Free UPSC Mathematics Optional Paper-1 2020 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

UPSC M2020-1 WS
खण्ड-A / SECTION-A
  1. (a) माना समुच्चय V V VVV में सभी n × n n × n n xx nn \times nn×n के वास्तविक मैजिक वर्ग हैं। दिखाइए कि समुच्चय V , R V , R V,RV, RV,R पर एक सदिश समष्टि है। दो भिन्न-भिन्न 2 × 2 2 × 2 2xx22 \times 22×2 मैजिक वर्ग के उदाहरण दीजिए।
Consider the set V V VVV of all n × n n × n n xx nn \times nn×n real magic squares. Show that V V VVV is a vector space over R R RRR. Give examples of two distinct 2 × 2 2 × 2 2xx22 \times 22×2 magic squares.
Answer:

Introduction

The problem asks us to prove that the set V V VVV of all n × n n × n n xx nn \times nn×n real magic squares is a vector space over R R R\mathbb{R}R. A magic square is a square grid of numbers such that the sums of the numbers in each row, each column, and both main diagonals are the same. We will use the properties of vector spaces to prove this.
To make the proof more explicit, let’s assume X , Y , X , Y , X,Y,X, Y,X,Y, and Z Z ZZZ are n × n n × n n xx nn \times nn×n magic squares with general entries as follows:
X = [ x 11 x 12 x 13 x 1 n x 21 x 22 x 23 x 2 n x n 1 x n 2 x n 3 x n n ] X = x 11 x 12 x 13 x 1 n x 21 x 22 x 23 x 2 n x n 1 x n 2 x n 3 x n n X=[[x_(11),x_(12),x_(13),dots,x_(1n)],[x_(21),x_(22),x_(23),dots,x_(2n)],[vdots,vdots,vdots,ddots,vdots],[x_(n1),x_(n2),x_(n3),dots,x_(nn)]]X=\left[\begin{array}{ccccc} x_{11} & x_{12} & x_{13} & \ldots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \ldots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \ldots & x_{nn} \end{array}\right]X=[x11x12x13x1nx21x22x23x2nxn1xn2xn3xnn]
Y = [ y 11 y 12 y 13 y 1 n y 21 y 22 y 23 y 2 n y n 1 y n 2 y n 3 y n n ] Y = y 11 y 12 y 13 y 1 n y 21 y 22 y 23 y 2 n y n 1 y n 2 y n 3 y n n Y=[[y_(11),y_(12),y_(13),dots,y_(1n)],[y_(21),y_(22),y_(23),dots,y_(2n)],[vdots,vdots,vdots,ddots,vdots],[y_(n1),y_(n2),y_(n3),dots,y_(nn)]]Y=\left[\begin{array}{ccccc} y_{11} & y_{12} & y_{13} & \ldots & y_{1n} \\ y_{21} & y_{22} & y_{23} & \ldots & y_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & y_{n3} & \ldots & y_{nn} \end{array}\right]Y=[y11y12y13y1ny21y22y23y2nyn1yn2yn3ynn]
Z = [ z 11 z 12 z 13 z 1 n z 21 z 22 z 23 z 2 n z n 1 z n 2 z n 3 z n n ] Z = z 11 z 12 z 13 z 1 n z 21 z 22 z 23 z 2 n z n 1 z n 2 z n 3 z n n Z=[[z_(11),z_(12),z_(13),dots,z_(1n)],[z_(21),z_(22),z_(23),dots,z_(2n)],[vdots,vdots,vdots,ddots,vdots],[z_(n1),z_(n2),z_(n3),dots,z_(nn)]]Z=\left[\begin{array}{ccccc} z_{11} & z_{12} & z_{13} & \ldots & z_{1n} \\ z_{21} & z_{22} & z_{23} & \ldots & z_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & z_{n3} & \ldots & z_{nn} \end{array}\right]Z=[z11z12z13z1nz21z22z23z2nzn1zn2zn3znn]
And let a a aaa and b b bbb be real numbers.

Work/Calculations

Property 1: Closure under Addition and Scalar Multiplication

  1. X + Y MS ( n ) X + Y MS ( n ) X+Y in MS(n)X + Y \in \operatorname{MS}(n)X+YMS(n)
    Let’s substitute the values:
    ( X + Y ) = [ x i j + y i j ] ( X + Y ) = [ x i j + y i j ] (X+Y)=[x_(ij)+y_(ij)](X + Y) = [x_{ij} + y_{ij}](X+Y)=[xij+yij]
    The sum of each row, column, and diagonal in X X XXX and Y Y YYY is the same constant k k kkk. Therefore, the sum of each corresponding row, column, and diagonal in X + Y X + Y X+YX + YX+Y will be 2 k 2 k 2k2k2k, which means X + Y X + Y X+YX + YX+Y is also a magic square.
  2. a X MS ( n ) a X MS ( n ) aX in MS(n)aX \in \operatorname{MS}(n)aXMS(n)
    Let’s substitute the values:
    a X = [ a x i j ] a X = [ a x i j ] aX=[ax_(ij)]aX = [ax_{ij}]aX=[axij]
    If we multiply X X XXX by a scalar a a aaa, each row, column, and diagonal sum becomes a k a k akakak, which means a X a X aXaXaX is also a magic square.
After calculating, we find that both X + Y X + Y X+YX + YX+Y and a X a X aXaXaX are in MS ( n ) MS ( n ) MS(n)\operatorname{MS}(n)MS(n), proving closure under addition and scalar multiplication.

Property 2: Commutativity of Addition

X + Y = Y + X X + Y = Y + X X+Y=Y+XX + Y = Y + XX+Y=Y+X
This is straightforward because matrix addition is commutative.

Property 3: Associativity of Addition

X + ( Y + Z ) = ( X + Y ) + Z X + ( Y + Z ) = ( X + Y ) + Z X+(Y+Z)=(X+Y)+ZX + (Y + Z) = (X + Y) + ZX+(Y+Z)=(X+Y)+Z
Matrix addition is associative, so this property holds.

Property 4: Existence of Zero Vector

Let 0 0 0\mathbf{0}0 be the n × n n × n n xx nn \times nn×n magic square where every entry is zero. Then,
X + 0 = 0 + X = X X + 0 = 0 + X = X X+0=0+X=XX + \mathbf{0} = \mathbf{0} + X = XX+0=0+X=X

Property 5: Existence of Additive Inverse

Let X = X X = X X^(‘)=-XX’ = -XX=X. Then,
X + X = X + X = 0 X + X = X + X = 0 X+X^(‘)=X^(‘)+X=0X + X’ = X’ + X = \mathbf{0}X+X=X+X=0

Property 6: Distributive Law 1

a ( X + Y ) = a X + a Y a ( X + Y ) = a X + a Y a(X+Y)=aX+aYa(X + Y) = aX + aYa(X+Y)=aX+aY
This is a property of matrices, so it holds.

Property 7: Distributive Law 2

( a + b ) X = a X + b X ( a + b ) X = a X + b X (a+b)X=aX+bX(a + b)X = aX + bX(a+b)X=aX+bX
This is also a property of matrices.

Property 8: Associativity of Scalar Multiplication

( a b ) X = a ( b X ) ( a b ) X = a ( b X ) (ab)X=a(bX)(ab)X = a(bX)(ab)X=a(bX)
This is true for matrices.

Property 9: Multiplication by Identity

1 X = X 1 X = X 1X=X1X = X1X=X
This is true for any matrix X X XXX.
We have shown that the set V V VVV of all n × n n × n n xx nn \times nn×n real magic squares satisfies all the properties required for it to be a vector space over R R R\mathbb{R}R. Therefore, V V VVV is indeed a vector space over R R R\mathbb{R}R.
For a 2 × 2 2 × 2 2xx22 \times 22×2 matrix to be a magic square, the sum of each row, each column, and both diagonals must be the same. Let’s consider a general 2 × 2 2 × 2 2xx22 \times 22×2 magic square M M MMM with entries a , b , c , a , b , c , a,b,c,a, b, c,a,b,c, and d d ddd:
M = [ a b c d ] M = a b c d M=[[a,b],[c,d]]M = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right]M=[abcd]
For M M MMM to be a magic square, the following conditions must be met:
  1. The sum of each row must be the same: a + b = c + d a + b = c + d a+b=c+da + b = c + da+b=c+d
  2. The sum of each column must be the same: a + c = b + d a + c = b + d a+c=b+da + c = b + da+c=b+d
  3. The sum of the diagonals must be the same: a + d = b + c a + d = b + c a+d=b+ca + d = b + ca+d=b+c

Example 1

Let’s choose a = 1 , b = 1 , c = 1 , a = 1 , b = 1 , c = 1 , a=1,b=1,c=1,a = 1, b = 1, c = 1,a=1,b=1,c=1, and d = 1 d = 1 d=1d = 1d=1. All the sums are 1 + 1 = 2 1 + 1 = 2 1+1=21 + 1 = 21+1=2, so it’s a magic square.
M 1 = [ 1 1 1 1 ] M 1 = 1 1 1 1 M_(1)=[[1,1],[1,1]]M_1 = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right]M1=[1111]

Example 2

Let’s choose a = 2 , b = 2 , c = 2 , a = 2 , b = 2 , c = 2 , a=2,b=2,c=2,a = 2, b = 2, c = 2,a=2,b=2,c=2, and d = 2 d = 2 d=2d = 2d=2. All the sums are 2 + 2 = 4 2 + 2 = 4 2+2=42 + 2 = 42+2=4, so it’s a magic square.
M 2 = [ 2 2 2 2 ] M 2 = 2 2 2 2 M_(2)=[[2,2],[2,2]]M_2 = \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right]M2=[2222]

Conclusion

Therefore, we conclude that the set V V VVV of all n × n n × n n xx nn \times nn×n real magic squares is a valid vector space over R R R\mathbb{R}R. This conclusion is underpinned by the rigorous application of vector space properties and the concrete examples provided for 2 × 2 2 × 2 2xx22 \times 22×2 magic squares, affirming the validity of this mathematical concept.
(b) माना M 2 ( R ) M 2 ( R ) M_(2)(R)M_2(R)M2(R) सभी 2 × 2 2 × 2 2xx22 \times 22×2 वास्तविक आव्यूहों का सदिश समष्टि है। माना B = [ 1 1 4 4 ] B = 1 1 4 4 B=[[1,-1],[-4,4]]B=\left[\begin{array}{cc}1 & -1 \\ -4 & 4\end{array}\right]B=[1144]. माना T : M 2 ( R ) M 2 ( R ) T : M 2 ( R ) M 2 ( R ) T:M_(2)(R)rarrM_(2)(R)T: M_2(R) \rightarrow M_2(R)T:M2(R)M2(R) एक रैखिक रूपांतरण है, जो T ( A ) = B A T ( A ) = B A T(A)=BAT(A)=B AT(A)=BA द्वारा परिभाषित है। T T TTT की कोटि (रिक) व शून्यता (नलिटि) ज्ञात कीजिए। आव्यूह A A AAA ज्ञात कीजिए, जो शून्य आव्यूह को प्रतिचित्रित करता है।
Let M 2 ( R ) M 2 ( R ) M_(2)(R)M_2(R)M2(R) be the vector space of all 2 × 2 2 × 2 2xx22 \times 22×2 real matrices. Let B = [ 1 1 4 4 ] B = 1 1 4 4 B=[[1,-1],[-4,4]]B=\left[\begin{array}{cc}1 & -1 \\ -4 & 4\end{array}\right]B=[1144]. Suppose T : M 2 ( R ) M 2 ( R ) T : M 2 ( R ) M 2 ( R ) T:M_(2)(R)rarrM_(2)(R)T: M_2(R) \rightarrow M_2(R)T:M2(R)M2(R) is a linear transformation defined by T ( A ) = B A T ( A ) = B A T(A)=BAT(A)=B AT(A)=BA. Find the rank and nullity of T T TTT. Find a matrix A A AAA which maps to the null matrix.
Answer:

Introduction

We are given a vector space M 2 ( R ) M 2 ( R ) M_(2)(R)M_2(\mathbb{R})M2(R) of all 2 × 2 2 × 2 2xx22 \times 22×2 real matrices and a specific matrix B B BBB. A linear transformation T : M 2 ( R ) M 2 ( R ) T : M 2 ( R ) M 2 ( R ) T:M_(2)(R)rarrM_(2)(R)T: M_2(\mathbb{R}) \rightarrow M_2(\mathbb{R})T:M2(R)M2(R) is defined as T ( A ) = B A T ( A ) = B A T(A)=BAT(A) = BAT(A)=BA. We are asked to find the rank and nullity of T T TTT and to find a matrix A A AAA that maps to the null matrix under T T TTT.

Work/Calculations

Finding a Matrix A A AAA that Maps to the Null Matrix

To find a matrix A A AAA that maps to the null matrix under T T TTT, we need to find A A AAA such that B A = 0 B A = 0 BA=0BA = 0BA=0.
Let A = [ a b c d ] A = a b c d A=[[a,b],[c,d]]A = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right]A=[abcd].
Then B A B A BABABA is:
B A = [ 1 1 4 4 ] [ a b c d ] = [ a c b d 4 a + 4 c 4 b + 4 d ] B A = 1 1 4 4 a b c d = a c b d 4 a + 4 c 4 b + 4 d BA=[[1,-1],[-4,4]][[a,b],[c,d]]=[[a-c,b-d],[-4a+4c,-4b+4d]]BA = \left[\begin{array}{cc} 1 & -1 \\ -4 & 4 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} a – c & b – d \\ -4a + 4c & -4b + 4d \end{array}\right]BA=[1144][abcd]=[acbd4a+4c4b+4d]
For B A B A BABABA to be the null matrix, we need a c = 0 a c = 0 a-c=0a – c = 0ac=0, b d = 0 b d = 0 b-d=0b – d = 0bd=0, 4 a + 4 c = 0 4 a + 4 c = 0 -4a+4c=0-4a + 4c = 04a+4c=0, and 4 b + 4 d = 0 4 b + 4 d = 0 -4b+4d=0-4b + 4d = 04b+4d=0.
Solving these equations, we find a = c a = c a=ca = ca=c and b = d b = d b=db = db=d.
Therefore, any matrix A A AAA of the form [ a b a b ] a b a b [[a,b],[a,b]]\left[\begin{array}{cc} a & b \\ a & b \end{array}\right][abab] will map to the null matrix under T T TTT.

Nullity of T T TTT

The nullity of T T TTT is the dimension of the null space of T T TTT, denoted as N ( T ) N ( T ) N(T)N(T)N(T). The null space consists of all matrices A A AAA such that B A = 0 B A = 0 BA=0BA = 0BA=0.
Any matrix A A AAA of the form [ a b a b ] a b a b [[a,b],[a,b]]\left[\begin{array}{cc} a & b \\ a & b \end{array}\right][abab] will map to the null matrix under T T TTT.
We can express this as:
[ x 1 x 2 x 3 x 4 ] = [ p q p q ] = p [ 1 0 1 0 ] + q [ 0 1 0 1 ] x 1      x 2 x 3      x 4 = p      q p      q = p 1      0 1      0 + q 0      1 0      1 [[x_(1),x_(2)],[x_(3),x_(4)]]=[[p,q],[p,q]]=p[[1,0],[1,0]]+q[[0,1],[0,1]]\left[\begin{array}{ll}x_1 & x_2 \\ x_3 & x_4\end{array}\right]=\left[\begin{array}{ll}p & q \\ p & q\end{array}\right]=p\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]+q\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right][x1x2x3x4]=[pqpq]=p[1010]+q[0101]
Thus, the null space is spanned by the matrices [ 1 0 1 0 ] 1      0 1      0 [[1,0],[1,0]]\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right][1010] and [ 0 1 0 1 ] 0      1 0      1 [[0,1],[0,1]]\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right][0101], and its dimension is 2. Hence, Nullity ( T ) = 2 Nullity ( T ) = 2 “Nullity”(T)=2\text{Nullity}(T) = 2Nullity(T)=2.

Rank of T T TTT

By the rank-nullity theorem, we have:
ρ ( T ) + N ( T ) = 4 ρ ( T ) = 4 2 = 2 ρ ( T ) + N ( T ) = 4 ρ ( T ) = 4 2 = 2 rho(T)+N(T)=4Longrightarrowrho(T)=4-2=2\rho(T) + N(T) = 4 \implies \rho(T) = 4 – 2 = 2ρ(T)+N(T)=4ρ(T)=42=2
So, the rank of T T TTT is 2.

Finding Matrix A A AAA that Maps to the Null Matrix

Any matrix A A AAA of the form [ a b a b ] a b a b [[a,b],[a,b]]\left[\begin{array}{cc} a & b \\ a & b \end{array}\right][abab] will map to the null matrix under T T TTT.
Lets take an example :
To find out if A A AAA maps to the null matrix under T T TTT, we need to compute B A B A BABABA.
Given B = [ 1 1 4 4 ] B = 1 1 4 4 B=[[1,-1],[-4,4]]B = \left[\begin{array}{cc}1 & -1 \\ -4 & 4\end{array}\right]B=[1144] and A = [ 2 3 2 3 ] A = 2      3 2      3 A=[[2,3],[2,3]]A = \left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]A=[2323],
B A = [ 1 1 4 4 ] [ 2 3 2 3 ] = [ 0 0 0 0 ] B A = 1 1 4 4 2      3 2      3 = 0      0 0      0 BA=[[1,-1],[-4,4]][[2,3],[2,3]]=[[0,0],[0,0]]BA = \left[\begin{array}{cc}1 & -1 \\ -4 & 4\end{array}\right] \left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right] = \left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]BA=[1144][2323]=[0000]
After calculating, we find that B A B A BABABA is indeed the null matrix.

Conclusion

  • The rank of T T TTT is 1.
  • The nullity of T T TTT is 1.
  • A matrix A A AAA that maps to the null matrix under T T TTT is of the form [ a b a b ] a b a b [[a,b],[a,b]]\left[\begin{array}{cc} a & b \\ a & b \end{array}\right][abab] Example is A = [ 2 3 2 3 ] A = 2      3 2      3 A=[[2,3],[2,3]]A = \left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]A=[2323] .
(c) lim x π 4 ( tan x ) tan 2 x lim x π 4 ( tan x ) tan 2 x lim_(x rarr(pi)/(4))(tan x)^(tan 2x)\lim _{x \rightarrow \frac{\pi}{4}}(\tan x)^{\tan 2 x}limxπ4(tanx)tan2x का मान निकालिए।
Evaluate lim x π 4 ( tan x ) tan 2 x lim x π 4 ( tan x ) tan 2 x lim_(x rarr(pi)/(4))(tan x)^(tan 2x)\lim _{x \rightarrow \frac{\pi}{4}}(\tan x)^{\tan 2 x}limxπ4(tanx)tan2x
Answer:
Equations/Concepts:
We’ll use the concept of limits, logarithms, and trigonometric identities.
Step-by-Step Explanation:
  1. Let y = ( tan x ) tan 2 x y = ( tan x ) tan 2 x y=(tan x)^(tan 2x)y=(\tan x)^{\tan 2 x}y=(tanx)tan2x.
  2. Take the natural logarithm of both sides:
log y = tan 2 x log tan x log y = tan 2 x log tan x {:log y=tan 2x log tan x:}\begin{aligned} \log y &= \tan 2 x \log \tan x \end{aligned}logy=tan2xlogtanx
  1. Now, let’s find the limit:
lim x π 4 log y = lim x π 4 tan 2 x log tan x lim x π 4 log y = lim x π 4 tan 2 x log tan x {:lim_(x rarr(pi)/(4))log y=lim_(x rarr(pi)/(4))tan 2x log tan x:}\begin{aligned} \lim _{x \rightarrow \frac{\pi}{4}} \log y &= \lim _{x \rightarrow \frac{\pi}{4}} \tan 2 x \log \tan x \end{aligned}limxπ4logy=limxπ4tan2xlogtanx
  1. We can apply L’Hôpital’s rule here because it’s an indeterminate form ( 0 0 0 0 (0)/(0)\frac{0}{0}00). So, differentiate the numerator and denominator with respect to x x xxx:
= lim x π 4 log tan x cot 2 x = lim x π 4 1 tan x sec 2 x 2 csc 2 2 x = lim x π 4 log tan x cot 2 x = lim x π 4 1 tan x sec 2 x 2 csc 2 2 x {:[=lim_(x rarr(pi)/(4))(log tan x)/(cot 2x)],[=lim_(x rarr(pi)/(4))((1)/(tan x)sec^(2)x)/(-2csc^(2)2x)]:}\begin{aligned} &= \lim _{x \rightarrow \frac{\pi}{4}} \frac{\log \tan x}{\cot 2 x} \\ &= \lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{1}{\tan x} \sec ^2 x}{-2 \csc^2 2 x} \end{aligned}=limxπ4logtanxcot2x=limxπ41tanxsec2x2csc22x
  1. Now, substitute x = π 4 x = π 4 x=(pi)/(4)x = \frac{\pi}{4}x=π4 into the equation:
= 1 tan π 4 sec 2 π 4 2 csc 2 2 π 4 = 1 2 2 = 1 = 1 tan π 4 sec 2 π 4 2 csc 2 2 π 4 = 1 2 2 = 1 {:[=((1)/(tan((pi)/(4)))sec^(2)((pi)/(4)))/(-2csc^(2)2(pi)/(4))],[=(1*2)/(-2)],[=-1]:}\begin{aligned} &= \frac{\frac{1}{\tan \frac{\pi}{4}} \sec ^2 \frac{\pi}{4}}{-2 \csc^2 2 \frac{\pi}{4}} \\ &= \frac{1 \cdot 2}{-2} \\ &= -1 \end{aligned}=1tanπ4sec2π42csc22π4=122=1
  1. Now, we’ve found the limit of log y log y log y\log ylogy as x x xxx approaches π 4 π 4 (pi)/(4)\frac{\pi}{4}π4 to be 1 1 -1-11. To find y y yyy, we take the exponential of both sides:
y = e 1 y = e 1 {:y=e^(-1):}\begin{aligned} y &= e^{-1} \end{aligned}y=e1
Conclusion:
The limit of ( tan x ) tan 2 x ( tan x ) tan 2 x (tan x)^(tan 2x)(\tan x)^{\tan 2 x}(tanx)tan2x as x x xxx approaches π 4 π 4 (pi)/(4)\frac{\pi}{4}π4 is e 1 e 1 e^(-1)e^{-1}e1.
(d) वक्र ( 2 x + 3 ) y = ( x 1 ) 2 ( 2 x + 3 ) y = ( x 1 ) 2 (2x+3)y=(x-1)^(2)(2 x+3) y=(x-1)^2(2x+3)y=(x1)2 के सभी अनंतस्पर्शी निकालिए।
Find all the asymptotes of the curve ( 2 x + 3 ) y = ( x 1 ) 2 ( 2 x + 3 ) y = ( x 1 ) 2 (2x+3)y=(x-1)^(2)(2 x+3) y=(x-1)^2(2x+3)y=(x1)2.
Answer:
Step-by-Step Solution:
  1. Start with the given equation of the curve: ( 2 x + 3 ) y = ( x 1 ) 2 ( 2 x + 3 ) y = ( x 1 ) 2 (2x+3)y=(x-1)^(2)(2 x+3) y=(x-1)^2(2x+3)y=(x1)2.
  2. Rewrite the equation in standard form:
2 x y + 3 y = x 2 2 x + 1 x 2 2 x y 2 x 3 y + 1 = 0 2 x y + 3 y = x 2 2 x + 1 x 2 2 x y 2 x 3 y + 1 = 0 {:[2xy+3y=x^(2)-2x+1],[x^(2)-2xy-2x-3y+1=0]:}\begin{align*} 2xy + 3y &= x^2 – 2x + 1 \\ x^2 – 2xy – 2x – 3y + 1 &= 0 \end{align*}2xy+3y=x22x+1x22xy2x3y+1=0
  1. To find the asymptotes, begin by assuming y = m x + c y = m x + c y=mx+cy = mx + cy=mx+c.
  2. Substitute y = m x + c y = m x + c y=mx+cy = mx + cy=mx+c into the equation:
x 2 2 x ( m x + c ) 2 x 3 ( m x + c ) + 1 = 0 x 2 2 x 2 m 2 c x 2 x 3 m x 3 c + 1 = 0 x 2 2 x ( m x + c ) 2 x 3 ( m x + c ) + 1 = 0 x 2 2 x 2 m 2 c x 2 x 3 m x 3 c + 1 = 0 {:[x^(2)-2x(mx+c)-2x-3(mx+c)+1=0],[x^(2)-2x^(2)m-2cx-2x-3mx-3c+1=0]:}\begin{align*} x^2 – 2x(mx + c) – 2x – 3(mx + c) + 1 &= 0 \\ x^2 – 2x^2m – 2cx – 2x – 3mx – 3c + 1 &= 0 \end{align*}x22x(mx+c)2x3(mx+c)+1=0x22x2m2cx2x3mx3c+1=0
  1. Group the terms with x 2 x 2 x^(2)x^2x2 and x x xxx separately:
( 1 2 m ) x 2 ( 2 c + 2 + 3 m ) x 3 c + 1 = 0 ( 1 2 m ) x 2 ( 2 c + 2 + 3 m ) x 3 c + 1 = 0 (1-2m)x^(2)-(2c+2+3m)x-3c+1=0(1 – 2m)x^2 – (2c + 2 + 3m)x – 3c + 1 = 0(12m)x2(2c+2+3m)x3c+1=0
  1. To have asymptotes, the coefficient of x 2 x 2 x^(2)x^2x2 should be zero and the constant term should not be zero. Equate them to zero:
1 2 m = 0 m = 1 2 2 c + 2 + 3 m = 0 2 c + 2 + 3 ( 1 2 ) = 0 2 c + 2 + 3 2 = 0 2 c + 7 2 = 0 2 c = 7 2 c = 7 4 1 2 m = 0 m = 1 2 2 c + 2 + 3 m = 0 2 c + 2 + 3 1 2 = 0 2 c + 2 + 3 2 = 0 2 c + 7 2 = 0 2 c = 7 2 c = 7 4 {:[1-2m=0Longrightarrowm=(1)/(2)],[2c+2+3m=0Longrightarrow2c+2+3((1)/(2))=0],[2c+2+(3)/(2)=0],[2c+(7)/(2)=0],[2c=-(7)/(2)],[c=-(7)/(4)]:}\begin{align*} 1 – 2m &= 0 \implies m = \frac{1}{2} \\ 2c + 2 + 3m &= 0 \implies 2c + 2 + 3\left(\frac{1}{2}\right) = 0 \\ 2c + 2 + \frac{3}{2} &= 0 \\ 2c + \frac{7}{2} &= 0 \\ 2c &= -\frac{7}{2} \\ c &= -\frac{7}{4} \end{align*}12m=0m=122c+2+3m=02c+2+3(12)=02c+2+32=02c+72=02c=72c=74
  1. Thus, one asymptote is y = x 2 7 4 y = x 2 7 4 y=(x)/(2)-(7)/(4)y = \frac{x}{2} – \frac{7}{4}y=x274.
  2. To find the vertical asymptotes, set the denominator equal to zero:
2 x + 3 = 0 x = 3 2 2 x + 3 = 0 x = 3 2 2x+3=0Longrightarrowx=-(3)/(2)2x + 3 = 0 \implies x = -\frac{3}{2}2x+3=0x=32
Conclusion:
The curve ( 2 x + 3 ) y = ( x 1 ) 2 ( 2 x + 3 ) y = ( x 1 ) 2 (2x+3)y=(x-1)^(2)(2 x+3) y=(x-1)^2(2x+3)y=(x1)2 has one slant asymptote given by y = x 2 7 4 y = x 2 7 4 y=(x)/(2)-(7)/(4)y = \frac{x}{2} – \frac{7}{4}y=x274 and one vertical asymptote at x = 3 2 x = 3 2 x=-(3)/(2)x = -\frac{3}{2}x=32.
(e) दीर्घवृत्तज 2 x 2 + 6 y 2 + 3 z 2 = 27 2 x 2 + 6 y 2 + 3 z 2 = 27 2x^(2)+6y^(2)+3z^(2)=272 x^2+6 y^2+3 z^2=272x2+6y2+3z2=27 के स्पर्श समतल का समीकरण निकालिए, जो रेखा x y z = 0 = x y + 2 z 9 x y z = 0 = x y + 2 z 9 x-y-z=0=x-y+2z-9x-y-z=0=x-y+2 z-9xyz=0=xy+2z9 से होकर गुजरता है।
Find the equations of the tangent plane to the ellipsoid 2 x 2 + 6 y 2 + 3 z 2 = 27 2 x 2 + 6 y 2 + 3 z 2 = 27 2x^(2)+6y^(2)+3z^(2)=272 x^2+6 y^2+3 z^2=272x2+6y2+3z2=27 which passes through the line x y z = 0 = x y + 2 z 9 x y z = 0 = x y + 2 z 9 x-y-z=0=x-y+2z-9x-y-z=0=x-y+2 z-9xyz=0=xy+2z9.
Answer:
Work/Calculations:
  1. Equation of the Given Line:
    We start with the equation of the given line:
    x y z = 0 (1) x y z = 0 (1) x-y-z=0quad(1)x – y – z = 0 \quad \text{(1)}xyz=0(1)
  2. Equation of a Plane Through the Given Line:
    The equation of any plane through the given line (1) can be written as:
    x y z + λ ( x y + 2 z 9 ) = 0 x y z + λ ( x y + 2 z 9 ) = 0 x-y-z+lambda(x-y+2z-9)=0x – y – z + \lambda(x – y + 2z – 9) = 0xyz+λ(xy+2z9)=0
    Simplifying:
    x ( 1 + λ ) + y ( 1 λ ) + z ( 1 + 2 λ ) = 9 λ (2) x ( 1 + λ ) + y ( 1 λ ) + z ( 1 + 2 λ ) = 9 λ (2) x(1+lambda)+y(-1-lambda)+z(-1+2lambda)=9lambdaquad(2)x(1 + \lambda) + y(-1 – \lambda) + z(-1 + 2\lambda) = 9\lambda \quad \text{(2)}x(1+λ)+y(1λ)+z(1+2λ)=9λ(2)
  3. Ellipsoid Equation:
    The equation of the given ellipsoid is 2 x 2 + 6 y 2 + 3 z 2 = 27 2 x 2 + 6 y 2 + 3 z 2 = 27 2x^(2)+6y^(2)+3z^(2)=272x^2 + 6y^2 + 3z^2 = 272x2+6y2+3z2=27. We can normalize this equation as:
    2 27 x 2 + 2 9 y 2 + 1 9 z 2 = 1 2 27 x 2 + 2 9 y 2 + 1 9 z 2 = 1 (2)/(27)x^(2)+(2)/(9)y^(2)+(1)/(9)z^(2)=1\frac{2}{27}x^2 + \frac{2}{9}y^2 + \frac{1}{9}z^2 = 1227x2+29y2+19z2=1
    Here, a = 2 27 a = 2 27 a=(2)/(27)a = \frac{2}{27}a=227, b = 2 9 b = 2 9 b=(2)/(9)b = \frac{2}{9}b=29, and c = 1 9 c = 1 9 c=(1)/(9)c = \frac{1}{9}c=19.
  4. Using the Tangent Plane Equation:
    If a plane (2) touches the given ellipsoid, we can use the equation for a tangent plane:
    l 2 a + m 2 b + n 2 c = p 2 (3) l 2 a + m 2 b + n 2 c = p 2 (3) (l^(2))/(a)+(m^(2))/(b)+(n^(2))/(c)=p^(2)quad(3)\frac{l^2}{a} + \frac{m^2}{b} + \frac{n^2}{c} = p^2 \quad \text{(3)}l2a+m2b+n2c=p2(3)
    Here, ( l , m , n ) ( l , m , n ) (l,m,n)(l, m, n)(l,m,n) is the normal vector to the plane, and p p ppp is the distance from the origin.
  5. Substituting into (3):
    Now, we substitute the values a a aaa, b b bbb, and c c ccc into equation (3):
    27 2 ( 1 + λ ) 2 + 9 2 ( 1 λ ) 2 + 18 ( 2 λ 1 ) 2 = ( 9 λ ) 2 27 2 ( 1 + λ ) 2 + 9 2 ( 1 λ ) 2 + 18 ( 2 λ 1 ) 2 = ( 9 λ ) 2 (27)/(2)(1+lambda)^(2)+(9)/(2)(-1-lambda)^(2)+18(2lambda-1)^(2)=(9lambda)^(2)\frac{27}{2}(1 + \lambda)^2 + \frac{9}{2}(-1 – \lambda)^2 + 18(2\lambda – 1)^2 = (9\lambda)^2272(1+λ)2+92(1λ)2+18(2λ1)2=(9λ)2
  6. Solving for λ:
    Simplifying and solving for λ:
    54 λ 2 + 54 = 0 54 λ 2 + 54 = 0 -54lambda^(2)+54=0-54\lambda^2 + 54 = 054λ2+54=0
    λ 2 = 1 λ 2 = 1 lambda^(2)=1\lambda^2 = 1λ2=1
    This gives two solutions: λ = ± 1 λ = ± 1 lambda=+-1\lambda = \pm 1λ=±1.
Conclusion:
Now, we can find the required equations of the tangent planes:
  1. If λ = 1 λ = 1 lambda=1\lambda = 1λ=1:
    Substituting λ = 1 λ = 1 lambda=1\lambda = 1λ=1 into equation (2):
    2 x 2 y + z = 9 2 x 2 y + z = 9 2x-2y+z=92x – 2y + z = 92x2y+z=9
    So, the equation of one of the tangent planes is 2 x 2 y + z = 9 2 x 2 y + z = 9 2x-2y+z=92x – 2y + z = 92x2y+z=9.
  2. If λ = 1 λ = 1 lambda=-1\lambda = -1λ=1:
    Substituting λ = 1 λ = 1 lambda=-1\lambda = -1λ=1 into equation (2):
    z = 3 z = 3 z=3z = 3z=3
    So, the equation of the other tangent plane is z = 3 z = 3 z=3z = 3z=3.
These are the equations of the tangent planes to the ellipsoid that pass through the given line.
  1. (a) 0 1 tan 1 ( 1 1 x ) d x 0 1 tan 1 1 1 x d x int_(0)^(1)tan^(-1)(1-(1)/(x))dx\int_0^1 \tan ^{-1}\left(1-\frac{1}{x}\right) d x01tan1(11x)dx का मान निकालिए।
Evaluate 0 1 tan 1 ( 1 1 x ) d x 0 1 tan 1 1 1 x d x int_(0)^(1)tan^(-1)(1-(1)/(x))dx\int_0^1 \tan ^{-1}\left(1-\frac{1}{x}\right) d x01tan1(11x)dx
Answer:
Introduction:
We are tasked with evaluating the integral 0 1 tan 1 ( 1 1 x ) d x 0 1 tan 1 1 1 x d x int_(0)^(1)tan^(-1)(1-(1)/(x))dx\int_0^1 \tan^{-1}\left(1-\frac{1}{x}\right)dx01tan1(11x)dx.
Work/Calculations:
  1. Initial Setup:
    We start by defining I I III as the integral:
    I = 0 1 tan 1 ( 1 1 x ) d x I = 0 1 tan 1 1 1 x d x I=int_(0)^(1)tan^(-1)(1-(1)/(x))dxI = \int_0^1 \tan^{-1}\left(1-\frac{1}{x}\right)dxI=01tan1(11x)dx
  2. Rewriting the Integral:
    We can express tan 1 ( 1 1 x ) tan 1 1 1 x tan^(-1)(1-(1)/(x))\tan^{-1}\left(1-\frac{1}{x}\right)tan1(11x) as tan 1 ( x 1 x ) tan 1 x 1 x tan^(-1)((x-1)/(x))\tan^{-1}\left(\frac{x-1}{x}\right)tan1(x1x):
    I = 0 1 tan 1 ( x 1 x ) d x (1) I = 0 1 tan 1 x 1 x d x (1) I=int_(0)^(1)tan^(-1)((x-1)/(x))dx quad(1)I = \int_0^1 \tan^{-1}\left(\frac{x-1}{x}\right)dx \quad \text{(1)}I=01tan1(x1x)dx(1)
  3. Applying Integral Property:
    Utilizing the property a b f ( x ) d x = a b f ( a + b x ) d x a b f ( x ) d x = a b f ( a + b x ) d x int_(a)^(b)f^(‘)(x)dx=int_(a)^(b)f(a+b-x)dx\int_a^b f'(x)dx = \int_a^b f(a+b-x)dxabf(x)dx=abf(a+bx)dx, we obtain:
    I = 0 1 tan 1 ( x 1 x ) d x I = 0 1 tan 1 x 1 x d x I=int_(0)^(1)tan^(-1)(-(x)/(1-x))dxI = \int_0^1 \tan^{-1}\left(-\frac{x}{1-x}\right)dxI=01tan1(x1x)dx
  4. Further Simplification:
    We can simplify the integral by changing the sign inside the arctan function:
    I = 0 1 tan 1 ( x x 1 ) d x (2) I = 0 1 tan 1 x x 1 d x (2) I=int_(0)^(1)tan^(-1)((x)/(x-1))dx quad(2)I = \int_0^1 \tan^{-1}\left(\frac{x}{x-1}\right)dx \quad \text{(2)}I=01tan1(xx1)dx(2)
  5. Combining Equations (1) and (2):
    Adding equations (1) and (2), we get:
    2 I = 0 1 tan 1 ( x 1 x ) d x + 0 1 tan 1 ( x x 1 ) d x 2 I = 0 1 tan 1 x 1 x d x + 0 1 tan 1 x x 1 d x 2I=int_(0)^(1)tan^(-1)((x-1)/(x))dx+int_(0)^(1)tan^(-1)((x)/(x-1))dx2I = \int_0^1 \tan^{-1}\left(\frac{x-1}{x}\right)dx + \int_0^1 \tan^{-1}\left(\frac{x}{x-1}\right)dx2I=01tan1(x1x)dx+01tan1(xx1)dx
  6. Simplifying the Combined Integral:
    Notice that tan 1 x + tan 1 1 x tan 1 x + tan 1 1 x tan^(-1)x+tan^(-1)((1)/(x))\tan^{-1}x + \tan^{-1}\frac{1}{x}tan1x+tan11x has a specific property:
    tan 1 x + tan 1 1 x = { π 2 if x > 0 π 2 if x < 0 tan 1 x + tan 1 1 x = π 2      if x > 0 π 2      if x < 0 tan^(-1)x+tan^(-1)((1)/(x))={[(pi)/(2),”if “x > 0],[-(pi)/(2),”if “x < 0]:}\tan^{-1}x + \tan^{-1}\frac{1}{x} = \begin{cases} \frac{\pi}{2} & \text{if } x > 0 \\ -\frac{\pi}{2} & \text{if } x < 0 \end{cases}tan1x+tan11x={π2if x>0π2if x<0
    Since x ( 0 , 1 ) x ( 0 , 1 ) x in(0,1)x \in (0,1)x(0,1), we have x 1 < 0 x 1 < 0 x-1 < 0x – 1 < 0x1<0 and x x 1 < 0 x x 1 < 0 (x)/(x-1) < 0\frac{x}{x-1} < 0xx1<0. Therefore, combining the integrals (3) results in:
    2 I = 0 1 π 2 d x 2 I = 0 1 π 2 d x 2I=int_(0)^(1)-(pi)/(2)dx2I = \int_0^1 -\frac{\pi}{2}dx2I=01π2dx
  7. Evaluating the Integral:
    Calculating the integral on the right-hand side:
    2 I = π 2 ( x ) | 0 1 = π 2 ( 1 0 ) = π 2 2 I = π 2 ( x ) | 0 1 = π 2 ( 1 0 ) = π 2 2I=-(pi)/(2)(x)|_(0)^(1)=-(pi)/(2)(1-0)=-(pi)/(2)2I = -\frac{\pi}{2}(x)\Bigg|_0^1 = -\frac{\pi}{2}(1 – 0) = -\frac{\pi}{2}2I=π2(x)|01=π2(10)=π2
  8. Solving for I I III:
    Finally, solving for I I III:
    I = π 4 I = π 4 I=-(pi)/(4)I = -\frac{\pi}{4}I=π4
Conclusion:
The corrected value of the given integral 0 1 tan 1 ( 1 1 x ) d x 0 1 tan 1 1 1 x d x int_(0)^(1)tan^(-1)(1-(1)/(x))dx\int_0^1 \tan^{-1}\left(1-\frac{1}{x}\right)dx01tan1(11x)dx is π 4 π 4 -(pi)/(4)-\frac{\pi}{4}π4.
(b) एक n × n n × n n xx nn \times nn×n आव्यूह A A AAA को परिभाषित कीजिए, जबकि A = I 2 u u T A = I 2 u u T A=I-2u*u^(T)A=I-2 u \cdot u^TA=I2uuT, जहाँ u u uuu एक इकाई स्तंभ सदिश है।
(i) परीक्षण कीजिए कि A A AAA सममित है।
(ii) परीक्षण कीजिए कि A A AAA लांबिक है।
(iii) दिखाइए कि आव्यूह A A AAA का अनुरेख ( n 2 ) ( n 2 ) (n-2)(n-2)(n2) है।
(iv) आव्यूह A 3 × 3 A 3 × 3 A_(3xx3)A_{3 \times 3}A3×3 निकालिए, जबकि u = [ 1 3 2 3 2 3 ] u = 1 3 2 3 2 3 u=[[(1)/(3)],[(2)/(3)],[(2)/(3)]]u=\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]u=[132323] है।
Define an n × n n × n n xx nn \times nn×n matrix as A = I 2 u u T A = I 2 u u T A=I-2u*u^(T)A=I-2 u \cdot u^TA=I2uuT, where u u uuu is a unit column vector.
(i) Examine if A A AAA is symmetric.
(ii) Examine if A A AAA is orthogonal.
(iii) Show that trace ( A ) = n 2 ( A ) = n 2 (A)=n-2(A)=n-2(A)=n2.
(iv) Find A 3 × 3 A 3 × 3 A_(3xx3)A_{3 \times 3}A3×3, when u = [ 1 3 2 3 2 3 ] u = 1 3 2 3 2 3 u=[[(1)/(3)],[(2)/(3)],[(2)/(3)]]u=\left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]u=[132323].
Answer:

Introduction

We are given an n × n n × n n xx nn \times nn×n matrix A A AAA defined as A = I 2 u u T A = I 2 u u T A=I-2u*u^(T)A = I – 2u \cdot u^TA=I2uuT, where u u uuu is a unit column vector. We are tasked with examining the following properties of A A AAA:
  1. Whether A A AAA is symmetric.
  2. Whether A A AAA is orthogonal.
  3. Examine the trace of A A AAA.
  4. Find A 3 × 3 A 3 × 3 A_(3xx3)A_{3 \times 3}A3×3 when u = [ 1 3 2 3 2 3 ] u = 1 3 2 3 2 3 u=[[(1)/(3)],[(2)/(3)],[(2)/(3)]]u = \left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]u=[132323].

Work/Calculations

(i) Examine if A A AAA is Symmetric

A matrix A A AAA is symmetric if A = A T A = A T A=A^(T)A = A^TA=AT.
The transpose of A A AAA is given by ( I 2 u u T ) T ( I 2 u u T ) T (I-2u*u^(T))^(T)(I – 2u \cdot u^T)^T(I2uuT)T.
After calculating, we get A T = I T ( 2 u u T ) T A T = I T ( 2 u u T ) T A^(T)=I^(T)-(2u*u^(T))^(T)A^T = I^T – (2u \cdot u^T)^TAT=IT(2uuT)T.
Since I T = I I T = I I^(T)=II^T = IIT=I and ( 2 u u T ) T = 2 u u T ( 2 u u T ) T = 2 u u T (2u*u^(T))^(T)=2u*u^(T)(2u \cdot u^T)^T = 2u \cdot u^T(2uuT)T=2uuT, we find that A T = I 2 u u T A T = I 2 u u T A^(T)=I-2u*u^(T)A^T = I – 2u \cdot u^TAT=I2uuT.
Therefore, A = A T A = A T A=A^(T)A = A^TA=AT, which means A A AAA is symmetric.

(ii) Examine if A A AAA is Orthogonal

A matrix A A AAA is orthogonal if A T A = A A T = I A T A = A A T = I A^(T)A=AA^(T)=IA^T A = AA^T = IATA=AAT=I.
Let’s substitute the values into the formula: ( I 2 u u T ) T ( I 2 u u T ) ( I 2 u u T ) T ( I 2 u u T ) (I-2u*u^(T))^(T)(I-2u*u^(T))(I – 2u \cdot u^T)^T (I – 2u \cdot u^T)(I2uuT)T(I2uuT).
After calculating, we get I 2 u u T 2 u u T + 4 u u T u u T I 2 u u T 2 u u T + 4 u u T u u T I-2u*u^(T)-2u*u^(T)+4u*u^(T)*u*u^(T)I – 2u \cdot u^T – 2u \cdot u^T + 4u \cdot u^T \cdot u \cdot u^TI2uuT2uuT+4uuTuuT.
Since u u uuu is a unit vector, u u T = 1 u u T = 1 u*u^(T)=1u \cdot u^T = 1uuT=1.
Therefore, A T A = I A T A = I A^(T)A=IA^T A = IATA=I and A A T = I A A T = I AA^(T)=IAA^T = IAAT=I, which means A A AAA is orthogonal.

(iii) Show that Trace ( A ) = n 2 ( A ) = n 2 (A)=n-2(A) = n – 2(A)=n2

The trace of A A AAA is the sum of its diagonal elements.
Trace ( A ) = Trace ( I ) 2 Trace ( u u T ) ( A ) = Trace ( I ) 2 Trace ( u u T ) (A)=”Trace”(I)-2″Trace”(u*u^(T))(A) = \text{Trace}(I) – 2 \text{Trace}(u \cdot u^T)(A)=Trace(I)2Trace(uuT).
Since u u uuu is a unit vector, Trace ( u u T ) = 1 Trace ( u u T ) = 1 “Trace”(u*u^(T))=1\text{Trace}(u \cdot u^T) = 1Trace(uuT)=1.
Therefore, Trace ( A ) = n 2 ( A ) = n 2 (A)=n-2(A) = n – 2(A)=n2.

(iv) Find A 3 × 3 A 3 × 3 A_(3xx3)A_{3 \times 3}A3×3, when u = [ 1 3 2 3 2 3 ] u = 1 3 2 3 2 3 u=[[(1)/(3)],[(2)/(3)],[(2)/(3)]]u = \left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]u=[132323]

A = I 2 u u T A = I 2 u u T A=I-2u*u^(T)A = I – 2u \cdot u^TA=I2uuT
After calculating, we get A = ( 1 2 9 4 9 4 9 4 9 1 8 9 8 9 4 9 8 9 1 8 9 ) A = 1 2 9 4 9 4 9 4 9 1 8 9 8 9 4 9 8 9 1 8 9 A=([1-(2)/(9),-(4)/(9),-(4)/(9)],[-(4)/(9),1-(8)/(9),-(8)/(9)],[-(4)/(9),-(8)/(9),1-(8)/(9)])A = \begin{pmatrix} 1 – \frac{2}{9} & -\frac{4}{9} & -\frac{4}{9} \\ -\frac{4}{9} & 1 – \frac{8}{9} & -\frac{8}{9} \\ -\frac{4}{9} & -\frac{8}{9} & 1 – \frac{8}{9} \end{pmatrix}A=(129494949189894989189).
Simplifying, A = ( 7 9 4 9 4 9 4 9 1 9 8 9 4 9 8 9 1 9 ) A = 7 9 4 9 4 9 4 9 1 9 8 9 4 9 8 9 1 9 A=([(7)/(9),-(4)/(9),-(4)/(9)],[-(4)/(9),(1)/(9),-(8)/(9)],[-(4)/(9),-(8)/(9),(1)/(9)])A = \begin{pmatrix} \frac{7}{9} & -\frac{4}{9} & -\frac{4}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{4}{9} & -\frac{8}{9} & \frac{1}{9} \end{pmatrix}A=(794949491989498919).

Conclusion

  1. The matrix A A AAA is symmetric.
  2. The matrix A A AAA is orthogonal.
  3. The trace of A A AAA is n 2 n 2 n-2n – 2n2.
  4. When u = [ 1 3 2 3 2 3 ] u = 1 3 2 3 2 3 u=[[(1)/(3)],[(2)/(3)],[(2)/(3)]]u = \left[\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]u=[132323], A 3 × 3 = ( 7 9 4 9 4 9 4 9 1 9 8 9 4 9 8 9 1 9 ) A 3 × 3 = 7 9 4 9 4 9 4 9 1 9 8 9 4 9 8 9 1 9 A_(3xx3)=([(7)/(9),-(4)/(9),-(4)/(9)],[-(4)/(9),(1)/(9),-(8)/(9)],[-(4)/(9),-(8)/(9),(1)/(9)])A_{3 \times 3} = \begin{pmatrix} \frac{7}{9} & -\frac{4}{9} & -\frac{4}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{4}{9} & -\frac{8}{9} & \frac{1}{9} \end{pmatrix}A3×3=(794949491989498919).
(c) एक ऐसे बेलन का समीकरण निकालिए, जिसकी जनक-रेखाएँ, रेखा x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(-2)=(z)/(3)\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}x1=y2=z3 के समांतर हैं तथा जिसका मार्गदर्शक वक्र x 2 + y 2 = 4 , z = 2 x 2 + y 2 = 4 , z = 2 x^(2)+y^(2)=4,z=2x^2+y^2=4, z=2x2+y2=4,z=2 है।
Find the equation of the cylinder whose generators are parallel to the line x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(-2)=(z)/(3)\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}x1=y2=z3 and whose guiding curve is x 2 + y 2 = 4 , z = 2 x 2 + y 2 = 4 , z = 2 x^(2)+y^(2)=4,z=2x^2+y^2=4, z=2x2+y2=4,z=2.
Answer:
  1. Equation of a Generator:
    Let P ( x 1 , y 1 , z 1 ) P ( x 1 , y 1 , z 1 ) P(x_(1),y_(1),z_(1))P(x_1, y_1, z_1)P(x1,y1,z1) be any point on the cylinder. The equation of a generator passing through P P PPP can be expressed as:
    x x 1 1 = y y 1 2 = z z 1 3 x x 1 1 = y y 1 2 = z z 1 3 (x-x_(1))/(1)=(y-y_(1))/(-2)=(z-z_(1))/(3)\frac{x – x_1}{1} = \frac{y – y_1}{-2} = \frac{z – z_1}{3}xx11=yy12=zz13
  2. Intersection with Plane z = 2 z = 2 z=2z=2z=2:
    The generator intersects the plane z = 2 z = 2 z=2z=2z=2 at a point given by:
    x x 1 = y y 1 2 = z z 1 3 (1) ( x 1 + 2 z 1 3 , 2 ( 2 z 1 ) 3 + y 1 , 2 ) x x 1 = y y 1 2 = z z 1 3 (1) x 1 + 2 z 1 3 , 2 ( 2 z 1 ) 3 + y 1 , 2 {:[x-x_(1)=(y-y_(1))/(-2)=(z-z_(1))/(3)quad(1)],[=>(x_(1)+(2-z_(1))/(3),-(2(2-z_(1)))/(3)+y_(1),2)]:}\begin{aligned} x – x_1 &= \frac{y – y_1}{-2} = \frac{z – z_1}{3} \quad \text{(1)} \\ \Rightarrow \left(x_1 + \frac{2 – z_1}{3}, -\frac{2(2 – z_1)}{3} + y_1, 2\right) \end{aligned}xx1=yy12=zz13(1)(x1+2z13,2(2z1)3+y1,2)
  3. Intersection with Guiding Curve:
    The generator also intersects the guiding curve, given by x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2 + y^2 = 4x2+y2=4 and z = 2 z = 2 z=2z = 2z=2. Substituting z = 2 z = 2 z=2z = 2z=2 into equation (1), we get:
    ( x 1 + 2 z 1 3 ) 2 + ( y 1 2 ( 2 z 1 ) 3 ) 2 = 4 ( 3 x 1 + 2 z 1 ) 2 + ( 3 y 1 4 + 2 z 1 ) 2 = 36 9 x 1 2 + 9 y 1 2 + 5 z 1 2 6 x 1 z 1 + 12 y 1 z 1 20 z 1 + 12 x 1 24 y 1 16 = 0 x 1 + 2 z 1 3 2 + y 1 2 ( 2 z 1 ) 3 2 = 4 3 x 1 + 2 z 1 2 + 3 y 1 4 + 2 z 1 2 = 36 9 x 1 2 + 9 y 1 2 + 5 z 1 2 6 x 1 z 1 + 12 y 1 z 1 20 z 1 + 12 x 1 24 y 1 16 = 0 {:[(x_(1)+(2-z_(1))/(3))^(2)+(y_(1)-(2(2-z_(1)))/(3))^(2)=4],[=>(3x_(1)+2-z_(1))^(2)+(3y_(1)-4+2z_(1))^(2)=36],[=>9x_(1)^(2)+9y_(1)^(2)+5z_(1)^(2)-6x_(1)z_(1)+12y_(1)z_(1)-20z_(1)+12x_(1)-24y_(1)-16=0]:}\begin{aligned} \left(x_1 + \frac{2 – z_1}{3}\right)^2 + \left(y_1 – \frac{2(2 – z_1)}{3}\right)^2 &= 4 \\ \Rightarrow \left(3x_1 + 2 – z_1\right)^2 + \left(3y_1 – 4 + 2z_1\right)^2 &= 36 \\ \Rightarrow 9x_1^2 + 9y_1^2 + 5z_1^2 – 6x_1z_1 + 12y_1z_1 – 20z_1 + 12x_1 – 24y_1 – 16 &= 0 \end{aligned}(x1+2z13)2+(y12(2z1)3)2=4(3x1+2z1)2+(3y14+2z1)2=369x12+9y12+5z126x1z1+12y1z120z1+12x124y116=0
  4. Equation of the Cylinder:
    The equation of the required cylinder is:
    9 x 2 + 9 y 2 + 5 z 2 6 x z + 12 y z 20 z + 12 x 24 y 16 = 0 9 x 2 + 9 y 2 + 5 z 2 6 x z + 12 y z 20 z + 12 x 24 y 16 = 0 9x^(2)+9y^(2)+5z^(2)-6xz+12 yz-20 z+12 x-24 y-16=09x^2 + 9y^2 + 5z^2 – 6xz + 12yz – 20z + 12x – 24y – 16 = 09x2+9y2+5z26xz+12yz20z+12x24y16=0
Conclusion:
The equation 9 x 2 + 9 y 2 + 5 z 2 6 x z + 12 y z 20 z + 12 x 24 y 16 = 0 9 x 2 + 9 y 2 + 5 z 2 6 x z + 12 y z 20 z + 12 x 24 y 16 = 0 9x^(2)+9y^(2)+5z^(2)-6xz+12 yz-20 z+12 x-24 y-16=09x^2 + 9y^2 + 5z^2 – 6xz + 12yz – 20z + 12x – 24y – 16 = 09x2+9y2+5z26xz+12yz20z+12x24y16=0 represents the cylinder with generators parallel to the line x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(-2)=(z)/(3)\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}x1=y2=z3 and a guiding curve defined by x 2 + y 2 = 4 x 2 + y 2 = 4 x^(2)+y^(2)=4x^2+y^2=4x2+y2=4 and z = 2 z = 2 z=2z=2z=2.
3(a) निम्न फलन पर विचार कीजिए :
f ( x ) = 0 x ( t 2 5 t + 4 ) ( t 2 5 t + 6 ) d t f ( x ) = 0 x t 2 5 t + 4 t 2 5 t + 6 d t f(x)=int_(0)^(x)(t^(2)-5t+4)(t^(2)-5t+6)dtf(x)=\int_0^x\left(t^2-5 t+4\right)\left(t^2-5 t+6\right) d tf(x)=0x(t25t+4)(t25t+6)dt
(i) फलन f ( x ) f ( x ) f(x)f(x)f(x) के क्रांतिक बिंदु निकालिए।
(ii) वे बिंदु निकालिए, जहाँ f ( x ) f ( x ) f(x)f(x)f(x) का स्थानीय न्यूनतम होगा।
(iii) वे बिंदु निकालिए, जहाँ f ( x ) f ( x ) f(x)f(x)f(x) का स्थानीय अधिकतम होगा।
(iv) फलन f ( x ) f ( x ) f(x)f(x)f(x) के [ 0 , 5 ] [ 0 , 5 ] [0,5][0,5][0,5] में कितने शून्यक होंगे, निकालिए।
Consider the function f ( x ) = 0 x ( t 2 5 t + 4 ) ( t 2 5 t + 6 ) d t f ( x ) = 0 x t 2 5 t + 4 t 2 5 t + 6 d t f(x)=int_(0)^(x)(t^(2)-5t+4)(t^(2)-5t+6)dtf(x)=\int_0^x\left(t^2-5 t+4\right)\left(t^2-5 t+6\right) d tf(x)=0x(t25t+4)(t25t+6)dt.
(i) Find the critical points of the function f ( x ) f ( x ) f(x)f(x)f(x).
(ii) Find the points at which local minimum occurs.
(iii) Find the points at which local maximum occurs.
(iv) Find the number of zeros of the function f ( x ) f ( x ) f(x)f(x)f(x) in [ 0 , 5 ] [ 0 , 5 ] [0,5][0,5][0,5].
Answer:

Introduction

We are given the function f ( x ) = 0 x ( t 2 5 t + 4 ) ( t 2 5 t + 6 ) d t f ( x ) = 0 x t 2 5 t + 4 t 2 5 t + 6 d t f(x)=int_(0)^(x)(t^(2)-5t+4)(t^(2)-5t+6)dtf(x) = \int_0^x \left( t^2 – 5t + 4 \right) \left( t^2 – 5t + 6 \right) \, dtf(x)=0x(t25t+4)(t25t+6)dt. We are tasked with:
  1. Finding the critical points of f ( x ) f ( x ) f(x)f(x)f(x).
  2. Identifying the points at which a local minimum occurs.
  3. Identifying the points at which a local maximum occurs.
  4. Determining the number of zeros of f ( x ) f ( x ) f(x)f(x)f(x) in the interval [ 0 , 5 ] [ 0 , 5 ] [0,5][0, 5][0,5].

Work/Calculations

(i) Find the Critical Points of f ( x ) f ( x ) f(x)f(x)f(x)

By Leibnitz’s theorem, the derivative of f ( x ) f ( x ) f(x)f(x)f(x) is given by:
f ( x ) = ( x 2 5 x + 4 ) ( x 2 5 x + 6 ) f ( x ) = x 2 5 x + 4 x 2 5 x + 6 f^(‘)(x)=(x^(2)-5x+4)(x^(2)-5x+6)f'(x) = \left( x^2 – 5x + 4 \right) \left( x^2 – 5x + 6 \right)f(x)=(x25x+4)(x25x+6)
To find the critical points, we set f ( x ) = 0 f ( x ) = 0 f^(‘)(x)=0f'(x) = 0f(x)=0:
f ( x ) = ( x + 1 ) ( x 4 ) ( x 2 ) ( x 3 ) f ( x ) = ( x + 1 ) ( x 4 ) ( x 2 ) ( x 3 ) f^(‘)(x)=(x+1)(x-4)(x-2)(x-3)f'(x) = (x + 1)(x – 4)(x – 2)(x – 3)f(x)=(x+1)(x4)(x2)(x3)
This gives us critical points at x = 1 , 2 , 3 , 4 x = 1 , 2 , 3 , 4 x=1,2,3,4x = 1, 2, 3, 4x=1,2,3,4.

(ii) Find the Points at Which Local Minimum Occurs

To find the local minima, we need to examine f ( x ) f ( x ) f^(″)(x)f”(x)f(x):
f ( x ) = ( 2 x 5 ) [ x 2 5 x + 6 ] + [ x 2 5 x + 4 ] ( 2 x 5 ) f ( x ) = ( 2 x 5 ) x 2 5 x + 6 + x 2 5 x + 4 ( 2 x 5 ) f^(″)(x)=(2x-5)[x^(2)-5x+6]+[x^(2)-5x+4](2x-5)f”(x) = (2x – 5) \left[ x^2 – 5x + 6 \right] + \left[ x^2 – 5x + 4 \right] (2x – 5)f(x)=(2x5)[x25x+6]+[x25x+4](2x5)
After simplifying, we get:
f ( x ) = ( 2 x 5 ) [ x 2 10 x + 10 ] f ( x ) = ( 2 x 5 ) x 2 10 x + 10 f^(″)(x)=(2x-5)[x^(2)-10 x+10]f”(x) = (2x – 5) \left[ x^2 – 10x + 10 \right]f(x)=(2x5)[x210x+10]
At x = 2 x = 2 x=2x = 2x=2, f ( x ) = ( 4 5 ) ( 4 20 + 10 ) = 6 f ( x ) = ( 4 5 ) ( 4 20 + 10 ) = 6 f^(″)(x)=(4-5)(4-20+10)=6f”(x) = (4 – 5)(4 – 20 + 10) = 6f(x)=(45)(420+10)=6, which means x = 2 x = 2 x=2x = 2x=2 is a local minimum.

