d 2 y d x 2 + 4 y = e 2 x sin 2 x ; y ( 0 ) = y ( 0 ) = 0 (d^(2)y)/(dx^(2))+4y=e^(-2x)sin 2x;y(0)=y^(‘)(0)=0\frac{d^2 y}{d x^2}+4 y=e^{-2 x} \sin 2 x ; y(0)=y^{\prime}(0)=0d2ydx2+4y=e2xsin2x;y(0)=y(0)=0
को हल कीजिए ।
Solve the initial value problem :
d 2 y d x 2 + 4 y = e 2 x sin 2 x ; y ( 0 ) = y ( 0 ) = 0 d 2 y d x 2 + 4 y = e 2 x sin 2 x ; y ( 0 ) = y ( 0 ) = 0 (d^(2)y)/(dx^(2))+4y=e^(-2x)sin 2x;y(0)=y^(‘)(0)=0\frac{d^2 y}{d x^2}+4 y=e^{-2 x} \sin 2 x ; y(0)=y^{\prime}(0)=0d2ydx2+4y=e2xsin2x;y(0)=y(0)=0
using Laplace transform method.
Answer:

Introduction

The problem at hand is to solve the second-order ordinary differential equation (ODE) with initial conditions:
d 2 y d x 2 + 4 y = e 2 x sin ( 2 x ) , y ( 0 ) = 0 , y ( 0 ) = 0 d 2 y d x 2 + 4 y = e 2 x sin ( 2 x ) , y ( 0 ) = 0 , y ( 0 ) = 0 (d^(2)y)/(dx^(2))+4y=e^(-2x)sin(2x),quad y(0)=0,quady^(‘)(0)=0\frac{d^2 y}{d x^2} + 4y = e^{-2x} \sin(2x), \quad y(0)=0, \quad y'(0)=0d2ydx2+4y=e2xsin(2x),y(0)=0,y(0)=0
We will use the Laplace Transform method to find the solution.

Assumptions

  • The function y ( x ) y ( x ) y(x)y(x)y(x) and its derivatives are continuous and well-defined.
  • The Laplace Transform exists for the given functions.

Method/Approach

We will proceed with the following steps:
  1. Take the Laplace Transform of both sides of the equation.
  2. Solve for Y ( s ) Y ( s ) Y(s)Y(s)Y(s), the Laplace Transform of y ( x ) y ( x ) y(x)y(x)y(x).
  3. Use the inverse Laplace Transform to find y ( x ) y ( x ) y(x)y(x)y(x).

Step 1: Laplace Transform of Both Sides

Taking the Laplace Transform of both sides of the equation, we get:
L { d 2 y d x 2 } + 4 L { y } = L { e 2 x sin ( 2 x ) } L d 2 y d x 2 + 4 L { y } = L { e 2 x sin ( 2 x ) } L{(d^(2)y)/(dx^(2))}+4L{y}=L{e^(-2x)sin(2x)}\mathcal{L}\left\{\frac{d^2 y}{d x^2}\right\} + 4\mathcal{L}\{y\} = \mathcal{L}\{e^{-2x} \sin(2x)\}L{d2ydx2}+4L{y}=L{e2xsin(2x)}
Using the properties of Laplace Transforms, this becomes:
s 2 Y ( s ) s y ( 0 ) y ( 0 ) + 4 Y ( s ) = 2 ( s + 2 ) 2 + 4 s 2 Y ( s ) s y ( 0 ) y ( 0 ) + 4 Y ( s ) = 2 ( s + 2 ) 2 + 4 s^(2)Y(s)-sy(0)-y^(‘)(0)+4Y(s)=(2)/((s+2)^(2)+4)s^2 Y(s) – sy(0) – y'(0) + 4Y(s) = \frac{2}{(s+2)^2 + 4}s2Y(s)sy(0)y(0)+4Y(s)=2(s+2)2+4
Substituting the initial conditions y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0)=0y(0)=0 and y ( 0 ) = 0 y ( 0 ) = 0 y^(‘)(0)=0y'(0)=0y(0)=0, we get:
s 2 Y ( s ) + 4 Y ( s ) = 2 ( s + 2 ) 2 + 4 s 2 Y ( s ) + 4 Y ( s ) = 2 ( s + 2 ) 2 + 4 s^(2)Y(s)+4Y(s)=(2)/((s+2)^(2)+4)s^2 Y(s) + 4Y(s) = \frac{2}{(s+2)^2 + 4}s2Y(s)+4Y(s)=2(s+2)2+4

Step 2: Solve for Y ( s ) Y ( s ) Y(s)Y(s)Y(s)

Simplifying, we find:
Y ( s ) ( s 2 + 4 ) = 2 ( s + 2 ) 2 + 4 Y ( s ) ( s 2 + 4 ) = 2 ( s + 2 ) 2 + 4 Y(s)(s^(2)+4)=(2)/((s+2)^(2)+4)Y(s) (s^2 + 4) = \frac{2}{(s+2)^2 + 4}Y(s)(s2+4)=2(s+2)2+4
Y ( s ) = 2 ( s 2 + 4 ) ( ( s + 2 ) 2 + 4 ) Y ( s ) = 2 ( s 2 + 4 ) ( ( s + 2 ) 2 + 4 ) Y(s)=(2)/((s^(2)+4)((s+2)^(2)+4))Y(s) = \frac{2}{(s^2 + 4)((s+2)^2 + 4)}Y(s)=2(s2+4)((s+2)2+4)

Step 3: Inverse Laplace Transform

To find y ( x ) y ( x ) y(x)y(x)y(x), we need to take the inverse Laplace Transform of Y ( s ) Y ( s ) Y(s)Y(s)Y(s). This involves partial fraction decomposition.
L ( y ) = 2 ( s 2 + 4 ) ( s 2 + 4 s + 8 ) = 1 10 [ 1 s s 2 + 4 + s + 3 s 2 + 4 s + 8 ] = 1 10 [ 1 s 2 + 4 s s 2 + 4 + s + 2 ( s + 2 ) 2 + 2 2 + 2 2 [ ( s + 2 ) 2 + 2 2 ] ] L ( y ) = 2 s 2 + 4 s 2 + 4 s + 8 = 1 10 1 s s 2 + 4 + s + 3 s 2 + 4 s + 8 = 1 10 1 s 2 + 4 s s 2 + 4 + s + 2 ( s + 2 ) 2 + 2 2 + 2 2 ( s + 2 ) 2 + 2 2 {:[=>L(y)=(2)/((s^(2)+4)(s^(2)+4s+8))=(1)/(10)[(1-s)/(s^(2)+4)+(s+3)/(s^(2)+4s+8)]],[=(1)/(10)[(1)/(s^(2)+4)-(s)/(s^(2)+4)+(s+2)/((s+2)^(2)+2^(2))+(2)/(2[(s+2)^(2)+2^(2)])]]:}\begin{aligned} & \Rightarrow L(y)=\frac{2}{\left(s^2+4\right)\left(s^2+4 s+8\right)}=\frac{1}{10}\left[\frac{1-s}{s^2+4}+\frac{s+3}{s^2+4 s+8}\right] \\ & =\frac{1}{10}\left[\frac{1}{s^2+4}-\frac{s}{s^2+4}+\frac{s+2}{(s+2)^2+2^2}+\frac{2}{2\left[(s+2)^2+2^2\right]}\right] \\ \end{aligned}L(y)=2(s2+4)(s2+4s+8)=110[1ss2+4+s+3s2+4s+8]=110[1s2+4ss2+4+s+2(s+2)2+22+22[(s+2)2+22]]
By using inverse Laplace Transform Formulas
y ( x ) = 1 10 [ sin 2 t 2 cos 2 t + e 2 t cos 2 t + e 2 t sin 2 t 2 ] y ( x ) = 1 10 sin 2 t 2 cos 2 t + e 2 t cos 2 t + e 2 t sin 2 t 2 y(x)=(1)/(10)[(sin 2t)/(2)-cos 2t+e^(-2t)cos 2t+(e^(-2t)sin 2t)/(2)]y(x)=\frac{1}{10}\left[\frac{\sin 2 t}{2}-\cos 2 t+e^{-2 t} \cos 2 t+\frac{e^{-2 t} \sin 2 t}{2}\right]y(x)=110[sin2t2cos2t+e2tcos2t+e2tsin2t2]

Conclusion

The solution to the initial value problem
d 2 y d x 2 + 4 y = e 2 x sin ( 2 x ) , y ( 0 ) = 0 , y ( 0 ) = 0 d 2 y d x 2 + 4 y = e 2 x sin ( 2 x ) , y ( 0 ) = 0 , y ( 0 ) = 0 (d^(2)y)/(dx^(2))+4y=e^(-2x)sin(2x),quad y(0)=0,quady^(‘)(0)=0\frac{d^2 y}{d x^2} + 4y = e^{-2x} \sin(2x), \quad y(0)=0, \quad y'(0)=0d2ydx2+4y=e2xsin(2x),y(0)=0,y(0)=0
is given by:
y ( x ) = 1 10 [ sin 2 t 2 cos 2 t + e 2 t cos 2 t + e 2 t sin 2 t 2 ] y ( x ) = 1 10 sin 2 t 2 cos 2 t + e 2 t cos 2 t + e 2 t sin 2 t 2 y(x)=(1)/(10)[(sin 2t)/(2)-cos 2t+e^(-2t)cos 2t+(e^(-2t)sin 2t)/(2)]y(x)=\frac{1}{10}\left[\frac{\sin 2 t}{2}-\cos 2 t+e^{-2 t} \cos 2 t+\frac{e^{-2 t} \sin 2 t}{2}\right]y(x)=110[sin2t2cos2t+e2tcos2t+e2tsin2t2]
This solution was obtained using the Laplace Transform method.
  1. (c) दो छड़े L M L M LML MLM M N M N MNM NMN बिन्दु M M MMM पर दृढ़ता से इस प्रकार जुड़ी हैं कि ( L M ) 2 + ( M N ) 2 = ( L N ) 2 ( L M ) 2 + ( M N ) 2 = ( L N ) 2 (LM)^(2)+(MN)^(2)=(LN)^(2)(L M)^2+(M N)^2=(L N)^2(LM)2+(MN)2=(LN)2 तथा वे स्वतन्त्र रूप से साम्यावस्था में स्थिर बिन्दु L L LLL पर टँगी हैं। माना कि दोनों एकसमान छड़ों का प्रति एकांक लम्बाई, भार ω ω omega\omegaω है। छड़ L M L M LML MLM का ऊर्ध्वाधर दिशा के साथ बने कोण को छड़ों की लम्बाई के रूप में ज्ञात कीजिए ।
Two rods L M L M LML MLM and M N M N MNM NMN are joined rigidly at the point M M MMM such that ( L M ) 2 + ( M N ) 2 = ( L N ) 2 ( L M ) 2 + ( M N ) 2 = ( L N ) 2 (LM)^(2)+(MN)^(2)=(LN)^(2)(L M)^2+(M N)^2=(L N)^2(LM)2+(MN)2=(LN)2 and they are hanged freely in equilibrium from a fixed point L L LLL. Let ω ω omega\omegaω be the weight per unit length of both the rods which are uniform. Determine the angle, which the rod L M L M LML MLM makes with the vertical direction, in terms of lengths of the rods.
Answer:

Introduction

The problem involves two uniform rods L M L M LMLMLM and M N M N MNMNMN joined rigidly at point M M MMM and hanging freely from a fixed point L L LLL. The rods satisfy the condition ( L M ) 2 + ( M N ) 2 = ( L N ) 2 ( L M ) 2 + ( M N ) 2 = ( L N ) 2 (LM)^(2)+(MN)^(2)=(LN)^(2)(LM)^2 + (MN)^2 = (LN)^2(LM)2+(MN)2=(LN)2. The weight per unit length of both rods is ω ω omega\omegaω. We are asked to find the angle θ θ theta\thetaθ that the rod L M L M LMLMLM makes with the vertical direction.

Assumptions

  • The rods are uniform, and their weight per unit length is ω ω omega\omegaω.
  • The system is in equilibrium, so the sum of the moments about point L L LLL is zero.

Method/Approach

  1. Calculate the weights of the rods L M L M LMLMLM and M N M N MNMNMN and identify their points of action.
  2. Write the equation for the sum of the moments about point L L LLL being zero.
  3. Solve for tan θ tan θ tan theta\tan \thetatanθ in terms of the lengths of the rods.

Step 1: Calculate the Weights

The weights of the rods L M L M LMLMLM and M N M N MNMNMN are ω L M ω L M omega*LM\omega \cdot LMωLM and ω M N ω M N omega*MN\omega \cdot MNωMN respectively. These weights act at the midpoints G 1 G 1 G_(1)G_1G1 and G 2 G 2 G_(2)G_2G2 of L M L M LMLMLM and M N M N MNMNMN.
original image

Step 2: Equation for Moments

In equilibrium, the sum of the moments of the weights about point L L LLL is zero. Let G 1 P G 1 P G_(1)PG_1PG1P and G 2 Q G 2 Q G_(2)QG_2QG2Q be the perpendiculars from G 1 G 1 G_(1)G_1G1 and G 2 G 2 G_(2)G_2G2 to the vertical line through L L LLL.
The equation for the moments about L L LLL is:
ω L M G 1 P ω M N G 2 S = 0 ( 1 ) ω L M G 1 P ω M N G 2 S = 0 ( 1 ) omega*LM*G_(1)P-omega*MN*G_(2)S=0—-(1)\omega \cdot LM \cdot G_1P – \omega \cdot MN \cdot G_2S = 0—-(1)ωLMG1PωMNG2S=0(1)
We have sin θ = G 1 P L G 1 sin θ = G 1 P L G 1 sin theta=(G_(1)P)/(LG_(1))\sin \theta = \frac{G_1P}{LG_1}sinθ=G1PLG1, so
G 1 P = L M 2 sin θ G 1 P = L M 2 sin θ G_(1)P=(LM)/(2)sin thetaG_1P = \frac{LM}{2} \sin \thetaG1P=LM2sinθ
Similarly, cos θ = G 2 Q M G 2 cos θ = G 2 Q M G 2 cos theta=(G_(2)Q)/(MG_(2))\cos \theta = \frac{G_2Q}{MG_2}cosθ=G2QMG2, so
G 2 Q = M N 2 cos θ G 2 Q = M N 2 cos θ G_(2)Q=(MN)/(2)cos thetaG_2Q = \frac{MN}{2} \cos \thetaG2Q=MN2cosθ
And, in L M R Sin θ = M R L M M R = L M sin θ L M R Sin θ = M R L M M R = L M sin θ {:[/_\LMR quad Sin theta=(MR)/(LM)],[MR=LM sin theta]:}\begin{aligned} \triangle L M R \quad \operatorname{Sin} \theta & =\frac{M R}{L M} \\ M R & =L M \sin \theta\end{aligned}LMRSinθ=MRLMMR=LMsinθ
G 2 Q = M N 2 cos θ G 2 S + S Q = M N 2 cos θ G 2 S + M R = M N 2 cos θ G 2 S = M N 2 cos θ M R G 2 S = M N 2 cos θ L M sin θ G 2 Q = M N 2 cos θ G 2 S + S Q = M N 2 cos θ G 2 S + M R = M N 2 cos θ G 2 S = M N 2 cos θ M R G 2 S = M N 2 cos θ L M sin θ {:[G_(2)Q=(MN)/(2)cos theta],[G_(2)S+SQ=(MN)/(2)cos theta],[G_(2)S+MR=(MN)/(2)cos theta],[G_(2)S=(MN)/(2)cos theta-MR],[G_(2)S=(MN)/(2)cos theta-LM sin theta]:}\begin{aligned} & G_2 Q=\frac{M N}{2} \cos \theta \\ & G_2 S+SQ=\frac{M N}{2} \cos \theta \\ & G_2 S+M R=\frac{M N}{2} \cos \theta \\ & G_2 S=\frac{M N}{2} \cos \theta-M R \\ & G_2 S=\frac{M N}{2} \cos \theta-L M \sin \theta \end{aligned}G2Q=MN2cosθG2S+SQ=MN2cosθG2S+MR=MN2cosθG2S=MN2cosθMRG2S=MN2cosθLMsinθ
Put these values in equation (1)
ω L M G 1 P ω M N G 2 S = 0 ω L M G 1 P ω M N G 2 S = 0 omega*LM*G_(1)P-omega*MN*G_(2)S=0\omega \cdot L M \cdot G_1 P-\omega \cdot M N \cdot G_2 S=0ωLMG1PωMNG2S=0
ω L M L M 2 sin θ ω M N ( M N 2 cos θ L M sin θ ) = 0 ω L M L M 2 sin θ ω M N M N 2 cos θ L M sin θ = 0 omega*LM*(LM)/(2)sin theta-omega*MN*((MN)/(2)cos theta-LM sin theta)=0\omega \cdot L M \cdot \frac{L M}{2} \sin \theta-\omega \cdot M N \cdot\left(\frac{M N}{2} \cos \theta-L M \sin \theta\right)=0ωLMLM2sinθωMN(MN2cosθLMsinθ)=0
ω 2 L M 2 sin θ = ω M N [ M N cos θ 2 L M sin θ 2 ] ω 2 L M 2 sin θ = ω M N M N cos θ 2 L M sin θ 2 (omega)/(2)*LM^(2)sin theta=omega*MN[(MN cos theta-2LM sin theta)/(2)]\frac{\omega}{2} \cdot LM^2 \sin \theta=\omega \cdot M N\left[\frac{M N \cos \theta-2 L M \sin \theta}{2}\right]ω2LM2sinθ=ωMN[MNcosθ2LMsinθ2]

Step 3: Solve for tan θ tan θ tan theta\tan \thetatanθ

Divide by ω 2 cos θ ω 2 cos θ (omega)/(2)cos theta\frac{\omega}{2} \cos \thetaω2cosθ
L M 2 tan θ = M N 2 2 M N L M tan θ tan θ [ L M 2 + 2 M N L M ] = M N 2 tan θ = M N 2 L M 2 + 2 M N L M L M 2 tan θ = M N 2 2 M N L M tan θ tan θ L M 2 + 2 M N L M = M N 2 tan θ = M N 2 L M 2 + 2 M N L M {:[LM^(2)tan theta=MN^(2)-2MN*LM tan theta],[tan theta[LM^(2)+2MN*LM]=MN^(2)],[tan theta=(MN^(2))/(LM^(2)+2MN*LM)]:}\begin{aligned} & L M^2 \tan \theta=M N^2-2 M N \cdot L M \tan \theta \\ & \tan \theta\left[L M^2+2 M N \cdot L M\right]=M N^2 \\ & \tan \theta=\frac{M N^2}{L M^2+2 M N \cdot L M} \end{aligned}LM2tanθ=MN22MNLMtanθtanθ[LM2+2MNLM]=MN2tanθ=MN2LM2+2MNLM

Conclusion

The angle θ θ theta\thetaθ that the rod L M L M LMLMLM makes with the vertical direction is given by:
tan θ = M N 2 L M 2 + 2 M N L M tan θ = M N 2 L M 2 + 2 M N L M tan theta=(MN^(2))/(LM^(2)+2MN*LM)\tan \theta=\frac{M N^2}{L M^2+2 M N \cdot L M}tanθ=MN2LM2+2MNLM
This angle is determined solely by the lengths of the rods L M L M LMLMLM and M N M N MNMNMN.
  1. (d) यदि एक ग्रह, जो सूर्य के परितः वृत्तीय कक्षा में परिभ्रमण करता है, अचानक अपनी कक्षा में रोक दिया जाता है, तो वह समय, जिसमें वह सूर्य में गिर जाएगा, ज्ञात कीजिए। इसके गिरने के समय का ग्रह के परिभ्रमण आवर्तकाल से अनुपात भी ज्ञात कीजिए ।
If a planet, which revolves around the Sun in a circular orbit, is suddenly stopped in its orbit, then find the time in which it would fall into the Sun. Also, find the ratio of its falling time to the period of revolution of the planet.
Answer:

Introduction

The problem asks us to find the time it would take for a planet to fall into the Sun if it is suddenly stopped in its circular orbit. We are also asked to find the ratio of this falling time to the period of revolution of the planet. The planet initially revolves in a circular orbit of radius a a aaa around the Sun and is suddenly stopped at point P P PPP. The planet then starts moving towards the Sun under a given acceleration.

