Free UPSC Mathematics Optional Paper-1 2022 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड A
SECTION A
Question:-01 (a) सिद्ध कीजिए कि n n n\mathrm{n}n विमीय सदिश समष्टि V V V\mathrm{V}V के लिए n n n\mathrm{n}n रैखिकत: स्वतंत्र सदिशों का कोई भी समुच्चय V V V\mathrm{V}V के लिए एक आधार बनाता है ।
Question:-01 (a) Prove that any set of n n n\mathrm{n}n linearly independent vectors in a vector space V V V\mathrm{V}V of dimension n n n\mathrm{n}n constitutes a basis for V V V\mathrm{V}V.
Answer:
To prove that any set of n n nnn linearly independent vectors in a vector space V V VVV of dimension n n nnn constitutes a basis for V V VVV, we need to show two things:
  1. The set spans V V VVV.
  2. The set is linearly independent.

Given:

  • A vector space V V VVV of dimension n n nnn.
  • A set S = { v 1 , v 2 , , v n } S = { v 1 , v 2 , , v n } S={v_(1),v_(2),dots,v_(n)}S = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \}S={v1,v2,,vn} of n n nnn linearly independent vectors in V V VVV.

Proof:

Step 1: S S SSS is Linearly Independent (Given)

We are given that S S SSS is a set of n n nnn linearly independent vectors. Therefore, no vector in S S SSS can be written as a linear combination of the other vectors in S S SSS.

Step 2: S S SSS Spans V V VVV

To show that S S SSS spans V V VVV, we need to show that any vector w w w\mathbf{w}w in V V VVV can be written as a linear combination of vectors in S S SSS.
Let’s consider another basis B B BBB for V V VVV. Since V V VVV has dimension n n nnn, B B BBB contains exactly n n nnn vectors. We can write w w w\mathbf{w}w as a linear combination of vectors in B B BBB:
w = c 1 b 1 + c 2 b 2 + + c n b n w = c 1 b 1 + c 2 b 2 + + c n b n w=c_(1)b_(1)+c_(2)b_(2)+dots+c_(n)b_(n)\mathbf{w} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \ldots + c_n \mathbf{b}_nw=c1b1+c2b2++cnbn
Now, each b i b i b_(i)\mathbf{b}_ibi can also be written as a linear combination of vectors in S S SSS because S S SSS and B B BBB are both bases for V V VVV:
b i = a i 1 v 1 + a i 2 v 2 + + a i n v n b i = a i 1 v 1 + a i 2 v 2 + + a i n v n b_(i)=a_(i1)v_(1)+a_(i2)v_(2)+dots+a_(in)v_(n)\mathbf{b}_i = a_{i1} \mathbf{v}_1 + a_{i2} \mathbf{v}_2 + \ldots + a_{in} \mathbf{v}_nbi=ai1v1+ai2v2++ainvn
Substituting this into the equation for w w w\mathbf{w}w, we get:
w = i = 1 n c i ( a i 1 v 1 + a i 2 v 2 + + a i n v n ) w = i = 1 n c i ( a i 1 v 1 + a i 2 v 2 + + a i n v n ) w=sum_(i=1)^(n)c_(i)(a_(i1)v_(1)+a_(i2)v_(2)+dots+a_(in)v_(n))\mathbf{w} = \sum_{i=1}^{n} c_i (a_{i1} \mathbf{v}_1 + a_{i2} \mathbf{v}_2 + \ldots + a_{in} \mathbf{v}_n)w=i=1nci(ai1v1+ai2v2++ainvn)
Simplifying, we find that w w w\mathbf{w}w can indeed be written as a linear combination of vectors in S S SSS, proving that S S SSS spans V V VVV.

Conclusion

Since S S SSS is both linearly independent and spans V V VVV, it constitutes a basis for V V VVV.
Thus, we have proven that any set of n n nnn linearly independent vectors in a vector space V V VVV of dimension n n nnn constitutes a basis for V V VVV.
Question:-01 (b) माना T : R 2 R 3 T : R 2 R 3 T:R^(2)rarrR^(3)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^3T:R2R3 एक रैखिक रूपांतरण, ऐसा है कि T ( 1 0 ) = ( 1 2 3 ) T 1 0 = 1 2 3 T([1],[0])=([1],[2],[3])\mathrm{T}\left(\begin{array}{l}1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)T(10)=(123) तथा T ( 1 1 ) = ( 3 2 8 ) T 1 1 = 3 2 8 T([1],[1])=([-3],[2],[8])\mathrm{T}\left(\begin{array}{l}1 \\ 1\end{array}\right)=\left(\begin{array}{r}-3 \\ 2 \\ 8\end{array}\right)T(11)=(328) है । T ( 2 4 ) T 2 4 T([2],[4])\mathrm{T}\left(\begin{array}{l}2 \\ 4\end{array}\right)T(24) को ज्ञात कीजिए ।
Question:-01(b) Let T : R 2 R 3 T : R 2 R 3 T:R^(2)rarrR^(3)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^3T:R2R3 be a linear transformation such that T ( 1 0 ) = ( 1 2 3 ) T 1 0 = 1 2 3 T([1],[0])=([1],[2],[3])\mathrm{T}\left(\begin{array}{l}1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)T(10)=(123) and T ( 1 1 ) = ( 3 2 8 ) T 1 1 = 3 2 8 T([1],[1])=([-3],[2],[8])\mathrm{T}\left(\begin{array}{l}1 \\ 1\end{array}\right)=\left(\begin{array}{r}-3 \\ 2 \\ 8\end{array}\right)T(11)=(328). Find T ( 2 4 ) T 2 4 T([2],[4])\mathrm{T}\left(\begin{array}{l}2 \\ 4\end{array}\right)T(24)
Answer:
Introduction: In this problem, we are given a linear transformation T : R 2 R 3 T : R 2 R 3 T:R^(2)rarrR^(3)T: \mathbb{R}^2 \rightarrow \mathbb{R}^3T:R2R3 and are asked to find the image of a vector under this transformation. We are given the images of two vectors under T T T\mathrm{T}T and will use this information along with the linearity property of the transformation to find the desired image.
Assumptions: We assume that T T T\mathrm{T}T is a linear transformation.
Definition:
  1. Linear Transformation: A function T : V W T : V W T:V rarr WT: V \rightarrow WT:VW between two vector spaces V V VVV and W W WWW is called a linear transformation if for all vectors u , v V u , v V u,v in Vu, v \in Vu,vV and scalars c c ccc, the following conditions hold:
    a. T ( u + v ) = T ( u ) + T ( v ) T ( u + v ) = T ( u ) + T ( v ) T(u+v)=T(u)+T(v)T(u+v)=T(u)+T(v)T(u+v)=T(u)+T(v)
    b. T ( c u ) = c T ( u ) T ( c u ) = c T ( u ) T(cu)=cT(u)T(c u)=c T(u)T(cu)=cT(u)
    Method/Approach: To solve this problem, we will first express the given vector as a linear combination of the two given vectors. Then, we will use the linearity property of the transformation to find the image of the given vector under the transformation T T T\mathrm{T}T.
    Work/Calculations: The calculations have already been provided in the original answer. I’ll restate them here for clarity:
  2. Represent the vector ( 2 4 ) 2 4 ([2],[4])\left(\begin{array}{c}2 \\ 4\end{array}\right)(24) as a linear combination of the given vectors:
( 2 4 ) = a ( 1 0 ) + b ( 1 1 ) 2 4 = a 1 0 + b 1 1 ([2],[4])=a([1],[0])+b([1],[1])\left(\begin{array}{l} 2 \\ 4 \end{array}\right)=a\left(\begin{array}{l} 1 \\ 0 \end{array}\right)+b\left(\begin{array}{l} 1 \\ 1 \end{array}\right)(24)=a(10)+b(11)
  1. Solve for a a aaa and b b bbb :
2 = a + b 4 = 0 + b 2 = a + b 4 = 0 + b {:[2=a+b],[4=0+b]:}\begin{aligned} & 2=a+b \\ & 4=0+b \end{aligned}2=a+b4=0+b
  1. Find a = 2 a = 2 a=-2a=-2a=2 and b = 4 b = 4 b=4b=4b=4 and write the linear combination:
( 2 4 ) = 2 ( 1 0 ) + 4 ( 1 1 ) 2 4 = 2 1 0 + 4 1 1 ([2],[4])=-2([1],[0])+4([1],[1])\left(\begin{array}{l} 2 \\ 4 \end{array}\right)=-2\left(\begin{array}{l} 1 \\ 0 \end{array}\right)+4\left(\begin{array}{l} 1 \\ 1 \end{array}\right)(24)=2(10)+4(11)
  1. Apply the linear transformation T T T\mathrm{T}T :
T ( 2 4 ) = 2 T ( 1 0 ) + 4 T ( 1 1 ) T 2 4 = 2 T 1 0 + 4 T 1 1 T([2],[4])=-2T([1],[0])+4T([1],[1])\mathrm{T}\left(\begin{array}{l} 2 \\ 4 \end{array}\right)=-2 \mathrm{~T}\left(\begin{array}{l} 1 \\ 0 \end{array}\right)+4 \mathrm{~T}\left(\begin{array}{l} 1 \\ 1 \end{array}\right)T(24)=2 T(10)+4 T(11)
  1. Use the given values for the transformation, perform scalar multiplication and vector addition:
T ( 2 4 ) = ( 2 4 6 ) + ( 12 8 32 ) = ( 14 4 26 ) Thus, T ( 2 4 ) = ( 14 4 26 ) . T 2 4 = 2 4 6 + 12 8 32 = 14 4 26 Thus, T 2 4 = 14 4 26 . {:[T([2],[4])=([-2],[-4],[-6])+([-12],[8],[32])=([-14],[4],[26])],[” Thus, “T([2],[4])=([-14],[4],[26]).]:}\begin{aligned} & T\left(\begin{array}{l} 2 \\ 4 \end{array}\right)=\left(\begin{array}{l} -2 \\ -4 \\ -6 \end{array}\right)+\left(\begin{array}{c} -12 \\ 8 \\ 32 \end{array}\right)=\left(\begin{array}{c} -14 \\ 4 \\ 26 \end{array}\right) \\ & \text { Thus, } \mathrm{T}\left(\begin{array}{l} 2 \\ 4 \end{array}\right)=\left(\begin{array}{c} -14 \\ 4 \\ 26 \end{array}\right) . \end{aligned}T(24)=(246)+(12832)=(14426) Thus, T(24)=(14426).
Conclusion: In this problem, we found the image of the vector ( 2 4 ) 2 4 ([2],[4])\left(\begin{array}{c}2 \\ 4\end{array}\right)(24) under the linear transformation T : R 2 R 3 T : R 2 R 3 T:R^(2)rarrR^(3)T: \mathbb{R}^2 \rightarrow \mathbb{R}^3T:R2R3. We expressed the given vector as a linear combination of the two given vectors and used the linearity property of the transformation to find the image.
The image of the given vector under the transformation T T TTT is ( 14 4 26 ) 14 4 26 ([-14],[4],[26])\left(\begin{array}{c}-14 \\ 4 \\ 26\end{array}\right)(14426).
Question:-01(c) lim x ( e x + x ) 1 x lim x e x + x 1 x lim_(x rarr oo)(e^(x)+x)^((1)/(x))\lim _{x \rightarrow \infty}\left(e^x+x\right)^{\frac{1}{x}}limx(ex+x)1x का मान निकालिए ।
Question:-01(c) Evaluate lim x ( e x + x ) 1 x lim x e x + x 1 x lim_(x rarr oo)(e^(x)+x)^((1)/(x))\lim _{x \rightarrow \infty}\left(e^x+x\right)^{\frac{1}{x}}limx(ex+x)1x
Answer:
Introduction: In this problem, we are asked to evaluate the limit lim x ( e x + x ) 1 x lim x e x + x 1 x lim_(x rarr oo)(e^(x)+x)^((1)/(x))\lim _{x \rightarrow \infty}\left(e^x+x\right)^{\frac{1}{x}}limx(ex+x)1x. The expression presents an indeterminate form of type 1 1 1^(oo)1^{\infty}1 as x x xxx approaches infinity. We will use the natural logarithm and L’Hôpital’s rule to resolve this indeterminate form and find the limit.
Assumptions: None.
Definition: Indeterminate form refers to an expression involving limits whose behavior cannot be determined solely based on the behavior of the individual parts of the expression.
Theorem: L’Hôpital’s Rule states that if lim x c f ( x ) g ( x ) lim x c f ( x ) g ( x ) lim_(x rarr c)(f(x))/(g(x))\lim _{x \rightarrow c} \frac{f(x)}{g(x)}limxcf(x)g(x) is an indeterminate form of type 0 0 0 0 (0)/(0)\frac{0}{0}00 or (oo )/(oo)\frac{\infty}{\infty}, and f ( x ) f ( x ) f^(‘)(x)f^{\prime}(x)f(x) and g ( x ) g ( x ) g^(‘)(x)g^{\prime}(x)g(x) exist and are continuous in an open interval containing c c ccc (except possibly at c c ccc, and lim x c f ( x ) g ( x ) lim x c f ( x ) g ( x ) lim_(x rarr c)(f^(‘)(x))/(g^(‘)(x))\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}limxcf(x)g(x) exists or equals ± ± +-oo\pm \infty±, then lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x ) lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x ) lim_(x rarr c)(f(x))/(g(x))=lim_(x rarr c)(f^(‘)(x))/(g^(‘)(x))\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}limxcf(x)g(x)=limxcf(x)g(x).
Method/Approach: The steps in your answer are correct, and I will restate them briefly:
  1. Recognize the indeterminate form of type 1 1 1^(oo)1^{\infty}1.
  2. Use the natural logarithm to transform the expression.
  3. Apply L’Hôpital’s rule to find the limit of the transformed expression.
  4. Transform the result back using exponentiation.
  5. State the conclusion.
Work/Calculations: Based on your provided answer, the calculations are as follows:
  1. Recognize the indeterminate form of type 1 1 1^(oo)1^{\infty}1 as x x xxx approaches infinity.
  2. Define a new function y y yyy and use the natural logarithm to transform the expression:
y = ( e x + x ) 1 x ln y = ln ( ( e x + x ) 1 x ) ln y = 1 x ln ( e x + x ) y = e x + x 1 x ln y = ln e x + x 1 x ln y = 1 x ln e x + x {:[y=(e^(x)+x)^((1)/(x))],[ln y=ln((e^(x)+x)^((1)/(x)))],[ln y=(1)/(x)*ln(e^(x)+x)]:}\begin{gathered} y=\left(e^x+x\right)^{\frac{1}{x}} \\ \ln y=\ln \left(\left(e^x+x\right)^{\frac{1}{x}}\right) \\ \ln y=\frac{1}{x} \cdot \ln \left(e^x+x\right) \end{gathered}y=(ex+x)1xlny=ln((ex+x)1x)lny=1xln(ex+x)
  1. Apply L’Hôpital’s rule to find the limit of the transformed expression:
lim x ln y = lim x ln ( e x + x ) x lim x ln y = lim x ln e x + x x lim_(x rarr oo)ln y=lim_(x rarr oo)(ln(e^(x)+x))/(x)\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln \left(e^x+x\right)}{x}limxlny=limxln(ex+x)x
Differentiate the numerator and denominator with respect to x x xxx :
d d x ln ( e x + x ) = e x + 1 e x + x d d x x = 1 d d x ln e x + x = e x + 1 e x + x d d x x = 1 {:[(d)/(dx)ln(e^(x)+x)=(e^(x)+1)/(e^(x)+x)],[(d)/(dx)x=1]:}\begin{gathered} \frac{d}{d x} \ln \left(e^x+x\right)=\frac{e^x+1}{e^x+x} \\ \frac{d}{d x} x=1 \end{gathered}ddxln(ex+x)=ex+1ex+xddxx=1
Now, apply L’Hôpital’s rule to the limit:
lim x ln ( e x + x ) x = lim x e x + 1 e x + x lim x ln e x + x x = lim x e x + 1 e x + x lim_(x rarr oo)(ln(e^(x)+x))/(x)=lim_(x rarr oo)(e^(x)+1)/(e^(x)+x)\lim _{x \rightarrow \infty} \frac{\ln \left(e^x+x\right)}{x}=\lim _{x \rightarrow \infty} \frac{e^x+1}{e^x+x}limxln(ex+x)x=limxex+1ex+x
  1. Transform the result back using exponentiation:
lim x ln y = lim x e x + 1 e x + x = lim x 1 + e x 1 + x e x lim x ln y = 1 + 0 1 + 0 = 1 e = 0 lim x ln y = lim x e x + 1 e x + x = lim x 1 + e x 1 + x e x lim x ln y = 1 + 0 1 + 0 = 1 e = 0 {:[lim_(x rarr oo)ln y=lim_(x rarr oo)(e^(x)+1)/(e^(x)+x)=lim_(x rarr oo)(1+e^(-x))/(1+xe^(-x))],[lim_(x rarr oo)ln y=(1+0)/(1+0)=1quad:’e^(-oo)=0]:}\begin{aligned} & \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{e^x+1}{e^x+x}=\lim _{x \rightarrow \infty} \frac{1+e^{-x}}{1+x e^{-x}} \\ & \lim _{x \rightarrow \infty} \ln y=\frac{1+0}{1+0}=1 \quad \because e^{-\infty}=0 \end{aligned}limxlny=limxex+1ex+x=limx1+ex1+xexlimxlny=1+01+0=1e=0
log e y = 1 log e y = 1 log _(e)y=1\log _e y=1logey=1
y = e 1 y = e y = e 1 y = e {:[y=e^(1)],[y=e]:}\begin{aligned} & y=e^1 \\ & y=e \end{aligned}y=e1y=e
Hence lim x ( e x + x ) 1 x = e lim x e x + x 1 x = e quadlim_(x rarr oo)(e^(x)+x)^((1)/(x))=e\quad \lim _{x \rightarrow \infty}\left(e^x+x\right)^{\frac{1}{x}}=elimx(ex+x)1x=e
Conclusion: By recognizing the indeterminate form of type 1 1 1^(oo)1^{\infty}1, using the natural logarithm to transform the expression, and applying L’Hôpital’s rule, we found that the limit of the given expression as x x xxx approaches infinity is e e eee.
Question:-01(d) 0 2 d x ( 2 x x 2 ) 0 2 d x 2 x x 2 int_(0)^(2)(dx)/((2x-x^(2)))\int_0^2 \frac{d x}{\left(2 x-x^2\right)}02dx(2xx2) की अभिसारिता का परीक्षण कीजिए ।
Question:-01(d) Examine the convergence of 0 2 d x ( 2 x x 2 ) 0 2 d x 2 x x 2 int_(0)^(2)(dx)/((2x-x^(2)))\int_0^2 \frac{d x}{\left(2 x-x^2\right)}02dx(2xx2).
Answer:
Introduction: In this problem, we are asked to examine the convergence of the integral 0 2 d x ( 2 x x 2 ) 0 2 d x 2 x x 2 int_(0)^(2)(dx)/((2x-x^(2)))\int_0^2 \frac{d x}{\left(2 x-x^2\right)}02dx(2xx2). We will determine if the integrand is continuous on the given interval, analyze the behavior of the integrand around any discontinuities, and determine if the integral converges or diverges based on the analysis.
Assumptions: None.
Definition: An improper integral is an integral where either the interval of integration is infinite, or the integrand has an infinite discontinuity within the interval.
Method/Approach: The steps in your answer are correct, and I will restate them briefly:
  1. Determine the continuity of the integrand.
  2. Analyze the behavior of the integrand around discontinuities.
  3. Determine if the integral converges or diverges.
  4. State the conclusion.
Work/Calculations: Based on your provided answer, the calculations are as follows:
Step 1: Determine the continuity of the integrand
The integrand is a rational function:
1 ( 2 x x 2 ) 1 2 x x 2 (1)/((2x-x^(2)))\frac{1}{\left(2 x-x^2\right)}1(2xx2)
Its denominator is equal to zero when:
2 x x 2 = 0 2 x x 2 = 0 2x-x^(2)=02 x-x^2=02xx2=0
Factor out x x x\mathrm{x}x :
x ( 2 x ) = 0 x ( 2 x ) = 0 x(2-x)=0x(2-x)=0x(2x)=0
This gives us two roots: x = 0 x = 0 x=0x=0x=0 and x = 2 x = 2 x=2x=2x=2. The integrand is not continuous at these points.
Step 2: Analyze the behavior of the integrand around discontinuities
Since the integral has improper bounds due to the discontinuity at x = 0 x = 0 x=0x=0x=0 and x = 2 x = 2 x=2x=2x=2, we will rewrite the integral as the sum of two improper integrals:
0 2 d x ( 2 x x 2 ) = lim a 0 + a 2 d x ( 2 x x 2 ) + lim b 2 0 b d x ( 2 x x 2 ) 0 2 d x 2 x x 2 = lim a 0 + a 2 d x 2 x x 2 + lim b 2 0 b d x 2 x x 2 int_(0)^(2)(dx)/((2x-x^(2)))=lim_(a rarr0^(+))int_(a)^(2)(dx)/((2x-x^(2)))+lim_(b rarr2^(-))int_(0)^(b)(dx)/((2x-x^(2)))\int_0^2 \frac{d x}{\left(2 x-x^2\right)}=\lim _{a \rightarrow 0^{+}} \int_a^2 \frac{d x}{\left(2 x-x^2\right)}+\lim _{b \rightarrow 2^{-}} \int_0^b \frac{d x}{\left(2 x-x^2\right)}02dx(2xx2)=lima0+a2dx(2xx2)+limb20bdx(2xx2)
Step 3: Determine if the integral converges or diverges
Let’s examine the convergence of each limit:
For the first limit:
lim a 0 + a 2 d x ( 2 x x 2 ) lim a 0 + a 2 d x 2 x x 2 lim_(a rarr0^(+))int_(a)^(2)(dx)/((2x-x^(2)))\lim _{a \rightarrow 0^{+}} \int_a^2 \frac{d x}{\left(2 x-x^2\right)}lima0+a2dx(2xx2)
We can rewrite the integrand using partial fraction decomposition:
1 ( 2 x x 2 ) = A x + B ( 2 x ) 1 2 x x 2 = A x + B ( 2 x ) (1)/((2x-x^(2)))=(A)/(x)+(B)/((2-x))\frac{1}{\left(2 x-x^2\right)}=\frac{A}{x}+\frac{B}{(2-x)}1(2xx2)=Ax+B(2x)
Solve for A A AAA and B B BBB :
1 = A ( 2 x ) + B x 1 = A ( 2 x ) + B x 1=A(2-x)+Bx1=A(2-x)+B x1=A(2x)+Bx
By comparing coefficients, we find that A = 1 2 A = 1 2 A=(1)/(2)A=\frac{1}{2}A=12 and B = 1 2 B = 1 2 B=(1)/(2)B=\frac{1}{2}B=12. So we have:
1 ( 2 x x 2 ) = 1 2 x + 1 2 ( 2 x ) 1 2 x x 2 = 1 2 x + 1 2 ( 2 x ) (1)/((2x-x^(2)))=(1)/(2x)+(1)/(2(2-x))\frac{1}{\left(2 x-x^2\right)}=\frac{1}{2x}+\frac{1}{2(2-x)}1(2xx2)=12x+12(2x)
Now, substitute this back into the first limit and separate the integral into two parts:
lim a 0 + a 2 ( 1 2 x + 1 2 ( 2 x ) ) d x = lim a 0 + ( a 2 1 2 x d x + a 2 1 2 ( 2 x ) d x ) lim a 0 + a 2 1 2 x + 1 2 ( 2 x ) d x = lim a 0 + a 2 1 2 x d x + a 2 1 2 ( 2 x ) d x lim_(a rarr0^(+))int_(a)^(2)((1)/(2x)+(1)/(2(2-x)))dx=lim_(a rarr0^(+))(int_(a)^(2)(1)/(2x)dx+int_(a)^(2)(1)/(2(2-x))dx)\lim _{a \rightarrow 0^{+}} \int_a^2\left(\frac{1}{2x}+\frac{1}{2(2-x)}\right) d x=\lim _{a \rightarrow 0^{+}}\left(\int_a^2 \frac{1}{2x} d x+\int_a^2 \frac{1}{2(2-x)} d x\right)lima0+a2(12x+12(2x))dx=lima0+(a212xdx+a212(2x)dx)
Upon integrating, we get:
lim a 0 + [ 1 2 ln | x | | a 2 + 1 2 ln | 2 x | | a 2 ] lim a 0 + 1 2 ln | x | | a 2 + 1 2 ln | 2 x | | a 2 lim_(a rarr0^(+))[(1)/(2)ln |x||_(a)^(2)+(1)/(2)ln |2-x||_(a)^(2)]\lim _{a \rightarrow 0^{+}}\left[\frac{1}{2} \ln |x| \Big|_a^2 + \frac{1}{2} \ln |2-x| \Big|_a^2\right]lima0+[12ln|x||a2+12ln|2x||a2]
Evaluating the limits, we find:
lim a 0 + [ 1 2 ln 2 1 2 ln a + 1 2 ln ( 0 ) 1 2 ln ( 2 a ) ] lim a 0 + 1 2 ln 2 1 2 ln a + 1 2 ln ( 0 ) 1 2 ln ( 2 a ) lim_(a rarr0^(+))[(1)/(2)ln 2-(1)/(2)ln a+(1)/(2)ln(0)-(1)/(2)ln(2-a)]\lim _{a \rightarrow 0^{+}}\left[\frac{1}{2} \ln 2 – \frac{1}{2} \ln a + \frac{1}{2} \ln (0) – \frac{1}{2} \ln (2-a)\right]lima0+[12ln212lna+12ln(0)12ln(2a)]
Since ln a ln a ln a\ln alna diverges as a 0 + a 0 + a rarr0^(+)a \rightarrow 0^{+}a0+, the first limit does not converge.
For the second limit:
lim b 2 0 b d x ( 2 x x 2 ) lim b 2 0 b d x 2 x x 2 lim_(b rarr2^(-))int_(0)^(b)(dx)/((2x-x^(2)))\lim _{b \rightarrow 2^{-}} \int_0^b \frac{d x}{\left(2 x-x^2\right)}limb20bdx(2xx2)
We can use the same partial fraction decomposition as before:
lim b 2 ( 0 b 1 2 x d x + 0 b 1 2 ( 2 x ) d x ) lim b 2 0 b 1 2 x d x + 0 b 1 2 ( 2 x ) d x lim_(b rarr2^(-))(int_(0)^(b)(1)/(2x)dx+int_(0)^(b)(1)/(2(2-x))dx)\lim _{b \rightarrow 2^{-}}\left(\int_0^b \frac{1}{2x} d x+\int_0^b \frac{1}{2(2-x)} d x\right)limb2(0b12xdx+0b12(2x)dx)
Upon integrating and evaluating the limits, we find that this limit also does not converge due to the divergence of ln | 2 x | ln | 2 x | ln |2-x|\ln |2-x|ln|2x| as b 2 b 2 b rarr2^(-)b \rightarrow 2^{-}b2.
Step 4: State the Conclusion
Since both limits do not converge, the original integral
0 2 d x 2 x x 2 0 2 d x 2 x x 2 int_(0)^(2)(dx)/(2x-x^(2))\int_0^2 \frac{dx}{2x – x^2}02dx2xx2
does not converge.

Summary:

The integral 0 2 d x ( 2 x x 2 ) 0 2 d x 2 x x 2 int_(0)^(2)(dx)/((2x-x^(2)))\int_0^2 \frac{d x}{\left(2 x-x^2\right)}02dx(2xx2) does not converge due to nonintegrable singularities at x = 0 x = 0 x=0x = 0x=0 and x = 2 x = 2 x=2x = 2x=2.
original image
Question:-01(e) एक चर समतल एक स्थिर बिन्दु ( a , b , c ) ( a , b , c ) (a,b,c)(\mathrm{a}, \mathrm{b}, \mathrm{c})(a,b,c) से गुज़रता है तथा अक्षों को क्रमशः A , B A , B A,B\mathrm{A}, \mathrm{B}A,B C C C\mathrm{C}C बिन्दुओं पर मिलता है । बिन्दुओं O , A , B O , A , B O,A,B\mathrm{O}, \mathrm{A}, \mathrm{B}O,A,B तथा C C C\mathrm{C}C से गुज़रते हुए गोले के केन्द्र का बिन्दुपथ ज्ञात कीजिए, जहाँ O O O\mathrm{O}O मूल-बिन्दु है ।
Question:-01(e) A variable plane passes through a fixed point (a, b, c) and meets the axes at points A, B and C respectively. Find the locus of the centre of the sphere passing through the points O , A , B O , A , B O,A,B\mathrm{O}, \mathrm{A}, \mathrm{B}O,A,B and C , O C , O C,O\mathrm{C}, \mathrm{O}C,O being the origin.
Answer:

Concept:

  • Consider a plane cut at ( p , 0 , 0 ) ( p , 0 , 0 ) (p,0,0)(\mathrm{p}, 0,0)(p,0,0) on X X X\mathrm{X}X-axis, ( 0 , q , 0 ) ( 0 , q , 0 ) (0,q,0)(0, q, 0)(0,q,0) on Y Y Y\mathrm{Y}Y-axis, and ( 0 , 0 , s ) ( 0 , 0 , s ) (0,0,s)(0,0, \mathrm{~s})(0,0, s) on Z-axis
    Then,
original image
Intercept form of the equation of a plane
x p + y q + z s = 1 x p + y q + z s = 1 (x)/(p)+(y)/(q)+(z)/(s)=1\frac{\mathbf{x}}{\mathbf{p}}+\frac{\mathbf{y}}{\mathbf{q}}+\frac{\mathbf{z}}{\mathbf{s}}=1xp+yq+zs=1
  • The general equation of a sphere is: ( x a ) 2 + ( y b ) 2 + ( z c ) 2 = r 2 ( x a ) 2 + ( y b ) 2 + ( z c ) 2 = r 2 (x-a)^(2)+(y-b)^(2)+(z-c)^(2)=r^(2)(x-a)^2+(y-b)^2+(z-c)^2=r^2(xa)2+(yb)2+(zc)2=r2
    Where ( a , b , c ) = ( a , b , c ) = (a,b,c)=(a, b, c)=(a,b,c)= center of the sphere, r = r = r=r=r= radius, and x , y x , y x,yx, yx,y, and z z zzz are the coordinates of the points on the surface of the sphere.

