Free BCS-012 Solved Assignment | July-2024 & January-2025 | Basic Mathematics | IGNOU

Question Details

Aspect

Details

Programme Title

BACHELOR OF COMPUTER APPLICATIONS

Course Code

BCS-012

Course Title

Basic Mathematics

Assignment Code

BCS-012

University

Indira Gandhi National Open University (IGNOU)

Type

Free IGNOU Solved Assignment 

Language

English

Session

July 2024 – January 2025

Submission Date

31st March for July session, 30th September for January session

BCS-012 Solved Assignment

Q1: For what value of ‘ k k kkk ‘ the points ( k + 1 , 2 k ) , ( k , 2 2 k ) ( k + 1 , 2 k ) , ( k , 2 2 k ) (-k+1,2k),(k,2-2k)(-k+1,2 k),(k, 2-2 k)(k+1,2k),(k,22k) and ( 4 k , 6 2 k ) ( 4 k , 6 2 k ) (-4-k,6-2k)(-4-k, 6-2 k)(4k,62k) are collinear.
Q2: Solve the following system of equations by using Matrix Inverse Method.
3 x + 4 y + 7 z = 14 2 x y + 3 z = 4 2 x + 2 y 3 z = 0 3 x + 4 y + 7 z = 14 2 x y + 3 z = 4 2 x + 2 y 3 z = 0 {:[3x+4y+7z=14],[2x-y+3z=4],[2x+2y-3z=0]:}\begin{aligned} & 3 x+4 y+7 z=14 \\ & 2 x-y+3 z=4 \\ & 2 x+2 y-3 z=0 \end{aligned}3x+4y+7z=142xy+3z=42x+2y3z=0
Q3: Use principle of Mathematical Induction to prove that:
1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 (1)/(1**2)+(1)/(2**3)+dots dots dots dots+(1)/(n(n+1))=(n)/(n+1)\frac{1}{1 * 2}+\frac{1}{2 * 3}+\ldots \ldots \ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}112+123++1n(n+1)=nn+1
Q4: How many terms of the sequence 3 , 3 , 3 3 , 3 , 3 , 3 3 , sqrt3,3,3sqrt3,dots\sqrt{3}, 3,3 \sqrt{3}, \ldots3,3,33, must be taken to get the sum 39 + 13 3 39 + 13 3 39+13sqrt339+13 \sqrt{3}39+133 ?
Q5: If y = a e m x + b e m x y = a e m x + b e m x y=ae^(mx)+be^(-mx)y=a e^{m x}+b e^{-m x}y=aemx+bemx, Prove that d 2 y / d x 2 = m 2 y d 2 y / d x 2 = m 2 y d^(2)y//dx^(2)=m^(2)yd^2 y / d x^2=m^2 yd2y/dx2=m2y
Q6: Integrate function f ( x ) = x / [ ( x + 1 ) ( 2 x 1 ) ] f ( x ) = x / [ ( x + 1 ) ( 2 x 1 ) ] f(x)=x//[(x+1)(2x-1)]f(x)=x /[(x+1)(2 x-1)]f(x)=x/[(x+1)(2x1)] w.r.t x x xxx
Q7: If 1, w , w 2 w , w 2 w,w^(2)w, w^2w,w2 are Cube Roots of unity show that ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 (1+w)^(2)-(1+w)^(3)+w^(2)=0(1+w)^2-(1+w)^3+w^2=0(1+w)2(1+w)3+w2=0.
Q8: If α , β α , β alpha,beta\alpha, \betaα,β are roots of equation 2 x 2 3 x 5 = 0 2 x 2 3 x 5 = 0 2x^(2)-3x-5=02 x^2-3 x-5=02x23x5=0, them find a Quadratic equation whose roots are α 2 , β 2 α 2 , β 2 alpha^(2),beta^(2)\alpha^2, \beta^2α2,β2
Q9: Solve the inequality 3 5 ( x 2 ) 5 3 ( 2 x ) 3 5 ( x 2 ) 5 3 ( 2 x ) (3)/(5)(x-2) <= (5)/(3)(2-x)\frac{3}{5}(x-2) \leq \frac{5}{3}(2-x)35(x2)53(2x) and graph the solution set.
Q10: If a positive number exceeds its positive square root by 12 , then find the number.
Q11: Find the area bounded by the curves x 2 = y x 2 = y x^(2)=y\mathrm{x}^2=\mathrm{y}x2=y and y = x y = x y=xy=xy=x. Q12: Find the inverse of the matrix A = ( 1 6 4 2 4 1 1 2 5 ) A = 1 6 4 2 4 1 1 2 5 A=([1,6,4],[2,4,-1],[-1,2,5])A=\left(\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5\end{array}\right)A=(164241125), if it exists,
Q13: If m m mmm times the m th m th m^(“th “)m^{\text {th }}mth term of an A.P. is n n nnn times its n th n th n^(“th “)n^{\text {th }}nth term, show that ( m + n ) th ( m + n ) th (m+n)^(“th “)(m+n)^{\text {th }}(m+n)th term of the A.P. is zero.
Q14: Show that
i) lim n 0 | x | x lim n 0 | x | x lim_(n rarr0)(|x|)/(x)\lim _{n \rightarrow 0} \frac{|x|}{x}limn0|x|x does not exist
ii) f ( x ) = | x | f ( x ) = | x | f(x)=|x|\mathrm{f}(x)=|x|f(x)=|x| is continuous at x = 0 x = 0 x=0x=0x=0.
Q15: Suriti wants to Invest at most 12000 in saving certificates and National Saving Bonds. She has to invest at least 2000 in Saving certificates and at least 4000 in National Saving Bonds. If Rate of
Interest on saving certificates is 8 % 8 % 8%8 \%8% per annum and rate of interest on national saving bond is 10 % 10 % 10%10 \%10% per annum. How much money should she invest to earn maximum yearly income? Find also the maximum yearly income.
Q16: A spherical balloon is being Inflated at the rate of 900 cm 3 / sec 900 cm 3 / sec 900cm^(3)//sec900 \mathrm{~cm}^3 / \mathrm{sec}900 cm3/sec. How fast is the Radius of the balloon Increasing when the Radius is 15 cm .