Assumptions

  1. The orbit of the planet is circular with radius a a aaa.
  2. The planet is suddenly stopped, making its velocity zero.
  3. The planet moves towards the Sun under the acceleration μ (distance) 2 μ (distance) 2 (mu)/((distance)^(2))\frac{\mu}{\text{(distance)}^2}μ(distance)2.

Definitions

  • μ μ mu\muμ: Gravitational parameter
  • a a aaa: Radius of the circular orbit
  • v v vvv: Velocity of the planet
  • r r rrr: Distance from the Sun
  • t t ttt: Time taken to fall into the Sun
  • T T TTT: Periodic time of planet’s revolution

Method/Approach

We will use the given equation of motion and integrate it to find the time t t ttt it takes for the planet to fall into the Sun. We will also find the ratio t T t T (t)/(T)\frac{t}{T}tT.

Work/Calculations

original image

Step 1: Equation of Motion

The equation of motion for the planet is given as:
v d v d r = μ r 2 v d v d r = μ r 2 v(dv)/(dr)=-(mu)/(r^(2))v \frac{dv}{dr} = -\frac{\mu}{r^2}vdvdr=μr2
Let’s integrate this equation to find v v vvv in terms of r r rrr.

Step 2: Integration and Finding v v vvv

Integrating, we get:
v 2 = 2 μ r + A v 2 = 2 μ r + A v^(2)=(2mu)/(r)+Av^2 = \frac{2\mu}{r} + Av2=2μr+A
When r = a r = a r=ar = ar=a and v = 0 v = 0 v=0v = 0v=0, we find A = 2 μ a A = 2 μ a A=-(2mu)/(a)A = -\frac{2\mu}{a}A=2μa. Therefore, the equation becomes:
v 2 = 2 μ ( a r ) a r v 2 = 2 μ ( a r ) a r v^(2)=(2mu(a-r))/(ar)v^2 = \frac{2\mu(a – r)}{ar}v2=2μ(ar)ar
We also have v = d r d t v = d r d t v=(dr)/(dt)v = \frac{dr}{dt}v=drdt, so:
v = 2 μ a r a r v = 2 μ a r a r v=-sqrt(2mu)sqrt((a-r)/(ar))v = -\sqrt{2\mu} \sqrt{\frac{a – r}{ar}}v=2μarar
Here, r r rrr is decreasing.

Step 3: Finding Time t t ttt

We have:
a 0 r a r d r = 2 μ a 0 t d t a 0 r a r d r = 2 μ a 0 t d t int_(a)^(0)sqrt((r)/(a-r))dr=-sqrt((2mu)/(a))int_(0)^(t)dt\int_a^0 \sqrt{\frac{r}{a – r}} dr = -\sqrt{\frac{2\mu}{a}} \int_0^t dta0rardr=2μa0tdt
After Calculating, we get:
2 μ a t = 0 π 2 2 a cos 2 θ d θ 2 μ a t = 0 π 2 2 a cos 2 θ d θ -sqrt((2mu)/(a))t=-int_(0)^((pi)/(2))2acos^(2)theta d theta-\sqrt{\frac{2\mu}{a}} t = -\int_0^{\frac{\pi}{2}} 2a \cos^2 \theta d\theta2μat=0π22acos2θdθ
Therefore,
2 μ a t = a π 2 2 μ a t = a π 2 sqrt((2mu)/(a))t=a(pi)/(2)\sqrt{\frac{2\mu}{a}} t = a \frac{\pi}{2}2μat=aπ2
Finally, we find t t ttt as:
t = 2 π a 3 / 2 4 μ t = 2 π a 3 / 2 4 μ t=(sqrt2pia^(3//2))/(4sqrtmu)t = \frac{\sqrt{2}\pi a^{3/2}}{4\sqrt{\mu}}t=2πa3/24μ

Step 4: Finding t T t T (t)/(T)\frac{t}{T}tT

The periodic time T T TTT is given as T = 2 π a 3 / 2 μ T = 2 π a 3 / 2 μ T=(2pia^(3//2))/(sqrtmu)T = \frac{2\pi a^{3/2}}{\sqrt{\mu}}T=2πa3/2μ. Therefore, the ratio t T t T (t)/(T)\frac{t}{T}tT is:
t T = 2 8 t T = 2 8 (t)/(T)=(sqrt2)/(8)\frac{t}{T} = \frac{\sqrt{2}}{8}tT=28

Conclusion

The time taken by the planet to fall into the Sun is t = 2 π a 3 / 2 4 μ t = 2 π a 3 / 2 4 μ t=(sqrt2pia^(3//2))/(4sqrtmu)t = \frac{\sqrt{2}\pi a^{3/2}}{4\sqrt{\mu}}t=2πa3/24μ. The ratio of this falling time to the period of revolution of the planet is t T = 2 8 t T = 2 8 (t)/(T)=(sqrt2)/(8)\frac{t}{T} = \frac{\sqrt{2}}{8}tT=28.
5.(e) दर्शाइए कि 2 [ ( r r 2 ) ] = 2 r 4 2 r r 2 = 2 r 4 grad^(2)[grad*((( vec(r)))/(r^(2)))]=(2)/(r^(4))\nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]=\frac{2}{r^4}2[(rr2)]=2r4, जहाँ r = x i ^ + y j ^ + z k ^ r = x i ^ + y j ^ + z k ^ vec(r)=x hat(i)+y hat(j)+z hat(k)\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}r=xi^+yj^+zk^ है ।
Show that 2 [ ( r r 2 ) ] = 2 r 4 2 r r 2 = 2 r 4 grad^(2)[grad*((( vec(r)))/(r^(2)))]=(2)/(r^(4))\nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]=\frac{2}{r^4}2[(rr2)]=2r4, where r = x i ^ + y j ^ + z k ^ r = x i ^ + y j ^ + z k ^ vec(r)=x hat(i)+y hat(j)+z hat(k)\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}r=xi^+yj^+zk^
Answer:

Introduction

The question asks for the Laplacian 2 2 grad^(2)\nabla^22 of the function 1 r 1 r (1)/(r)\frac{1}{r}1r and to show that 2 [ ( r r 2 ) ] = 2 r 4 2 r r 2 = 2 r 4 grad^(2)[grad*((( vec(r)))/(r^(2)))]=(2)/(r^(4))\nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]=\frac{2}{r^4}2[(rr2)]=2r4, where r = x 2 + y 2 + z 2 r = x 2 + y 2 + z 2 r=sqrt(x^(2)+y^(2)+z^(2))r = \sqrt{x^2 + y^2 + z^2}r=x2+y2+z2 is the radial distance from the origin in a three-dimensional Cartesian coordinate system.

Assumptions

  • r r rrr is a positive real number representing the radial distance from the origin.
  • We are working in a three-dimensional Cartesian coordinate system.

Work/Calculations

We know that r = x i ^ + y j ^ + z k ^ r = x i ^ + y j ^ + z k ^ vec(r)=x hat(i)+y hat(j)+z hat(k)\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}r=xi^+yj^+zk^
r = x 2 + y 2 + z 2 r 2 = x 2 + y 2 + z 2 ( 1 ) r = x 2 + y 2 + z 2 r 2 = x 2 + y 2 + z 2 ( 1 ) {:[ vec(r)=sqrt(x^(2)+y^(2)+z^(2))],[r^(2)=x^(2)+y^(2)+z^(2)—-(1)]:}\begin{aligned} & \vec{r}=\sqrt{x^2+y^2+z^2} \\ & r^2=x^2+y^2+z^2—-(1) \end{aligned}r=x2+y2+z2r2=x2+y2+z2(1)
Differentiate equation (1) with respect to ‘ x x xxx
2 π r x = 2 x r x = x r 2 π r x = 2 x r x = x r {:[2pi(del r)/(del x)=2x],[(del r)/(del x)=(x)/(r)]:}\begin{aligned} 2 \pi \frac{\partial r}{\partial x} & =2 x \\ \frac{\partial r}{\partial x} & =\frac{x}{r} \end{aligned}2πrx=2xrx=xr
Differentiate equation (1) with respect to ‘ y y yyy
2 r r y = 2 y r y = y r 2 r r y = 2 y r y = y r {:[2r(del r)/(del y)=2y],[(del r)/(del y)=(y)/(r)]:}\begin{aligned} 2 r \frac{\partial r}{\partial y} & =2 y \\ \frac{\partial r}{\partial y} & =\frac{y}{r} \end{aligned}2rry=2yry=yr
Differentiate equation (1) with respect to ‘ z z zzz
2 r r z = 2 z r z = z r 2 r r z = 2 z r z = z r {:[2r(del r)/(del z)=2z],[(del r)/(del z)=(z)/(r)]:}\begin{aligned} 2 r \frac{\partial r}{\partial z} & =2 z \\ \frac{\partial r}{\partial z} & =\frac{z}{r} \end{aligned}2rrz=2zrz=zr
Consider ( r r 2 ) = [ ( x i ^ + y j ^ + z k ^ ) ( x i ^ + y j ^ + z k ^ r 2 ) ] ( r r 2 ) = [ x ( x r 2 ) + y ( y r 2 ) + z ( z r 2 ) ] ( r r 2 ) = [ r 2 x 2 r r x r 4 + r 2 y 2 r r y r 4 + r 2 z 2 r r z r 4 ] ( r r 2 ) = [ r 2 2 r x 2 r r 4 + r 2 2 r y 2 r r 4 + r 2 2 r z 2 r r 4 ] ( r r 2 ) = [ 3 r 2 2 ( x 2 + y 2 + z 2 ) r 4 ] ( r r 2 ) = [ 3 r 2 2 r 2 r 4 ] ( r r 2 ) = [ r 2 r 4 ] ( r r 2 ) = 1 r 2 Consider r r 2 = x i ^ + y j ^ + z k ^ x i ^ + y j ^ + z k ^ r 2 r r 2 = x x r 2 + y y r 2 + z z r 2 r r 2 = r 2 x 2 r r x r 4 + r 2 y 2 r r y r 4 + r 2 z 2 r r z r 4 r r 2 = r 2 2 r x 2 r r 4 + r 2 2 r y 2 r r 4 + r 2 2 r z 2 r r 4 r r 2 = 3 r 2 2 x 2 + y 2 + z 2 r 4 r r 2 = 3 r 2 2 r 2 r 4 r r 2 = r 2 r 4 r r 2 = 1 r 2 {:[” Consider “grad*((( vec(r)))/(r^(2)))=[((del)/(del x)( hat(i))+(del)/(del y)( hat(j))+(del)/(del z)( hat(k)))*((x( hat(i))+y( hat(j))+z( hat(k)))/(r^(2)))]],[grad*((( vec(r)))/(r^(2)))=[(del)/(del x)((x)/(r^(2)))+(del)/(del y)((y)/(r^(2)))+(del)/(del z)((z)/(r^(2)))]],[grad*((( vec(r)))/(r^(2)))=[(r^(2)-x*2r(del r)/(del x))/(r^(4))+(r^(2)-y*2r(del r)/(del y))/(r^(4))+(r^(2)-z*2r(del r)/(del z))/(r^(4))]],[grad*((( vec(r)))/(r^(2)))=[(r^(2)-(2rx^(2))/(r))/(r^(4))+(r^(2)-(2ry^(2))/(r))/(r^(4))+(r^(2)-(2rz^(2))/(r))/(r^(4))]],[grad*((( vec(r)))/(r^(2)))=[(3r^(2)-2(x^(2)+y^(2)+z^(2)))/(r^(4))]],[grad*((( vec(r)))/(r^(2)))=[(3r^(2)-2r^(2))/(r^(4))]],[grad*((( vec(r)))/(r^(2)))=[(r^(2))/(r^(4))]],[grad*((( vec(r)))/(r^(2)))=(1)/(r^(2))],[]:}\begin{aligned} & \text { Consider } \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right) \cdot\left(\frac{x \hat{i}+y \hat{j}+z \hat{k}}{r^2}\right)\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{\partial}{\partial x}\left(\frac{x}{r^2}\right)+\frac{\partial}{\partial y}\left(\frac{y}{r^2}\right)+\frac{\partial}{\partial z}\left(\frac{z}{r^2}\right)\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{r^2-x \cdot 2 r \frac{\partial r}{\partial x}}{r^4}+\frac{r^2-y \cdot 2 r \frac{\partial r}{\partial y}}{r^4}+\frac{r^2-z \cdot 2 r \frac{\partial r}{\partial z}}{r^4}\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{r^2-\frac{2 r x^2}{r}}{r^4}+\frac{r^2-\frac{2 r y^2}{r}}{r^4}+\frac{r^2-\frac{2 r z^2}{r}}{r^4}\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{3 r^2-2\left(x^2+y^2+z^2\right)}{r^4}\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{3 r^2-2 r^2}{r^4}\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\left[\frac{r^2}{r^4}\right] \\ & \nabla \cdot\left(\frac{\vec{r}}{r^2}\right)=\frac{1}{r^2} \\ & \end{aligned} Consider (rr2)=[(xi^+yj^+zk^)(xi^+yj^+zk^r2)](rr2)=[x(xr2)+y(yr2)+z(zr2)](rr2)=[r2x2rrxr4+r2y2rryr4+r2z2rrzr4](rr2)=[r22rx2rr4+r22ry2rr4+r22rz2rr4](rr2)=[3r22(x2+y2+z2)r4](rr2)=[3r22r2r4](rr2)=[r2r4](rr2)=1r2
Now we will calculate 2 [ ( r r 2 ) ] 2 r r 2 grad^(2)[grad*((( vec(r)))/(r^(2)))]\nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]2[(rr2)].
2 [ ( r r 2 ) ] = 2 [ 1 r 2 ] = ( 1 r 2 ) = [ ( 1 r 2 ) ] = [ i ^ x ( 1 r 2 ) + j ^ y ( 1 r 2 ) + k ^ z ( 1 r 2 ) ] = [ i ^ { 2 r 3 r x } + j ^ { 2 r 3 r y } + k ^ { 2 r 4 r z } ] = [ 2 r 3 x r i ^ 2 r 3 y r j ^ 2 r 3 z r k ^ ] = 2 [ x i ^ + y j ^ + z k ^ r 4 ] = 2 ( i ^ x + j ^ y + k ^ z ) ( x r 4 i ^ + y r 4 j ^ + z r 4 k ^ ) = 2 [ x ( x r 4 ) + y ( y r 4 ) + z ( z r 4 ) ] 2 r r 2 = 2 1 r 2 = 1 r 2 = 1 r 2 = i ^ x 1 r 2 + j ^ y 1 r 2 + k ^ z 1 r 2 = i ^ 2 r 3 r x + j ^ 2 r 3 r y + k ^ 2 r 4 r z = 2 r 3 x r i ^ 2 r 3 y r j ^ 2 r 3 z r k ^ = 2 x i ^ + y j ^ + z k ^ r 4 = 2 i ^ x + j ^ y + k ^ z x r 4 i ^ + y r 4 j ^ + z r 4 k ^ = 2 x x r 4 + y y r 4 + z z r 4 {:[grad^(2)[grad*((( vec(r)))/(r^(2)))]=grad^(2)[(1)/(r^(2))]],[=grad*grad((1)/(r^(2)))],[=grad*[grad((1)/(r^(2)))]],[=grad*[( hat(i))(del)/(del x)((1)/(r^(2)))+( hat(j))(del)/(del y)((1)/(r^(2)))+( hat(k))(del)/(del z)((1)/(r^(2)))]],[=grad*[( hat(i)){-(2)/(r^(3))(del r)/(del x)}+( hat(j)){-(2)/(r^(3))(del r)/(del y)}+( hat(k)){(-2)/(r^(4))(del r)/(del z)}]],[=grad*[-(2)/(r^(3))*(x)/(r)( hat(i))-(2)/(r^(3))(y)/(r)( hat(j))-(2)/(r^(3))(z)/(r)( hat(k))]],[=-2grad*[(x( hat(i))+y( hat(j))+z( hat(k)))/(r^(4))]],[=-2(( hat(i))(del)/(del x)+( hat(j))(del)/(del y)+( hat(k))(del)/(del z))*((x)/(r^(4))( hat(i))+(y)/(r^(4))( hat(j))+(z)/(r^(4))( hat(k)))],[=-2[(del)/(del x)((x)/(r^(4)))+(del)/(del y)((y)/(r^(4)))+(del)/(del z)((z)/(r^(4)))]]:}\begin{aligned} \nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right] & =\nabla^2\left[\frac{1}{r^2}\right] \\ & =\nabla \cdot \nabla\left(\frac{1}{r^2}\right) \\ & =\nabla \cdot\left[\nabla\left(\frac{1}{r^2}\right)\right] \\ & =\nabla \cdot\left[\hat{i} \frac{\partial}{\partial x}\left(\frac{1}{r^2}\right)+\hat{j} \frac{\partial}{\partial y}\left(\frac{1}{r^2}\right)+\hat{k} \frac{\partial}{\partial z}\left(\frac{1}{r^2}\right)\right] \\ & =\nabla \cdot\left[\hat{i}\left\{-\frac{2}{r^3} \frac{\partial r}{\partial x}\right\}+\hat{j}\left\{-\frac{2}{r^3} \frac{\partial r}{\partial y}\right\}+\hat{k}\left\{\frac{-2}{r^4} \frac{\partial r}{\partial z}\right\}\right] \\ & =\nabla \cdot\left[-\frac{2}{r^3} \cdot \frac{x}{r} \hat{i}-\frac{2}{r^3} \frac{y}{r} \hat{j}-\frac{2}{r^3} \frac{z}{r} \hat{k}\right] \\ & =-2 \nabla \cdot\left[\frac{x \hat{i}+ y\hat{j}+z \hat{k}}{r^4}\right] \\ & =-2\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(\frac{x}{r^4} \hat{i}+\frac{y}{r^4} \hat{j}+\frac{z}{r^4} \hat{k}\right)\\ & =-2\left[\frac{\partial}{\partial x}\left(\frac{x}{r^4}\right)+\frac{\partial}{\partial y}\left(\frac{y}{r^4}\right)+\frac{\partial}{\partial z}\left(\frac{z}{r^4}\right)\right] \\ \end{aligned}2[(rr2)]=2[1r2]=(1r2)=[(1r2)]=[i^x(1r2)+j^y(1r2)+k^z(1r2)]=[i^{2r3rx}+j^{2r3ry}+k^{2r4rz}]=[2r3xri^2r3yrj^2r3zrk^]=2[xi^+yj^+zk^r4]=2(i^x+j^y+k^z)(xr4i^+yr4j^+zr4k^)=2[x(xr4)+y(yr4)+z(zr4)]
2 [ ( r r 2 ) ] = 2 [ r 4 x 4 r 3 r x r 8 + r 4 y 4 r 3 r y r 8 + r 4 z 4 r 3 r z r 8 ] = 2 [ r 4 4 r 3 x 2 r r 8 + r 4 4 r 3 y 2 r r 8 + r 4 4 r 3 z 2 r r 8 ] = 2 [ 3 r 4 4 r 2 ( x 2 + y 2 + z 2 ) r 8 ] = 2 [ 3 r 4 4 r 2 r 2 r 8 ] = + 2 r 4 r 8 = 2 r 4 2 r r 2 = 2 r 4 x 4 r 3 r x r 8 + r 4 y 4 r 3 r y r 8 + r 4 z 4 r 3 r z r 8 = 2 r 4 4 r 3 x 2 r r 8 + r 4 4 r 3 y 2 r r 8 + r 4 4 r 3 z 2 r r 8 = 2 3 r 4 4 r 2 x 2 + y 2 + z 2 r 8 = 2 3 r 4 4 r 2 r 2 r 8 = + 2 r 4 r 8 = 2 r 4 {:[grad^(2)[grad*((( vec(r)))/(r^(2)))]=-2[(r^(4)-x*4r^(3)(del r)/(del x))/(r^(8))+(r^(4)-y*4r^(3)(del r)/(del y))/(r^(8))+(r^(4)-z*4r^(3)(del r)/(del z))/(r^(8))]],[=-2[(r^(4)-(4r^(3)x^(2))/(r))/(r^(8))+(r^(4)-(4r^(3)y^(2))/(r))/(r^(8))+(r^(4)-(4r^(3)z^(2))/(r))/(r^(8))]],[=-2[(3r^(4)-4r^(2)(x^(2)+y^(2)+z^(2)))/(r^(8))]],[=-2[(3r^(4)-4r^(2)*r^(2))/(r^(8))]],[=+(2r^(4))/(r^(8))],[=(2)/(r^(4))]:}\begin{aligned} \nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]& =-2\left[\frac{r^4-x \cdot 4 r^3 \frac{\partial r}{\partial x}}{r^8}+\frac{r^4-y \cdot 4 r^3 \frac{\partial r}{\partial y}}{r^8}+\frac{r^4-z \cdot 4 r^3 \frac{\partial r}{\partial z}}{r^8}\right] \\ & =-2\left[\frac{r^4-\frac{4 r^3 x^2}{r}}{r^8}+\frac{r^4-\frac{4 r^3 y^2}{r}}{r^8}+\frac{r^4-\frac{4 r^3 z^2}{r}}{r^8}\right] \\ & =-2\left[\frac{3 r^4-4 r^2\left(x^2+y^2+z^2\right)}{r^8}\right] \\ & =-2\left[\frac{3 r^4-4 r^2 \cdot r^2}{r^8}\right] \\ & =+\frac{2 r^4}{r^8} \\ & =\frac{2}{r^4} \end{aligned}2[(rr2)]=2[r4x4r3rxr8+r4y4r3ryr8+r4z4r3rzr8]=2[r44r3x2rr8+r44r3y2rr8+r44r3z2rr8]=2[3r44r2(x2+y2+z2)r8]=2[3r44r2r2r8]=+2r4r8=2r4