Calculation:

Let, ( p , q , s ) = ( p , q , s ) = (p,q,s)=(p, q, s)=(p,q,s)= Center of sphere
:.\therefore equation of a sphere = ( x p ) 2 + ( y q ) 2 + ( z s ) 2 = r 2 = ( x p ) 2 + ( y q ) 2 + ( z s ) 2 = r 2 =(x-p)^(2)+(y-q)^(2)+(z-s)^(2)=r^(2)=(\mathrm{x}-\mathrm{p})^2+(\mathrm{y}-\mathrm{q})^2+(\mathrm{z}-\mathrm{s})^2=\mathrm{r}^2=(xp)2+(yq)2+(zs)2=r2
Now, radius of sphere ( r ) = ( p 0 ) 2 + ( q 0 ) 2 + ( s 0 ) 2 ( r ) = ( p 0 ) 2 + ( q 0 ) 2 + ( s 0 ) 2 (r)=sqrt((p-0)^(2)+(q-0)^(2)+(s-0)^(2))(r)=\sqrt{(p-0)^2+(q-0)^2+(s-0)^2}(r)=(p0)2+(q0)2+(s0)2 (distance from origin)
r 2 = p 2 + q 2 + s 2 equation of a sphere = ( x p ) 2 + ( y q ) 2 + ( z s ) 2 = p 2 + q 2 + s 2 x 2 2 px + p 2 + y 2 2 qy + q 2 + z 2 2 zs + s 2 = p 2 + q 2 + s 2 x 2 + y 2 + z 2 2 px 2 qy 2 zs = 0 r 2 = p 2 + q 2 + s 2 equation of a sphere = ( x p ) 2 + ( y q ) 2 + ( z s ) 2 = p 2 + q 2 + s 2 x 2 2 px + p 2 + y 2 2 qy + q 2 + z 2 2 zs + s 2 = p 2 + q 2 + s 2 x 2 + y 2 + z 2 2 px 2 qy 2 zs = 0 {:[:.r^(2)=p^(2)+q^(2)+s^(2)],[:.” equation of a sphere “=(x-p)^(2)+(y-q)^(2)+(z-s)^(2)=p^(2)+q^(2)+s^(2)],[=>x^(2)-2px+p^(2)+y^(2)-2qy+q^(2)+z^(2)-2zs+s^(2)=p^(2)+q^(2)+s^(2)],[=>x^(2)+y^(2)+z^(2)-2px-2qy-2zs=0=>]:}\begin{aligned} & \therefore \mathrm{r}^2=\mathrm{p}^2+\mathrm{q}^2+\mathrm{s}^2 \\ & \therefore \text { equation of a sphere }=(\mathrm{x}-\mathrm{p})^2+(\mathrm{y}-\mathrm{q})^2+(\mathrm{z}-\mathrm{s})^2=\mathrm{p}^2+\mathrm{q}^2+\mathrm{s}^2 \\ & \Rightarrow \mathrm{x}^2-2 \mathrm{px}+\mathrm{p}^2+\mathrm{y}^2-2 \mathrm{qy}+\mathrm{q}^2+\mathrm{z}^2-2 \mathrm{zs}+\mathrm{s}^2=\mathrm{p}^2+\mathrm{q}^2+\mathrm{s}^2 \\ & \Rightarrow \mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2-2 \mathrm{px}-2 \mathrm{qy}-2 \mathrm{zs}=0 \Rightarrow \end{aligned}r2=p2+q2+s2 equation of a sphere =(xp)2+(yq)2+(zs)2=p2+q2+s2x22px+p2+y22qy+q2+z22zs+s2=p2+q2+s2x2+y2+z22px2qy2zs=0
Now, we will find point of intersection on X X XXX – axis, so y = 0 , z = 0 y = 0 , z = 0 y=0,z=0y=0, z=0y=0,z=0,
x 2 + 0 2 + 0 2 2 px 2 q ( 0 ) 2 ( 0 ) s = 0 x 2 2 px = 0 x ( x 2 p ) = 0 x = 0 , Or x = 2 p x 2 + 0 2 + 0 2 2 px 2 q ( 0 ) 2 ( 0 ) s = 0 x 2 2 px = 0 x ( x 2 p ) = 0 x = 0 , Or x = 2 p {:[x^(2)+0^(2)+0^(2)-2px-2q(0)-2(0)s=0],[=>x^(2)-2px=0],[=>x(x-2p)=0],[:.x=0″,”” Or “x=2p]:}\begin{aligned} & \mathrm{x}^2+0^2+0^2-2 \mathrm{px}-2 \mathrm{q}(0)-2(0) \mathrm{s}=0 \\ & \Rightarrow \mathrm{x}^2-2 \mathrm{px}=0 \\ & \Rightarrow \mathrm{x}(\mathrm{x}-2 \mathrm{p})=0 \\ & \therefore \mathrm{x}=0, \text { Or } \mathrm{x}=2 \mathrm{p} \end{aligned}x2+02+022px2q(0)2(0)s=0x22px=0x(x2p)=0x=0, Or x=2p
Plane cut at point ( 2 p , 0 , 0 ) ( 2 p , 0 , 0 ) (2p,0,0)(2 p, 0,0)(2p,0,0) on X X XXX-axis
Similarly, we will find point of intersection on Y Y YYY – axis, so x = 0 , z = 0 x = 0 , z = 0 x=0,z=0x=0, z=0x=0,z=0,
0 2 + y 2 + 0 2 2 p ( 0 ) 2 qy 2 ( 0 ) s = 0 y 2 2 q = 0 y = 0 , y = 2 q 0 2 + y 2 + 0 2 2 p ( 0 ) 2 qy 2 ( 0 ) s = 0 y 2 2 q = 0 y = 0 , y = 2 q {:[0^(2)+y^(2)+0^(2)-2p(0)-2qy-2(0)s=0],[=>y^(2)-2q=0],[:.y=0″,”y=2q]:}\begin{aligned} & 0^2+\mathrm{y}^2+0^2-2 \mathrm{p}(0)-2 \mathrm{qy}-2(0) \mathrm{s}=0 \\ & \Rightarrow \mathrm{y}^2-2 \mathrm{q}=0 \\ & \therefore \mathrm{y}=0, \mathrm{y}=2 \mathrm{q} \end{aligned}02+y2+022p(0)2qy2(0)s=0y22q=0y=0,y=2q
Plane cut at point ( 0 , 2 q , 0 ) ( 0 , 2 q , 0 ) (0,2q,0)(0,2 q, 0)(0,2q,0) on Y Y YYY-axis
Also, we will find point of intersection on Z Z ZZZ – axis, so x = 0 , y = 0 x = 0 , y = 0 x=0,y=0x=0, y=0x=0,y=0,
0 2 + 0 2 + z 2 2 p ( 0 ) 2 q ( 0 ) 2 zs = 0 z 2 2 s = 0 z = 0 , z = 2 s 0 2 + 0 2 + z 2 2 p ( 0 ) 2 q ( 0 ) 2 zs = 0 z 2 2 s = 0 z = 0 , z = 2 s {:[0^(2)+0^(2)+z^(2)-2p(0)-2q(0)-2zs=0],[=>z^(2)-2s=0],[:.z=0″,”z=2s]:}\begin{aligned} & 0^2+0^2+\mathrm{z}^2-2 \mathrm{p}(0)-2 \mathrm{q}(0)-2 \mathrm{zs}=0 \\ & \Rightarrow \mathrm{z}^2-2 \mathrm{~s}=0 \\ & \therefore \mathrm{z}=0, \mathrm{z}=2 \mathrm{~s} \end{aligned}02+02+z22p(0)2q(0)2zs=0z22 s=0z=0,z=2 s
Plane cut at point ( 0 , 0 , 2 s ) ( 0 , 0 , 2 s ) (0,0,2s)(0,0,2 \mathrm{~s})(0,0,2 s) on Z-axis
original image
So, equation of plane will be x 2 p + y 2 q + z 2 s = 1 x 2 p + y 2 q + z 2 s = 1 (x)/(2p)+(y)/(2q)+(z)/(2s)=1\frac{x}{2 p}+\frac{y}{2 q}+\frac{z}{2 s}=1x2p+y2q+z2s=1
1 2 ( x p + y q + z s ) = 1 x p + y q + z s = 2 1 2 x p + y q + z s = 1 x p + y q + z s = 2 {:[=>(1)/(2)((x)/(p)+(y)/(q)+(z)/(s))=1],[=>(x)/(p)+(y)/(q)+(z)/(s)=2]:}\begin{aligned} & \Rightarrow \frac{1}{2}\left(\frac{\mathrm{x}}{\mathrm{p}}+\frac{\mathrm{y}}{\mathrm{q}}+\frac{\mathrm{z}}{\mathrm{s}}\right)=1 \\ & \Rightarrow \frac{\mathrm{x}}{\mathrm{p}}+\frac{\mathrm{y}}{\mathrm{q}}+\frac{\mathrm{z}}{\mathrm{s}}=2 \end{aligned}12(xp+yq+zs)=1xp+yq+zs=2
But plane passing through fixed point ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c)
x = a , y = b , z = c x = a , y = b , z = c :.x=a,y=b,z=c\therefore \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}, \mathrm{z}=\mathrm{c}x=a,y=b,z=c
So, a p + b q + c s = 2 a p + b q + c s = 2 (a)/(p)+(b)/(q)+(c)/(s)=2\frac{\mathrm{a}}{\mathrm{p}}+\frac{\mathrm{b}}{\mathrm{q}}+\frac{\mathrm{c}}{\mathrm{s}}=2ap+bq+cs=2
Now, for the locus of center of sphere p = x , q = y , s = z p = x , q = y , s = z p=x,q=y,s=zp=x, q=y, s=zp=x,q=y,s=z
a x + b y + c z = 2 a x + b y + c z = 2 =>(a)/(x)+(b)/(y)+(c)/(z)=2\Rightarrow \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2ax+by+cz=2
Question:-02(a) निम्नलिखित समीकरण निकाय के सभी हलों को पंक्ति-समानीत विधि से ज्ञात कीजिए :
x 1 + 2 x 2 x 3 = 2 2 x 1 + 3 x 2 + 5 x 3 = 5 x 1 3 x 2 + 8 x 3 = 1 x 1 + 2 x 2 x 3 = 2 2 x 1 + 3 x 2 + 5 x 3 = 5 x 1 3 x 2 + 8 x 3 = 1 {:[x_(1)+2x_(2)-x_(3)=2],[2x_(1)+3x_(2)+5x_(3)=5],[-x_(1)-3x_(2)+8x_(3)=-1]:}\begin{aligned} &\mathrm{x}_1+2 \mathrm{x}_2-\mathrm{x}_3=2 \\ &2 \mathrm{x}_1+3 \mathrm{x}_2+5 \mathrm{x}_3=5 \\ &-\mathrm{x}_1-3 \mathrm{x}_2+8 \mathrm{x}_3=-1 \end{aligned}x1+2x2x3=22x1+3x2+5x3=5x13x2+8x3=1
Question:-02(a) Find all solutions to the following system of equations by row-reduced method :
x 1 + 2 x 2 x 3 = 2 2 x 1 + 3 x 2 + 5 x 3 = 5 x 1 3 x 2 + 8 x 3 = 1 x 1 + 2 x 2 x 3 = 2 2 x 1 + 3 x 2 + 5 x 3 = 5 x 1 3 x 2 + 8 x 3 = 1 {:[x_(1)+2x_(2)-x_(3)=2],[2x_(1)+3x_(2)+5x_(3)=5],[-x_(1)-3x_(2)+8x_(3)=-1]:}\begin{aligned} &\mathrm{x}_1+2 \mathrm{x}_2-\mathrm{x}_3=2 \\ &2 \mathrm{x}_1+3 \mathrm{x}_2+5 \mathrm{x}_3=5 \\ &-\mathrm{x}_1-3 \mathrm{x}_2+8 \mathrm{x}_3=-1 \end{aligned}x1+2x2x3=22x1+3x2+5x3=5x13x2+8x3=1
Answer:

Introduction

The problem is to find all solutions to the given system of linear equations using the row-reduced echelon form (RREF) method. The system of equations is:
x 1 + 2 x 2 x 3 = 2 , 2 x 1 + 3 x 2 + 5 x 3 = 5 , x 1 3 x 2 + 8 x 3 = 1. x 1 + 2 x 2 x 3 = 2 , 2 x 1 + 3 x 2 + 5 x 3 = 5 , x 1 3 x 2 + 8 x 3 = 1. {:[x_(1)+2x_(2)-x_(3)=2″,”],[2x_(1)+3x_(2)+5x_(3)=5″,”],[-x_(1)-3x_(2)+8x_(3)=-1.]:}\begin{aligned} x_1 + 2x_2 – x_3 &= 2, \\ 2x_1 + 3x_2 + 5x_3 &= 5, \\ -x_1 – 3x_2 + 8x_3 &= -1. \end{aligned}x1+2x2x3=2,2x1+3x2+5x3=5,x13x2+8x3=1.

Assumptions

We assume that the variables x 1 x 1 x_(1)x_1x1, x 2 x 2 x_(2)x_2x2, and x 3 x 3 x_(3)x_3x3 are real numbers.

Method/Approach

To solve the system of equations, we will:
  1. Convert the system of equations into an augmented matrix.
  2. Perform row operations to transform the matrix into row-reduced echelon form.
  3. Back-substitute to find the solutions.

Work/Calculations

Step 1: Convert to Augmented Matrix

The augmented matrix [ A | B ] [ A | B ] [A|B][A|B][A|B] corresponding to the system of equations is:
[ 1 2 1 2 2 3 5 5 1 3 8 1 ] 1 2 1 2 2 3 5 5 1 3 8 1 [[1,2,-1,2],[2,3,5,5],[-1,-3,8,-1]]\left[\begin{array}{ccc|c} 1 & 2 & -1 & 2 \\ 2 & 3 & 5 & 5 \\ -1 & -3 & 8 & -1 \end{array}\right][121223551381]

Step 2: Row Reduction to RREF

We aim to transform this matrix into its row-reduced echelon form using elementary row operations.
First Row Operation
Let’s perform R 2 R 2 2 × R 1 R 2 R 2 2 × R 1 R_(2)larrR_(2)-2xxR_(1)R_2 \leftarrow R_2 – 2 \times R_1R2R22×R1:
[ 1 2 1 2 0 1 7 1 1 3 8 1 ] 1 2 1 2 0 1 7 1 1 3 8 1 {:[[1,2,-1,2],[0,-1,7,1],[-1,-3,8,-1]]:}\begin{aligned} \left[\begin{array}{ccc|c} 1 & 2 & -1 & 2 \\ 0 & -1 & 7 & 1 \\ -1 & -3 & 8 & -1 \end{array}\right] \end{aligned}[121201711381]
Second Row Operation
Now, R 3 R 3 + R 1 R 3 R 3 + R 1 R_(3)larrR_(3)+R_(1)R_3 \leftarrow R_3 + R_1R3R3+R1:
[ 1 2 1 2 0 1 7 1 0 1 7 1 ] 1 2 1 2 0 1 7 1 0 1 7 1 {:[[1,2,-1,2],[0,-1,7,1],[0,-1,7,1]]:}\begin{aligned} \left[\begin{array}{ccc|c} 1 & 2 & -1 & 2 \\ 0 & -1 & 7 & 1 \\ 0 & -1 & 7 & 1 \end{array}\right] \end{aligned}[121201710171]
Third Row Operation
Next, R 2 R 2 ÷ 1 R 2 R 2 ÷ 1 R_(2)larrR_(2)-:-1R_2 \leftarrow R_2 \div -1R2R2÷1:
[ 1 2 1 2 0 1 7 1 0 1 7 1 ] 1 2 1 2 0 1 7 1 0 1 7 1 {:[[1,2,-1,2],[0,1,-7,-1],[0,-1,7,1]]:}\begin{aligned} \left[\begin{array}{ccc|c} 1 & 2 & -1 & 2 \\ 0 & 1 & -7 & -1 \\ 0 & -1 & 7 & 1 \end{array}\right] \end{aligned}[121201710171]
Fourth Row Operation
Now, R 1 R 1 2 × R 2 R 1 R 1 2 × R 2 R_(1)larrR_(1)-2xxR_(2)R_1 \leftarrow R_1 – 2 \times R_2R1R12×R2:
[ 1 0 13 4 0 1 7 1 0 1 7 1 ] 1 0 13 4 0 1 7 1 0 1 7 1 {:[[1,0,13,4],[0,1,-7,-1],[0,-1,7,1]]:}\begin{aligned} \left[\begin{array}{ccc|c} 1 & 0 & 13 & 4 \\ 0 & 1 & -7 & -1 \\ 0 & -1 & 7 & 1 \end{array}\right] \end{aligned}[1013401710171]
Fifth Row Operation
Finally, R 3 R 3 + R 2 R 3 R 3 + R 2 R_(3)larrR_(3)+R_(2)R_3 \leftarrow R_3 + R_2R3R3+R2:
[ 1 0 13 4 0 1 7 1 0 0 0 0 ] 1 0 13 4 0 1 7 1 0 0 0 0 {:[[1,0,13,4],[0,1,-7,-1],[0,0,0,0]]:}\begin{aligned} \left[\begin{array}{ccc|c} 1 & 0 & 13 & 4 \\ 0 & 1 & -7 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{aligned}[1013401710000]

Step 3: Back-Substitution

The RREF corresponds to the following system of equations:
x 1 + 13 x 3 = 4 , x 2 7 x 3 = 1 , 0 = 0. x 1 + 13 x 3 = 4 , x 2 7 x 3 = 1 , 0 = 0. {:[x_(1)+13x_(3)=4″,”],[x_(2)-7x_(3)=-1″,”],[0=0.]:}\begin{aligned} x_1 + 13x_3 &= 4, \\ x_2 – 7x_3 &= -1, \\ 0 &= 0. \end{aligned}x1+13x3=4,x27x3=1,0=0.
From the first equation, we get:
x 1 = 4 13 x 3 x 1 = 4 13 x 3 x_(1)=4-13x_(3)x_1 = 4 – 13x_3x1=413x3
From the second equation, we get:
x 2 = 1 + 7 x 3 x 2 = 1 + 7 x 3 x_(2)=-1+7x_(3)x_2 = -1 + 7x_3x2=1+7x3
Since the third row is all zeros, it doesn’t provide any new information, and x 3 x 3 x_(3)x_3x3 can be any real number.

Conclusion

The system of equations has infinitely many solutions, parameterized by x 3 x 3 x_(3)x_3x3:
x 1 = 4 13 x 3 , x 2 = 1 + 7 x 3 , x 3 = x 3 . x 1 = 4 13 x 3 , x 2 = 1 + 7 x 3 , x 3 = x 3 . {:[x_(1)=4-13x_(3)”,”],[x_(2)=-1+7x_(3)”,”],[x_(3)=x_(3).]:}\begin{aligned} x_1 &= 4 – 13x_3, \\ x_2 &= -1 + 7x_3, \\ x_3 &= x_3. \end{aligned}x1=413x3,x2=1+7x3,x3=x3.
Here, x 3 x 3 x_(3)x_3x3 can be any real number.
Question:-02(b) एक l l lll लम्बाई के तार को दो भागों में काटकर क्रमशः एक वर्ग तथा एक वृत्त के रूप में मोड़ा गया है । लग्रांज की अनिर्धारित गुणक विधि का प्रयोग करके, इस तरह से प्राप्त किए गए क्षेत्रफलों के योगफल का न्यूनतम मान ज्ञात कीजिए ।
Question:-02(b) A wire of length l l lll is cut into two parts which are bent in the form of a square and a circle respectively. Using Lagrange’s method of undetermined multipliers, find the least value of the sum of the areas so formed.
Answer:

Introduction

The problem is to minimize the sum of the areas of a square and a circle formed by cutting a wire of length l l lll into two parts. We will use Lagrange’s method of undetermined multipliers to solve this optimization problem.

Assumptions

  1. The wire is of uniform thickness.
  2. The wire is perfectly flexible and can be bent into the shapes of a square and a circle without any loss of material.

Definitions

  • Let x x xxx be the side length of the square.
  • Let r r rrr be the radius of the circle.
  • The perimeter of the square is 4 x 4 x 4x4x4x.
  • The circumference of the circle is 2 π r 2 π r 2pi r2\pi r2πr.

Constraints

The length of the wire l l lll is given by:
l = 4 x + 2 π r (Constraint Equation) l = 4 x + 2 π r (Constraint Equation) l=4x+2pi r quad(Constraint Equation)l = 4x + 2\pi r \quad \text{(Constraint Equation)}l=4x+2πr(Constraint Equation)

Objective Function

The sum of the areas of the square A square A square A_(“square”)A_{\text{square}}Asquare and the circle A circle A circle A_(“circle”)A_{\text{circle}}Acircle is given by:
A = x 2 + π r 2 (Objective Function) A = x 2 + π r 2 (Objective Function) A=x^(2)+pir^(2)quad(Objective Function)A = x^2 + \pi r^2 \quad \text{(Objective Function)}A=x2+πr2(Objective Function)

Method/Approach

We will use Lagrange’s method of undetermined multipliers to find the minimum value of A A AAA subject to the constraint l = 4 x + 2 π r l = 4 x + 2 π r l=4x+2pi rl = 4x + 2\pi rl=4x+2πr.
The Lagrange function L L LLL is given by:
L = x 2 + π r 2 + λ ( 4 x + 2 π r l ) L = x 2 + π r 2 + λ ( 4 x + 2 π r l ) L=x^(2)+pir^(2)+lambda(4x+2pi r-l)L = x^2 + \pi r^2 + \lambda (4x + 2\pi r – l)L=x2+πr2+λ(4x+2πrl)
We need to find the critical points by taking the partial derivatives of L L LLL with respect to x x xxx, r r rrr, and λ λ lambda\lambdaλ, and setting them equal to zero:
L x = 0 , L r = 0 , L λ = 0 L x = 0 , L r = 0 , L λ = 0 (del L)/(del x)=0,quad(del L)/(del r)=0,quad(del L)/(del lambda)=0\frac{\partial L}{\partial x} = 0, \quad \frac{\partial L}{\partial r} = 0, \quad \frac{\partial L}{\partial \lambda} = 0Lx=0,Lr=0,Lλ=0

Work/Calculations

Partial Derivatives

The partial derivatives of L L LLL are:
L x = 2 x + 4 λ , L r = 2 π r + 2 π λ , L λ = 4 x + 2 π r l L x = 2 x + 4 λ , L r = 2 π r + 2 π λ , L λ = 4 x + 2 π r l (del L)/(del x)=2x+4lambda,quad(del L)/(del r)=2pi r+2pi lambda,quad(del L)/(del lambda)=4x+2pi r-l\frac{\partial L}{\partial x} = 2x + 4\lambda, \quad \frac{\partial L}{\partial r} = 2\pi r + 2\pi \lambda, \quad \frac{\partial L}{\partial \lambda} = 4x + 2\pi r – lLx=2x+4λ,Lr=2πr+2πλ,Lλ=4x+2πrl
Setting these equal to zero, we get:
2 x + 4 λ = 0 , 2 π r + 2 π λ = 0 , 4 x + 2 π r l = 0 2 x + 4 λ = 0 , 2 π r + 2 π λ = 0 , 4 x + 2 π r l = 0 {:[2x+4lambda=0″,”],[2pi r+2pi lambda=0″,”],[4x+2pi r-l=0]:}\begin{aligned} 2x + 4\lambda &= 0, \\ 2\pi r + 2\pi \lambda &= 0, \\ 4x + 2\pi r – l &= 0 \end{aligned}2x+4λ=0,2πr+2πλ=0,4x+2πrl=0
Let’s solve these equations to find the values of x x xxx, r r rrr, and λ λ lambda\lambdaλ.
After calculating, we find the values of x x xxx, r r rrr, and λ λ lambda\lambdaλ as follows:
x = l 4 + π , r = l 2 ( 4 + π ) , λ = l 2 ( 4 + π ) . x = l 4 + π , r = l 2 ( 4 + π ) , λ = l 2 ( 4 + π ) . {:[x=(l)/(4+pi)”,”],[r=(l)/(2(4+pi))”,”],[lambda=-(l)/(2(4+pi)).]:}\begin{aligned} x &= \frac{l}{4 + \pi}, \\ r &= \frac{l}{2(4 + \pi)}, \\ \lambda &= -\frac{l}{2(4 + \pi)}. \end{aligned}x=l4+π,r=l2(4+π),λ=l2(4+π).

Substitute into Objective Function

Now, let’s substitute these values into the objective function A = x 2 + π r 2 A = x 2 + π r 2 A=x^(2)+pir^(2)A = x^2 + \pi r^2A=x2+πr2 to find the minimum value of A A AAA.
After substituting, we find that the minimum value of A A AAA is:
A min = l 2 16 + 4 π A min = l 2 16 + 4 π A_(“min”)=(l^(2))/(16+4pi)A_{\text{min}} = \frac{l^2}{16 + 4\pi}Amin=l216+4π

Conclusion

The least value of the sum of the areas of the square and the circle formed by cutting a wire of length l l lll is l 2 16 + 4 π l 2 16 + 4 π (l^(2))/(16+4pi)\frac{l^2}{16 + 4\pi}l216+4π. This is achieved when the side length of the square is l 4 + π l 4 + π (l)/(4+pi)\frac{l}{4 + \pi}l4+π and the radius of the circle is l 2 ( 4 + π ) l 2 ( 4 + π ) (l)/(2(4+pi))\frac{l}{2(4 + \pi)}l2(4+π).
Question:-02(c) यदि P , Q , R ; P , Q , R P , Q , R ; P , Q , R P,Q,R;P^(‘),Q^(‘),R^(‘)\mathrm{P}, \mathrm{Q}, \mathrm{R} ; \mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{R}^{\prime}P,Q,R;P,Q,R, एक बिन्दु से दीर्घवृत्तज x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}+\frac{\mathrm{z}^2}{\mathrm{c}^2}=1x2a2+y2 b2+z2c2=1 पर छः (सिक्स) अभिलम्ब पाद हैं तथा l x + my + nz = p l x + my + nz = p lx+my+nz=pl \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}lx+my+nz=p से समतल PQR PQR PQR\mathrm{PQR}PQR निरूपित है, दर्शाइए कि x a 2 l + y b 2 m + z c 2 n + 1 p = 0 x a 2 l + y b 2 m + z c 2 n + 1 p = 0 (x)/(a^(2)l)+(y)/(b^(2)(m))+(z)/(c^(2)n)+(1)/(p)=0\frac{\mathrm{x}}{\mathrm{a}^2 l}+\frac{\mathrm{y}}{\mathrm{b}^2 \mathrm{~m}}+\frac{\mathrm{z}}{\mathrm{c}^2 \mathrm{n}}+\frac{1}{\mathrm{p}}=0xa2l+yb2 m+zc2n+1p=0, समतल P Q R P Q R P^(‘)Q^(‘)R^(‘)\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}PQR को निरूपित करता है ।
Question:-02(c) If P , Q , R ; P , Q , R P , Q , R ; P , Q , R P,Q,R;P^(‘),Q^(‘),R^(‘)\mathrm{P}, \mathrm{Q}, \mathrm{R} ; \mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{R}^{\prime}P,Q,R;P,Q,R are feet of the six normals drawn from a point to the ellipsoid x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}+\frac{\mathrm{z}^2}{\mathrm{c}^2}=1x2a2+y2 b2+z2c2=1, and the plane PQR PQR PQR\mathrm{PQR}PQR is represented by l x + m y + n z = p l x + m y + n z = p lx+my+nz=pl x+m y+n z=plx+my+nz=p, show that the plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P^{\prime} Q^{\prime} R^{\prime}PQR is given by x a 2 l + y b 2 m + z c 2 n + 1 p = 0 x a 2 l + y b 2 m + z c 2 n + 1 p = 0 (x)/(a^(2)l)+(y)/(b^(2)(m))+(z)/(c^(2)n)+(1)/(p)=0\frac{\mathrm{x}}{\mathrm{a}^2 l}+\frac{\mathrm{y}}{\mathrm{b}^2 \mathrm{~m}}+\frac{\mathrm{z}}{\mathrm{c}^2 \mathrm{n}}+\frac{1}{\mathrm{p}}=0xa2l+yb2 m+zc2n+1p=0.
Answer:

Introduction

The problem is to show that if P , Q , R ; P , Q , R P , Q , R ; P , Q , R P,Q,R;P^(‘),Q^(‘),R^(‘)P, Q, R; P’, Q’, R’P,Q,R;P,Q,R are the feet of the six normals drawn from a point to the ellipsoid x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1x2a2+y2b2+z2c2=1, and the plane P Q R P Q R PQRPQRPQR is represented by l x + m y + n z = p l x + m y + n z = p lx+my+nz=plx + my + nz = plx+my+nz=p, then the plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR is given by x a 2 l + y b 2 m + z c 2 n + 1 p = 0 x a 2 l + y b 2 m + z c 2 n + 1 p = 0 (x)/(a^(2)l)+(y)/(b^(2)m)+(z)/(c^(2)n)+(1)/(p)=0\frac{x}{a^2l} + \frac{y}{b^2m} + \frac{z}{c^2n} + \frac{1}{p} = 0xa2l+yb2m+zc2n+1p=0.

Definitions

  • P , Q , R P , Q , R P,Q,RP, Q, RP,Q,R: Feet of the normals from a point ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) to the ellipsoid.
  • P , Q , R P , Q , R P^(‘),Q^(‘),R^(‘)P’, Q’, R’P,Q,R: Corresponding conjugate points to P , Q , R P , Q , R P,Q,RP, Q, RP,Q,R on the ellipsoid.
  • l x + m y + n z = p l x + m y + n z = p lx+my+nz=plx + my + nz = plx+my+nz=p: Equation of the plane P Q R P Q R PQRPQRPQR.

Method/Approach

  1. Define the equation of the plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR and the locus of the feet of the normals.
  2. Use the coordinates of the feet of the normals drawn from ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) to the ellipsoid.
  3. Compare the equations to find the relationship between the coefficients of the planes P Q R P Q R PQRPQRPQR and P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR.

Work/Calculations

Step 1: Equation of Plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR

Let the equation of the plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR be
l x + m y + n z = p —-(1) l x + m y + n z = p —-(1) l^(‘)x+m^(‘)y+n^(‘)z=p^(‘)quad”—-(1)”l’x + m’y + n’z = p’ \quad \text{—-(1)}lx+my+nz=p—-(1)
Then the feet of the six normals lie on the locus
( l x + m y + n z p ) ( l x + m y + n z p ) = 0 —-(2) ( l x + m y + n z p ) ( l x + m y + n z p ) = 0 —-(2) (lx+my+nz-p)(l^(‘)x+m^(‘)y+n^(‘)z-p^(‘))=0quad”—-(2)”(lx + my + nz – p)(l’x + m’y + n’z – p’) = 0 \quad \text{—-(2)}(lx+my+nzp)(lx+my+nzp)=0—-(2)

Step 2: Coordinates of the Feet of the Normals

The coordinates of the feet of the normals drawn from ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) are given by
( a 2 α a 2 + r , b 2 β b 2 + r , c 2 γ c 2 + r ) a 2 α a 2 + r , b 2 β b 2 + r , c 2 γ c 2 + r ((a^(2)alpha)/(a^(2)+r),(b^(2)beta)/(b^(2)+r),(c^(2)gamma)/(c^(2)+r))\left(\frac{a^2 \alpha}{a^2+r}, \frac{b^2 \beta}{b^2+r}, \frac{c^2 \gamma}{c^2+r}\right)(a2αa2+r,b2βb2+r,c2γc2+r)
where r r rrr is a parameter. Substituting these into equation (2), we get
( l a 2 α a 2 + r + m b 2 β b 2 + r + n c 2 γ c 2 + r p ) ( l a 2 α a 2 + r + m b 2 β b 2 + r + n c 2 γ c 2 + r p ) = 0 —-(3) l a 2 α a 2 + r + m b 2 β b 2 + r + n c 2 γ c 2 + r p l a 2 α a 2 + r + m b 2 β b 2 + r + n c 2 γ c 2 + r p = 0 —-(3) ((la^(2)alpha)/(a^(2)+r)+(mb^(2)beta)/(b^(2)+r)+(nc^(2)gamma)/(c^(2)+r)-p)((l^(‘)a^(2)alpha)/(a^(2)+r)+(m^(‘)b^(2)beta)/(b^(2)+r)+(n^(‘)c^(2)gamma)/(c^(2)+r)-p^(‘))=0quad”—-(3)”\left(\frac{la^2\alpha}{a^2+r} + \frac{mb^2\beta}{b^2+r} + \frac{nc^2\gamma}{c^2+r} – p\right)\left(\frac{l’a^2\alpha}{a^2+r} + \frac{m’b^2\beta}{b^2+r} + \frac{n’c^2\gamma}{c^2+r} – p’\right) = 0 \quad \text{—-(3)}(la2αa2+r+mb2βb2+r+nc2γc2+rp)(la2αa2+r+mb2βb2+r+nc2γc2+rp)=0—-(3)

Step 3: Comparison with Ellipsoid Equation

The feet of the normals also lie on the ellipsoid, so
1 a 2 ( a 2 α a 2 + r ) 2 + 1 b 2 ( b 2 β b 2 + r ) 2 + 1 c 2 ( c 2 γ c 2 + r ) 2 = 1 —-(4) 1 a 2 a 2 α a 2 + r 2 + 1 b 2 b 2 β b 2 + r 2 + 1 c 2 c 2 γ c 2 + r 2 = 1 —-(4) (1)/(a^(2))((a^(2)alpha)/(a^(2)+r))^(2)+(1)/(b^(2))((b^(2)beta)/(b^(2)+r))^(2)+(1)/(c^(2))((c^(2)gamma)/(c^(2)+r))^(2)=1quad”—-(4)”\frac{1}{a^2}\left(\frac{a^2\alpha}{a^2+r}\right)^2 + \frac{1}{b^2}\left(\frac{b^2\beta}{b^2+r}\right)^2 + \frac{1}{c^2}\left(\frac{c^2\gamma}{c^2+r}\right)^2 = 1 \quad \text{—-(4)}1a2(a2αa2+r)2+1b2(b2βb2+r)2+1c2(c2γc2+r)2=1—-(4)
Comparing equations (3) and (4), we find that
l l 1 / a 2 = m m 1 / b 2 = n n 1 / c 2 = p p 1 l l 1 / a 2 = m m 1 / b 2 = n n 1 / c 2 = p p 1 (ll^(‘))/(1//a^(2))=(mm^(‘))/(1//b^(2))=(nn^(‘))/(1//c^(2))=(pp^(‘))/(-1)\frac{l l^{\prime}}{1 / a^2}=\frac{m m^{\prime}}{1 / b^2}=\frac{n n^{\prime}}{1 / c^2}=\frac{p p^{\prime}}{-1}ll1/a2=mm1/b2=nn1/c2=pp1
l = p p a 2 l , m = p p b 2 m , n = p p c 2 n l = p p a 2 l , m = p p b 2 m , n = p p c 2 n l^(‘)=-(pp^(‘))/(a^(2)l),quadm^(‘)=-(pp^(‘))/(b^(2)m),quadn^(‘)=-(pp^(‘))/(c^(2)n)l’ = -\frac{pp’}{a^2l}, \quad m’ = -\frac{pp’}{b^2m}, \quad n’ = -\frac{pp’}{c^2n}l=ppa2l,m=ppb2m,n=ppc2n

Step 4: Substituting into Equation (1)

Substituting these values into equation (1), we get
p p a 2 l x p p b 2 m y p p c 2 n z = p p p a 2 l x p p b 2 m y p p c 2 n z = p -(pp^(‘))/(a^(2)l)x-(pp^(‘))/(b^(2)m)y-(pp^(‘))/(c^(2)n)z=p^(‘)-\frac{p p^{\prime}}{a^2 l} x-\frac{p p^{\prime}}{b^2 m} y-\frac{p p^{\prime}}{c^2 n} z=p^{\prime}ppa2lxppb2myppc2nz=p
x a 2 l + y b 2 m + z c 2 n + 1 p = 0 x a 2 l + y b 2 m + z c 2 n + 1 p = 0 (x)/(a^(2)l)+(y)/(b^(2)m)+(z)/(c^(2)n)+(1)/(p)=0\frac{x}{a^2l} + \frac{y}{b^2m} + \frac{z}{c^2n} + \frac{1}{p} = 0xa2l+yb2m+zc2n+1p=0

Conclusion

The equation of the plane P Q R P Q R P^(‘)Q^(‘)R^(‘)P’Q’R’PQR passing through the conjugate points corresponding to the feet of the normals from a point to the ellipsoid x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1x2a2+y2b2+z2c2=1 is x a 2 l + y b 2 m + z c 2 n + 1 p = 0 x a 2 l + y b 2 m + z c 2 n + 1 p = 0 (x)/(a^(2)l)+(y)/(b^(2)m)+(z)/(c^(2)n)+(1)/(p)=0\frac{x}{a^2l} + \frac{y}{b^2m} + \frac{z}{c^2n} + \frac{1}{p} = 0xa2l+yb2m+zc2n+1p=0, when the equation of the plane P Q R P Q R PQRPQRPQR is l x + m y + n z = p l x + m y + n z = p lx+my+nz=plx + my + nz = plx+my+nz=p. This proves the statement.
Question:-03(a) माना समुच्चय P = { x y z ) x y z = 0 तथा 2 x y + z = 0 } P = x y z x y z = 0 तथा 2 x y + z = 0 {:P={[x],[y],[z])∣[x-y-z=0″ तथा “],[2x-y+z=0]}\left.\mathrm{P}=\left\{\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right) \mid \begin{array}{c}\mathrm{x}-\mathrm{y}-\mathrm{z}=0 \text { तथा } \\ 2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0\end{array}\right\}P={xyz)xyz=0 तथा 2xy+z=0} सदिश समष्टि R 3 ( R ) R 3 ( R ) R^(3)(R)\mathbb{R}^3(\mathbb{R})R3(R) के सदिशों का एक समूह है । तब
(i) सिद्ध कीजिए कि P , R 3 P , R 3 P,R^(3)\mathrm{P}, \mathbb{R}^3P,R3 की एक उपसमष्टि है ।
(ii) P P P\mathrm{P}P का एक आधार तथा विमा ज्ञात कीजिए ।
Question:-03(a) Let the set P = { x y z ) x y z = 0 and 2 x y + z = 0 } P = x y z x y z = 0 and 2 x y + z = 0 {:P={[x],[y],[z])∣[x-y-z=0″ and “],[2x-y+z=0]}\left.P=\left\{\begin{array}{c}x \\ y \\ z\end{array}\right) \mid \begin{array}{c}x-y-z=0 \text { and } \\ 2 x-y+z=0\end{array}\right\}P={xyz)xyz=0 and 2xy+z=0} be the collection of vectors of a vector space R 3 ( R ) R 3 ( R ) R^(3)(R)\mathbb{R}^3(\mathbb{R})R3(R). Then
(i) prove that P P P\mathrm{P}P is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3.
(ii) find a basis and dimension of P P PPP.
Answer:

Introduction

The problem asks us to consider a set P P PPP of vectors in R 3 R 3 R^(3)\mathbb{R}^3R3 defined by two equations x y z = 0 x y z = 0 x-y-z=0x-y-z=0xyz=0 and 2 x y + z = 0 2 x y + z = 0 2x-y+z=02x-y+z=02xy+z=0. We are tasked with:
  1. Proving that P P PPP is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3.
  2. Finding a basis and the dimension of P P PPP.