Expert Answer

BCS-012 Solved Assignment

Question:-01

For what value of ‘ k k kkk ‘ the points ( k + 1 , 2 k ) , ( k , 2 2 k ) ( k + 1 , 2 k ) , ( k , 2 2 k ) (-k+1,2k),(k,2-2k)(-k+1,2 k),(k, 2-2 k)(k+1,2k),(k,22k) and ( 4 k , 6 2 k ) ( 4 k , 6 2 k ) (-4-k,6-2k)(-4-k, 6-2 k)(4k,62k) are collinear.

Answer:

To determine the value of k k kkk such that the points ( k + 1 , 2 k ) ( k + 1 , 2 k ) (-k+1,2k)(-k+1, 2k)(k+1,2k), ( k , 2 2 k ) ( k , 2 2 k ) (k,2-2k)(k, 2 – 2k)(k,22k), and ( 4 k , 6 2 k ) ( 4 k , 6 2 k ) (-4-k,6-2k)(-4 – k, 6 – 2k)(4k,62k) are collinear, we need to use the condition that the area of the triangle formed by three collinear points is zero.
The formula for the area of a triangle formed by three points ( x 1 , y 1 ) ( x 1 , y 1 ) (x_(1),y_(1))(x_1, y_1)(x1,y1), ( x 2 , y 2 ) ( x 2 , y 2 ) (x_(2),y_(2))(x_2, y_2)(x2,y2), and ( x 3 , y 3 ) ( x 3 , y 3 ) (x_(3),y_(3))(x_3, y_3)(x3,y3) is:
Area = 1 2 | x 1 ( y 2 y 3 ) + x 2 ( y 3 y 1 ) + x 3 ( y 1 y 2 ) | Area = 1 2 x 1 ( y 2 y 3 ) + x 2 ( y 3 y 1 ) + x 3 ( y 1 y 2 ) “Area”=(1)/(2)|x_(1)(y_(2)-y_(3))+x_(2)(y_(3)-y_(1))+x_(3)(y_(1)-y_(2))|\text{Area} = \frac{1}{2} \left| x_1(y_2 – y_3) + x_2(y_3 – y_1) + x_3(y_1 – y_2) \right|Area=12|x1(y2y3)+x2(y3y1)+x3(y1y2)|
For the given points ( k + 1 , 2 k ) ( k + 1 , 2 k ) (-k+1,2k)(-k + 1, 2k)(k+1,2k), ( k , 2 2 k ) ( k , 2 2 k ) (k,2-2k)(k, 2 – 2k)(k,22k), and ( 4 k , 6 2 k ) ( 4 k , 6 2 k ) (-4-k,6-2k)(-4 – k, 6 – 2k)(4k,62k), we can substitute their coordinates into this formula and set the area equal to zero.