Conclusion

  1. The Laplacian 2 ( 1 r ) 2 1 r grad^(2)((1)/(r))\nabla^2\left(\frac{1}{r}\right)2(1r) of the function 1 r 1 r (1)/(r)\frac{1}{r}1r where r = x 2 + y 2 + z 2 r = x 2 + y 2 + z 2 r=sqrt(x^(2)+y^(2)+z^(2))r = \sqrt{x^2 + y^2 + z^2}r=x2+y2+z2 is 1 r 4 1 r 4 (1)/(r^(4))\frac{1}{r^4}1r4.
  2. The expression 2 [ ( r r 2 ) ] = 2 r 4 2 r r 2 = 2 r 4 grad^(2)[grad*((( vec(r)))/(r^(2)))]=(2)/(r^(4))\nabla^2\left[\nabla \cdot\left(\frac{\vec{r}}{r^2}\right)\right]=\frac{2}{r^4}2[(rr2)]=2r4 is verified.
  1. (a) एक भारी डोरी, जिसका घनत्व एक समान नहीं है, दो बिन्दुओं से टँगी हुई है। माना कि T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 क्रमशः कैटिनरी के बीच के बिन्दुओं A , B , C A , B , C A,B,CA, B, CA,B,C पर तनाव हैं, जिन पर इसके क्षैतिज के साथ आनति कोण, सार्व अंतर β β beta\betaβ के साथ समांतर श्रेढ़ी में हैं। माना कि डोरी के A B A B ABA BAB तथा B C B C BCB CBC भागों के भार क्रमशः ω 1 ω 1 omega_(1)\omega_1ω1 तथा ω 2 ω 2 omega_(2)\omega_2ω2 हैं। सिद्ध कीजिए
    (i) T 1 , T 2 T 1 , T 2 T_(1),T_(2)T_1, T_2T1,T2 तथा T 3 T 3 T_(3)T_3T3 का हरात्मक माध्य = 3 T 2 1 + 2 cos β = 3 T 2 1 + 2 cos β =(3T_(2))/(1+2cos beta)=\frac{3 T_2}{1+2 \cos \beta}=3T21+2cosβ
    (ii) T 1 T 3 = ω 1 ω 2 T 1 T 3 = ω 1 ω 2 (T_(1))/(T_(3))=(omega_(1))/(omega_(2))\frac{T_1}{T_3}=\frac{\omega_1}{\omega_2}T1T3=ω1ω2
A heavy string, which is not of uniform density, is hung up from two points. Let T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 be the tensions at the intermediate points A , B , C A , B , C A,B,CA, B, CA,B,C of the catenary respectively where its inclinations to the horizontal are in arithmetic progression with common difference β β beta\betaβ. Let ω 1 ω 1 omega_(1)\omega_1ω1 and ω 2 ω 2 omega_(2)\omega_2ω2 be the weights of the parts A B A B ABA BAB and B C B C BCB CBC of the string respectively. Prove that
(i) Harmonic mean of T 1 , T 2 T 1 , T 2 T_(1),T_(2)T_1, T_2T1,T2 and T 3 = 3 T 2 1 + 2 cos β T 3 = 3 T 2 1 + 2 cos β T_(3)=(3T_(2))/(1+2cos beta)T_3=\frac{3 T_2}{1+2 \cos \beta}T3=3T21+2cosβ
(ii) T 1 T 3 = ω 1 ω 2 T 1 T 3 = ω 1 ω 2 (T_(1))/(T_(3))=(omega_(1))/(omega_(2))\frac{T_1}{T_3}=\frac{\omega_1}{\omega_2}T1T3=ω1ω2
Answer:
Let O O OOO be the lowest point of the catenary and T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 be the tensions at A , B A , B A,BA, BA,B and C C CCC respectively.
original image
If T 0 T 0 T_(0)T_0T0 be the tension at o , then consider the equilibrium of the portion O A O A OAO AOA of the chain.
T 0 = T 1 cos ( α β ) ( 1 ) T 0 = T 1 cos ( α β ) ( 1 ) T_(0)=T_(1)cos(alpha-beta)—-(1)T_0=T_1 \cos (\alpha-\beta)—-(1)T0=T1cos(αβ)(1)
Similarly, considering the equilibrium of portions O B O B OBO BOB and O C O C OCO COC we get,
T 0 = T 1 cos ( α β ) = T 2 cos α = T 3 cos ( α + β ) ( 2 ) T 0 = T 1 cos ( α β ) = T 2 cos α = T 3 cos ( α + β ) ( 2 ) T_(0)=T_(1)cos(alpha-beta)=T_(2)cos alpha=T_(3)cos(alpha+beta)—-(2)T_0=T_1 \cos (\alpha-\beta)=T_2 \cos \alpha=T_3 \cos (\alpha+\beta) —- (2)T0=T1cos(αβ)=T2cosα=T3cos(α+β)(2)
Again considering the equilibrium of A B A B ABA BAB in vertical direction,
T 2 sin α T 1 sin ( α β ) = ω 1 ( 3 ) T 2 sin α T 1 sin ( α β ) = ω 1 ( 3 ) T_(2)sin alpha-T_(1)sin(alpha-beta)=omega_(1)—-(3)T_2 \sin \alpha-T_1 \sin (\alpha-\beta)=\omega_1—-(3)T2sinαT1sin(αβ)=ω1(3)
Similarly the equilibrium of portion B C B C BCB CBC in vertical direction gives:
T 3 sin ( α + β ) T 2 sin α = ω 2 ( 4 ) T 3 sin ( α + β ) T 2 sin α = ω 2 ( 4 ) T_(3)sin(alpha+beta)-T_(2)sin alpha=omega_(2)—-(4)T_3 \sin (\alpha+\beta)-T_2 \sin \alpha=\omega_2—-(4)T3sin(α+β)T2sinα=ω2(4)

Part (i): Harmonic Mean of T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3

The harmonic mean H H HHH of T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 is given by:
H = 3 1 T 1 + 1 T 2 + 1 T 3 H = 3 1 T 1 + 1 T 2 + 1 T 3 H=(3)/((1)/(T_(1))+(1)/(T_(2))+(1)/(T_(3)))H = \frac{3}{\frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3}}H=31T1+1T2+1T3
We aim to prove that H = 3 T 2 1 + 2 cos β H = 3 T 2 1 + 2 cos β H=(3T_(2))/(1+2cos beta)H = \frac{3 T_2}{1+2 \cos \beta}H=3T21+2cosβ.

Step 1: Substitute T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 in terms of T 0 T 0 T_(0)T_0T0

From Above, we have:
T 1 = T 0 cos ( α β ) T 1 = T 0 cos ( α β ) T_(1)=(T_(0))/(cos(alpha-beta))T_1 = \frac{T_0}{\cos(\alpha – \beta)}T1=T0cos(αβ)
T 2 = T 0 cos ( α ) T 2 = T 0 cos ( α ) T_(2)=(T_(0))/(cos(alpha))T_2 = \frac{T_0}{\cos(\alpha)}T2=T0cos(α)
T 3 = T 0 cos ( α + β ) T 3 = T 0 cos ( α + β ) T_(3)=(T_(0))/(cos(alpha+beta))T_3 = \frac{T_0}{\cos(\alpha + \beta)}T3=T0cos(α+β)

Step 2: Substitute into Harmonic Mean Formula

H = 3 cos ( α β ) T 0 + cos ( α ) T 0 + cos ( α + β ) T 0 H = 3 cos ( α β ) T 0 + cos ( α ) T 0 + cos ( α + β ) T 0 H=(3)/((cos(alpha-beta))/(T_(0))+(cos(alpha))/(T_(0))+(cos(alpha+beta))/(T_(0)))H = \frac{3}{\frac{\cos(\alpha – \beta)}{T_0} + \frac{\cos(\alpha)}{T_0} + \frac{\cos(\alpha + \beta)}{T_0}}H=3cos(αβ)T0+cos(α)T0+cos(α+β)T0

Step 3: Simplify H H HHH

H = 3 T 0 cos ( α β ) + cos ( α ) + cos ( α + β ) H = 3 T 0 cos ( α β ) + cos ( α ) + cos ( α + β ) H=(3T_(0))/(cos(alpha-beta)+cos(alpha)+cos(alpha+beta))H = \frac{3 T_0}{\cos(\alpha – \beta) + \cos(\alpha) + \cos(\alpha + \beta)}H=3T0cos(αβ)+cos(α)+cos(α+β)
Using trigonometric identities, we can simplify this to the desired form.
Using the trigonometric identity cos ( A ) + cos ( B ) = 2 cos ( A + B 2 ) cos ( A B 2 ) cos ( A ) + cos ( B ) = 2 cos A + B 2 cos A B 2 cos(A)+cos(B)=2cos((A+B)/(2))cos((A-B)/(2))\cos(A) + \cos(B) = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)cos(A)+cos(B)=2cos(A+B2)cos(AB2), we get:
H = 3 T 0 2 cos ( α ) cos ( β ) + cos ( α ) = 3 T 0 cos ( α ) ( 1 + 2 cos ( β ) ) H = 3 T 0 2 cos ( α ) cos ( β ) + cos ( α ) = 3 T 0 cos ( α ) ( 1 + 2 cos ( β ) ) H=(3T_(0))/(2cos(alpha)cos(beta)+cos(alpha))=(3T_(0))/(cos(alpha)(1+2cos(beta)))H = \frac{3 T_0}{2 \cos(\alpha) \cos(\beta) + \cos(\alpha)} = \frac{3 T_0}{\cos(\alpha) (1 + 2 \cos(\beta))}H=3T02cos(α)cos(β)+cos(α)=3T0cos(α)(1+2cos(β))
Since T 2 = T 0 cos ( α ) T 2 = T 0 cos ( α ) T_(2)=(T_(0))/(cos(alpha))T_2 = \frac{T_0}{\cos(\alpha)}T2=T0cos(α), we have:
H = 3 T 2 1 + 2 cos ( β ) H = 3 T 2 1 + 2 cos ( β ) H=(3T_(2))/(1+2cos(beta))H = \frac{3 T_2}{1 + 2 \cos(\beta)}H=3T21+2cos(β)
This proves the first part.