Definitions

  • A subspace W W WWW of R 3 R 3 R^(3)\mathbb{R}^3R3 is a set of vectors that is closed under vector addition and scalar multiplication and contains the zero vector.
  • A basis of a subspace is a set of linearly independent vectors that span the subspace.
  • The dimension of a subspace is the number of vectors in its basis.

Method/Approach

  1. To prove that P P PPP is a subspace, we need to show that it is closed under vector addition and scalar multiplication and contains the zero vector.
  2. To find a basis and dimension, we will solve the system of equations defining P P PPP to find the general form of vectors in P P PPP.

Work/Calculations

Part (i): Proving P P PPP is a Subspace

  1. Closure under Vector Addition: Let u = ( x 1 , y 1 , z 1 ) u = ( x 1 , y 1 , z 1 ) u=(x_(1),y_(1),z_(1))\mathbf{u} = (x_1, y_1, z_1)u=(x1,y1,z1) and v = ( x 2 , y 2 , z 2 ) v = ( x 2 , y 2 , z 2 ) v=(x_(2),y_(2),z_(2))\mathbf{v} = (x_2, y_2, z_2)v=(x2,y2,z2) be vectors in P P PPP. Then u + v = ( x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) u + v = ( x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) u+v=(x_(1)+x_(2),y_(1)+y_(2),z_(1)+z_(2))\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2)u+v=(x1+x2,y1+y2,z1+z2). Since u u u\mathbf{u}u and v v v\mathbf{v}v satisfy the equations x y z = 0 x y z = 0 x-y-z=0x-y-z=0xyz=0 and 2 x y + z = 0 2 x y + z = 0 2x-y+z=02x-y+z=02xy+z=0, u + v u + v u+v\mathbf{u} + \mathbf{v}u+v will also satisfy these equations.
  2. Closure under Scalar Multiplication: Let u = ( x , y , z ) u = ( x , y , z ) u=(x,y,z)\mathbf{u} = (x, y, z)u=(x,y,z) be a vector in P P PPP and c c ccc be a scalar. Then c u = ( c x , c y , c z ) c u = ( c x , c y , c z ) cu=(cx,cy,cz)c\mathbf{u} = (cx, cy, cz)cu=(cx,cy,cz). Since u u u\mathbf{u}u satisfies the equations x y z = 0 x y z = 0 x-y-z=0x-y-z=0xyz=0 and 2 x y + z = 0 2 x y + z = 0 2x-y+z=02x-y+z=02xy+z=0, c u c u cuc\mathbf{u}cu will also satisfy these equations.
  3. Contains Zero Vector: The zero vector ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0, 0, 0)(0,0,0) satisfies the equations x y z = 0 x y z = 0 x-y-z=0x-y-z=0xyz=0 and 2 x y + z = 0 2 x y + z = 0 2x-y+z=02x-y+z=02xy+z=0, so it is in P P PPP.
Thus, P P PPP is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3.

Part (ii): Finding a Basis and Dimension

To find the general form of vectors in P P PPP, we row-reduced the augmented matrix corresponding to the system of equations:
[ 1 1 1 0 2 1 1 0 ] R 2 R 2 2 × R 1 = [ 1 1 1 0 0 1 3 0 ] R 1 R 1 + R 2 = [ 1 0 2 0 0 1 3 0 ] 1 1 1 0 2 1 1 0 R 2 R 2 2 × R 1 = 1 1 1 0 0 1 3 0 R 1 R 1 + R 2 = 1 0 2 0 0 1 3 0 {:[[[1,-1,-1,0],[2,-1,1,0]]],[R_(2)larrR_(2)-2xxR_(1)],[=[[1,-1,-1,0],[0,1,3,0]]],[R_(1)larrR_(1)+R_(2)],[=[[1,0,2,0],[0,1,3,0]]]:}\begin{aligned} & \left[\begin{array}{cccc} 1 & -1 & -1 & 0 \\ 2 & -1 & 1 & 0 \end{array}\right] \\ & R_2 \leftarrow R_2-2 \times R_1 \\ & =\left[\begin{array}{cccc} 1 & -1 & -1 & 0 \\ 0 & 1 & 3 & 0 \end{array}\right] \\ & R_1 \leftarrow R_1+R_2 \\ & =\left[\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \end{array}\right] \end{aligned}[11102110]R2R22×R1=[11100130]R1R1+R2=[10200130]
From the row-reduced form, we can write the system of equations as:
x + 2 z = 0 , y + 3 z = 0. x + 2 z = 0 , y + 3 z = 0. {:[x+2z=0″,”],[y+3z=0.]:}\begin{aligned} x + 2z &= 0, \\ y + 3z &= 0. \end{aligned}x+2z=0,y+3z=0.
The general form of vectors in P P PPP can be written as:
( x y z ) = z ( 2 3 1 ) x y z = z 2 3 1 ([x],[y],[z])=z([-2],[-3],[1])\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}(xyz)=z(231)
Here, z z zzz is a free parameter, and the vector ( 2 3 1 ) 2 3 1 ([-2],[-3],[1])\begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}(231) spans the subspace P P PPP.
So, the basis for P P PPP is { ( 2 3 1 ) } 2 3 1 {([-2],[-3],[1])}\left\{ \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} \right\}{(231)}, and the dimension of P P PPP is 1.

Conclusion

  1. P P PPP is a subspace of R 3 R 3 R^(3)\mathbb{R}^3R3 as it is closed under vector addition and scalar multiplication and contains the zero vector.
  2. The basis for P P PPP is { ( 2 3 1 ) } 2 3 1 {([-2],[-3],[1])}\left\{ \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} \right\}{(231)}, and the dimension of P P PPP is 1.
Question:-03(b) द्विशः समाकलन का उपयोग करके, वृत्त x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4\mathrm{x}^2+\mathrm{y}^2=4x2+y2=4 तथा परवलय y 2 = 3 x y 2 = 3 x y^(2)=3x\mathrm{y}^2=3 \mathrm{x}y2=3x के उभयनिष्ठ क्षेत्रफल का परिकलन कीजिए ।
Question:-03(b)Use double integration to calculate the area common to the circle x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4 and the parabola y 2 = 3 x y 2 = 3 x y^(2)=3xy^2=3 xy2=3x.
Answer:
Introduction: We will calculate the area common to the circle x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4 and the parabola y 2 = 3 x y 2 = 3 x y^(2)=3xy^2=3 xy2=3x using double integration.
Assumptions: None
Method/Approach: We will use polar coordinates to transform the given region and perform double integration to find the common area.
Work/Calculations: First, let’s find the points of intersection between the circle and the parabola:
x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4 and y 2 = 3 x y 2 = 3 x y^(2)=3xy^2=3 xy2=3x
Substitute the parabola equation into the circle equation:
x 2 + ( 3 x ) = 4 x 2 + 3 x 4 = 0 x 2 + ( 3 x ) = 4 x 2 + 3 x 4 = 0 {:[x^(2)+(3x)=4],[x^(2)+3x-4=0]:}\begin{aligned} & x^2+(3 x)=4 \\ & x^2+3 x-4=0 \end{aligned}x2+(3x)=4x2+3x4=0
Solving the quadratic equation, we get:
x = 4 or x = 1 x = 4 or x = 1 x=-4″ or “x=1x=-4 \text { or } x=1x=4 or x=1
For x = 1 , y 2 = 3 x = 1 , y 2 = 3 x=1,y^(2)=3x=1, y^2=3x=1,y2=3, so y = ± 3 y = ± 3 y=+-sqrt3y= \pm \sqrt{3}y=±3
The points of intersection are ( 1 , 3 ) ( 1 , 3 ) (1,sqrt3)(1, \sqrt{3})(1,3) and ( 1 , 3 ) ( 1 , 3 ) (1,-sqrt3)(1,-\sqrt{3})(1,3).
original image

Setting up the Double Integral

The area common to both curves can be found by integrating over the region bounded by these curves. The double integral is:
Area = 2 0 1 3 x 3 x d y d x Area = 2 0 1 3 x 3 x d y d x “Area”=2int_(0)^(1)int_(-sqrt(3x))^(sqrt(3x))dydx\text{Area} = 2 \int_{0}^{1} \int_{-\sqrt{3x}}^{\sqrt{3x}} dy \, dxArea=2013x3xdydx
The factor of 2 accounts for the symmetry of the area about the x-axis.
  1. Inner Integral: The inner integral is with respect to y y yyy:
3 x 3 x d y = y | 3 x 3 x = 3 x ( 3 x ) = 2 3 x 3 x 3 x d y = y | 3 x 3 x = 3 x ( 3 x ) = 2 3 x int_(-sqrt(3x))^(sqrt(3x))dy=y|_(-sqrt(3x))^(sqrt(3x))=sqrt(3x)-(-sqrt(3x))=2sqrt(3x)\int_{-\sqrt{3x}}^{\sqrt{3x}} dy = y \Big|_{-\sqrt{3x}}^{\sqrt{3x}} = \sqrt{3x} – (-\sqrt{3x}) = 2\sqrt{3x}3x3xdy=y|3x3x=3x(3x)=23x
  1. Outer Integral: Now, we integrate the result of the inner integral with respect to x x xxx:
2 0 1 2 3 x d x = 4 0 1 3 x d x 2 0 1 2 3 x d x = 4 0 1 3 x d x 2int_(0)^(1)2sqrt(3x)dx=4int_(0)^(1)sqrt(3x)dx2 \int_{0}^{1} 2\sqrt{3x} \, dx = 4 \int_{0}^{1} \sqrt{3x} \, dx20123xdx=4013xdx
Solving this integral, we get:
4 [ 2 3 3 x 3 ] 0 1 = 4 [ 2 3 3 0 ] = 8 3 3 = 8 3 = 4.6188 4 2 3 3 x 3 0 1 = 4 2 3 3 0 = 8 3 3 = 8 3 = 4.6188 4[(2)/(3)sqrt(3x^(3))]_(0)^(1)=4[(2)/(3)sqrt3-0]=(8)/(3)sqrt3=(8)/(sqrt3)=4.61884 \left[ \frac{2}{3} \sqrt{3x^3} \right]_{0}^{1} = 4 \left[ \frac{2}{3} \sqrt{3} – 0 \right] = \frac{8}{3} \sqrt{3} =\frac{8}{\sqrt{3}}=4.61884[233x3]01=4[2330]=833=83=4.6188
So, the value of the integral is 4.6188.

Conclusion

The area common to the circle x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4 and the parabola y 2 = 3 x y 2 = 3 x y^(2)=3xy^2=3 xy2=3x is 8 3 4.6188 8 3 4.6188 (8)/(sqrt3)~~4.6188\frac{8}{\sqrt{3}} \approx 4.6188834.6188 square units. We used double integration to find this area.
Question:-03(c) लघुतम संभाव्य त्रिज्या के गोले का समीकरण ज्ञात कीजिए जो सरल रेखाओं : x 3 3 = y 8 1 = z 3 1 x 3 3 = y 8 1 = z 3 1 (x-3)/(3)=(y-8)/(-1)=(z-3)/(1)\frac{\mathrm{x}-3}{3}=\frac{\mathrm{y}-8}{-1}=\frac{\mathrm{z}-3}{1}x33=y81=z31 तथा x + 3 3 = y + 7 2 = z 6 4 x + 3 3 = y + 7 2 = z 6 4 (x+3)/(-3)=(y+7)/(2)=(z-6)/(4)\frac{\mathrm{x}+3}{-3}=\frac{\mathrm{y}+7}{2}=\frac{\mathrm{z}-6}{4}x+33=y+72=z64 को स्पर्श करता है ।
Question:-03(c)Find the equation of the sphere of smallest possible radius which touches the straight lines : x 3 3 = y 8 1 = z 3 1 x 3 3 = y 8 1 = z 3 1 (x-3)/(3)=(y-8)/(-1)=(z-3)/(1)\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}x33=y81=z31 and x + 3 3 = y + 7 2 = z 6 4 x + 3 3 = y + 7 2 = z 6 4 (x+3)/(-3)=(y+7)/(2)=(z-6)/(4)\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}x+33=y+72=z64
Answer:

Introduction

The problem asks us to find the equation of the sphere with the smallest possible radius that touches two given straight lines:
x 3 3 = y 8 1 = z 3 1 (Line 1) x 3 3 = y 8 1 = z 3 1 (Line 1) (x-3)/(3)=(y-8)/(-1)=(z-3)/(1)quad(Line 1)\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \quad \text{(Line 1)}x33=y81=z31(Line 1)
x + 3 3 = y + 7 2 = z 6 4 (Line 2) x + 3 3 = y + 7 2 = z 6 4 (Line 2) (x+3)/(-3)=(y+7)/(2)=(z-6)/(4)quad(Line 2)\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4} \quad \text{(Line 2)}x+33=y+72=z64(Line 2)

Assumptions

  • The lines and sphere are in a 3D Cartesian coordinate system.
  • The sphere is defined by the equation ( x a ) 2 + ( y b ) 2 + ( z c ) 2 = r 2 ( x a ) 2 + ( y b ) 2 + ( z c ) 2 = r 2 (x-a)^(2)+(y-b)^(2)+(z-c)^(2)=r^(2)(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2(xa)2+(yb)2+(zc)2=r2, where ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) is the center and r r rrr is the radius.

Definitions

  • A sphere is a set of points in space that are equidistant from a given point called the center.
  • A line in 3D space can be represented parametrically as x = x 0 + a t x = x 0 + a t x=x_(0)+atx = x_0 + atx=x0+at, y = y 0 + b t y = y 0 + b t y=y_(0)+bty = y_0 + bty=y0+bt, z = z 0 + c t z = z 0 + c t z=z_(0)+ctz = z_0 + ctz=z0+ct, where ( x 0 , y 0 , z 0 ) ( x 0 , y 0 , z 0 ) (x_(0),y_(0),z_(0))(x_0, y_0, z_0)(x0,y0,z0) is a point on the line and a , b , c a , b , c a,b,ca, b, ca,b,c are the direction ratios.

Method/Approach

  1. Write the parametric equations for the two lines.
  2. Use the formula for the distance between two skew lines to find the distance between the lines.
  3. The radius of the smallest sphere that touches both lines will be half of this distance.
  4. Find the coordinates of the center of the sphere by taking the midpoint of the shortest segment connecting the two lines.

Work/Calculations

Step 1: Parametric Equations for the Lines

The parametric equations for Line 1 and Line 2 can be written as:
  • Line 1: x = 3 + 3 t x = 3 + 3 t x=3+3tx = 3 + 3tx=3+3t, y = 8 t y = 8 t y=8-ty = 8 – ty=8t, z = 3 + t z = 3 + t z=3+tz = 3 + tz=3+t
  • Line 2: x = 3 3 s x = 3 3 s x=-3-3sx = -3 – 3sx=33s, y = 7 + 2 s y = 7 + 2 s y=-7+2sy = -7 + 2sy=7+2s, z = 6 + 4 s z = 6 + 4 s z=6+4sz = 6 + 4sz=6+4s

Step 2: Distance Between the Lines

The formula for the distance d d ddd between two skew lines is given by:
d = | a × b ( r 2 r 1 ) | | a × b | d = a × b ( r 2 r 1 ) a × b d=(|( vec(a))xx( vec(b))*(( vec(r_(2)))-( vec(r_(1))))|)/(|( vec(a))xx( vec(b))|)d = \frac{\left| \vec{a} \times \vec{b} \cdot (\vec{r_2} – \vec{r_1}) \right|}{\left| \vec{a} \times \vec{b} \right|}d=|a×b(r2r1)||a×b|
Here, a a vec(a)\vec{a}a and b b vec(b)\vec{b}b are the direction vectors of the lines, and r 1 r 1 vec(r_(1))\vec{r_1}r1 and r 2 r 2 vec(r_(2))\vec{r_2}r2 are position vectors of points on the lines.
For Line 1, a = 3 , 1 , 1 a = 3 , 1 , 1 vec(a)=(:3,-1,1:)\vec{a} = \langle 3, -1, 1 \ranglea=3,1,1 and r 1 = 3 , 8 , 3 r 1 = 3 , 8 , 3 vec(r_(1))=(:3,8,3:)\vec{r_1} = \langle 3, 8, 3 \rangler1=3,8,3.
For Line 2, b = 3 , 2 , 4 b = 3 , 2 , 4 vec(b)=(:-3,2,4:)\vec{b} = \langle -3, 2, 4 \rangleb=3,2,4 and r 2 = 3 , 7 , 6 r 2 = 3 , 7 , 6 vec(r_(2))=(:-3,-7,6:)\vec{r_2} = \langle -3, -7, 6 \rangler2=3,7,6.
After calculating, the distance d d ddd between the two skew lines is 3 30 3 30 3sqrt303 \sqrt{30}330.

Step 3: Radius of the Smallest Sphere

The radius r r rrr of the smallest sphere that can touch both lines is half of this distance:
r = 3 30 2 r = 3 30 2 r=(3sqrt30)/(2)r = \frac{3 \sqrt{30}}{2}r=3302

Step 4: Coordinates of the Center

The coordinates of the center of the sphere can be found by taking the midpoint of the shortest segment connecting the two lines. The midpoint M M MMM is given by:
M = r 1 + r 2 2 M = r 1 + r 2 2 M=(( vec(r_(1)))+( vec(r_(2))))/(2)M = \frac{\vec{r_1} + \vec{r_2}}{2}M=r1+r22
Let’s calculate the coordinates of the center.
Substituting the given vectors, we have:
r 1 = 3 , 8 , 3 , r 2 = 3 , 7 , 6 r 1 = 3 , 8 , 3 , r 2 = 3 , 7 , 6 vec(r_(1))=(:3,8,3:),quad vec(r_(2))=(:-3,-7,6:)\overrightarrow{r_1}=\langle 3,8,3\rangle, \quad \overrightarrow{r_2}=\langle-3,-7,6\rangler1=3,8,3,r2=3,7,6
After substituting these into the formula, we calculated the center coordinates as ( 0 , 1 2 , 9 2 ) 0 , 1 2 , 9 2 (0,(1)/(2),(9)/(2))\left(0, \frac{1}{2}, \frac{9}{2}\right)(0,12,92).

Conclusion

The equation of the sphere with the smallest possible radius that touches both given lines is:
( x 0 ) 2 + ( y 1 2 ) 2 + ( z 9 2 ) 2 = ( 3 30 2 ) 2 ( x 0 ) 2 + y 1 2 2 + z 9 2 2 = 3 30 2 2 (x-0)^(2)+(y-(1)/(2))^(2)+(z-(9)/(2))^(2)=((3sqrt30)/(2))^(2)(x – 0)^2 + \left(y – \frac{1}{2}\right)^2 + \left(z – \frac{9}{2}\right)^2 = \left(\frac{3 \sqrt{30}}{2}\right)^2(x0)2+(y12)2+(z92)2=(3302)2
Simplifying, we get:
x 2 + ( y 1 2 ) 2 + ( z 9 2 ) 2 = 270 4 x 2 + y 1 2 2 + z 9 2 2 = 270 4 x^(2)+(y-(1)/(2))^(2)+(z-(9)/(2))^(2)=(270)/(4)x^2 + \left(y – \frac{1}{2}\right)^2 + \left(z – \frac{9}{2}\right)^2 = \frac{270}{4}x2+(y12)2+(z92)2=2704
This sphere has a radius of 3 30 2 3 30 2 (3sqrt30)/(2)\frac{3 \sqrt{30}}{2}3302 and its center is located at ( 0 , 1 2 , 9 2 ) ( 0 , 1 2 , 9 2 ) (0,(1)/(2),(9)/(2))(0, \frac{1}{2}, \frac{9}{2})(0,12,92).
Question:-04(a) एक रैखिक प्रतिचित्र T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 ज्ञात कीजिए जो कि R 2 R 2 R^(2)\mathbb{R}^2R2 के प्रत्येक सदिश को θ θ theta\thetaθ कोण से घुमा देता है । यह भी सिद्ध कीजिए कि θ = π 2 θ = π 2 theta=(pi)/(2)\theta=\frac{\pi}{2}θ=π2 के लिए, T T T\mathrm{T}T का कोई भी अभिलक्षणिक मान (आइगेनमान) R R R\mathbb{R}R में नहीं है ।
Question:-04(a) Find a linear map T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 which rotates each vector of R 2 R 2 R^(2)\mathbb{R}^2R2 by an angle θ θ theta\thetaθ. Also, prove that for θ = π 2 , T θ = π 2 , T theta=(pi)/(2),T\theta=\frac{\pi}{2}, \mathrm{~T}θ=π2, T has no eigenvalue in R R R\mathbb{R}R.
Answer:

Introduction

The problem asks us to find a linear map T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 that rotates each vector in R 2 R 2 R^(2)\mathbb{R}^2R2 by an angle θ θ theta\thetaθ. Additionally, we are to prove that when θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2, the linear map T T T\mathrm{T}T has no real eigenvalues.

Assumptions

  1. The linear map T T T\mathrm{T}T is a rotation in R 2 R 2 R^(2)\mathbb{R}^2R2.
  2. θ θ theta\thetaθ is the angle of rotation.

Definition

A linear map T T T\mathrm{T}T is represented by a matrix A A AAA such that T ( x ) = A x T ( x ) = A x T(x)=Ax\mathrm{T}(\mathbf{x}) = A\mathbf{x}T(x)=Ax.

Method/Approach

To find the linear map T T T\mathrm{T}T, we will first find the matrix representation of the rotation. Then, we will use the characteristic equation to prove that for θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2, T T T\mathrm{T}T has no real eigenvalues.

Finding the Linear Map T T T\mathrm{T}T

The matrix representation A A AAA of a rotation by θ θ theta\thetaθ in R 2 R 2 R^(2)\mathbb{R}^2R2 is given by:
A = ( cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ) A = cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) A=([cos(theta),-sin(theta)],[sin(theta),cos(theta)])A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}A=(cos(θ)sin(θ)sin(θ)cos(θ))
So, T ( x ) = A x T ( x ) = A x T(x)=Ax\mathrm{T}(\mathbf{x}) = A\mathbf{x}T(x)=Ax.

Proving No Real Eigenvalues for θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2

For a matrix A A AAA to have an eigenvalue λ λ lambda\lambdaλ, it must satisfy the characteristic equation:
det ( A λ I ) = 0 det ( A λ I ) = 0 “det”(A-lambda I)=0\text{det}(A – \lambda I) = 0det(AλI)=0
where I I III is the identity matrix.

Work/Calculations

Step 1: Substituting θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2 into A A AAA

Let’s substitute the values into the formula for A A AAA:
A = ( cos ( π 2 ) sin ( π 2 ) sin ( π 2 ) cos ( π 2 ) ) A = cos π 2 sin π 2 sin π 2 cos π 2 A=([cos((pi)/(2)),-sin((pi)/(2))],[sin((pi)/(2)),cos((pi)/(2))])A = \begin{pmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{pmatrix}A=(cos(π2)sin(π2)sin(π2)cos(π2))
After calculating, we get:
A = ( 0 1 1 0 ) A = 0 1 1 0 A=([0,-1],[1,0])A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}A=(0110)

Step 2: Finding the Characteristic Equation

The characteristic equation is given by:
det ( A λ I ) = 0 det ( A λ I ) = 0 “det”(A-lambda I)=0\text{det}(A – \lambda I) = 0det(AλI)=0
det ( ( 0 λ 1 1 0 λ ) ) = 0 det 0 λ 1 1 0 λ = 0 “det”(([0-lambda,-1],[1,0-lambda]))=0\text{det}\left(\begin{pmatrix} 0-\lambda & -1 \\ 1 & 0-\lambda \end{pmatrix}\right) = 0det((0λ110λ))=0
( λ ) ( λ ) ( 1 ) ( 1 ) = 0 ( λ ) ( λ ) ( 1 ) ( 1 ) = 0 (-lambda)(-lambda)-(-1)(1)=0(-\lambda)(-\lambda) – (-1)(1) = 0(λ)(λ)(1)(1)=0
λ 2 + 1 = 0 λ 2 + 1 = 0 lambda^(2)+1=0\lambda^2 + 1 = 0λ2+1=0
λ 2 = 1 λ 2 = 1 lambda^(2)=-1\lambda^2 = -1λ2=1
λ = ± i λ = ± i lambda=+-i\lambda = \pm iλ=±i

Conclusion

The linear map T : R 2 R 2 T : R 2 R 2 T:R^(2)rarrR^(2)\mathrm{T}: \mathbb{R}^2 \rightarrow \mathbb{R}^2T:R2R2 that rotates each vector in R 2 R 2 R^(2)\mathbb{R}^2R2 by an angle θ θ theta\thetaθ is represented by the matrix A A AAA as shown above. When θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2, the characteristic equation yields eigenvalues λ = ± i λ = ± i lambda=+-i\lambda = \pm iλ=±i, which are not real numbers. Therefore, for θ = π 2 θ = π 2 theta=(pi)/(2)\theta = \frac{\pi}{2}θ=π2, T T T\mathrm{T}T has no real eigenvalues.
Question:-04(b) वक्र y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)\mathrm{y}^2 \mathrm{x}^2=\mathrm{x}^2-\mathrm{a}^2y2x2=x2a2 का अनुरेख (ट्रेस) कीजिए, जहाँ a a a\mathrm{a}a एक वास्तविक अचर है ।
Question:-04(b) Trace the curve y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2=x^2-a^2y2x2=x2a2, where a a aaa is a real constant.
Answer:

Introduction

We are tasked with tracing the curve y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2, where a a aaa is a real constant. We’ll explore various properties of the curve, such as its symmetry, whether it passes through the origin, its intercepts with the coordinate axes, its asymptotes, and the regions it occupies.

Assumptions

  • a a aaa is a real constant.
  • x x xxx and y y yyy are real numbers.

Method/Approach

To trace the curve, we’ll follow these steps:
  1. Determine the symmetry of the curve.
  2. Check if the curve passes through the origin.
  3. Find the intercepts with the coordinate axes.
  4. Identify any asymptotes.
  5. Describe the regions the curve occupies.
Let’s proceed with each step.

1. Symmetry

To check for symmetry, we’ll substitute x x xxx with x x -x-xx and y y yyy with y y -y-yy in the equation and see if it remains unchanged.
The original equation is y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2.
  • Substitute x x x x x rarr-xx \rightarrow -xxx:
    ( y ) 2 ( x ) 2 = ( x ) 2 a 2 ( y ) 2 ( x ) 2 = ( x ) 2 a 2 (-y)^(2)(-x)^(2)=(-x)^(2)-a^(2)(-y)^2 (-x)^2 = (-x)^2 – a^2(y)2(x)2=(x)2a2
    Simplifying, we get y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2, which is the original equation.
  • Substitute y y y y y rarr-yy \rightarrow -yyy:
    ( y ) 2 x 2 = x 2 a 2 ( y ) 2 x 2 = x 2 a 2 (-y)^(2)x^(2)=x^(2)-a^(2)(-y)^2 x^2 = x^2 – a^2(y)2x2=x2a2
    Simplifying, we get y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2, which is the original equation.
  • Substitute x x x x x rarr-xx \rightarrow -xxx and y y y y y rarr-yy \rightarrow -yyy:
    ( y ) 2 ( x ) 2 = ( x ) 2 a 2 ( y ) 2 ( x ) 2 = ( x ) 2 a 2 (-y)^(2)(-x)^(2)=(-x)^(2)-a^(2)(-y)^2 (-x)^2 = (-x)^2 – a^2(y)2(x)2=(x)2a2
    Simplifying, we get y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2, which is the original equation.
The equation remains unchanged in all cases, so the curve is symmetric about the x-axis, y-axis, and the origin.

2. Curve Passing Through Origin

To check if the curve passes through the origin, we’ll substitute x = 0 x = 0 x=0x = 0x=0 and y = 0 y = 0 y=0y = 0y=0 into the equation.
Let’s substitute the values:
y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2
0 2 × 0 2 = 0 2 a 2 0 2 × 0 2 = 0 2 a 2 0^(2)xx0^(2)=0^(2)-a^(2)0^2 \times 0^2 = 0^2 – a^202×02=02a2
0 = a 2 0 = a 2 0=-a^(2)0 = -a^20=a2
After calculating, we find that the equation becomes 0 = a 2 0 = a 2 0=-a^(2)0 = -a^20=a2, which is not true for a 0 a 0 a!=0a \neq 0a0. Therefore, the curve does not pass through the origin.

3. Intercepts with Coordinate Axes

To find the x-intercept, we set y = 0 y = 0 y=0y = 0y=0 and solve for x x xxx.
To find the y-intercept, we set x = 0 x = 0 x=0x = 0x=0 and solve for y y yyy.
  • For x-intercept:
    y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2
    0 2 × x 2 = x 2 a 2 0 2 × x 2 = x 2 a 2 0^(2)xxx^(2)=x^(2)-a^(2)0^2 \times x^2 = x^2 – a^202×x2=x2a2
    0 = x 2 a 2 0 = x 2 a 2 0=x^(2)-a^(2)0 = x^2 – a^20=x2a2
    x 2 = a 2 x 2 = a 2 x^(2)=a^(2)x^2 = a^2x2=a2
    x = ± a x = ± a x=+-ax = \pm ax=±a
  • For y-intercept:
    y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2
    y 2 × 0 2 = 0 2 a 2 y 2 × 0 2 = 0 2 a 2 y^(2)xx0^(2)=0^(2)-a^(2)y^2 \times 0^2 = 0^2 – a^2y2×02=02a2
    0 = a 2 0 = a 2 0=-a^(2)0 = -a^20=a2
    y = No intercept y = No intercept y=”No intercept”y = \text{No intercept}y=No intercept
After calculating, we find that the x-intercepts are at x = ± a x = ± a x=+-ax = \pm ax=±a and there is no y-intercept.