Step 1: Write the coordinates

Let the three points be:
  • ( x 1 , y 1 ) = ( k + 1 , 2 k ) ( x 1 , y 1 ) = ( k + 1 , 2 k ) (x_(1),y_(1))=(-k+1,2k)(x_1, y_1) = (-k + 1, 2k)(x1,y1)=(k+1,2k)
  • ( x 2 , y 2 ) = ( k , 2 2 k ) ( x 2 , y 2 ) = ( k , 2 2 k ) (x_(2),y_(2))=(k,2-2k)(x_2, y_2) = (k, 2 – 2k)(x2,y2)=(k,22k)
  • ( x 3 , y 3 ) = ( 4 k , 6 2 k ) ( x 3 , y 3 ) = ( 4 k , 6 2 k ) (x_(3),y_(3))=(-4-k,6-2k)(x_3, y_3) = (-4 – k, 6 – 2k)(x3,y3)=(4k,62k)

Step 2: Substitute into the area formula

The area formula becomes:
Area = 1 2 | ( k + 1 ) ( ( 2 2 k ) ( 6 2 k ) ) + k ( ( 6 2 k ) 2 k ) + ( 4 k ) ( 2 k ( 2 2 k ) ) | = 0 Area = 1 2 ( k + 1 ) ( ( 2 2 k ) ( 6 2 k ) ) + k ( ( 6 2 k ) 2 k ) + ( 4 k ) ( 2 k ( 2 2 k ) ) = 0 “Area”=(1)/(2)|(-k+1)((2-2k)-(6-2k))+k((6-2k)-2k)+(-4-k)(2k-(2-2k))|=0\text{Area} = \frac{1}{2} \left| (-k+1)((2-2k) – (6-2k)) + k((6-2k) – 2k) + (-4-k)(2k – (2 – 2k)) \right| = 0Area=12|(k+1)((22k)(62k))+k((62k)2k)+(4k)(2k(22k))|=0
Simplify the expression step by step.

Step 3: Simplify each term

  1. ( 2 2 k ) ( 6 2 k ) = 2 2 k 6 + 2 k = 4 ( 2 2 k ) ( 6 2 k ) = 2 2 k 6 + 2 k = 4 (2-2k)-(6-2k)=2-2k-6+2k=-4(2 – 2k) – (6 – 2k) = 2 – 2k – 6 + 2k = -4(22k)(62k)=22k6+2k=4
    So, the first term becomes ( k + 1 ) ( 4 ) = 4 ( k 1 ) ( k + 1 ) ( 4 ) = 4 ( k 1 ) (-k+1)(-4)=4(k-1)(-k + 1)(-4) = 4(k – 1)(k+1)(4)=4(k1).
  2. ( 6 2 k ) 2 k = 6 2 k 2 k = 6 4 k ( 6 2 k ) 2 k = 6 2 k 2 k = 6 4 k (6-2k)-2k=6-2k-2k=6-4k(6 – 2k) – 2k = 6 – 2k – 2k = 6 – 4k(62k)2k=62k2k=64k
    So, the second term becomes k ( 6 4 k ) = 6 k 4 k 2 k ( 6 4 k ) = 6 k 4 k 2 k(6-4k)=6k-4k^(2)k(6 – 4k) = 6k – 4k^2k(64k)=6k4k2.
  3. 2 k ( 2 2 k ) = 2 k 2 + 2 k = 4 k 2 2 k ( 2 2 k ) = 2 k 2 + 2 k = 4 k 2 2k-(2-2k)=2k-2+2k=4k-22k – (2 – 2k) = 2k – 2 + 2k = 4k – 22k(22k)=2k2+2k=4k2
    So, the third term becomes ( 4 k ) ( 4 k 2 ) = ( 4 ) ( 4 k 2 ) + ( k ) ( 4 k 2 ) = 16 k + 8 4 k 2 + 2 k ( 4 k ) ( 4 k 2 ) = ( 4 ) ( 4 k 2 ) + ( k ) ( 4 k 2 ) = 16 k + 8 4 k 2 + 2 k (-4-k)(4k-2)=(-4)(4k-2)+(-k)(4k-2)=-16 k+8-4k^(2)+2k(-4 – k)(4k – 2) = (-4)(4k – 2) + (-k)(4k – 2) = -16k + 8 – 4k^2 + 2k(4k)(4k2)=(4)(4k2)+(k)(4k2)=16k+84k2+2k.
    Simplifying the third term gives 14 k + 8 4 k 2 14 k + 8 4 k 2 -14 k+8-4k^(2)-14k + 8 – 4k^214k+84k2.