Part (ii): Ratio of T 1 T 1 T_(1)T_1T1 to T 3 T 3 T_(3)T_3T3

We aim to prove that T 1 T 3 = ω 1 ω 2 T 1 T 3 = ω 1 ω 2 (T_(1))/(T_(3))=(omega_(1))/(omega_(2))\frac{T_1}{T_3} = \frac{\omega_1}{\omega_2}T1T3=ω1ω2.
Using the given equilibrium equations, we can express ω 1 ω 1 omega_(1)\omega_1ω1 and ω 2 ω 2 omega_(2)\omega_2ω2 in terms of T 1 , T 2 , T 3 T 1 , T 2 , T 3 T_(1),T_(2),T_(3)T_1, T_2, T_3T1,T2,T3 and α , β α , β alpha,beta\alpha, \betaα,β.
Multiply equation (3) by T 3 T 3 T_(3)T_3T3 & equation (4) by T 1 T 1 T_(1)T_1T1 and subtracting,
We get
ω 1 T 3 ω 2 T 1 = T 2 T 3 sin α T 1 T 3 sin ( α β ) T 1 T 3 sin ( α + β ) + T 1 T 2 sin α ω 1 T 3 ω 2 T 1 = T 2 T 3 sin α T 1 T 3 sin ( α β ) T 1 T 3 sin ( α + β ) + T 1 T 2 sin α omega_(1)T_(3)-omega_(2)T_(1)=T_(2)T_(3)sin alpha-T_(1)T_(3)sin(alpha-beta)-T_(1)T_(3)sin(alpha+beta)+T_(1)T_(2)sin alpha\omega_1 T_3-\omega_2 T_1=T_2 T_3 \sin \alpha-T_1 T_3 \sin (\alpha-\beta)-T_1 T_3 \sin (\alpha+\beta)+T_1 T_2 \sin \alphaω1T3ω2T1=T2T3sinαT1T3sin(αβ)T1T3sin(α+β)+T1T2sinα
ω 1 T s ω 2 T 1 = T 1 T s sin α cos ( α β ) cos α T 1 T s sin ( α β ) T 1 T s sin ( α + β ) + T 1 T s cos ( α + β ) sin α cos α ω 1 T s ω 2 T 1 = T 1 T s sin α cos ( α β ) cos α T 1 T s sin ( α β ) T 1 T s sin ( α + β ) + T 1 T s cos ( α + β ) sin α cos α omega_(1)T_(s)-omega_(2)T_(1)=T_(1)T_(s)(sin alpha cos(alpha-beta))/(cos alpha)-T_(1)T_(s)sin(alpha-beta)-T_(1)T_(s)sin(alpha+beta)+T_(1)T_(s)(cos(alpha+beta)sin alpha)/(cos alpha)\omega_1 T_s-\omega_2 T_1=T_1 T_s \frac{\sin \alpha \cos (\alpha-\beta)}{\cos \alpha}-T_1 T_s \sin (\alpha-\beta)-T_1 T_s \sin (\alpha+\beta)+T_1 T_s \frac{\cos (\alpha+\beta) \sin \alpha}{\cos \alpha}ω1Tsω2T1=T1Tssinαcos(αβ)cosαT1Tssin(αβ)T1Tssin(α+β)+T1Tscos(α+β)sinαcosα
ω 1 T 3 ω 2 T 1 = T 1 T 3 [ Sin α Cos α { Cos ( α β ) + Cos ( α + β ) } { Sin ( α β ) + Sin ( α + β ) } ] ω 1 T 3 ω 2 T 1 = T 1 T 3 Sin α Cos α { Cos ( α β ) + Cos ( α + β ) } { Sin ( α β ) + Sin ( α + β ) } omega_(1)T_(3)-omega_(2)T_(1)=T_(1)T_(3)[(Sin alpha)/(Cos alpha){Cos(alpha-beta)+Cos(alpha+beta)}-{Sin(alpha-beta)+Sin(alpha+beta)}]\omega_1 T_3-\omega_2 T_1=T_1 T_3\left[\frac{\operatorname{Sin} \alpha}{\operatorname{Cos} \alpha}\{\operatorname{Cos}(\alpha-\beta)+\operatorname{Cos}(\alpha+\beta)\}-\{\operatorname{Sin}(\alpha-\beta)+\operatorname{Sin}(\alpha+\beta)\}\right]ω1T3ω2T1=T1T3[SinαCosα{Cos(αβ)+Cos(α+β)}{Sin(αβ)+Sin(α+β)}]
Using cos C + cos D = 2 cos C + D 2 cos C D 2 cos C + cos D = 2 cos C + D 2 cos C D 2 cos C+cos D=2cos((C+D)/(2))cos((C-D)/(2))\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}cosC+cosD=2cosC+D2cosCD2
and sin C + sin D = 2 sin C + D 2 cos C D 2 sin C + sin D = 2 sin C + D 2 cos C D 2 sin C+sin D=2sin((C+D)/(2))cos((C-D)/(2))\sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}sinC+sinD=2sinC+D2cosCD2
ω 1 T 3 ω 2 T 1 = T 1 T 3 [ sin α cos α ( 2 cos α cos β ) ( 2 sin α cos β ) ] ω 1 T 3 ω 2 T 1 = T 1 T 3 [ 2 sin α cos β 2 sin α cos β ] ω 1 T 3 ω 2 T 1 = T 1 T 3 [ 0 ] ω 1 T 3 ω 2 T 1 = 0 ω 1 T 3 ω 2 T 1 = T 1 T 3 sin α cos α ( 2 cos α cos β ) ( 2 sin α cos β ) ω 1 T 3 ω 2 T 1 = T 1 T 3 [ 2 sin α cos β 2 sin α cos β ] ω 1 T 3 ω 2 T 1 = T 1 T 3 [ 0 ] ω 1 T 3 ω 2 T 1 = 0 {:[omega_(1)T_(3)-omega_(2)T_(1)=T_(1)T_(3)[(sin alpha)/(cos alpha)*(2cos alpha cos beta)-(2sin alpha cos beta)]],[omega_(1)T_(3)-omega_(2)T_(1)=T_(1)T_(3)[2sin alpha cos beta-2sin alpha cos beta]],[omega_(1)T_(3)-omega_(2)T_(1)=T_(1)T_(3)[0]],[omega_(1)T_(3)-omega_(2)T_(1)=0]:}\begin{aligned} \omega_1 T_3-\omega_2 T_1 & =T_1 T_3 {\left[\frac{\sin \alpha}{\cos \alpha} \cdot(2 \cos \alpha \cos \beta)-(2 \sin \alpha \cos \beta)\right] } \\ \omega_1 T_3-\omega_2 T_1 & =T_1 T_3[2 \sin \alpha \cos \beta-2 \sin \alpha \cos \beta] \\ \omega_1 T_3-\omega_2 T_1 & =T_1 T_3[0] \\ \omega_1 T_3-\omega_2 T_1 & =0 \end{aligned}ω1T3ω2T1=T1T3[sinαcosα(2cosαcosβ)(2sinαcosβ)]ω1T3ω2T1=T1T3[2sinαcosβ2sinαcosβ]ω1T3ω2T1=T1T3[0]ω1T3ω2T1=0
ω 1 T 3 = ω 2 T 1 T 1 T 3 = ω 1 ω 2 ω 1 T 3 = ω 2 T 1 T 1 T 3 = ω 1 ω 2 {:[omega_(1)T_(3)=omega_(2)T_(1)],[(T_(1))/(T_(3))=(omega_(1))/(omega_(2))]:}\begin{aligned} & \omega_1 T_3=\omega_2 T_1 \\ & \frac{T_1}{T_3}=\frac{\omega_1}{\omega_2} \end{aligned}ω1T3=ω2T1T1T3=ω1ω2
This proves the second part.
6.(b) सभी अन्तर्त्रस्त (शामिल) चरणों को दर्शति हुए समीकरण :
d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x (d^(2)y)/(dx^(2))+(tan x-3cos x)(dy)/(dx)+2ycos^(2)x=cos^(4)x\frac{d^2 y}{d x^2}+(\tan x-3 \cos x) \frac{d y}{d x}+2 y \cos ^2 x=\cos ^4 xd2ydx2+(tanx3cosx)dydx+2ycos2x=cos4x
को पूर्ण रूप से हल कीजिए ।
Solve the equation:
d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x (d^(2)y)/(dx^(2))+(tan x-3cos x)(dy)/(dx)+2ycos^(2)x=cos^(4)x\frac{d^2 y}{d x^2}+(\tan x-3 \cos x) \frac{d y}{d x}+2 y \cos ^2 x=\cos ^4 xd2ydx2+(tanx3cosx)dydx+2ycos2x=cos4x
completely by demonstrating all the steps involved.
Answer:
Given equation d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x d 2 y d x 2 + ( tan x 3 cos x ) d y d x + 2 y cos 2 x = cos 4 x (d^(2)y)/(dx^(2))+(tan x-3cos x)(dy)/(dx)+2ycos^(2)x=cos^(4)x\frac{d^2 y}{d x^2}+(\tan x-3 \cos x) \frac{d y}{d x}+2 y \cos ^2 x=\cos ^4 xd2ydx2+(tanx3cosx)dydx+2ycos2x=cos4x
Compare this equation with d 2 y d x 2 + P d y d x + Q y = R d 2 y d x 2 + P d y d x + Q y = R (d^(2)y)/(dx^(2))+P(dy)/(dx)+Qy=R\frac{d^2 y}{d x^2}+P \frac{d y}{d x}+Q y=Rd2ydx2+Pdydx+Qy=R
We get
P = tan x 3 cos x Q = 2 cos 2 x R = cos 4 x P = tan x 3 cos x Q = 2 cos 2 x R = cos 4 x {:[P=tan x-3cos x],[Q=2cos^(2)x],[R=cos^(4)x]:}\begin{aligned} & P=\tan x-3 \cos x \\ & Q=2 \cos ^2 x \\ & R=\cos ^4 x \end{aligned}P=tanx3cosxQ=2cos2xR=cos4x
To solve the given differential equation we change the independent variable from x x xxx to z z zzz by choosing z z zzz such that
Q ( d z d x ) 2 = 2 cos 2 x ( d z d x ) 2 = Constant = 2 (say) Q d z d x 2 = 2 cos 2 x d z d x 2 = Constant = 2 (say) (Q)/(((dz)/(dx))^(2))=(2cos^(2)x)/(((dz)/(dx))^(2))=” Constant “=2” (say) “\frac{Q}{\left(\frac{d z}{d x}\right)^2}=\frac{2 \cos ^2 x}{\left(\frac{d z}{d x}\right)^2}=\text { Constant }=2 \text { (say) }Q(dzdx)2=2cos2x(dzdx)2= Constant =2 (say)
Then
( d z d x ) 2 = cos 2 x d z d x = cos x z = sin x d z d x 2 = cos 2 x d z d x = cos x z = sin x {:[((dz)/(dx))^(2)=cos^(2)x],[(dz)/(dx)=cos x],[z=sin x]:}\begin{aligned} & \left(\frac{d z}{d x}\right)^2=\cos ^2 x \\ & \frac{d z}{d x}=\cos x \\ & z=\sin x \end{aligned}(dzdx)2=cos2xdzdx=cosxz=sinx
Now by the substitution z = sin x z = sin x z=sin xz=\sin xz=sinx, the given differential equation is transformed into d 2 y d z 2 + P 1 d y d z + Q 1 y = R 1 d 2 y d z 2 + P 1 d y d z + Q 1 y = R 1 (d^(2)y)/(dz^(2))+P_(1)(dy)/(dz)+Q_(1)y=R_(1)\frac{d^2 y}{d z^2}+P_1 \frac{d y}{d z}+Q_1 y=R_1d2ydz2+P1dydz+Q1y=R1
Where
P 1 = d 2 z d x 2 + P d z d x ( d z d x ) 2 P 1 = d 2 z d x 2 + P d z d x d z d x 2 P_(1)=((d^(2)z)/(dx^(2))+P*(dz)/(dx))/(((dz)/(dx))^(2))P_1=\frac{\frac{d^2 z}{d x^2}+P \cdot \frac{d z}{d x}}{\left(\frac{d z}{d x}\right)^2}P1=d2zdx2+Pdzdx(dzdx)2
P 1 = sin x + ( tan x 3 cos x ) cos x cos 2 x P 1 = 3 Q 1 = Q ( d z d x ) 2 = 2 cos 2 x cos 2 x = 2 R 1 = R ( d z d x ) 2 = cos 4 x cos 2 x = cos 2 x P 1 = 1 sin 2 x P 1 = 1 z 2 P 1 = sin x + ( tan x 3 cos x ) cos x cos 2 x P 1 = 3 Q 1 = Q d z d x 2 = 2 cos 2 x cos 2 x = 2 R 1 = R d z d x 2 = cos 4 x cos 2 x = cos 2 x P 1 = 1 sin 2 x P 1 = 1 z 2 {:[P_(1)=(-sin x+(tan x-3cos x)*cos x)/(cos^(2)x)],[P_(1)=-3],[Q_(1)=(Q)/(((dz)/(dx))^(2))=(2cos^(2)x)/(cos^(2)x)=2],[R_(1)=(R)/(((dz)/(dx))^(2))=(cos^(4)x)/(cos^(2)x)=cos^(2)x],[P_(1)=1-sin^(2)x],[P_(1)=1-z^(2)]:}\begin{aligned} & P_1=\frac{-\sin x+(\tan x-3 \cos x) \cdot \cos x}{\cos ^2 x} \\ & P_1=-3 \\ & Q_1=\frac{Q}{\left(\frac{d z}{d x}\right)^2}=\frac{2 \cos ^2 x}{\cos ^2 x}=2 \\ & R_1=\frac{R}{\left(\frac{d z}{d x}\right)^2}=\frac{\cos ^4 x}{\cos ^2 x}=\cos ^2 x \\ & P_1=1-\sin ^2 x \\ & P_1=1-z^2 \end{aligned}P1=sinx+(tanx3cosx)cosxcos2xP1=3Q1=Q(dzdx)2=2cos2xcos2x=2R1=R(dzdx)2=cos4xcos2x=cos2xP1=1sin2xP1=1z2
So, The transformed equation is
d 2 y d z 2 3 d y d z + 2 y = 1 z 2 ( D 2 3 D + 2 ) y = 1 z 2 d 2 y d z 2 3 d y d z + 2 y = 1 z 2 D 2 3 D + 2 y = 1 z 2 {:[(d^(2)y)/(dz^(2))-(3dy)/(dz)+2y=1-z^(2)],[(D^(2)-3D+2)y=1-z^(2)]:}\begin{aligned} & \frac{d^2 y}{d z^2}-\frac{3 d y}{d z}+2 y=1-z^2 \\ & \left(D^2-3 D+2\right) y=1-z^2 \end{aligned}d2ydz23dydz+2y=1z2(D23D+2)y=1z2
A.E. m 2 3 m + 2 = 0 m 2 3 m + 2 = 0 quadm^(2)-3m+2=0\quad m^2-3 m+2=0m23m+2=0
( m 1 ) ( m 2 ) = 0 m = 1 , 2 ( m 1 ) ( m 2 ) = 0 m = 1 , 2 {:[(m-1)(m-2)=0],[m=1″,”2]:}\begin{aligned} & (m-1)(m-2)=0 \\ & m=1,2 \end{aligned}(m1)(m2)=0m=1,2
C.F. y c = c 1 e z + c 2 e 2 z y c = c 1 e z + c 2 e 2 z y_(c)=c_(1)e^(z)+c_(2)e^(2z)y_c=c_1 e^z+c_2 e^{2 z}yc=c1ez+c2e2z
P.I. y p = 1 D 2 3 D + 2 ( 1 z 2 ) y p = 1 D 2 3 D + 2 1 z 2 y_(p)=(1)/(D^(2)-3D+2)(1-z^(2))y_p=\frac{1}{D^2-3 D+2}\left(1-z^2\right)yp=1D23D+2(1z2)
y p = 1 2 [ 1 + D 2 3 D 2 ] ( 1 z 2 ) y p = 1 2 [ 1 + D 2 3 D 2 ] 1 ( 1 z 2 ) y p = 1 2 [ 1 ( D 2 3 D 2 ) + ( D 2 3 D 2 ) 2 ] ( 1 z 2 ) y p = 1 2 [ 1 ( D 2 3 D 2 ) + 1 4 [ D 4 + 9 D 2 6 D 3 ] ] ( 1 z 2 ) y p = 1 2 1 + D 2 3 D 2 1 z 2 y p = 1 2 1 + D 2 3 D 2 1 1 z 2 y p = 1 2 1 D 2 3 D 2 + D 2 3 D 2 2 1 z 2 y p = 1 2 1 D 2 3 D 2 + 1 4 D 4 + 9 D 2 6 D 3 1 z 2 {:[y_(p)=(1)/(2[1+(D^(2)-3D)/(2)])(1-z^(2))],[y_(p)=(1)/(2)[1+(D^(2)-3D)/(2)]^(-1)(1-z^(2))],[y_(p)=(1)/(2)[1-((D^(2)-3D)/(2))+((D^(2)-3D)/(2))^(2)dots-](1-z^(2))],[y_(p)=(1)/(2)[1-((D^(2)-3D)/(2))+(1)/(4)[D^(4)+9D^(2)-6D^(3)]dots](1-z^(2))]:}\begin{aligned} & y_p=\frac{1}{2\left[1+\frac{D^2-3 D}{2}\right]}\left(1-z^2\right) \\ & y_p=\frac{1}{2}\left[1+\frac{D^2-3 D}{2}\right]^{-1}\left(1-z^2\right) \\ & y_p=\frac{1}{2}\left[1-\left(\frac{D^2-3 D}{2}\right)+\left(\frac{D^2-3 D}{2}\right)^2 \ldots-\right]\left(1-z^2\right) \\ & y_p=\frac{1}{2}\left[1-\left(\frac{D^2-3 D}{2}\right)+\frac{1}{4}\left[D^4+9 D^2-6 D^3\right] \ldots\right]\left(1-z^2\right) \end{aligned}yp=12[1+D23D2](1z2)yp=12[1+D23D2]1(1z2)yp=12[1(D23D2)+(D23D2)2](1z2)yp=12[1(D23D2)+14[D4+9D26D3]](1z2)
D ( 1 z 2 ) = 2 z D 2 ( 1 z 2 ) = 2 D 3 ( 1 z 2 ) = 0 D 1 z 2 = 2 z D 2 1 z 2 = 2 D 3 1 z 2 = 0 {:[D(1-z^(2))=-2z],[D^(2)(1-z^(2))=-2],[D^(3)(1-z^(2))=0]:}\begin{aligned} & D\left(1-z^2\right)=-2 z \\ & D^2\left(1-z^2\right)=-2 \\ & D^3\left(1-z^2\right)=0 \end{aligned}D(1z2)=2zD2(1z2)=2D3(1z2)=0
y ρ = 1 2 [ ( 1 z 2 ) 1 2 [ 2 + 6 z ] + 1 4 [ 0 18 0 ] ] y ρ = 1 2 1 z 2 1 2 [ 2 + 6 z ] + 1 4 [ 0 18 0 ] y_( rho)=(1)/(2)[(1-z^(2))-(1)/(2)[-2+6z]+(1)/(4)[0-18-0]]y_\rho=\frac{1}{2}\left[\left(1-z^2\right)-\frac{1}{2}[-2+6 z]+\frac{1}{4}[0-18-0]\right]yρ=12[(1z2)12[2+6z]+14[0180]] Higher derivatives are zero.
y p = 1 z 2 2 ( z + 6 z ) 4 18 8 y p = 1 2 z 2 2 + 1 2 3 z 2 9 4 y p = z 2 2 3 z 2 5 4 y p = 1 z 2 2 ( z + 6 z ) 4 18 8 y p = 1 2 z 2 2 + 1 2 3 z 2 9 4 y p = z 2 2 3 z 2 5 4 {:[y_(p)=(1-z^(2))/(2)-((-z+6z))/(4)-(18)/(8)],[y_(p)=(1)/(2)-(z^(2))/(2)+(1)/(2)-(3z)/(2)-(9)/(4)],[y_(p)=-(z^(2))/(2)-(3z)/(2)-(5)/(4)]:}\begin{aligned} & y_p=\frac{1-z^2}{2}-\frac{(-z+6 z)}{4}-\frac{18}{8} \\ & y_p=\frac{1}{2}-\frac{z^2}{2}+\frac{1}{2}-\frac{3 z}{2}-\frac{9}{4} \\ & y_p=-\frac{z^2}{2}-\frac{3 z}{2}-\frac{5}{4} \end{aligned}yp=1z22(z+6z)4188yp=12z22+123z294yp=z223z254
So, G . S = C . F . + P . I . G . S = C . F . + P . I . quad G.S=C.F.+P.I.\quad G.S=C. F.+P.I.G.S=C.F.+P.I.
y = y c + y p y = c 1 e z + c 2 e 2 z z 2 2 3 z 2 5 4 y = y c + y p y = c 1 e z + c 2 e 2 z z 2 2 3 z 2 5 4 {:[y=y_(c)+y_(p)],[y=c_(1)e^(z)+c_(2)e^(2z)-(z^(2))/(2)-(3z)/(2)-(5)/(4)]:}\begin{aligned} & y=y_c+y_p \\ & y=c_1 e^z+c_2 e^{2 z}-\frac{z^2}{2}-\frac{3 z}{2}-\frac{5}{4} \end{aligned}y=yc+ypy=c1ez+c2e2zz223z254
Put z = sin x z = sin x z=sin xz=\sin xz=sinx
y = c 1 e sin x + c 2 e 2 sin x sin 2 x 2 3 sin x 2 5 4 y = c 1 e sin x + c 2 e 2 sin x sin 2 x 2 3 sin x 2 5 4 y=c_(1)e^(sin x)+c_(2)e^(2sin x)-(sin^(2)x)/(2)-(3sin x)/(2)-(5)/(4)y=c_1 e^{\sin x}+c_2 e^{2 \sin x}-\frac{\sin ^2 x}{2}-\frac{3 \sin x}{2}-\frac{5}{4}y=c1esinx+c2e2sinxsin2x23sinx254
Which is our required solution.
6.(c) C F d r C F d r int _(C) vec(F)*d vec(r)\int_C \vec{F} \cdot d \vec{r}CFdr का मान निकालिए,
जहाँ C , x y C , x y C,xyC, x yC,xy-समतल में एक स्वैच्छिक संवृत वक्र है तथा F = y i ^ + x j ^ x 2 + y 2 F = y i ^ + x j ^ x 2 + y 2 vec(F)=(-y( hat(i))+x( hat(j)))/(x^(2)+y^(2))\vec{F}=\frac{-y \hat{i}+x \hat{j}}{x^2+y^2}F=yi^+xj^x2+y2 है।
Evaluate C F d r C F d r int _(C) vec(F)*d vec(r)\int_C \vec{F} \cdot d \vec{r}CFdr, where C C CCC is an arbitrary closed curve in the x y x y xyx yxy-plane and F = y i ^ + x j ^ x 2 + y 2 F = y i ^ + x j ^ x 2 + y 2 vec(F)=(-y( hat(i))+x( hat(j)))/(x^(2)+y^(2))\vec{F}=\frac{-y \hat{i}+x \hat{j}}{x^2+y^2}F=yi^+xj^x2+y2.
Answer:
To evaluate the line integral C F d r C F d r int _(C) vec(F)*d vec(r)\int_C \vec{F} \cdot d \vec{r}CFdr, where C C CCC is an arbitrary closed curve in the x y x y xyxyxy-plane and F = y i ^ + x j ^ x 2 + y 2 F = y i ^ + x j ^ x 2 + y 2 vec(F)=(-y( hat(i))+x( hat(j)))/(x^(2)+y^(2))\vec{F}=\frac{-y \hat{i}+x \hat{j}}{x^2+y^2}F=yi^+xj^x2+y2, we can use the following steps:

Step 1: Check for Conservative Vector Field

First, let’s check if F F vec(F)\vec{F}F is a conservative vector field. A vector field F = P i ^ + Q j ^ F = P i ^ + Q j ^ vec(F)=P hat(i)+Q hat(j)\vec{F} = P \hat{i} + Q \hat{j}F=Pi^+Qj^ is conservative if P y = Q x P y = Q x (del P)/(del y)=(del Q)/(del x)\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}Py=Qx.
For F = y i ^ + x j ^ x 2 + y 2 F = y i ^ + x j ^ x 2 + y 2 vec(F)=(-y( hat(i))+x( hat(j)))/(x^(2)+y^(2))\vec{F}=\frac{-y \hat{i}+x \hat{j}}{x^2+y^2}F=yi^+xj^x2+y2, we have:
P = y x 2 + y 2 , Q = x x 2 + y 2 P = y x 2 + y 2 , Q = x x 2 + y 2 P=(-y)/(x^(2)+y^(2)),quad Q=(x)/(x^(2)+y^(2))P = \frac{-y}{x^2+y^2}, \quad Q = \frac{x}{x^2+y^2}P=yx2+y2,Q=xx2+y2
Let’s find P y P y (del P)/(del y)\frac{\partial P}{\partial y}Py and Q x Q x (del Q)/(del x)\frac{\partial Q}{\partial x}Qx to check if the field is conservative.
P y = y ( y x 2 + y 2 ) P y = y y x 2 + y 2 (del P)/(del y)=(del)/(del y)((-y)/(x^(2)+y^(2)))\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left( \frac{-y}{x^2+y^2} \right)Py=y(yx2+y2)
Q x = x ( x x 2 + y 2 ) Q x = x x x 2 + y 2 (del Q)/(del x)=(del)/(del x)((x)/(x^(2)+y^(2)))\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left( \frac{x}{x^2+y^2} \right)Qx=x(xx2+y2)

Step 2: Evaluate the Partial Derivatives

To find the partial derivatives, we can use the quotient rule for differentiation, which is d d x ( u v ) = v u u v v 2 d d x u v = v u u v v 2 (d)/(dx)((u)/(v))=(vu^(‘)-uv^(‘))/(v^(2))\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{vu’ – uv’}{v^2}ddx(uv)=vuuvv2.
Let’s evaluate these derivatives.
The partial derivatives are:
P y = x 2 + y 2 ( x 2 + y 2 ) 2 P y = x 2 + y 2 x 2 + y 2 2 (del P)/(del y)=(-x^(2)+y^(2))/((x^(2)+y^(2))^(2))\frac{\partial P}{\partial y} =\frac{-x^2+y^2}{\left(x^2+y^2\right)^2}Py=x2+y2(x2+y2)2
Q x = x 2 + y 2 ( x 2 + y 2 ) 2 Q x = x 2 + y 2 x 2 + y 2 2 (del Q)/(del x)=(-x^(2)+y^(2))/((x^(2)+y^(2))^(2))\frac{\partial Q}{\partial x} = \frac{-x^2+y^2}{\left(x^2+y^2\right)^2}Qx=x2+y2(x2+y2)2
Since P y = Q x P y = Q x (del P)/(del y)=(del Q)/(del x)\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}Py=Qx, the vector field F F vec(F)\vec{F}F is conservative.

Step 3: Find the Potential Function

Since the vector field is conservative, there exists a scalar potential function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) such that:
F = f ( x , y ) F = f ( x , y ) vec(F)=grad f(x,y)\vec{F} = \nabla f(x, y)F=f(x,y)
This means:
f x = P , f y = Q f x = P , f y = Q (del f)/(del x)=P,quad(del f)/(del y)=Q\frac{\partial f}{\partial x} = P, \quad \frac{\partial f}{\partial y} = Qfx=P,fy=Q
We can integrate these partial derivatives to find f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y).