4. Asymptotes

The equation y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2 can be rearranged as y 2 = 1 a 2 x 2 y 2 = 1 a 2 x 2 y^(2)=1-(a^(2))/(x^(2))y^2 = 1 – \frac{a^2}{x^2}y2=1a2x2.
As x x x rarr oox \rightarrow \inftyx, y 2 1 y 2 1 y^(2)rarr1y^2 \rightarrow 1y21, so y ± 1 y ± 1 y rarr+-1y \rightarrow \pm 1y±1.
Thus, the curve has horizontal asymptotes at y = ± 1 y = ± 1 y=+-1y = \pm 1y=±1.

5. Region

The curve is defined for x 0 x 0 x!=0x \neq 0x0 and y 2 0 y 2 0 y^(2) >= 0y^2 \geq 0y20.
Therefore, the curve exists in all quadrants except along the y-axis.
original image

Conclusion

The curve y 2 x 2 = x 2 a 2 y 2 x 2 = x 2 a 2 y^(2)x^(2)=x^(2)-a^(2)y^2 x^2 = x^2 – a^2y2x2=x2a2 has the following properties:
  • It is symmetric about the x-axis, y-axis, and the origin.
  • It does not pass through the origin.
  • The x-intercepts are at x = ± a x = ± a x=+-ax = \pm ax=±a, and there is no y-intercept.
  • It has horizontal asymptotes at y = ± 1 y = ± 1 y=+-1y = \pm 1y=±1.
  • It exists in all quadrants except along the y-axis.
Question:-04(c) यदि समतल u x + v y + w z = 0 u x + v y + w z = 0 ux+vy+wz=0u x+v y+w z=0ux+vy+wz=0, शंकु a x 2 + b y 2 + cz 2 = 0 a x 2 + b y 2 + cz 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2+b y^2+\mathrm{cz}^2=0ax2+by2+cz2=0 को लंब जनकों में काटता है, तो सिद्ध कीजिए कि ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0(b+c) u^2+(c+a) v^2+(a+b) w^2=0(b+c)u2+(c+a)v2+(a+b)w2=0.
Question:-04(c) If the plane u x + v y + w z = 0 u x + v y + w z = 0 ux+vy+wz=0u x+v y+w z=0ux+vy+wz=0 cuts the cone a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0a x^2+b y^2+c z^2=0ax2+by2+cz2=0 in perpendicular generators, then prove that ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0(b+c) u^2+(c+a) v^2+(a+b) w^2=0(b+c)u2+(c+a)v2+(a+b)w2=0.
Answer:

Introduction

We are given a plane u x + v y + w z = 0 u x + v y + w z = 0 ux+vy+wz=0ux + vy + wz = 0ux+vy+wz=0 and a cone a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0ax^2 + by^2 + cz^2 = 0ax2+by2+cz2=0. The goal is to prove that if the plane cuts the cone in perpendicular generators, then ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0(b+c)u^2 + (c+a)v^2 + (a+b)w^2 = 0(b+c)u2+(c+a)v2+(a+b)w2=0.

Assumptions

  • a a aaa, b b bbb, and c c ccc are constants for the cone.
  • u u uuu, v v vvv, and w w www are constants for the plane.
  • x x xxx, y y yyy, and z z zzz are variables representing points in 3D space.

Method/Approach

  1. Equation of One Line of Intersection: Assume that one of the lines of intersection between the plane and the cone can be represented as x l = y m = z n x l = y m = z n (x)/(l)=(y)/(m)=(z)/(n)\frac{x}{l} = \frac{y}{m} = \frac{z}{n}xl=ym=zn.
  2. Equations from the Plane and Cone: Substitute these into the equations of the plane and the cone, which gives:
    • u l + v m + w n = 0 u l + v m + w n = 0 ul+vm+wn=0ul + vm + wn = 0ul+vm+wn=0 (Equation i)
    • a l 2 + b m 2 + c n 2 = 0 a l 2 + b m 2 + c n 2 = 0 al^(2)+bm^(2)+cn^(2)=0al^2 + bm^2 + cn^2 = 0al2+bm2+cn2=0 (Equation ii)
  3. Eliminating One Variable: Eliminate n n nnn between these two equations to form a quadratic equation. This is done by solving Equation i for n n nnn in terms of l l lll and m m mmm, and then substituting into Equation ii.
    The quadratic equation becomes:
    a l 2 + b m 2 + c [ ( u l + v m ) w ] 2 = 0 a l 2 + b m 2 + c ( u l + v m ) w 2 = 0 al^(2)+bm^(2)+c[-((ul+vm))/(w)]^(2)=0al^2 + bm^2 + c\left[-\frac{(ul + vm)}{w}\right]^2 = 0al2+bm2+c[(ul+vm)w]2=0
    Simplifying, we get:
    ( a w 2 + c u 2 ) l 2 + 2 c u v l m + ( b w 2 + c v 2 ) m 2 = 0 ( a w 2 + c u 2 ) l 2 + 2 c u v l m + ( b w 2 + c v 2 ) m 2 = 0 (aw^(2)+cu^(2))l^(2)+2cuvlm+(bw^(2)+cv^(2))m^(2)=0(aw^2 + cu^2)l^2 + 2cuvlm + (bw^2 + cv^2)m^2 = 0(aw2+cu2)l2+2cuvlm+(bw2+cv2)m2=0
    Further simplifying, we get:
    ( a w 2 + c u 2 ) ( l 2 m 2 ) + 2 c u v ( l m ) + ( b w 2 + c v 2 ) = 0 ( a w 2 + c u 2 ) l 2 m 2 + 2 c u v l m + ( b w 2 + c v 2 ) = 0 (aw^(2)+cu^(2))((l^(2))/(m^(2)))+2cuv((l)/(m))+(bw^(2)+cv^(2))=0(aw^2 + cu^2)\left(\frac{l^2}{m^2}\right) + 2cuv\left(\frac{l}{m}\right) + (bw^2 + cv^2) = 0(aw2+cu2)(l2m2)+2cuv(lm)+(bw2+cv2)=0
  4. Condition for Perpendicular Generators: Use the properties of the roots of the quadratic equation to establish the condition for perpendicularity.
    The roots of the quadratic equation can be represented as l 1 m 1 l 1 m 1 (l_(1))/(m_(1))\frac{l_1}{m_1}l1m1 and l 2 m 2 l 2 m 2 (l_(2))/(m_(2))\frac{l_2}{m_2}l2m2. Using Vieta’s formulas, the product of the roots is given by:
    b w 2 + c v 2 a w 2 + c u 2 = l 1 m 1 × l 2 m 2 b w 2 + c v 2 a w 2 + c u 2 = l 1 m 1 × l 2 m 2 (bw^(2)+cv^(2))/(aw^(2)+cu^(2))=(l_(1))/(m_(1))xx(l_(2))/(m_(2))\frac{bw^2 + cv^2}{aw^2 + cu^2} = \frac{l_1}{m_1} \times \frac{l_2}{m_2}bw2+cv2aw2+cu2=l1m1×l2m2
    By symmetry, we have:
    l 1 l 2 b w 2 + c v 2 = m 1 m 2 c u 2 + a w 2 = n 1 n 2 a v 2 + b u 2 = k l 1 l 2 b w 2 + c v 2 = m 1 m 2 c u 2 + a w 2 = n 1 n 2 a v 2 + b u 2 = k (l_(1)l_(2))/(bw^(2)+cv^(2))=(m_(1)m_(2))/(cu^(2)+aw^(2))=(n_(1)n_(2))/(av^(2)+bu^(2))=k\frac{l_1 l_2}{bw^2 + cv^2} = \frac{m_1 m_2}{cu^2 + aw^2} = \frac{n_1 n_2}{av^2 + bu^2}=kl1l2bw2+cv2=m1m2cu2+aw2=n1n2av2+bu2=k
We know that for the lines to be perpendicular, l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=0l_1 l_2 + m_1 m_2 + n_1 n_2 = 0l1l2+m1m2+n1n2=0,
k ( b w 2 + c v 2 ) + k ( c u 2 + a w 2 ) + k ( a v 2 + b u 2 ) = 0 k ( b w 2 + c v 2 ) + k ( c u 2 + a w 2 ) + k ( a v 2 + b u 2 ) = 0 k(bw^(2)+cv^(2))+k(cu^(2)+aw^(2))+k(av^(2)+bu^(2))=0k(bw^2 + cv^2) + k(cu^2 + aw^2) + k(av^2 + bu^2) = 0k(bw2+cv2)+k(cu2+aw2)+k(av2+bu2)=0
Finally, we can group the terms to arrive at the expression we want to prove:
( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0(b+c)u^2 + (c+a)v^2 + (a+b)w^2 = 0(b+c)u2+(c+a)v2+(a+b)w2=0
And with that, we can confidently say that the statement is proved.

Conclusion

We have successfully proved that if the plane u x + v y + w z = 0 u x + v y + w z = 0 ux+vy+wz=0ux + vy + wz = 0ux+vy+wz=0 intersects the cone a x 2 + b y 2 + c z 2 = 0 a x 2 + b y 2 + c z 2 = 0 ax^(2)+by^(2)+cz^(2)=0ax^2 + by^2 + cz^2 = 0ax2+by2+cz2=0 in perpendicular generators, then ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 ( b + c ) u 2 + ( c + a ) v 2 + ( a + b ) w 2 = 0 (b+c)u^(2)+(c+a)v^(2)+(a+b)w^(2)=0(b+c)u^2 + (c+a)v^2 + (a+b)w^2 = 0(b+c)u2+(c+a)v2+(a+b)w2=0.
खण्ड B
SECTION B
Question:-05(a) दर्शाइए कि अवकल समीकरण dy dx + Py = Q dy dx + Py = Q (dy)/(dx)+Py=Q\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=\mathrm{Q}dydx+Py=Q का व्यापक हल
y = Q P e P d x { C + e P d x d ( Q P ) } y = Q P e P d x C + e P d x d Q P y=(Q)/(P)-e^(-intPdx){C+inte^(intPdx)(d)((Q)/(P))}\mathrm{y}=\frac{\mathrm{Q}}{\mathrm{P}}-\mathrm{e}^{-\int \mathrm{P} d x}\left\{\mathrm{C}+\int \mathrm{e}^{\int \mathrm{P} d x} \mathrm{~d}\left(\frac{\mathrm{Q}}{\mathrm{P}}\right)\right\}y=QPePdx{C+ePdx d(QP)}
के रूप में लिखा जा सकता है, जहाँ P , Q , x P , Q , x P,Q,x\mathrm{P}, \mathrm{Q}, \mathrm{x}P,Q,x के शून्येतर फलन हैं तथा C C C\mathrm{C}C एक स्वेच्छ अचर है ।
Question:-05(a)Show that the general solution of the differential equation dy dx + Py = Q dy dx + Py = Q (dy)/(dx)+Py=Q\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=\mathrm{Q}dydx+Py=Q can be written in the form y = Q P e P d x { C + e P d x d ( Q P ) } y = Q P e P d x C + e P d x d Q P y=(Q)/(P)-e^(-int Pdx){C+inte^(int Pdx)d((Q)/(P))}y=\frac{Q}{P}-e^{-\int P d x}\left\{C+\int e^{\int P d x} d\left(\frac{Q}{P}\right)\right\}y=QPePdx{C+ePdxd(QP)}, where P , Q P , Q P,Q\mathrm{P}, \mathrm{Q}P,Q are non-zero functions of x x x\mathrm{x}x and C C C\mathrm{C}C, an arbitrary constant.
Answer:

Introduction

We are given a first-order linear differential equation d y d x + P y = Q d y d x + P y = Q (dy)/(dx)+Py=Q\frac{dy}{dx} + Py = Qdydx+Py=Q, where P P PPP and Q Q QQQ are non-zero functions of x x xxx. The goal is to find the general solution of this equation in the given form:
y = Q P e P d x { C + e P d x d ( Q P ) } y = Q P e P d x C + e P d x d Q P y=(Q)/(P)-e^(-int Pdx){C+inte^(int Pdx)d((Q)/(P))}y = \frac{Q}{P} – e^{-\int P dx} \left\{ C + \int e^{\int P dx} d\left( \frac{Q}{P} \right) \right\}y=QPePdx{C+ePdxd(QP)}
where C C CCC is an arbitrary constant.

Method/Approach

To solve this problem, we’ll use the following steps:
  1. Rewrite the given differential equation in a specific form.
  2. Check if the equation is exact and find the integrating factor (IF) if it’s not.
  3. Use the integrating factor to make the equation exact.
  4. Integrate to find the general solution.

Step 1: Rewrite the Differential Equation

First, let’s rewrite the given differential equation d y d x + P y = Q d y d x + P y = Q (dy)/(dx)+Py=Q\frac{dy}{dx} + Py = Qdydx+Py=Q as:
( P y Q ) d x + d y = 0 (Equation 1) ( P y Q ) d x + d y = 0 (Equation 1) (Py-Q)dx+dy=0quad(Equation 1)(P y – Q) dx + dy = 0 \quad \text{(Equation 1)}(PyQ)dx+dy=0(Equation 1)
This is in the form M d x + N d y = 0 M d x + N d y = 0 Mdx+Ndy=0M dx + N dy = 0Mdx+Ndy=0, where M = P y Q M = P y Q M=Py-QM = Py – QM=PyQ and N = 1 N = 1 N=1N = 1N=1.

Step 2: Check for Exactness and Find IF

We need to check if Equation 1 is exact. For that, we calculate M y M y (del M)/(del y)\frac{\partial M}{\partial y}My and N x N x (del N)/(del x)\frac{\partial N}{\partial x}Nx:
M y = P , N x = 0 M y = P , N x = 0 (del M)/(del y)=P,quad(del N)/(del x)=0\frac{\partial M}{\partial y} = P, \quad \frac{\partial N}{\partial x} = 0My=P,Nx=0
Since M y N x M y N x (del M)/(del y)!=(del N)/(del x)\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}MyNx, Equation 1 is not exact.
The integrating factor (IF) is given by e P d x e P d x e^(int Pdx)e^{\int P dx}ePdx.

Step 3: Make the Equation Exact Using IF

We multiply Equation 1 by the integrating factor e P d x e P d x e^(int Pdx)e^{\int P dx}ePdx:
e P d x ( P y Q ) d x + e P d x d y = 0 (Equation 2) e P d x ( P y Q ) d x + e P d x d y = 0 (Equation 2) e^(int Pdx)(Py-Q)dx+e^(int Pdx)dy=0quad(Equation 2)e^{\int P dx} (P y – Q) dx + e^{\int P dx} dy = 0 \quad \text{(Equation 2)}ePdx(PyQ)dx+ePdxdy=0(Equation 2)
Now, Equation 2 is exact.

Step 4: Integrate to Find the General Solution

Integrating both sides of Equation 2, we get:
d ( y e P d x ) = Q e P d x d x d ( y e P d x ) = Q e P d x d x int d(ye^(int Pdx))=int Qe^(int Pdx)dx\int d(y e^{\int P dx}) = \int Q e^{\int P dx} dxd(yePdx)=QePdxdx
Simplifying, we find:
y e P d x = Q e P d x d x + C y e P d x = Q e P d x d x + C ye^(int Pdx)=int Qe^(int Pdx)dx+Cy e^{\int P dx} = \int Q e^{\int P dx} dx + CyePdx=QePdxdx+C
y e P d x = Q e P d x d x [ d d x Q e P d x d x ] d x + C (by integrating by parts) y e P d x = Q e P d x P [ d Q d x e P d x P ] d x + C y e P d x = Q P e P d x [ e P d x d ( Q P ) ] + C y = Q P e P d x [ C + e P d x d ( Q P ) ] y e P d x = Q e P d x d x d d x Q e P d x d x d x + C (by integrating by parts) y e P d x = Q e P d x P d Q d x e P d x P d x + C y e P d x = Q P e P d x e P d x d Q P + C y = Q P e P d x C + e P d x d Q P {:[=>ye^(int Pdx)=Q inte^(int Pdx)dx-int[(d)/(dx)Q inte^(int Pdx)dx]dx+C” (by integrating by parts) “],[=>ye^(int Pdx)=(Qe^(int Pdx))/(P)-int[(dQ)/(dx)(e^(int Pdx))/(P)]dx+C],[=>ye^(int Pdx)=(Q)/(P)e^(int Pdx)-int[e^(int Pdx)d((Q)/(P))]+C],[=>y=(Q)/(P)-e^(-int Pdx)[C+inte^(int Pdx)d((Q)/(P))]],[]:}\begin{aligned} & \Rightarrow y e^{\int P \mathbf{d} x}=Q \int e^{\int P \mathbf{d} x} \mathbf{d} x-\int\left[\frac{\mathbf{d}}{\mathbf{d} x} Q \int e^{\int P \mathbf{d} x} \mathbf{d} x\right] \mathbf{d} x+C \text { (by integrating by parts) } \\ & \Rightarrow y e^{\int P \mathrm{~d} x}=\frac{Q e^{\int P \mathrm{~d} x}}{P}-\int\left[\frac{\mathbf{d} Q}{\mathbf{d} x} \frac{e^{\int P \mathrm{~d} x}}{P}\right]dx+C \\ & \Rightarrow y e^{\int P \mathrm{~d} x}=\frac{Q}{P} e^{\int P \mathrm{~d} x}-\int\left[e^{\int P \mathrm{~d} x} \mathbf{d}\left(\frac{Q}{P}\right)\right]+C \\ & \Rightarrow y=\frac{Q}{P}-e^{-\int P \mathrm{~d} x}\left[C+\int e^{\int P \mathrm{~d} x} \mathbf{d}\left(\frac{Q}{P}\right)\right] \\ & \end{aligned}yePdx=QePdxdx[ddxQePdxdx]dx+C (by integrating by parts) yeP dx=QeP dxP[dQdxeP dxP]dx+CyeP dx=QPeP dx[eP dxd(QP)]+Cy=QPeP dx[C+eP dxd(QP)]
Finally, rewriting this in the desired form, we get:
y = Q P e P d x { C + e P d x d ( Q P ) } y = Q P e P d x C + e P d x d Q P y=(Q)/(P)-e^(-int Pdx){C+inte^(int Pdx)d((Q)/(P))}y = \frac{Q}{P} – e^{-\int P dx} \left\{ C + \int e^{\int P dx} d\left( \frac{Q}{P} \right) \right\}y=QPePdx{C+ePdxd(QP)}

Conclusion

We have successfully found the general solution of the given differential equation d y d x + P y = Q d y d x + P y = Q (dy)/(dx)+Py=Q\frac{dy}{dx} + Py = Qdydx+Py=Q in the form specified. The key steps involved rewriting the equation, finding the integrating factor, making the equation exact, and then integrating to find y y yyy.
Question:-05(b) दर्शाइए कि परवलयों के निकाय : x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)\mathrm{x}^2=4 \mathrm{a}(\mathrm{y}+\mathrm{a})x2=4a(y+a) के लंबकोणीय संछेदी, उसी निकाय में स्थित होते हैं ।
Question:-05(b) Show that the orthogonal trajectories of the system of parabolas : x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)\mathrm{x}^2=4 \mathrm{a}(\mathrm{y}+\mathrm{a})x2=4a(y+a) belong to the same system.
Answer:

Introduction

The problem asks us to show that the orthogonal trajectories of the given system of parabolas x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)x^2 = 4a(y + a)x2=4a(y+a) belong to the same system of parabolas. In simpler terms, we want to prove that the curves that intersect the given parabolas at right angles are also part of the same family of parabolas.

Assumptions

  • The equation x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)x^2 = 4a(y + a)x2=4a(y+a) represents a family of parabolas, parameterized by a a aaa.
  • Orthogonal trajectories are curves that intersect the original family of curves at right angles.

Method/Approach

To find the orthogonal trajectories, we’ll take the following steps:
  1. Differentiate the given equation with respect to y y yyy to find the slope of the tangent to the curve.
  2. Replace the slope with its negative reciprocal to get the slope of the orthogonal trajectory.
  3. Simplify the equation to show that it belongs to the same system of parabolas.

Work/Calculations

Step 1: Differentiate the Given Equation

The given equation is x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)x^2 = 4a(y + a)x2=4a(y+a)—-(1).
Differentiating both sides with respect to y y yyy, we get:
2 x d x d y = 4 a 2 x d x d y = 4 a 2x(dx)/(dy)=4a2x \frac{dx}{dy} = 4a2xdxdy=4a
x 2 d x d y = a x 2 d x d y = a =>(x)/(2)(dx)/(dy)=a\Rightarrow \frac{x}{2} \frac{dx}{dy} = ax2dxdy=a

Step 2: Replace the Slope with its Negative Reciprocal

The slope of the orthogonal trajectory is the negative reciprocal of the slope of the curve. Therefore, the slope of the orthogonal trajectory is 1 d x d y 1 d x d y -(1)/((dx)/(dy))-\frac{1}{\frac{dx}{dy}}1dxdy.
We can rewrite equation (1) as:
x 2 = 2 x d x d y [ y + x 2 d x d y ] x 2 = 2 x d x d y y + x 2 d x d y x^(2)=2x(dx)/(dy)[y+(x)/(2)(dx)/(dy)]x^2 = 2x \frac{dx}{dy} \left[y + \frac{x}{2} \frac{dx}{dy}\right]x2=2xdxdy[y+x2dxdy]
x = 2 d x d y [ y + x 2 d x d y ] (Equation 2) x = 2 d x d y y + x 2 d x d y (Equation 2) =>x=2(dx)/(dy)[y+(x)/(2)(dx)/(dy)]quad(Equation 2)\Rightarrow x = 2 \frac{dx}{dy} \left[y + \frac{x}{2} \frac{dx}{dy}\right] \quad \text{(Equation 2)}x=2dxdy[y+x2dxdy](Equation 2)
Replacing d x d y d x d y (dx)/(dy)\frac{dx}{dy}dxdy by 1 d x d y 1 d x d y -(1)/((dx)/(dy))-\frac{1}{\frac{dx}{dy}}1dxdy, we get:
x = 2 d x d y [ y + x 2 ( 1 d x d y ) ] x = 2 d x d y y + x 2 1 d x d y x=-(2)/((dx)/(dy))[y+(x)/(2)(-(1)/((dx)/(dy)))]x = -\frac{2}{\frac{dx}{dy}} \left[y + \frac{x}{2} \left(-\frac{1}{\frac{dx}{dy}}\right)\right]x=2dxdy[y+x2(1dxdy)]
x d x d y = 2 [ y d x d y x 2 d x d y ] x d x d y = 2 y d x d y x 2 d x d y =>x(dx)/(dy)=-2[(y(dx)/(dy)-(x)/(2))/((dx)/(dy))]\Rightarrow x \frac{dx}{dy} = -2 \left[\frac{y \frac{dx}{dy} – \frac{x}{2}}{\frac{dx}{dy}}\right]xdxdy=2[ydxdyx2dxdy]
x ( d x d y ) 2 = 2 y d x d y + x (Equation 3) x d x d y 2 = 2 y d x d y + x (Equation 3) =>x((dx)/(dy))^(2)=-2y(dx)/(dy)+x quad(Equation 3)\Rightarrow x \left(\frac{dx}{dy}\right)^2 = -2y \frac{dx}{dy} + x \quad \text{(Equation 3)}x(dxdy)2=2ydxdy+x(Equation 3)

Step 3: Simplify the Equation

We can rewrite equation (2) as:
x = 2 y d x d y + x ( d x d y ) 2 x = 2 y d x d y + x d x d y 2 x=2y(dx)/(dy)+x((dx)/(dy))^(2)x = 2y \frac{dx}{dy} + x \left(\frac{dx}{dy}\right)^2x=2ydxdy+x(dxdy)2
x ( d x d y ) 2 = x 2 y d x d y (Equation 4) x d x d y 2 = x 2 y d x d y (Equation 4) =>x((dx)/(dy))^(2)=x-2y(dx)/(dy)quad(Equation 4)\Rightarrow x \left(\frac{dx}{dy}\right)^2 = x – 2y \frac{dx}{dy} \quad \text{(Equation 4)}x(dxdy)2=x2ydxdy(Equation 4)
Upon comparing Equation 3 and Equation 4, we find that they are the same, which means the curve is self-orthogonal.

Conclusion

We have shown that the orthogonal trajectories of the system of parabolas x 2 = 4 a ( y + a ) x 2 = 4 a ( y + a ) x^(2)=4a(y+a)x^2 = 4a(y + a)x2=4a(y+a) also belong to the same system of parabolas. Therefore, the orthogonal trajectories are part of the original family of curves, making the system self-orthogonal.
Question:-05(c) w w w\mathrm{w}w भार का एक पिंड, θ θ theta\thetaθ कोण से झुके हुए एक रूक्ष समतल पर स्थित है, घर्षण गुणांक μ μ mu\muμ, tan θ tan θ tan theta\tan \thetatanθ से अधिक है । पिंड को समतल पर ऊपर की तरफ ‘ b b bbb ‘ दूरी तक धीरे-धीरे खींचने तथा वापस आरम्भिक बिन्दु तक खींचने में किए गए कार्य को ज्ञात कीजिए, जहाँ लगाया गया बल प्रत्येक दशा में समतल के समान्तर है ।
Question:-05(c)A body of weight w w www rests on a rough inclined plane of inclination θ θ theta\thetaθ, the coefficient of friction, μ μ mu\muμ, being greater than tan θ tan θ tan theta\tan \thetatanθ. Find the work done in slowly dragging the body a distance ‘b’ up the plane and then dragging it back to the starting point, the applied force being in each case parallel to the plane.
Answer:

Introduction

We are given a problem involving a body of weight w w www that rests on an inclined plane with an inclination angle θ θ theta\thetaθ. The coefficient of friction μ μ mu\muμ is greater than tan θ tan θ tan theta\tan \thetatanθ. We are asked to find the work done in dragging the body a distance b b bbb up the plane and then back down to the starting point. The applied force in both cases is parallel to the plane.

Assumptions

  1. The coefficient of friction μ μ mu\muμ is greater than tan θ tan θ tan theta\tan \thetatanθ.
  2. The applied force is parallel to the inclined plane.
  3. The body moves slowly, implying that we can neglect any effects due to acceleration or deceleration.

Definitions

  • w w www: Weight of the body
  • θ θ theta\thetaθ: Inclination angle of the plane
  • μ μ mu\muμ: Coefficient of friction
  • b b bbb: Distance the body is dragged up and then down the plane
  • F F FFF: Applied force to drag the body up the plane
  • F F F^(‘)F’F: Applied force to drag the body down the plane
  • R R RRR: Normal reaction force between the body and the plane

Method/Approach

We will resolve the forces acting on the body into components parallel and perpendicular to the inclined plane. Then we will use these components to find the applied forces F F FFF and F F F^(‘)F’F for dragging the body up and down the plane, respectively. Finally, we will calculate the total work done in both cases.

Work/Calculations

Case I: Up the Plane

original image
  1. Resolving forces along and perpendicular to the plane, we have:
w sin θ + μ R = F (Equation 1) w sin θ + μ R = F (Equation 1) w sin theta+mu R=F quad(Equation 1)w \sin \theta + \mu R = F \quad \text{(Equation 1)}wsinθ+μR=F(Equation 1)
R = w cos θ (Equation 2) R = w cos θ (Equation 2) R=w cos thetaquad(Equation 2)R = w \cos \theta \quad \text{(Equation 2)}R=wcosθ(Equation 2)
  1. Substituting Equation 2 into Equation 1, we get:
F = w sin θ + μ w cos θ F = w sin θ + μ w cos θ F=w sin theta+mu w cos thetaF = w \sin \theta + \mu w \cos \thetaF=wsinθ+μwcosθ
F = w cos θ ( μ + tan θ ) (Equation 3) F = w cos θ ( μ + tan θ ) (Equation 3) F=w cos theta(mu+tan theta)quad(Equation 3)F = w \cos \theta (\mu + \tan \theta) \quad \text{(Equation 3)}F=wcosθ(μ+tanθ)(Equation 3)
  1. The work done W W WWW in dragging the body a distance b b bbb up the plane is:
W = b F W = b F W=bFW = b FW=bF
Let’s substitute the values into the formula:
W = b w cos θ ( μ + tan θ ) W = b w cos θ ( μ + tan θ ) W=bw cos theta(mu+tan theta)W = b w \cos \theta (\mu + \tan \theta)W=bwcosθ(μ+tanθ)
After calculating, we get:
W = b w cos θ ( μ + tan θ ) (Equation A) W = b w cos θ ( μ + tan θ ) (Equation A) W=bw cos theta(mu+tan theta)quad(Equation A)W = b w \cos \theta (\mu + \tan \theta) \quad \text{(Equation A)}W=bwcosθ(μ+tanθ)(Equation A)

Case II: Down the Plane

original image
  1. Resolving forces along and perpendicular to the plane, we have:
w sin θ + F = μ R (Equation 4) w sin θ + F = μ R (Equation 4) w sin theta+F^(‘)=mu R quad(Equation 4)w \sin \theta + F’ = \mu R \quad \text{(Equation 4)}wsinθ+F=μR(Equation 4)
R = w cos θ (Equation 5) R = w cos θ (Equation 5) R=w cos thetaquad(Equation 5)R = w \cos \theta \quad \text{(Equation 5)}R=wcosθ(Equation 5)
  1. Substituting Equation 5 into Equation 4, we get:
F = μ w cos θ w sin θ F = μ w cos θ w sin θ F^(‘)=mu w cos theta-w sin thetaF’ = \mu w \cos \theta – w \sin \thetaF=μwcosθwsinθ
F = w cos θ ( μ tan θ ) (Equation 6) μ > t a n θ F = w cos θ ( μ tan θ ) (Equation 6) μ > t a n θ F^(‘)=w cos theta(mu-tan theta)quad(Equation 6):’mu > tan thetaF’ = w \cos \theta (\mu – \tan \theta) \quad \text{(Equation 6)} \because \mu > tan\thetaF=wcosθ(μtanθ)(Equation 6)μ>tanθ
  1. The work done W W W^(‘)W’W in dragging the body a distance b b bbb down the plane is:
W = b F W = b F W^(‘)=bF^(‘)W’ = b F’W=bF
Let’s substitute the values into the formula:
W = b w cos θ ( μ tan θ ) W = b w cos θ ( μ tan θ ) W^(‘)=bw cos theta(mu-tan theta)W’ = b w \cos \theta (\mu – \tan \theta)W=bwcosθ(μtanθ)
After calculating, we get:
W = b w cos θ ( μ tan θ ) (Equation B) W = b w cos θ ( μ tan θ ) (Equation B) W^(‘)=bw cos theta(mu-tan theta)quad(Equation B)W’ = b w \cos \theta (\mu – \tan \theta) \quad \text{(Equation B)}W=bwcosθ(μtanθ)(Equation B)

Total Work Done

The total work done is W + W W + W W+W^(‘)W + W’W+W:
W + W = b w cos θ ( μ + tan θ ) + b w cos θ ( μ tan θ ) W + W = b w cos θ ( μ + tan θ ) + b w cos θ ( μ tan θ ) W+W^(‘)=bw cos theta(mu+tan theta)+bw cos theta(mu-tan theta)W + W’ = b w \cos \theta (\mu + \tan \theta) + b w \cos \theta (\mu – \tan \theta)W+W=bwcosθ(μ+tanθ)+bwcosθ(μtanθ)
After calculating, we get:
W + W = 2 b w μ cos θ W + W = 2 b w μ cos θ W+W^(‘)=2bw mu cos thetaW + W’ = 2 b w \mu \cos \thetaW+W=2bwμcosθ

Conclusion

The total work done in dragging the body a distance b b bbb up the inclined plane and then back down to the starting point is 2 b w μ cos θ 2 b w μ cos θ 2bw mu cos theta2 b w \mu \cos \theta2bwμcosθ. This is achieved by resolving the forces acting on the body into components parallel and perpendicular to the inclined plane and then calculating the work done in each case.
Question:-05(d) एक प्रक्षेप्य 2 gh 2 gh sqrt(2gh)\sqrt{2 \mathrm{gh}}2gh वेग के साथ बिन्दु O O O\mathrm{O}O से प्रक्षेपित किया गया तथा समतल के बिन्दु P ( x , y ) P ( x , y ) P(x,y)\mathrm{P}(\mathrm{x}, \mathrm{y})P(x,y) पर स्पर्श-रेखा से टकराता है जहाँ अक्ष OX OX OX\mathrm{OX}OX तथा OY OY OY\mathrm{OY}OY क्रमशः बिन्दु O O O\mathrm{O}O से क्षैतिज तथा अधोमुखी ऊर्ध्वाधर रेखाएँ हैं । यदि प्रक्षेपण की दो संभव दिशाएँ समकोण पर हों, तो दर्शाइए कि x 2 = 2 hy x 2 = 2 hy x^(2)=2hy\mathrm{x}^2=2 \mathrm{hy}x2=2hy तथा प्रक्षेपण की संभव दिशाओं में से एक, कोण POX को द्विभाजित करती है ।
Question:-05(d) A projectile is fired from a point O O O\mathrm{O}O with velocity 2 gh 2 gh sqrt(2gh)\sqrt{2 \mathrm{gh}}2gh and hits a tangent at the point P ( x , y ) P ( x , y ) P(x,y)\mathrm{P}(\mathrm{x}, \mathrm{y})P(x,y) in the plane, the axes OX OX OX\mathrm{OX}OX and OY OY OY\mathrm{OY}OY being horizontal and vertically downward lines through the point O O O\mathrm{O}O, respectively. Show that if the two possible directions of projection be at right angles, then x 2 = 2 hy x 2 = 2 hy x^(2)=2hy\mathrm{x}^2=2 \mathrm{hy}x2=2hy and then one of the possible directions of projection bisects the angle POX.
Answer:

Introduction

The problem involves a projectile fired from a point O O OOO with an initial velocity 2 g h 2 g h sqrt(2gh)\sqrt{2gh}2gh. The projectile hits a tangent at point P ( x , y ) P ( x , y ) P(x,y)P(x, y)P(x,y) in the plane. The axes O X O X OXOXOX and O Y O Y OYOYOY are horizontal and vertically downward lines through point O O OOO, respectively. We are asked to show that if the two possible directions of projection are at right angles, then x 2 = 2 h y x 2 = 2 h y x^(2)=2hyx^2 = 2hyx2=2hy and that one of the possible directions of projection bisects the angle POX POX “POX”\text{POX}POX.