(iii) Find the Points at Which Local Maximum Occurs

Using the same f ( x ) f ( x ) f^(″)(x)f”(x)f(x) as above, we find:
At x = 1 x = 1 x=1x = 1x=1, f ( x ) = ( 2 5 ) ( 1 10 + 10 ) = 3 f ( x ) = ( 2 5 ) ( 1 10 + 10 ) = 3 f^(″)(x)=(2-5)(1-10+10)=-3f”(x) = (2 – 5)(1 – 10 + 10) = -3f(x)=(25)(110+10)=3, indicating x = 1 x = 1 x=1x = 1x=1 is a local maximum.
At x = 3 x = 3 x=3x = 3x=3, f ( x ) = ( 6 5 ) ( 9 30 + 10 ) = 11 f ( x ) = ( 6 5 ) ( 9 30 + 10 ) = 11 f^(″)(x)=(6-5)(9-30+10)=-11f”(x) = (6 – 5)(9 – 30 + 10) = -11f(x)=(65)(930+10)=11, indicating x = 3 x = 3 x=3x = 3x=3 is a local maximum.
At x = 4 x = 4 x=4x = 4x=4, f ( x ) = ( 8 5 ) ( 16 40 + 10 ) = 42 f ( x ) = ( 8 5 ) ( 16 40 + 10 ) = 42 f^(″)(x)=(8-5)(16-40+10)=-42f”(x) = (8 – 5)(16 – 40 + 10) = -42f(x)=(85)(1640+10)=42, indicating x = 4 x = 4 x=4x = 4x=4 is a local maximum.

(iv) Find the Number of Zeros of f ( x ) f ( x ) f(x)f(x)f(x) in [ 0 , 5 ] [ 0 , 5 ] [0,5][0, 5][0,5]

original image
The function f ( x ) f ( x ) f(x)f(x)f(x) is an integral of a polynomial, and its graph shows that f ( 0 ) = 0 f ( 0 ) = 0 f(0)=0f(0) = 0f(0)=0. Therefore, x = 0 x = 0 x=0x = 0x=0 is the only zero of the function f ( x ) f ( x ) f(x)f(x)f(x) in [ 0 , 5 ] [ 0 , 5 ] [0,5][0, 5][0,5].
f ( x ) = [ x 5 5 10 x 4 4 + 35 x 3 3 50 x 2 2 + 24 x ] f ( x ) = x 5 5 10 x 4 4 + 35 x 3 3 50 x 2 2 + 24 x {:f(x)=[(x^(5))/(5)-(10x^(4))/(4)+(35x^(3))/(3)-(50x^(2))/(2)+24 x]:}\begin{aligned} & f(x) =\left[\frac{x^5}{5}-\frac{10 x^4}{4}+\frac{35 x^3}{3}-\frac{50 x^2}{2}+24 x\right] \end{aligned}f(x)=[x5510x44+35x3350x22+24x]
f ( 1 ) = 8.36 ( max ) f ( 2 ) = 7.73 ( min ) f ( 3 ) = 8.1 ( max ) f ( 4 ) = 7.46 ( min ) f ( 0 ) = 0 f ( 1 ) = 8.36 ( max ) f ( 2 ) = 7.73 ( min ) f ( 3 ) = 8.1 ( max ) f ( 4 ) = 7.46 ( min ) f ( 0 ) = 0 {:[f(1)=8.36(max)],[f(2)=7.73(min)],[f(3)=8.1(max)],[f(4)=7.46(min)],[f(0)=0]:}\begin{aligned} & f(1)=8.36(\max ) \\ & f(2)=7.73(\min ) \\ & f(3)=8.1(\max ) \\ & f(4)=7.46(\min ) \\ & f(0)=0 \end{aligned}f(1)=8.36(max)f(2)=7.73(min)f(3)=8.1(max)f(4)=7.46(min)f(0)=0

Conclusion

  1. The critical points of f ( x ) f ( x ) f(x)f(x)f(x) are x = 1 , 2 , 3 , 4 x = 1 , 2 , 3 , 4 x=1,2,3,4x = 1, 2, 3, 4x=1,2,3,4.
  2. A local minimum occurs at x = 2 x = 2 x=2x = 2x=2.
  3. Local maxima occur at x = 1 , 3 , 4 x = 1 , 3 , 4 x=1,3,4x = 1, 3, 4x=1,3,4.
  4. The function f ( x ) f ( x ) f(x)f(x)f(x) has only one zero in the interval [ 0 , 5 ] [ 0 , 5 ] [0,5][0, 5][0,5], which is x = 0 x = 0 x=0x = 0x=0.
(b) माना F F FFF सम्मिश्र संख्याओं का एक उपक्षेत्र है व T : F 3 F 3 T : F 3 F 3 T:F^(3)rarrF^(3)T: F^3 \rightarrow F^3T:F3F3 एक ऐसा फलन है, जो निम्न रूप से परिभाषित है :
T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 ) T x 1 , x 2 , x 3 = x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 T(x_(1),x_(2),x_(3))=(x_(1)+x_(2)+3x_(3),2x_(1)-x_(2),-3x_(1)+x_(2)-x_(3))T\left(x_1, x_2, x_3\right)=\left(x_1+x_2+3 x_3, 2 x_1-x_2,-3 x_1+x_2-x_3\right)T(x1,x2,x3)=(x1+x2+3x3,2x1x2,3x1+x2x3)
a , b , c a , b , c a,b,ca, b, ca,b,c पर क्या शर्तें हैं कि ( a , b , c ) , T ( a , b , c ) , T (a,b,c),T(a, b, c), T(a,b,c),T के शुन्य समष्टि में है? T T TTT की शून्यता निकालिए।
Let F F FFF be a subfield of complex numbers and T T TTT a function from F 3 F 3 F 3 F 3 F^(3)rarrF^(3)F^3 \rightarrow F^3F3F3 defined by T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 ) T x 1 , x 2 , x 3 = x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 T(x_(1),x_(2),x_(3))=(x_(1)+x_(2)+3x_(3),2x_(1)-x_(2),-3x_(1)+x_(2)-x_(3))T\left(x_1, x_2, x_3\right)=\left(x_1+x_2+3 x_3, 2 x_1-x_2,-3 x_1+x_2-x_3\right)T(x1,x2,x3)=(x1+x2+3x3,2x1x2,3x1+x2x3). What are the conditions on a , b , c a , b , c a,b,ca, b, ca,b,c such that ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) be in the null space of T T TTT ? Find the nullity of T T TTT.
Answer:

Introduction

We are given a function T : F 3 F 3 T : F 3 F 3 T:F^(3)rarrF^(3)T: F^3 \rightarrow F^3T:F3F3 defined by T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 ) T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 + 3 x 3 , 2 x 1 x 2 , 3 x 1 + x 2 x 3 ) T(x_(1),x_(2),x_(3))=(x_(1)+x_(2)+3x_(3),2x_(1)-x_(2),-3x_(1)+x_(2)-x_(3))T(x_1, x_2, x_3) = (x_1 + x_2 + 3x_3, 2x_1 – x_2, -3x_1 + x_2 – x_3)T(x1,x2,x3)=(x1+x2+3x3,2x1x2,3x1+x2x3). The field F F FFF is a subfield of the complex numbers. We are tasked with finding the conditions on a , b , c a , b , c a,b,ca, b, ca,b,c such that ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) is in the null space of T T TTT, and to find the nullity of T T TTT.

Work/Calculations

Step 1: Define the Null Space

The null space of T T TTT, denoted Null ( T ) Null ( T ) “Null”(T)\text{Null}(T)Null(T), is the set of all vectors v v vvv in F 3 F 3 F^(3)F^3F3 such that T ( v ) = 0 T ( v ) = 0 T(v)=0T(v) = 0T(v)=0.

Step 2: Find the Conditions for ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c)

To find ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) in the null space of T T TTT, we set T ( a , b , c ) = ( 0 , 0 , 0 ) T ( a , b , c ) = ( 0 , 0 , 0 ) T(a,b,c)=(0,0,0)T(a, b, c) = (0, 0, 0)T(a,b,c)=(0,0,0):
T ( a , b , c ) = ( a + b + 3 c , 2 a b , 3 a + b c ) = ( 0 , 0 , 0 ) T ( a , b , c ) = ( a + b + 3 c , 2 a b , 3 a + b c ) = ( 0 , 0 , 0 ) T(a,b,c)=(a+b+3c,2a-b,-3a+b-c)=(0,0,0)T(a, b, c) = (a + b + 3c, 2a – b, -3a + b – c) = (0, 0, 0)T(a,b,c)=(a+b+3c,2ab,3a+bc)=(0,0,0)
This leads to the following system of equations:
  1. a + b + 3 c = 0 a + b + 3 c = 0 a+b+3c=0a + b + 3c = 0a+b+3c=0
  2. 2 a b = 0 2 a b = 0 2a-b=02a – b = 02ab=0
  3. 3 a + b c = 0 3 a + b c = 0 -3a+b-c=0-3a + b – c = 03a+bc=0

Step 3: Row Reduction to Echelon Form

We can represent the system of equations as an augmented matrix and reduce it to row-echelon form:
1 1 3 0 2 1 0 0 3 1 1 0 1 1 3 0 2 1 0 0 3 1 1 0 {:[1,1,3,0],[2,-1,0,0],[-3,1,-1,0]:}\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ 2 & -1 & 0 & 0 \\ -3 & 1 & -1 & 0 \end{array}113021003110
After row reduction, we get:
1 1 3 0 0 3 6 0 0 0 0 0 1 1 3 0 0 3 6 0 0 0 0 0 {:[1,1,3,0],[0,-3,-6,0],[0,0,0,0]:}\begin{array}{ccc|c} 1 & 1 & 3 & 0 \\ 0 & -3 & -6 & 0 \\ 0 & 0 & 0 & 0 \end{array}113003600000
This leads to:
  1. a + b + 3 c = 0 a + b + 3 c = 0 a+b+3c=0a + b + 3c = 0a+b+3c=0
  2. 3 b 6 c = 0 3 b 6 c = 0 -3b-6c=0-3b – 6c = 03b6c=0
  3. b + 2 c = 0 b + 2 c = 0 b+2c=0b + 2c = 0b+2c=0

Step 4: Solve the System

Solving these equations, we find:
  1. b = 2 c b = 2 c b=-2cb = -2cb=2c
  2. a = c a = c a=-ca = -ca=c

Step 5: Find the Nullity of T T TTT

Null space is given by let C = K C = K C=KC=KC=K
( a , b , c ) = [ K , 2 K , K ] = K [ 1 , 2 , 1 ] ( a , b , c ) = [ K , 2 K , K ] = K [ 1 , 2 , 1 ] {:[(a”,”b”,”c)=[-K”,”-2K”,”K]],[=K[-1″,”-2″,”1]]:}\begin{aligned} & (a, b, c)=[-K,-2 K, K] \\ & =K[-1,-2,1] \end{aligned}(a,b,c)=[K,2K,K]=K[1,2,1]
The null space is spanned by the vector [ 1 , 2 , 1 ] [ 1 , 2 , 1 ] [-1,-2,1][-1, -2, 1][1,2,1], which means the nullity of T T TTT is 1.

Conclusion

  1. The conditions on a , b , c a , b , c a,b,ca, b, ca,b,c such that ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) is in the null space of T T TTT are a = c a = c a=-ca = -ca=c and b = 2 c b = 2 c b=-2cb = -2cb=2c.
  2. The nullity of T T TTT is 1.
(c) यदि सरल रेखा x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(2)=(z)/(3)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}x1=y2=z3 शंकु 5 y z 8 z x 3 x y = 0 5 y z 8 z x 3 x y = 0 5yz-8zx-3xy=05 y z-8 z x-3 x y=05yz8zx3xy=0 के तीन परस्पर लांबिक जनकों के समुच्चय में से एक है, तब अन्य दो जनकों के समीकरण निकालिए।
If the straight line x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(2)=(z)/(3)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}x1=y2=z3 represents one of a set of three mutually perpendicular generators of the cone 5 y z 8 z x 3 x y = 0 5 y z 8 z x 3 x y = 0 5yz-8zx-3xy=05 y z-8 z x-3 x y=05yz8zx3xy=0, then find the equations of the other two generators.
Answer:

Introduction

We are given a straight line x 1 = y 2 = z 3 x 1 = y 2 = z 3 (x)/(1)=(y)/(2)=(z)/(3)\frac{x}{1} = \frac{y}{2} = \frac{z}{3}x1=y2=z3 and a cone 5 y z 8 z x 3 x y = 0 5 y z 8 z x 3 x y = 0 5yz-8zx-3xy=05yz – 8zx – 3xy = 05yz8zx3xy=0. The straight line is one of the three mutually perpendicular generators of the cone. Our task is to find the equations of the other two generators.

Work/Calculations

Step 1: Equation of the Plane

Since the given line is one of the three mutually perpendicular generators, it is normal to the plane through the vertex that cuts the cone in two perpendicular generators. Therefore, the equation of the plane is:
x + 2 y + 3 z = 0 (Equation 1) x + 2 y + 3 z = 0 (Equation 1) x+2y+3z=0quad(Equation 1)x + 2y + 3z = 0 \quad \text{(Equation 1)}x+2y+3z=0(Equation 1)

Step 2: Equation of the Line of Intersection

Let one of the lines of intersection between the plane and the cone be:
x l = y m = z n x l = y m = z n (x)/(l)=(y)/(m)=(z)/(n)\frac{x}{l} = \frac{y}{m} = \frac{z}{n}xl=ym=zn
Then, we have:
  1. l + 2 m + 3 n = 0 l + 2 m + 3 n = 0 l+2m+3n=0l + 2m + 3n = 0l+2m+3n=0
  2. 5 m n 8 n l 3 l m = 0 (Equation 2) 5 m n 8 n l 3 l m = 0 (Equation 2) 5mn-8nl-3lm=0quad(Equation 2)5mn – 8nl – 3lm = 0 \quad \text{(Equation 2)}5mn8nl3lm=0(Equation 2)

Step 3: Eliminate l l lll Between Equations

To find m m mmm and n n nnn, we eliminate l l lll between the two equations. This gives us:
5 m n ( 8 n + 3 m ) [ ( 2 m + 3 n ) ] = 0 5 m n ( 8 n + 3 m ) [ ( 2 m + 3 n ) ] = 0 5mn-(8n+3m)[-(2m+3n)]=05mn – (8n + 3m)[-(2m + 3n)] = 05mn(8n+3m)[(2m+3n)]=0
24 n 2 + 30 m n + 6 m 2 = 0 24 n 2 + 30 m n + 6 m 2 = 0 =>24n^(2)+30 mn+6m^(2)=0\Rightarrow 24n^2 + 30mn + 6m^2 = 024n2+30mn+6m2=0
m 2 + 5 m n + 4 n 2 = 0 m 2 + 5 m n + 4 n 2 = 0 =>m^(2)+5mn+4n^(2)=0\Rightarrow m^2 + 5mn + 4n^2 = 0m2+5mn+4n2=0
( m + n ) ( m + 4 n ) = 0 ( m + n ) ( m + 4 n ) = 0 =>(m+n)(m+4n)=0\Rightarrow (m + n)(m + 4n) = 0(m+n)(m+4n)=0

Step 4: Solve for m m mmm and n n nnn

From the above equation, we have two cases:
  1. m = n m = n m=-nm = -nm=n
  2. m = 4 n m = 4 n m=-4nm = -4nm=4n
For the first case m = n m = n m=-nm = -nm=n, from Equation 2, we get l + n = 0 l = n l + n = 0 l = n l+n=0=>l=-nl + n = 0 \Rightarrow l = -nl+n=0l=n.

Step 5: Equations of the Other Two Generators

Using the values of l , m , n l , m , n l,m,nl, m, nl,m,n, we find the equations of the other two generators:
  1. When m = n m = n m=-nm = -nm=n, the equation becomes x 1 = y 1 = z 1 x 1 = y 1 = z 1 (x)/(1)=(y)/(1)=(z)/(-1)\frac{x}{1} = \frac{y}{1} = \frac{z}{-1}x1=y1=z1
  2. When m = 4 n m = 4 n m=-4nm = -4nm=4n, the equation becomes x 5 = y 4 = z 1 x 5 = y 4 = z 1 (x)/(5)=(y)/(-4)=(z)/(1)\frac{x}{5} = \frac{y}{-4} = \frac{z}{1}x5=y4=z1

Conclusion

The equations of the other two mutually perpendicular generators of the cone are:
  1. x 1 = y 1 = z 1 x 1 = y 1 = z 1 (x)/(1)=(y)/(1)=(z)/(-1)\frac{x}{1} = \frac{y}{1} = \frac{z}{-1}x1=y1=z1
  2. x 5 = y 4 = z 1 x 5 = y 4 = z 1 (x)/(5)=(y)/(-4)=(z)/(1)\frac{x}{5} = \frac{y}{-4} = \frac{z}{1}x5=y4=z1
These generators are indeed perpendicular to each other and to the given generator, fulfilling the conditions of the problem.
4(a) माना
A = [ 1 0 2 2 1 3 4 1 8 ] और B = [ 11 2 2 4 0 1 6 1 1 ] A = 1      0      2 2      1      3 4      1      8 और B = 11      2      2 4      0      1 6      1      1 A=[[1,0,2],[2,-1,3],[4,1,8]]” और “B=[[-11,2,2],[-4,0,1],[6,-1,-1]]A=\left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right] \text { और } B=\left[\begin{array}{rrr} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{array}\right]A=[102213418] और B=[1122401611]
(i) A B A B ABA BAB ज्ञात कीजिए।
(ii) सारणिक ( A ) ( A ) (A)(A)(A) व सारणिक ( B ) ( B ) (B)(B)(B) ज्ञात कीजिए।
(iii) निम्न रैखिक समीकरणों के निकाय का हल निकालिए :
x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x+2z=3,quad2x-y+3z=3,quad4x+y+8z=14x+2 z=3, \quad 2 x-y+3 z=3, \quad 4 x+y+8 z=14x+2z=3,2xy+3z=3,4x+y+8z=14
Let
A = [ 1 0 2 2 1 3 4 1 8 ] and B = [ 11 2 2 4 0 1 6 1 1 ] A = 1      0      2 2      1      3 4      1      8 and B = 11      2      2 4      0      1 6      1      1 A=[[1,0,2],[2,-1,3],[4,1,8]]quad” and “B=[[-11,2,2],[-4,0,1],[6,-1,-1]]A=\left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right] \quad \text { and } B=\left[\begin{array}{rrr} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{array}\right]A=[102213418] and B=[1122401611]
(i) Find A B A B ABA BAB.
(ii) Find det ( A ) det ( A ) det(A)\operatorname{det}(A)det(A) and det ( B ) det ( B ) det(B)\operatorname{det}(B)det(B).
(iii) Solve the following system of linear equations :
x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x+2z=3,quad2x-y+3z=3,quad4x+y+8z=14x+2 z=3, \quad 2 x-y+3 z=3, \quad 4 x+y+8 z=14x+2z=3,2xy+3z=3,4x+y+8z=14
Answer:

Part (i): Find A B A B ABABAB

To find the product A B A B ABABAB, we’ll use the formula for matrix multiplication:
( A B ) i j = k = 1 n A i k × B k j ( A B ) i j = k = 1 n A i k × B k j (AB)_(ij)=sum_(k=1)^(n)A_(ik)xxB_(kj)(AB)_{ij} = \sum_{k=1}^{n} A_{ik} \times B_{kj}(AB)ij=k=1nAik×Bkj
Let’s substitute the values:
A B = [ 1 0 2 2 1 3 4 1 8 ] × [ 11 2 2 4 0 1 6 1 1 ] A B = 1      0      2 2      1      3 4      1      8 × 11      2      2 4      0      1 6      1      1 AB=[[1,0,2],[2,-1,3],[4,1,8]]xx[[-11,2,2],[-4,0,1],[6,-1,-1]]AB = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right] \times \left[\begin{array}{rrr} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{array}\right]AB=[102213418]×[1122401611]
After calculating, we get:
A B = [ 1 0 0 0 1 0 0 0 1 ] A B = 1      0      0 0      1      0 0      0      1 AB=[[1,0,0],[0,1,0],[0,0,1]]AB = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]AB=[100010001]

Part (ii): Find det ( A ) det ( A ) “det”(A)\text{det}(A)det(A) and det ( B ) det ( B ) “det”(B)\text{det}(B)det(B)

To find the determinant of A A AAA and B B BBB, we’ll use the formula for a 3×3 matrix:
det ( A ) = a ( e i f h ) b ( d i f g ) + c ( d h e g ) det ( A ) = a ( e i f h ) b ( d i f g ) + c ( d h e g ) “det”(A)=a(ei-fh)-b(di-fg)+c(dh-eg)\text{det}(A) = a(ei – fh) – b(di – fg) + c(dh – eg)det(A)=a(eifh)b(difg)+c(dheg)
For A A AAA:
det ( A ) = 1 ( 1 × 8 3 × 1 ) 0 + 2 ( 2 × 1 4 × 1 ) = 1 ( 8 3 ) + 0 + 2 ( 2 + 4 ) = 11 + 0 + 12 = 1 det ( A ) = 1 ( 1 × 8 3 × 1 ) 0 + 2 ( 2 × 1 4 × 1 ) = 1 ( 8 3 ) + 0 + 2 ( 2 + 4 ) = 11 + 0 + 12 = 1 “det”(A)=1(-1xx8-3xx1)-0+2(2xx1-4xx-1)=1(-8-3)+0+2(2+4)=-11+0+12=1\text{det}(A) = 1(-1 \times 8 – 3 \times 1) – 0 + 2(2 \times 1 – 4 \times -1) = 1(-8 – 3) + 0 + 2(2 + 4) = -11 + 0 + 12 = 1det(A)=1(1×83×1)0+2(2×14×1)=1(83)+0+2(2+4)=11+0+12=1
For B B BBB:
| B | = 11 × ( 0 × ( 1 ) 1 × ( 1 ) ) 2 × ( 4 × ( 1 ) 1 × 6 ) + 2 × ( 4 × ( 1 ) 0 × 6 ) | B | = 11 × ( 0 + 1 ) 2 × ( 4 6 ) + 2 × ( 4 + 0 ) | B | = 11 × ( 1 ) 2 × ( 2 ) + 2 × ( 4 ) | B | = 11 + 4 + 8 | B | = 1 | B | = 11 × ( 0 × ( 1 ) 1 × ( 1 ) ) 2 × ( 4 × ( 1 ) 1 × 6 ) + 2 × ( 4 × ( 1 ) 0 × 6 ) | B | = 11 × ( 0 + 1 ) 2 × ( 4 6 ) + 2 × ( 4 + 0 ) | B | = 11 × ( 1 ) 2 × ( 2 ) + 2 × ( 4 ) | B | = 11 + 4 + 8 | B | = 1 {:[|B|=-11 xx(0xx(-1)-1xx(-1))-2xx(-4xx(-1)-1xx6)+2xx(-4xx(-1)-0xx6)],[|B|=-11 xx(0+1)-2xx(4-6)+2xx(4+0)],[|B|=-11 xx(1)-2xx(-2)+2xx(4)],[|B|=-11+4+8],[|B|=1]:}\begin{aligned} &|B| =-11 \times(0 \times(-1)-1 \times(-1))-2 \times(-4 \times(-1)-1 \times 6)+2 \times(-4 \times(-1)-0 \times 6) \\ & |B|=-11 \times(0+1)-2 \times(4-6)+2 \times(4+0) \\ & |B|=-11 \times(1)-2 \times(-2)+2 \times(4) \\ & |B|=-11+4+8 \\ & |B|=1\end{aligned}|B|=11×(0×(1)1×(1))2×(4×(1)1×6)+2×(4×(1)0×6)|B|=11×(0+1)2×(46)+2×(4+0)|B|=11×(1)2×(2)+2×(4)|B|=11+4+8|B|=1

Part (iii): Solve the system of linear equations

The system of equations is:
x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x + 2 z = 3 , 2 x y + 3 z = 3 , 4 x + y + 8 z = 14 x+2z=3,quad2x-y+3z=3,quad4x+y+8z=14x+2z=3, \quad 2x-y+3z=3, \quad 4x+y+8z=14x+2z=3,2xy+3z=3,4x+y+8z=14
We can write this system as A X = B A X = B AX=BAX = BAX=B, where A A AAA is the coefficient matrix, X X XXX is the variable matrix, and B B BBB is the constant matrix.
A = [ 1 0 2 2 1 3 4 1 8 ] , X = [ x y z ] , B = [ 3 3 14 ] A = 1      0      2 2      1      3 4      1      8 , X = x y z , B = 3 3 14 A=[[1,0,2],[2,-1,3],[4,1,8]],quad X=[[x],[y],[z]],quad B=[[3],[3],[14]]A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right], \quad X = \left[\begin{array}{r} x \\ y \\ z \end{array}\right], \quad B = \left[\begin{array}{r} 3 \\ 3 \\ 14 \end{array}\right]A=[102213418],X=[xyz],B=[3314]
Converting given equations into matrix form
[ 1 0 2 3 2 1 3 3 4 1 8 14 ] 1 0 2 3 2 1 3 3 4 1 8 14 [[1,0,2,3],[2,-1,3,3],[4,1,8,14]]\left[\begin{array}{ccc|c} 1 & 0 & 2 & 3 \\ 2 & -1 & 3 & 3 \\ 4 & 1 & 8 & 14 \end{array}\right][1023213341814]
R 2 R 2 2 × R 1 = [ 1 0 2 3 0 1 1 3 4 1 8 14 ] R 2 R 2 2 × R 1 = 1 0 2 3 0 1 1 3 4 1 8 14 {:[R_(2)larrR_(2)-2xxR_(1)],[=[[1,0,2,3],[0,-1,-1,-3],[4,1,8,14]]]:}\begin{aligned} & R_2 \leftarrow R_2-2 \times R_1 \\ & =\left[\begin{array}{ccc|c} 1 & 0 & 2 & 3 \\ 0 & -1 & -1 & -3 \\ 4 & 1 & 8 & 14 \end{array}\right] \end{aligned}R2R22×R1=[1023011341814]
R 3 R 3 4 × R 1 = [ 1 0 2 3 0 1 1 3 0 1 0 2 ] R 3 R 3 4 × R 1 = 1 0 2 3 0 1 1 3 0 1 0 2 {:[R_(3)larrR_(3)-4xxR_(1)],[=[[1,0,2,3],[0,-1,-1,-3],[0,1,0,2]]]:}\begin{aligned} & R_3 \leftarrow R_3-4 \times R_1 \\ & =\left[\begin{array}{ccc|c} 1 & 0 & 2 & 3 \\ 0 & -1 & -1 & -3 \\ 0 & 1 & 0 & 2 \end{array}\right] \end{aligned}R3R34×R1=[102301130102]
R 3 R 3 + R 2 = [ 1 0 2 3 0 1 1 3 0 0 1 1 ] R 3 R 3 + R 2 = 1 0 2 3 0 1 1 3 0 0 1 1 {:[R_(3)larrR_(3)+R_(2)],[=[[1,0,2,3],[0,-1,-1,-3],[0,0,-1,-1]]]:}\begin{aligned} & R_3 \leftarrow R_3+R_2 \\ & =\left[\begin{array}{rrr|c} 1 & 0 & 2 & 3 \\ 0 & -1 & -1 & -3 \\ 0 & 0 & -1 & -1 \end{array}\right] \end{aligned}R3R3+R2=[102301130011]
x + 2 z = 3 ( 1 ) y z = 3 ( 2 ) z = 1 ( 3 ) x + 2 z = 3 ( 1 ) y z = 3 ( 2 ) z = 1 ( 3 ) {:[x+2z=3rarr(1)],[-y-z=-3rarr(2)],[-z=-1rarr(3)]:}\begin{aligned} & x+2 z=3 \rightarrow(1) \\ & -y-z=-3 \rightarrow(2) \\ & -z=-1 \rightarrow(3) \end{aligned}x+2z=3(1)yz=3(2)z=1(3)
Now use back substitution method From (3)
z = 1 z = 1 z = 1 z = 1 {:[-z=-1],[=>z=1]:}\begin{aligned} & -z=-1 \\ & \Rightarrow z=1 \end{aligned}z=1z=1
From (2)
y z = 3 y ( 1 ) = 3 y 1 = 3 y = 3 + 1 y = 2 y = 2 y z = 3 y ( 1 ) = 3 y 1 = 3 y = 3 + 1 y = 2 y = 2 {:[-y-z=-3],[=>-y-(1)=-3],[=>-y-1=-3],[=>-y=-3+1],[=>-y=-2],[=>y=2]:}\begin{aligned} & -y-z=-3 \\ & \Rightarrow-y-(1)=-3 \\ & \Rightarrow-y-1=-3 \\ & \Rightarrow-y=-3+1 \\ & \Rightarrow-y=-2 \\ & \Rightarrow y=2 \end{aligned}yz=3y(1)=3y1=3y=3+1y=2y=2
From (1)
x + 2 z = 3 x + 2 ( 1 ) = 3 x + 2 = 3 x = 3 2 x = 1 x + 2 z = 3 x + 2 ( 1 ) = 3 x + 2 = 3 x = 3 2 x = 1 {:[x+2z=3],[=>x+2(1)=3],[=>x+2=3],[=>x=3-2],[=>x=1]:}\begin{aligned} & x+2 z=3 \\ & \Rightarrow x+2(1)=3 \\ & \Rightarrow x+2=3 \\ & \Rightarrow x=3-2 \\ & \Rightarrow x=1 \end{aligned}x+2z=3x+2(1)=3x+2=3x=32x=1
Solution using back substitution method.
x = 1 , y = 2 and z = 1 x = 1 , y = 2 and z = 1 x=1,y=2″ and “z=1x=1, y=2 \text { and } z=1x=1,y=2 and z=1
(b) अतिपरवलयिक परवलयज x 2 a 2 y 2 b 2 = 2 z x 2 a 2 y 2 b 2 = 2 z (x^(2))/(a^(2))-(y^(2))/(b^(2))=2z\frac{x^2}{a^2}-\frac{y^2}{b^2}=2 zx2a2y2b2=2z के लांबिक जनकों के प्रतिच्छेद बिंदु का बिंदुपथ निकालिए।
Find the locus of the point of intersection of the perpendicular generators of the hyperbolic paraboloid x 2 a 2 y 2 b 2 = 2 z x 2 a 2 y 2 b 2 = 2 z (x^(2))/(a^(2))-(y^(2))/(b^(2))=2z\frac{x^2}{a^2}-\frac{y^2}{b^2}=2 zx2a2y2b2=2z.
Answer:
To find the locus, we need to consider the enveloping cone of the given hyperbolic paraboloid with a vertex at the point ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ).
The equation of the enveloping cone can be represented as S S 1 = T 2 S S 1 = T 2 SS_(1)=T^(2)S S_1 = T^2SS1=T2, where:
S = x 2 a 2 y 2 b 2 2 z S = x 2 a 2 y 2 b 2 2 z S=(x^(2))/(a^(2))-(y^(2))/(b^(2))-2zS = \frac{x^2}{a^2} – \frac{y^2}{b^2} – 2zS=x2a2y2b22z
S 1 = α 2 a 2 β 2 b 2 2 γ S 1 = α 2 a 2 β 2 b 2 2 γ S_(1)=(alpha^(2))/(a^(2))-(beta^(2))/(b^(2))-2gammaS_1 = \frac{\alpha^2}{a^2} – \frac{\beta^2}{b^2} – 2\gammaS1=α2a2β2b22γ
T = α x a 2 β y b 2 ( z + γ ) T = α x a 2 β y b 2 ( z + γ ) T=(alpha x)/(a^(2))-(beta y)/(b^(2))-(z+gamma)T = \frac{\alpha x}{a^2} – \frac{\beta y}{b^2} – (z + \gamma)T=αxa2βyb2(z+γ)
Substituting these into S S 1 = T 2 S S 1 = T 2 SS_(1)=T^(2)S S_1 = T^2SS1=T2, we get:
( x 2 a 2 y 2 b 2 2 z ) ( α 2 a 2 β 2 b 2 2 γ ) = ( α x a 2 β y b 2 z γ ) 2 x 2 a 2 y 2 b 2 2 z α 2 a 2 β 2 b 2 2 γ = α x a 2 β y b 2 z γ 2 ((x^(2))/(a^(2))-(y^(2))/(b^(2))-2z)((alpha^(2))/(a^(2))-(beta^(2))/(b^(2))-2gamma)=((alpha x)/(a^(2))-(beta y)/(b^(2))-z-gamma)^(2)\left(\frac{x^2}{a^2} – \frac{y^2}{b^2} – 2z\right)\left(\frac{\alpha^2}{a^2} – \frac{\beta^2}{b^2} – 2\gamma\right) = \left(\frac{\alpha x}{a^2} – \frac{\beta y}{b^2} – z – \gamma\right)^2(x2a2y2b22z)(α2a2β2b22γ)=(αxa2βyb2zγ)2
For the enveloping cone to have three mutually perpendicular generators, the sum of the coefficients of x 2 , y 2 , x 2 , y 2 , x^(2),y^(2),x^2, y^2,x2,y2, and z 2 z 2 z^(2)z^2z2 must be zero. That is:
[ 1 a 2 ( α 2 a 2 β 2 b 2 2 γ ) α 2 a 4 ] + [ 1 b 2 ( α 2 a 2 β 2 b 2 2 γ ) β 2 b 4 ] + [ 1 ] = 0 1 a 2 α 2 a 2 β 2 b 2 2 γ α 2 a 4 + 1 b 2 α 2 a 2 β 2 b 2 2 γ β 2 b 4 + [ 1 ] = 0 [(1)/(a^(2))((alpha^(2))/(a^(2))-(beta^(2))/(b^(2))-2gamma)-(alpha^(2))/(a^(4))]+[-(1)/(b^(2))((alpha^(2))/(a^(2))-(beta^(2))/(b^(2))-2gamma)-(beta^(2))/(b^(4))]+[-1]=0\left[\frac{1}{a^2}\left(\frac{\alpha^2}{a^2} – \frac{\beta^2}{b^2} – 2\gamma\right) – \frac{\alpha^2}{a^4}\right] + \left[-\frac{1}{b^2}\left(\frac{\alpha^2}{a^2} – \frac{\beta^2}{b^2} – 2\gamma\right) – \frac{\beta^2}{b^4}\right] + [-1] = 0[1a2(α2a2β2b22γ)α2a4]+[1b2(α2a2β2b22γ)β2b4]+[1]=0
Simplifying, we find:
α 2 + β 2 2 γ ( a 2 b 2 ) + a 2 b 2 = 0 α 2 + β 2 2 γ ( a 2 b 2 ) + a 2 b 2 = 0 alpha^(2)+beta^(2)-2gamma(a^(2)-b^(2))+a^(2)b^(2)=0\alpha^2 + \beta^2 – 2\gamma(a^2 – b^2) + a^2b^2 = 0α2+β22γ(a2b2)+a2b2=0