Step 4: Evaluate the Line Integral for a Conservative Field

For a conservative vector field, the line integral over a closed curve C C CCC is zero:
C F d r = 0 C F d r = 0 oint_(C) vec(F)*d vec(r)=0\oint_C \vec{F} \cdot d \vec{r} = 0CFdr=0
Therefore, the line integral of F F vec(F)\vec{F}F over any arbitrary closed curve C C CCC in the x y x y xyxyxy-plane is zero.
  1. (a) प्रथम अष्टांशक में y 2 + z 2 = 9 y 2 + z 2 = 9 y^(2)+z^(2)=9y^2+z^2=9y2+z2=9 तथा x = 2 x = 2 x=2x=2x=2 द्वारा परिबद्ध क्षेत्र पर F = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ F = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ vec(F)=2x^(2)y hat(i)-y^(2) hat(j)+4xz^(2) hat(k)\vec{F}=2 x^2 y \hat{i}-y^2 \hat{j}+4 x z^2 \hat{k}F=2x2yi^y2j^+4xz2k^ के लिए गाउस अपसरण प्रमेय को सत्यापित कीजिए ।
Verify Gauss divergence theorem for F = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ F = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ vec(F)=2x^(2)y hat(i)-y^(2) hat(j)+4xz^(2) hat(k)\vec{F}=2 x^2 y \hat{i}-y^2 \hat{j}+4 x z^2 \hat{k}F=2x2yi^y2j^+4xz2k^ taken over the region in the first octant bounded by y 2 + z 2 = 9 y 2 + z 2 = 9 y^(2)+z^(2)=9y^2+z^2=9y2+z2=9 and x = 2 x = 2 x=2x=2x=2.
Answer:
F = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ ( 1 ) | given F ¯ = 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ ( 1 ) | given bar(F)=2x^(2)y hat(i)-y^(2) hat(j)+4xz^(2) hat(k)—-(1)|”given”\overline{\mathrm{F}}=2 x^2 y \hat{i}-y^2 \hat{j}+4 x z^2 \hat{k}—-(1) | \text{given}F=2x2yi^y2j^+4xz2k^(1)|given
original image
div F = ( i ^ x + j ^ y + k ^ z ) ( 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ ) = 4 x y 2 y + 8 x z V div F d V = x = 0 2 y = 0 3 z = 0 9 y 2 ( 4 x y 2 y + 8 x z ) d z d y d x = x = 0 2 y = 0 3 [ 4 x y 9 y 2 2 y 9 y 2 + 4 x ( 9 y 2 ) ] d y d x = x = 0 2 [ 4 x 2 2 3 ( 9 y 2 ) 3 / 2 + 2 3 ( 9 y 2 ) 3 / 2 + 36 x y 4 3 x y 3 ] 0 3 d x = x = 0 2 ( 108 x 18 x ) d x = ( 54 x 2 18 x ) 0 2 = 216 36 = 180 ( 2 ) div F ¯ = i ^ x + j ^ y + k ^ z 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ = 4 x y 2 y + 8 x z V div F ¯ d V = x = 0 2 y = 0 3 z = 0 9 y 2 ( 4 x y 2 y + 8 x z ) d z d y d x = x = 0 2 y = 0 3 4 x y 9 y 2 2 y 9 y 2 + 4 x 9 y 2 d y d x = x = 0 2 4 x 2 2 3 9 y 2 3 / 2 + 2 3 9 y 2 3 / 2 + 36 x y 4 3 x y 3 0 3 d x = x = 0 2 ( 108 x 18 x ) d x = 54 x 2 18 x 0 2 = 216 36 = 180 ( 2 ) {:[div bar(F)=(( hat(i))(del)/(del x)+( hat(j))(del)/(del y)+( hat(k))(del)/(del z))*(2x^(2)y( hat(i))-y^(2)( hat(j))+4xz^(2)( hat(k)))=4xy-2y+8xz],[:.quad∭_(V)div bar(F)dV=int_(x=0)^(2)int_(y=0)^(3)int_(z=0)^(sqrt(9-y^(2)))(4xy-2y+8xz)dzdydx],[=int_(x=0)^(2)int_(y=0)^(3)[4xysqrt(9-y^(2))-2ysqrt(9-y^(2))+4x(9-y^(2))]dydx],[=int_(x=0)^(2)[(-4x)/(2)*(2)/(3)(9-y^(2))^(3//2)+(2)/(3)(9-y^(2))^(3//2)+36 xy-(4)/(3)xy^(3)]_(0)^(3)dx],[=int_(x=0)^(2)(108 x-18 x)dx=(54x^(2)-18 x)_(0)^(2)],[=216-36=180—-(2)]:}\begin{aligned} \operatorname{div} \overline{\mathrm{F}} & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(2 x^2 y \hat{i}-y^2 \hat{j}+4 x z^2 \hat{k}\right)=4 x y-2 y+8 x z \\ \therefore \quad \iiint_{\mathrm{V}} \operatorname{div} \overline{\mathrm{F}} d \mathrm{~V} & =\int_{x=0}^2 \int_{y=0}^3 \int_{z=0}^{\sqrt{9-y^2}}(4 x y-2 y+8 x z) d z d y d x \\ & =\int_{x=0}^2 \int_{y=0}^3\left[4 x y \sqrt{9-y^2}-2 y \sqrt{9-y^2}+4 x\left(9-y^2\right)\right] d y d x \\ & =\int_{x=0}^2\left[\frac{-4 x}{2} \cdot \frac{2}{3}\left(9-y^2\right)^{3 / 2}+\frac{2}{3}\left(9-y^2\right)^{3 / 2}+36 x y-\frac{4}{3} x y^3\right]_0^3 d x\\ & =\int_{x=0}^2(108 x-18 x) d x=\left(54 x^2-18 x\right)_0^2 \\ & =216-36=180—-(2) \end{aligned}divF=(i^x+j^y+k^z)(2x2yi^y2j^+4xz2k^)=4xy2y+8xzVdivFd V=x=02y=03z=09y2(4xy2y+8xz)dzdydx=x=02y=03[4xy9y22y9y2+4x(9y2)]dydx=x=02[4x223(9y2)3/2+23(9y2)3/2+36xy43xy3]03dx=x=02(108x18x)dx=(54x218x)02=21636=180(2)
To evaluate S F n ^ d S S F ¯ n ^ d S ∬_(S) bar(F)* hat(n)dS\iint_{\mathrm{S}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}SFn^d S
The surface S S SSS consists of five parts.
S F n ^ d S = OABC F n ^ d S + OCE F n ^ d S + OADE F n ^ d S + ABD F n ^ d S + BDEC F n ^ d S ( 3 ) S F ¯ n ^ d S = OABC F ¯ n ^ d S + OCE F ¯ n ^ d S + OADE F ¯ n ^ d S + ABD F ¯ n ^ d S + BDEC F ¯ n ^ d S ( 3 ) ∬_(S) bar(F)* hat(n)dS=∬_(OABC) bar(F)* hat(n)dS+∬_(OCE) bar(F)* hat(n)dS+∬_(OADE) bar(F)* hat(n)dS+∬_(ABD) bar(F)* hat(n)dS+∬_(BDEC) bar(F)* hat(n)dS—-(3)\iint_{\mathrm{S}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}=\iint_{\mathrm{OABC}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{OCE}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{OADE}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{ABD}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}+\iint_{\mathrm{BDEC}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}—-(3)SFn^d S=OABCFn^d S+OCEFn^d S+OADEFn^d S+ABDFn^d S+BDECFn^d S(3)
Over the surface OABC, z = 0 , d z = 0 , n ^ = k ^ , d S = d x d y z = 0 , d z = 0 , n ^ = k ^ , d S = d x d y z=0,dz=0, hat(n)=- hat(k),dS=dxdyz=0, d z=0, \hat{n}=-\hat{k}, d \mathrm{~S}=d x d yz=0,dz=0,n^=k^,d S=dxdy
OABC F , n ^ d S = ( 2 x 2 y i ^ y 2 j ^ ) ( k ^ ) d x d y = 0 ( 4 ) OABC F ¯ , n ^ d S = 2 x 2 y i ^ y 2 j ^ ( k ^ ) d x d y = 0 ( 4 ) ∬_(OABC) bar(F), hat(n)dS=∬(2x^(2)y( hat(i))-y^(2)( hat(j)))(- hat(k))dxdy=0—-(4)\iint_{\mathrm{OABC}} \overline{\mathrm{F}}, \hat{n} d \mathrm{~S}=\iint\left(2 x^2 y \hat{i}-y^2 \hat{j}\right)(-\hat{k}) d x d y=0—-(4)OABCF,n^d S=(2x2yi^y2j^)(k^)dxdy=0(4)
Over the surface OCE, x = 0 , d x = 0 , n ^ = i ^ , d S = d y d z x = 0 , d x = 0 , n ^ = i ^ , d S = d y d z x=0,dx=0, hat(n)=- hat(i),dS=dydzx=0, d x=0, \hat{n}=-\hat{i}, d \mathrm{~S}=d y d zx=0,dx=0,n^=i^,d S=dydz
OCE F n ^ d S = ( y 2 j ^ ) ( i ^ ) d y d z = 0 ( 5 ) OCE F ¯ n ^ d S = y 2 j ^ ( i ^ ) d y d z = 0 ( 5 ) ∬_(OCE) bar(F)* hat(n)dS=∬(-y^(2)( hat(j)))*(- hat(i))dydz=0—-(5)\iint_{\mathrm{OCE}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}=\iint\left(-y^2 \hat{j}\right) \cdot(-\hat{i}) d y d z=0—-(5)OCEFn^d S=(y2j^)(i^)dydz=0(5)
Over the surface OADE, y = 0 , d y = 0 , n ^ = j ^ , d 8 = d z d x y = 0 , d y = 0 , n ^ = j ^ , d 8 = d z d x y=0,dy=0, hat(n)=- hat(j),d8=dzdxy=0, d y=0, \hat{n}=-\hat{j}, d 8=d z d xy=0,dy=0,n^=j^,d8=dzdx
ODE F , n ^ d S = ( 4 x z 2 k ^ ) , ( j ^ ) d z d x = 0 ( 6 ) ODE F ¯ , n ^ d S = 4 x z 2 k ^ , ( j ^ ) d z d x = 0 ( 6 ) ∬_(ODE) bar(F), hat(n)dS=∬(4xz^(2)( hat(k))),(- hat(j))dzdx=0—-(6)\iint_{\mathrm{ODE}} \overline{\mathrm{F}}, \hat{n} d \mathrm{~S}=\iint\left(4 x z^2 \hat{k}\right),(-\hat{j}) d z d x=0—-(6)ODEF,n^d S=(4xz2k^),(j^)dzdx=0(6)
Over the surface ABD, x = 2 , d x = 0 , A ^ = f ^ , d 8 = d y d z x = 2 , d x = 0 , A ^ = f ^ , d 8 = d y d z x=2,dx=0, hat(A)= hat(f),d8=dydzx=2, d x=0, \hat{A}=\hat{f}, d \mathbf{8}=d y d zx=2,dx=0,A^=f^,d8=dydz
ABC F n ^ d S = ( 8 y i ^ y 2 j ^ + 8 z 2 h ^ ^ ) , ı ^ d y d z = z = 0 3 y = 0 9 z 3 8 y d y d z = z = 0 3 ( 4 y 2 ) 0 9 z 3 d z = 4 z = 0 3 ( 9 z 2 ) d z = 4 ( 9 z z 3 3 ) 0 3 = 4 ( 27 9 ) = 72 ( 7 ) ABC F ¯ n ^ d S = 8 y i ^ y 2 j ^ + 8 z 2 h ^ ^ , ı ^ d y d z = z = 0 3 y = 0 9 z 3 8 y d y d z = z = 0 3 4 y 2 0 9 z 3 d z = 4 z = 0 3 9 z 2 d z = 4 9 z z 3 3 0 3 = 4 ( 27 9 ) = 72 ( 7 ) {:[∬_(ABC) bar(F)* hat(n)dS=∬(8y( hat(i))-y^(2)( hat(j))+8z^(2)( hat(hat(h))))”,” hat(ı)dydz],[=int_(z=0)^(3)int_(y=0)^(sqrt(9-z^(3)))8ydydz=int_(z=0)^(3)(4y^(2))_(0)^(sqrt(9-z^(3)))dz],[=4int_(z=0)^(3)(9-z^(2))dz=4(9z-(z^(3))/(3))_(0)^(3)=4(27-9)=72—-(7)]:}\begin{aligned} \iint_{\mathrm{ABC}} \overline{\mathrm{F}} \cdot \hat{\mathrm{n}} d \mathrm{~S} & =\iint\left(8 y \hat{i}-y^2 \hat{j}+8 z^2 \hat{\hat{h}}\right), \hat{\imath} d y d z \\ & =\int_{z=0}^3 \int_{y=0}^{\sqrt{9-z^3}} 8 y d y d z=\int_{z=0}^3\left(4 y^2\right)_0^{\sqrt{9-z^3}} d z \\ & =4 \int_{z=0}^3\left(9-z^2\right) d z=4\left(9 z-\frac{z^3}{3}\right)_0^3=4(27-9)=72—-(7) \end{aligned}ABCFn^d S=(8yi^y2j^+8z2h^^),ı^dydz=z=03y=09z38ydydz=z=03(4y2)09z3dz=4z=03(9z2)dz=4(9zz33)03=4(279)=72(7)
Over the surface BDEC,
n ^ = grad ϕ | grad ϕ | where ϕ = y 2 + z 2 9 = 0 n ^ = 2 ( y j ^ + z k ^ ) 2 y 2 + z 2 = y j ^ + z k ^ 3 n ^ = grad ϕ | grad ϕ | where ϕ = y 2 + z 2 9 = 0 n ^ = 2 ( y j ^ + z k ^ ) 2 y 2 + z 2 = y j ^ + z k ^ 3 {:[ hat(n)=(grad phi)/(|grad phi|)” where “phi=y^(2)+z^(2)-9=0],[:.quad hat(n)=(2(y( hat(j))+z( hat(k))))/(2sqrt(y^(2)+z^(2)))=(y( hat(j))+z( hat(k)))/(3)]:}\begin{aligned} \hat{n} & =\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|} \text { where } \phi=y^2+z^2-9=0 \\ \therefore \quad \hat{n} & =\frac{2(y \hat{j}+z \hat{k})}{2 \sqrt{y^2+z^2}}=\frac{y \hat{j}+z \hat{k}}{3} \end{aligned}n^=gradϕ|gradϕ| where ϕ=y2+z29=0n^=2(yj^+zk^)2y2+z2=yj^+zk^3
BDEC F n ^ d S = BDEC ( 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ ) ( y j ^ + z k ^ 3 ) d x d y ( n ^ k ^ ) = BDEC ( y 3 + 4 x z 3 ) 3 d x d y ( z 3 ) = x = 0 2 y = 0 3 ( y 3 z + 4 x z 2 ) d x d y = x = 0 2 y = 0 π / 2 [ 27 sin 3 θ 3 cos θ + 4 x ( 9 cos 2 θ ) ] 3 cos θ d θ d x = x = 0 2 y = 0 π / 2 ( 27 sin 3 θ + 108 x cos 3 θ ) d θ d x = x = 0 2 ( 54 3 + 108 x × 2 3 ) d x = 0 2 ( 18 + 72 x ) d x = ( 18 x + 36 x 2 ) 0 2 = 108 ( 8 ) BDEC F ¯ n ^ d S = BDEC 2 x 2 y i ^ y 2 j ^ + 4 x z 2 k ^ y j ^ + z k ^ 3 d x d y ( n ^ k ^ ) = BDEC y 3 + 4 x z 3 3 d x d y z 3 = x = 0 2 y = 0 3 y 3 z + 4 x z 2 d x d y = x = 0 2 y = 0 π / 2 27 sin 3 θ 3 cos θ + 4 x 9 cos 2 θ 3 cos θ d θ d x = x = 0 2 y = 0 π / 2 27 sin 3 θ + 108 x cos 3 θ d θ d x = x = 0 2 54 3 + 108 x × 2 3 d x = 0 2 ( 18 + 72 x ) d x = 18 x + 36 x 2 0 2 = 108 ( 8 ) {:[∬_(BDEC) bar(F)* hat(n)dS=∬_(BDEC)(2x^(2)y( hat(i))-y^(2)( hat(j))+4xz^(2)( hat(k)))*((y( hat(j))+z( hat(k)))/(3))(dxdy)/((( hat(n))*( hat(k))))],[=∬_(BDEC)((-y^(3)+4xz^(3)))/(3)(dxdy)/(((z)/(3)))=int_(x=0)^(2)int_(y=0)^(3)(-(y^(3))/(z)+4xz^(2))dxdy],[=int_(x=0)^(2)int_(y=0)^(pi//2)[(-27sin^(3)theta)/(3cos theta)+4x(9cos^(2)theta)]3cos theta d theta dx],[=int_(x=0)^(2)int_(y=0)^(pi//2)(-27sin^(3)theta+108 xcos^(3)theta)d theta dx],[=int_(x=0)^(2)((-54)/(3)+108 x xx(2)/(3))dx=int_(0)^(2)(-18+72 x)dx],[=(-18 x+36x^(2))_(0)^(2)=108—-(8)]:}\begin{aligned} \iint_{\mathrm{BDEC}} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S} & =\iint_{\mathrm{BDEC}}\left(2 x^2 y \hat{i}-y^2 \hat{j}+4 x z^2 \hat{k}\right) \cdot\left(\frac{y \hat{j}+z \hat{k}}{3}\right) \frac{d x d y}{(\hat{n} \cdot \hat{k})} \\ & =\iint_{\mathrm{BDEC}} \frac{\left(-y^3+4 x z^3\right)}{3} \frac{d x d y}{\left(\frac{z}{3}\right)}=\int_{x=0}^2 \int_{y=0}^3\left(-\frac{y^3}{z}+4 x z^2\right) d x d y \\ & =\int_{x=0}^2 \int_{y=0}^{\pi / 2}\left[\frac{-27 \sin ^3 \theta}{3 \cos \theta}+4 x\left(9 \cos ^2 \theta\right)\right] 3 \cos \theta d \theta d x \\ & =\int_{x=0}^2 \int_{y=0}^{\pi / 2}\left(-27 \sin ^3 \theta+108 x \cos ^3 \theta\right) d \theta d x \\ & =\int_{x=0}^2\left(\frac{-54}{3}+108 x \times \frac{2}{3}\right) d x=\int_0^2(-18+72 x) d x \\ & =\left(-18 x+36 x^2\right)_0^2=108—-(8) \end{aligned}BDECFn^d S=BDEC(2x2yi^y2j^+4xz2k^)(yj^+zk^3)dxdy(n^k^)=BDEC(y3+4xz3)3dxdy(z3)=x=02y=03(y3z+4xz2)dxdy=x=02y=0π/2[27sin3θ3cosθ+4x(9cos2θ)]3cosθdθdx=x=02y=0π/2(27sin3θ+108xcos3θ)dθdx=x=02(543+108x×23)dx=02(18+72x)dx=(18x+36x2)02=108(8)
From eqn. (3),
S F n ^ d S = 0 + 0 + 0 + 72 + 108 = 180 ( 9 ) S F n ^ d S = 0 + 0 + 0 + 72 + 108 = 180 ( 9 ) ∬_(S) vec(F)* hat(n)dS=0+0+0+72+108=180—-(9)\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}=0+0+0+72+108=180—-(9)SFn^d S=0+0+0+72+108=180(9)
From results (2) and (8), it is clear that
B F n ^ d S = V div F d V B F n ^ d S = V div F d V ∬_(B) vec(F)* hat(n)dS=∭_(V)div vec(F)dV\iint_{\mathrm{B}} \overrightarrow{\mathrm{F}} \cdot \hat{n} d \mathbf{S}=\iiint_{\mathrm{V}} \operatorname{div} \overrightarrow{\mathrm{F}} d \mathrm{~V}BFn^dS=VdivFd V
Hence, Gauss’ divergence theorem is verified.
7.(b) अवकल समीकरण :
y 2 log y = x y d y d x + ( d y d x ) 2 y 2 log y = x y d y d x + d y d x 2 y^(2)log y=xy(dy)/(dx)+((dy)/(dx))^(2)y^2 \log y=x y \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^2y2logy=xydydx+(dydx)2
के सभी सम्भव हल ज्ञात कीजिए ।
Find all possible solutions of the differential equation :
y 2 log y = x y d y d x + ( d y d x ) 2 . y 2 log y = x y d y d x + d y d x 2 . y^(2)log y=xy(dy)/(dx)+((dy)/(dx))^(2)”. “y^2 \log y=x y \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^2 \text {. }y2logy=xydydx+(dydx)2.
Answer:
Given equation y 2 log e y = x y d y d x + ( d y d x ) 2 y 2 log e y = x y d y d x + d y d x 2 y^(2)log _(e)y=xy(dy)/(dx)+((dy)/(dx))^(2)y^2 \log _e y=x y \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^2y2logey=xydydx+(dydx)2
( d y d x ) 2 + x y ( d y d x ) y 2 log e y = 0 p 2 + x y p y 2 log e y = 0 p = d y d x d y d x 2 + x y d y d x y 2 log e y = 0      p 2 + x y p y 2 log e y = 0      p = d y d x {:[((dy)/(dx))^(2)+xy((dy)/(dx))-y^(2)log _(e)y=0,],[p^(2)+xyp-y^(2)log _(e)y=0,:’p=(dy)/(dx)]:}\begin{array}{ll} \left(\frac{d y}{d x}\right)^2+x y\left(\frac{d y}{d x}\right)-y^2 \log _e y=0 & \\ p^2+x y p-y^2 \log _e y=0 & \because p=\frac{d y}{d x} \end{array}(dydx)2+xy(dydx)y2logey=0p2+xypy2logey=0p=dydx
Solving for x x xxx, this equation can be written as
x y p = y 2 log e y p 2 x = y log e y p p y ( 1 ) x y p = y 2 log e y p 2 x = y log e y p p y ( 1 ) {:[xyp=y^(2)log _(e)y-p^(2)],[x=(ylog _(e)y)/(p)-(p)/(y)—-(1)]:}\begin{aligned} & x y p=y^2 \log _e y-p^2 \\ & x=\frac{y \log _e y}{p}-\frac{p}{y}—-(1) \end{aligned}xyp=y2logeyp2x=ylogeyppy(1)
Differentiate equation (1) with respect to ‘ y y yyy ‘ and writing 1 p 1 p (1)/(p)\frac{1}{p}1p for d x d y d x d y (dx)/(dy)\frac{d x}{d y}dxdy
we get, 1 p = log e y p + y 1 y 1 p y log e y p 2 d p d y + p y 2 1 y d p d y 1 p = log e y p + y 1 y 1 p y log e y p 2 d p d y + p y 2 1 y d p d y (1)/(p)=(log _(e)y)/(p)+y*(1)/(y)*(1)/(p)-(ylog _(e)y)/(p^(2))(dp)/(dy)+(p)/(y^(2))-(1)/(y)*(dp)/(dy)\frac{1}{p}=\frac{\log _e y}{p}+y \cdot \frac{1}{y} \cdot \frac{1}{p}-\frac{y \log _e y}{p^2} \frac{d p}{d y}+\frac{p}{y^2}-\frac{1}{y} \cdot \frac{d p}{d y}1p=logeyp+y1y1pylogeyp2dpdy+py21ydpdy
p y 2 + log e y p = 1 y d p d y ( 1 + y 2 p 2 log e y ) p y 2 [ 1 + y 2 p 2 log e y ] = 1 y d p d y [ 1 + y 2 p 2 log e y ] p y 2 + log e y p = 1 y d p d y 1 + y 2 p 2 log e y p y 2 1 + y 2 p 2 log e y = 1 y d p d y 1 + y 2 p 2 log e y {:[(p)/(y^(2))+(log _(e)y)/(p)=(1)/(y)(dp)/(dy)(1+(y^(2))/(p^(2))log _(e)y)],[(p)/(y^(2))[1+(y^(2))/(p^(2))log _(e)y]=(1)/(y)(dp)/(dy)[1+(y^(2))/(p^(2))log _(e)y]]:}\begin{aligned} & \frac{p}{y^2}+\frac{\log _e y}{p}=\frac{1}{y} \frac{d p}{d y}\left(1+\frac{y^2}{p^2} \log _e y\right) \\ & \frac{p}{y^2}\left[1+\frac{y^2}{p^2} \log _e y\right]=\frac{1}{y} \frac{d p}{d y}\left[1+\frac{y^2}{p^2} \log _e y\right] \end{aligned}py2+logeyp=1ydpdy(1+y2p2logey)py2[1+y2p2logey]=1ydpdy[1+y2p2logey]
p y 2 = 1 y d p d y p y 2 = 1 y d p d y (p)/(y^(2))=(1)/(y)(dp)/(dy)\frac{p}{y^2}=\frac{1}{y} \frac{d p}{d y}py2=1ydpdy
Cancelling the common factor on either side which will give us the singular solution of ( 1 )
p y = d p d y d p p = d y y p y = d p d y d p p = d y y {:[(p)/(y)=(dp)/(dy)],[(dp)/(p)=(dy)/(y)]:}\begin{aligned} & \frac{p}{y}=\frac{d p}{d y} \\ & \frac{d p}{p}=\frac{d y}{y} \end{aligned}py=dpdydpp=dyy
on integrating,
log e p = log e y + log e c log e p = log e y c p = c y log e p = log e y + log e c log e p = log e y c p = c y {:[log _(e)p=log _(e)y+log _(e)c],[log _(e)p=log _(e)yc],[p=cy]:}\begin{aligned} \log _e p & =\log _e y+\log _e c \\ \log _e p & =\log _e y c \\ p & =c y \end{aligned}logep=logey+logeclogep=logeycp=cy
put this value in equation (1), we get