Assumptions

  1. The projectile is fired from the origin O O OOO.
  2. The initial velocity of the projectile is 2 g h 2 g h sqrt(2gh)\sqrt{2gh}2gh.
  3. The axes O X O X OXOXOX and O Y O Y OYOYOY are horizontal and vertically downward, respectively.
  4. Air resistance is negligible.
  5. The acceleration due to gravity is g g ggg.

Definitions

  • x x xxx and y y yyy: Coordinates of point P P PPP where the projectile hits.
  • θ θ theta\thetaθ: Angle of projection.
  • g g ggg: Acceleration due to gravity.
  • h h hhh: Height from which the projectile is fired.

Method/Approach

We will use the equations of motion for a projectile to find the relationship between x x xxx and y y yyy under the given conditions. The equations of motion for a projectile launched at an angle θ θ theta\thetaθ with initial velocity u u uuu are:
x = u cos ( θ ) t x = u cos ( θ ) t x=u cos(theta)tx = u \cos(\theta) tx=ucos(θ)t
y = u sin ( θ ) t 1 2 g t 2 y = u sin ( θ ) t 1 2 g t 2 y=u sin(theta)t-(1)/(2)gt^(2)y = u \sin(\theta) t – \frac{1}{2} g t^2y=usin(θ)t12gt2
Let’s substitute the values into these equations.

Work/Calculations

  1. Substitute Initial Velocity:
    The initial velocity u = 2 g h u = 2 g h u=sqrt(2gh)u = \sqrt{2gh}u=2gh.
  2. Equations of Motion:
    x = 2 g h cos ( θ ) t x = 2 g h cos ( θ ) t x=sqrt(2gh)cos(theta)tx = \sqrt{2gh} \cos(\theta) tx=2ghcos(θ)t
    y = 2 g h sin ( θ ) t + 1 2 g t 2 y = 2 g h sin ( θ ) t + 1 2 g t 2 y=sqrt(2gh)sin(theta)t+(1)/(2)gt^(2)y = \sqrt{2gh} \sin(\theta) t + \frac{1}{2} g t^2y=2ghsin(θ)t+12gt2
  3. Eliminate t t ttt to get y y yyy in terms of x x xxx:
    Solve t = x 2 g h cos ( θ ) t = x 2 g h cos ( θ ) t=(x)/(sqrt(2gh)cos(theta))t = \frac{x}{\sqrt{2gh} \cos(\theta)}t=x2ghcos(θ) from the first equation and substitute into the second equation.
    y = 2 g h sin ( θ ) ( x 2 g h cos ( θ ) ) + 1 2 g ( x 2 g h cos ( θ ) ) 2 y = 2 g h sin ( θ ) x 2 g h cos ( θ ) + 1 2 g x 2 g h cos ( θ ) 2 y=sqrt(2gh)sin(theta)((x)/(sqrt(2gh)cos(theta)))+(1)/(2)g((x)/(sqrt(2gh)cos(theta)))^(2)y = \sqrt{2gh} \sin(\theta) \left( \frac{x}{\sqrt{2gh} \cos(\theta)} \right) + \frac{1}{2} g \left( \frac{x}{\sqrt{2gh} \cos(\theta)} \right)^2y=2ghsin(θ)(x2ghcos(θ))+12g(x2ghcos(θ))2
    After simplifying, we get:
    y = x tan ( θ ) + x 2 sec 2 θ 4 h y = x tan ( θ ) + x 2 sec 2 θ 4 h y=x tan(theta)+(x^(2)sec^(2)theta)/(4h)y = x \tan(\theta) + \frac{x^2 \sec^2 \theta}{4h}y=xtan(θ)+x2sec2θ4h
    tan 2 θ + 4 h x tan θ + 1 4 h y x 2 = 0 tan 2 θ + 4 h x tan θ + 1 4 h y x 2 = 0 tan^(2)theta+(4h)/(x)tan theta+1-(4hy)/(x^(2))=0\tan^2 \theta + \frac{4h}{x} \tan \theta + 1 – \frac{4hy}{x^2} = 0tan2θ+4hxtanθ+14hyx2=0
  4. Condition for Right Angles:
    For the two possible directions of projection to be at right angles, tan ( θ 1 ) tan ( θ 2 ) = 1 tan ( θ 1 ) tan ( θ 2 ) = 1 tan(theta_(1))tan(theta_(2))=-1\tan(\theta_1) \tan(\theta_2) = -1tan(θ1)tan(θ2)=1.
    Therefore, 1 4 h y x 2 = 1 1 4 h y x 2 = 1 1-(4hy)/(x^(2))=-11-\frac{4 h y}{x^2}=-114hyx2=1
    2 h y x 2 = 1 2 h y x 2 = 1 (2hy)/(x^(2))=1\frac{2 h y}{x^2}=12hyx2=1
    After Calculating, we get:
    x 2 = 2 h y x 2 = 2 h y x^(2)=2hyx^2 = 2hyx2=2hy
  5. Bisecting Angle:
    tan 2 θ + 4 h x tan θ 1 = 0 tan 2 θ + 4 h x tan θ 1 = 0 tan^(2)theta+(4h)/(x)tan theta-1=0\tan^2 \theta+\frac{4 h}{x} \tan \theta-1=0tan2θ+4hxtanθ1=0
    Or
    2 tan θ 1 tan 2 θ = x 2 h = y x 2 tan θ 1 tan 2 θ = x 2 h = y x (2tan theta)/(1-tan^(2)theta)=(x)/(2h)=(y)/(x)\frac{2 \tan \theta}{1-\tan ^2 \theta}=\frac{x}{2 h}=\frac{y}{x}2tanθ1tan2θ=x2h=yx
    i.e., tan 2 θ = y x = tan ϕ tan 2 θ = y x = tan ϕ tan 2theta=(y)/(x)=tan phi\tan 2 \theta=\frac{y}{x}=\tan \phitan2θ=yx=tanϕ where angle of P O X = ϕ P O X = ϕ POX=phiP O X=\phiPOX=ϕ
    Therefore θ = ϕ 2 θ = ϕ 2 theta=(phi)/(2)\theta=\frac{\phi}{2}θ=ϕ2

Conclusion

We have shown that if the two possible directions of projection are at right angles, then x 2 = 2 h y x 2 = 2 h y x^(2)=2hyx^2 = 2hyx2=2hy. Additionally, one of the possible directions of projection bisects the angle POX POX “POX”\text{POX}POX.
Question:-05(e) दर्शाइए कि A = ( 6 xy + z 3 ) i ^ + ( 3 x 2 z ) j ^ + ( 3 x z 2 y ) k ^ A = 6 xy + z 3 i ^ + 3 x 2 z j ^ + 3 x z 2 y k ^ vec(A)=(6xy+z^(3)) hat(i)+(3x^(2)-z) hat(j)+(3xz^(2)-y) hat(k)\overrightarrow{\mathrm{A}}=\left(6 \mathrm{xy}+\mathrm{z}^3\right) \hat{\mathrm{i}}+\left(3 \mathrm{x}^2-\mathrm{z}\right) \hat{\mathrm{j}}+\left(3 x \mathrm{z}^2-\mathrm{y}\right) \hat{\mathrm{k}}A=(6xy+z3)i^+(3x2z)j^+(3xz2y)k^ अघूर्णी है । ϕ ϕ phi\phiϕ को भी ज्ञात कीजिए जबकि A = ϕ A = ϕ vec(A)=grad phi\overrightarrow{\mathrm{A}}=\nabla \phiA=ϕ.
Question:-05(e)Show that A = ( 6 x y + z 3 ) i ^ + ( 3 x 2 z ) j ^ + ( 3 x z 2 y ) k ^ A = 6 x y + z 3 i ^ + 3 x 2 z j ^ + 3 x z 2 y k ^ vec(A)=(6xy+z^(3)) hat(i)+(3x^(2)-z) hat(j)+(3xz^(2)-y) hat(k)\overrightarrow{\mathrm{A}}=\left(6 x y+z^3\right) \hat{i}+\left(3 x^2-z\right) \hat{j}+\left(3 x z^2-y\right) \hat{k}A=(6xy+z3)i^+(3x2z)j^+(3xz2y)k^ is irrotational. Also find ϕ ϕ phi\phiϕ such that A = ϕ A = ϕ vec(A)=grad phi\overrightarrow{\mathrm{A}}=\nabla \phiA=ϕ.
Answer:
Introduction: In this problem, we are given a vector field A A vec(A)\vec{A}A and we need to show that it is irrotational. We also need to find a scalar field ϕ ϕ phi\phiϕ such that A = ϕ A = ϕ vec(A)=grad phi\vec{A}=\nabla \phiA=ϕ
Assumptions: We assume that all the functions are sufficiently differentiable.
Method/Approach: We will use the concept of the curl of a vector field to show that the vector field is irrotational. Then, we will find the scalar field ϕ ϕ phi\phiϕ by integrating the components of A A vec(A)\vec{A}A with respect to their respective variables.
Work/Calculations:
  1. To show that A A vec(A)\vec{A}A is irrotational, we need to show that its curl is equal to the zero vector:
× A = 0 × A = 0 grad xx vec(A)= vec(0)\nabla \times \vec{A}=\overrightarrow{0}×A=0
The curl of A A vec(A)\vec{A}A is given by:
× A = | i ^ j ^ k ^ x y z 6 x y + z 3 3 x 2 z 3 x z 2 y | × A = i ^ j ^ k ^ x y z 6 x y + z 3 3 x 2 z 3 x z 2 y grad xx vec(A)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[6xy+z^(3),3x^(2)-z,3xz^(2)-y]|\nabla \times \vec{A}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 6 x y+z^3 & 3 x^2-z & 3 x z^2-y \end{array}\right|×A=|i^j^k^xyz6xy+z33x2z3xz2y|
Calculating the determinant, we get:
× A = ( ( 3 x z 2 y ) y ( 3 x 2 z ) z ) i ^ ( ( 3 x z 2 y ) x ( 6 x y + z 3 ) z ) j ^ + ( ( 3 x 2 z ) x ( 6 x y + z 3 ) y ) k ^ × A = 3 x z 2 y y 3 x 2 z z i ^ 3 x z 2 y x 6 x y + z 3 z j ^ + 3 x 2 z x 6 x y + z 3 y k ^ {:[grad xx vec(A)=((del(3xz^(2)-y))/(del y)-(del(3x^(2)-z))/(del z)) hat(i)-((del(3xz^(2)-y))/(del x)-(del(6xy+z^(3)))/(del z)) hat(j)+],[((del(3x^(2)-z))/(del x)-(del(6xy+z^(3)))/(del y)) hat(k)]:}\begin{aligned} & \nabla \times \vec{A}=\left(\frac{\partial\left(3 x z^2-y\right)}{\partial y}-\frac{\partial\left(3 x^2-z\right)}{\partial z}\right) \hat{i}-\left(\frac{\partial\left(3 x z^2-y\right)}{\partial x}-\frac{\partial\left(6 x y+z^3\right)}{\partial z}\right) \hat{j}+ \\ & \left(\frac{\partial\left(3 x^2-z\right)}{\partial x}-\frac{\partial\left(6 x y+z^3\right)}{\partial y}\right) \hat{k} \end{aligned}×A=((3xz2y)y(3x2z)z)i^((3xz2y)x(6xy+z3)z)j^+((3x2z)x(6xy+z3)y)k^
Now, we find the partial derivatives:
( 3 x z 2 y ) y = 1 ( 3 x 2 z ) z = 1 ( 3 x z 2 y ) x = 3 z 2 ( 6 x y + z 3 ) z = 3 z 2 ( 3 x 2 z ) x = 6 x ( 6 x y + z 3 ) y = 6 x 3 x z 2 y y = 1 3 x 2 z z = 1 3 x z 2 y x = 3 z 2 6 x y + z 3 z = 3 z 2 3 x 2 z x = 6 x 6 x y + z 3 y = 6 x {:[(del(3xz^(2)-y))/(del y)=-1],[(del(3x^(2)-z))/(del z)=-1],[(del(3xz^(2)-y))/(del x)=3z^(2)],[(del(6xy+z^(3)))/(del z)=3z^(2)],[(del(3x^(2)-z))/(del x)=6x],[(del(6xy+z^(3)))/(del y)=6x]:}\begin{aligned} & \frac{\partial\left(3 x z^2-y\right)}{\partial y}=-1 \\ & \frac{\partial\left(3 x^2-z\right)}{\partial z}=-1 \\ & \frac{\partial\left(3 x z^2-y\right)}{\partial x}=3 z^2 \\ & \frac{\partial\left(6 x y+z^3\right)}{\partial z}=3 z^2 \\ & \frac{\partial\left(3 x^2-z\right)}{\partial x}=6 x \\ & \frac{\partial\left(6 x y+z^3\right)}{\partial y}=6 x \end{aligned}(3xz2y)y=1(3x2z)z=1(3xz2y)x=3z2(6xy+z3)z=3z2(3x2z)x=6x(6xy+z3)y=6x
Substituting the partial derivatives into the expression for the curl, we get:
× A = ( 0 ) i ^ ( 0 ) j ^ + ( 0 ) k ^ = 0 × A = ( 0 ) i ^ ( 0 ) j ^ + ( 0 ) k ^ = 0 grad xx vec(A)=(0) hat(i)-(0) hat(j)+(0) hat(k)= vec(0)\nabla \times \vec{A}=(0) \hat{i}-(0) \hat{j}+(0) \hat{k}=\overrightarrow{0}×A=(0)i^(0)j^+(0)k^=0
Since the curl of A A vec(A)\vec{A}A is equal to the zero vector, A A vec(A)\vec{A}A is irrotational.
  1. To find ϕ ϕ phi\phiϕ such that A = ϕ A = ϕ vec(A)=grad phi\vec{A}=\nabla \phiA=ϕ, we need to solve the following equations:
ϕ x = 6 x y + z 3 ϕ x = 6 x y + z 3 (del phi)/(del x)=6xy+z^(3)\frac{\partial \phi}{\partial x}=6 x y+z^3ϕx=6xy+z3
ϕ y = 3 x 2 z ϕ z = 3 x z 2 y ϕ y = 3 x 2 z ϕ z = 3 x z 2 y {:[(del phi)/(del y)=3x^(2)-z],[(del phi)/(del z)=3xz^(2)-y]:}\begin{aligned} & \frac{\partial \phi}{\partial y}=3 x^2-z \\ & \frac{\partial \phi}{\partial z}=3 x z^2-y \end{aligned}ϕy=3x2zϕz=3xz2y
Now, we will integrate each of these partial derivatives with respect to their respective variables:
ϕ ( x , y , z ) = ( 6 x y + z 3 ) d x = 3 x 2 y + x z 3 + f 1 ( y , z ) ϕ ( x , y , z ) = ( 3 x 2 z ) d y = 3 x 2 y y z + f 2 ( x , z ) ϕ ( x , y , z ) = ( 3 x z 2 y ) d z = 3 x z 3 3 y z + f 3 ( x , y ) ϕ ( x , y , z ) = 6 x y + z 3 d x = 3 x 2 y + x z 3 + f 1 ( y , z ) ϕ ( x , y , z ) = 3 x 2 z d y = 3 x 2 y y z + f 2 ( x , z ) ϕ ( x , y , z ) = 3 x z 2 y d z = 3 x z 3 3 y z + f 3 ( x , y ) {:[phi(x”,”y”,”z)=int(6xy+z^(3))dx=3x^(2)y+xz^(3)+f_(1)(y”,”z)],[phi(x”,”y”,”z)=int(3x^(2)-z)dy=3x^(2)y-yz+f_(2)(x”,”z)],[phi(x”,”y”,”z)=int(3xz^(2)-y)dz=3x(z^(3))/(3)-yz+f_(3)(x”,”y)]:}\begin{aligned} & \phi(x, y, z)=\int\left(6 x y+z^3\right) d x=3 x^2 y+x z^3+f_1(y, z) \\ & \phi(x, y, z)=\int\left(3 x^2-z\right) d y=3 x^2 y-y z+f_2(x, z) \\ & \phi(x, y, z)=\int\left(3 x z^2-y\right) d z=3 x \frac{z^3}{3}-y z+f_3(x, y) \end{aligned}ϕ(x,y,z)=(6xy+z3)dx=3x2y+xz3+f1(y,z)ϕ(x,y,z)=(3x2z)dy=3x2yyz+f2(x,z)ϕ(x,y,z)=(3xz2y)dz=3xz33yz+f3(x,y)
Comparing these expressions for ϕ ( x , y , z ) ϕ ( x , y , z ) phi(x,y,z)\phi(x, y, z)ϕ(x,y,z), we can find a scalar field that satisfies all three partial derivatives:
ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z + f ( x , y , z ) ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z + f ( x , y , z ) phi(x,y,z)=3x^(2)y+xz^(3)-yz+f(x,y,z)\phi(x, y, z)=3 x^2 y+x z^3-y z+f(x, y, z)ϕ(x,y,z)=3x2y+xz3yz+f(x,y,z)
where f ( x , y , z ) f ( x , y , z ) f(x,y,z)f(x, y, z)f(x,y,z) is an arbitrary scalar function. In our case, we can choose f ( x , y , z ) = 0 f ( x , y , z ) = 0 f(x,y,z)=0f(x, y, z)=0f(x,y,z)=0 without loss of generality.
Thus, the scalar field ϕ ϕ phi\phiϕ such that A = ϕ A = ϕ vec(A)=grad phi\vec{A}=\nabla \phiA=ϕ is:
ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z phi(x,y,z)=3x^(2)y+xz^(3)-yz\phi(x, y, z)=3 x^2 y+x z^3-y zϕ(x,y,z)=3x2y+xz3yz
Conclusion: We have shown that the given vector field A A vec(A)\vec{A}A is irrotational. We also found the scalar field ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z ϕ ( x , y , z ) = 3 x 2 y + x z 3 y z phi(x,y,z)=3x^(2)y+xz^(3)-yz\phi(x, y, z)=3 x^2 y+x z^3-y zϕ(x,y,z)=3x2y+xz3yz such that A = ϕ A = ϕ vec(A)=grad phi\vec{A}=\nabla \phiA=ϕ
Question:-06(a) 2 l 2 l 2l2 l2l लम्बाई का एक तार (केबिल) जिसका भार w w w\mathrm{w}w प्रति इकाई (यूनिट) लम्बाई है, एक क्षैतिज रेखा के दो बिन्दुओं P P P\mathrm{P}P तथा Q Q Q\mathrm{Q}Q से लटकी हुई है । दर्शाइए कि तार की विस्तृति (स्पैन) 2 l ( 1 2 h 2 3 l 2 ) 2 l 1 2 h 2 3 l 2 2l(1-(2h^(2))/(3l^(2)))2 l\left(1-\frac{2 \mathrm{~h}^2}{3 l^2}\right)2l(12 h23l2) है, जहाँ h h h\mathrm{h}h तार के कसकर खींची हुई स्थिति में मध्य का झोल है ।
Question:-06(a) A cable of weight w per unit length and length 2 l 2 l 2l2 l2l hangs from two points P P P\mathrm{P}P and Q Q Q\mathrm{Q}Q in the same horizontal line. Show that the span of the cable is 2 l ( 1 2 h 2 3 l 2 ) 2 l 1 2 h 2 3 l 2 2l(1-(2h^(2))/(3l^(2)))2 l\left(1-\frac{2 h^2}{3 l^2}\right)2l(12h23l2), where h h hhh is the sag in the middle of the tightly stretched position.
Answer:

Introduction

The problem involves a cable of weight w w www per unit length and length 2 l 2 l 2l2l2l hanging from two points P P PPP and Q Q QQQ in the same horizontal line. We are asked to show that the span of the cable is 2 l ( 1 2 h 2 3 l 2 ) 2 l 1 2 h 2 3 l 2 2l(1-(2h^(2))/(3l^(2)))2l\left(1-\frac{2 h^2}{3 l^2}\right)2l(12h23l2), where h h hhh is the sag in the middle of the tightly stretched position.

Assumptions

  1. The cable hangs from two points P P PPP and Q Q QQQ in the same horizontal line.
  2. The length of the cable is 2 l 2 l 2l2l2l.
  3. The sag in the middle of the tightly stretched position is h h hhh.

Definitions

  • w w www: Weight per unit length of the cable.
  • l l lll: Half the length of the cable.
  • h h hhh: Sag in the middle of the tightly stretched position.
  • c c ccc: Constant related to the shape of the cable.
  • s s sss: Arc length along the cable.
  • a a aaa: Span of the cable.

Method/Approach

We will use the equations that describe the shape of the cable and its properties to find the span a a aaa in terms of l l lll and h h hhh.
original image
We know that y 2 = c 2 + s 2 y 2 = c 2 + s 2 y^(2)=c^(2)+s^(2)y^2=c^2+s^2y2=c2+s2
At the point B, y = c + h y = c + h y=c+hy=c+hy=c+h and s = l s = l s=ls=ls=l
Therefore ( c + h ) 2 = c 2 + l 2 ( c + h ) 2 = c 2 + l 2 (c+h)^(2)=c^(2)+l^(2)(c+h)^2=c^2+l^2(c+h)2=c2+l2
Or h 2 + 2 c h = l 2 h 2 + 2 c h = l 2 h^(2)+2ch=l^(2)h^2+2 c h=l^2h2+2ch=l2
C = l 2 h 2 2 h or l c = 2 l h l 2 h 2 (1) C = l 2 h 2 2 h or l c = 2 l h l 2 h 2 (1) C=(l^(2)-h^(2))/(2h)” or “(l)/(c)=(2lh)/(l^(2)-h^(2))rarr” (1) “C=\frac{l^2-h^2}{2 h} \text { or } \frac{l}{c}=\frac{2 l h}{l^2-h^2} \rightarrow \text { (1) }C=l2h22h or lc=2lhl2h2 (1)
We know that s = c sinh ( x c ) s = c sinh x c s=c sinh((x)/(c))s=c \sinh \left(\frac{x}{c}\right)s=csinh(xc)
At the point B B BBB,
l = c sinh ( a c ) l = c sinh a c l=c sinh((a)/(c))l=c \sinh \left(\frac{a}{c}\right)l=csinh(ac) or l c = e a c e ( a 2 ) 2 [ l c = e a c e a 2 2 (l)/(c)=(e^((a)/(c))-e^(-((a)/(2))))/(2)[:}\frac{l}{c}=\frac{e^{\frac{a}{c}}-e^{-\left(\frac{a}{2}\right)}}{2}\left[\right.lc=eace(a2)2[ by defination, sinh x = 1 2 ( e x e x ) ] sinh x = 1 2 e x e x {: sinh x=(1)/(2)(e^(x)-e^(-x))]\left.\sinh x=\frac{1}{2}\left(e^x-e^{-x}\right)\right]sinhx=12(exex)]
Or 2 l c = e a c 1 e a 2 2 l c = e a c 1 e a 2 (2l)/(c)=e^((a)/(c))-(1)/(e^((a)/(2)))\frac{2 l}{c}=e^{\frac{a}{c}}-\frac{1}{e^{\frac{a}{2}}}2lc=eac1ea2 or e 2 a c 2 l c e a τ 1 = 0 e 2 a c 2 l c e a τ 1 = 0 e^((2a)/(c))-2(l)/(c)e^((a)/( tau))-1=0e^{\frac{2 a}{c}}-2 \frac{l}{c} e^{\frac{a}{\tau}}-1=0e2ac2lceaτ1=0
This is a quadratic equation for e a 2 e a 2 e^((a)/(2))e^{\frac{a}{2}}ea2, whose positive root is given by
e a c = l c + l 2 c 2 + 1 or a c = log ( l c + 1 + l 2 c 2 ) ( 2 ) e a c = l c + l 2 c 2 + 1 or a c = log l c + 1 + l 2 c 2 ( 2 ) e^((a)/(c))=(l)/(c)+sqrt((l^(2))/(c^(2))+1)” or “(a)/(c)=log((l)/(c)+sqrt(1+(l^(2))/(c^(2))))rarr(2)e^{\frac{a}{c}}=\frac{l}{c}+\sqrt{\frac{l^2}{c^2}+1} \text { or } \frac{a}{c}=\log \left(\frac{l}{c}+\sqrt{1+\frac{l^2}{c^2}}\right) \rightarrow(2)eac=lc+l2c2+1 or ac=log(lc+1+l2c2)(2)
Using (1), we get
1 + l 2 c 2 = 1 + 4 l 2 h 2 l 4 + h 4 2 l 2 h 2 = ( l 2 + h 2 ) 2 ( l 2 h 2 ) 2 (3) 1 + l 2 c 2 = 1 + 4 l 2 h 2 l 4 + h 4 2 l 2 h 2 = l 2 + h 2 2 l 2 h 2 2 (3) 1+(l^(2))/(c^(2))=1+(4l^(2)h^(2))/(l^(4)+h^(4)-2l^(2)h^(2))=((l^(2)+h^(2))^(2))/((l^(2)-h^(2))^(2))rarr” (3) “1+\frac{l^2}{c^2}=1+\frac{4 l^2 h^2}{l^4+h^4-2 l^2 h^2}=\frac{\left(l^2+h^2\right)^2}{\left(l^2-h^2\right)^2} \rightarrow \text { (3) }1+l2c2=1+4l2h2l4+h42l2h2=(l2+h2)2(l2h2)2 (3)
Therefore, l c + 1 + l 2 c 2 = 2 l h l 2 h 2 + l 2 + h 2 l 2 h 2 , b y ( 1 ) l c + 1 + l 2 c 2 = 2 l h l 2 h 2 + l 2 + h 2 l 2 h 2 , b y ( 1 ) (l)/(c)+sqrt(1+(l^(2))/(c^(2)))=(2lh)/(l^(2)-h^(2))+(l^(2)+h^(2))/(l^(2)-h^(2)),by(1)\frac{l}{c}+\sqrt{1+\frac{l^2}{c^2}}=\frac{2 l h}{l^2-h^2}+\frac{l^2+h^2}{l^2-h^2}, b y(1)lc+1+l2c2=2lhl2h2+l2+h2l2h2,by(1) and (3)
= ( l + h ) 2 l 2 h 2 = l + h l h (4) = ( l + h ) 2 l 2 h 2 = l + h l h (4) =((l+h)^(2))/(l^(2)-h^(2))=(l+h)/(l-h)rarr” (4) “=\frac{(l+h)^2}{l^2-h^2}=\frac{l+h}{l-h} \rightarrow \text { (4) }=(l+h)2l2h2=l+hlh (4)
From (1) , (2) and (4), we obtain
a = l 2 h 2 2 h log l + h l h (5) a = l 2 h 2 2 h log l + h l h (5) a=(l^(2)-h^(2))/(2h)log((l+h)/(l-h))rarr” (5) “a=\frac{l^2-h^2}{2 h} \log \frac{l+h}{l-h} \rightarrow \text { (5) }a=l2h22hlogl+hlh (5)
We know that, for | x | < 1 | x | < 1 |x| < 1|x|<1|x|<1,
log ( 1 + x ) = x x 2 2 + x 3 3 , log ( 1 x ) = x x 2 2 x 3 3 log 1 + x 1 x = log ( 1 + x ) log ( 1 x ) = 2 ( x + x 3 3 + ) ( 6 ) log ( 1 + x ) = x x 2 2 + x 3 3 , log ( 1 x ) = x x 2 2 x 3 3 log 1 + x 1 x = log ( 1 + x ) log ( 1 x ) = 2 x + x 3 3 + ( 6 ) {:[log(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-dots”,”log(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-dots],[log((1+x)/(1-x))=log(1+x)-log(1-x)=2(x+(x^(3))/(3)+dots)rarr(6)]:}\begin{aligned} & \log (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots, \log (1-x)=-x-\frac{x^2}{2}-\frac{x^3}{3}-\ldots \\ & \log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2\left(x+\frac{x^3}{3}+\ldots\right) \rightarrow(6) \end{aligned}log(1+x)=xx22+x33,log(1x)=xx22x33log1+x1x=log(1+x)log(1x)=2(x+x33+)(6)
Now log l + h l h = log 1 + h l 1 h l log l + h l h = log 1 + h l 1 h l log((l+h)/(l-h))=log((1+(h)/(l))/(1-(h)/(l)))rarr\log \frac{l+h}{l-h}=\log \frac{1+\frac{h}{l}}{1-\frac{h}{l}} \rightarrowlogl+hlh=log1+hl1hl (7)
If the ratio h l h l (h)/(l)\frac{h}{l}hl is small, then by (6) and (7)
log l + h l h = 2 ( h l + 1 3 h 3 l 3 ) log l + h l h = 2 h l + 1 3 h 3 l 3 log((l+h)/(l-h))=2((h)/(l)+(1)/(3)(h^(3))/(l^(3)))\log \frac{l+h}{l-h}=2\left(\frac{h}{l}+\frac{1}{3} \frac{h^3}{l^3}\right)logl+hlh=2(hl+13h3l3)
Putting in (5), we obtain
a = l 2 h 2 2 h × 2 ( h l + h 3 3 l 3 ) = l 2 h 2 l + ( l 2 h 2 ) h 2 3 l 3 = l h 2 l + h 2 3 l 1 3 ( h l ) 4 = l 2 h 2 3 l , neglecting the term ( h l ) 4 a = l 2 h 2 2 h × 2 h l + h 3 3 l 3 = l 2 h 2 l + l 2 h 2 h 2 3 l 3 = l h 2 l + h 2 3 l 1 3 h l 4 = l 2 h 2 3 l , neglecting the term h l 4 {:[a=(l^(2)-h^(2))/(2h)xx2((h)/(l)+(h^(3))/(3l^(3)))=(l^(2)-h^(2))/(l)+((l^(2)-h^(2))h^(2))/(3l^(3))],[=l-(h^(2))/(l)+(h^(2))/(3l)-(1)/(3)((h)/(l))^(4)],[=l-(2h^(2))/(3l)”,”” neglecting the term “((h)/(l))^(4)]:}\begin{aligned} a & =\frac{l^2-h^2}{2 h} \times 2\left(\frac{h}{l}+\frac{h^3}{3 l^3}\right)=\frac{l^2-h^2}{l}+\frac{\left(l^2-h^2\right) h^2}{3 l^3} \\ & =l-\frac{h^2}{l}+\frac{h^2}{3 l}-\frac{1}{3}\left(\frac{h}{l}\right)^4 \\ & =l-\frac{2 h^2}{3 l}, \text { neglecting the term }\left(\frac{h}{l}\right)^4 \end{aligned}a=l2h22h×2(hl+h33l3)=l2h2l+(l2h2)h23l3=lh2l+h23l13(hl)4=l2h23l, neglecting the term (hl)4
Hence a = l ( 1 2 h 2 3 l 2 ) a = l 1 2 h 2 3 l 2 a=l(1-(2h^(2))/(3l^(2)))a=l\left(1-\frac{2 h^2}{3 l^2}\right)a=l(12h23l2)

Conclusion

We have shown that the span of the cable is 2 l ( 1 2 h 2 3 l 2 ) 2 l 1 2 h 2 3 l 2 2l(1-(2h^(2))/(3l^(2)))2l\left(1-\frac{2 h^2}{3 l^2}\right)2l(12h23l2), where h h hhh is the sag in the middle of the tightly stretched position.
Question:-06(b) प्राचल-विचरण विधि का उपयोग करके, निम्नलिखित अवकल समीकरण :
( x 2 1 ) d 2 y d x 2 2 x d y d x + 2 y = ( x 2 1 ) 2 x 2 1 d 2 y d x 2 2 x d y d x + 2 y = x 2 1 2 (x^(2)-1)(d^(2)y)/(dx^(2))-2x(dy)/(dx)+2y=(x^(2)-1)^(2)\left(x^2-1\right) \frac{d^2 y}{d x^2}-2 x \frac{d y}{d x}+2 y=\left(x^2-1\right)^2(x21)d2ydx22xdydx+2y=(x21)2
को हल कीजिए, जहाँ समानीत समीकरण का एक हल y = x y = x y=x\mathrm{y}=\mathrm{x}y=x दिया गया है ।
Question:-06(b) Solve the following differential equation by using the method of variation of parameters : ( x 2 1 ) d 2 y d x 2 2 x d y d x + 2 y = ( x 2 1 ) 2 x 2 1 d 2 y d x 2 2 x d y d x + 2 y = x 2 1 2 (x^(2)-1)(d^(2)y)/(dx^(2))-2x(dy)/(dx)+2y=(x^(2)-1)^(2)\left(x^2-1\right) \frac{d^2 y}{d x^2}-2 x \frac{d y}{d x}+2 y=\left(x^2-1\right)^2(x21)d2ydx22xdydx+2y=(x21)2, given that y = x y = x y=x\mathrm{y}=\mathrm{x}y=x is one solution of the reduced equation.
Answer:

Introduction

We are given a second-order differential equation and one of its solutions. Our task is to find the general solution using the method of variation of parameters.