Conclusion

The locus of the point ( α , β , γ ) ( α , β , γ ) (alpha,beta,gamma)(\alpha, \beta, \gamma)(α,β,γ) where the perpendicular generators of the hyperbolic paraboloid intersect is given by:
x 2 + y 2 2 ( a 2 b 2 ) z + a 2 b 2 = 0 x 2 + y 2 2 ( a 2 b 2 ) z + a 2 b 2 = 0 x^(2)+y^(2)-2(a^(2)-b^(2))z+a^(2)b^(2)=0x^2 + y^2 – 2(a^2 – b^2)z + a^2b^2 = 0x2+y22(a2b2)z+a2b2=0
This equation satisfies all the conditions and constraints of the problem.
(c) लाग्रांज की अनिर्धारित गुणक विधि का प्रयोग करके फलन u = x 2 + y 2 + z 2 u = x 2 + y 2 + z 2 u=x^(2)+y^(2)+z^(2)u=x^2+y^2+z^2u=x2+y2+z2 का चरम मान ज्ञात कीजिए, जो 2 x + 3 y + 5 z = 30 2 x + 3 y + 5 z = 30 2x+3y+5z=302 x+3 y+5 z=302x+3y+5z=30 शर्त द्वारा प्रतिबंधित है।
Find an extreme value of the function u = x 2 + y 2 + z 2 u = x 2 + y 2 + z 2 u=x^(2)+y^(2)+z^(2)u=x^2+y^2+z^2u=x2+y2+z2, subject to the condition 2 x + 3 y + 5 z = 30 2 x + 3 y + 5 z = 30 2x+3y+5z=302 x+3 y+5 z=302x+3y+5z=30, by using Lagrange’s method of undetermined multiplier.
Answer:
We start by defining the Lagrangian function F F FFF as follows:
F = x 2 + y 2 + z 2 + λ ( 2 x + 3 y + 5 z 30 ) F = x 2 + y 2 + z 2 + λ ( 2 x + 3 y + 5 z 30 ) F=x^(2)+y^(2)+z^(2)+lambda(2x+3y+5z-30)F = x^2 + y^2 + z^2 + \lambda (2x + 3y + 5z – 30)F=x2+y2+z2+λ(2x+3y+5z30)
To find the extreme values, we set d F = 0 d F = 0 dF=0dF = 0dF=0. The differential d F d F dFdFdF is given by:
d F = ( 2 x + 2 λ ) d x + ( 2 y + 3 λ ) d y + ( 2 z + 5 λ ) d z d F = ( 2 x + 2 λ ) d x + ( 2 y + 3 λ ) d y + ( 2 z + 5 λ ) d z dF=(2x+2lambda)dx+(2y+3lambda)dy+(2z+5lambda)dzdF = (2x + 2\lambda) dx + (2y + 3\lambda) dy + (2z + 5\lambda) dzdF=(2x+2λ)dx+(2y+3λ)dy+(2z+5λ)dz
From this, we get the following equations:
  1. 2 x + 2 λ = 0 2 x + 2 λ = 0 2x+2lambda=02x + 2\lambda = 02x+2λ=0 (Equation 1)
  2. 2 y + 3 λ = 0 2 y + 3 λ = 0 2y+3lambda=02y + 3\lambda = 02y+3λ=0 (Equation 2)
  3. 2 z + 5 λ = 0 2 z + 5 λ = 0 2z+5lambda=02z + 5\lambda = 02z+5λ=0 (Equation 3)
Multiplying Equation 1 by x x xxx, Equation 2 by y y yyy, and Equation 3 by z z zzz, and then adding them, we get:
2 ( x 2 + y 2 + z 2 ) + λ ( 2 x + 3 y + 5 z ) = 0 2 ( x 2 + y 2 + z 2 ) + λ ( 2 x + 3 y + 5 z ) = 0 2(x^(2)+y^(2)+z^(2))+lambda(2x+3y+5z)=02(x^2 + y^2 + z^2) + \lambda (2x + 3y + 5z) = 02(x2+y2+z2)+λ(2x+3y+5z)=0
Since 2 x + 3 y + 5 z = 30 2 x + 3 y + 5 z = 30 2x+3y+5z=302x + 3y + 5z = 302x+3y+5z=30, we can rewrite the above equation as:
U = 15 λ (Equation 4) U = 15 λ (Equation 4) U=-15 lambdaquad(Equation 4)U = -15\lambda \quad \text{(Equation 4)}U=15λ(Equation 4)
Next, we solve for x , y , x , y , x,y,x, y,x,y, and z z zzz in terms of λ λ lambda\lambdaλ:
x = 2 λ 2 , y = 3 λ 2 , z = 5 λ 2 x = 2 λ 2 , y = 3 λ 2 , z = 5 λ 2 x=-(2lambda)/(2),quad y=-(3lambda)/(2),quad z=-(5lambda)/(2)x = -\frac{2\lambda}{2}, \quad y = -\frac{3\lambda}{2}, \quad z = -\frac{5\lambda}{2}x=2λ2,y=3λ2,z=5λ2
Substituting these into the constraint 2 x + 3 y + 5 z = 30 2 x + 3 y + 5 z = 30 2x+3y+5z=302x + 3y + 5z = 302x+3y+5z=30, we get:
4 λ 9 λ 25 λ = 60 4 λ 9 λ 25 λ = 60 -4lambda-9lambda-25 lambda=60-4\lambda – 9\lambda – 25\lambda = 604λ9λ25λ=60
38 λ = 60 λ = 30 19 38 λ = 60 λ = 30 19 -38 lambda=60quad=>quad lambda=-(30)/(19)-38\lambda = 60 \quad \Rightarrow \quad \lambda = -\frac{30}{19}38λ=60λ=3019
Using Equation 4, we find the extreme value U U UUU:
U extreme = 15 ( 30 19 ) = 450 19 U extreme = 15 30 19 = 450 19 U_(“extreme”)=-15(-(30)/(19))=(450)/(19)U_{\text{extreme}} = -15\left(-\frac{30}{19}\right) = \frac{450}{19}Uextreme=15(3019)=45019
Finally, we check the second derivative d 2 F d 2 F d^(2)Fd^2Fd2F:
d 2 F = 2 ( d x 2 + d y 2 + d z 2 ) > 0 d 2 F = 2 ( d x 2 + d y 2 + d z 2 ) > 0 d^(2)F=2(dx^(2)+dy^(2)+dz^(2)) > 0d^2F = 2(dx^2 + dy^2 + dz^2) > 0d2F=2(dx2+dy2+dz2)>0
This confirms that the extreme value is a minimum.

Conclusion

The minimum value of U U UUU subject to the given constraint is U min = 450 19 U min = 450 19 U_(min)=(450)/(19)U_{\min} = \frac{450}{19}Umin=45019.
खण्ड-B / SECTION-B
5(a) निम्न अवकल समीकरण को हल कीजिए :
x cos ( y x ) ( y d x + x d y ) = y sin ( y x ) ( x d y y d x ) x cos y x ( y d x + x d y ) = y sin y x ( x d y y d x ) x cos((y)/(x))(ydx+xdy)=y sin((y)/(x))(xdy-ydx)x \cos \left(\frac{y}{x}\right)(y d x+x d y)=y \sin \left(\frac{y}{x}\right)(x d y-y d x)xcos(yx)(ydx+xdy)=ysin(yx)(xdyydx)
Solve the following differential equation :
x cos ( y x ) ( y d x + x d y ) = y sin ( y x ) ( x d y y d x ) x cos y x ( y d x + x d y ) = y sin y x ( x d y y d x ) x cos((y)/(x))(ydx+xdy)=y sin((y)/(x))(xdy-ydx)x \cos \left(\frac{y}{x}\right)(y d x+x d y)=y \sin \left(\frac{y}{x}\right)(x d y-y d x)xcos(yx)(ydx+xdy)=ysin(yx)(xdyydx)
Answer:
We start with the given differential equation:
x cos ( y x ) ( y d x + x d y ) = y sin ( y x ) ( x d y y d x ) (Equation 1) x cos y x ( y d x + x d y ) = y sin y x ( x d y y d x ) (Equation 1) x cos((y)/(x))(ydx+xdy)=y sin((y)/(x))(xdy-ydx)quad(Equation 1)x \cos \left(\frac{y}{x}\right)(y dx + x dy) = y \sin \left(\frac{y}{x}\right)(x dy – y dx) \quad \text{(Equation 1)}xcos(yx)(ydx+xdy)=ysin(yx)(xdyydx)(Equation 1)
Rewriting Equation 1, we get:
( x cos y x + y sin y x ) y ( y sin y x x cos y x ) x d y d x = 0 x cos y x + y sin y x y y sin y x x cos y x x d y d x = 0 (x cos((y)/(x))+y sin((y)/(x)))y-(y sin((y)/(x))-x cos((y)/(x)))x(dy)/(dx)=0\left(x \cos \frac{y}{x} + y \sin \frac{y}{x}\right) y – \left(y \sin \frac{y}{x} – x \cos \frac{y}{x}\right) x \frac{dy}{dx} = 0(xcosyx+ysinyx)y(ysinyxxcosyx)xdydx=0
Simplifying, we find:
d y d x = { x cos y x + y sin y x } y { y sin y x x cos y x } x (Equation 2) d y d x = x cos y x + y sin y x y y sin y x x cos y x x (Equation 2) (dy)/(dx)=({x cos((y)/(x))+y sin((y)/(x))}y)/({y sin((y)/(x))-x cos((y)/(x))}x)quad(Equation 2)\frac{dy}{dx} = \frac{\left\{x \cos \frac{y}{x} + y \sin \frac{y}{x}\right\} y}{\left\{y \sin \frac{y}{x} – x \cos \frac{y}{x}\right\} x} \quad \text{(Equation 2)}dydx={xcosyx+ysinyx}y{ysinyxxcosyx}x(Equation 2)
Further simplification yields:
d y d x = [ cos y x + y x sin y x ] ( y x ) [ y x sin y x cos y x ] (Equation 3) d y d x = cos y x + y x sin y x y x y x sin y x cos y x (Equation 3) (dy)/(dx)=([cos((y)/(x))+(y)/(x)sin((y)/(x))]((y)/(x)))/([(y)/(x)sin((y)/(x))-cos((y)/(x))])quad(Equation 3)\frac{dy}{dx} = \frac{\left[\cos \frac{y}{x} + \frac{y}{x} \sin \frac{y}{x}\right]\left(\frac{y}{x}\right)}{\left[\frac{y}{x} \sin \frac{y}{x} – \cos \frac{y}{x}\right]} \quad \text{(Equation 3)}dydx=[cosyx+yxsinyx](yx)[yxsinyxcosyx](Equation 3)
Let’s make a substitution: y x = v y = v x y x = v y = v x (y)/(x)=v=>y=vx\frac{y}{x} = v \Rightarrow y = vxyx=vy=vx. Differentiating, we get:
d y d x = v + x d v d x (Equation 4) d y d x = v + x d v d x (Equation 4) (dy)/(dx)=v+x(dv)/(dx)quad(Equation 4)\frac{dy}{dx} = v + x \frac{dv}{dx} \quad \text{(Equation 4)}dydx=v+xdvdx(Equation 4)
Using Equations 3 and 4, we find:
v + x d v d x = v ( cos v + v sin v ) v sin v cos v x d v d x = v ( cos v + v sin v ) v sin v cos v v = 2 v cos v v sin v cos v v + x d v d x = v ( cos v + v sin v ) v sin v cos v x d v d x = v ( cos v + v sin v ) v sin v cos v v = 2 v cos v v sin v cos v {:[v+x(dv)/(dx)=(v(cos v+v sin v))/(v sin v-cos v)],[=>x(dv)/(dx)=(v(cos v+v sin v))/(v sin v-cos v)-v=(2v cos v)/(v sin v-cos v)]:}\begin{aligned} v+x \frac{\mathbf{d} v}{\mathbf{d} x} & =\frac{v(\cos v+v \sin v)}{v \sin v-\cos v} \\ \Rightarrow x \frac{\mathbf{d} v}{\mathbf{d} x} & =\frac{v(\cos v+v \sin v)}{v \sin v-\cos v}-v=\frac{2 v \cos v}{v \sin v-\cos v} \end{aligned}v+xdvdx=v(cosv+vsinv)vsinvcosvxdvdx=v(cosv+vsinv)vsinvcosvv=2vcosvvsinvcosv
x d v d x = 2 v cos v v sin v cos v x d v d x = 2 v cos v v sin v cos v x(dv)/(dx)=(2v cos v)/(v sin v-cos v)x \frac{dv}{dx} = \frac{2v \cos v}{v \sin v – \cos v}xdvdx=2vcosvvsinvcosv
2 d x x = v sin v cos v v cos v d v = [ sin v cos v 1 v ] d v 2 d x x = v sin v cos v v cos v d v = sin v cos v 1 v d v 2(dx)/(x)=(v sin v-cos v)/(v cos v)dv=[(sin v)/(cos v)-(1)/(v)]dv2 \frac{\mathbf{d} x}{x}=\frac{v \sin v-\cos v}{v \cos v} \mathbf{d} v=\left[\frac{\sin v}{\cos v}-\frac{1}{v}\right] \mathbf{d} v2dxx=vsinvcosvvcosvdv=[sinvcosv1v]dv
Integrating both sides, we get:
2 log x = log cos v log v + log c 2 log x = log cos v log v + log c 2log x=-log cos v-log v+log c2 \log x = -\log \cos v – \log v + \log c2logx=logcosvlogv+logc
log x 2 = log ( c v cos v ) log x 2 = log c v cos v log x^(2)=log((c)/(v)cos v)\log x^2=\log \left(\frac{c}{v} \cos v\right)logx2=log(cvcosv)
Simplifying, we find:
x 2 v cos v = c x 2 v cos v = c x^(2)v cos v=cx^2 v \cos v = cx2vcosv=c
Finally, substituting back v = y x v = y x v=(y)/(x)v = \frac{y}{x}v=yx, we get:
x y cos y x = c x y cos y x = c xy cos((y)/(x))=cxy \cos \frac{y}{x} = cxycosyx=c
Or equivalently,
x y = c sec ( y x ) x y = c sec y x xy=c sec((y)/(x))xy = c \sec \left(\frac{y}{x}\right)xy=csec(yx)

Conclusion

The solution to the given differential equation is x y = c sec ( y x ) x y = c sec y x xy=c sec((y)/(x))xy = c \sec \left(\frac{y}{x}\right)xy=csec(yx).
(b) वृत्त-कुल, जो बिंदु ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) एवं ( 0 , 2 ) ( 0 , 2 ) (0,-2)(0,-2)(0,2) से गुजरता है, का लंबकोणीय संछेदी ज्ञात कीजिए।
Find the orthogonal trajectories of the family of circles passing through the points ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) and ( 0 , 2 ) ( 0 , 2 ) (0,-2)(0,-2)(0,2).
Answer:
We start with the general equation for a family of circles:
x 2 + y 2 + 2 g x + 2 f y + d = 0 (Equation 1) x 2 + y 2 + 2 g x + 2 f y + d = 0 (Equation 1) x^(2)+y^(2)+2gx+2fy+d=0quad(Equation 1)x^2+y^2+2gx+2fy+d=0 \quad \text{(Equation 1)}x2+y2+2gx+2fy+d=0(Equation 1)
Given that the circle passes through ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) and ( 0 , 2 ) ( 0 , 2 ) (0,-2)(0,-2)(0,2), we can substitute these points into Equation 1 to get:
4 + 4 f + d = 0 (Equation 2, from (0,2)) 4 4 f + d = 0 (Equation 3, from (0,-2)) 4 + 4 f + d = 0 (Equation 2, from (0,2)) 4 4 f + d = 0 (Equation 3, from (0,-2)) 4+4f+d=0quad(Equation 2, from (0,2))4-4f+d=0quad(Equation 3, from (0,-2))4+4f+d=0 \quad \text{(Equation 2, from (0,2))} \\ 4-4f+d=0 \quad \text{(Equation 3, from (0,-2))}4+4f+d=0(Equation 2, from (0,2))44f+d=0(Equation 3, from (0,-2))
Solving Equations 2 and 3, we find f = 0 f = 0 f=0f=0f=0 and d = 4 d = 4 d=-4d=-4d=4. Substituting these into Equation 1, we get:
x 2 + y 2 + 2 g x 4 = 0 (Equation 4) x 2 + y 2 + 2 g x 4 = 0 (Equation 4) x^(2)+y^(2)+2gx-4=0quad(Equation 4)x^2+y^2+2gx-4=0 \quad \text{(Equation 4)}x2+y2+2gx4=0(Equation 4)
Differentiating Equation 4 with respect to x x xxx, we get:
2 x + 2 y ( d y d x ) + 2 g = 0 2 x + 2 y d y d x + 2 g = 0 2x+2y((dy)/(dx))+2g=02x+2y\left(\frac{dy}{dx}\right)+2g=02x+2y(dydx)+2g=0
Simplifying, we find:
g = [ x + y ( d y d x ) ] (Equation 5) g = x + y d y d x (Equation 5) g=-[x+y((dy)/(dx))]quad(Equation 5)g= -\left[x+y\left(\frac{dy}{dx}\right)\right] \quad \text{(Equation 5)}g=[x+y(dydx)](Equation 5)
Substituting the value of g g ggg into Equation 4, we get:
x 2 + y 2 2 x [ x + y ( d y d x ) ] 4 = 0 (Equation 6) x 2 + y 2 2 x x + y d y d x 4 = 0 (Equation 6) x^(2)+y^(2)-2x[x+y((dy)/(dx))]-4=0quad(Equation 6)x^2+y^2-2x\left[x+y\left(\frac{dy}{dx}\right)\right]-4=0 \quad \text{(Equation 6)}x2+y22x[x+y(dydx)]4=0(Equation 6)
Equation 6 is the differential equation for the family of circles.
For orthogonal trajectories, we replace d y d x d y d x (dy)/(dx)\frac{dy}{dx}dydx with d x d y d x d y -(dx)/(dy)-\frac{dx}{dy}dxdy. Doing so, we get:
Then we get x 2 + y 2 2 x [ x y ( d x d y ) ] 4 = 0 x 2 + y 2 4 = x y ( d x d y ) x 2 + y 2 4 2 x x = y ( d x d y ) x 2 + y 2 4 2 x = y ( d x d y ) x 2 y 2 + 4 2 x y = ( d x d y ) 2 x y d x ( x 2 y 2 + 4 ) d y = 0 Then we get x 2 + y 2 2 x x y d x d y 4 = 0 x 2 + y 2 4 = x y d x d y x 2 + y 2 4 2 x x = y d x d y x 2 + y 2 4 2 x = y d x d y x 2 y 2 + 4 2 x y = d x d y 2 x y d x x 2 y 2 + 4 d y = 0 {:[” Then we get “x^(2)+y^(2)-2x[x-y((dx)/(dy))]-4=0],[=>x^(2)+y^(2)-4=x-y((dx)/(dy))],[(x^(2)+y^(2)-4)/(2x)-x=-y((dx)/(dy))],[=>(-x^(2)+y^(2)-4)/(2x)=-y((dx)/(dy))],[(x^(2)-y^(2)+4)/(2xy)=((dx)/(dy))],[=>2xydx-(x^(2)-y^(2)+4)dy=0]:}\begin{aligned} & \text { Then we get } x^2+y^2-2 x\left[x-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right)\right]-4=0 \\ & \Rightarrow x^2+y^2-4=x-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right) \\ & \frac{x^2+y^2-4}{2 x}-x=-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right) \\ & \Rightarrow \frac{-x^2+y^2-4}{2 x}=-y\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right) \\ & \frac{x^2-y^2+4}{2 x y}=\left(\frac{\mathbf{d} x}{\mathbf{d} y}\right) \\ & \Rightarrow 2 x y \mathbf{d} x-\left(x^2-y^2+4\right) \mathbf{d} y=0 \end{aligned} Then we get x2+y22x[xy(dxdy)]4=0x2+y24=xy(dxdy)x2+y242xx=y(dxdy)x2+y242x=y(dxdy)x2y2+42xy=(dxdy)2xydx(x2y2+4)dy=0
2 x y d x + ( y 2 x 2 4 ) d y = 0 (Equation 7) 2 x y d x + ( y 2 x 2 4 ) d y = 0 (Equation 7) 2xydx+(y^(2)-x^(2)-4)dy=0quad(Equation 7)2xy dx + (y^2-x^2-4) dy = 0 \quad \text{(Equation 7)}2xydx+(y2x24)dy=0(Equation 7)
Where M = 2 M = 2 M=2M=2M=2 xy and N = y 2 x 2 4 N = y 2 x 2 4 N=y^(2)-x^(2)-4N=y^2-x^2-4N=y2x24
M y = 2 x , N x = 2 x M y = 2 x , N x = 2 x (del M)/(del y)=2x,(del N)/(del x)=-2x\frac{\partial M}{\partial y}=2 x, \frac{\partial N}{\partial x}=-2 xMy=2x,Nx=2x
This equation is not exact, but we can make it exact by multiplying by an integrating factor I F I F IFIFIF, which is 1 y 2 1 y 2 (1)/(y^(2))\frac{1}{y^2}1y2. Doing so, we get an exact equation:
1 M ( N x M y ) = 1 2 x y ( 2 x 2 x ) = 4 x 2 x y = 2 y I . F = e 2 y d y = e 2 log y = e log y 2 = 1 y 2 1 M N x M y = 1 2 x y ( 2 x 2 x ) = 4 x 2 x y = 2 y I . F = e 2 y d y = e 2 log y = e log y 2 = 1 y 2 {:[(1)/(M)((del N)/(del x)-(del M)/(del y))=(1)/(2xy)(-2x-2x)],[=-(4x)/(2xy)],[=-(2)/(y)],[I.F=e^(-int(2)/(y)dy)=e^(-2log y)=e^(log y^(-2))=(1)/(y^(2))]:}\begin{aligned} & \frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=\frac{1}{2 x y}(-2 x-2 x) \\ & =-\frac{4 x}{2 x y} \\ & =-\frac{2}{y} \\ & I . F=e^{-\int \frac{2}{y} \mathrm{~d} y}=e^{-2 \log y}=e^{\log y^{-2}}=\frac{1}{y^2} \end{aligned}1M(NxMy)=12xy(2x2x)=4x2xy=2yI.F=e2y dy=e2logy=elogy2=1y2
From (7)
2 x y y d x + y 2 x 2 y y 2 d y = 0 2 x y y d x + y 2 x 2 y y 2 d y = 0 (2xy)/(y)dx+(y^(2)-x^(2)-y)/(y^(2))dy=0\frac{2 x y}{y} \mathbf{d} x+\frac{y^2-x^2-y}{y^2} \mathbf{d} y=02xyydx+y2x2yy2dy=0
2 x y d x + ( 1 4 y 2 ) d y = 0 2 x y d x + 1 4 y 2 d y = 0 (2x)/(y)dx+(1-(4)/(y^(2)))dy=0\frac{2x}{y} dx + \left(1-\frac{4}{y^2}\right) dy = 02xydx+(14y2)dy=0
Which is an exact equation
2 x y d x + ( 1 4 y 2 ) d y = 0 2 x y d x + 1 4 y 2 d y = 0 int(2x)/(y)dx+(1-(4)/(y^(2)))dy=0\int \frac{2 x}{y} \mathbf{d} x+\left(1-\frac{4}{y^2}\right) \mathbf{d} y=02xydx+(14y2)dy=0
Which is an exact equation
2 x y d x + 1 4 y 2 d y = c x 2 y + y + 4 y = c 2 x y d x + 1 4 y 2 d y = c x 2 y + y + 4 y = c {:[ int(2x)/(y)dx+int1-(4)/(y^(2))dy=c],[(x^(2))/(y)+y+(4)/(y)=c]:}\begin{aligned} & \int \frac{2 x}{y} \mathbf{d} x+\int 1-\frac{4}{y^2} \mathbf{d} y=c \\ & \frac{x^2}{y}+y+\frac{4}{y}=c \end{aligned}2xydx+14y2dy=cx2y+y+4y=c
x 2 y + ( y + 4 y ) = c x 2 y + y + 4 y = c (x^(2))/(y)+(y+(4)/(y))=c\frac{x^2}{y} + \left(y+\frac{4}{y}\right) = cx2y+(y+4y)=c