Step 4: Combine all terms

4 ( k 1 ) + ( 6 k 4 k 2 ) + ( 14 k + 8 4 k 2 ) = 0 4 ( k 1 ) + ( 6 k 4 k 2 ) + ( 14 k + 8 4 k 2 ) = 0 4(k-1)+(6k-4k^(2))+(-14 k+8-4k^(2))=04(k – 1) + (6k – 4k^2) + (-14k + 8 – 4k^2) = 04(k1)+(6k4k2)+(14k+84k2)=0
Simplifying:
4 k 4 + 6 k 4 k 2 14 k + 8 4 k 2 = 0 4 k 4 + 6 k 4 k 2 14 k + 8 4 k 2 = 0 4k-4+6k-4k^(2)-14 k+8-4k^(2)=04k – 4 + 6k – 4k^2 – 14k + 8 – 4k^2 = 04k4+6k4k214k+84k2=0
( 4 k + 6 k 14 k ) + ( 4 4 k 2 4 k 2 ) + 8 = 0 ( 4 k + 6 k 14 k ) + ( 4 4 k 2 4 k 2 ) + 8 = 0 (4k+6k-14 k)+(-4-4k^(2)-4k^(2))+8=0(4k + 6k – 14k) + (-4 – 4k^2 – 4k^2) + 8 = 0(4k+6k14k)+(44k24k2)+8=0
4 k 8 k 2 + 4 = 0 4 k 8 k 2 + 4 = 0 -4k-8k^(2)+4=0-4k – 8k^2 + 4 = 04k8k2+4=0

Step 5: Solve for k k kkk

This simplifies to:
8 k 2 4 k + 4 = 0 8 k 2 4 k + 4 = 0 -8k^(2)-4k+4=0-8k^2 – 4k + 4 = 08k24k+4=0
Dividing the entire equation by -4:
2 k 2 + k 1 = 0 2 k 2 + k 1 = 0 2k^(2)+k-1=02k^2 + k – 1 = 02k2+k1=0
This is a quadratic equation. Solve it using the quadratic formula:
k = 1 ± 1 2 4 ( 2 ) ( 1 ) 2 ( 2 ) = 1 ± 1 + 8 4 = 1 ± 9 4 k = 1 ± 1 2 4 ( 2 ) ( 1 ) 2 ( 2 ) = 1 ± 1 + 8 4 = 1 ± 9 4 k=(-1+-sqrt(1^(2)-4(2)(-1)))/(2(2))=(-1+-sqrt(1+8))/(4)=(-1+-sqrt9)/(4)k = \frac{-1 \pm \sqrt{1^2 – 4(2)(-1)}}{2(2)} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4}k=1±124(2)(1)2(2)=1±1+84=1±94
k = 1 ± 3 4 k = 1 ± 3 4 k=(-1+-3)/(4)k = \frac{-1 \pm 3}{4}k=1±34
Thus, k = 1 + 3 4 = 2 4 = 1 2 k = 1 + 3 4 = 2 4 = 1 2 k=(-1+3)/(4)=(2)/(4)=(1)/(2)k = \frac{-1 + 3}{4} = \frac{2}{4} = \frac{1}{2}k=1+34=24=12 or k = 1 3 4 = 4 4 = 1 k = 1 3 4 = 4 4 = 1 k=(-1-3)/(4)=(-4)/(4)=-1k = \frac{-1 – 3}{4} = \frac{-4}{4} = -1k=134=44=1.

Step 6: Conclusion

The value of k k kkk can be either 1 2 1 2 (1)/(2)\frac{1}{2}12 or 1 1 -1-11.

Question:-02

Solve the following system of equations by using Matrix Inverse Method.