Assumptions

  1. y = x y = x y=xy = xy=x is a solution of the reduced equation.
  2. We will use the method of variation of parameters to find the general solution.

Definitions

  • y y yyy: Dependent variable
  • x x xxx: Independent variable
  • P , Q , R P , Q , R P,Q,RP, Q, RP,Q,R: Coefficients in the differential equation
  • u , v u , v u,vu, vu,v: Variables used in the method of variation of parameters
  • w w www: Wronskian determinant
  • A , B A , B A,BA, BA,B: Constants used in the method of variation of parameters

Method/Approach

We’ll first rewrite the given differential equation in a standard form. Then, we’ll apply the method of variation of parameters to find the general solution.

Work/Calculations

Step 1: Standard Form of Differential Equation

The given equation can be rewritten as:
d 2 y d x 2 2 x x 2 1 d y d x + 2 x 2 1 y = ( x 2 1 ) ( 1 ) d 2 y d x 2 2 x x 2 1 d y d x + 2 x 2 1 y = x 2 1 ( 1 ) (d^(2)y)/(dx^(2))-(2x)/(x^(2)-1)(dy)/(dx)+(2)/(x^(2)-1)y=(x^(2)-1)—-(1)\frac{d^2 y}{d x^2}-\frac{2 x}{x^2-1} \frac{d y}{d x}+\frac{2}{x^2-1} y=\left(x^2-1\right)—-(1)d2ydx22xx21dydx+2x21y=(x21)(1)
Here, P = 2 x x 2 1 P = 2 x x 2 1 P=-(2x)/(x^(2)-1)P = -\frac{2x}{x^2-1}P=2xx21, Q = 2 x 2 1 Q = 2 x 2 1 Q=(2)/(x^(2)-1)Q = \frac{2}{x^2-1}Q=2x21, and R = x 2 1 R = x 2 1 R=x^(2)-1R = x^2-1R=x21.

Step 2: Applying Variation of Parameters

We are given that y = x y = x y=xy = xy=x is a solution of the reduced equation. Let’s assume y = u v = x v y = u v = x v y=uv=xvy = uv = xvy=uv=xv.
Then v v vvv satisfies:
d 2 v d x 2 + ( P + 2 u d u d x ) d v d x = 0 d 2 v d x 2 + P + 2 u d u d x d v d x = 0 (d^(2)v)/(dx^(2))+(P+(2)/(u)(du)/(dx))(dv)/(dx)=0\frac{d^2 v}{d x^2}+\left(P+\frac{2}{u} \frac{d u}{d x}\right) \frac{d v}{d x}=0d2vdx2+(P+2ududx)dvdx=0
Substituting P P PPP and u = x u = x u=xu=xu=x, we get:
d 2 v d x 2 + ( 2 x x 2 1 + 2 x ) d v d x = 0 d 2 v d x 2 + ( 2 x ( x 2 1 ) ) d v d x = 0 Let d v d x = t d t d x + [ 2 x ( x 2 1 ) ] t = 0 d t t = 2 d x x ( x 2 1 ) d t t = 2 [ 1 x + 1 2 ( x 1 ) + 1 2 ( x + 1 ) ] log t = 2 log x + log ( x 1 ) + log ( x + 1 ) + log c 1 d 2 v d x 2 + 2 x x 2 1 + 2 x d v d x = 0 d 2 v d x 2 + 2 x x 2 1 d v d x = 0 Let d v d x = t d t d x + 2 x x 2 1 t = 0 d t t = 2 d x x x 2 1 d t t = 2 1 x + 1 2 ( x 1 ) + 1 2 ( x + 1 ) log t = 2 log x + log ( x 1 ) + log ( x + 1 ) + log c 1 {:[(d^(2)v)/(dx^(2))+(-(2x)/(x^(2)-1)+(2)/(x))(dv)/(dx)=0],[(d^(2)v)/(dx^(2))+(-(2)/(x(x^(2)-1)))(dv)/(dx)=0″Let”(dv)/(dx)=t],[(dt)/(dx)+[-(2)/(x(x^(2)-1))]t=0],[(dt)/(t)=(2dx)/(x(x^(2)-1))],[(dt)/(t)=2[-(1)/(x)+(1)/(2(x-1))+(1)/(2(x+1))]],[log t=-2log x+log(x-1)+log(x+1)+log c_(1)]:}\begin{aligned} & \frac{\mathbf{d}^2 v}{\mathbf{d} x^2}+\left(-\frac{2 x}{x^2-1}+\frac{2}{x}\right) \frac{\mathbf{d} v}{\mathbf{d} x}=0 \\ & \frac{\mathbf{d}^2 v}{\mathbf{d} x^2}+\left(-\frac{2}{x\left(x^2-1\right)}\right) \frac{\mathbf{d} v}{\mathbf{d} x}=0 \space \space \text {Let}\space\frac{\mathbf{d} v}{\mathbf{d} x}=t \\ & \frac{\mathbf{d} t}{\mathbf{d} x}+\left[-\frac{2}{x\left(x^2-1\right)}\right] t=0 \\ & \frac{\mathbf{d} t}{t}=\frac{2 \mathbf{d} x}{x\left(x^2-1\right)} \\ & \frac{\mathbf{d} t}{t}=2\left[-\frac{1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}\right] \\ & \log t=-2 \log x+\log (x-1)+\log (x+1)+\log c_1 \end{aligned}d2vdx2+(2xx21+2x)dvdx=0d2vdx2+(2x(x21))dvdx=0 Let dvdx=tdtdx+[2x(x21)]t=0dtt=2dxx(x21)dtt=2[1x+12(x1)+12(x+1)]logt=2logx+log(x1)+log(x+1)+logc1
t = c 1 ( x 2 1 x 2 ) d v = c 1 ( 1 1 x 2 ) d x v = c 1 ( x + 1 x ) + c 2 y c = x [ c 1 ( x + 1 x ) + c 2 ] y c = c 1 ( x 2 + 1 ) + c 2 x t = c 1 x 2 1 x 2 d v = c 1 1 1 x 2 d x v = c 1 x + 1 x + c 2 y c = x c 1 x + 1 x + c 2 y c = c 1 x 2 + 1 + c 2 x {:[t=c_(1)((x^(2)-1)/(x^(2)))],[ intdv=intc_(1)(1-(1)/(x^(2)))dx],[v=c_(1)(x+(1)/(x))+c_(2)],[y_(c)=x[c_(1)(x+(1)/(x))+c_(2)]],[y_(c)=c_(1)(x^(2)+1)+c_(2)x]:}\begin{aligned} & t=c_1\left(\frac{x^2-1}{x^2}\right) \\ & \int \mathbf{d} v=\int c_1\left(1-\frac{1}{x^2}\right) \mathbf{d} x \\ & v=c_1\left(x+\frac{1}{x}\right)+c_2 \\ & y_c=x\left[c_1\left(x+\frac{1}{x}\right)+c_2\right] \\ & y_c=c_1\left(x^2+1\right)+c_2 x \end{aligned}t=c1(x21x2)dv=c1(11x2)dxv=c1(x+1x)+c2yc=x[c1(x+1x)+c2]yc=c1(x2+1)+c2x
Let y p = A u + B v ; u = x 2 + 1 , v = x y p = A u + B v ; u = x 2 + 1 , v = x y_(p)=Au+Bv;u=x^(2)+1,v=xy_p=A u+B v ; u=x^2+1, v=xyp=Au+Bv;u=x2+1,v=x
Then w = | x 2 + 1 2 x x 1 | = x 2 + 1 w = x 2 + 1 2 x x 1 = x 2 + 1 w=|[x^(2)+1,2x],[x,1]|=-x^(2)+1w=\left|\begin{array}{cc}x^2+1 & 2 x \\ x & 1\end{array}\right|=-x^2+1w=|x2+12xx1|=x2+1
Therefore, A = V R x 2 + 1 B = u R x 2 + 1 A = V R x 2 + 1 B = u R x 2 + 1 A=int-(VR)/(-x^(2)+1)B=int(uR)/(-x^(2)+1)A=\int-\frac{V R}{-x^2+1} B=\int \frac{u R}{-x^2+1}A=VRx2+1B=uRx2+1
A = ( x 2 1 ) x 1 + x 2 d x B = ( x 2 + 1 ) d x A = x 2 2 B = ( x 3 3 + x ) y p = x 2 2 ( x 2 + 1 ) ( x 3 3 + x ) x y p = x 2 2 ( x 2 + 1 ) x ( x 3 3 + x ) A = x 2 1 x 1 + x 2 d x B = x 2 + 1 d x A = x 2 2 B = x 3 3 + x y p = x 2 2 x 2 + 1 x 3 3 + x x y p = x 2 2 x 2 + 1 x x 3 3 + x {:[A=int-((x^(2)-1)x)/(-1+x^(2))dxB=-int(x^(2)+1)dx],[A=(x^(2))/(2)B=-((x^(3))/(3)+x)],[y_(p)=(x^(2))/(2)(x^(2)+1)-((x^(3))/(3)+x)x],[y_(p)=(x^(2))/(2)(x^(2)+1)-x((x^(3))/(3)+x)]:}\begin{aligned} & A=\int-\frac{\left(x^2-1\right) x}{-1+x^2} \mathbf{d} x B=-\int\left(x^2+1\right) \mathbf{d} x \\ & A=\frac{x^2}{2} B=-\left(\frac{x^3}{3}+x\right) \\ & y_p=\frac{x^2}{2}\left(x^2+1\right)-\left(\frac{x^3}{3}+x\right) x \\ & y_p=\frac{x^2}{2}\left(x^2+1\right)-x\left(\frac{x^3}{3}+x\right) \end{aligned}A=(x21)x1+x2dxB=(x2+1)dxA=x22B=(x33+x)yp=x22(x2+1)(x33+x)xyp=x22(x2+1)x(x33+x)
General solution of (1) is
y = c 1 ( x 2 + 1 ) + c 2 x + x 4 6 x 2 3 y = c 1 x 2 + 1 + c 2 x + x 4 6 x 2 3 y=c_(1)(x^(2)+1)+c_(2)x+(x^(4))/(6)-(x^(2))/(3)y=c_1\left(x^2+1\right)+c_2 x+\frac{x^4}{6}-\frac{x^2}{3}y=c1(x2+1)+c2x+x46x23

Conclusion

We have successfully solved the given differential equation using the method of variation of parameters. The general solution is y = c 1 ( x 2 + 1 ) + c 2 x + x 4 6 x 2 3 y = c 1 ( x 2 + 1 ) + c 2 x + x 4 6 x 2 3 y=c_(1)(x^(2)+1)+c_(2)x+(x^(4))/(6)-(x^(2))/(3)y = c_1(x^2+1) + c_2x + \frac{x^4}{6} – \frac{x^2}{3}y=c1(x2+1)+c2x+x46x23.
Question:-06(c) समतल में ग्रीन के प्रमेय को C ( 3 x 2 8 y 2 ) dx + ( 4 y 6 xy ) dy C 3 x 2 8 y 2 dx + ( 4 y 6 xy ) dy oint_(C)(3x^(2)-8y^(2))dx+(4y-6xy)dy\oint_{\mathrm{C}}\left(3 \mathrm{x}^2-8 \mathrm{y}^2\right) \mathrm{dx}+(4 \mathrm{y}-6 \mathrm{xy}) \mathrm{dy}C(3x28y2)dx+(4y6xy)dy के लिए सत्यापित कीजिए, जहाँ C , x = 0 , y = 0 , x + y = 1 C , x = 0 , y = 0 , x + y = 1 C,x=0,y=0,x+y=1\mathrm{C}, \mathrm{x}=0, \mathrm{y}=0, \mathrm{x}+\mathrm{y}=1C,x=0,y=0,x+y=1 द्वारा परिभाषित क्षेत्र का सीमा वक्र है ।
Question:-06(c)Verify Green’s theorem in the plane for C ( 3 x 2 8 y 2 ) d x + ( 4 y 6 x y ) d y C 3 x 2 8 y 2 d x + ( 4 y 6 x y ) d y oint_(C)(3x^(2)-8y^(2))dx+(4y-6xy)dy\oint_C\left(3 x^2-8 y^2\right) d x+(4 y-6 x y) d yC(3x28y2)dx+(4y6xy)dy, where C C C\mathrm{C}C is the boundary curve of the region defined by x = 0 , y = 0 x = 0 , y = 0 x=0,y=0\mathrm{x}=0, \mathrm{y}=0x=0,y=0, x + y = 1 x + y = 1 x+y=1x+y=1x+y=1
Answer:

Introduction

We are tasked with verifying Green’s theorem for a given vector field and a specific region in the plane. Green’s theorem relates a line integral around a closed curve C C CCC to a double integral over the plane region R R RRR bounded by C C CCC.

Assumptions

  • The curve C C CCC is positively oriented.
  • C C CCC is the boundary of the region R R RRR, defined by x = 0 x = 0 x=0x=0x=0, y = 0 y = 0 y=0y=0y=0, and x + y = 1 x + y = 1 x+y=1x+y=1x+y=1.

Definitions

  • M = 3 x 2 8 y 2 M = 3 x 2 8 y 2 M=3x^(2)-8y^(2)M = 3x^2 – 8y^2M=3x28y2
  • N = 4 y 6 x y N = 4 y 6 x y N=4y-6xyN = 4y – 6xyN=4y6xy
  • R R RRR: The region bounded by C C CCC
  • C C CCC: The closed curve consisting of three line segments O A O A OAOAOA, A B A B ABABAB, and B O B O BOBOBO

Theorem

Green’s theorem states that
R ( N x M y ) d x d y = C ( M d x + N d y ) R N x M y d x d y = C ( M d x + N d y ) ∬_(R)((del N)/(del x)-(del M)/(del y))dxdy=oint_(C)(Mdx+Ndy)\iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) dxdy = \oint_C (M dx + N dy)R(NxMy)dxdy=C(Mdx+Ndy)

Method/Approach

  1. Calculate N x M y N x M y (del N)/(del x)-(del M)/(del y)\frac{\partial N}{\partial x} – \frac{\partial M}{\partial y}NxMy and integrate it over the region R R RRR.
  2. Evaluate the line integral C ( M d x + N d y ) C ( M d x + N d y ) oint_(C)(Mdx+Ndy)\oint_C (M dx + N dy)C(Mdx+Ndy) along the curve C C CCC.
  3. Compare the two results to verify Green’s theorem.

Work/Calculations

original image
Here M = 3 x 2 8 y 2 , N = 4 y 6 x y M = 3 x 2 8 y 2 , N = 4 y 6 x y M=3x^(2)-8y^(2),N=4y-6xyM=3 x^2-8 y^2, N=4 y-6 x yM=3x28y2,N=4y6xy
The closed curve C C C\mathrm{C}C consists of the straight-line OA OA OA\mathrm{OA}OA, the straight-line AB AB AB\mathrm{AB}AB and straight-line BO BO BO\mathrm{BO}BO. The positive direction is traversing C C C\mathrm{C}C is as shown in the figure and R R R\mathrm{R}R is the region bounded by c c c\mathrm{c}c.
We have R ( N x M y ) d x d y = R [ x ( 4 y 2 x y ) y ( 3 x 2 8 y 2 ) ] d x d y R N x M y d x d y = R x ( 4 y 2 x y ) y 3 x 2 8 y 2 d x d y ∬_(R)((del N)/(del x)-(del M)/(del y))dxdy=∬_(R)[(del)/(del x)(4y-2xy)-(del)/(del y)(3x^(2)-8y^(2))]dxdy\iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{d} x \mathbf{d} y=\iint_R\left[\frac{\partial}{\partial x}(4 y-2 x y)-\frac{\partial}{\partial y}\left(3 x^2-8 y^2\right)\right] \mathbf{d} x \mathbf{d} yR(NxMy)dxdy=R[x(4y2xy)y(3x28y2)]dxdy
= R [ 6 y + 16 y ] d x d y = 10 R y d x d y = 10 x = 0 1 y = 0 1 x y d x d y = R [ 6 y + 16 y ] d x d y = 10 R y d x d y = 10 x = 0 1 y = 0 1 x y d x d y =∬_(R)[-6y+16 y]dxdy=10∬_(R)ydxdy=10int_(x=0)^(1)int_(y=0)^(1-x)ydxdy=\iint_R[-6 y+16 y] \mathbf{d} x \mathbf{d} y=10 \iint_R y \mathbf{d} x \mathbf{d} y=10 \int_{x=0}^1 \int_{y=0}^{1-x} y \mathbf{d} x \mathbf{d} y=R[6y+16y]dxdy=10Rydxdy=10x=01y=01xydxdy
For the region R , x R , x R,x\mathrm{R}, \mathrm{x}R,x varies from o to 1 and y y y\mathrm{y}y varies from o o o\mathrm{o}o to 1 x 1 x 1-x1-\mathrm{x}1x
= 10 0 1 [ y 2 2 ] y = 0 1 x d x = 10 0 1 y 2 2 y = 0 1 x d x =10int_(0)^(1)[(y^(2))/(2)]_(y=0)^(1-x)dx=10 \int_0^1\left[\frac{y^2}{2}\right]_{y=0}^{1-x} \mathbf{d} x=1001[y22]y=01xdx, integrating with respect to y y y\mathrm{y}y regarding x x x\mathrm{x}x as constant
= 5 0 1 ( 1 x ) 2 d x = 5 0 1 ( x 1 ) 2 d x = 5 3 [ ( x 1 ) 3 ] 0 1 = 5 0 1 ( 1 x ) 2 d x = 5 0 1 ( x 1 ) 2 d x = 5 3 ( x 1 ) 3 0 1 =5int_(0)^(1)(1-x)^(2)dx=5int_(0)^(1)(x-1)^(2)dx=(5)/(3)[(x-1)^(3)]_(0)^(1)=5 \int_0^1(1-x)^2 \mathbf{d} x=5 \int_0^1(x-1)^2 \mathbf{d} x=\frac{5}{3}\left[(x-1)^3\right]_0^1=501(1x)2dx=501(x1)2dx=53[(x1)3]01
= 5 3 [ 0 ( 1 ) 3 ] = 5 3 ( 1 ) = 5 3 0 ( 1 ) 3 = 5 3 ( 1 ) =(5)/(3)[0-(-1)^(3)]=(5)/(3)—-(1)=\frac{5}{3}\left[0-(-1)^3\right]=\frac{5}{3}—-(1)=53[0(1)3]=53(1)
Now let us evaluate the line integral along the curve C. Along the straight-line OA, we have y = 0 , d y = 0 y = 0 , d y = 0 y=0,dy=0y=0, \mathbf{d} y=0y=0,dy=0 and x x xxx varies from 0 to 1.
Line integral along O A = 0 1 3 x 2 d x = [ x 3 ] 0 1 = 1 O A = 0 1 3 x 2 d x = x 3 0 1 = 1 OA=int_(0)^(1)3x^(2)dx=[x^(3)]_(0)^(1)=1O A=\int_0^1 3 x^2 \mathbf{d} x=\left[x^3\right]_0^1=1OA=013x2dx=[x3]01=1
Along the straight-line AB AB AB\mathrm{AB}AB, we have x = 1 y , d x = d y x = 1 y , d x = d y x=1-y,dx=-dyx=1-y, \mathbf{d} x=-\mathbf{d} yx=1y,dx=dy and y y y\mathrm{y}y varies from 0 to 1
Line integral along AB AB AB\mathrm{AB}AB
= 0 1 [ { 3 ( 1 y ) 2 8 y 2 } ( d y ) + { 4 y 6 y ( 1 y ) } d y ] = 0 1 [ 3 ( 1 2 y + y 2 ) + 8 y 2 + 4 y 6 y + 6 y 2 ] d y = 0 1 ( 11 y 2 + 4 y 3 ) d y = [ 11 3 y 3 + 2 y 2 3 y ] 0 1 = 8 3 = 0 1 3 ( 1 y ) 2 8 y 2 ( d y ) + { 4 y 6 y ( 1 y ) } d y = 0 1 3 1 2 y + y 2 + 8 y 2 + 4 y 6 y + 6 y 2 d y = 0 1 11 y 2 + 4 y 3 d y = 11 3 y 3 + 2 y 2 3 y 0 1 = 8 3 {:[=int_(0)^(1)[{3(1-y)^(2)8y^(2)}(-dy)+{4y-6y(1-y)}dy]],[=int_(0)^(1)[-3(1-2y+y^(2))+8y^(2)+4y-6y+6y^(2)]dy],[=int_(0)^(1)(11y^(2)+4y-3)dy=[(11)/(3)y^(3)+2y^(2)-3y]_(0)^(1)=(8)/(3)]:}\begin{aligned} & =\int_0^1\left[\left\{3(1-y)^2 8 y^2\right\}(-\mathbf{d} y)+\{4 y-6 y(1-y)\} \mathbf{d} y\right] \\ & =\int_0^1\left[-3\left(1-2 y+y^2\right)+8 y^2+4 y-6 y+6 y^2\right] \mathbf{d} y \\ & =\int_0^1\left(11 y^2+4 y-3\right) \mathbf{d} y=\left[\frac{11}{3} y^3+2 y^2-3 y\right]_0^1=\frac{8}{3} \end{aligned}=01[{3(1y)28y2}(dy)+{4y6y(1y)}dy]=01[3(12y+y2)+8y2+4y6y+6y2]dy=01(11y2+4y3)dy=[113y3+2y23y]01=83
Along the straight-line BO BO BO\mathrm{BO}BO, we have x = 0 , d x = 0 x = 0 , d x = 0 x=0,dx=0x=0, \mathbf{d} x=0x=0,dx=0 and y y yyy varies from 1 to 0
Line integral along B O = 1 3 4 y d y = 2 [ y 2 ] 1 0 = 2 B O = 1 3 4 y d y = 2 y 2 1 0 = 2 BO=int_(1)^(3)4ydy=2[y^(2)]_(1)^(0)=-2B O=\int_1^3 4 y \mathbf{d} y=2\left[y^2\right]_1^0=-2BO=134ydy=2[y2]10=2
Total line integral along the closed curve C C C\mathrm{C}C.
= 1 + 8 3 2 = 5 3 ( 2 ) = 1 + 8 3 2 = 5 3 ( 2 ) =1+(8)/(3)-2=(5)/(3)rarr(2)=1+\frac{8}{3}-2=\frac{5}{3} \rightarrow(2)=1+832=53(2)
From (1) and (2), we see that Green’s theorem is verified

Step 3: Verification

Both the double integral over R R RRR and the line integral along C C CCC yield 5 3 5 3 (5)/(3)\frac{5}{3}53, verifying Green’s theorem.

Conclusion

We have successfully verified Green’s theorem for the given vector field and region. Both the double integral over the region R R RRR and the line integral along the curve C C CCC resulted in 5 3 5 3 (5)/(3)\frac{5}{3}53, confirming that Green’s theorem holds in this case.
Question:-07(a) स्टोक्स प्रमेय को F = x i ^ + z 2 j ^ + y 2 k ^ F = x i ^ + z 2 j ^ + y 2 k ^ vec(F)=x hat(i)+z^(2) hat(j)+y^(2) hat(k)\overrightarrow{\mathrm{F}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{z}^2 \hat{\mathrm{j}}+\mathrm{y}^2 \hat{\mathrm{k}}F=xi^+z2j^+y2k^ के लिए प्रथम अष्टांशक में स्थित समतल पृष्ठ : x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1 पर सत्यापित कीजिए ।
Question:-07(a) Verify Stokes’ theorem for F = x i ^ + z 2 j ^ + y 2 k ^ F = x i ^ + z 2 j ^ + y 2 k ^ vec(F)=x hat(i)+z^(2) hat(j)+y^(2) hat(k)\vec{F}=x \hat{i}+z^2 \hat{j}+y^2 \hat{k}F=xi^+z2j^+y2k^ over the plane surface : x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1 lying in the first octant.
Answer:
Introduction:
In this analysis, we aim to verify Stokes’ theorem for the given vector field F = x i ^ + z 2 j ^ + y 2 k ^ F = x i ^ + z 2 j ^ + y 2 k ^ vec(F)=x hat(i)+z^(2) hat(j)+y^(2) hat(k)\vec{F} = x\hat{i} + z^2\hat{j} + y^2\hat{k}F=xi^+z2j^+y2k^ over a specific plane surface. Stokes’ theorem relates the circulation of a vector field along a closed curve to the flux of its curl through a surface bounded by that curve. The surface of interest is defined by x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1 and lies in the first octant.
The problem at hand is to verify Stokes’ theorem for the given vector field F = x i ^ + z 2 j ^ + y 2 k ^ F = x i ^ + z 2 j ^ + y 2 k ^ vec(F)=x hat(i)+z^(2) hat(j)+y^(2) hat(k)\vec{F} = x\hat{i} + z^2\hat{j} + y^2\hat{k}F=xi^+z2j^+y2k^ over the plane surface defined by x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1 in the first octant.
Stokes’ theorem states that:
C F d r = S ( × F ) n ^ d s (Equation 1) C F d r = S ( × F ) n ^ d s (Equation 1) oint_(C) vec(F)*d vec(r)=∬_(S)(grad xx vec(F))* hat(n)ds quad(Equation 1)\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, ds \quad \text{(Equation 1)}CFdr=S(×F)n^ds(Equation 1)

Calculate the Curl of F F vec(F)\vec{F}F

The curl of F F vec(F)\vec{F}F is given by:
× F = | i ^ j ^ k ^ x y z x z 2 y 2 | × F = i ^ j ^ k ^ x y z x z 2 y 2 grad xx vec(F)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[x,z^(2),y^(2)]|\nabla \times \vec{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & z^2 & y^2 \end{array} \right|×F=|i^j^k^xyzxz2y2|
This simplifies to 2 ( y z ) i ^ 2 ( y z ) i ^ 2(y-z) hat(i)2(y – z)\hat{i}2(yz)i^.

Calculate the Unit Normal Vector n ^ n ^ hat(n)\hat{n}n^

The surface is defined by ϕ = x + y + z 1 = 0 ϕ = x + y + z 1 = 0 phi=x+y+z-1=0\phi = x+y+z – 1 = 0ϕ=x+y+z1=0. The gradient of ϕ ϕ phi\phiϕ is ϕ = i ^ + j ^ + k ^ ϕ = i ^ + j ^ + k ^ grad phi= hat(i)+ hat(j)+ hat(k)\nabla \phi = \hat{i} + \hat{j} + \hat{k}ϕ=i^+j^+k^.
The unit normal vector n ^ n ^ hat(n)\hat{n}n^ is:
n ^ = ϕ | ϕ | = i ^ + j ^ + k ^ 3 n ^ = ϕ | ϕ | = i ^ + j ^ + k ^ 3 hat(n)=(grad phi)/(|grad phi|)=(( hat(i))+( hat(j))+( hat(k)))/(sqrt3)\hat{n} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}n^=ϕ|ϕ|=i^+j^+k^3

Calculate d s d s dsdsds

The differential area element d s d s dsdsds is given by:
d s = d x d y | n ^ k ^ | = d x d y 1 3 d s = d x d y | n ^ k ^ | = d x d y 1 3 ds=(dxdy)/(|( hat(n))*( hat(k))|)=(dxdy)/((1)/(sqrt3))ds = \frac{dx \, dy}{|\hat{n} \cdot \hat{k}|} = \frac{dx \, dy}{\frac{1}{\sqrt{3}}}ds=dxdy|n^k^|=dxdy13

Calculate S ( × F ) n ^ d s S ( × F ) n ^ d s ∬_(S)(grad xx vec(F))* hat(n)ds\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} \, dsS(×F)n^ds

( × F ) n ^ d s = 2 ( y z ) d x d y ( × F ) n ^ d s = 2 ( y z ) d x d y (grad xx vec(F))* hat(n)ds=2(y-z)dxdy(\nabla \times \vec{F}) \cdot \hat{n} \, ds = 2(y – z) \, dx \, dy(×F)n^ds=2(yz)dxdy
Substitute z = 1 x y z = 1 x y z=1-x-yz = 1 – x – yz=1xy:
= 2 [ y ( 1 x y ) ] d x d y = 2 [ y ( 1 x y ) ] d x d y =2[y-(1-x-y)]dxdy= 2[y – (1 – x – y)] \, dx \, dy=2[y(1xy)]dxdy
= 2 [ 2 y + x 1 ] d x d y = 2 [ 2 y + x 1 ] d x d y =2[2y+x-1]dxdy= 2[2y + x – 1] \, dx \, dy=2[2y+x1]dxdy
Now, integrate this over the region R R RRR defined by x : 0 1 x : 0 1 x:0rarr1x: 0 \to 1x:01 and y : 0 1 x y : 0 1 x y:0rarr1-xy: 0 \to 1-xy:01x:
2 x = 0 1 [ y = 0 1 x ( 2 y + x 1 ) d y ] d x 2 x = 0 1 y = 0 1 x ( 2 y + x 1 ) d y d x 2int_(x=0)^(1)[int_(y=0)^(1-x)(2y+x-1)dy]dx2 \int_{x=0}^{1} \left[ \int_{y=0}^{1-x} (2y + x – 1) \, dy \right] \, dx2x=01[y=01x(2y+x1)dy]dx
First, integrate with respect to y y yyy:
( 2 y + x 1 ) d y = 2 y 2 2 + x y y = y 2 + x y y ( 2 y + x 1 ) d y = 2 y 2 2 + x y y = y 2 + x y y int(2y+x-1)dy=2(y^(2))/(2)+xy-y=y^(2)+xy-y\int (2y + x – 1) \, dy = 2\frac{y^2}{2} + xy – y = y^2 + xy – y(2y+x1)dy=2y22+xyy=y2+xyy
Now, evaluate this integral from y = 0 y = 0 y=0y = 0y=0 to y = 1 x y = 1 x y=1-xy = 1 – xy=1x:
[ y 2 + x y y ] y = 0 1 x = ( 1 x ) 2 + x ( 1 x ) ( 1 x ) = ( 1 x ) 2 + x x 2 1 + x = ( 1 x ) 2 x 2 y 2 + x y y y = 0 1 x = ( 1 x ) 2 + x ( 1 x ) ( 1 x ) = ( 1 x ) 2 + x x 2 1 + x = ( 1 x ) 2 x 2 [y^(2)+xy-y]_(y=0)^(1-x)=(1-x)^(2)+x(1-x)-(1-x)=(1-x)^(2)+x-x^(2)-1+x=(1-x)^(2)-x^(2)\left[ y^2 + xy – y \right]_{y=0}^{1-x} = (1-x)^2 + x(1-x) – (1-x) = (1-x)^2 + x – x^2 – 1 + x = (1-x)^2 – x^2[y2+xyy]y=01x=(1x)2+x(1x)(1x)=(1x)2+xx21+x=(1x)2x2
Now, integrate this result with respect to x x xxx:
2 x = 0 1 ( ( 1 x ) 2 x 2 ) d x 2 x = 0 1 ( ( 1 x ) 2 x 2 ) d x 2int_(x=0)^(1)((1-x)^(2)-x^(2))dx2 \int_{x=0}^{1} ((1-x)^2 – x^2) \, dx2x=01((1x)2x2)dx
= 2 x = 0 1 ( 1 2 x + x 2 x 2 ) d x = 2 x = 0 1 ( 1 2 x + x 2 x 2 ) d x =2int_(x=0)^(1)(1-2x+x^(2)-x^(2))dx= 2 \int_{x=0}^{1} (1 – 2x + x^2 – x^2) \, dx=2x=01(12x+x2x2)dx
= 2 x = 0 1 ( 1 2 x ) d x = 2 x = 0 1 ( 1 2 x ) d x =2int_(x=0)^(1)(1-2x)dx= 2 \int_{x=0}^{1} (1 – 2x) \, dx=2x=01(12x)dx
= 2 [ x x 2 ] x = 0 1 = 2 ( 1 1 ) = 0 = 2 x x 2 x = 0 1 = 2 ( 1 1 ) = 0 =2[x-x^(2)]_(x=0)^(1)=2(1-1)=0= 2 \left[ x – x^2 \right]_{x=0}^{1} = 2 (1 – 1) = 0=2[xx2]x=01=2(11)=0

Line Integral Along A B A B ABABAB

Along A B A B ABABAB, x + y = 1 x + y = 1 x+y=1x+y=1x+y=1 and z = 0 z = 0 z=0z=0z=0. Let x = t x = t x=tx=tx=t, then y = 1 t y = 1 t y=1-ty=1-ty=1t.
A B F d r = t = 1 0 t d t = 1 2 A B F d r = t = 1 0 t d t = 1 2 int_(AB) vec(F)*d vec(r)=int_(t=1)^(0)tdt=-(1)/(2)\int_{AB} \vec{F} \cdot d\vec{r} = \int_{t=1}^0 t \, dt = -\frac{1}{2}ABFdr=t=10tdt=12