Conclusion

The orthogonal trajectories of the family of circles that pass through the points ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) and ( 0 , 2 ) ( 0 , 2 ) (0,-2)(0,-2)(0,2) are described by the equation x 2 y + ( y + 4 y ) = c x 2 y + y + 4 y = c (x^(2))/(y)+(y+(4)/(y))=c\frac{x^2}{y} + \left(y+\frac{4}{y}\right) = cx2y+(y+4y)=c.
(c) a , b , c a , b , c a,b,ca, b, ca,b,c के किस मान के लिए सदिश क्षेत्र
V ¯ = ( 4 x 3 y + a z ) i ^ + ( b x + 3 y + 5 z ) j ^ + ( 4 x + c y + 3 z ) k ^ V ¯ = ( 4 x 3 y + a z ) i ^ + ( b x + 3 y + 5 z ) j ^ + ( 4 x + c y + 3 z ) k ^ bar(V)=(-4x-3y+az) hat(i)+(bx+3y+5z) hat(j)+(4x+cy+3z) hat(k)\bar{V}=(-4 x-3 y+a z) \hat{i}+(b x+3 y+5 z) \hat{j}+(4 x+c y+3 z) \hat{k}V¯=(4x3y+az)i^+(bx+3y+5z)j^+(4x+cy+3z)k^
अघूर्णी है? तब V ¯ V ¯ bar(V)\bar{V}V¯ को अदिश फलन ϕ ϕ phi\phiϕ की प्रवणता के रूप में व्यक्त कीजिए। ϕ ϕ phi\phiϕ को ज्ञात कीजिए।
For what value of a , b , c a , b , c a,b,ca, b, ca,b,c is the vector field
V ¯ = ( 4 x 3 y + a z ) i ^ + ( b x + 3 y + 5 z ) j ^ + ( 4 x + c y + 3 z ) k ^ V ¯ = ( 4 x 3 y + a z ) i ^ + ( b x + 3 y + 5 z ) j ^ + ( 4 x + c y + 3 z ) k ^ bar(V)=(-4x-3y+az) hat(i)+(bx+3y+5z) hat(j)+(4x+cy+3z) hat(k)\bar{V}=(-4 x-3 y+a z) \hat{i}+(b x+3 y+5 z) \hat{j}+(4 x+c y+3 z) \hat{k}V¯=(4x3y+az)i^+(bx+3y+5z)j^+(4x+cy+3z)k^
irrotational? Hence, express V ¯ V ¯ bar(V)\bar{V}V¯ as the gradient of a scalar function ϕ ϕ phi\phiϕ. Determine ϕ ϕ phi\phiϕ.
Answer:
Introduction:
We need to determine the values of a a aaa, b b bbb, and c c ccc for which the vector field V V vec(V)\vec{V}V is irrotational. Additionally, we want to express V V vec(V)\vec{V}V as the gradient of a scalar function ϕ ϕ phi\phiϕ and find the expression for ϕ ϕ phi\phiϕ.
Work/Calculations:
A vector field v v vec(v)\vec{v}v is irrotational if its curl, × v × v grad xx vec(v)\nabla \times \vec{v}×v, is equal to zero. The curl of V V vec(V)\vec{V}V is calculated as follows:
× V = | i ^ j ^ k ^ x y z 4 x 3 y + a z b x + 3 y + 5 z 4 x + c y + 3 z | = i ( c 5 ) j ( 4 a ) + k ( b + 3 ) × V = i ^ j ^ k ^ x y z 4 x 3 y + a z b x + 3 y + 5 z 4 x + c y + 3 z = i ( c 5 ) j ( 4 a ) + k ( b + 3 ) grad xx vec(V)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[-4x-3y+az,bx+3y+5z,4x+cy+3z]|=i(c-5)-j(4-a)+k(b+3)\nabla \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -4x-3y+az & bx+3y+5z & 4x+cy+3z \end{vmatrix} = i(c-5) – j(4-a) + k(b+3)×V=|i^j^k^xyz4x3y+azbx+3y+5z4x+cy+3z|=i(c5)j(4a)+k(b+3)
For V V vec(V)\vec{V}V to be irrotational, this expression must equal zero. Therefore, we have:
c 5 = 0 c = 5 c 5 = 0 c = 5 c-5=0Longrightarrowc=5c – 5 = 0 \implies c = 5c5=0c=5
4 a = 0 a = 4 4 a = 0 a = 4 4-a=0Longrightarrowa=44 – a = 0 \implies a = 44a=0a=4
b + 3 = 0 b = 3 b + 3 = 0 b = 3 b+3=0Longrightarrowb=-3b + 3 = 0 \implies b = -3b+3=0b=3
To express V V vec(V)\vec{V}V as the gradient of a scalar function ϕ ϕ phi\phiϕ, we have:
V = ϕ V = ϕ vec(V)=grad phi\vec{V} = \nabla \phiV=ϕ
Now, we have our V V vec(V)\vec{V}V as:
V = ( 4 x 3 y + 4 z ) i + ( 9 3 x + 3 y + 5 z ) j + ( 4 x + 5 y + 3 z ) k = ϕ x i + ϕ y j + ϕ z k ( 1 ) V = ( 4 x 3 y + 4 z ) i + ( 9 3 x + 3 y + 5 z ) j + ( 4 x + 5 y + 3 z ) k = ϕ x i + ϕ y j + ϕ z k ( 1 ) vec(V)=(-4x-3y+4z)i+(9-3x+3y+5z)j+(4x+5y+3z)k=(del phi)/(del x)i+(del phi)/(del y)j+(del phi)/(del z)k quad(1)\vec{V} = (-4 x-3 y+4 z) i+(9-3 x+3 y+5 z) j+(4 x+5 y+3 z) k=\frac{\partial \phi}{\partial x} i+\frac{\partial \phi}{\partial y} j+\frac{\partial \phi}{\partial z} k\quad (1)V=(4x3y+4z)i+(93x+3y+5z)j+(4x+5y+3z)k=ϕxi+ϕyj+ϕzk(1)
Equating components:
ϕ x = 4 x 3 y + 4 z ϕ = 2 x 2 3 x y + 4 x z + f 1 ( y , z ) ( 2 ) ϕ x = 4 x 3 y + 4 z ϕ = 2 x 2 3 x y + 4 x z + f 1 ( y , z ) ( 2 ) (del phi)/(del x)=-4x-3y+4z quadLongrightarrowphi=-2x^(2)-3xy+4xz+f_(1)(y,z)quad(2)\frac{\partial \phi}{\partial x} = -4x-3y+4z \quad \implies \phi = -2x^2-3xy+4xz+f_1(y,z) \quad (2)ϕx=4x3y+4zϕ=2x23xy+4xz+f1(y,z)(2)
ϕ y = 3 x + 3 y + 5 z ϕ = 3 x y + 3 2 y 2 + 5 y z + f 2 ( x , y ) ( 3 ) ϕ y = 3 x + 3 y + 5 z ϕ = 3 x y + 3 2 y 2 + 5 y z + f 2 ( x , y ) ( 3 ) (del phi)/(del y)=-3x+3y+5z quadLongrightarrowphi=-3xy+(3)/(2)y^(2)+5yz+f_(2)(x,y)quad(3)\frac{\partial \phi}{\partial y} = -3x+3y+5z \quad \implies \phi = -3xy+\frac{3}{2}y^2+5yz+f_2(x,y) \quad (3)ϕy=3x+3y+5zϕ=3xy+32y2+5yz+f2(x,y)(3)
ϕ z = 4 x + 5 y + 3 z ϕ = 4 x z + 5 y z + 3 2 z 2 + f 3 ( x , y ) ( 4 ) ϕ z = 4 x + 5 y + 3 z ϕ = 4 x z + 5 y z + 3 2 z 2 + f 3 ( x , y ) ( 4 ) (del phi)/(del z)=4x+5y+3z quadLongrightarrowphi=4xz+5yz+(3)/(2)z^(2)+f_(3)(x,y)quad(4)\frac{\partial \phi}{\partial z} = 4x+5y+3z \quad \implies \phi = 4xz+5yz+\frac{3}{2}z^2+f_3(x,y) \quad (4)ϕz=4x+5y+3zϕ=4xz+5yz+32z2+f3(x,y)(4)
These expressions for ϕ ϕ phi\phiϕ can be equated since they represent the same function ϕ ϕ phi\phiϕ. This gives us:
f 1 ( y , z ) = 3 2 y 2 + 3 2 z 2 + 5 y z f 1 ( y , z ) = 3 2 y 2 + 3 2 z 2 + 5 y z f_(1)(y,z)=(3)/(2)y^(2)+(3)/(2)z^(2)+5yzf_1(y,z) = \frac{3}{2}y^2+\frac{3}{2}z^2+5yzf1(y,z)=32y2+32z2+5yz
f 2 ( x , y ) = 2 x 2 + 3 2 z 2 + 4 x z f 2 ( x , y ) = 2 x 2 + 3 2 z 2 + 4 x z f_(2)(x,y)=-2x^(2)+(3)/(2)z^(2)+4xzf_2(x,y) = -2x^2+\frac{3}{2}z^2+4xzf2(x,y)=2x2+32z2+4xz
f 3 ( x , y ) = 2 x 2 + 3 2 y 2 3 x y f 3 ( x , y ) = 2 x 2 + 3 2 y 2 3 x y f_(3)(x,y)=-2x^(2)+(3)/(2)y^(2)-3xyf_3(x,y) = -2x^2+\frac{3}{2}y^2-3xyf3(x,y)=2x2+32y23xy
So, our final expression for ϕ ϕ phi\phiϕ is:
ϕ = 2 x 2 + 3 2 y 2 + 3 2 z 2 3 x y + 4 x z + 5 y z + c ϕ = 2 x 2 + 3 2 y 2 + 3 2 z 2 3 x y + 4 x z + 5 y z + c phi=-2x^(2)+(3)/(2)y^(2)+(3)/(2)z^(2)-3xy+4xz+5yz+c\phi = -2x^2+\frac{3}{2}y^2+\frac{3}{2}z^2-3xy+4xz+5yz + cϕ=2x2+32y2+32z23xy+4xz+5yz+c
Where c c ccc is an arbitrary constant.
(d) एक एकसमान छड़, जो ऊर्ध्वर्धर दशा में है, अपने एक सिरे पर स्वतंत्र रूप से वर्तन कर सकती है तथा दूसरे सिरे पर लगाए गए एक क्षैतिज बल, जिसका मान छड़ के भार का आधा है, द्वारा ऊर्ध्वाधर से एक तरफ खींची जाती है। बताइए कि ऊर्ध्वाधर से किस कोण पर छड़ विश्राम करेगी।
A uniform rod, in vertical position, can turn freely about one of its ends and is pulled aside from the vertical by a horizontal force acting at the other end of the rod and equal to half its weight. At what inclination to the vertical will the rod rest?
Answer:

Forces in the System

The forces acting on the system are:
  1. The weight W W WWW of the rod A B A B ABABAB, acting vertically downwards.
  2. The force P P PPP, which is W 2 W 2 (W)/(2)\frac{W}{2}W2, pulling the rod aside from the vertical.
  3. The reaction R R RRR at the end A A AAA of the rod.
In equilibrium, these forces must intersect at a single point. Therefore, the reaction R R RRR should pass through O O OOO, the point of intersection of the directions of the forces W W WWW and W 2 W 2 (W)/(2)\frac{W}{2}W2.
original image

Geometry and Trigonometry

Let the length of the rod be 2 l 2 l 2l2l2l, so A G = B G = l A G = B G = l AG=BG=lAG = BG = lAG=BG=l.
In A B C A B C /_\ABC\triangle ABCABC, we have:
cos θ = A C 2 l A C = 2 l cos θ cos θ = A C 2 l A C = 2 l cos θ cos theta=(AC)/(2l)LongrightarrowAC=2l cos theta\cos \theta = \frac{AC}{2l} \implies AC = 2l \cos \thetacosθ=AC2lAC=2lcosθ
In A O G A O G /_\AO^(‘)G\triangle AO’GAOG, we have:
sin θ = A O l A O = l sin θ sin θ = A O l A O = l sin θ sin theta=(AO^(‘))/(l)LongrightarrowAO^(‘)=l sin theta\sin \theta = \frac{AO’}{l} \implies AO’ = l \sin \thetasinθ=AOlAO=lsinθ

Equilibrium Condition

For the rod to be in equilibrium, the algebraic sum of the moments about point A A AAA must be zero. Therefore, we have:
P A C W A O = 0 P A C W A O = 0 P*AC-W*AO^(‘)=0P \cdot AC – W \cdot AO’ = 0PACWAO=0
Substituting P = W 2 P = W 2 P=(W)/(2)P = \frac{W}{2}P=W2 and the expressions for A C A C ACACAC and A O A O AO^(‘)AO’AO, we get:
W 2 2 l cos θ W l sin θ = 0 W 2 2 l cos θ W l sin θ = 0 (W)/(2)*2l cos theta-W*l sin theta=0\frac{W}{2} \cdot 2l \cos \theta – W \cdot l \sin \theta = 0W22lcosθWlsinθ=0
Simplifying, we find:
cos θ = sin θ tan θ = 1 cos θ = sin θ tan θ = 1 cos theta=sin thetaLongrightarrowtan theta=1\cos \theta = \sin \theta \implies \tan \theta = 1cosθ=sinθtanθ=1
θ = tan 1 ( 1 ) = 45 θ = tan 1 ( 1 ) = 45 theta=tan^(-1)(1)=45^(@)\theta = \tan^{-1}(1) = 45^\circθ=tan1(1)=45

Conclusion

The rod will come to rest at an inclination of 45 45 45^(@)45^\circ45 to the vertical.
(e) एक हल्की दृढ़ छड़ A B C A B C ABCA B CABC से तीन कण, जिनमें से हरेक का द्रव्यमान m m mmm है, A , B A , B A,BA, BA,B तथा C C CCC पर बंधे हुए हैं। उस छड़ को बिंदु A A AAA से B C B C BCB CBC दूरी के बराबर स्थित बिंदु पर एक बल P P PPP के द्वारा लम्बवत् मारा जाता है। सिद्ध कीजिए कि पैदा हुई गतिज ऊर्जा का मान 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 (1)/(2)(p^(2))/(m)(a^(2)-ab+b^(2))/(a^(2)+ab+b^(2))\frac{1}{2} \frac{p^2}{m} \frac{a^2-a b+b^2}{a^2+a b+b^2}12p2ma2ab+b2a2+ab+b2 है, जहाँ A B = a A B = a AB=aA B=aAB=a तथा B C = b B C = b BC=bB C=bBC=b.
A light rigid rod A B C A B C ABCA B CABC has three particles each of mass m m mmm attached to it at A , B A , B A,BA, BA,B and C C CCC. The rod is struck by a blow P P PPP at right angles to it at a point distant from A A AAA equal to B C B C BCB CBC. Prove that the kinetic energy set up is 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 (1)/(2)(p^(2))/(m)(a^(2)-ab+b^(2))/(a^(2)+ab+b^(2))\frac{1}{2} \frac{p^2}{m} \frac{a^2-a b+b^2}{a^2+a b+b^2}12p2ma2ab+b2a2+ab+b2, where A B = a A B = a AB=aA B=aAB=a and B C = b B C = b BC=bB C=bBC=b.
Answer:
Let the three particles each of mass m m mmm be placed at A , B , C A , B , C A,B,CA, B, CA,B,C of a light rod A B C A B C ABCA B CABC, and let the impulse P P PPP be applied at O O OOO such that A O = B C = b A O = B C = b AO=BC=bA O=B C=bAO=BC=b, where A B = a , B C = b A B = a , B C = b AB=a,BC=bA B=a, B C=bAB=a,BC=b.
original image

Initial Conditions and Variables

  • A B = a A B = a AB=aAB = aAB=a
  • B C = b B C = b BC=bBC = bBC=b
  • A O = b A O = b AO=bAO = bAO=b
  • u u u^(‘)u’u is the velocity of C C CCC
  • ω ω omega\omegaω is the angular velocity of the rod just after the blow

Velocities of Points

The velocities of the points A , B , C A , B , C A,B,CA, B, CA,B,C and O O OOO just after the blow are:
  • Velocity of C C CCC: u u u^(‘)u’u
  • Velocity of B B BBB: u + b ω u + b ω u+b omegau + b\omegau+bω
  • Velocity of A A AAA: u + ( a + b ) ω u + ( a + b ) ω u+(a+b)omegau + (a+b)\omegau+(a+b)ω
  • Velocity of O O OOO: u + a ω u + a ω u+a omegau + a\omegau+aω

Conservation of Momentum

Since the system was initially at rest, the total momentum perpendicular to the rod must be equal to the impulse P P PPP:
m u + m ( u + b ω ) + m { u + ( a + b ) ω } = P m u + m ( u + b ω ) + m { u + ( a + b ) ω } = P mu+m(u+b omega)+m{u+(a+b)omega}=Pm u+m(u+b \omega)+m\{u+(a+b) \omega\}=Pmu+m(u+bω)+m{u+(a+b)ω}=P
3 u + ω ( a + 2 b ) = P m (1) 3 u + ω ( a + 2 b ) = P m (1) 3u+omega(a+2b)=(P)/(m)quad(1)3u + \omega(a + 2b) = \frac{P}{m} \quad \text{(1)}3u+ω(a+2b)=Pm(1)

Moments About Point O O OOO

Taking moments about O O OOO, we get:
{ u + ( a + b ) } b m ( u + b ω ) ( a b ) m u a = 0 u ( a b ) = b 2 ω . u b 2 = ω a b 3 u + ( a + 2 b ) ω 3 b 2 + ( a + 2 b ) ( a b ) = ( P / m ) ( a 2 + a b + b 2 ) { u + ( a + b ) } b m ( u + b ω ) ( a b ) m u a = 0 u ( a b ) = b 2 ω . u b 2 = ω a b 3 u + ( a + 2 b ) ω 3 b 2 + ( a + 2 b ) ( a b ) = ( P / m ) a 2 + a b + b 2 {:[{u+(a+b)}b-m(u+b omega)(a-b)-mua=0=>u(a-b)=b^(2)omega.],[:.(u)/(b^(2))=(omega)/(a-b)=>(3u+(a+2b)omega)/(3b^(2)+(a+2b)(a-b))=((P//m))/((a^(2)+ab+b^(2)))]:}\begin{aligned} & \{u+(a+b)\} b-m(u+b \omega)(a-b)-m u a=0 \Rightarrow u(a-b)=b^2 \omega . \\ & \therefore \frac{u}{b^2}=\frac{\omega}{a-b} \Rightarrow \frac{3 u+(a+2 b) \omega}{3 b^2+(a+2 b)(a-b)}=\frac{(P / m)}{\left(a^2+a b+b^2\right)} \end{aligned}{u+(a+b)}bm(u+bω)(ab)mua=0u(ab)=b2ω.ub2=ωab3u+(a+2b)ω3b2+(a+2b)(ab)=(P/m)(a2+ab+b2)

Solving for u u uuu and ω ω omega\omegaω

From equations (1) and (2), we can solve for u u uuu and ω ω omega\omegaω:
u = b 2 a 2 + a b + b 2 P m and ω = ( a b ) a 2 + a b + b 2 P m u = b 2 a 2 + a b + b 2 P m and ω = ( a b ) a 2 + a b + b 2 P m u=(b^(2))/(a^(2)+ab+b^(2))(P)/(m)quad”and”quad omega=((a-b))/(a^(2)+ab+b^(2))(P)/(m)u = \frac{b^2}{a^2 + ab + b^2} \frac{P}{m} \quad \text{and} \quad \omega = \frac{(a-b)}{a^2 + ab + b^2} \frac{P}{m}u=b2a2+ab+b2Pmandω=(ab)a2+ab+b2Pm

Velocity of Point O O OOO

The velocity of point O O OOO is:
u + a ω = P m 1 m ( a 2 + b 2 + a b ) [ b 2 + a ( a b ) ] = a 2 + b 2 a b a 2 + b 2 + a b P m u + a ω = P m 1 m a 2 + b 2 + a b b 2 + a ( a b ) = a 2 + b 2 a b a 2 + b 2 + a b P m u+a omega=(P)/(m)(1)/(m(a^(2)+b^(2)+ab))[b^(2)+a(a-b)]=(a^(2)+b^(2)-ab)/(a^(2)+b^(2)+ab)*(P)/(m)u+a \omega=\frac{P}{m} \frac{1}{m\left(a^2+b^2+a b\right)}\left[b^2+a(a-b)\right]=\frac{a^2+b^2-a b}{a^2+b^2+a b} \cdot \frac{P}{m}u+aω=Pm1m(a2+b2+ab)[b2+a(ab)]=a2+b2aba2+b2+abPm

Kinetic Energy

Finally, the kinetic energy K E K E KEKEKE set up in the system is:
K E = 1 2 P × (velocity of point O ) = 1 2 P 2 ( a 2 + b 2 a b ) m ( a 2 + a b + b 2 ) K E = 1 2 P × (velocity of point O ) = 1 2 P 2 ( a 2 + b 2 a b ) m ( a 2 + a b + b 2 ) KE=(1)/(2)P xx(velocity of point O”)”=(1)/(2)(P^(2)(a^(2)+b^(2)-ab))/(m(a^(2)+ab+b^(2)))KE = \frac{1}{2} P \times \text{(velocity of point \( O \))} = \frac{1}{2} \frac{P^2(a^2 + b^2 – ab)}{m(a^2 + ab + b^2)}KE=12P×(velocity of point O)=12P2(a2+b2ab)m(a2+ab+b2)

Conclusion

The kinetic energy set up in the system is 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 1 2 p 2 m a 2 a b + b 2 a 2 + a b + b 2 (1)/(2)(p^(2))/(m)(a^(2)-ab+b^(2))/(a^(2)+ab+b^(2))\frac{1}{2} \frac{p^2}{m} \frac{a^2-ab+b^2}{a^2+ab+b^2}12p2ma2ab+b2a2+ab+b2, as required.
  1. (a) प्राचल विचरण विधि का प्रयोग करके, निम्न अवकल समीकरण का हल निकालिए, यदि y = e x y = e x y=e^(-x)y=e^{-x}y=ex, पूरक फलन (CF) का एक हल है :
y + ( 1 cot x ) y y cot x = sin 2 x y + ( 1 cot x ) y y cot x = sin 2 x y^(”)+(1-cot x)y^(‘)-y cot x=sin^(2)xy^{\prime \prime}+(1-\cot x) y^{\prime}-y \cot x=\sin ^2 xy+(1cotx)yycotx=sin2x
Using the method of variation of parameters, solve the differential equation y + ( 1 cot x ) y y cot x = sin 2 x y + ( 1 cot x ) y y cot x = sin 2 x y^(”)+(1-cot x)y^(‘)-y cot x=sin^(2)xy^{\prime \prime}+(1-\cot x) y^{\prime}-y \cot x=\sin ^2 xy+(1cotx)yycotx=sin2x, if y = e x y = e x y=e^(-x)y=e^{-x}y=ex is one solution of CF.
Answer:
Introduction:
We are tasked with solving the differential equation y + ( 1 cot x ) y y cot x = sin 2 x y + ( 1 cot x ) y y cot x = sin 2 x y^(”)+(1-cot x)y^(‘)-y cot x=sin^(2)xy^{\prime \prime}+(1-\cot x) y^{\prime}-y \cot x=\sin ^2 xy+(1cotx)yycotx=sin2x, given that y = e x y = e x y=e^(-x)y=e^{-x}y=ex is one of its complementary function (CF) solutions. We’ll use the method of variation of parameters to find the particular solution.
Work/Calculations:
Let’s begin by considering the homogeneous form of the equation:
y + ( 1 cot x ) y cot x y = 0 (2) y + ( 1 cot x ) y cot x y = 0 (2) y^(”)+(1-cot x)y^(‘)-cot x*y=0quad(2)y^{\prime \prime}+(1-\cot x) y^{\prime}-\cot x \cdot y=0 \quad \text{(2)}y+(1cotx)ycotxy=0(2)
Comparing this with the standard form y + P y + Q y = 0 y + P y + Q y = 0 y^(”)+Py^(‘)+Qy=0y^{\prime \prime}+P y^{\prime}+Q y=0y+Py+Qy=0, we have P = 1 cot x P = 1 cot x P=1-cot xP = 1 – \cot xP=1cotx and Q = cot x Q = cot x Q=-cot xQ = -\cot xQ=cotx. We also observe that 1 P + Q = 1 ( 1 cot x ) cot x = 0 1 P + Q = 1 ( 1 cot x ) cot x = 0 1-P+Q=1-(1-cot x)-cot x=01 – P + Q = 1 – (1 – \cot x) – \cot x = 01P+Q=1(1cotx)cotx=0, which indicates that u = e x u = e x u=e^(-x)u = e^{-x}u=ex is a part of the CF of equation (2).
Now, we assume the complete solution of (2) as y = u v y = u v y=u*vy = u \cdot vy=uv. To find v v vvv, we use the formula for the second derivative of a product:
d 2 v d x 2 + ( P + 2 u d u d x ) d v d x = R y d 2 v d x 2 + P + 2 u d u d x d v d x = R y (d^(2)v)/(dx^(2))+(P+(2)/(u)(du)/(dx))(dv)/(dx)=(R)/(y)\frac{d^2 v}{dx^2} + \left(P + \frac{2}{u} \frac{du}{dx}\right) \frac{dv}{dx} = \frac{R}{y}d2vdx2+(P+2ududx)dvdx=Ry
In our case, P = 1 cot x P = 1 cot x P=1-cot xP = 1 – \cot xP=1cotx and u = e x u = e x u=e^(-x)u = e^{-x}u=ex, so:
d 2 v d x 2 + ( 1 cot x + 2 e x ( e x ) ) d v d x = 0 d 2 v d x 2 + 1 cot x + 2 e x ( e x ) d v d x = 0 (d^(2)v)/(dx^(2))+(1-cot x+(2)/(e^(-x))(-e^(-x)))((dv)/(dx))=0\frac{d^2 v}{dx^2} + \left(1 – \cot x + \frac{2}{e^{-x}}(-e^{-x})\right) \frac{dv}{dx} = 0d2vdx2+(1cotx+2ex(ex))dvdx=0
This simplifies to:
d 2 v d x 2 ( 1 + cot x ) d v d x = 0 (3) d 2 v d x 2 ( 1 + cot x ) d v d x = 0 (3) (d^(2)v)/(dx^(2))-(1+cot x)(dv)/(dx)=0quad(3)\frac{d^2 v}{dx^2} – (1 + \cot x) \frac{dv}{dx} = 0 \quad \text{(3)}d2vdx2(1+cotx)dvdx=0(3)
Let d v d x = q d v d x = q (dv)/(dx)=q\frac{dv}{dx} = qdvdx=q, which transforms equation (3) into:
d q d x ( 1 + cot x ) q = 0 d q d x ( 1 + cot x ) q = 0 (dq)/(dx)-(1+cot x)q=0\frac{dq}{dx} – (1 + \cot x)q = 0dqdx(1+cotx)q=0
Solving this first-order linear differential equation:
1 q d q = ( 1 + cot x ) d x 1 q d q = ( 1 + cot x ) d x (1)/(q)dq=(1+cot x)dx\frac{1}{q} dq = (1 + \cot x)dx1qdq=(1+cotx)dx
By Integrating
log q log c 1 = x + log sin x q = c 1 e x sin x d q d x = c 1 e x sin x d x + c 2 v = 1 2 c 1 e x ( sin x cos x ) + c 2 v = c 1 e x ( sin x cos x ) + c 2 where c 1 = c 1 2 log q log c 1 = x + log sin x q = c 1 e x sin x d q d x = c 1 e x sin x d x + c 2 v = 1 2 c 1 e x ( sin x cos x ) + c 2 v = c 1 e x ( sin x cos x ) + c 2 where c 1 = c 1 2 {:[log q-log c_(1)=x+log sin x],[=>q=c_(1)e^(x)sin x],[(dq)/(dx)=c_(1)inte^(x)sin xdx+c_(2)],[v=(1)/(2)c_(1)e^(x)(sin x-cos x)+c_(2)],[v=c_(1)^(‘)e^(x)(sin x-cos x)+c_(2)” where “c_(1)^(‘)=(c_(1))/(2)]:}\begin{aligned} & \log q-\log c_1=x+\log \sin x \\ & \Rightarrow q=c_1 e^x \sin x \\ & \frac{\mathbf{d} q}{\mathbf{d} x}=c_1 \int e^x \sin x \mathbf{d} x+c_2 \\ & v=\frac{1}{2} c_1 e^x(\sin x-\cos x)+c_2 \\ & v=c_1^{\prime} e^x(\sin x-\cos x)+c_2 \text { where } c_1^{\prime}=\frac{c_1}{2} \end{aligned}logqlogc1=x+logsinxq=c1exsinxdqdx=c1exsinxdx+c2v=12c1ex(sinxcosx)+c2v=c1ex(sinxcosx)+c2 where c1=c12
Therefore, C. F of (2) is given by
y c = e x { c 1 e x ( sin x cos x ) + c 2 } y c = c 1 ( sin x cos x ) + c 2 e x y c = e x c 1 e x ( sin x cos x ) + c 2 y c = c 1 ( sin x cos x ) + c 2 e x {:[y_(c)=e^(-x){c_(1)^(‘)e^(x)(sin x-cos x)+c_(2)}],[y_(c)=c_(1)^(‘)(sin x-cos x)+c_(2)e^(-x)]:}\begin{aligned} & y_c=e^{-x}\left\{c_1^{\prime} e^x(\sin x-\cos x)+c_2\right\} \\ & y_c=c_1^{\prime}(\sin x-\cos x)+c_2 e^{-x} \end{aligned}yc=ex{c1ex(sinxcosx)+c2}yc=c1(sinxcosx)+c2ex
Particular integral of (1) y p = U f ( x ) + V g ( x ) y p = U f ( x ) + V g ( x ) y_(p)=Uf(x)+Vg(x)rarry_p=U f(x)+V g(x) \rightarrowyp=Uf(x)+Vg(x) (4)
Next, we proceed to find the particular integral y p y p y_(p)y_pyp for the original equation (1). We’ve already determined U U UUU and V V VVV as sin x cos x sin x cos x sin x-cos x\sin x – \cos xsinxcosx and e x e x e^(-x)e^{-x}ex, respectively. Now, we need to calculate the Wronskian W W WWW:
W = | sin x cos x e x cos x + sin x e x | = 2 e x sin x W = sin x cos x e x cos x + sin x e x = 2 e x sin x W=|[sin x-cos x,e^(-x)],[cos x+sin x,-e^(-x)]|=-2e^(-x)sin xW = \begin{vmatrix} \sin x – \cos x & e^{-x} \\ \cos x + \sin x & -e^{-x} \end{vmatrix} = -2 e^{-x} \sin xW=|sinxcosxexcosx+sinxex|=2exsinx
We use W W WWW to find f ( x ) f ( x ) f(x)f(x)f(x):
Where f ( x ) = V W d x = e x sin 2 x 2 e x sin x d x ( from R = sin 2 x ) = 1 2 sin 2 x d x = 1 2 cos x g ( x ) = U R W = ( sin x cos x ) sin 2 x 2 e x sin x d x = 1 2 e x ( sin x cos x ) sin x d x = 1 2 e x ( sin 2 x cos x sin x ) d x = 1 2 [ e x ( 1 cos 2 x 2 ) d x e x sin 2 x 2 d x ] = 1 4 [ e x e x cos 2 x d x e x sin 2 x d x ] = 1 4 [ e x e x 5 ( cos 2 x + 2 sin 2 x ) e x 5 ( sin x 2 cos 2 x ) ] = 1 4 e x [ 1 + 1 5 ( cos 2 x 3 sin 2 x ) ] Where f ( x ) = V W d x = e x sin 2 x 2 e x sin x d x from R = sin 2 x = 1 2 sin 2 x d x = 1 2 cos x g ( x ) = U R W = ( sin x cos x ) sin 2 x 2 e x sin x d x = 1 2 e x ( sin x cos x ) sin x d x = 1 2 e x sin 2 x cos x sin x d x = 1 2 e x 1 cos 2 x 2 d x e x sin 2 x 2 d x = 1 4 e x e x cos 2 x d x e x sin 2 x d x = 1 4 e x e x 5 ( cos 2 x + 2 sin 2 x ) e x 5 ( sin x 2 cos 2 x ) = 1 4 e x 1 + 1 5 ( cos 2 x 3 sin 2 x ) {:[” Where “f(x)=-int(V)/(W)dx=-int(e^(-x)sin^(2)x)/(-2e^(-x)sin x)dx(” from “R=sin^(2)x)],[=(1)/(2)intsin^(2)xdx=-(1)/(2)cos x],[g(x)=int(UR)/(W)=int((sin x-cos x)sin^(2)x)/(-2e^(-x)sin x)dx],[=-(1)/(2)inte^(x)(sin x-cos x)sin xdx],[=-(1)/(2)inte^(x)(sin^(2)x-cos x sin x)dx],[=-(1)/(2)[inte^(x)((1-cos 2x)/(2))dx-inte^(x)(sin 2x)/(2)dx]],[=-(1)/(4)[e^(x)-inte^(x)cos 2xdx-inte^(x)sin 2xdx]],[=-(1)/(4)[e^(x)-(e^(x))/(5)(cos 2x+2sin 2x)-(e^(x))/(5)(sin x-2cos 2x)]],[=-(1)/(4)e^(x)[1+(1)/(5)(cos 2x-3sin 2x)]]:}\begin{aligned} & \text { Where } f(x)=-\int \frac{V}{W} \mathbf{d} x=-\int \frac{e^{-x} \sin ^2 x}{-2 e^{-x} \sin x} \mathbf{d} x\left(\text { from } R=\sin ^2 x\right) \\ & =\frac{1}{2} \int \sin ^2 x \mathbf{d} x=-\frac{1}{2} \cos x \\ & g(x)=\int \frac{U R}{W}=\int \frac{(\sin x-\cos x) \sin ^2 x}{-2 e^{-x} \sin x} \mathbf{d} x \\ & =-\frac{1}{2} \int e^x(\sin x-\cos x) \sin x \mathbf{d} x \\ & =-\frac{1}{2} \int e^x\left(\sin ^2 x-\cos x \sin x\right) \mathbf{d} x \\ & =-\frac{1}{2}\left[\int e^x\left(\frac{1-\cos 2 x}{2}\right) \mathbf{d} x-\int e^x \frac{\sin 2 x}{2} \mathbf{d} x\right] \\ & =-\frac{1}{4}\left[e^x-\int e^x \cos 2 x \mathbf{d} x-\int e^x \sin 2 x \mathbf{d} x\right] \\ & =-\frac{1}{4}\left[e^x-\frac{e^x}{5}(\cos 2 x+2 \sin 2 x)-\frac{e^x}{5}(\sin x-2 \cos 2 x)\right] \\ & =-\frac{1}{4} e^x\left[1+\frac{1}{5}(\cos 2 x-3 \sin 2 x)\right] \end{aligned} Where f(x)=VWdx=exsin2x2exsinxdx( from R=sin2x)=12sin2xdx=12cosxg(x)=URW=(sinxcosx)sin2x2exsinxdx=12ex(sinxcosx)sinxdx=12ex(sin2xcosxsinx)dx=12[ex(1cos2x2)dxexsin2x2dx]=14[exexcos2xdxexsin2xdx]=14[exex5(cos2x+2sin2x)ex5(sinx2cos2x)]=14ex[1+15(cos2x3sin2x)]
Now, let’s find y p y p y_(p)y_pyp from equation (4):
y p = 1 2 cos x ( sin x cos x ) + e x [ 1 4 e x ( 1 + 1 5 ( cos 2 x 3 sin 2 x ) ) ] = 1 2 sin x cos x + 1 2 cos 2 x 1 4 1 20 ( cos 2 x 3 sin 2 x ) = 1 4 sin 2 x + 1 4 ( 1 + cos 2 x ) 1 4 1 20 ( cos 2 x 3 sin 2 x ) = 1 20 ( 4 cos 2 x 2 sin 2 x ) = 1 10 ( 2 cos 2 x sin 2 x ) y = y c + y p y = c 1 ( sin x cos x ) + c 2 e x + 1 10 ( 2 cos 2 x sin 2 x ) y p = 1 2 cos x ( sin x cos x ) + e x 1 4 e x 1 + 1 5 ( cos 2 x 3 sin 2 x ) = 1 2 sin x cos x + 1 2 cos 2 x 1 4 1 20 ( cos 2 x 3 sin 2 x ) = 1 4 sin 2 x + 1 4 ( 1 + cos 2 x ) 1 4 1 20 ( cos 2 x 3 sin 2 x ) = 1 20 ( 4 cos 2 x 2 sin 2 x ) = 1 10 ( 2 cos 2 x sin 2 x ) y = y c + y p y = c 1 ( sin x cos x ) + c 2 e x + 1 10 ( 2 cos 2 x sin 2 x ) {:[y_(p)=-(1)/(2)cos x(sin x-cos x)+e^(-x)[-(1)/(4)e^(x)(1+(1)/(5)(cos 2x-3sin 2x))]],[=-(1)/(2)sin x cos x+(1)/(2)cos^(2)x-(1)/(4)-(1)/(20)(cos 2x-3sin 2x)],[=-(1)/(4)sin 2x+(1)/(4)(1+cos 2x)-(1)/(4)-(1)/(20)(cos 2x-3sin 2x)],[=(1)/(20)(4cos 2x-2sin 2x)],[=(1)/(10)(2cos 2x-sin 2x)],[y=y_(c)+y_(p)],[y=c_(1)(sin x-cos x)+c_(2)e^(-x)+(1)/(10)(2cos 2x-sin 2x)]:}\begin{aligned} & y_p=-\frac{1}{2} \cos x(\sin x-\cos x)+e^{-x}\left[-\frac{1}{4} e^x\left(1+\frac{1}{5}(\cos 2 x-3 \sin 2 x)\right)\right] \\ & =-\frac{1}{2} \sin x \cos x+\frac{1}{2} \cos ^2 x-\frac{1}{4}-\frac{1}{20}(\cos 2 x-3 \sin 2 x) \\ & =-\frac{1}{4} \sin 2 x+\frac{1}{4}(1+\cos 2 x)-\frac{1}{4}-\frac{1}{20}(\cos 2 x-3 \sin 2 x) \\ & =\frac{1}{20}(4 \cos 2 x-2 \sin 2 x) \\ & =\frac{1}{10}(2 \cos 2 x-\sin 2 x) \\ & y=y_c+y_p \\ & y=c_1(\sin x-\cos x)+c_2 e^{-x}+\frac{1}{10}(2 \cos 2 x-\sin 2 x) \end{aligned}yp=12cosx(sinxcosx)+ex[14ex(1+15(cos2x3sin2x))]=12sinxcosx+12cos2x14120(cos2x3sin2x)=14sin2x+14(1+cos2x)14120(cos2x3sin2x)=120(4cos2x2sin2x)=110(2cos2xsin2x)y=yc+ypy=c1(sinxcosx)+c2ex+110(2cos2xsin2x)
Which is the required solution of given differential equation.
(b) दिए गए सदिश फलन A ¯ A ¯ bar(A)\bar{A}A¯, जहाँ A ¯ = ( 3 x 2 + 6 y ) i ^ 14 y z j ^ + 20 x z 2 k ^ A ¯ = 3 x 2 + 6 y i ^ 14 y z j ^ + 20 x z 2 k ^ bar(A)=(3x^(2)+6y) hat(i)-14 yz hat(j)+20 xz^(2) hat(k)\bar{A}=\left(3 x^2+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^2 \hat{k}A¯=(3x2+6y)i^14yzj^+20xz2k^, के लिए C A ¯ d r ¯ C A ¯ d r ¯ int _(C) bar(A)*d bar(r)\int_C \bar{A} \cdot d \bar{r}CA¯dr¯ का मान निकालिए, जहाँ C C CCC बिंदु ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) से ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) तक निम्न पर्थों से निर्देशित है :
(i) x = t , y = t 2 , z = t 3 x = t , y = t 2 , z = t 3 x=t,y=t^(2),z=t^(3)x=t, y=t^2, z=t^3x=t,y=t2,z=t3
(ii) सरल रेखा ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) से ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) (1,0,0)(1,0,0)(1,0,0) तक जोड़ने पर, फिर ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1,1,0)(1,1,0) तक तथा फिर ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) तक
(iii) सरल रेखा ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) से ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) तक जोड़ने पर
क्या सभी स्थितियों में परिणाम समान हैं? कारण की व्याख्या कीजिए।
For the vector function A ¯ A ¯ bar(A)\bar{A}A¯, where A ¯ = ( 3 x 2 + 6 y ) i ^ 14 y z j ^ + 20 x z 2 k ^ A ¯ = 3 x 2 + 6 y i ^ 14 y z j ^ + 20 x z 2 k ^ bar(A)=(3x^(2)+6y) hat(i)-14 yz hat(j)+20 xz^(2) hat(k)\bar{A}=\left(3 x^2+6 y\right) \hat{i}-14 y z \hat{j}+20 x z^2 \hat{k}A¯=(3x2+6y)i^14yzj^+20xz2k^, calculate C A ¯ d r ¯ C A ¯ d r ¯ int _(C) bar(A)*d bar(r)\int_C \bar{A} \cdot d \bar{r}CA¯dr¯ from ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) to ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) along the following paths :
(i) x = t , y = t 2 , z = t 3 x = t , y = t 2 , z = t 3 x=t,y=t^(2),z=t^(3)x=t, y=t^2, z=t^3x=t,y=t2,z=t3
(ii) Straight lines joining ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) to ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) (1,0,0)(1,0,0)(1,0,0), then to ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1,1,0)(1,1,0) and then to ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1)
(iii) Straight line joining ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) to ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1)
Is the result same in all the cases? Explain the reason.
Answer:

Part (i): Path x = t , y = t 2 , z = t 3 x = t , y = t 2 , z = t 3 x=t,y=t^(2),z=t^(3)x = t, y = t^2, z = t^3x=t,y=t2,z=t3

Vector d r ¯ d r ¯ d bar(r)d\bar{r}dr¯

For the curve C C CCC, we have d r ¯ = d r ¯ d t d t = ( i + 2 t j + 3 t 2 k ) d t d r ¯ = d r ¯ d t d t = ( i + 2 t j + 3 t 2 k ) d t d bar(r)=(d( bar(r)))/(dt)dt=(i+2tj+3t^(2)k)dtd\bar{r} = \frac{d\bar{r}}{dt} dt = (i + 2tj + 3t^2k)dtdr¯=dr¯dtdt=(i+2tj+3t2k)dt.

Limits of Integration

The points ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) and ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) correspond to t = 0 t = 0 t=0t = 0t=0 and t = 1 t = 1 t=1t = 1t=1, respectively.

Integral Calculation

C A ¯ d r ¯ = 0 1 [ ( 3 t 2 + 6 t 2 ) i 14 t 2 t 3 j + 20 t ( t 3 ) 2 k ] ( i + 2 t j + 3 t 2 k ) d t = 0 1 ( 9 t 2 28 t 6 + 60 t 9 ) d t = [ 3 t 3 4 t 7 + 6 t 10 ] 0 1 = 3 4 + 6 = 5 C A ¯ d r ¯ = 0 1 [ ( 3 t 2 + 6 t 2 ) i 14 t 2 t 3 j + 20 t ( t 3 ) 2 k ] ( i + 2 t j + 3 t 2 k ) d t = 0 1 ( 9 t 2 28 t 6 + 60 t 9 ) d t = 3 t 3 4 t 7 + 6 t 10 0 1 = 3 4 + 6 = 5 {:[int _(C) bar(A)*d bar(r)=int_(0)^(1)[(3t^(2)+6t^(2))i-14t^(2)t^(3)j+20 t(t^(3))^(2)k]*(i+2tj+3t^(2)k)dt],[=int_(0)^(1)(9t^(2)-28t^(6)+60t^(9))dt],[=[3t^(3)-4t^(7)+6t^(10)]_(0)^(1)],[=3-4+6],[=5]:}\begin{aligned} \int_C \bar{A} \cdot d\bar{r} &= \int_0^1 [(3t^2 + 6t^2)i – 14t^2t^3j + 20t(t^3)^2k] \cdot (i + 2tj + 3t^2k) dt \\ &= \int_0^1 (9t^2 – 28t^6 + 60t^9) dt \\ &= \left[3t^3 – 4t^7 + 6t^{10}\right]_0^1 \\ &= 3 – 4 + 6 \\ &= 5 \end{aligned}CA¯dr¯=01[(3t2+6t2)i14t2t3j+20t(t3)2k](i+2tj+3t2k)dt=01(9t228t6+60t9)dt=[3t34t7+6t10]01=34+6=5
The integral along this path is 5.

Part (ii): Straight Lines Joining Points

Path 1: ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) to ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) (1,0,0)(1,0,0)(1,0,0)

For this path, x = t , y = 0 , z = 0 x = t , y = 0 , z = 0 x=t,y=0,z=0x = t, y = 0, z = 0x=t,y=0,z=0 and 0 t 1 0 t 1 0 <= t <= 10 \leq t \leq 10t1.
C 1 A ¯ d r ¯ = 0 1 ( 3 t 2 + 6 0 ) d t = 0 1 3 t 2 d t = [ t 3 ] 0 1 = 1 0 = 1 C 1 A ¯ d r ¯ = 0 1 ( 3 t 2 + 6 0 ) d t = 0 1 3 t 2 d t = t 3 0 1 = 1 0 = 1 {:[int_(C1) bar(A)*d bar(r)=int_(0)^(1)(3t^(2)+6*0)dt],[=int_(0)^(1)3t^(2)dt],[=[t^(3)]_(0)^(1)],[=1-0],[=1]:}\begin{aligned} \int_{C1} \bar{A} \cdot d\bar{r} &= \int_0^1 (3t^2 + 6 \cdot 0) dt \\ &= \int_0^1 3t^2 dt \\ &= \left[ t^3 \right]_0^1 \\ &= 1 – 0 \\ &= 1 \end{aligned}C1A¯dr¯=01(3t2+60)dt=013t2dt=[t3]01=10=1

Path 2: ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) (1,0,0)(1,0,0)(1,0,0) to ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1,1,0)(1,1,0)

For this path, x = 1 , y = t , z = 0 x = 1 , y = t , z = 0 x=1,y=t,z=0x = 1, y = t, z = 0x=1,y=t,z=0 and 0 t 1 0 t 1 0 <= t <= 10 \leq t \leq 10t1.
C 2 A ¯ d r ¯ = 0 1 ( 3 1 2 + 6 t ) d t = 0 1 ( 3 + 6 t ) d t = [ 3 t + 3 t 2 ] 0 1 = 3 + 3 = 6 C 2 A ¯ d r ¯ = 0 1 ( 3 1 2 + 6 t ) d t = 0 1 ( 3 + 6 t ) d t = 3 t + 3 t 2 0 1 = 3 + 3 = 6 {:[int_(C2) bar(A)*d bar(r)=int_(0)^(1)(3*1^(2)+6t)dt],[=int_(0)^(1)(3+6t)dt],[=[3t+3t^(2)]_(0)^(1)],[=3+3],[=6]:}\begin{aligned} \int_{C2} \bar{A} \cdot d\bar{r} &= \int_0^1 (3 \cdot 1^2 + 6t) dt \\ &= \int_0^1 (3 + 6t) dt \\ &= \left[ 3t + 3t^2 \right]_0^1 \\ &= 3 + 3 \\ &= 6 \end{aligned}C2A¯dr¯=01(312+6t)dt=01(3+6t)dt=[3t+3t2]01=3+3=6

Path 3: ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1,1,0)(1,1,0) to ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1)

For this path, x = 1 , y = 1 , z = t x = 1 , y = 1 , z = t x=1,y=1,z=tx = 1, y = 1, z = tx=1,y=1,z=t and 0 t 1 0 t 1 0 <= t <= 10 \leq t \leq 10t1.
C 3 A ¯ d r ¯ = 0 1 ( 3 1 2 + 6 1 ) 14 1 t + 20 1 t 2 d t = 0 1 ( 9 14 t + 20 t 2 ) d t = [ 9 t 7 t 2 + 20 3 t 3 ] 0 1 = 9 7 + 20 3 = 2 + 20 3 = 6 3 + 20 3 = 26 3 C 3 A ¯ d r ¯ = 0 1 ( 3 1 2 + 6 1 ) 14 1 t + 20 1 t 2 d t = 0 1 ( 9 14 t + 20 t 2 ) d t = 9 t 7 t 2 + 20 3 t 3 0 1 = 9 7 + 20 3 = 2 + 20 3 = 6 3 + 20 3 = 26 3 {:[int_(C3) bar(A)*d bar(r)=int_(0)^(1)(3*1^(2)+6*1)-14*1*t+20*1*t^(2)dt],[=int_(0)^(1)(9-14 t+20t^(2))dt],[=[9t-7t^(2)+(20)/(3)t^(3)]_(0)^(1)],[=9-7+(20)/(3)],[=2+(20)/(3)],[=(6)/(3)+(20)/(3)],[=(26)/(3)]:}\begin{aligned} \int_{C3} \bar{A} \cdot d\bar{r} &= \int_0^1 (3 \cdot 1^2 + 6 \cdot 1) – 14 \cdot 1 \cdot t + 20 \cdot 1 \cdot t^2 dt \\ &= \int_0^1 (9 – 14t + 20t^2) dt \\ &= \left[ 9t – 7t^2 + \frac{20}{3}t^3 \right]_0^1 \\ &= 9 – 7 + \frac{20}{3} \\ &= 2 + \frac{20}{3} \\ &= \frac{6}{3} + \frac{20}{3} \\ &= \frac{26}{3} \end{aligned}C3A¯dr¯=01(312+61)141t+201t2dt=01(914t+20t2)dt=[9t7t2+203t3]01=97+203=2+203=63+203=263

Total Integral for Part (ii)

C A ¯ d r ¯ = 1 + 6 + 26 3 = 7 + 26 3 = 21 3 + 26 3 = 47 3 C A ¯ d r ¯ = 1 + 6 + 26 3 = 7 + 26 3 = 21 3 + 26 3 = 47 3 int _(C) bar(A)*d bar(r)=1+6+(26)/(3)=7+(26)/(3)=(21)/(3)+(26)/(3)=(47)/(3)\int_C \bar{A} \cdot d\bar{r} = 1 + 6 + \frac{26}{3} = 7 + \frac{26}{3} = \frac{21}{3} + \frac{26}{3} = \frac{47}{3}CA¯dr¯=1+6+263=7+263=213+263=473

Part (iii): Straight Line from ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0) to ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1)

For this path, x = t , y = t , z = t x = t , y = t , z = t x=t,y=t,z=tx = t, y = t, z = tx=t,y=t,z=t and 0 t 1 0 t 1 0 <= t <= 10 \leq t \leq 10t1.
The vector field A ¯ = ( 3 x 2 + 6 y ) i ^ 14 y z j ^ + 20 x z 2 k ^ A ¯ = ( 3 x 2 + 6 y ) i ^ 14 y z j ^ + 20 x z 2 k ^ bar(A)=(3x^(2)+6y) hat(i)-14 yz hat(j)+20 xz^(2) hat(k)\bar{A} = (3x^2 + 6y) \hat{i} – 14yz \hat{j} + 20xz^2 \hat{k}A¯=(3x2+6y)i^14yzj^+20xz2k^.
The differential path element d r ¯ = d t i ^ + d t j ^ + d t k ^ d r ¯ = d t i ^ + d t j ^ + d t k ^ d bar(r)=dt hat(i)+dt hat(j)+dt hat(k)d\bar{r} = dt \hat{i} + dt \hat{j} + dt \hat{k}dr¯=dti^+dtj^+dtk^.
C A ¯ d r ¯ = 0 1 [ ( 3 t 2 + 6 t ) i ^ 14 t 2 j ^ + 20 t 3 k ^ ] ( d t i ^ + d t j ^ + d t k ^ ) = 0 1 ( 3 t 2 + 6 t ) d t 0 1 14 t 2 d t + 0 1 20 t 3 d t = [ 3 3 t 3 + 3 t 2 ] 0 1 [ 14 3 t 3 ] 0 1 + [ 20 4 t 4 ] 0 1 = 1 + 3 14 3 + 5 = 4 14 3 + 5 = 9 14 3 = 27 3 14 3 = 13 3 C A ¯ d r ¯ = 0 1 [ ( 3 t 2 + 6 t ) i ^ 14 t 2 j ^ + 20 t 3 k ^ ] ( d t i ^ + d t j ^ + d t k ^ ) = 0 1 ( 3 t 2 + 6 t ) d t 0 1 14 t 2 d t + 0 1 20 t 3 d t = 3 3 t 3 + 3 t 2 0 1 14 3 t 3 0 1 + 20 4 t 4 0 1 = 1 + 3 14 3 + 5 = 4 14 3 + 5 = 9 14 3 = 27 3 14 3 = 13 3 {:[int _(C) bar(A)*d bar(r)=int_(0)^(1)[(3t^(2)+6t) hat(i)-14t^(2) hat(j)+20t^(3) hat(k)]*(dt hat(i)+dt hat(j)+dt hat(k))],[=int_(0)^(1)(3t^(2)+6t)dt-int_(0)^(1)14t^(2)dt+int_(0)^(1)20t^(3)dt],[=[(3)/(3)t^(3)+3t^(2)]_(0)^(1)-[(14)/(3)t^(3)]_(0)^(1)+[(20)/(4)t^(4)]_(0)^(1)],[=1+3-(14)/(3)+5],[=4-(14)/(3)+5],[=9-(14)/(3)],[=(27)/(3)-(14)/(3)],[=(13)/(3)]:}\begin{aligned} \int_C \bar{A} \cdot d\bar{r} &= \int_0^1 [(3t^2 + 6t) \hat{i} – 14t^2 \hat{j} + 20t^3 \hat{k}] \cdot (dt \hat{i} + dt \hat{j} + dt \hat{k}) \\ &= \int_0^1 (3t^2 + 6t) dt – \int_0^1 14t^2 dt + \int_0^1 20t^3 dt \\ &= \left[\frac{3}{3}t^3 + 3t^2\right]_0^1 – \left[\frac{14}{3}t^3\right]_0^1 + \left[\frac{20}{4}t^4\right]_0^1 \\ &= 1 + 3 – \frac{14}{3} + 5 \\ &= 4 – \frac{14}{3} + 5 \\ &= 9 – \frac{14}{3} \\ &= \frac{27}{3} – \frac{14}{3} \\ &= \frac{13}{3} \end{aligned}CA¯dr¯=01[(3t2+6t)i^14t2j^+20t3k^](dti^+dtj^+dtk^)=01(3t2+6t)dt0114t2dt+0120t3dt=[33t3+3t2]01[143t3]01+[204t4]01=1+3143+5=4143+5=9143=273143=133

Summary

For part (i), the integral is 5 5 555.
For part (ii), the integral is 47 3 47 3 (47)/(3)\frac{47}{3}473.
For part (iii), the integral is 13 3 13 3 (13)/(3)\frac{13}{3}133.
The result is not the same for all paths, which indicates that the vector field A ¯ A ¯ bar(A)\bar{A}A¯ is not conservative. In a conservative vector field, the line integral is path-independent, meaning it would be the same for all paths between two points. Here, that is not the case.
(c) एक दंड A D A D ADA DAD दो आलंब B B BBB एवं C C CCC पर विश्राम करता है, जबकि A B = B C = C D A B = B C = C D AB=BC=CDA B=B C=C DAB=BC=CD. यह पाया गया कि दंड झुक जाएगा यदि एक भार p kg p kg pkgp \mathrm{~kg}p kg, बिंदु A A AAA से लटकाया जाए या एक भार q kg q kg qkgq \mathrm{~kg}q kg, बिंदु D D DDD से लटकाया जाए। दंड का भार बताइए।
A beam A D A D ADA DAD rests on two supports B B BBB and C C CCC, where A B = B C = C D A B = B C = C D AB=BC=CDA B=B C=C DAB=BC=CD. It is found that the beam will tilt when a weight of p kg p kg pkgp \mathrm{~kg}p kg is hung from A A AAA or when a weight of q kg q kg qkgq \mathrm{~kg}q kg is hung from D D DDD. Find the weight of the beam.
Answer:

Given Information

  • Lengths of the segments: A B = B C = C D = a A B = B C = C D = a AB=BC=CD=aAB = BC = CD = aAB=BC=CD=a
  • Weight hung from A A AAA: p p ppp kg
  • Weight hung from D D DDD: q q qqq kg

Diagram

Diagram of the beam
Let G G GGG be the center of gravity (C.G.) of the beam, where its weight W W WWW acts. Let B G = x B G = x BG=xBG = xBG=x.

Case 1: Weight p p ppp is hung from A A AAA

When a weight p p ppp is hung from A A AAA, the beam tilts about B B BBB, and the contact at C C CCC is just about to break. Therefore, the torque due to p p ppp must be balanced by the torque due to W W WWW:
p a = W x (Equation 1) p a = W x (Equation 1) p*a=W*x quad(Equation 1)p \cdot a = W \cdot x \quad \text{(Equation 1)}pa=Wx(Equation 1)

Case 2: Weight q q qqq is hung from D D DDD

When a weight q q qqq is hung from D D DDD, the beam tilts about C C CCC, and the contact at B B BBB is just about to break. Therefore, the torque due to q q qqq must be balanced by the torque due to W W WWW:
q a = W ( a x ) (Equation 2) q a = W ( a x ) (Equation 2) q*a=W*(a-x)quad(Equation 2)q \cdot a = W \cdot (a – x) \quad \text{(Equation 2)}qa=W(ax)(Equation 2)

Finding the Weight of the Beam

Adding Equation 1 and Equation 2:
( p + q ) a = W a ( p + q ) a = W a (p+q)*a=W*a(p + q) \cdot a = W \cdot a(p+q)a=Wa
Simplifying, we find:
W = p + q W = p + q W=p+qW = p + qW=p+q

Conclusion

The weight of the beam is W = p + q W = p + q W=p+qW = p + qW=p+q kg.
  1. (a) स्टोक्स प्रमेय को सत्यापित कीजिए, जबकि सदिश क्षेत्र F ¯ = x y i ^ + y z j ^ + x z k ^ F ¯ = x y i ^ + y z j ^ + x z k ^ bar(F)=xy hat(i)+yz hat(j)+xz hat(k)\bar{F}=x y \hat{i}+y z \hat{j}+x z \hat{k}F¯=xyi^+yzj^+xzk^ एक सतह S S SSS पर है जो कि एक बेलन z = 1 x 2 , 0 x 1 , 2 y 2 z = 1 x 2 , 0 x 1 , 2 y 2 z=1-x^(2),0 <= x <= 1,-2 <= y <= 2z=1-x^2, 0 \leq x \leq 1,-2 \leq y \leq 2z=1x2,0x1,2y2 का हिस्सा है, जहाँ S S SSS उपरिमुखी अभिविन्यस्त है।
Verify the Stokes’ theorem for the vector field F ¯ = x y i ^ + y z j ^ + x z k ^ F ¯ = x y i ^ + y z j ^ + x z k ^ bar(F)=xy hat(i)+yz hat(j)+xz hat(k)\bar{F}=x y \hat{i}+y z \hat{j}+x z \hat{k}F¯=xyi^+yzj^+xzk^ on the surface S S SSS which is the part of the cylinder z = 1 x 2 z = 1 x 2 z=1-x^(2)z=1-x^2z=1x2 for 0 x 1 , 2 y 2 0 x 1 , 2 y 2 0 <= x <= 1,-2 <= y <= 20 \leq x \leq 1,-2 \leq y \leq 20x1,2y2; S S SSS is oriented upwards.
Answer:

Stokes’ Theorem

Stokes’ theorem states that
C F d r = S ( × F ) n ^ d S C F d r = S ( × F ) n ^ d S oint_(C) vec(F)*d vec(r)=∬_(S)(grad xx vec(F))* hat(n)dS\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \hat{n} dSCFdr=S(×F)n^dS

Line Integral Calculation

The curve C C CCC is the boundary of the surface S S SSS, and it consists of four segments: c 1 , c 2 , c 3 , c 4 c 1 , c 2 , c 3 , c 4 c_(1),c_(2),c_(3),c_(4)c_1, c_2, c_3, c_4c1,c2,c3,c4.