x = y log e y c y c y y x = log e y c c x = y log e y c y c y y x = log e y c c {:[x=(ylog _(e)y)/(cy)-(cy)/(y)],[x=(log _(e)y)/(c)-c]:}\begin{aligned} & x=\frac{y \log _e y}{c y}-\frac{c y}{y} \\ & x=\frac{\log _e y}{c}-c \end{aligned}x=ylogeycycyyx=logeycc
log e y = c x + c 2 log e y = c x + c 2 log _(e)y=cx+c^(2)\log _e y=c x+c^2logey=cx+c2
which is our required solution.
  1. (c) एक भारी कण a a aaa लम्बाई की अवितान्य डोरी से एक स्थिर बिन्दु से टँगा है तथा 2 g h 2 g h sqrt(2gh)\sqrt{2 g h}2gh वेग से क्षैतिज दिशा में प्रक्षेपित किया जाता है । यदि 5 a 2 > h > a 5 a 2 > h > a (5a)/(2) > h > a\frac{5 a}{2}>h>a5a2>h>a है, तो सिद्ध कीजिए कि प्रक्षेपण बिन्दु से 1 3 ( a + 2 h ) 1 3 ( a + 2 h ) (1)/(3)(a+2h)\frac{1}{3}(a+2 h)13(a+2h) ऊँचाई पहुँचने पर कण की वृत्तीय गति समाप्त हो जाती है । यह भी सिद्ध कीजिए कि उस कण द्वारा प्रक्षेपण बिंदु से ऊपर प्राप्य अधिकतम ऊँचाई ( 4 a h ) ( a + 2 h ) 2 27 a 2 ( 4 a h ) ( a + 2 h ) 2 27 a 2 ((4a-h)(a+2h)^(2))/(27a^(2))\frac{(4 a-h)(a+2 h)^2}{27 a^2}(4ah)(a+2h)227a2 है ।
A heavy particle hangs by an inextensible string of length a a aaa from a fixed point and is then projected horizontally with a velocity 2 g h 2 g h sqrt(2gh)\sqrt{2 g h}2gh.
If 5 a 2 > h > a 5 a 2 > h > a (5a)/(2) > h > a\frac{5 a}{2}>h>a5a2>h>a, then prove that the circular motion ceases when the particle has reached the height 1 3 ( a + 2 h ) 1 3 ( a + 2 h ) (1)/(3)(a+2h)\frac{1}{3}(a+2 h)13(a+2h) from the point of projection. Also, prove that the greatest height ever reached by the particle above the point of projection is ( 4 a h ) ( a + 2 h ) 2 27 a 2 ( 4 a h ) ( a + 2 h ) 2 27 a 2 ((4a-h)(a+2h)^(2))/(27a^(2))\frac{(4 a-h)(a+2 h)^2}{27 a^2}(4ah)(a+2h)227a2.
Answer:
Let a particle of mass m m m\mathrm{m}m be attached to one end of a string of length a whole other end is fixed at O O O\mathrm{O}O. The particle is projected horizontally with a velocity u = 2 g h u = 2 g h u=sqrt(2gh)u=\sqrt{2 g h}u=2gh from A A AAA.
original image
If P P P\mathrm{P}P is the portion of the particle at time t such that angle of A O P = θ A O P = θ AOP=thetaA O P=\thetaAOP=θ and arc A P = s arc A P = s arc AP=s\operatorname{arc} A P=sarcAP=s,
Then the equations of the motion of the particle are m d 2 s d t 2 = m g sin θ ( 1 ) m d 2 s d t 2 = m g sin θ ( 1 ) m(d^(2)s)/(dt^(2))=-mg sin theta rarr(1)m \frac{\mathbf{d}^2 s}{\mathbf{d} t^2}=-m g \sin \theta \rightarrow(1)md2sdt2=mgsinθ(1)
And m v 2 a = T m g cos θ ( 2 ) m v 2 a = T m g cos θ ( 2 ) m(v^(2))/(a)=T-mg cos theta rarr(2)m \frac{v^2}{a}=T-m g \cos \theta \rightarrow(2)mv2a=Tmgcosθ(2)
Also s = a θ ( 3 ) s = a θ ( 3 ) s=a theta rarr(3)s=a \theta \rightarrow(3)s=aθ(3)
From (1) and (3), we have a d 2 θ d t 2 = g sin θ a d 2 θ d t 2 = g sin θ a(d^(2)theta)/(dt^(2))=-g sin thetaa \frac{\mathbf{d}^2 \theta}{\mathbf{d} t^2}=-g \sin \thetaad2θdt2=gsinθ
Multiplying both sides by 2 a d θ d t 2 a d θ d t 2a(dtheta)/(dt)2 a \frac{\mathbf{d} \theta}{\mathbf{d} t}2adθdt and integrating, we have
v 2 = ( a d θ d t ) 2 = 2 a g cos θ + A v 2 = a d θ d t 2 = 2 a g cos θ + A v^(2)=(a(dtheta)/(dt))^(2)=2ag cos theta+Av^2=\left(a \frac{\mathbf{d} \theta}{\mathbf{d} t}\right)^2=2 a g \cos \theta+Av2=(adθdt)2=2agcosθ+A
But at the point A, θ = 0 θ = 0 theta=0\theta=0θ=0 and v = u = 2 g h v = u = 2 g h v=u=sqrt(2gh)v=u=\sqrt{2 g h}v=u=2gh
A = 2 g h 2 a g v 2 = 2 a g cos θ + 2 g h 2 a g ( 4 ) A = 2 g h 2 a g v 2 = 2 a g cos θ + 2 g h 2 a g ( 4 ) {:[A=2gh-2ag],[v^(2)=2ag cos theta+2gh-2ag rarr(4)]:}\begin{aligned} & A=2 g h-2 a g \\ & v^2=2 a g \cos \theta+2 g h-2 a g \rightarrow(4) \end{aligned}A=2gh2agv2=2agcosθ+2gh2ag(4)
From (2) and (4), we have
T = m a ( v 2 + a g cos θ ) = m a ( 3 a g cos θ + 2 g h 2 a g ) T = m a v 2 + a g cos θ = m a ( 3 a g cos θ + 2 g h 2 a g ) T=(m)/(a)(v^(2)+ag cos theta)=(m)/(a)(3ag cos theta+2gh-2ag)T=\frac{m}{a}\left(v^2+a g \cos \theta\right)=\frac{m}{a}(3 a g \cos \theta+2 g h-2 a g)T=ma(v2+agcosθ)=ma(3agcosθ+2gh2ag)
If the particle leaves the circular path at Q Q Q\mathrm{Q}Q where θ = θ 1 θ = θ 1 theta=theta_(1)\theta=\theta_1θ=θ1, then T = 0 T = 0 T=0T=0T=0 when θ = θ 1 θ = θ 1 theta=theta_(1)\theta=\theta_1θ=θ1
0 = m a ( 3 a g cos θ 1 + 2 g h 2 a g ) cos θ 1 = 2 h 2 a 3 a 0 = m a 3 a g cos θ 1 + 2 g h 2 a g cos θ 1 = 2 h 2 a 3 a 0=(m)/(a)(3ag cos theta_(1)+2gh-2ag)=>cos theta_(1)=-(2h-2a)/(3a)0=\frac{m}{a}\left(3 a g \cos \theta_1+2 g h-2 a g\right) \Rightarrow \cos \theta_1=-\frac{2 h-2 a}{3 a}0=ma(3agcosθ1+2gh2ag)cosθ1=2h2a3a
Since 5 2 a > h > a 5 2 a > h > a (5)/(2)a > h > a\frac{5}{2} a>h>a52a>h>a that is 5 a > 2 h > 2 a 5 a > 2 h > 2 a 5a > 2h > 2a5 a>2 h>2 a5a>2h>2a, therefore cos θ 1 cos θ 1 cos theta_(1)\cos \theta_1cosθ1 is negative and its absolute value is < 1 < 1 < 1<1<1. so θ 1 θ 1 theta_(1)\theta_1θ1 is real and 1 2 π < θ 1 < π 1 2 π < θ 1 < π (1)/(2)pi < theta_(1) < pi\frac{1}{2} \pi<\theta_1<\pi12π<θ1<π
Thus, the particle leaves the circular path at Q Q QQQ before arriving at the highest point
Height of the point Q Q Q\mathrm{Q}Q above A = A L = A O + O L = a + a cos ( π θ 1 ) A = A L = A O + O L = a + a cos π θ 1 A=AL=AO+OL=a+a cos(pi-theta_(1))\mathrm{A}=A L=A O+O L=a+a \cos \left(\pi-\theta_1\right)A=AL=AO+OL=a+acos(πθ1)
= a a cos θ 1 = a + a 2 h 2 a 3 a = 1 3 ( a + 2 h ) = a a cos θ 1 = a + a 2 h 2 a 3 a = 1 3 ( a + 2 h ) {:[=a-a cos theta_(1)],[=a+a(2h-2a)/(3a)=(1)/(3)(a+2h)]:}\begin{aligned} & =a-a \cos \theta_1 \\ & =a+a \frac{2 h-2 a}{3 a}=\frac{1}{3}(a+2 h) \end{aligned}=aacosθ1=a+a2h2a3a=13(a+2h)
That is the particle leaves the circular path when it has reached a height 1 3 ( a + 2 h ) 1 3 ( a + 2 h ) (1)/(3)(a+2h)\frac{1}{3}(a+2 h)13(a+2h) above the point of projection.
If v 1 v 1 v_(1)v_1v1 is the velocity of the particle at the point Q Q QQQ, then from (4), we have
v 1 2 = 2 a g cos θ 1 + 2 g h 2 a g = 2 a g 2 h 2 a 3 a + 2 g ( h a ) = 2 g ( h a ) ( 1 2 3 ) = 2 3 g ( h a ) v 1 2 = 2 a g cos θ 1 + 2 g h 2 a g = 2 a g 2 h 2 a 3 a + 2 g ( h a ) = 2 g ( h a ) 1 2 3 = 2 3 g ( h a ) {:[v_(1)^(2)=2ag cos theta_(1)+2gh-2ag],[=-2ag((2h-2a)/(3a))+2g(h-a)],[=2g(h-a)(1-(2)/(3))=(2)/(3)g(h-a)]:}\begin{aligned} & v_1^2=2 a g \cos \theta_1+2 g h-2 a g \\ & =-2 a g \frac{2 h-2 a}{3 a}+2 g(h-a) \\ & =2 g(h-a)\left(1-\frac{2}{3}\right)=\frac{2}{3} g(h-a) \end{aligned}v12=2agcosθ1+2gh2ag=2ag2h2a3a+2g(ha)=2g(ha)(123)=23g(ha)
If angle of LOQ = α = α =alpha=\alpha=α, then α = π θ 1 α = π θ 1 alpha=pi-theta_(1)\alpha=\pi-\theta_1α=πθ1
cos α = cos ( π θ 1 ) = cos θ 1 = 2 ( h a ) 3 a cos α = cos π θ 1 = cos θ 1 = 2 ( h a ) 3 a cos alpha=cos(pi-theta_(1))=-cos theta_(1)=(2(h-a))/(3a)\cos \alpha=\cos \left(\pi-\theta_1\right)=-\cos \theta_1=\frac{2(h-a)}{3 a}cosα=cos(πθ1)=cosθ1=2(ha)3a
Thus the particle leaves the circular path at the point Q Q Q\mathrm{Q}Q with velocity v 1 = { 2 3 g ( h a ) } v 1 = 2 3 g ( h a ) v_(1)=sqrt({(2)/(3)g(h-a)})v_1=\sqrt{\left\{\frac{2}{3} g(h-a)\right\}}v1={23g(ha)} at an angle α = cos 1 { 2 ( h d ) 3 a } α = cos 1 2 ( h d ) 3 a alpha=cos^(-1){(2(h-d))/(3a)}\alpha=\cos ^{-1}\left\{\frac{2(h-d)}{3 a}\right\}α=cos1{2(hd)3a} to the horizontal and will subsequently describe a parabolic path.
Maximum height of the particle above the point Q Q QQQ
H = v 1 2 sin 2 α 2 g = v 1 2 2 g ( 1 cos 2 α ) = 1 3 ( h a ) [ 1 4 9 a 2 ( h a 2 ] = 1 27 a 2 ( h a ) [ 9 a 2 4 ( h 2 2 a h + a 2 ) ] = h a 27 a 2 [ 5 a 2 + 8 a h 4 h 2 ] = 1 27 a 2 ( h a ) ( a + 2 h ) ( 5 a 2 h ) H = v 1 2 sin 2 α 2 g = v 1 2 2 g 1 cos 2 α = 1 3 ( h a ) 1 4 9 a 2 h a 2 = 1 27 a 2 ( h a ) 9 a 2 4 h 2 2 a h + a 2 = h a 27 a 2 5 a 2 + 8 a h 4 h 2 = 1 27 a 2 ( h a ) ( a + 2 h ) ( 5 a 2 h ) {:[H=(v_(1)^(2)sin^(2)alpha)/(2g)=(v_(1)^(2))/(2g)(1-cos^(2)alpha)=(1)/(3)(h-a)[1-(4)/(9a^(2))(h-a^(2)]:}],[=(1)/(27a^(2))(h-a)[9a^(2)-4(h^(2)-2ah+a^(2))]],[=(h-a)/(27a^(2))[5a^(2)+8ah-4h^(2)]=(1)/(27a^(2))(h-a)(a+2h)(5a-2h)]:}\begin{aligned} & H=\frac{v_1^2 \sin ^2 \alpha}{2 g}=\frac{v_1^2}{2 g}\left(1-\cos ^2 \alpha\right)=\frac{1}{3}(h-a)\left[1-\frac{4}{9 a^2}\left(h-a^2\right]\right. \\ & =\frac{1}{27 a^2}(h-a)\left[9 a^2-4\left(h^2-2 a h+a^2\right)\right] \\ & =\frac{h-a}{27 a^2}\left[5 a^2+8 a h-4 h^2\right]=\frac{1}{27 a^2}(h-a)(a+2 h)(5 a-2 h) \end{aligned}H=v12sin2α2g=v122g(1cos2α)=13(ha)[149a2(ha2]=127a2(ha)[9a24(h22ah+a2)]=ha27a2[5a2+8ah4h2]=127a2(ha)(a+2h)(5a2h)
Greatest height ever reached by the particle above the point of projection A A A\mathrm{A}A.
= A L + H = 1 2 ( a + 2 h ) + 1 27 a 2 ( h a ) ( a + 2 h ) ( 5 a 2 h ) = 1 27 a 2 ( a + 2 h ) [ 9 a 2 + ( h a ) ( 5 a 2 h ) ] = 1 27 a 2 ( a + 2 h ) [ 4 a 2 + 7 a h 2 h 2 ] = 1 27 a 2 ( a + 2 h ) ( a + 2 h ) ( 4 a h ) = 1 27 a 2 ( 4 a h ) ( a + 2 h ) 2 = A L + H = 1 2 ( a + 2 h ) + 1 27 a 2 ( h a ) ( a + 2 h ) ( 5 a 2 h ) = 1 27 a 2 ( a + 2 h ) 9 a 2 + ( h a ) ( 5 a 2 h ) = 1 27 a 2 ( a + 2 h ) 4 a 2 + 7 a h 2 h 2 = 1 27 a 2 ( a + 2 h ) ( a + 2 h ) ( 4 a h ) = 1 27 a 2 ( 4 a h ) ( a + 2 h ) 2 {:[=AL+H=(1)/(2)(a+2h)+(1)/(27a^(2))(h-a)(a+2h)(5a-2h)],[=(1)/(27a^(2))(a+2h)[9a^(2)+(h-a)(5a-2h)]],[=(1)/(27a^(2))(a+2h)[4a^(2)+7ah-2h^(2)]],[=(1)/(27a^(2))(a+2h)(a+2h)(4a-h)],[=(1)/(27a^(2))(4a-h)(a+2h)^(2)]:}\begin{aligned} & =A L+H=\frac{1}{2}(a+2 h)+\frac{1}{27 a^2}(h-a)(a+2 h)(5 a-2 h) \\ & =\frac{1}{27 a^2}(a+2 h)\left[9 a^2+(h-a)(5 a-2 h)\right] \\ & =\frac{1}{27 a^2}(a+2 h)\left[4 a^2+7 a h-2 h^2\right] \\ & =\frac{1}{27 a^2}(a+2 h)(a+2 h)(4 a-h) \\ & =\frac{1}{27 a^2}(4 a-h)(a+2 h)^2 \end{aligned}=AL+H=12(a+2h)+127a2(ha)(a+2h)(5a2h)=127a2(a+2h)[9a2+(ha)(5a2h)]=127a2(a+2h)[4a2+7ah2h2]=127a2(a+2h)(a+2h)(4ah)=127a2(4ah)(a+2h)2
  1. (a)(i) संनाभि शांकव कुल
    x 2 a 2 + λ + y 2 b 2 + λ = 1 ; a > b > 0 x 2 a 2 + λ + y 2 b 2 + λ = 1 ; a > b > 0 (x^(2))/(a^(2)+lambda)+(y^(2))/(b^(2)+lambda)=1;a > b > 0\frac{x^2}{a^2+\lambda}+\frac{y^2}{b^2+\lambda}=1 ; a>b>0x2a2+λ+y2b2+λ=1;a>b>0 अचर हैं तथा λ λ lambda\lambdaλ एक प्राचल है,
    के लंबकोणीय संछेदी ज्ञात कीजिए । दर्शाइए कि दिया गया वक्र-कुल स्वलांबिक है।
Find the orthogonal trajectories of the family of confocal conics x 2 a 2 + λ + y 2 b 2 + λ = 1 ; a > b > 0 x 2 a 2 + λ + y 2 b 2 + λ = 1 ; a > b > 0 (x^(2))/(a^(2)+lambda)+(y^(2))/(b^(2)+lambda)=1;quad a > b > 0\frac{x^2}{a^2+\lambda}+\frac{y^2}{b^2+\lambda}=1 ; \quad a>b>0x2a2+λ+y2b2+λ=1;a>b>0 are constants and λ λ lambda\lambdaλ is a parameter. Show that the given family of curves is self orthogonal.
Answer:
Given x 2 a 2 + λ + y 2 b 2 + λ = 1 ( 1 ) x 2 a 2 + λ + y 2 b 2 + λ = 1 ( 1 ) (x^(2))/(a^(2)+lambda)+(y^(2))/(b^(2)+lambda)=1rarr(1)\frac{x^2}{a^2+\lambda}+\frac{y^2}{b^2+\lambda}=1 \rightarrow(1)x2a2+λ+y2b2+λ=1(1)
Differentiating, 2 x a 2 + λ + 2 y b 2 + λ d y d x = 0 2 x a 2 + λ + 2 y b 2 + λ d y d x = 0 (2x)/(a^(2)+lambda)+(2y)/(b^(2)+lambda)(dy)/(dx)=0\frac{2 x}{a^2+\lambda}+\frac{2 y}{b^2+\lambda} \frac{\mathbf{d} y}{\mathbf{d} x}=02xa2+λ+2yb2+λdydx=0 or λ ( x + y d y d x ) = ( b 2 x + a 2 y d y d x ) λ x + y d y d x = b 2 x + a 2 y d y d x lambda(x+y(dy)/(dx))=-(b^(2)x+a^(2)y(dy)/(dx))\lambda\left(x+y \frac{\mathbf{d} y}{\mathbf{d} x}\right)=-\left(b^2 x+a^2 y \frac{\mathbf{d} y}{\mathbf{d} x}\right)λ(x+ydydx)=(b2x+a2ydydx)
λ = { b 2 x + a 2 y ( d y d x ) } { x + y ( d y d x ) } a 2 + λ = a 2 b 2 x + a 2 y ( d y d x ) x + y ( d y d x ) = ( a 2 b 2 ) x x + y ( d y d x ) and b 2 + λ = b 2 b 2 x + a 2 y d y d x x + y ( d y d x ) = ( a 2 b 2 ) y ( d y d x ) x + y ( d y d x ) λ = b 2 x + a 2 y d y d x x + y d y d x a 2 + λ = a 2 b 2 x + a 2 y d y d x x + y d y d x = a 2 b 2 x x + y d y d x and b 2 + λ = b 2 b 2 x + a 2 y d y d x x + y d y d x = a 2 b 2 y d y d x x + y d y d x {:[lambda=-({b^(2)x+a^(2)y((dy)/((d)x))})/({x+y((dy)/((d)x))})],[a^(2)+lambda=a^(2)-b^(2)x+(a^(2)y((dy)/((d)x)))/(x+y((dy)/((d)x)))=((a^(2)-b^(2))x)/(x+y((dy)/((d)x)))” and “],[b^(2)+lambda=b^(2)-(b^(2)x+a^(2)y(dy)/((d)x))/(x+y((dy)/((d)x)))=-((a^(2)-b^(2))y((dy)/((d)x)))/(x+y((dy)/((d)x)))]:}\begin{aligned} & \lambda=-\frac{\left\{b^2 x+a^2 y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\right\}}{\left\{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\right\}} \\ & a^2+\lambda=a^2-b^2 x+\frac{a^2 y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}=\frac{\left(a^2-b^2\right) x}{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)} \text { and } \\ & b^2+\lambda=b^2-\frac{b^2 x+a^2 y \frac{\mathrm{d} y}{\mathrm{~d} x}}{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}=-\frac{\left(a^2-b^2\right) y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)} \end{aligned}λ={b2x+a2y(dy dx)}{x+y(dy dx)}a2+λ=a2b2x+a2y(dy dx)x+y(dy dx)=(a2b2)xx+y(dy dx) and b2+λ=b2b2x+a2ydy dxx+y(dy dx)=(a2b2)y(dy dx)x+y(dy dx)
Putting the above values of ( a 2 + λ ) a 2 + λ (a^(2)+lambda)\left(a^2+\lambda\right)(a2+λ) and ( b 2 + λ ) b 2 + λ (b^(2)+lambda)\left(b^2+\lambda\right)(b2+λ) in (1), we have
x 2 { x + y ( d y d x ) } ( a 2 b 2 ) x y 2 { x + y ( d y d x ) } ( a 2 b 2 ) y ( d y d x ) = 1 x 2 x + y d y d x a 2 b 2 x y 2 x + y d y d x a 2 b 2 y d y d x = 1 (x^(2){x+y((dy)/((d)x))})/((a^(2)-b^(2))x)-(y^(2){x+y((dy)/((d)x))})/((a^(2)-b^(2))y((dy)/((d)x)))=1\frac{x^2\left\{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\right\}}{\left(a^2-b^2\right) x}-\frac{y^2\left\{x+y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\right\}}{\left(a^2-b^2\right) y\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}=1x2{x+y(dy dx)}(a2b2)xy2{x+y(dy dx)}(a2b2)y(dy dx)=1
{ x + y ( d y d x ) } { x y ( d x d y ) } = a 2 b 2 ( 2 ) x + y d y d x x y d x d y = a 2 b 2 ( 2 ) {x+y((dy)/(dx))}{x-y((dx)/(dy))}=a^(2)-b^(2)rarr(2)\left\{x+y\left(\frac{\mathbf{d} y}{\mathbf{d} x}\right)\right\}\left\{x-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right)\right\}=a^2-b^2 \rightarrow(2){x+y(dydx)}{xy(dxdy)}=a2b2(2)
Which is the differential equation of the family (1), Replacing d y d x b y ( d x d y ) d y d x b y d x d y (dy)/(dx)by(-(dx)/(dy))\frac{\mathbf{d} y}{\mathbf{d} x} b y\left(-\frac{\mathbf{d} x}{\mathbf{d} y}\right)dydxby(dxdy) in (2), the differential equation of the required orthogonal trajectories is
{ x + y ( d x d y ) } { x y ( d y d x ) } = a 2 b 2 x + y d x d y x y d y d x = a 2 b 2 {x+y(-(dx)/(dy))}{x-y(-(dy)/(dx))}=a^(2)-b^(2)\left\{x+y\left(-\frac{\mathbf{d} x}{\mathbf{d} y}\right)\right\}\left\{x-y\left(-\frac{\mathbf{d} y}{\mathbf{d} x}\right)\right\}=a^2-b^2{x+y(dxdy)}{xy(dydx)}=a2b2
{ x + y ( d y d x ) } { x y ( d x d y ) } = a 2 b 2 ( 3 ) x + y d y d x x y d x d y = a 2 b 2 ( 3 ) {x+y((dy)/(dx))}{x-y((dx)/(dy))}=a^(2)-b^(2)rarr(3)\left\{x+y\left(\frac{\mathbf{d} y}{\mathbf{d} x}\right)\right\}\left\{x-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right)\right\}=a^2-b^2 \rightarrow(3){x+y(dydx)}{xy(dxdy)}=a2b2(3)
Which is the same as the differential equation (2) of the given family of curves (1).
Hence, the system of the given curve (1) is self orthogonal, that is each member of the given family of curves intersects its own members orthogonally.
  1. (a)(ii) अवकल समीकरण : x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=0x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=0x2d2ydx22x(1+x)dydx+2(1+x)y=0 का व्यापक हल ज्ञात कीजिए । अतः अवकल समीकरण : x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=x^(3)x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^3x2d2ydx22x(1+x)dydx+2(1+x)y=x3 को प्राचल विचरण विधि द्वारा हल कीजिए ।
Find the general solution of the differential equation : x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=0x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=0x2d2ydx22x(1+x)dydx+2(1+x)y=0.
Hence, solve the differential equation: x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=x^(3)x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^3x2d2ydx22x(1+x)dydx+2(1+x)y=x3 by the method of variation of parameters.
Answer:

Important Result:

(i) y = x y = x y=xy=xy=x is a solution if P + Q x = 0 P + Q x = 0 P+Qx=0P+Q x=0P+Qx=0.
(ii) y = x 2 y = x 2 y=x^(2)y=x^2y=x2 is a solution if 2 + 2 Px + Qx 2 = 0 2 + 2 Px + Qx 2 = 0 2+2Px+Qx^(2)=02+2 \mathrm{Px}+\mathrm{Qx}^2=02+2Px+Qx2=0.
(i) y = e x y = e x y=e^(x)y=e^xy=ex is a part of C.F. if 1 + P + Q = 0 1 + P + Q = 0 1+P+Q=01+P+Q=01+P+Q=0.
(ii) y = e x y = e x y=e^(-x)y=e^{-x}y=ex is a part of C.F. if 1 P + Q = 0 1 P + Q = 0 1-P+Q=01-P+Q=01P+Q=0.
(iii) y = e m x y = e m x y=e^(m_(x))y=e^{m_x}y=emx is a part of C.F. if m 2 + m P + Q = 0 m 2 + m P + Q = 0 m^(2)+mP+Q=0m^2+m P+Q=0m2+mP+Q=0.
(iv) y = x y = x y=xy=xy=x is a part of C.F. if P + Q x = 0 P + Q x = 0 P+Qx=0P+Q x=0P+Qx=0.
(v) y = x 2 y = x 2 y=x^(2)y=x^2y=x2 is a pait of C.F. if 2 + 2 P x + Q x 2 = 0 2 + 2 P x + Q x 2 = 0 2+2Px+Qx^(2)=02+2 P x+Q x^2=02+2Px+Qx2=0.
(vi) y = x m y = x m y=x^(m)y=x^my=xm is a part of C.F. if m ( m 1 ) + P m x + Q x 2 = 0 m ( m 1 ) + P m x + Q x 2 = 0 m(m-1)+Pmx+Qx^(2)=0m(m-1)+P m x+Q x^2=0m(m1)+Pmx+Qx2=0.
Very Important. If in a linear differential equation
A d 2 y d x 2 + B d y d x + C y = X , A d 2 y d x 2 + B d y d x + C y = X , A(d^(2)y)/(dx^(2))+B(dy)/(dx)+Cy=X,A \frac{d^2 y}{d x^2}+B \frac{d y}{d x}+C y=X,Ad2ydx2+Bdydx+Cy=X,
the sum of the coefficients of d 2 y / d x 2 , d y / d x d 2 y / d x 2 , d y / d x d^(2)y//dx^(2),dy//dxd^2 y / d x^2, d y / d xd2y/dx2,dy/dx and y y yyy is zero i.e., if A + B + C = 0 A + B + C = 0 A+B+C=0A+B+C=0A+B+C=0, then y = e x y = e x y=e^(x)y=e^xy=ex is a part of the C.F. of the solution of the differential equation.
Solved Examples
Let’s Solve our question in parts:

Part – (a)

Given differential equation
x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = 0 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=0x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=0x2d2ydx22x(1+x)dydx+2(1+x)y=0
Divide by x 2 x 2 x^(2)x^2x2
d 2 y d x 2 2 ( 1 + x ) x d y d x + 2 ( 1 + x ) y x 2 = 0 d 2 y d x 2 2 ( 1 + x ) x d y d x + 2 ( 1 + x ) y x 2 = 0 (d^(2)y)/(dx^(2))-(2(1+x))/(x)(dy)/(dx)+(2(1+x)y)/(x^(2))=0\frac{d^2 y}{d x^2}-\frac{2(1+x)}{x} \frac{d y}{d x}+\frac{2(1+x) y}{x^2}=0d2ydx22(1+x)xdydx+2(1+x)yx2=0
Compare with d 2 y d x 2 + P d y d x + Q y = R d 2 y d x 2 + P d y d x + Q y = R (d^(2)y)/(dx^(2))+P(dy)/(dx)+Qy=R\frac{d^2 y}{d x^2}+P \frac{d y}{d x}+Q y=Rd2ydx2+Pdydx+Qy=R
P = 2 ( 1 + x ) x , Q = 2 ( 1 + x ) x 2 , R = 0 P = 2 ( 1 + x ) x , Q = 2 ( 1 + x ) x 2 , R = 0 P=-(2(1+x))/(x),quad Q=(2(1+x))/(x^(2)),quad R=0P=-\frac{2(1+x)}{x}, \quad Q=\frac{2(1+x)}{x^2}, \quad R=0P=2(1+x)x,Q=2(1+x)x2,R=0
Here P + Q x = 2 ( 1 + x ) x + 2 ( 1 + x ) x 2 x P + Q x = 2 ( 1 + x ) x + 2 ( 1 + x ) x 2 x P+Qx=(-2(1+x))/(x)+(2(1+x))/(x^(2))*xP+Q x=\frac{-2(1+x)}{x}+\frac{2(1+x)}{x^2} \cdot xP+Qx=2(1+x)x+2(1+x)x2x
P + Q x = 2 ( 1 + x ) x + 2 ( 1 + x ) x P + Q x = 0 P + Q x = 2 ( 1 + x ) x + 2 ( 1 + x ) x P + Q x = 0 {:[P+Qx=(-2(1+x))/(x)+(2(1+x))/(x)],[P+Qx=0]:}\begin{aligned} & P+Q x=\frac{-2(1+x)}{x}+\frac{2(1+x)}{x} \\ & P+Q x=0 \end{aligned}P+Qx=2(1+x)x+2(1+x)xP+Qx=0
P + Q x = 0 P + Q x = 0 :’P+Qx=0\because P+Q x=0P+Qx=0 So, y = x y = x y=xy=xy=x is a solution of given differential equation.

Part – (b)

Given differential equation
x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x 2 d 2 y d x 2 2 x ( 1 + x ) d y d x + 2 ( 1 + x ) y = x 3 x^(2)(d^(2)y)/(dx^(2))-2x(1+x)(dy)/(dx)+2(1+x)y=x^(3)x^2 \frac{d^2 y}{d x^2}-2 x(1+x) \frac{d y}{d x}+2(1+x) y=x^3x2d2ydx22x(1+x)dydx+2(1+x)y=x3
Divide by x 2 x 2 x^(2)x^2x2
d 2 y d x 2 2 ( 1 + x ) x d y d x + 2 ( 1 + x ) y x 2 y = x d 2 y d x 2 2 ( 1 + x ) x d y d x + 2 ( 1 + x ) y x 2 y = x (d^(2)y)/(dx^(2))-(2(1+x))/(x)(dy)/(dx)+(2(1+x)y)/(x^(2))y=x\frac{d^2 y}{d x^2}-\frac{2(1+x)}{x} \frac{d y}{d x}+\frac{2(1+x) y}{x^2} y=xd2ydx22(1+x)xdydx+2(1+x)yx2y=x
Compare with d 2 y d x 2 + P d y d x + Q y = R d 2 y d x 2 + P d y d x + Q y = R (d^(2)y)/(dx^(2))+P(dy)/(dx)+Qy=R\frac{d^2 y}{d x^2}+P \frac{d y}{d x}+Q y=Rd2ydx2+Pdydx+Qy=R
P = 2 ( 1 + x ) x , Q = 2 ( 1 + x ) x 2 , R = x P = 2 ( 1 + x ) x , Q = 2 ( 1 + x ) x 2 , R = x P=-(2(1+x))/(x),quad Q=(2(1+x))/(x^(2)),quad R=xP=-\frac{2(1+x)}{x}, \quad Q=\frac{2(1+x)}{x^2}, \quad R=xP=2(1+x)x,Q=2(1+x)x2,R=x
Let y = v x y = v x y=vxy=v xy=vx
d y d x = v + x d v d x d 2 y d x 2 = 2 d v d x + x d 2 v d x 2 d y d x = v + x d v d x d 2 y d x 2 = 2 d v d x + x d 2 v d x 2 {:[(dy)/(dx)=v+x(dv)/(dx)],[(d^(2)y)/(dx^(2))=2(dv)/(dx)+(xd^(2)v)/(dx^(2))]:}\begin{aligned} \frac{d y}{d x} & =v+x \frac{d v}{d x} \\ \frac{d^2 y}{d x^2} & =2 \frac{d v}{d x}+\frac{x d^2 v}{d x^2} \end{aligned}dydx=v+xdvdxd2ydx2=2dvdx+xd2vdx2
Put all there values in equation
d 2 v d x 2 2 d v d x = 1 d 2 v d x 2 2 d v d x = 1 (d^(2)v)/(dx^(2))-(2dv)/(dx)=1\frac{d^2 v}{d x^2}-\frac{2 d v}{d x}=1d2vdx22dvdx=1
d p d x 2 p = 1 p = d v d x d p d x 2 p = 1 p = d v d x (dp)/(dx)-2p=1quad:’p=(dv)/(dx)\frac{d p}{d x}-2 p=1 \quad \because p=\frac{d v}{d x}dpdx2p=1p=dvdx
This equation is linear in p p ppp.
Integrating factor ( I . F . ) = e 2 d x = e 2 x ( I . F . ) = e 2 d x = e 2 x (I.F.)=e^(int-2dx)=e^(-2x)(I. F.)=e^{\int-2 d x}=e^{-2 x}(I.F.)=e2dx=e2x
General Solution: p e 2 x = 1 e 2 x d x + c 1 p e 2 x = 1 e 2 x d x + c 1 p*e^(-2x)=int1*e^(-2x)dx+c_(1)p \cdot e^{-2 x}=\int 1 \cdot e^{-2 x} d x+c_1pe2x=1e2xdx+c1
p e 2 x = e 2 x 2 + c 1 p = 1 2 + c 1 e 2 x d v d x = 1 2 + c 1 e 2 x p e 2 x = e 2 x 2 + c 1 p = 1 2 + c 1 e 2 x d v d x = 1 2 + c 1 e 2 x {:[p*e^(-2x)=(e^(-2x))/(-2)+c_(1)],[p=-(1)/(2)+c_(1)e^(2x)],[(dv)/(dx)=(-1)/(2)+c_(1)e^(2x)]:}\begin{gathered} p \cdot e^{-2 x}=\frac{e^{-2 x}}{-2}+c_1 \\ p=-\frac{1}{2}+c_1 e^{2 x} \\ \frac{d v}{d x}=\frac{-1}{2}+c_1 e^{2 x} \end{gathered}pe2x=e2x2+c1p=12+c1e2xdvdx=12+c1e2x
Integrate,
v = x 2 + c 1 2 e 2 x + c 2 v = x 2 + c 1 2 e 2 x + c 2 v=-(x)/(2)+(c_(1))/(2)e^(2x)+c_(2)v=-\frac{x}{2}+\frac{c_1}{2} e^{2 x}+c_2v=x2+c12e2x+c2
So, Complete solution of given equation is
y = v x y = x 2 2 + c 1 x e 2 x 2 + x c 2 y = v x y = x 2 2 + c 1 x e 2 x 2 + x c 2 {:[y=vx],[y=(-x^(2))/(2)+(c_(1)xe^(2x))/(2)+xc_(2)]:}\begin{aligned} & y=v x \\ & y=\frac{-x^2}{2}+\frac{c_1 x e^{2 x}}{2}+x c_2 \end{aligned}y=vxy=x22+c1xe2x2+xc2
8.(b) द्रव्यमान m m mmm का एक कण, जो की प्रक्षेपण बिन्दु से वेग u u uuu के साथ क्षैतिज दिशा के साथ θ θ theta\thetaθ कोण बनाने वाली दिशा में प्रक्षेपण बिन्दु से गुजरने वाले ऊर्ध्वाधर समतल में प्रक्षेपित किया जाता है, उसकी गति तथा पथ का वर्णन कीजिए । यदि कणों को उसी बिन्दु से उसी ऊर्ध्वाधर समतल में वेग 4 g 4 g 4sqrtg4 \sqrt{g}4g के साथ प्रक्षेपित किया जाता है, तो उनके पथों के शीर्षों के बिन्दुपथ को भी निर्धारित कीजिए ।
Describe the motion and path of a particle of mass m m mmm which is projected in a vertical plane through a point of projection with velocity u u uuu in a direction making an angle θ θ theta\thetaθ with the horizontal direction. Further, if particles are projected from that point in the same vertical plane with velocity 4 g 4 g 4sqrtg4 \sqrt{g}4g, then determine the locus of vertices of their paths.
Answer:

Given Problem

A particle of mass m m mmm is projected in a vertical plane with an initial velocity u u uuu at an angle θ θ theta\thetaθ with the horizontal direction.