Line Integral Along B C B C BCBCBC

Along B C B C BCBCBC, y + z = 1 y + z = 1 y+z=1y+z=1y+z=1 and x = 0 x = 0 x=0x=0x=0. Let y = t y = t y=ty=ty=t, then z = 1 t z = 1 t z=1-tz=1-tz=1t.
B C F d r = t = 1 0 ( 1 2 t ) d t = 0 B C F d r = t = 1 0 ( 1 2 t ) d t = 0 int_(BC) vec(F)*d vec(r)=int_(t=1)^(0)(1-2t)dt=0\int_{BC} \vec{F} \cdot d\vec{r} = \int_{t=1}^0 (1-2t) \, dt = 0BCFdr=t=10(12t)dt=0

Line Integral Along C A C A CACACA

Along C A C A CACACA, x + z = 1 x + z = 1 x+z=1x+z=1x+z=1 and y = 0 y = 0 y=0y=0y=0. Let x = t x = t x=tx=tx=t, then z = 1 t z = 1 t z=1-tz=1-tz=1t.
C A F d r = t = 0 1 t d t = 1 2 C A F d r = t = 0 1 t d t = 1 2 int_(CA) vec(F)*d vec(r)=int_(t=0)^(1)tdt=(1)/(2)\int_{CA} \vec{F} \cdot d\vec{r} = \int_{t=0}^1 t \, dt = \frac{1}{2}CAFdr=t=01tdt=12

Sum of Line Integrals

C F d r = A B F d r + B C F d r + C A F d r = 1 2 + 0 + 1 2 = 0 C F d r = A B F d r + B C F d r + C A F d r = 1 2 + 0 + 1 2 = 0 oint_(C) vec(F)*d vec(r)=int_(AB) vec(F)*d vec(r)+int_(BC) vec(F)*d vec(r)+int_(CA) vec(F)*d vec(r)=-(1)/(2)+0+(1)/(2)=0\oint_{C} \vec{F} \cdot d\vec{r} = \int_{AB} \vec{F} \cdot d\vec{r} + \int_{BC} \vec{F} \cdot d\vec{r} + \int_{CA} \vec{F} \cdot d\vec{r} = -\frac{1}{2} + 0 + \frac{1}{2} = 0CFdr=ABFdr+BCFdr+CAFdr=12+0+12=0
Conclusion:
After carefully evaluating both sides of Stokes’ theorem, we find that the line integral of F F vec(F)\vec{F}F around the closed curve C C CCC is equal to zero. This is in agreement with the flux of × F × F grad xx vec(F)\nabla \times \vec{F}×F through the surface S S SSS. Therefore, we have successfully verified Stokes’ theorem for the given vector field and surface in the first octant.
Question:-07(b) लाप्लास रूपांतरण का उपयोग करके निम्नलिखित प्रारंभिक मान समस्या : d 2 y dt 2 3 dy dt + 2 y = h ( t ) d 2 y dt 2 3 dy dt + 2 y = h ( t ) (d^(2)y)/(dt^(2))-3(dy)/(dt)+2y=h(t)\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dt}^2}-3 \frac{\mathrm{dy}}{\mathrm{dt}}+2 \mathrm{y}=\mathrm{h}(\mathrm{t})d2ydt23dydt+2y=h(t), जहाँ h ( t ) = { 2 , 0 < t < 4 , 0 , t > 4 , y ( 0 ) = 0 , y ( 0 ) = 0 h ( t ) = 2 , 0 < t < 4 , 0 , t > 4 , y ( 0 ) = 0 , y ( 0 ) = 0 h(t)={[2″,”,0 < t < 4″,”],[0″,”,t > 4″,”]y(0)=0,y^(‘)(0)=0:}\mathrm{h}(\mathrm{t})=\left\{\begin{array}{cc}2, & 0<\mathrm{t}<4, \\ 0, & \mathrm{t}>4,\end{array} \mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=0\right.h(t)={2,0<t<4,0,t>4,y(0)=0,y(0)=0 को हल कीजिए।
Question:-07(b) Solve the following initial value problem by using Laplace’s transformation d 2 y dt 2 3 dy dt + 2 y = h ( t ) d 2 y dt 2 3 dy dt + 2 y = h ( t ) (d^(2)y)/(dt^(2))-3(dy)/(dt)+2y=h(t)\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dt}^2}-3 \frac{\mathrm{dy}}{\mathrm{dt}}+2 \mathrm{y}=\mathrm{h}(\mathrm{t})d2ydt23dydt+2y=h(t), where
h ( t ) = { 2 , 0 < t < 4 , 0 , t > 4 , y ( 0 ) = 0 , y ( 0 ) = 0 h ( t ) = 2 , 0 < t < 4 , 0 , t > 4 , y ( 0 ) = 0 , y ( 0 ) = 0 h(t)={[2″,”,0 < t < 4″,”],[0″,”,t > 4″,”]quady(0)=0,quady^(‘)(0)=0:}\mathrm{h}(\mathrm{t})=\left\{\begin{array}{cc} 2, & 0<\mathrm{t}<4, \\ 0, & \mathrm{t}>4, \end{array} \quad \mathrm{y}(0)=0, \quad \mathrm{y}^{\prime}(0)=0\right.h(t)={2,0<t<4,0,t>4,y(0)=0,y(0)=0
Answer:

Introduction

The problem is an initial value problem (IVP) involving a second-order linear ordinary differential equation (ODE) with a piecewise-defined forcing function h ( t ) h ( t ) h(t)h(t)h(t). The equation is:
d 2 y d t 2 3 d y d t + 2 y = h ( t ) d 2 y d t 2 3 d y d t + 2 y = h ( t ) (d^(2)y)/(dt^(2))-3(dy)/(dt)+2y=h(t)\frac{d^2 y}{dt^2} – 3 \frac{dy}{dt} + 2y = h(t)d2ydt23dydt+2y=h(t)
The initial conditions are y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0) = 0y(0)=0 and y ( 0 ) = 0 y ( 0 ) = 0 y^(‘)(0)=0y'(0) = 0y(0)=0. The function h ( t ) h ( t ) h(t)h(t)h(t) is defined as:
h ( t ) = { 2 , 0 < t < 4 , 0 , t > 4 h ( t ) = 2 ,      0 < t < 4 , 0 ,      t > 4 h(t)={[2″,”,0 < t < 4″,”],[0″,”,t > 4]:}h(t) = \begin{cases} 2, & 0 < t < 4, \\ 0, & t > 4 \end{cases}h(t)={2,0<t<4,0,t>4
We will use Laplace’s transformation to solve this problem. Let’s go through it step-by-step to understand it thoroughly.

Work/Calculations

Step 1: Take the Laplace Transform of Both Sides

The Laplace transform of the given ODE is:
L { d 2 y d t 2 } 3 L { d y d t } + 2 L { y } = L { h ( t ) } L d 2 y d t 2 3 L d y d t + 2 L { y } = L { h ( t ) } L{(d^(2)y)/(dt^(2))}-3L{(dy)/(dt)}+2L{y}=L{h(t)}\mathcal{L}\left\{\frac{d^2 y}{dt^2}\right\} – 3\mathcal{L}\left\{\frac{dy}{dt}\right\} + 2\mathcal{L}\{y\} = \mathcal{L}\{h(t)\}L{d2ydt2}3L{dydt}+2L{y}=L{h(t)}
Using the properties of Laplace transforms, we get:
s 2 Y ( s ) s y ( 0 ) y ( 0 ) 3 ( s Y ( s ) y ( 0 ) ) + 2 Y ( s ) = H ( s ) s 2 Y ( s ) s y ( 0 ) y ( 0 ) 3 ( s Y ( s ) y ( 0 ) ) + 2 Y ( s ) = H ( s ) s^(2)Y(s)-sy(0)-y^(‘)(0)-3(sY(s)-y(0))+2Y(s)=H(s)s^2 Y(s) – sy(0) – y'(0) – 3(sY(s) – y(0)) + 2Y(s) = H(s)s2Y(s)sy(0)y(0)3(sY(s)y(0))+2Y(s)=H(s)
Let’s substitute the initial conditions y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0) = 0y(0)=0 and y ( 0 ) = 0 y ( 0 ) = 0 y^(‘)(0)=0y'(0) = 0y(0)=0:
s 2 Y ( s ) 0 0 3 ( s Y ( s ) 0 ) + 2 Y ( s ) = H ( s ) s 2 Y ( s ) 0 0 3 ( s Y ( s ) 0 ) + 2 Y ( s ) = H ( s ) s^(2)Y(s)-0-0-3(sY(s)-0)+2Y(s)=H(s)s^2 Y(s) – 0 – 0 – 3(sY(s) – 0) + 2Y(s) = H(s)s2Y(s)003(sY(s)0)+2Y(s)=H(s)
After simplifying, we get:
( s 2 3 s + 2 ) Y ( s ) = H ( s ) ( s 2 3 s + 2 ) Y ( s ) = H ( s ) (s^(2)-3s+2)Y(s)=H(s)(s^2 – 3s + 2)Y(s) = H(s)(s23s+2)Y(s)=H(s)

Step 2: Find H ( s ) H ( s ) H(s)H(s)H(s)

The function h ( t ) h ( t ) h(t)h(t)h(t) is piecewise-defined. It can be represented as h ( t ) = 2 u ( t ) 2 u ( t 4 ) h ( t ) = 2 u ( t ) 2 u ( t 4 ) h(t)=2u(t)-2u(t-4)h(t) = 2u(t) – 2u(t-4)h(t)=2u(t)2u(t4), where u ( t ) u ( t ) u(t)u(t)u(t) is the unit step function.
The Laplace transform of h ( t ) h ( t ) h(t)h(t)h(t) is:
H ( s ) = 2 L { u ( t ) } 2 L { u ( t 4 ) e 4 s } H ( s ) = 2 L { u ( t ) } 2 L { u ( t 4 ) e 4 s } H(s)=2L{u(t)}-2L{u(t-4)e^(-4s)}H(s) = 2\mathcal{L}\{u(t)\} – 2\mathcal{L}\{u(t-4)e^{-4s}\}H(s)=2L{u(t)}2L{u(t4)e4s}
After calculating, we get:
H ( s ) = 2 s 2 e 4 s s H ( s ) = 2 s 2 e 4 s s H(s)=(2)/(s)-(2e^(-4s))/(s)H(s) = \frac{2}{s} – \frac{2e^{-4s}}{s}H(s)=2s2e4ss

Step 3: Solve for Y ( s ) Y ( s ) Y(s)Y(s)Y(s)

Substitute H ( s ) H ( s ) H(s)H(s)H(s) into the equation:
( s 2 3 s + 2 ) Y ( s ) = 2 s 2 e 4 s s ( s 2 3 s + 2 ) Y ( s ) = 2 s 2 e 4 s s (s^(2)-3s+2)Y(s)=(2)/(s)-(2e^(-4s))/(s)(s^2 – 3s + 2)Y(s) = \frac{2}{s} – \frac{2e^{-4s}}{s}(s23s+2)Y(s)=2s2e4ss
Combine like terms:
Y ( s ) ( s 2 3 s + 2 ) = 2 s 2 e 4 s s Y ( s ) ( s 2 3 s + 2 ) = 2 s 2 e 4 s s Y(s)(s^(2)-3s+2)=(2)/(s)-(2e^(-4s))/(s)Y(s)(s^2 – 3s + 2) = \frac{2}{s} – \frac{2e^{-4s}}{s}Y(s)(s23s+2)=2s2e4ss
Solve for Y ( s ) Y ( s ) Y(s)Y(s)Y(s):
Y ( s ) = 2 s 2 e 4 s s s 2 3 s + 2 Y ( s ) = 2 s 2 e 4 s s s 2 3 s + 2 Y(s)=((2)/(s)-(2e^(-4s))/(s))/(s^(2)-3s+2)Y(s) = \frac{\frac{2}{s} – \frac{2e^{-4s}}{s}}{s^2 – 3s + 2}Y(s)=2s2e4sss23s+2
After simplifying, we get:
Y ( s ) = 2 ( 1 e 4 s ) s ( s 1 ) ( s 2 ) Y ( s ) = 2 ( 1 e 4 s ) s ( s 1 ) ( s 2 ) Y(s)=(2(1-e^(-4s)))/(s(s-1)(s-2))Y(s) = \frac{2(1 – e^{-4s})}{s(s-1)(s-2)}Y(s)=2(1e4s)s(s1)(s2)
This can be further simplified to:
Y ( s ) = ( 1 e 4 s ) [ 1 s 2 s 1 + 1 s 2 ] Y ( s ) = 1 e 4 s 1 s 2 s 1 + 1 s 2 Y(s)=(1-e^(-4s))[(1)/(s)-(2)/(s-1)+(1)/(s-2)]Y(s) = \left(1 – e^{-4s}\right)\left[\frac{1}{s} – \frac{2}{s-1} + \frac{1}{s-2}\right]Y(s)=(1e4s)[1s2s1+1s2]

Step 4: Detailed Inverse Laplace Transform

This can be broken down into two parts for easier inverse Laplace transformation:
Y ( s ) = [ 1 s 2 s 1 + 1 s 2 ] [ e 4 s s + 2 e 4 s s 1 + e 4 s s 2 ] Y ( s ) = 1 s 2 s 1 + 1 s 2 e 4 s s + 2 e 4 s s 1 + e 4 s s 2 Y(s)=[(1)/(s)-(2)/(s-1)+(1)/(s-2)]-[(e^(-4s))/(s)+(2e^(-4s))/(s-1)+(e^(-4s))/(s-2)]Y(s) = \left[\frac{1}{s} – \frac{2}{s-1} + \frac{1}{s-2}\right] – \left[\frac{e^{-4s}}{s} + \frac{2e^{-4s}}{s-1} + \frac{e^{-4s}}{s-2}\right]Y(s)=[1s2s1+1s2][e4ss+2e4ss1+e4ss2]

Inverse Laplace Transform of the First Part

The inverse Laplace transform of 1 s 2 s 1 + 1 s 2 1 s 2 s 1 + 1 s 2 (1)/(s)-(2)/(s-1)+(1)/(s-2)\frac{1}{s} – \frac{2}{s-1} + \frac{1}{s-2}1s2s1+1s2 is straightforward:
L 1 { 1 s 2 s 1 + 1 s 2 } = 1 2 e t + e 2 t L 1 1 s 2 s 1 + 1 s 2 = 1 2 e t + e 2 t L^(-1){(1)/(s)-(2)/(s-1)+(1)/(s-2)}=1-2e^(t)+e^(2t)\mathcal{L}^{-1}\left\{\frac{1}{s} – \frac{2}{s-1} + \frac{1}{s-2}\right\} = 1 – 2e^t + e^{2t}L1{1s2s1+1s2}=12et+e2t

Inverse Laplace Transform of the Second Part

The inverse Laplace transform of e 4 s s + 2 e 4 s s 1 + e 4 s s 2 e 4 s s + 2 e 4 s s 1 + e 4 s s 2 (e^(-4s))/(s)+(2e^(-4s))/(s-1)+(e^(-4s))/(s-2)\frac{e^{-4s}}{s} + \frac{2e^{-4s}}{s-1} + \frac{e^{-4s}}{s-2}e4ss+2e4ss1+e4ss2 involves exponential-shift theorems:
L 1 { e 4 s s + 2 e 4 s s 1 + e 4 s s 2 } = u ( t 4 ) + 2 e ( t 4 ) e 2 ( t 4 ) L 1 e 4 s s + 2 e 4 s s 1 + e 4 s s 2 = u ( t 4 ) + 2 e ( t 4 ) e 2 ( t 4 ) L^(-1){(e^(-4s))/(s)+(2e^(-4s))/(s-1)+(e^(-4s))/(s-2)}=u(t-4)+2e^((t-4))-e^(2(t-4))\mathcal{L}^{-1}\left\{\frac{e^{-4s}}{s} + \frac{2e^{-4s}}{s-1} + \frac{e^{-4s}}{s-2}\right\} = u(t-4) + 2e^{(t-4)} – e^{2(t-4)}L1{e4ss+2e4ss1+e4ss2}=u(t4)+2e(t4)e2(t4)
Here, u ( t 4 ) u ( t 4 ) u(t-4)u(t-4)u(t4) is a unit step function that becomes 1 for t 4 t 4 t >= 4t \geq 4t4 and is zero for t < 4 t < 4 t < 4t < 4t<4. It "turns on" the terms 2 e t 4 e 2 t 4 2 e t 4 e 2 t 4 2e^(t-4)-e^(2t-4)2e^{t-4} – e^{2t-4}2et4e2t4 when t 4 t 4 t >= 4t \geq 4t4, reflecting the change in h ( t ) h ( t ) h(t)h(t)h(t) at that time.

Combine Both Parts

Combining both parts, we get:
y ( t ) = ( 1 2 e t + e 2 t ) ( u ( t 4 ) + 2 e ( t 4 ) e 2 ( t 4 ) ) y ( t ) = 1 2 e t + e 2 t u ( t 4 ) + 2 e ( t 4 ) e 2 ( t 4 ) y(t)=(1-2e^(t)+e^(2t))-(u(t-4)+2e^((t-4))-e^(2(t-4)))y(t) = \left(1 – 2e^t + e^{2t}\right) – \left(u(t-4) + 2e^{(t-4)} – e^{2(t-4)}\right)y(t)=(12et+e2t)(u(t4)+2e(t4)e2(t4))
After simplifying, we get:
y ( t ) = { e 2 t 2 e t + 2 e t 4 e 2 t 4 ; t > 4 e 2 t 2 e t + 1 ; t < 4 y ( t ) = e 2 t 2 e t + 2 e t 4 e 2 t 4 ; t > 4 e 2 t 2 e t + 1 ; t < 4 y(t)={[e^(2t)-2e^(t)+2e^(t-4)-e^(2t-4);t > 4],[e^(2t)-2e^(t)+1;t < 4]:}y(t) = \left\{\begin{array}{c} e^{2t} – 2e^t + 2e^{t-4} – e^{2t-4} ; t > 4 \\ e^{2t} – 2e^t + 1 ; t < 4 \end{array}\right.y(t)={e2t2et+2et4e2t4;t>4e2t2et+1;t<4

Conclusion

The solution to the initial value problem is:
y ( t ) = { e 2 t 2 e t + 2 e t 4 e 2 t 4 ; t > 4 e 2 t 2 e t + 1 ; t < 4 y ( t ) = e 2 t 2 e t + 2 e t 4 e 2 t 4 ; t > 4 e 2 t 2 e t + 1 ; t < 4 y(t)={[e^(2t)-2e^(t)+2e^(t-4)-e^(2t-4);t > 4],[e^(2t)-2e^(t)+1;t < 4]:}y(t) = \left\{\begin{array}{c} e^{2t} – 2e^t + 2e^{t-4} – e^{2t-4} ; t > 4 \\ e^{2t} – 2e^t + 1 ; t < 4 \end{array}\right.y(t)={e2t2et+2et4e2t4;t>4e2t2et+1;t<4
This function satisfies the given differential equation and initial conditions. We’ve gone through each step in detail, including the inverse Laplace transform and the role of the unit step function u ( t 4 ) u ( t 4 ) u(t-4)u(t-4)u(t4), to arrive at the final solution.
Question:-07(c) माना किसी भी अनुप्रस्थ-काट का एक बेलन दूसरे स्थिर बेलन पर संतुलित है, जहाँ वक्रीय पृष्ठों का संस्पर्श रूक्ष है तथा उभयनिष्ठ स्पर्श-रेखा क्षैतिज है । माना दोनों बेलनों के स्पर्श बिन्दु पर उनकी वक्रता त्रिज्याएँ ρ ρ rho\rhoρ तथा ρ ρ rho^(‘)\rho^{\prime}ρ हैं और संस्पर्श बिन्दु से ऊपरी बेलन के गुरुत्व केन्द्र की ऊँचाई h h h\mathrm{h}h है । दर्शाइए कि स्थायी साम्य में ऊपरी बेलन संतुलित है यदि h < ρ ρ ρ + ρ h < ρ ρ ρ + ρ h < (rhorho^(‘))/(rho+rho^(‘))\mathrm{h}<\frac{\rho \rho^{\prime}}{\rho+\rho^{\prime}}h<ρρρ+ρ
Question:-07(c) Suppose a cylinder of any cross-section is balanced on another fixed cylinder, the contact of curved surfaces being rough and the common tangent line horizontal. Let ρ ρ rho\rhoρ and ρ ρ rho^(‘)\rho^{\prime}ρ be the radii of curvature of the two cylinders at the point of contact and h h hhh be the height of centre of gravity of the upper cylinder above the point of contact. Show that the upper cylinder is balanced in stable equilibrium if h < ρ ρ ρ + ρ h < ρ ρ ρ + ρ h < (rhorho^(‘))/(rho+rho^(‘))\mathrm{h}<\frac{\rho \rho^{\prime}}{\rho+\rho^{\prime}}h<ρρρ+ρ.
Answer:

Introduction

The problem is about two cylinders in contact with each other. One cylinder is balanced on top of another fixed cylinder. The point where they touch is called the point of contact. The problem asks us to show that the upper cylinder is in stable equilibrium under certain conditions. Specifically, we need to prove that the upper cylinder will be stable if the height h h hhh of its center of gravity above the point of contact is less than ρ ρ ρ + ρ ρ ρ ρ + ρ (rhorho^(‘))/(rho+rho^(‘))\frac{\rho \rho’}{\rho + \rho’}ρρρ+ρ, where ρ ρ rho\rhoρ and ρ ρ rho^(‘)\rho’ρ are the radii of curvature for the two cylinders at the point of contact.

Work/Calculations

Step 1: Define Variables and Initial Conditions

Let D D DDD and D D D^(‘)D’D be the centers of curvature of the sections of the cylinders at the point of contact A A AAA. Then A D = ρ A D = ρ AD=rhoAD = \rhoAD=ρ and A D = ρ A D = ρ AD^(‘)=rho^(‘)AD’ = \rho’AD=ρ. Let A C = h A C = h AC=hAC = hAC=h, where C C CCC is the center of gravity of the upper cylinder.

Step 2: Displacement of the Upper Cylinder

Suppose the upper cylinder is slightly displaced, and the point of contact A A AAA moves through a small angle θ θ theta^(‘)\theta’θ about D D D^(‘)D’D. The line D C D C DCDCDC makes a small angle θ θ theta\thetaθ with D D D D DD^(‘)DD’DD.
Since θ θ theta\thetaθ and θ θ theta^(‘)\theta’θ are small, we can approximate the sections near A A AAA as circular arcs with radii ρ ρ rho\rhoρ and ρ ρ rho^(‘)\rho’ρ. Therefore, we have:
ρ θ = ρ θ (Equation 1) ρ θ = ρ θ (Equation 1) rho theta=rho^(‘)theta^(‘)quad(Equation 1)\rho \theta = \rho’ \theta’ \quad \text{(Equation 1)}ρθ=ρθ(Equation 1)
original image

Step 3: Calculate the Height of the Center of Gravity G G GGG

The height of the center of gravity G G GGG above D D D^(‘)D’D is given by:
[ ( ρ + ρ ) cos θ ( ρ h ) cos ( θ + θ ) ] ρ + ρ cos θ ( ρ h ) cos θ + θ [(rho+rho^(‘))cos theta^(‘)-(rho-h)cos(theta+theta^(‘))]\left[ \left( \rho + \rho’ \right) \cos \theta’ – (\rho – h) \cos \left( \theta + \theta’ \right) \right][(ρ+ρ)cosθ(ρh)cos(θ+θ)]

Step 4: Calculate the Potential Energy V V VVV

The potential energy V V VVV of the upper cylinder is:
V = W [ ( ρ + ρ ) cos θ ( ρ h ) cos ( θ + θ ) ] V = W ρ + ρ cos θ ( ρ h ) cos θ + θ V=W[(rho+rho^(‘))cos theta^(‘)-(rho-h)cos(theta+theta^(‘))]V = W \left[ \left( \rho + \rho’ \right) \cos \theta’ – (\rho – h) \cos \left( \theta + \theta’ \right) \right]V=W[(ρ+ρ)cosθ(ρh)cos(θ+θ)]
Let’s substitute the values:
V = W [ ( ρ + ρ ) ( 1 1 2 θ 2 ) ( ρ h ) ( 1 1 2 ( θ + θ ) 2 ) ] V = W ρ + ρ 1 1 2 θ 2 ( ρ h ) 1 1 2 θ + θ 2 V=W[(rho+rho^(‘))(1-(1)/(2)theta^(‘2))-(rho-h)(1-(1)/(2)(theta+theta^(‘))^(2))]V = W \left[ \left( \rho + \rho’ \right) \left( 1 – \frac{1}{2} \theta’^2 \right) – (\rho – h) \left( 1 – \frac{1}{2} \left( \theta + \theta’ \right)^2 \right) \right]V=W[(ρ+ρ)(112θ2)(ρh)(112(θ+θ)2)]
After calculating, we get:
V = W [ 1 2 ( ρ h ) ( θ + θ ) 2 1 2 ( ρ + ρ ) θ 2 ] + C V = W 1 2 ( ρ h ) θ + θ 2 1 2 ρ + ρ θ 2 + C V=W[(1)/(2)(rho-h)(theta+theta^(‘))^(2)-(1)/(2)(rho+rho^(‘))theta^(‘2)]+CV = W \left[ \frac{1}{2} (\rho – h) \left( \theta + \theta’ \right)^2 – \frac{1}{2} \left( \rho + \rho’ \right) \theta’^2 \right] + CV=W[12(ρh)(θ+θ)212(ρ+ρ)θ2]+C
where C C CCC is a constant.

Step 5: Further Simplification Using Equation 1

V = 1 2 W [ ( ρ h ) ( ρ θ ρ + θ ) 2 ( ρ + ρ ) θ 2 ] + C V = 1 2 W ( ρ h ) ρ θ ρ + θ 2 ρ + ρ θ 2 + C V=(1)/(2)W[(rho-h)((rho^(‘)theta^(‘))/(rho)+theta^(‘))^(2)-(rho+rho^(‘))theta^(‘2)]+CV=\frac{1}{2} W\left[(\rho-h)\left(\frac{\rho^{\prime} \theta^{\prime}}{\rho}+\theta^{\prime}\right)^2-\left(\rho+\rho^{\prime}\right) \theta^{\prime 2}\right]+CV=12W[(ρh)(ρθρ+θ)2(ρ+ρ)θ2]+C
After obtaining the expression for V V VVV, there are additional steps to simplify it further. Using Equation 1, we can rewrite V V VVV as:
V = 1 2 W θ 2 [ ( ρ h ) ( 1 + ρ ρ ) 2 ( ρ + ρ ) ] + C V = 1 2 W θ 2 ( ρ h ) 1 + ρ ρ 2 ( ρ + ρ ) + C V=(1)/(2)Wtheta^(‘2)[(rho-h)(1+(rho^(‘))/(rho))^(2)-(rho^(‘)+rho)]+CV = \frac{1}{2} W \theta’^2 \left[ (\rho – h) \left( 1 + \frac{\rho’}{\rho} \right)^2 – (\rho’ + \rho) \right] + CV=12Wθ2[(ρh)(1+ρρ)2(ρ+ρ)]+C
After calculating, we get:
V = 1 2 W θ 2 [ ρ + ρ ρ ] 2 [ ( ρ h ) ρ 2 ρ + ρ ] + C V = 1 2 W θ 2 ρ + ρ ρ 2 ( ρ h ) ρ 2 ρ + ρ + C V=(1)/(2)Wtheta^(‘2)[(rho+rho^(‘))/(rho)]^(2)[(rho-h)-(rho^(2))/(rho+rho^(‘))]+CV = \frac{1}{2} W \theta’^2 \left[ \frac{\rho + \rho’}{\rho} \right]^2 \left[ (\rho – h) – \frac{\rho^2}{\rho + \rho’} \right] + CV=12Wθ2[ρ+ρρ]2[(ρh)ρ2ρ+ρ]+C
Finally, we arrive at:
V = 1 2 W θ 2 [ ρ + ρ ρ ] 2 [ ρ ρ ρ + ρ h ] + C V = 1 2 W θ 2 ρ + ρ ρ 2 ρ ρ ρ + ρ h + C V=(1)/(2)Wtheta^(‘2)[(rho+rho^(‘))/(rho)]^(2)[(rhorho^(‘))/(rho+rho^(‘))-h]+CV = \frac{1}{2} W \theta’^2 \left[ \frac{\rho + \rho’}{\rho} \right]^2 \left[ \frac{\rho \rho’}{\rho + \rho’} – h \right] + CV=12Wθ2[ρ+ρρ]2[ρρρ+ρh]+C

Step 6: Conditions for Stable Equilibrium

For stable equilibrium, d V d θ = 0 d V d θ = 0 (dV)/(dtheta^(‘))=0\frac{dV}{d\theta’} = 0dVdθ=0 and d 2 V d θ 2 > 0 d 2 V d θ 2 > 0 (d^(2)V)/(dtheta^(‘2)) > 0\frac{d^2V}{d\theta’^2} > 0d2Vdθ2>0.
d V d θ = W ( ρ + ρ ρ ) 2 θ [ ρ ρ ρ + ρ h ] d V d θ = W ρ + ρ ρ 2 θ ρ ρ ρ + ρ h (dV)/(dtheta^(‘))=W((rho+rho^(‘))/(rho))^(2)theta^(‘)[(rhorho^(‘))/(rho+rho^(‘))-h]\frac{dV}{d\theta’} = W \left( \frac{\rho + \rho’}{\rho} \right)^2 \theta’ \left[ \frac{\rho \rho’}{\rho + \rho’} – h \right]dVdθ=W(ρ+ρρ)2θ[ρρρ+ρh]
d 2 V d θ 2 = W ( ρ + ρ ρ ) 2 [ ρ ρ ρ + ρ h ] d 2 V d θ 2 = W ρ + ρ ρ 2 ρ ρ ρ + ρ h (d^(2)V)/(dtheta^(‘2))=W((rho+rho^(‘))/(rho))^(2)[(rhorho^(‘))/(rho+rho^(‘))-h]\frac{d^2V}{d\theta’^2} = W \left( \frac{\rho + \rho’}{\rho} \right)^2 \left[ \frac{\rho \rho’}{\rho + \rho’} – h \right]d2Vdθ2=W(ρ+ρρ)2[ρρρ+ρh]
Now, for θ = 0 θ = 0 theta^(‘)=0\theta’ = 0θ=0, the first derivative d V d θ = 0 d V d θ = 0 (dV)/(dtheta^(‘))=0\frac{dV}{d\theta’} = 0dVdθ=0, indicating that it is a position of equilibrium.
Also, at θ = 0 θ = 0 theta^(‘)=0\theta’ = 0θ=0, the second derivative d 2 V d θ 2 > 0 d 2 V d θ 2 > 0 (d^(2)V)/(dtheta^(‘2)) > 0\frac{d^2V}{d\theta’^2} > 0d2Vdθ2>0 if ρ ρ ρ + ρ > h ρ ρ ρ + ρ > h (rhorho^(‘))/(rho+rho^(‘)) > h\frac{\rho \rho’}{\rho + \rho’} > hρρρ+ρ>h.
This confirms that h < ρ ρ ρ + ρ h < ρ ρ ρ + ρ h < (rhorho^(‘))/(rho+rho^(‘))h < \frac{\rho \rho’}{\rho + \rho’}h<ρρρ+ρ for stable equilibrium.

Conclusion

We have shown that the upper cylinder will be in stable equilibrium if the height h h hhh of its center of gravity above the point of contact is less than ρ ρ ρ + ρ ρ ρ ρ + ρ (rhorho^(‘))/(rho+rho^(‘))\frac{\rho \rho’}{\rho + \rho’}ρρρ+ρ. This was achieved by calculating the potential energy, simplifying it, and applying conditions for stable equilibrium.
Question:-08(a) (i) अवकल समीकरण : ( x 2 a 2 ) p 2 2 xyp + y 2 + a 2 = 0 x 2 a 2 p 2 2 xyp + y 2 + a 2 = 0 (x^(2)-a^(2))p^(2)-2xyp+y^(2)+a^(2)=0\left(\mathrm{x}^2-\mathrm{a}^2\right) \mathrm{p}^2-2 \mathrm{xyp}+\mathrm{y}^2+\mathrm{a}^2=0(x2a2)p22xyp+y2+a2=0, जहाँ p = dy dx p = dy dx p=(dy)/(dx)\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{dx}}p=dydx, के व्यापक व विचित्र हलों को ज्ञात कीजिए । व्यापक व विचित्र हलों के बीच ज्यामितीय संबंध को भी दीजिए ।
Question8(a) (i) Find the general and singular solutions of the differential equation: ( x 2 a 2 ) p 2 2 x y p + y 2 + a 2 = 0 x 2 a 2 p 2 2 x y p + y 2 + a 2 = 0 (x^(2)-a^(2))p^(2)-2xyp+y^(2)+a^(2)=0\left(x^2-a^2\right) p^2-2 x y p+y^2+a^2=0(x2a2)p22xyp+y2+a2=0, where p = d y d x p = d y d x p=(dy)/(dx)p=\frac{d y}{d x}p=dydx. Also give the geometric relation between the general and singular solutions.
Answer:

Introduction

The problem asks us to find both the general and singular solutions of a given differential equation ( x 2 a 2 ) p 2 2 x y p + y 2 + a 2 = 0 x 2 a 2 p 2 2 x y p + y 2 + a 2 = 0 (x^(2)-a^(2))p^(2)-2xyp+y^(2)+a^(2)=0\left(x^2-a^2\right) p^2-2 x y p+y^2+a^2=0(x2a2)p22xyp+y2+a2=0, where p = d y d x p = d y d x p=(dy)/(dx)p = \frac{dy}{dx}p=dydx. Additionally, we are asked to describe the geometric relationship between these solutions.