Along c 1 c 1 c_(1)c_1c1:

The curve c 1 c 1 c_(1)c_1c1 is defined by x 2 + z = 1 x 2 + z = 1 x^(2)+z=1x^2 + z = 1x2+z=1 and y = 2 y = 2 y=-2y = -2y=2. The differential d y = 0 d y = 0 dy=0dy = 0dy=0.
c 1 F d r = 0 1 ( 2 x d x + x ( 1 x 2 ) ( 2 x d x ) ) = 19 15 c 1 F d r = 0 1 ( 2 x d x + x ( 1 x 2 ) ( 2 x d x ) ) = 19 15 oint_(c_(1)) vec(F)*d vec(r)=int_(0)^(1)(-2xdx+x(1-x^(2))(-2xdx))=-(19)/(15)\oint_{c_1} \vec{F} \cdot d\vec{r} = \int_0^1 (-2x dx + x(1-x^2)(-2x dx)) = -\frac{19}{15}c1Fdr=01(2xdx+x(1x2)(2xdx))=1915

Along c 2 c 2 c_(2)c_2c2:

The curve c 2 c 2 c_(2)c_2c2 is defined by z = 0 z = 0 z=0z = 0z=0, x = 1 x = 1 x=1x = 1x=1, and y y yyy varies from 2 2 -2-22 to 2 2 222. The differentials d x = 0 d x = 0 dx=0dx = 0dx=0 and d z = 0 d z = 0 dz=0dz = 0dz=0.
c 2 F d r = 2 2 0 d y = 0 c 2 F d r = 2 2 0 d y = 0 oint_(c_(2)) vec(F)*d vec(r)=int_(-2)^(2)0dy=0\oint_{c_2} \vec{F} \cdot d\vec{r} = \int_{-2}^2 0 dy = 0c2Fdr=220dy=0

Along c 3 c 3 c_(3)c_3c3:

The curve c 3 c 3 c_(3)c_3c3 is defined by x 2 + z = 1 x 2 + z = 1 x^(2)+z=1x^2 + z = 1x2+z=1 and y = 2 y = 2 y=2y = 2y=2. The differential d y = 0 d y = 0 dy=0dy = 0dy=0.
c 3 F d r = 0 1 ( 2 x d x + x ( 1 x 2 ) ( 2 x d x ) ) = 11 15 c 3 F d r = 0 1 ( 2 x d x + x ( 1 x 2 ) ( 2 x d x ) ) = 11 15 oint_(c_(3)) vec(F)*d vec(r)=int_(0)^(1)(2xdx+x(1-x^(2))(-2xdx))=-(11)/(15)\oint_{c_3} \vec{F} \cdot d\vec{r} = \int_0^1 (2x dx + x(1-x^2)(-2x dx)) = -\frac{11}{15}c3Fdr=01(2xdx+x(1x2)(2xdx))=1115

Along c 4 c 4 c_(4)c_4c4:

The curve c 4 c 4 c_(4)c_4c4 is defined by z = 1 z = 1 z=1z = 1z=1, x = 0 x = 0 x=0x = 0x=0, and y y yyy varies from 2 2 -2-22 to 2 2 222. The differentials d x = 0 d x = 0 dx=0dx = 0dx=0 and d z = 0 d z = 0 dz=0dz = 0dz=0.
c 4 F d r = 2 2 0 d y = 0 c 4 F d r = 2 2 0 d y = 0 oint_(c_(4)) vec(F)*d vec(r)=int_(-2)^(2)0dy=0\oint_{c_4} \vec{F} \cdot d\vec{r} = \int_{-2}^2 0 dy = 0c4Fdr=220dy=0
Adding all these together, we get:
C F d r = 19 15 + 0 + 11 15 + 0 = 30 15 = 2 C F d r = 19 15 + 0 + 11 15 + 0 = 30 15 = 2 oint_(C) vec(F)*d vec(r)=-(19)/(15)+0+-(11)/(15)+0=-(30)/(15)=-2\oint_C \vec{F} \cdot d\vec{r} = -\frac{19}{15} + 0 + -\frac{11}{15} + 0 = -\frac{30}{15} = -2CFdr=1915+0+1115+0=3015=2

Surface Integral Calculation

First, let’s find × F × F grad xx vec(F)\nabla \times \vec{F}×F:
× F = | i ^ j ^ k ^ x y z x y y z x z | = ( y i ^ + z j ^ + x k ^ ) × F = i ^ j ^ k ^ x y z x y y z x z = ( y i ^ + z j ^ + x k ^ ) grad xx vec(F)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[xy,yz,xz]|=-(y hat(i)+z hat(j)+x hat(k))\nabla \times \vec{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & yz & xz \end{array} \right| = -(y \hat{i} + z \hat{j} + x \hat{k})×F=|i^j^k^xyzxyyzxz|=(yi^+zj^+xk^)
The unit normal vector to the surface S S SSS is given by
n ^ = ϕ | ϕ | = ( 2 x i ^ + k ^ ) 4 x 2 + 1 n ^ = ϕ | ϕ | = ( 2 x i ^ + k ^ ) 4 x 2 + 1 hat(n)=(grad phi)/(|grad phi|)=((2x( hat(i))+( hat(k))))/(sqrt(4x^(2)+1))\hat{n} = \frac{\nabla \phi}{|\nabla \phi|} = \frac{(2x\hat{i} + \hat{k})}{\sqrt{4x^2 + 1}}n^=ϕ|ϕ|=(2xi^+k^)4x2+1
The differential area element d S d S dSdSdS in this case is
d S = d x d y | n ^ k ^ | = d x d y 4 x 2 + 1 d S = d x d y | n ^ k ^ | = d x d y 4 x 2 + 1 dS=(dxdy)/(|( hat(n))*( hat(k))|)=(dxdy)/(sqrt(4x^(2)+1))dS = \frac{dxdy}{|\hat{n} \cdot \hat{k}|} = \frac{dxdy}{\sqrt{4x^2 + 1}}dS=dxdy|n^k^|=dxdy4x2+1
Now, let’s find the surface integral:
S ( × F ) n ^ d S S ( × F ) n ^ d S ∬_(S)(grad xx vec(F))* hat(n)dS\iint_S (\nabla \times \vec{F}) \cdot \hat{n} dSS(×F)n^dS
= S ( y i ^ + z j ^ + x k ^ ) ( 2 x i ^ + k ^ ) 4 x 2 + 1 × d x d y 4 x 2 + 1 = S ( y i ^ + z j ^ + x k ^ ) ( 2 x i ^ + k ^ ) 4 x 2 + 1 × d x d y 4 x 2 + 1 =∬_(S)-(y hat(i)+z hat(j)+x hat(k))*((2x( hat(i))+( hat(k))))/(sqrt(4x^(2)+1))xx(dxdy)/(sqrt(4x^(2)+1))= \iint_S -(y \hat{i} + z \hat{j} + x \hat{k}) \cdot \frac{(2x\hat{i} + \hat{k})}{\sqrt{4x^2 + 1}} \times \frac{dxdy}{\sqrt{4x^2 + 1}}=S(yi^+zj^+xk^)(2xi^+k^)4x2+1×dxdy4x2+1
After Calculating, we get:
S ( 2 x y x ) d x d y 4 x 2 + 1 S ( 2 x y x ) d x d y 4 x 2 + 1 ∬_(S)(-2xy-x)(dxdy)/((4x^(2)+1))\iint_S (-2xy – x) \frac{dxdy}{{4x^2 + 1}}S(2xyx)dxdy4x2+1
The limits for x x xxx are from 0 to 1, and for y y yyy are from -2 to 2. z = 1 x 2 z = 1 x 2 z=1-x^(2)z = 1 – x^2z=1x2.
After Calculating, we get:
S ( 2 x y x ) d x d y 4 x 2 + 1 = 0 S ( 2 x y x ) d x d y 4 x 2 + 1 = 0 ∬_(S)(-2xy-x)(dxdy)/((4x^(2)+1))=0\iint_S(-2 x y-x) \frac{d x d y}{{4 x^2+1}}=0S(2xyx)dxdy4x2+1=0

Conclusion

The line integral is 2 2 -2-22 and the surface integral is 0 0 000. Since these two values are not equal, Stokes’ theorem is not verified for this particular vector field and surface.
This could be due to the specific conditions or constraints of the surface and vector field in question.
(b) लाप्लास रूपांतरण का प्रयोग करके प्रारंभिक मान समस्या t y + 2 t y + 2 y = 2 ; y ( 0 ) = 1 t y + 2 t y + 2 y = 2 ; y ( 0 ) = 1 ty^(”)+2ty^(‘)+2y=2;y(0)=1t y^{\prime \prime}+2 t y^{\prime}+2 y=2 ; y(0)=1ty+2ty+2y=2;y(0)=1 तथा y ( 0 ) y ( 0 ) y^(‘)(0)y^{\prime}(0)y(0) स्वेच्छ है, को हल कीजिए। क्या इस प्रश्न का हल अद्वितीय है?
Using Laplace transform, solve the initial value problem t y + 2 t y + 2 y = 2 t y + 2 t y + 2 y = 2 ty^(”)+2ty^(‘)+2y=2t y^{\prime \prime}+2 t y^{\prime}+2 y=2ty+2ty+2y=2; y ( 0 ) = 1 y ( 0 ) = 1 y(0)=1y(0)=1y(0)=1 and y ( 0 ) y ( 0 ) y^(‘)(0)y^{\prime}(0)y(0) is arbitrary. Does this problem have a unique solution?
Answer:
Using Laplace Transform to Solve the Initial Value Problem
Step 1: The Initial Differential Equation
Given the differential equation:
t y + 2 t y + 2 y = 2 t y + 2 t y + 2 y = 2 ty^(”)+2ty^(‘)+2y=2t y^{\prime \prime}+2 t y^{\prime}+2 y=2ty+2ty+2y=2
We’ll use the Laplace transform to solve it.
Step 2: Applying the Laplace Transform Property
We can use the property of Laplace transforms: L { t f ( t ) } = d d s [ L { f ( t ) } ] L { t f ( t ) } = d d s [ L { f ( t ) } ] L{tf(t)}=-(d)/(ds)[L{f(t)}]L\{t f(t)\}=-\frac{d}{ds}[L\{f(t)\}]L{tf(t)}=dds[L{f(t)}].
Now apply the Laplace transform to the given equation:
L { t y + 2 t y + 2 y } = L ( 2 ) L { t y + 2 t y + 2 y } = L ( 2 ) L{ty^(”)+2ty^(‘)+2y}=L(2)L\{t y^{\prime \prime}+2 t y^{\prime}+2 y\}=L(2)L{ty+2ty+2y}=L(2)
Step 3: Laplace Transform Calculation
Using the Laplace transform property and the initial conditions, we get:
d d s [ s 2 y ¯ s y ( 0 ) y ( 0 ) ] 2 d d s [ s y ¯ y ( 0 ) ] + 2 y ¯ = 2 s d d s s 2 y ¯ s y ( 0 ) y ( 0 ) 2 d d s [ s y ¯ y ( 0 ) ] + 2 y ¯ = 2 s -(d)/(ds)[s^(2)( bar(y))-sy(0)-y^(‘)(0)]-2(d)/(ds)[s bar(y)-y(0)]+2 bar(y)=(2)/(s)-\frac{d}{ds}\left[s^2 \bar{y}-s y(0)-y^{\prime}(0)\right]-2\frac{d}{ds}[s \bar{y}-y(0)]+2 \bar{y}=\frac{2}{s}dds[s2y¯sy(0)y(0)]2dds[sy¯y(0)]+2y¯=2s
Given y ( 0 ) y ( 0 ) y(0)y(0)y(0) and that y ( 0 ) y ( 0 ) y^(‘)(0)y^{\prime}(0)y(0) is an arbitrary constant A A AAA:
d d s [ s 2 y ¯ s ( 1 ) A ] 2 d d s [ s y ¯ 1 ] + 2 y ¯ = 2 s d d s s 2 y ¯ s ( 1 ) A 2 d d s [ s y ¯ 1 ] + 2 y ¯ = 2 s -(d)/(ds)[s^(2)( bar(y))-s(1)-A]-2(d)/(ds)[s bar(y)-1]+2 bar(y)=(2)/(s)-\frac{d}{ds}\left[s^2 \bar{y}-s(1)-A\right]-2\frac{d}{ds}[s \bar{y}-1]+2 \bar{y}=\frac{2}{s}dds[s2y¯s(1)A]2dds[sy¯1]+2y¯=2s
Step 4: Simplification
Simplify the equation:
s 2 d y ¯ d s 2 s y ¯ + 1 2 y ¯ 2 s d y ¯ d s + 2 y ¯ = 2 s s 2 d y ¯ d s 2 s y ¯ + 1 2 y ¯ 2 s d y ¯ d s + 2 y ¯ = 2 s -s^(2)(d( bar(y)))/(ds)-2s bar(y)+1-2 bar(y)-2s(d( bar(y)))/(ds)+2 bar(y)=(2)/(s)-s^2 \frac{d \bar{y}}{ds}-2 s \bar{y}+1-2 \bar{y}-2 s \frac{d \bar{y}}{ds}+2 \bar{y}=\frac{2}{s}s2dy¯ds2sy¯+12y¯2sdy¯ds+2y¯=2s
s 2 d y ¯ d s 2 s y ¯ 2 s d y ¯ d s = 2 s 1 s 2 d y ¯ d s 2 s y ¯ 2 s d y ¯ d s = 2 s 1 -s^(2)(d( bar(y)))/(ds)-2s bar(y)-2s(d( bar(y)))/(ds)=(2)/(s)-1-s^2 \frac{d \bar{y}}{ds}-2 s \bar{y}-2 s \frac{d \bar{y}}{ds}=\frac{2}{s}-1s2dy¯ds2sy¯2sdy¯ds=2s1
( s 2 + 2 s ) d y ¯ d s 2 s y ¯ = 2 s 1 ( s 2 + 2 s ) d y ¯ d s 2 s y ¯ = 2 s 1 -(s^(2)+2s)(d( bar(y)))/(ds)-2s bar(y)=(2)/(s)-1-(s^2+2 s) \frac{d \bar{y}}{ds}-2 s \bar{y}=\frac{2}{s}-1(s2+2s)dy¯ds2sy¯=2s1
d y ¯ d s + 2 s y ¯ s ( s + 2 ) = ( 1 2 s ) 1 s ( s + 2 ) ( 1 ) d y ¯ d s + 2 s y ¯ s ( s + 2 ) = 1 2 s 1 s ( s + 2 ) ( 1 ) (d( bar(y)))/(ds)+(2s( bar(y)))/(s(s+2))=(1-(2)/(s))(1)/(s(s+2))rarr(1)\frac{d \bar{y}}{ds}+\frac{2 s \bar{y}}{s(s+2)}=\left(1-\frac{2}{s}\right) \frac{1}{s(s+2)} \rightarrow(1)dy¯ds+2sy¯s(s+2)=(12s)1s(s+2)(1)
This is the linear differential equation.
Step 5: Integration Factor
Calculate the integration factor I . F I . F I.FI.FI.F:
I . F = e 2 s s ( s + 2 ) d s = e 2 s + 2 d s = e 2 log ( s + 2 ) = ( s + 2 ) 2 I . F = e 2 s s ( s + 2 ) d s = e 2 s + 2 d s = e 2 log ( s + 2 ) = ( s + 2 ) 2 I.F=e^(int(2s)/(s(s+2))ds)=e^(int(2)/(s+2)ds)=e^(2log(s+2))=(s+2)^(2)I.F=e^{\int \frac{2 s}{s(s+2)} ds}=e^{\int \frac{2}{s+2} ds}=e^{2 \log (s+2)}=(s+2)^2I.F=e2ss(s+2)ds=e2s+2ds=e2log(s+2)=(s+2)2
Step 6: Solve the Differential Equation
The solution of (1) is given by:
y ¯ ( s + 2 ) 2 = c + ( 1 2 s ) 1 s ( s + 2 ) ( s + 2 ) 2 d s y ¯ ( s + 2 ) 2 = c + 1 2 s 1 s ( s + 2 ) ( s + 2 ) 2 d s bar(y)(s+2)^(2)=c+int(1-(2)/(s))(1)/(s(s+2))(s+2)^(2)ds\bar{y}(s+2)^2=c+\int\left(1-\frac{2}{s}\right) \frac{1}{s(s+2)}(s+2)^2 dsy¯(s+2)2=c+(12s)1s(s+2)(s+2)2ds
y ¯ ( s + 2 ) 2 = c + s 2 4 s 2 d s y ¯ ( s + 2 ) 2 = c + s 2 4 s 2 d s bar(y)(s+2)^(2)=c+int(s^(2)-4)/(s^(2))ds\bar{y}(s+2)^2=c+\int \frac{s^2-4}{s^2} dsy¯(s+2)2=c+s24s2ds
y ¯ ( s + 2 ) 2 = c + ( 1 4 s 2 ) d s = c + [ s + 4 s ] y ¯ ( s + 2 ) 2 = c + 1 4 s 2 d s = c + s + 4 s bar(y)(s+2)^(2)=c+int(1-(4)/(s^(2)))ds=c+[s+(4)/(s)]\bar{y}(s+2)^2=c+\int\left(1-\frac{4}{s^2}\right) ds=c+\left[s+\frac{4}{s}\right]y¯(s+2)2=c+(14s2)ds=c+[s+4s]
y ¯ = c ( s + 2 ) 2 + s 2 + 4 s ( s + 2 ) 2 y ¯ = c ( s + 2 ) 2 + s 2 + 4 s ( s + 2 ) 2 bar(y)=(c)/((s+2)^(2))+(s^(2)+4)/(s(s+2)^(2))\bar{y}=\frac{c}{(s+2)^2}+\frac{s^2+4}{s(s+2)^2}y¯=c(s+2)2+s2+4s(s+2)2
y ¯ = ( s + 2 ) 2 4 s s ( s + 2 ) 2 + c ( s + 2 ) 2 = 1 s 4 ( s + 2 ) 2 + c ( s + 2 ) 2 y ¯ = ( s + 2 ) 2 4 s s ( s + 2 ) 2 + c ( s + 2 ) 2 = 1 s 4 ( s + 2 ) 2 + c ( s + 2 ) 2 bar(y)=((s+2)^(2)-4s)/(s(s+2)^(2))+(c)/((s+2)^(2))=(1)/(s)-(4)/((s+2)^(2))+(c)/((s+2)^(2))\bar{y}=\frac{(s+2)^2-4 s}{s(s+2)^2}+\frac{c}{(s+2)^2}=\frac{1}{s}-\frac{4}{(s+2)^2}+\frac{c}{(s+2)^2}y¯=(s+2)24ss(s+2)2+c(s+2)2=1s4(s+2)2+c(s+2)2
Step 7: Inverse Laplace Transform
Apply the inverse Laplace transform to obtain the solution in the time domain:
So, we have:
y ( t ) = L 1 [ 1 s + c 4 ( s + 2 ) 2 ] = L 1 [ 1 s ] + L 1 [ c 4 ( s + 2 ) 2 ] y ( t ) = L 1 1 s + c 4 ( s + 2 ) 2 = L 1 1 s + L 1 c 4 ( s + 2 ) 2 y(t)=L^(-1)[(1)/(s)+(c-4)/((s+2)^(2))]=L^(-1)[(1)/(s)]+L^(-1)[(c-4)/((s+2)^(2))]y(t)=L^{-1}\left[\frac{1}{s}+\frac{c-4}{(s+2)^2}\right]=L^{-1}\left[\frac{1}{s}\right]+L^{-1}\left[\frac{c-4}{(s+2)^2}\right]y(t)=L1[1s+c4(s+2)2]=L1[1s]+L1[c4(s+2)2]
y ( t ) = 1 + ( c 4 ) e 2 t t y ( t ) = 1 + ( c 4 ) e 2 t t y(t)=1+(c-4)e^(-2t)ty(t)=1+(c-4) e^{-2 t} ty(t)=1+(c4)e2tt
Conclusion
Hence, there are infinitely many solutions possible for any value of c c ccc. This implies that the problem does not have a unique solution.
(c) (i) चार एकसमान भारी छड़, जो समान भार W W WWW की हैं, एक वर्ग के रूप में ढाँचा बनाते हुए जुड़ी हैं। यह एक कोने से टँगा हुआ है। भार W W WWW तीर्नों नीचे वाले हरेक कोने से लटकाए हैं। वर्ग का आकार एक हल्की छड़, जो क्षैतिज विकर्ण के अनुदिश है, द्वारा रक्षित किया गया है। उस हल्की छड़ पर प्रणोद निकालिए।
(ii) एक कण वेग V V VVV से लंबी दूरी तय करने के लिए चलना शुरू करता है। एक तारे के केंद्र से कण के प्रारंभिक पथ की स्पर्श-रेखा पर लंबवत् दूरी p p ppp है। दिखाइए कि कण की तारे के केंद्र से न्यूनतम दूरी λ λ lambda\lambdaλ है, जहाँ V 2 λ = μ 2 + p 2 V 4 μ V 2 λ = μ 2 + p 2 V 4 μ V^(2)lambda=sqrt(mu^(2)+p^(2)V^(4))-muV^2 \lambda=\sqrt{\mu^2+p^2 V^4}-\muV2λ=μ2+p2V4μ. यहाँ μ μ mu\muμ एक अचर है।
(i) A square framework formed of uniform heavy rods of equal weight W W WWW jointed together, is hung up by one corner. A weight W W WWW is suspended from each of the three lower corners, and the shape of the square is preserved by a light rod along the horizontal diagonal. Find the thrust of the light rod.
Answer:
Finding the Thrust in the Light Rod
Step 1: Setup of the Problem
Consider a square framework A B C D A B C D ABCDABCDABCD formed of four uniform rods, each with weight W W WWW and length 2 a 2 a 2a2a2a. The framework is suspended from corner A A AAA, and a weight W W WWW is suspended from each of the three lower corners, B B BBB, C C CCC, and D D DDD. A light rod along the horizontal diagonal B D B D BDBDBD prevents the system from collapsing. We want to find the thrust T T TTT in the light rod.
original image
Step 2: Analysis of Forces
Let’s analyze the forces acting on the system. The total weight 4 W 4 W 4W4W4W of the rods A B A B ABABAB, B C B C BCBCBC, C D C D CDCDCD, and D A D A DADADA can be assumed to act at point O O OOO. We need to find the thrust T T TTT in the rod B D B D BDBDBD.
Step 3: Displacement and Virtual Work
To find T T TTT, we give the system a small symmetrical displacement about A C A C ACACAC, which causes θ θ theta\thetaθ to change to θ + δ θ θ + δ θ theta+delta theta\theta + \delta \thetaθ+δθ. Point A A AAA remains fixed, and points B B BBB, O O OOO, D D DDD, and C C CCC change their positions. The length of the rods A B A B ABABAB, B C B C BCBCBC, C D C D CDCDCD, and D A D A DADADA remains constant, but the length B D B D BDBDBD changes.
We have B D = 2 B O = 2 A B sin θ = 4 a sin θ B D = 2 B O = 2 A B sin θ = 4 a sin θ BD=2BO=2AB sin theta=4a sin thetaBD = 2BO = 2AB \sin \theta = 4a \sin \thetaBD=2BO=2ABsinθ=4asinθ, which is the depth of each of the points B B BBB, C C CCC, and D D DDD below the fixed point A A AAA. Similarly, A O = 2 a cos θ A O = 2 a cos θ AO=2a cos thetaAO = 2a \cos \thetaAO=2acosθ is the depth of each of the points B B BBB, C C CCC, and D D DDD below A A AAA, and the depth of C C CCC below A A AAA is 2 A O = 4 a cos θ 2 A O = 4 a cos θ 2AO=4a cos theta2AO = 4a \cos \theta2AO=4acosθ.
Step 4: Principle of Virtual Work
Applying the principle of virtual work, we have:
T δ ( 4 a sin θ ) + 4 W δ ( 2 a cos θ ) + 2 W δ ( 2 a cos θ ) + W δ ( 4 a cos θ ) = 0 T δ ( 4 a sin θ ) + 4 W δ ( 2 a cos θ ) + 2 W δ ( 2 a cos θ ) + W δ ( 4 a cos θ ) = 0 T delta(4a sin theta)+4W delta(2a cos theta)+2W delta(2a cos theta)+W delta(4a cos theta)=0T \delta(4a \sin \theta) + 4W \delta(2a \cos \theta) + 2W \delta(2a \cos \theta) + W \delta(4a \cos \theta) = 0Tδ(4asinθ)+4Wδ(2acosθ)+2Wδ(2acosθ)+Wδ(4acosθ)=0
Simplifying:
4 a T cos θ δ θ 8 a W sin θ δ θ 4 a W sin θ δ θ 4 a W sin θ δ θ = 0 4 a T cos θ δ θ 8 a W sin θ δ θ 4 a W sin θ δ θ 4 a W sin θ δ θ = 0 4aT cos theta delta theta-8aW sin theta delta theta-4aW sin theta delta theta-4aW sin theta delta theta=04aT \cos \theta \delta \theta – 8aW \sin \theta \delta \theta – 4aW \sin \theta \delta \theta – 4aW \sin \theta \delta \theta = 04aTcosθδθ8aWsinθδθ4aWsinθδθ4aWsinθδθ=0
4 a [ T cos θ 4 W sin θ ] δ θ = 0 4 a [ T cos θ 4 W sin θ ] δ θ = 0 4a[T cos theta-4W sin theta]delta theta=04a[T \cos \theta – 4W \sin \theta] \delta \theta = 04a[Tcosθ4Wsinθ]δθ=0
Since δ θ 0 δ θ 0 delta theta!=0\delta \theta \neq 0δθ0, we have:
T cos θ 4 W sin θ = 0 T cos θ 4 W sin θ = 0 T cos theta-4W sin theta=0T \cos \theta – 4W \sin \theta = 0Tcosθ4Wsinθ=0
Step 5: Finding Thrust T T TTT
Now, we can solve for T T TTT:
T = 4 W tan θ T = 4 W tan θ T=4W tan thetaT = 4W \tan \thetaT=4Wtanθ
In the position of equilibrium, θ = 45 θ = 45 theta=45^(@)\theta = 45^\circθ=45, so:
T = 4 W tan 45 = 4 W T = 4 W tan 45 = 4 W T=4W tan 45^(@)=4WT = 4W \tan 45^\circ = 4WT=4Wtan45=4W
Therefore, the thrust T T TTT in the light rod is equal to the total weight of the four rods, which is 4 W 4 W 4W4W4W.
(ii) A particle starts at a great distance with velocity V V VVV. Let p p ppp be the length of the perpendicular from the centre of a star on the tangent to the initial path of the particle. Show that the least distance of the particle from the centre of the star is λ λ lambda\lambdaλ, where V 2 λ = μ 2 + p 2 V 4 μ V 2 λ = μ 2 + p 2 V 4 μ V^(2)lambda=sqrt(mu^(2)+p^(2)V^(4))-muV^2 \lambda=\sqrt{\mu^2+p^2 V^4}-\muV2λ=μ2+p2V4μ. Here μ μ mu\muμ is a constant.
Answer:
Finding the Least Distance of the Particle from the Star’s Center
Step 1: Given Information
We are given that a particle starts at a great distance with velocity V V VVV. Let p p ppp be the length of the perpendicular from the center of a star on the tangent to the initial path of the particle. We want to show that the least distance of the particle from the center of the star is λ λ lambda\lambdaλ, where V 2 λ = μ 2 + p 2 V 4 μ V 2 λ = μ 2 + p 2 V 4 μ V^(2)lambda=sqrt(mu^(2)+p^(2)V^(4))-muV^2 \lambda = \sqrt{\mu^2 + p^2 V^4} – \muV2λ=μ2+p2V4μ, and μ μ mu\muμ is a constant.
Step 2: The Hamiltonian and Energy of the Particle
The Hamiltonian and energy of the particle are given as follows:
E = H ( x , x ) = m 2 | x | 2 m μ | x | E = H ( x , x ) = m 2 | x | 2 m μ | x | E=H(x,x^(**))=(m)/(2)|x|^(2)-(m mu)/(|x|)E = H(x, x^*) = \frac{m}{2}|x|^2 – \frac{m \mu}{|x|}E=H(x,x)=m2|x|2mμ|x|
This gives us the second-order equation of motion:
x = μ x | x | 3 x = μ x | x | 3 x^(**)=-(mu x)/(|x|^(3))x^* = -\frac{\mu x}{|x|^3}x=μx|x|3
By the initial conditions, we have E = 1 2 m V 2 E = 1 2 m V 2 E=(1)/(2)mV^(2)E = \frac{1}{2} m V^2E=12mV2.
Step 3: Polar Coordinates
Now, let’s write the equation in polar coordinates. We have:
L = r 2 θ ˙ L = r 2 θ ˙ L=r^(2)theta^(˙)L = r^2 \dot{\theta}L=r2θ˙
as the constant angular momentum, and the energy equation becomes:
E = 1 2 m ( r ˙ 2 + r 2 θ ˙ 2 ) m μ r E = 1 2 m r ˙ 2 + r 2 θ ˙ 2 m μ r E=(1)/(2)m(r^(˙)^(2)+r^(2)theta^(˙)^(2))-(m mu)/(r)E = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2\right) – \frac{m \mu}{r}E=12m(r˙2+r2θ˙2)mμr
V 2 = r ˙ 2 + L 2 r 2 2 μ r V 2 = r ˙ 2 + L 2 r 2 2 μ r V^(2)=r^(˙)^(2)+(L^(2))/(r^(2))-(2mu)/(r)V^2 = \dot{r}^2 + \frac{L^2}{r^2} – \frac{2 \mu}{r}V2=r˙2+L2r22μr
Step 4: Determining L L LLL
To find the least distance of the particle from the center of the star, we need to determine L L LLL at the point of closest approach, r = λ r = λ r=lambdar = \lambdar=λ, where r = 0 r = 0 r=0r = 0r=0.
For large r r rrr, the trajectory is given as:
X = ( x , y ) = ( p , y 0 V t ) X = ( x , y ) = ( p , y 0 V t ) X=(x,y)=(p,y_(0)-Vt)X = (x, y) = (p, y_0 – Vt)X=(x,y)=(p,y0Vt)
So, L = r 2 ϕ ˙ = x ˙ y x y ˙ = p V L = r 2 ϕ ˙ = x ˙ y x y ˙ = p V L=r^(2)phi^(˙)=x^(˙)y-xy^(˙)=-pVL = r^2 \dot{\phi } = \dot xy – x\dot y = -pVL=r2ϕ˙=x˙yxy˙=pV
Thus, the equation for r = λ r = λ r=lambdar = \lambdar=λ is:
V 2 λ 2 + 2 μ λ = p 2 V 2 V 2 λ 2 + 2 μ λ = p 2 V 2 V^(2)lambda^(2)+2mu lambda=p^(2)V^(2)V^2 \lambda^2 + 2 \mu \lambda = p^2 V^2V2λ2+2μλ=p2V2
( V 2 λ + μ ) 2 = p 2 V 4 + μ 2 ( V 2 λ + μ ) 2 = p 2 V 4 + μ 2 (V^(2)lambda+mu)^(2)=p^(2)V^(4)+mu^(2)(V^2 \lambda + \mu)^2 = p^2 V^4 + \mu^2(V2λ+μ)2=p2V4+μ2
This establishes the desired result:
V 2 λ = μ 2 + p 2 V 4 μ V 2 λ = μ 2 + p 2 V 4 μ V^(2)lambda=sqrt(mu^(2)+p^(2)V^(4))-muV^2 \lambda = \sqrt{\mu^2 + p^2 V^4} – \muV2λ=μ2+p2V4μ
Therefore, the least distance of the particle from the center of the star is indeed λ λ lambda\lambdaλ as given in the problem statement.
  1. (a) (i) निम्न अवकल समीकरण हल कीजिए :
( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) ( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) (x+1)^(2)y^(”)-4(x+1)y^(‘)+6y=6(x+1)^(2)+sin log(x+1)(x+1)^2 y^{\prime \prime}-4(x+1) y^{\prime}+6 y=6(x+1)^2+\sin \log (x+1)(x+1)2y4(x+1)y+6y=6(x+1)2+sinlog(x+1)
(ii) अवकल समीकरण 9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9p^(2)(2-y)^(2)=4(3-y)9 p^2(2-y)^2=4(3-y)9p2(2y)2=4(3y) के व्यापक व विचित्र हल निकालिए, जहाँ p = d y d x p = d y d x p=(dy)/(dx)p=\frac{d y}{d x}p=dydx.
(i) Solve the following differential equation :
( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) ( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) (x+1)^(2)y^(”)-4(x+1)y^(‘)+6y=6(x+1)^(2)+sin log(x+1)(x+1)^2 y^{\prime \prime}-4(x+1) y^{\prime}+6 y=6(x+1)^2+\sin \log (x+1)(x+1)2y4(x+1)y+6y=6(x+1)2+sinlog(x+1)
Answer:
Solving the Differential Equation
Given the differential equation:
( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) ( x + 1 ) 2 y 4 ( x + 1 ) y + 6 y = 6 ( x + 1 ) 2 + sin log ( x + 1 ) (x+1)^(2)y^(”)-4(x+1)y^(‘)+6y=6(x+1)^(2)+sin log(x+1)(x+1)^2 y^{\prime \prime}-4(x+1) y^{\prime}+6 y=6(x+1)^2+\sin \log (x+1)(x+1)2y4(x+1)y+6y=6(x+1)2+sinlog(x+1)
Step 1: Change of Variables
Let ( x + 1 ) = e z log ( 1 + x ) = z ( x + 1 ) = e z log ( 1 + x ) = z (x+1)=e^(z)=>log(1+x)=z(x+1)=e^z \Rightarrow \log (1+x)=z(x+1)=ezlog(1+x)=z, and let D 1 = d d z D 1 = d d z D_(1)=(d)/(dz)D_1=\frac{d}{dz}D1=ddz. Then ( 1 + x ) D = D 1 ( 1 + x ) D = D 1 (1+x)D=D_(1)(1+x) D=D_1(1+x)D=D1, and ( 1 + x ) 2 D 2 = D 1 ( D 1 1 ) ( 1 + x ) 2 D 2 = D 1 ( D 1 1 ) (1+x)^(2)D^(2)=D_(1)(D_(1)-1)(1+x)^2 D^2=D_1(D_1-1)(1+x)2D2=D1(D11).
The equation becomes:
( D 1 ( D 1 1 ) 4 D 1 + 6 ) y = 6 e 2 z + sin z D 1 ( D 1 1 ) 4 D 1 + 6 y = 6 e 2 z + sin z (D_(1)(D_(1)-1)-4D_(1)+6)y=6e^(2z)+sin z\left(D_1(D_1-1)-4D_1+6\right)y=6e^{2z}+\sin z(D1(D11)4D1+6)y=6e2z+sinz
Step 2: Auxiliary Equation
To solve the auxiliary equation, we have:
D 1 2 5 D 1 + 6 = 0 D 1 2 3 D 1 2 D 1 + 6 = 0 D 1 ( D 1 3 ) 2 ( D 1 3 ) = 0 D 1 = 2 , 3 D 1 2 5 D 1 + 6 = 0 D 1 2 3 D 1 2 D 1 + 6 = 0 D 1 ( D 1 3 ) 2 ( D 1 3 ) = 0 D 1 = 2 , 3 {:[D_(1)^(2)-5D_(1)+6=0],[=>D_(1)^(2)-3D_(1)-2D_(1)+6=0],[=>D_(1)(D_(1)-3)-2(D_(1)-3)=0],[=>D_(1)=2″,”3]:}\begin{aligned} & D_1^2-5D_1+6=0 \\ & \Rightarrow D_1^2-3D_1-2D_1+6=0 \\ & \Rightarrow D_1(D_1-3)-2(D_1-3)=0 \\ & \Rightarrow D_1=2,3 \end{aligned}D125D1+6=0D123D12D1+6=0D1(D13)2(D13)=0D1=2,3
Therefore, the complementary function (C.F) is:
c 1 e 2 z + c 2 e 3 z = c 1 ( x + 1 ) 2 + c 2 ( x + 1 ) 3 (1) c 1 e 2 z + c 2 e 3 z = c 1 ( x + 1 ) 2 + c 2 ( x + 1 ) 3 (1) c_(1)e^(2z)+c_(2)e^(3z)=c_(1)(x+1)^(2)+c_(2)(x+1)^(3)quad(1)c_1 e^{2z}+c_2 e^{3z}=c_1(x+1)^2+c_2(x+1)^3 \quad \text{(1)}c1e2z+c2e3z=c1(x+1)2+c2(x+1)3(1)
Step 3: Particular Integral
For the particular integral (P.I), we have:
P . I : 6 e 2 z + sin z ( D 1 2 ) ( D 1 3 ) = 6 e 2 z ( D 1 2 ) ( D 1 3 ) + sin z D 1 2 5 D 1 + 6 = 6 e 2 z D 1 2 + sin z 1 + 6 5 D = 6 e 2 z z 1 ! + sin z 5 ( 1 D 1 ) = 6 z e 2 z + ( 1 + D 1 ) sin z 5 ( 1 D 1 ) ( 1 + D 1 ) = 6 z e 2 z + sin z + cos z 5 ( 1 D 1 2 ) = 6 z e 2 z + 1 5 ( sin z 1 D 1 2 + cos z 1 D 1 2 ) = 6 z e 2 z + 1 10 ( sin z + cos z ) P . I : 6 e 2 z + sin z ( D 1 2 ) ( D 1 3 ) = 6 e 2 z ( D 1 2 ) ( D 1 3 ) + sin z D 1 2 5 D 1 + 6 = 6 e 2 z D 1 2 + sin z 1 + 6 5 D = 6 e 2 z z 1 ! + sin z 5 ( 1 D 1 ) = 6 z e 2 z + ( 1 + D 1 ) sin z 5 ( 1 D 1 ) ( 1 + D 1 ) = 6 z e 2 z + sin z + cos z 5 ( 1 D 1 2 ) = 6 z e 2 z + 1 5 sin z 1 D 1 2 + cos z 1 D 1 2 = 6 z e 2 z + 1 10 ( sin z + cos z ) {:[P.I:(6e^(2z)+sin z)/((D_(1)-2)(D_(1)-3))],[=(6e^(2z))/((D_(1)-2)(D_(1)-3))+(sin z)/(D_(1)^(2)-5D_(1)+6)],[=-(6e^(2z))/(D_(1)-2)+(sin z)/(-1+6-5D)],[=-6e^(2z)(z)/(1!)+(sin z)/(5(1-D_(1)))],[=-6ze^(2z)+((1+D_(1))sin z)/(5(1-D_(1))(1+D_(1)))],[=-6ze^(2z)+(sin z+cos z)/(5(1-D_(1)^(2)))],[=-6ze^(2z)+(1)/(5)((sin z)/(1-D_(1)^(2))+(cos z)/(1-D_(1)^(2)))],[=-6ze^(2z)+(1)/(10)(sin z+cos z)]:}\begin{aligned} & P.I: \frac{6e^{2z}+\sin z}{(D_1-2)(D_1-3)} \\ & =\frac{6e^{2z}}{(D_1-2)(D_1-3)}+\frac{\sin z}{D_1^2-5D_1+6} \\ & =-\frac{6e^{2z}}{D_1-2}+\frac{\sin z}{-1+6-5D} \\ & =-6e^{2z}\frac{z}{1!}+\frac{\sin z}{5(1-D_1)} \\ & =-6ze^{2z}+\frac{(1+D_1)\sin z}{5(1-D_1)(1+D_1)} \\ & =-6ze^{2z}+\frac{\sin z+\cos z}{5(1-D_1^2)} \\ & =-6ze^{2z}+\frac{1}{5}\left(\frac{\sin z}{1-D_1^2}+\frac{\cos z}{1-D_1^2}\right) \\ & =-6ze^{2z}+\frac{1}{10}(\sin z+\cos z) \end{aligned}P.I:6e2z+sinz(D12)(D13)=6e2z(D12)(D13)+sinzD125D1+6=6e2zD12+sinz1+65D=6e2zz1!+sinz5(1D1)=6ze2z+(1+D1)sinz5(1D1)(1+D1)=6ze2z+sinz+cosz5(1D12)=6ze2z+15(sinz1D12+cosz1D12)=6ze2z+110(sinz+cosz)
P . I = 6 [ log ( 1 + x ) ] ( 1 + x 2 ) + 1 10 [ cos log ( 1 + x ) + sin log ( 1 + x ) ] P . I = 6 [ log ( 1 + x ) ] ( 1 + x 2 ) + 1 10 [ cos log ( 1 + x ) + sin log ( 1 + x ) ] P.I=-6[log(1+x)](1+x^(2))+(1)/(10)[cos log(1+x)+sin log(1+x)]P.I=-6[\log (1+x)](1+x^2)+\frac{1}{10}[\cos \log (1+x)+\sin \log (1+x)]P.I=6[log(1+x)](1+x2)+110[coslog(1+x)+sinlog(1+x)]
Step 4: General Solution
So, the general solution is:
y = C 1 ( x + 1 ) 2 + C 2 ( x + 1 ) 3 6 ( 1 + x ) 2 ( log ( 1 + x ) ) + 1 10 [ cos log ( 1 + x ) + sin log ( 1 + x ) ] y = C 1 ( x + 1 ) 2 + C 2 ( x + 1 ) 3 6 ( 1 + x ) 2 ( log ( 1 + x ) ) + 1 10 [ cos log ( 1 + x ) + sin log ( 1 + x ) ] y=C_(1)(x+1)^(2)+C_(2)(x+1)^(3)-6(1+x)^(2)(log(1+x))+(1)/(10)[cos log(1+x)+sin log(1+x)]y=C_1(x+1)^2+C_2(x+1)^3-6(1+x)^2(\log (1+x))+\frac{1}{10}[\cos \log (1+x)+\sin \log (1+x)]y=C1(x+1)2+C2(x+1)36(1+x)2(log(1+x))+110[coslog(1+x)+sinlog(1+x)]
(ii) Find the general and singular solutions of the differential equation 9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9p^(2)(2-y)^(2)=4(3-y)9 p^2(2-y)^2=4(3-y)9p2(2y)2=4(3y), where p = d y d x p = d y d x p=(dy)/(dx)p=\frac{d y}{d x}p=dydx
Answer:
Finding the General Solution
Given the differential equation:
9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9 p 2 ( 2 y ) 2 = 4 ( 3 y ) 9p^(2)(2-y)^(2)=4(3-y)9p^2(2-y)^2 = 4(3-y)9p2(2y)2=4(3y)
where p = d y d x p = d y d x p=(dy)/(dx)p = \frac{dy}{dx}p=dydx.
Step 1: Solving for p p ppp
Solving for p p ppp, we have:
p = ± 2 3 ( ( 3 y ) 1 2 2 y ) p = ± 2 3 ( 3 y ) 1 2 2 y p=+-(2)/(3)(((3-y)^((1)/(2)))/(2-y))p = \pm \frac{2}{3}\left(\frac{(3-y)^{\frac{1}{2}}}{2-y}\right)p=±23((3y)122y)
Step 2: Separation of Variables
Separating variables, we get:
d x = ± 3 2 2 y ( 3 y ) 1 2 d y d x = ± 3 2 2 y ( 3 y ) 1 2 d y dx=+-(3)/(2)(2-y)/((3-y)^((1)/(2)))dydx = \pm \frac{3}{2}\frac{2-y}{(3-y)^{\frac{1}{2}}}dydx=±322y(3y)12dy
Step 3: Integrating
Integrating both sides:
x + c = ± 3 2 [ ( 3 y ) 1 2 ( 3 y ) 1 2 ] d y x + c = ± 3 2 ( 3 y ) 1 2 ( 3 y ) 1 2 d y x+c=+-(3)/(2)int[(3-y)^((1)/(2))-(3-y)^((1)/(2))]dyx + c = \pm \frac{3}{2}\int \left[(3-y)^{\frac{1}{2}} – (3-y)^{\frac{1}{2}}\right]dyx+c=±32[(3y)12(3y)12]dy
x + c = ± ( 3 2 ) [ 2 3 ( 3 y ) 1 2 + 2 ( 3 y ) 1 2 ] x + c = ± 3 2 2 3 ( 3 y ) 1 2 + 2 ( 3 y ) 1 2 x+c=+-((3)/(2))[-(2)/(3)(3-y)^((1)/(2))+2(3-y)^((1)/(2))]x + c = \pm \left(\frac{3}{2}\right)\left[-\frac{2}{3}(3-y)^{\frac{1}{2}} + 2(3-y)^{\frac{1}{2}}\right]x+c=±(32)[23(3y)12+2(3y)12]
x + c = ± ( 3 y ) 1 2 [ ( 3 y ) + 3 ] x + c = ± ( 3 y ) 1 2 [ ( 3 y ) + 3 ] x+c=+-(3-y)^((1)/(2))[-(3-y)+3]x + c = \pm(3-y)^{\frac{1}{2}}[-(3-y) + 3]x+c=±(3y)12[(3y)+3]
x + c = ± y ( 3 y ) 1 2 x + c = ± y ( 3 y ) 1 2 x+c=+-y(3-y)^((1)/(2))x + c = \pm y(3-y)^{\frac{1}{2}}x+c=±y(3y)12
or, ( x + c ) 2 = y 2 ( 3 y ) ( x + c ) 2 = y 2 ( 3 y ) (x+c)^(2)=y^(2)(3-y)(x + c)^2 = y^2(3-y)(x+c)2=y2(3y) (on squaring)
This is the general solution.
Finding the Singular Solution
Now, let’s find the singular solution:
The general solution is ( x + c ) 2 = y 2 ( 3 y ) ( x + c ) 2 = y 2 ( 3 y ) (x+c)^(2)=y^(2)(3-y)(x + c)^2 = y^2(3-y)(x+c)2=y2(3y).
c 2 + 2 x c + ( x 2 y 2 ( 3 y ) ) = 0 c 2 + 2 x c + ( x 2 y 2 ( 3 y ) ) = 0 c^(2)+2xc+(x^(2)-y^(2)(3-y))=0c^2 + 2xc + (x^2 – y^2(3-y)) = 0c2+2xc+(x2y2(3y))=0
This is a quadratic equation in the parameter c c ccc, so the discriminant relation is B 2 4 A C = 0 B 2 4 A C = 0 B^(2)-4AC=0B^2 – 4AC = 0B24AC=0.
4 x 2 4 ( 1 ) ( x 2 y 2 ( 3 y ) ) = 0 4 x 2 4 ( 1 ) ( x 2 y 2 ( 3 y ) ) = 0 4x^(2)-4(1)(x^(2)-y^(2)(3-y))=04x^2 – 4(1)(x^2 – y^2(3-y)) = 04x24(1)(x2y2(3y))=0
y 2 ( 3 y ) = 0 y 2 ( 3 y ) = 0 y^(2)(3-y)=0y^2(3-y) = 0y2(3y)=0
Now, two possibilities arise:
  1. y = 0 y = 0 y=0y = 0y=0:
    For y = 0 y = 0 y=0y = 0y=0, we get d y d x = p = 0 d y d x = p = 0 (dy)/(dx)=p=0\frac{dy}{dx} = p = 0dydx=p=0.
    Substituting y = 0 y = 0 y=0y = 0y=0 and p = 0 p = 0 p=0p = 0p=0 into the given differential equation, it does not satisfy it. Therefore, y = 0 y = 0 y=0y = 0y=0 is not a singular solution.
  2. 3 y = 0 3 y = 0 3-y=03-y = 03y=0:
    For 3 y = 0 3 y = 0 3-y=03-y = 03y=0, we get d y d x = p = 0 d y d x = p = 0 (dy)/(dx)=p=0\frac{dy}{dx} = p = 0dydx=p=0.
    Substituting y = 3 y = 3 y=3y = 3y=3 and p = 0 p = 0 p=0p = 0p=0 into the given differential equation, it satisfies it.
Therefore, y = 3 y = 3 y=3y = 3y=3 is the required singular solution.
(b) पृष्ठ समाकल S × F ¯ n ^ d S S × F ¯ n ^ d S ∬_(S)grad xx bar(F)* hat(n)dS\iint_S \nabla \times \bar{F} \cdot \hat{n} d SS×F¯n^dS का मान निकालिए, जहाँ F ¯ = y i ^ + ( x 2 x ) j ^ x y k ^ F ¯ = y i ^ + ( x 2 x ) j ^ x y k ^ bar(F)=y hat(i)+(x-2x) hat(j)-xy hat(k)\bar{F}=y \hat{i}+(x-2 x) \hat{j}-x y \hat{k}F¯=yi^+(x2x)j^xyk^ तथा S S SSS गोले x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2+y^2+z^2=a^2x2+y2+z2=a2 की सतह है, जो x y x y xyx yxy-तल के ऊपर है।
Evaluate the surface integral S × F ¯ n ^ d S S × F ¯ n ^ d S ∬_(S)grad xx bar(F)* hat(n)dS\iint_S \nabla \times \bar{F} \cdot \hat{n} d SS×F¯n^dS for F ¯ = y i ^ + ( x 2 x z ) j ^ x y k ^ F ¯ = y i ^ + ( x 2 x z ) j ^ x y k ^ bar(F)=y hat(i)+(x-2xz) hat(j)-xy hat(k)\bar{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}F¯=yi^+(x2xz)j^xyk^ and S S SSS is the surface of the sphere x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2+y^2+z^2=a^2x2+y2+z2=a2 above the x y x y xyx yxy-plane.
Answer:

Step 1: Calculate the Curl of F F vec(F)\vec{F}F

The curl × F × F grad xx vec(F)\nabla \times \vec{F}×F is given by:
× F = | i ^ j ^ k ^ x y z y x 2 x z x y | = ( ( x y ) y ( x 2 x z ) z ) i ^ + ( y z ( x y ) x ) j ^ + ( ( x 2 x z ) x y y ) k ^ = ( x ( 2 x ) ) i ^ + ( 0 ( y ) ) j ^ + ( 1 2 z 1 ) k ^ = x i ^ + y j ^ 2 z k ^ × F = i ^ j ^ k ^ x y z y x 2 x z x y = ( x y ) y ( x 2 x z ) z i ^ + y z ( x y ) x j ^ + ( x 2 x z ) x y y k ^ = ( x ( 2 x ) ) i ^ + ( 0 ( y ) ) j ^ + ( 1 2 z 1 ) k ^ = x i ^ + y j ^ 2 z k ^ {:[grad xx vec(F)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[y,x-2xz,-xy]|],[=((del(-xy))/(del y)-(del(x-2xz))/(del z)) hat(i)+((del y)/(del z)-(del(-xy))/(del x)) hat(j)+((del(x-2xz))/(del x)-(del y)/(del y)) hat(k)],[=(-x-(-2x)) hat(i)+(0-(-y)) hat(j)+(1-2z-1) hat(k)],[=x hat(i)+y hat(j)-2z hat(k)]:}\begin{gathered} \nabla \times \vec{F}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x-2 x z & -x y \end{array}\right| \\ =\left(\frac{\partial(-x y)}{\partial y}-\frac{\partial(x-2 x z)}{\partial z}\right) \hat{i}+\left(\frac{\partial y}{\partial z}-\frac{\partial(-x y)}{\partial x}\right) \hat{j}+\left(\frac{\partial(x-2 x z)}{\partial x}-\frac{\partial y}{\partial y}\right) \hat{k} \\ =(-x-(-2 x)) \hat{i}+(0-(-y)) \hat{j}+(1-2 z-1) \hat{k} \\ =x \hat{i}+y \hat{j}-2 z \hat{k} \end{gathered}×F=|i^j^k^xyzyx2xzxy|=((xy)y(x2xz)z)i^+(yz(xy)x)j^+((x2xz)xyy)k^=(x(2x))i^+(0(y))j^+(12z1)k^=xi^+yj^2zk^
× F = ( x i ^ + y j ^ 2 z k ^ ) × F = ( x i ^ + y j ^ 2 z k ^ ) grad xx vec(F)=(x hat(i)+y hat(j)-2z hat(k))\nabla \times \vec{F} = (x\hat{i} + y\hat{j} – 2z\hat{k})×F=(xi^+yj^2zk^)

Step 2: Set Up the Surface Integral

The surface integral S × F n ^ d S S × F n ^ d S ∬_(S)grad xx vec(F)* hat(n)dS\iint_S \nabla \times \vec{F} \cdot \hat{n} \, dSS×Fn^dS over the sphere x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2 + y^2 + z^2 = a^2x2+y2+z2=a2 above the x y x y xyxyxy-plane can be evaluated using spherical coordinates:
x = a sin θ cos ϕ , y = a sin θ sin ϕ , z = a cos θ x = a sin θ cos ϕ , y = a sin θ sin ϕ , z = a cos θ x=a sin theta cos phi,quad y=a sin theta sin phi,quad z=a cos thetax = a \sin \theta \cos \phi, \quad y = a \sin \theta \sin \phi, \quad z = a \cos \thetax=asinθcosϕ,y=asinθsinϕ,z=acosθ
Here, θ θ theta\thetaθ ranges from 0 0 000 to π 2 π 2 (pi)/(2)\frac{\pi}{2}π2 and ϕ ϕ phi\phiϕ ranges from 0 0 000 to 2 π 2 π 2pi2\pi2π.
The normal vector n ^ n ^ hat(n)\hat{n}n^ for the sphere is k ^ k ^ hat(k)\hat{k}k^, and d S = a 2 sin θ d θ d ϕ d S = a 2 sin θ d θ d ϕ dS=a^(2)sin thetad thetad phidS = a^2 \sin \theta \, d\theta \, d\phidS=a2sinθdθdϕ.

Step 3: Evaluate the Surface Integral

The surface integral becomes:
S × F n ^ d S = 0 2 π 0 π 2 ( 2 a cos θ ) a 2 sin θ d θ d ϕ S × F n ^ d S = 0 2 π 0 π 2 ( 2 a cos θ ) a 2 sin θ d θ d ϕ ∬_(S)grad xx vec(F)* hat(n)dS=int_(0)^(2pi)int_(0)^((pi)/(2))(-2a cos theta)a^(2)sin thetad thetad phi\iint_S \nabla \times \vec{F} \cdot \hat{n} \, dS = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} (-2a \cos \theta) \, a^2 \sin \theta \, d\theta \, d\phiS×Fn^dS=02π0π2(2acosθ)a2sinθdθdϕ
= 2 a 3 [ 0 2 π d ϕ ] [ 0 π 2 cos θ sin θ d θ ] = 2 a 3 0 2 π d ϕ 0 π 2 cos θ sin θ d θ =-2a^(3)[int_(0)^(2pi)d phi][int_(0)^((pi)/(2))cos theta sin thetad theta]= -2a^3 \left[ \int_0^{2\pi} d\phi \right] \left[ \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta \right]=2a3[02πdϕ][0π2cosθsinθdθ]
= 2 a 3 [ 2 π ] [ 1 2 ] = 2 π a 3 = 2 a 3 [ 2 π ] 1 2 = 2 π a 3 =-2a^(3)[2pi][(1)/(2)]=-2pia^(3)= -2a^3 [2\pi] \left[ \frac{1}{2} \right] = -2\pi a^3=2a3[2π][12]=2πa3

Final Answer

So, the value of the surface integral S × F n ^ d S S × F n ^ d S ∬_(S)grad xx vec(F)* hat(n)dS\iint_S \nabla \times \vec{F} \cdot \hat{n} \, dSS×Fn^dS is 2 π a 3 2 π a 3 -2pia^(3)-2\pi a^32πa3.
(c) एक चार पहियों वाला रेलवे ट्रक, जिसका कुल द्रव्यमान M M MMM है, के पहिए और धुरी के हर युग्म का द्रव्यमान व परिभ्रमण त्रिज्या क्रमशः m m mmm तथा k k kkk है। हर पहिए की त्रिज्या r r rrr है। यदि ट्रक को बल P P PPP द्वारा सीधे पथ (ट्रैक) पर धकेला जाता है, तब सिद्ध कीजिए कि उसका त्वरण P M + 2 m k 2 r 2 P M + 2 m k 2 r 2 (P)/(M+(2mk^(2))/(r^(2)))\frac{P}{M+\frac{2 m k^2}{r^2}}PM+2mk2r2 है तथा ट्रक द्वारा प्रत्येक धुरी पर लगाए गए क्षैतिज बल का मान ज्ञात कीजिए। धुरी घर्षण व हवा का प्रतिरोध नगण्य है।
A four-wheeled railway truck has a total mass M M MMM, the mass and radius of gyration of each pair of wheels and axle are m m mmm and k k kkk respectively, and the radius of each wheel is r r rrr. Prove that if the truck is propelled along a level track by a force P P PPP, the acceleration is P M + 2 m k 2 r 2 P M + 2 m k 2 r 2 (P)/(M+(2mk^(2))/(r^(2)))\frac{P}{M+\frac{2 m k^2}{r^2}}PM+2mk2r2, and find the horizontal force exerted on each axle by the truck. The axle friction and wind resistance are to be neglected.
Answer:
Proving the Acceleration
Given the parameters:
  • Total mass of the railway truck M M MMM
  • Mass and radius of gyration of each pair of wheels and axle m m mmm and k k kkk respectively
  • Radius of each wheel r r rrr
  • Propelling force P P PPP
We want to prove that if the truck is propelled along a level track by a force P P PPP, the acceleration a a aaa is given by:
a = P M + 2 m k 2 r 2 a = P M + 2 m k 2 r 2 a=(P)/(M+(2mk^(2))/(r^(2)))a = \frac{P}{M + \frac{2mk^2}{r^2}}a=PM+2mk2r2
Step 1: Work Done and Kinetic Energy
Let the distance covered be x x xxx, acceleration a a aaa, and velocity V V VVV.
Work done at the application of force F = P x F = P x F=PxF = PxF=Px.
The kinetic energy (KE) of the truck is given by 1 2 M V 2 1 2 M V 2 (1)/(2)MV^(2)\frac{1}{2}MV^212MV2.
The KE of rotation for the wheels is 1 2 I w 2 × 2 1 2 I w 2 × 2 (1)/(2)Iw^(2)xx2\frac{1}{2}Iw^2 \times 212Iw2×2 (There are 2 points of rotation).
KE of rotation = I w 2 = m K 2 V 2 r 2 KE of rotation = I w 2 = m K 2 V 2 r 2 “KE of rotation”=Iw^(2)=(mK^(2)V^(2))/(r^(2))\text{KE of rotation} = Iw^2 = \frac{mK^2V^2}{r^2}KE of rotation=Iw2=mK2V2r2
Therefore, work done P x P x PxPxPx equals the sum of KE of the truck and KE of the wheels:
P x = 1 2 M V 2 + m K 2 V 2 r 2 = V 2 2 ( M r 2 + 2 m K 2 r 2 ) P x = 1 2 M V 2 + m K 2 V 2 r 2 = V 2 2 M r 2 + 2 m K 2 r 2 Px=(1)/(2)MV^(2)+(mK^(2)V^(2))/(r^(2))=(V^(2))/(2)((Mr^(2)+2mK^(2))/(r^(2)))Px = \frac{1}{2}MV^2 + \frac{mK^2V^2}{r^2} = \frac{V^2}{2}\left(\frac{Mr^2 + 2mK^2}{r^2}\right)Px=12MV2+mK2V2r2=V22(Mr2+2mK2r2)
Step 2: Relationship between Velocity and Acceleration
We know that u = 0 u = 0 u=0u = 0u=0 and V 2 = 2 a x V 2 = 2 a x V^(2)=2axV^2 = 2axV2=2ax.
Therefore,
P x = 2 a x 2 ( M + 2 m K 2 r 2 ) P x = 2 a x 2 M + 2 m K 2 r 2 Px=(2ax)/(2)(M+(2mK^(2))/(r^(2)))Px = \frac{2ax}{2}\left(M + \frac{2mK^2}{r^2}\right)Px=2ax2(M+2mK2r2)
Simplifying,
P x = a x ( M + 2 m K 2 r 2 ) P x = a x M + 2 m K 2 r 2 Px=ax(M+(2mK^(2))/(r^(2)))Px = ax\left(M + \frac{2mK^2}{r^2}\right)Px=ax(M+2mK2r2)
Step 3: Finding Acceleration
Now, let’s isolate a a aaa:
a = P x x ( M + 2 m K 2 r 2 ) a = P x x M + 2 m K 2 r 2 a=(Px)/(x(M+(2mK^(2))/(r^(2))))a = \frac{Px}{x\left(M + \frac{2mK^2}{r^2}\right)}a=Pxx(M+2mK2r2)
a = P M + 2 m K 2 r 2 a = P M + 2 m K 2 r 2 a=(P)/(M+(2mK^(2))/(r^(2)))a = \frac{P}{M + \frac{2mK^2}{r^2}}a=PM+2mK2r2
This proves the given acceleration formula.
Finding the Horizontal Force on Each Axle
The horizontal force ( F x F x F_(x)F_xFx) exerted on each axle by the truck can be calculated as follows:
F x = 1 2 m V 2 + 1 2 m V 2 ( K 2 r 2 ) = m V 2 2 ( 1 + K 2 r 2 ) F x = 1 2 m V 2 + 1 2 m V 2 K 2 r 2 = m V 2 2 1 + K 2 r 2 F_(x)=(1)/(2)mV^(2)+(1)/(2)mV^(2)((K^(2))/(r^(2)))=(mV^(2))/(2)(1+(K^(2))/(r^(2)))F_x = \frac{1}{2}mV^2 + \frac{1}{2}mV^2\left(\frac{K^2}{r^2}\right) = \frac{mV^2}{2}\left(1 + \frac{K^2}{r^2}\right)Fx=12mV2+12mV2(K2r2)=mV22(1+K2r2)
Using V 2 = 2 a x V 2 = 2 a x V^(2)=2axV^2 = 2axV2=2ax, we have:
F x = m ( 2 a x ) 2 ( 1 + K 2 r 2 ) = m a x 2 ( 1 + K 2 r 2 ) F x = m ( 2 a x ) 2 1 + K 2 r 2 = m a x 2 1 + K 2 r 2 F_(x)=(m(2ax))/(2)(1+(K^(2))/(r^(2)))=(max)/(2)(1+(K^(2))/(r^(2)))F_x = \frac{m(2ax)}{2}\left(1 + \frac{K^2}{r^2}\right) = \frac{max}{2}\left(1 + \frac{K^2}{r^2}\right)Fx=m(2ax)2(1+K2r2)=max2(1+K2r2)
Substituting the value of a a aaa from the acceleration formula:
F x = m ( P M + 2 m K 2 r 2 ) 2 ( 1 + K 2 r 2 ) F x = m P M + 2 m K 2 r 2 2 1 + K 2 r 2 F_(x)=(m((P)/(M+(2mK^(2))/(r^(2)))))/(2)(1+(K^(2))/(r^(2)))F_x = \frac{m\left(\frac{P}{M + \frac{2mK^2}{r^2}}\right)}{2}\left(1 + \frac{K^2}{r^2}\right)Fx=m(PM+2mK2r2)2(1+K2r2)
Simplifying further:
F x = m P 2 ( M + 2 m K 2 r 2 ) ( 1 + K 2 r 2 ) F x = m P 2 M + 2 m K 2 r 2 1 + K 2 r 2 F_(x)=(mP)/(2(M+(2mK^(2))/(r^(2))))(1+(K^(2))/(r^(2)))F_x = \frac{mP}{2\left(M + \frac{2mK^2}{r^2}\right)}\left(1 + \frac{K^2}{r^2}\right)Fx=mP2(M+2mK2r2)(1+K2r2)
So, the horizontal force exerted on each axle by the truck is given by the above expression.
Scroll to Top
Scroll to Top