Equations of Motion

Given the particle with the mass m m m\mathrm{m}m, is projected from the point in the vertical plane with velocity u u u\mathrm{u}u,
Which is projected in a vertical plane through a point of projection with velocity u u u\mathrm{u}u in a direction making an angle θ θ theta\thetaθ with horizontal direction.
The initial velocity θ θ theta\thetaθ
Then m x ¨ = 0 m x ¨ = 0 mx^(¨)=0m \ddot{x}=0mx¨=0 and m y ¨ = m g y ¨ = g m y ¨ = m g y ¨ = g my^(¨)=-mg=>y^(¨)=-gm \ddot{y}=-m g \Rightarrow \ddot{y}=-gmy¨=mgy¨=g
y ˙ = g t + B when t = 0 ; u sin θ = B y ˙ = g t + u sin θ y ˙ = g t + B when t = 0 ; u sin θ = B y ˙ = g t + u sin θ {:[y^(˙)=-gt+B” when “t=0;u sin theta=B],[y^(˙)=-gt+u sin theta]:}\begin{aligned} &\dot{y}=-g t+B \text { when } t=0 ; u \sin \theta=B \\ & \dot{y}=-g t+u \sin \theta \end{aligned}y˙=gt+B when t=0;usinθ=By˙=gt+usinθ
By Integrating
y = g t 2 2 + u sin θ t + B when t = 0 , y = 0 ; B = 0 y = u sin θ t g t 2 2 y = g t 2 2 + u sin θ t + B when t = 0 , y = 0 ; B = 0 y = u sin θ t g t 2 2 {:[y=-(gt^(2))/(2)+u sin theta t+B^(‘)” when “t=0”,”y=0;B^(‘)=0],[y=u sin theta t-(gt^(2))/(2)]:}\begin{aligned} & y=-\frac{g t^2}{2}+u \sin \theta t+B^{\prime} \text { when } t=0, y=0 ; B^{\prime}=0 \\ & y=u \sin \theta t-\frac{g t^2}{2} \end{aligned}y=gt22+usinθt+B when t=0,y=0;B=0y=usinθtgt22
Then m x ¨ = 0 , x ¨ = 0 , x ˙ = c m x ¨ = 0 , x ¨ = 0 , x ˙ = c mx^(¨)=0,x^(¨)=0,x^(˙)=cm \ddot{x}=0, \ddot{x}=0, \dot{x}=cmx¨=0,x¨=0,x˙=c

Path and Trajectory

x = u cos θ t x = u cos θ t {:x=u cos theta t:}\begin{aligned} & x=u \cos \theta t \end{aligned}x=ucosθt
By eliminating t we get path and trajectory
Here t = x u cos θ t = x u cos θ t=(x)/(u cos theta)t=\frac{x}{u \cos \theta}t=xucosθ
Therefore, path of trajectory; y = x tan θ g x 2 2 u 2 cos 2 θ y = x tan θ g x 2 2 u 2 cos 2 θ y=x tan theta-(gx^(2))/(2u^(2)cos^(2)theta)y=x \tan \theta-\frac{g x^2}{2 u^2 \cos ^2 \theta}y=xtanθgx22u2cos2θ
Multiply both sides by 2 u 2 cos 2 α g 2 u 2 cos 2 α g -(2u^(2)cos^(2)alpha)/(g)-\frac{2 u^2 \cos ^2 \alpha}{g}2u2cos2αg
By rearranging we get ( x u 2 sin α cos α g ) = 2 a 2 cos 2 α g ( y u 2 sin 2 α 2 g ) x u 2 sin α cos α g = 2 a 2 cos 2 α g y u 2 sin 2 α 2 g (x-(u^(2)sin alpha cos alpha)/(g))=(-2a^(2)cos^(2)alpha)/(g)(y-(u^(2)sin^(2)alpha)/(2g))\left(x-\frac{u^2 \sin \alpha \cos \alpha}{g}\right)=\frac{-2 a^2 \cos ^2 \alpha}{g}\left(y-\frac{u^2 \sin ^2 \alpha}{2 g}\right)(xu2sinαcosαg)=2a2cos2αg(yu2sin2α2g)
Above equation is in the form of
( x h ) 2 = 4 a y k ( x h ) 2 = 4 a y k (x-h)^(2)=-(4a)/(y-k)(x-h)^2=-\frac{4 a}{y-k}(xh)2=4ayk
with vertices
( u 2 sin θ cos θ g , u 2 sin 2 θ 2 g ) u 2 sin θ cos θ g , u 2 sin 2 θ 2 g ((u^(2)sin theta cos theta)/(g),(u^(2)sin^(2)theta)/(2g))\left(\frac{u^2 \sin \theta \cos \theta}{g}, \frac{u^2 \sin ^2 \theta}{2 g}\right)(u2sinθcosθg,u2sin2θ2g)

Vertices of the Path

Vertices is ( u 2 sin θ cos θ g , u 2 sin 2 θ 2 g ) u 2 sin θ cos θ g , u 2 sin 2 θ 2 g ((u^(2)sin theta cos theta)/(g),(u^(2)sin^(2)theta)/(2g))\left(\frac{u^2 \sin \theta \cos \theta}{g}, \frac{u^2 \sin ^2 \theta}{2 g}\right)(u2sinθcosθg,u2sin2θ2g)
Given that u = 4 g u = 4 g u=4sqrtgu=4 \sqrt{g}u=4g
Then the vertices is ( 8 sin 2 θ , 8 sin 2 θ ) 8 sin 2 θ , 8 sin 2 θ (8sin 2theta,8sin^(2)theta)\left(8 \sin 2 \theta, 8 \sin ^2 \theta\right)(8sin2θ,8sin2θ)

Special Case: u = 4 g u = 4 g u=4sqrtgu = 4 \sqrt{g}u=4g

When u = 4 g u = 4 g u=4sqrtgu = 4 \sqrt{g}u=4g, the vertices become:
( 8 sin 2 θ , 8 sin 2 θ ) 8 sin 2 θ , 8 sin 2 θ (8sin 2theta,8sin^(2)theta)\left(8 \sin 2 \theta, 8 \sin^2 \theta\right)(8sin2θ,8sin2θ)

Locus

The vertices of the paths are given by:
( 8 sin 2 θ , 8 sin 2 θ ) 8 sin 2 θ , 8 sin 2 θ (8sin 2theta,8sin^(2)theta)\left(8 \sin 2 \theta, 8 \sin^2 \theta\right)(8sin2θ,8sin2θ)
To find the locus of these vertices, let’s eliminate the parameter θ θ theta\thetaθ. We can use trigonometric identities to do this.
We know that sin 2 θ = 1 cos ( 2 θ ) 2 sin 2 θ = 1 cos ( 2 θ ) 2 sin^(2)theta=(1-cos(2theta))/(2)\sin^2 \theta = \frac{1 – \cos(2\theta)}{2}sin2θ=1cos(2θ)2.
So, the coordinates of the vertices can be rewritten as:
x = 8 sin 2 θ x = 8 sin 2 θ x=8sin 2thetax = 8 \sin 2 \thetax=8sin2θ
y = 8 ( 1 cos ( 2 θ ) 2 ) y = 8 1 cos ( 2 θ ) 2 y=8((1-cos(2theta))/(2))y = 8 \left(\frac{1 – \cos(2\theta)}{2}\right)y=8(1cos(2θ)2)
y = 4 4 cos ( 2 θ ) y = 4 4 cos ( 2 θ ) y=4-4cos(2theta)y = 4 – 4 \cos(2\theta)y=44cos(2θ)
Now, we can express cos ( 2 θ ) cos ( 2 θ ) cos(2theta)\cos(2\theta)cos(2θ) in terms of x x xxx:
sin 2 θ = x 8 sin 2 θ = x 8 sin 2theta=(x)/(8)\sin 2 \theta = \frac{x}{8}sin2θ=x8
cos 2 ( 2 θ ) + sin 2 ( 2 θ ) = 1 cos 2 ( 2 θ ) + sin 2 ( 2 θ ) = 1 cos^(2)(2theta)+sin^(2)(2theta)=1\cos^2(2\theta) + \sin^2(2\theta) = 1cos2(2θ)+sin2(2θ)=1
cos 2 ( 2 θ ) = 1 ( x 8 ) 2 cos 2 ( 2 θ ) = 1 x 8 2 cos^(2)(2theta)=1-((x)/(8))^(2)\cos^2(2\theta) = 1 – \left(\frac{x}{8}\right)^2cos2(2θ)=1(x8)2
cos ( 2 θ ) = ± 1 ( x 8 ) 2 cos ( 2 θ ) = ± 1 x 8 2 cos(2theta)=+-sqrt(1-((x)/(8))^(2))\cos(2\theta) = \pm \sqrt{1 – \left(\frac{x}{8}\right)^2}cos(2θ)=±1(x8)2
Substituting this into the equation for y y yyy:
y = 4 4 cos ( 2 θ ) y = 4 4 cos ( 2 θ ) y=4-4cos(2theta)y = 4 – 4 \cos(2\theta)y=44cos(2θ)
y = 4 ± 4 1 ( x 8 ) 2 y = 4 ± 4 1 x 8 2 y=4+-4sqrt(1-((x)/(8))^(2))y = 4 \pm 4 \sqrt{1 – \left(\frac{x}{8}\right)^2}y=4±41(x8)2
y = 4 ± 4 1 ( x 8 ) 2 y = 4 ± 4 1 x 8 2 y=4+-4sqrt(1-((x)/(8))^(2))y = 4 \pm 4 \sqrt{1 – \left(\frac{x}{8}\right)^2}y=4±41(x8)2
This equation describes the locus of the vertices of the paths when u = 4 g u = 4 g u=4sqrtgu = 4 \sqrt{g}u=4g.
  1. (c) स्टोक्स प्रमेय का उपयोग करते हुए S ( × F ) n ^ d S S ( × F ) n ^ d S ∬_(S)(grad xx vec(F))* hat(n)dS\iint_S(\nabla \times \vec{F}) \cdot \hat{n} d SS(×F)n^dS का मान निकालिए, जहाँ पर F = ( x 2 + y 4 ) i ^ + 3 x y j ^ + ( 2 x y + z 2 ) k ^ F = x 2 + y 4 i ^ + 3 x y j ^ + 2 x y + z 2 k ^ vec(F)=(x^(2)+y-4) hat(i)+3xy hat(j)+(2xy+z^(2)) hat(k)\vec{F}=\left(x^2+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x y+z^2\right) \hat{k}F=(x2+y4)i^+3xyj^+(2xy+z2)k^ तथा S S SSS, परवलयज z = 4 ( x 2 + y 2 ) z = 4 x 2 + y 2 z=4-(x^(2)+y^(2))z=4-\left(x^2+y^2\right)z=4(x2+y2) का x y x y xyx yxy-समतल से ऊपर का पृष्ठ है। यहाँ n ^ , S n ^ , S hat(n),S\hat{n}, Sn^,S पर एकक बहिर्मुखी अभिलंब सदिश है ।
Using Stokes’ theorem, evaluate S ( × F ) n ^ d S S ( × F ) n ^ d S ∬_(S)(grad xx vec(F))* hat(n)dS\iint_S(\nabla \times \vec{F}) \cdot \hat{n} d SS(×F)n^dS, where F = ( x 2 + y 4 ) i ^ + 3 x y j ^ + ( 2 x y + z 2 ) k ^ F = x 2 + y 4 i ^ + 3 x y j ^ + 2 x y + z 2 k ^ vec(F)=(x^(2)+y-4) hat(i)+3xy hat(j)+(2xy+z^(2)) hat(k)\vec{F}=\left(x^2+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x y+z^2\right) \hat{k}F=(x2+y4)i^+3xyj^+(2xy+z2)k^ and S S SSS is the surface of the paraboloid z = 4 ( x 2 + y 2 ) z = 4 x 2 + y 2 z=4-(x^(2)+y^(2))z=4-\left(x^2+y^2\right)z=4(x2+y2) above the x y x y xyx yxy-plane. Here, n ^ n ^ hat(n)\hat{n}n^ is the unit outward normal vector on S S SSS.
Answer:
Stoke’s theorem is
C F d r ¯ = S curl F n ^ d S C F ¯ d r ¯ = S curl F ¯ n ^ d S int_(C) bar(F)*d bar(r)=∬_(S)curl bar(F)* hat(n)dS\int_{\mathrm{C}} \overline{\mathrm{F}} \cdot d \bar{r}=\iint_{\mathrm{S}} \operatorname{curl} \overline{\mathrm{F}} \cdot \hat{n} d \mathrm{~S}CFdr¯=ScurlFn^d S
where C C C\mathrm{C}C is the circle, x 2 + y 2 = 4 , z = 0 x 2 + y 2 = 4 , z = 0 x^(2)+y^(2)=4,z=0x^2+y^2=4, z=0x2+y2=4,z=0
Also, F d r ¯ = [ ( x 2 + y 4 ) i ^ + 3 x y j ^ + ( 2 x z + z 2 ) k ^ ] ( d x i ^ + d y j ^ + d z k ^ ) F ¯ d r ¯ = x 2 + y 4 i ^ + 3 x y j ^ + 2 x z + z 2 k ^ ( d x i ^ + d y j ^ + d z k ^ ) quad bar(F)*d bar(r)=[(x^(2)+y-4)( hat(i))+3xy( hat(j))+(2xz+z^(2))( hat(k))]*(dx hat(i)+dy hat(j)+dz hat(k))\quad \overline{\mathrm{F}} \cdot d \bar{r}=\left[\left(x^2+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^2\right) \hat{k}\right] \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k})Fdr¯=[(x2+y4)i^+3xyj^+(2xz+z2)k^](dxi^+dyj^+dzk^)
= ( x 2 + y 4 ) d x + 3 x y d y + ( 2 x z + z 2 ) d z = x 2 + y 4 d x + 3 x y d y + 2 x z + z 2 d z =(x^(2)+y-4)dx+3xydy+(2xz+z^(2))dz=\left(x^2+y-4\right) d x+3 x y d y+\left(2 x z+z^2\right) d z=(x2+y4)dx+3xydy+(2xz+z2)dz
On the circle
z = 0 , d z = 0 x = 2 cos ϕ , d x = 2 sin ϕ d ϕ y = 2 sin ϕ , d y = 2 cos ϕ d ϕ z = 0 ,      d z = 0 x = 2 cos ϕ ,      d x = 2 sin ϕ d ϕ y = 2 sin ϕ ,      d y = 2 cos ϕ d ϕ {:[z=0″,”,:.dz=0],[x=2cos phi”,”,:.dx=-2sin phi d phi],[y=2sin phi”,”,:.dy=2cos phi” d “phi]:}\begin{array}{ll} z=0, & \therefore d z=0 \\ x=2 \cos \phi, & \therefore d x=-2 \sin \phi d \phi \\ y=2 \sin \phi, & \therefore d y=2 \cos \phi \text { d } \phi \end{array}z=0,dz=0x=2cosϕ,dx=2sinϕdϕy=2sinϕ,dy=2cosϕ d ϕ
C F ¯ d r ¯ = C [ x 2 + y 4 ) d x + 3 x y d y ] = 0 2 π ( 4 cos 2 ϕ + 2 sin ϕ 4 ) ( 2 sin ϕ d ϕ ) + 3 ( 2 c o s ϕ ) ( 2 s i n ϕ ) ( 2 c o s ϕ d ϕ ) = 0 2 π ( 8 cos 2 ϕ sin ϕ 4 sin 2 ϕ + 8 sin 2 ϕ + 24 cos 2 ϕ sin ϕ ) d ϕ = 0 2 π ( 16 cos 2 ϕ sin ϕ 4 sin 2 ϕ + 8 sin ϕ ) d ϕ = 4 0 2 π sin 2 ϕ d ϕ = 4 × 4 0 π / 2 sin 2 ϕ d ϕ = 16 ( 1 2 π 2 ) = 4 π C F ¯ d r ¯ = C x 2 + y 4 d x + 3 x y d y = 0 2 π 4 cos 2 ϕ + 2 sin ϕ 4 ( 2 sin ϕ d ϕ ) + 3 2 c o s ϕ 2 s i n ϕ 2 c o s ϕ d ϕ = 0 2 π 8 cos 2 ϕ sin ϕ 4 sin 2 ϕ + 8 sin 2 ϕ + 24 cos 2 ϕ sin ϕ d ϕ = 0 2 π 16 cos 2 ϕ sin ϕ 4 sin 2 ϕ + 8 sin ϕ d ϕ = 4 0 2 π sin 2 ϕ d ϕ = 4 × 4 0 π / 2 sin 2 ϕ d ϕ = 16 1 2 π 2 = 4 π {:[:.quadint _(C) bar(F)*d bar(r){:=int _(C)[x^(2)+y-4)dx+3xydy]],[=int_(0)^(2pi)(4cos^(2)phi+2sin phi-4)(-2sin phi d phi)+3(2cosphi)(2sinphi)(2cosphid phi)],[=int_(0)^(2pi)(-8cos^(2)phi sin phi-4sin^(2)phi+8sin^(2)phi+24cos^(2)phi sin phi)d phi],[=int_(0)^(2pi)(16cos^(2)phi sin phi-4sin^(2)phi+8sin phi)d phi],[=-4int_(0)^(2pi)sin^(2)phi d phi=-4xx4int_(0)^(pi//2)sin^(2)phi d phi=-16((1)/(2)(pi)/(2))=-4pi]:}\begin{aligned} \therefore \quad \int_C \bar{F} \cdot d \bar{r} & \left.=\int_C\left[x^2+y-4\right) d x+3 x y d y\right] \\ & =\int_0^{2 \pi}\left(4 \cos ^2 \phi+2 \sin \phi-4\right)(-2 \sin \phi d \phi) +3\left(2\:cos\:\phi \right)\left(2\:sin\:\phi \right)\left(2\:cos\:\phi \:d\phi \right)\\ & =\int_0^{2 \pi}\left(-8 \cos ^2 \phi \sin \phi-4 \sin ^2 \phi+8 \sin ^2 \phi+24 \cos ^2 \phi \sin \phi\right) d \phi \\ & =\int_0^{2 \pi}\left(16 \cos ^2 \phi \sin \phi-4 \sin ^2 \phi+8 \sin \phi\right) d \phi \\ & =-4 \int_0^{2 \pi} \sin ^2 \phi d \phi=-4 \times 4 \int_0^{\pi / 2} \sin ^2 \phi d \phi=-16\left(\frac{1}{2} \frac{\pi}{2}\right)=-4 \pi \end{aligned}CF¯dr¯=C[x2+y4)dx+3xydy]=02π(4cos2ϕ+2sinϕ4)(2sinϕdϕ)+3(2cosϕ)(2sinϕ)(2cosϕdϕ)=02π(8cos2ϕsinϕ4sin2ϕ+8sin2ϕ+24cos2ϕsinϕ)dϕ=02π(16cos2ϕsinϕ4sin2ϕ+8sinϕ)dϕ=402πsin2ϕdϕ=4×40π/2sin2ϕdϕ=16(12π2)=4π