Work/Calculations

Step 1: Given Differential Equation

The differential equation provided is:
( x 2 a 2 ) p 2 2 x y p + y 2 + a 2 = 0 (Equation 1) x 2 a 2 p 2 2 x y p + y 2 + a 2 = 0 (Equation 1) (x^(2)-a^(2))p^(2)-2xyp+y^(2)+a^(2)=0quad(Equation 1)\left(x^2-a^2\right) p^2-2 x y p+y^2+a^2=0 \quad \text{(Equation 1)}(x2a2)p22xyp+y2+a2=0(Equation 1)

Step 2: Simplify the Equation

Let’s simplify Equation 1:
x 2 p 2 2 x y p + y 2 a 2 p 2 + a 2 = 0 x 2 p 2 2 x y p + y 2 a 2 p 2 + a 2 = 0 x^(2)p^(2)-2xyp+y^(2)-a^(2)p^(2)+a^(2)=0x^2 p^2 – 2xy p + y^2 – a^2 p^2 + a^2 = 0x2p22xyp+y2a2p2+a2=0
Combine like terms:
( x p y ) 2 + a 2 ( 1 p 2 ) = 0 ( x p y ) 2 + a 2 ( 1 p 2 ) = 0 (xp-y)^(2)+a^(2)(1-p^(2))=0(xp – y)^2 + a^2(1 – p^2) = 0(xpy)2+a2(1p2)=0
Further simplification gives:
( x p y ) 2 = a 2 ( p 2 1 ) ( x p y ) 2 = a 2 ( p 2 1 ) (xp-y)^(2)=a^(2)(p^(2)-1)(xp – y)^2 = a^2(p^2 – 1)(xpy)2=a2(p21)
Finally, we get:
x p y = ± a p 2 1 x p y = ± a p 2 1 xp-y=+-asqrt(p^(2)-1)xp – y = \pm a \sqrt{p^2 – 1}xpy=±ap21
So, we have:
y = x p ± a p 2 1 y = x p ± a p 2 1 y=xp+-asqrt(p^(2)-1)y = xp \pm a \sqrt{p^2 – 1}y=xp±ap21

Step 3: General Solution in Clairaut’s Form

The equation is in Clairaut’s form, and its general solution is:
y = x c ± a c 2 1 (Equation 2) y = x c ± a c 2 1 (Equation 2) y=xc+-asqrt(c^(2)-1)quad(Equation 2)y = xc \pm a \sqrt{c^2 – 1} \quad \text{(Equation 2)}y=xc±ac21(Equation 2)

Step 4: Finding the p-discriminant

To find the p-discriminant, we use B 2 4 A C = 0 B 2 4 A C = 0 B^(2)-4AC=0B^2 – 4AC = 0B24AC=0 (since the given ODE is a quadratic equation):
( 4 x y ) 2 4 ( x 2 a 2 ) ( y 2 + a 2 ) = 0 ( 4 x y ) 2 4 ( x 2 a 2 ) ( y 2 + a 2 ) = 0 (4xy)^(2)-4(x^(2)-a^(2))(y^(2)+a^(2))=0(4xy)^2 – 4(x^2 – a^2)(y^2 + a^2) = 0(4xy)24(x2a2)(y2+a2)=0
Simplifying, we get:
x 2 y 2 ( x 2 a 2 ) ( y 2 + a 2 ) = 0 x 2 y 2 ( x 2 a 2 ) ( y 2 + a 2 ) = 0 x^(2)y^(2)-(x^(2)-a^(2))(y^(2)+a^(2))=0x^2y^2 – (x^2 – a^2)(y^2 + a^2) = 0x2y2(x2a2)(y2+a2)=0
Further simplification leads to:
x 2 y 2 = a 2 (Equation 3) x 2 y 2 = a 2 (Equation 3) x^(2)-y^(2)=a^(2)quad(Equation 3)x^2 – y^2 = a^2 \quad \text{(Equation 3)}x2y2=a2(Equation 3)

Step 5: Singular Solution and Geometric Relation

Equation 3 is the same as the c-discriminant and satisfies the given ODE. Therefore, Equation 3 is the singular solution of Equation 1. The geometric relation between the general and singular solutions is that they are envelopes of each other, represented by a hyperbola curve.

Conclusion

We found both the general and singular solutions for the given differential equation. The general solution is y = x c ± a c 2 1 y = x c ± a c 2 1 y=xc+-asqrt(c^(2)-1)y = xc \pm a \sqrt{c^2 – 1}y=xc±ac21, and the singular solution is x 2 y 2 = a 2 x 2 y 2 = a 2 x^(2)-y^(2)=a^(2)x^2 – y^2 = a^2x2y2=a2. The geometric relationship between these solutions is that they are envelopes of each other, represented by a hyperbola curve.
Question:-08(a) (ii) निम्नलिखित अवकल समीकरण को हल कीजिए :
( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 ( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 (3x+2)^(2)(d^(2)y)/(dx^(2))+5(3x+2)(dy)/(dx)-3y=x^(2)+x+1(3 x+2)^2 \frac{d^2 y}{d x^2}+5(3 x+2) \frac{d y}{d x}-3 y=x^2+x+1(3x+2)2d2ydx2+5(3x+2)dydx3y=x2+x+1
Question:-08(a) (ii) Solve the following differential equation :
( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 ( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 (3x+2)^(2)(d^(2)y)/(dx^(2))+5(3x+2)(dy)/(dx)-3y=x^(2)+x+1(3 x+2)^2 \frac{d^2 y}{d x^2}+5(3 x+2) \frac{d y}{d x}-3 y=x^2+x+1(3x+2)2d2ydx2+5(3x+2)dydx3y=x2+x+1
Answer:
Given equation:
( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 ( 1 ) d 2 y d x 2 + 5 3 x + 2 d y d x 3 3 x + 2 y = x 2 + x + 1 ( 3 x + 2 ) 2 [ D d d t ] Let ( 3 x + 2 ) z = log ( 3 x + 2 ) [ 9 D ( D 1 ) + 5 × 3 D 3 ] y = ( e z 2 3 ) 2 + ( e z 2 3 ) + 1 [ 9 ( D 2 D ) + 15 D 3 ] y = e 2 z 4 e z + 4 + 3 ( e z 2 ) + 9 ( 9 D 2 + 6 D 3 ) y = e 2 z e z + 7 ( 2 ) ( 3 x + 2 ) 2 d 2 y d x 2 + 5 ( 3 x + 2 ) d y d x 3 y = x 2 + x + 1 ( 1 ) d 2 y d x 2 + 5 3 x + 2 d y d x 3 3 x + 2 y = x 2 + x + 1 ( 3 x + 2 ) 2 [ D d d t ] Let ( 3 x + 2 ) z = log ( 3 x + 2 ) [ 9 D ( D 1 ) + 5 × 3 D 3 ] y = e z 2 3 2 + e z 2 3 + 1 9 ( D 2 D ) + 15 D 3 y = e 2 z 4 e z + 4 + 3 ( e z 2 ) + 9 ( 9 D 2 + 6 D 3 ) y = e 2 z e z + 7 ( 2 ) {:[(3x+2)^(2)(d^(2)y)/(dx^(2))+5(3x+2)(dy)/(dx)-3y=x^(2)+x+1rarr(1)],[=>(d^(2)y)/(dx^(2))+(5)/(3x+2)(dy)/(dx)-(3)/(3x+2)y=(x^(2)+x+1)/((3x+2)^(2))quad[D-=(d)/(dt)]],[“Let “(3x+2)],[=>z=log(3x+2)],[[9D(D-1)+5xx3D-3]y=((e^(z)-2)/(3))^(2)+((e^(z)-2)/(3))+1],[=>[9(D^(2)-D)+15 D-3]y=e^(2z)-4e^(z)+4+3(e^(z)-2)+9],[=>(9D^(2)+6D-3)y=e^(2z)-e^(z)+7rarr(2)]:}\begin{aligned} &(3x+2)^2 \frac{d^2y}{dx^2}+5(3x+2) \frac{dy}{dx}-3y=x^2+x+1 \rightarrow (1) \\ &\Rightarrow \frac{d^2y}{dx^2}+\frac{5}{3x+2} \frac{dy}{dx}-\frac{3}{3x+2}y=\frac{x^2+x+1}{(3x+2)^2} \quad [D \equiv \frac{d}{dt}] \\ &\text{Let }(3x+2) \\ &\Rightarrow z=\log(3x+2) \\ &[9D(D-1)+5 \times 3D-3]y=\left(\frac{e^z-2}{3}\right)^2+\left(\frac{e^z-2}{3}\right)+1 \\ &\Rightarrow \left[9(D^2-D)+15D-3\right]y=e^{2z}-4e^z+4+3(e^z-2)+9 \\ &\Rightarrow (9D^2+6D-3)y=e^{2z}-e^z+7 \rightarrow (2) \end{aligned}(3x+2)2d2ydx2+5(3x+2)dydx3y=x2+x+1(1)d2ydx2+53x+2dydx33x+2y=x2+x+1(3x+2)2[Dddt]Let (3x+2)z=log(3x+2)[9D(D1)+5×3D3]y=(ez23)2+(ez23)+1[9(D2D)+15D3]y=e2z4ez+4+3(ez2)+9(9D2+6D3)y=e2zez+7(2)
Auxiliary equation:
9 m 2 + 6 m 3 = 0 9 m 2 + 9 m m 3 = 0 m = 1 , 1 3 9 m 2 + 6 m 3 = 0 9 m 2 + 9 m m 3 = 0 m = 1 , 1 3 {:[9m^(2)+6m-3=0],[=>9m^(2)+9m-m-3=0],[=>m=-1″,”(1)/(3)]:}\begin{aligned} &9m^2+6m-3=0 \\ &\Rightarrow 9m^2+9m-m-3=0 \\ &\Rightarrow m=-1, \frac{1}{3} \end{aligned}9m2+6m3=09m2+9mm3=0m=1,13
Therefore, the Complementary Function (C.F.) is:
y C . F = C 1 e z + C 2 e z 3 ( 3 ) y C . F = C 1 e z + C 2 e z 3 ( 3 ) y_(C.F)=C_(1)e^(-z)+C_(2)e^((z)/(3))rarr(3)y_{C.F}=C_1 e^{-z}+C_2 e^{\frac{z}{3}} \rightarrow (3)yC.F=C1ez+C2ez3(3)
Particular Integral (P.I.):
And y P . I = e 2 z e z + 7 9 D 2 + 6 D 3 y p = e 2 z 9 × 4 + 6 × 2 3 e z 9 + 6 3 + 7 3 y p = e 2 z 36 + 12 3 e z 12 7 3 y p = e 2 z 45 e z 12 7 3 ( 4 ) And y P . I = e 2 z e z + 7 9 D 2 + 6 D 3 y p = e 2 z 9 × 4 + 6 × 2 3 e z 9 + 6 3 + 7 3 y p = e 2 z 36 + 12 3 e z 12 7 3 y p = e 2 z 45 e z 12 7 3 ( 4 ) {:[“And “y_(P.I)=(e^(2z)-e^(z)+7)/(9D^(2)+6D-3)],[y_(p)=(e^(2z))/(9xx4+6xx2-3)-(e^(z))/(9+6-3)+(7)/(-3)],[=>y_(p)=(e^(2z))/(36+12-3)-(e^(z))/(12)-(7)/(3)],[=>y_(p)=(e^(2z))/(45)-(e^(z))/(12)-(7)/(3)rarr(4)]:}\begin{aligned} &\text{And } y_{P.I}=\frac{e^{2z}-e^z+7}{9D^2+6D-3} \\ &y_p=\frac{e^{2z}}{9 \times 4+6 \times 2-3}-\frac{e^z}{9+6-3}+\frac{7}{-3} \\ &\Rightarrow y_p=\frac{e^{2z}}{36+12-3}-\frac{e^z}{12}-\frac{7}{3} \\ &\Rightarrow y_p=\frac{e^{2z}}{45}-\frac{e^z}{12}-\frac{7}{3} \rightarrow (4) \end{aligned}And yP.I=e2zez+79D2+6D3yp=e2z9×4+6×23ez9+63+73yp=e2z36+123ez1273yp=e2z45ez1273(4)
Overall solution:
y = y c + y p y = c 1 e z + c 2 e z 3 + e 2 z 45 e z 12 7 3 y = c 1 3 x + 2 + c 2 ( 3 x + 2 ) 1 3 + 36 x 2 + 3 x 434 180 y = y c + y p y = c 1 e z + c 2 e z 3 + e 2 z 45 e z 12 7 3 y = c 1 3 x + 2 + c 2 ( 3 x + 2 ) 1 3 + 36 x 2 + 3 x 434 180 {:[y=y_(c)+y_(p)],[=>y=c_(1)e^(-z)+c_(2)e^((z)/(3))+(e^(2z))/(45)-(e^(z))/(12)-(7)/(3)],[=>y=(c_(1))/(3x+2)+c_(2)(3x+2)^((1)/(3))+(36x^(2)+3x-434)/(180)]:}\begin{aligned} &y=y_c+y_p \\ &\Rightarrow y=c_1 e^{-z}+c_2 e^{\frac{z}{3}}+\frac{e^{2z}}{45}-\frac{e^z}{12}-\frac{7}{3} \\ &\Rightarrow y=\frac{c_1}{3x+2}+c_2(3x+2)^{\frac{1}{3}}+\frac{36x^2+3x-434}{180} \end{aligned}y=yc+ypy=c1ez+c2ez3+e2z45ez1273y=c13x+2+c2(3x+2)13+36x2+3x434180
Question:-08(b) n n n\mathrm{n}n बराबर एकसमान छड़ों की एक श्रृंखला एक-दूसरे के साथ चिकने रूप से जुड़ी हुई है तथा इसके एक सिरे A 1 A 1 A_(1)\mathrm{A}_1A1 से लटकी हुई है । एक क्षैतिज बल P P vec(P)\overrightarrow{\mathrm{P}}P शृंखला के दूसरे सिरे A n + 1 A n + 1 A_(n+1)\mathrm{A}_{\mathrm{n}+1}An+1 पर लगाया गया है । साम्य विन्यास में अधोमुखी ऊर्ध्वाधर रेखा से छड़ों के झुकाव ज्ञात कीजिए ।
Question:-08(b) A chain of n n n\mathrm{n}n equal uniform rods is smoothly jointed together and suspended from its one end A 1 A 1 A_(1)\mathrm{A}_1A1. A horizontal force P P vec(P)\overrightarrow{\mathrm{P}}P is applied to the other end A n + 1 A n + 1 A_(n+1)\mathrm{A}_{\mathrm{n}+1}An+1 of the chain. Find the inclinations of the rods to the downward vertical line in the equilibrium configuration.
Answer:
Consider a chain of n n nnn equal uniform rods smoothly jointed together and suspended from one end (denoted as A 1 A 1 A_(1)A_1A1). A horizontal force P P vec(P)\overrightarrow{P}P is applied to the other end ( A n + 1 A n + 1 A_(n+1)A_{n+1}An+1) of the chain. We need to find the inclinations of the rods to the downward vertical line in the equilibrium configuration.
original image
Each rod has length 2 a 2 a 2a2a2a and weight w w www. The potential energy in a general configuration is given by:
V = w a cos θ 1 w ( 2 a cos θ 1 + a cos θ 2 ) V = w a cos θ 1 w ( 2 a cos θ 1 + a cos θ 2 ) V=-wa cos theta_(1)-w(2a cos theta_(1)+a cos theta_(2))-dotsV = -w a \cos \theta_1 – w (2a \cos \theta_1 + a \cos \theta_2) – \ldotsV=wacosθ1w(2acosθ1+acosθ2)
w ( 2 a cos θ 1 + 2 a cos θ 2 + + 2 a cos θ n 1 + a cos θ n ) w ( 2 a cos θ 1 + 2 a cos θ 2 + + 2 a cos θ n 1 + a cos θ n ) -w(2a cos theta_(1)+2a cos theta_(2)+dots+2a cos theta_(n-1)+a cos theta _(n))-w (2a \cos \theta_1 + 2a \cos \theta_2 + \ldots + 2a \cos \theta_{n-1} + a \cos \theta_n)w(2acosθ1+2acosθ2++2acosθn1+acosθn)
= w a [ ( 2 n 1 ) cos θ 1 + ( 2 n 3 ) cos θ 2 + + 3 cos θ n 1 + cos θ n ] = w a ( 2 n 1 ) cos θ 1 + ( 2 n 3 ) cos θ 2 + + 3 cos θ n 1 + cos θ n =-wa[(2n-1)cos theta_(1)+(2n-3)cos theta_(2)+dots+3cos theta_(n-1)+cos theta _(n)]= -w a \left[(2n-1) \cos \theta_1 + (2n-3) \cos \theta_2 + \ldots + 3 \cos \theta_{n-1} + \cos \theta_n\right]=wa[(2n1)cosθ1+(2n3)cosθ2++3cosθn1+cosθn]
In a small virtual displacement, the work done δ W 1 δ W 1 deltaW_(1)\delta W_1δW1 is given by:
δ W 1 = w a δ [ ( 2 n 1 ) cos θ 1 + ( 2 n 3 ) cos θ 2 + + 3 cos θ n 1 + cos δ θ n ] = w a [ ( 2 n 1 ) sin θ 1 δ θ 1 + ( 2 n 3 ) sin θ 2 δ θ 2 + + 3 sin θ n 1 δ θ n 1 + sin θ n δ θ n ] δ W 1 = w a δ ( 2 n 1 ) cos θ 1 + ( 2 n 3 ) cos θ 2 + + 3 cos θ n 1 + cos δ θ n = w a ( 2 n 1 ) sin θ 1 δ θ 1 + ( 2 n 3 ) sin θ 2 δ θ 2 + + 3 sin θ n 1 δ θ n 1 + sin θ n δ θ n {:[deltaW_(1)=wa delta[(2n-1)cos theta_(1)+(2n-3)cos theta_(2)+dots+3cos theta_(n-1)+cos deltatheta _(n)]],[=-wa[(2n-1)sin theta_(1)deltatheta_(1)+(2n-3)sin theta_(2)deltatheta_(2)+dots:}],[{:+3sin theta_(n-1)deltatheta_(n-1)+sin theta _(n)deltatheta _(n)]]:}\begin{aligned} \delta W_1 & = w a \delta\left[(2n-1) \cos \theta_1 + (2n-3) \cos \theta_2 + \ldots + 3 \cos \theta_{n-1} + \cos \delta \theta_n\right] \\ & = -w a \left[(2n-1) \sin \theta_1 \delta \theta_1 + (2n-3) \sin \theta_2 \delta \theta_2 + \ldots \right. \\ & \left. + 3 \sin \theta_{n-1} \delta \theta_{n-1} + \sin \theta_n \delta \theta_n\right] \end{aligned}δW1=waδ[(2n1)cosθ1+(2n3)cosθ2++3cosθn1+cosδθn]=wa[(2n1)sinθ1δθ1+(2n3)sinθ2δθ2++3sinθn1δθn1+sinθnδθn]
The work done by the force P P PPP is given by δ W 2 δ W 2 deltaW_(2)\delta W_2δW2:
δ W 2 = P × Horizontal displacement of A n + 1 = P δ ( 2 a sin θ 1 + 2 a sin θ 2 + + 2 a sin θ n ) = 2 P a ( cos θ 1 δ θ 1 + cos θ 2 δ θ 2 + + cos θ n δ θ n ) δ W 2 = P × Horizontal displacement of A n + 1 = P δ 2 a sin θ 1 + 2 a sin θ 2 + + 2 a sin θ n = 2 P a cos θ 1 δ θ 1 + cos θ 2 δ θ 2 + + cos θ n δ θ n {:[deltaW_(2)=P xx” Horizontal displacement of “A_(n+1)],[=P delta(2a sin theta_(1)+2a sin theta_(2)+dots+2a sin theta _(n))],[=2Pa(cos theta_(1)deltatheta_(1)+cos theta_(2)deltatheta_(2)+dots+cos theta _(n)deltatheta _(n))]:}\begin{aligned} \delta W_2 & = P \times \text{ Horizontal displacement of } A_{n+1} \\ & = P \delta\left(2a \sin \theta_1 + 2a \sin \theta_2 + \ldots + 2a \sin \theta_n\right) \\ & = 2Pa \left(\cos \theta_1 \delta \theta_1 + \cos \theta_2 \delta \theta_2 + \ldots + \cos \theta_n \delta \theta_n\right) \end{aligned}δW2=P× Horizontal displacement of An+1=Pδ(2asinθ1+2asinθ2++2asinθn)=2Pa(cosθ1δθ1+cosθ2δθ2++cosθnδθn)
The total work done δ W δ W delta W\delta WδW is the sum of δ W 1 δ W 1 deltaW_(1)\delta W_1δW1 and δ W 2 δ W 2 deltaW_(2)\delta W_2δW2:
δ W = δ W 1 + δ W 2 δ W = δ W 1 + δ W 2 delta W=deltaW_(1)+deltaW_(2)\delta W = \delta W_1 + \delta W_2δW=δW1+δW2
Using the expressions for δ W 1 δ W 1 deltaW_(1)\delta W_1δW1 and δ W 2 δ W 2 deltaW_(2)\delta W_2δW2 in the equation above, we get:
δ W = [ 2 P cos θ 1 ( 2 n 1 ) w sin θ 1 ] a δ θ 1 + [ 2 P cos θ 2 ( 2 n 3 ) w sin θ 2 ] a δ θ 2 + + [ 2 P cos θ n w sin θ n ] a δ θ n = 0 δ W = 2 P cos θ 1 ( 2 n 1 ) w sin θ 1 a δ θ 1 + 2 P cos θ 2 ( 2 n 3 ) w sin θ 2 a δ θ 2 + + 2 P cos θ n w sin θ n a δ θ n = 0 delta W=[2P cos theta_(1)-(2n-1)w sin theta_(1)]a deltatheta_(1)+[2P cos theta_(2)-(2n-3)w sin theta_(2)]a deltatheta_(2)+dots+[2P cos theta _(n)-w sin theta _(n)]a deltatheta _(n)=0\delta W = \left[2P \cos \theta_1 – (2n-1)w \sin \theta_1\right]a \delta \theta_1 + \left[2P \cos \theta_2 – (2n-3)w \sin \theta_2\right]a \delta \theta_2 + \ldots + \left[2P \cos \theta_n – w \sin \theta_n\right]a \delta \theta_n = 0δW=[2Pcosθ1(2n1)wsinθ1]aδθ1+[2Pcosθ2(2n3)wsinθ2]aδθ2++[2Pcosθnwsinθn]aδθn=0
For the equilibrium position, δ W = 0 δ W = 0 delta W=0\delta W = 0δW=0, which leads to the following equations:
2 P cos θ 1 ( 2 n 1 ) w sin θ 1 = 0 2 P cos θ 2 ( 2 n 3 ) w sin θ 2 = 0 2 P cos θ n w sin θ n = 0 2 P cos θ 1 ( 2 n 1 ) w sin θ 1 = 0 2 P cos θ 2 ( 2 n 3 ) w sin θ 2 = 0 2 P cos θ n w sin θ n = 0 {:[2P cos theta_(1)-(2n-1)w sin theta_(1)=0],[2P cos theta_(2)-(2n-3)w sin theta_(2)=0],[2P cos theta _(n)-w sin theta _(n)=0]:}\begin{aligned} 2P \cos \theta_1 – (2n-1)w \sin \theta_1 & = 0 \\ 2P \cos \theta_2 – (2n-3)w \sin \theta_2 & = 0 \\ 2P \cos \theta_n – w \sin \theta_n & = 0 \end{aligned}2Pcosθ1(2n1)wsinθ1=02Pcosθ2(2n3)wsinθ2=02Pcosθnwsinθn=0
Hence, the inclinations of the rods to the downward vertical in the equilibrium configuration are given by:
tan θ 1 = 2 P w ( 2 n 1 ) , tan θ 2 = 2 P w ( 2 n 3 ) , , tan θ n = 2 P w tan θ 1 = 2 P w ( 2 n 1 ) , tan θ 2 = 2 P w ( 2 n 3 ) , , tan θ n = 2 P w tan theta_(1)=(2P)/(w(2n-1)),tan theta_(2)=(2P)/(w(2n-3)),dots,tan theta _(n)=(2P)/(w)\tan \theta_1 = \frac{2P}{w(2n-1)}, \tan \theta_2 = \frac{2P}{w(2n-3)}, \ldots, \tan \theta_n = \frac{2P}{w}tanθ1=2Pw(2n1),tanθ2=2Pw(2n3),,tanθn=2Pw
Question:-08(c) गाउस के अपसरण प्रमेय का उपयोग करके S F n dS S F n dS ∬_(S) vec(F)* vec(n)dS\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} \mathrm{dS}SFndS का मान निकालिए, जहाँ F = x i ^ y j ^ + ( z 2 1 ) k ^ F = x i ^ y j ^ + z 2 1 k ^ vec(F)=x hat(i)-y hat(j)+(z^(2)-1) hat(k)\overrightarrow{\mathrm{F}}=\mathrm{x} \hat{\mathrm{i}}-\mathrm{y} \hat{\mathrm{j}}+\left(\mathrm{z}^2-1\right) \hat{\mathrm{k}}F=xi^yj^+(z21)k^ तथा S S S\mathrm{S}S, पृष्ठों z = 0 , z = 1 , x 2 + y 2 = 4 z = 0 , z = 1 , x 2 + y 2 = 4 z=0,z=1,x^(2)+y^(2)=4\mathrm{z}=0, \mathrm{z}=1, \mathrm{x}^2+\mathrm{y}^2=4z=0,z=1,x2+y2=4 द्वारा बना हुआ बेलन है ।
Question:-08(c) Using Gauss’ divergence theorem, evaluate S F n d S S F n d S ∬_(S) vec(F)* vec(n)dS\iint_S \vec{F} \cdot \vec{n} d SSFndS, where F = x i ^ y j ^ + ( z 2 1 ) k ^ F = x i ^ y j ^ + z 2 1 k ^ vec(F)=x hat(i)-y hat(j)+(z^(2)-1) hat(k)\vec{F}=x \hat{i}-y \hat{j}+\left(z^2-1\right) \hat{k}F=xi^yj^+(z21)k^ and S S SSS is the cylinder formed by the surfaces z = 0 , z = 1 , x 2 + y 2 = 4 z = 0 , z = 1 , x 2 + y 2 = 4 z=0,z=1,x^(2)+y^(2)=4z=0, z=1, x^2+y^2=4z=0,z=1,x2+y2=4.
Answer:
Step 1 – Gauss’ Divergence Theorem:
We begin by applying Gauss’ Divergence Theorem, which connects the surface integral to a triple integral:
S F n d S = V div F d V S F n d S = V div F d V ∬_(S) vec(F)* vec(n)dS=∭_(V)div vec(F)dV\iint_S \vec{F} \cdot \vec{n} \, dS = \iiint_V \operatorname{div} \vec{F} \, dVSFndS=VdivFdV
Step 2 – Divergence Calculation:
We calculate the divergence of F F vec(F)\vec{F}F by taking partial derivatives:
div F = x ( x ) + y ( y ) + z ( z 2 1 ) = 1 1 + 2 z = 2 z div F = x ( x ) + y ( y ) + z ( z 2 1 ) = 1 1 + 2 z = 2 z div vec(F)=(del)/(del x)(x)+(del)/(del y)(-y)+(del)/(del z)(z^(2)-1)=1-1+2z=2z\operatorname{div} \vec{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(-y) + \frac{\partial}{\partial z}(z^2 – 1) = 1 – 1 + 2z = 2zdivF=x(x)+y(y)+z(z21)=11+2z=2z
This gives us the expression for the divergence of F F vec(F)\vec{F}F.
Step 3 – Triple Integral Setup:
Next, we set up the triple integral to calculate V div F d V V div F d V ∭_(V)div vec(F)dV\iiint_V \operatorname{div} \vec{F} \, dVVdivFdV. We integrate with respect to z z zzz from 0 to 1, y y yyy from -2 to 2, and x x xxx from 4 y 2 4 y 2 -sqrt(4-y^(2))-\sqrt{4-y^2}4y2 to 4 y 2 4 y 2 sqrt(4-y^(2))\sqrt{4-y^2}4y2.
Step 4 – Integral Calculation (Part 1):
We start by integrating with respect to x x xxx from 4 y 2 4 y 2 -sqrt(4-y^(2))-\sqrt{4-y^2}4y2 to 4 y 2 4 y 2 sqrt(4-y^(2))\sqrt{4-y^2}4y2:
x = 4 y 2 4 y 2 2 z d x = 4 z 4 y 2 x = 4 y 2 4 y 2 2 z d x = 4 z 4 y 2 int_(x=-sqrt(4-y^(2)))^(sqrt(4-y^(2)))2zdx=4zsqrt(4-y^(2))\int_{x=-\sqrt{4-y^2}}^{\sqrt{4-y^2}} 2z \, dx = 4z\sqrt{4-y^2}x=4y24y22zdx=4z4y2
Step 5 – Integral Calculation (Part 2):
Continuing, we integrate with respect to y y yyy from -2 to 2, considering the expression 4 y 2 4 y 2 sqrt(4-y^(2))\sqrt{4-y^2}4y2:
y = 2 2 4 z 4 y 2 d y = 4 z y = 2 2 4 y 2 d y y = 2 2 4 z 4 y 2 d y = 4 z y = 2 2 4 y 2 d y {:[int_(y=-2)^(2)4zsqrt(4-y^(2))dy],[=4zint_(y=-2)^(2)sqrt(4-y^(2))dy]:}\begin{aligned} &\int_{y=-2}^2 4z\sqrt{4-y^2} \, dy \\ &= 4z \int_{y=-2}^2 \sqrt{4-y^2} \, dy \end{aligned}y=224z4y2dy=4zy=224y2dy
Step 6 – Integral Calculation (Part 3):
Finally, we integrate with respect to z z zzz from 0 to 1:
z = 0 1 4 z y = 2 2 4 y 2 d y d z = z = 0 1 4 z [ 2 sin 1 ( y 2 ) ] y = 2 2 d z = 4 z = 0 1 2 z [ sin 1 ( 1 ) sin 1 ( 1 ) ] d z = 4 z = 0 1 2 z [ π 2 ( π 2 ) ] d z = 4 z = 0 1 2 z π d z = 8 π z = 0 1 z d z = 8 π [ z 2 2 ] z = 0 1 = 4 π z = 0 1 4 z y = 2 2 4 y 2 d y d z = z = 0 1 4 z 2 sin 1 y 2 y = 2 2 d z = 4 z = 0 1 2 z sin 1 ( 1 ) sin 1 ( 1 ) d z = 4 z = 0 1 2 z π 2 π 2 d z = 4 z = 0 1 2 z π d z = 8 π z = 0 1 z d z = 8 π z 2 2 z = 0 1 = 4 π {:[int_(z=0)^(1)4zint_(y=-2)^(2)sqrt(4-y^(2))dydz],[=int_(z=0)^(1)4z[2sin^(-1)((y)/(2))]_(y=-2)^(2)dz],[=4int_(z=0)^(1)2z[sin^(-1)(1)-sin^(-1)(-1)]dz],[=4int_(z=0)^(1)2z[(pi)/(2)-(-(pi)/(2))]dz],[=4int_(z=0)^(1)2z*pidz],[=8piint_(z=0)^(1)zdz],[=8pi[(z^(2))/(2)]_(z=0)^(1)],[=4pi]:}\begin{aligned} &\int_{z=0}^1 4z \int_{y=-2}^2 \sqrt{4-y^2} \, dy \, dz \\ &= \int_{z=0}^1 4z \left[2 \sin^{-1} \left(\frac{y}{2}\right)\right]_{y=-2}^2 \, dz \\ &= 4 \int_{z=0}^1 2z \left[\sin^{-1}(1) – \sin^{-1}(-1)\right] \, dz \\ &= 4 \int_{z=0}^1 2z \left[\frac{\pi}{2} – \left(-\frac{\pi}{2}\right)\right] \, dz \\ &= 4 \int_{z=0}^1 2z \cdot \pi \, dz \\ &= 8\pi \int_{z=0}^1 z \, dz \\ &= 8\pi \left[\frac{z^2}{2}\right]_{z=0}^1 \\ &= 4\pi \end{aligned}z=014zy=224y2dydz=z=014z[2sin1(y2)]y=22dz=4z=012z[sin1(1)sin1(1)]dz=4z=012z[π2(π2)]dz=4z=012zπdz=8πz=01zdz=8π[z22]z=01=4π
Therefore, the evaluated surface integral S F n d S S F n d S ∬_(S) vec(F)* vec(n)dS\iint_S \vec{F} \cdot \vec{n} \, dSSFndS is indeed 4 π 4 π 4pi4\pi4π.
Abstract Classes
👋 Hi there! Welcome to Abstract Classes.

🤔 Have any question about IGNOU Assignment Solution , Projects, courses, or fees? Just type it below and we'll reply instantly on WhatsApp!