3 x + 4 y + 7 z = 14 2 x y + 3 z = 4 2 x + 2 y 3 z = 0 3 x + 4 y + 7 z = 14 2 x y + 3 z = 4 2 x + 2 y 3 z = 0 {:[3x+4y+7z=14],[2x-y+3z=4],[2x+2y-3z=0]:}\begin{aligned} & 3x + 4y + 7z = 14 \\ & 2x – y + 3z = 4 \\ & 2x + 2y – 3z = 0 \end{aligned}3x+4y+7z=142xy+3z=42x+2y3z=0

Answer:

To solve the system of equations using the matrix inverse method, we represent the system in matrix form as A x = b A x = b Ax=bA \mathbf{x} = \mathbf{b}Ax=b, where:
A = [ 3 4 7 2 1 3 2 2 3 ] , x = [ x y z ] , b = [ 14 4 0 ] A = 3 4 7 2 1 3 2 2 3 , x = x y z , b = 14 4 0 A=[[3,4,7],[2,-1,3],[2,2,-3]],quadx=[[x],[y],[z]],quadb=[[14],[4],[0]]A = \begin{bmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 2 & 2 & -3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}A=[347213223],x=[xyz],b=[1440]

Step 1: Find the inverse of matrix A A AAA

To find the inverse of A A AAA, we first calculate its determinant.
det ( A ) = 3 ( ( 1 ) ( 3 ) 2 ( 3 ) ) 4 ( 2 ( 3 ) 2 ( 3 ) ) + 7 ( 2 ( 2 ) 2 ( 1 ) ) det ( A ) = 3 ( 1 ) ( 3 ) 2 ( 3 ) 4 2 ( 3 ) 2 ( 3 ) + 7 2 ( 2 ) 2 ( 1 ) “det”(A)=3((-1)(-3)-2(3))-4(2(-3)-2(3))+7(2(2)-2(-1))\text{det}(A) = 3 \left( (-1)(-3) – 2(3) \right) – 4 \left( 2(-3) – 2(3) \right) + 7 \left( 2(2) – 2(-1) \right)det(A)=3((1)(3)2(3))4(2(3)2(3))+7(2(2)2(1))
Simplifying:
det ( A ) = 3 ( 3 6 ) 4 ( 6 6 ) + 7 ( 4 + 2 ) det ( A ) = 3 3 6 4 6 6 + 7 4 + 2 “det”(A)=3(3-6)-4(-6-6)+7(4+2)\text{det}(A) = 3 \left( 3 – 6 \right) – 4 \left( -6 – 6 \right) + 7 \left( 4 + 2 \right)det(A)=3(36)4(66)+7(4+2)
det ( A ) = 3 ( 3 ) 4 ( 12 ) + 7 ( 6 ) det ( A ) = 3 ( 3 ) 4 ( 12 ) + 7 ( 6 ) “det”(A)=3(-3)-4(-12)+7(6)\text{det}(A) = 3(-3) – 4(-12) + 7(6)det(A)=3(3)4(12)+7(6)
det ( A ) = 9 + 48 + 42 = 81 det ( A ) = 9 + 48 + 42 = 81 “det”(A)=-9+48+42=81\text{det}(A) = -9 + 48 + 42 = 81det(A)=9+48+42=81
Since det ( A ) = 81 0 det ( A ) = 81 0 “det”(A)=81!=0\text{det}(A) = 81 \neq 0det(A)=810, matrix A A AAA is invertible.

Step 2: Find the adjoint of A A AAA

The adjoint of A A AAA, denoted as adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A), is the transpose of the cofactor matrix of A A AAA. Let’s compute the cofactors of each element of A A AAA:
  • The cofactor of A 11 A 11 A_(11)A_{11}A11 (3) is:
    Cofactor ( A 11 ) = ( 1 ) 1 | 1 3 2 3 | = ( 1 ) ( ( 1 ) ( 3 ) 3 ( 2 ) ) = 3 6 = 9 Cofactor ( A 11 ) = ( 1 ) 1 1 3 2 3 = ( 1 ) ( 1 ) ( 3 ) 3 ( 2 ) = 3 6 = 9 “Cofactor”(A_(11))=(-1)^(1)*|[-1,3],[2,-3]|=(-1)*((-1)(-3)-3(2))=-3-6=-9\text{Cofactor}(A_{11}) = (-1)^1 \cdot \begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} = (-1) \cdot \left( (-1)(-3) – 3(2) \right) = -3 – 6 = -9Cofactor(A11)=(1)1|1323|=(1)((1)(3)3(2))=36=9
  • The cofactor of A 12 A 12 A_(12)A_{12}A12 (4) is:
    Cofactor ( A 12 ) = ( 1 ) 2 | 2 3 2 3 | = ( 2 ( 3 ) 3 ( 2 ) ) = 6 6 = 12 Cofactor ( A 12 ) = ( 1 ) 2 2 3 2 3 = 2 ( 3 ) 3 ( 2 ) = 6 6 = 12 “Cofactor”(A_(12))=(-1)^(2)*|[2,3],[2,-3]|=(2(-3)-3(2))=-6-6=-12\text{Cofactor}(A_{12}) = (-1)^2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} = \left( 2(-3) – 3(2) \right) = -6 – 6 = -12Cofactor(A12)=(1)2|2323|=(2(3)3(2))=66=12
  • The cofactor of A 13 A 13 A_(13)A_{13}A13 (7) is:
    Cofactor ( A 13 ) = ( 1 ) 3 | 2 1 2 2 | = ( 1 ) ( 2 ( 2 ) ( 1 ) ( 2 ) ) = ( 4 + 2 ) = 6 Cofactor ( A 13 ) = ( 1 ) 3 2 1 2 2 = ( 1 ) 2 ( 2 ) ( 1 ) ( 2 ) = 4 + 2 = 6 “Cofactor”(A_(13))=(-1)^(3)*|[2,-1],[2,2]|=(-1)*(2(2)-(-1)(2))=-(4+2)=-6\text{Cofactor}(A_{13}) = (-1)^3 \cdot \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} = (-1) \cdot \left( 2(2) – (-1)(2) \right) = – \left( 4 + 2 \right) = -6Cofactor(A13)=(1)3|2122|=(1)(2(2)(1)(2))=(4+2)=6
  • The cofactor of A 21 A 21 A_(21)A_{21}A21 (2) is:
    Cofactor ( A 21 ) = ( 1 ) 2 | 4 7 2 3 | = ( 4 ( 3 ) 7 ( 2 ) ) = 12 14 = 26 Cofactor ( A 21 ) = ( 1 ) 2 4 7 2 3 = 4 ( 3 ) 7 ( 2 ) = 12 14 = 26 “Cofactor”(A_(21))=(-1)^(2)*|[4,7],[2,-3]|=(4(-3)-7(2))=-12-14=-26\text{Cofactor}(A_{21}) = (-1)^2 \cdot \begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix} = \left( 4(-3) – 7(2) \right) = -12 – 14 = -26Cofactor(A21)=(1)2|4723|=(4(3)7(2))=1214=26
  • The cofactor of A 22 A 22 A_(22)A_{22}A22 (-1) is:
    Cofactor ( A 22 ) = ( 1 ) 3 | 3 7 2 3 | = ( 1 ) ( 3 ( 3 ) 7 ( 2 ) ) = ( 9 14 ) = 23 Cofactor ( A 22 ) = ( 1 ) 3 3 7 2 3 = ( 1 ) 3 ( 3 ) 7 ( 2 ) = ( 9 14 ) = 23 “Cofactor”(A_(22))=(-1)^(3)*|[3,7],[2,-3]|=(-1)*(3(-3)-7(2))=-(-9-14)=23\text{Cofactor}(A_{22}) = (-1)^3 \cdot \begin{vmatrix} 3 & 7 \\ 2 & -3 \end{vmatrix} = (-1) \cdot \left( 3(-3) – 7(2) \right) = -(-9 – 14) = 23Cofactor(A22)=(1)3|3723|=(1)(3(3)7(2))=(914)=23
  • The cofactor of A 23 A 23 A_(23)A_{23}A23 (3) is:
    Cofactor ( A 23 ) = ( 1 ) 4 | 3 4 2 2 | = ( 3 ( 2 ) 4 ( 2 ) ) = 6 8 = 2 Cofactor ( A 23 ) = ( 1 ) 4 3 4 2 2 = 3 ( 2 ) 4 ( 2 ) = 6 8 = 2 “Cofactor”(A_(23))=(-1)^(4)*|[3,4],[2,2]|=(3(2)-4(2))=6-8=-2\text{Cofactor}(A_{23}) = (-1)^4 \cdot \begin{vmatrix} 3 & 4 \\ 2 & 2 \end{vmatrix} = \left( 3(2) – 4(2) \right) = 6 – 8 = -2Cofactor(A23)=(1)4|3422|=(3(2)4(2))=68=2
  • The cofactor of A 31 A 31 A_(31)A_{31}A31 (2) is:
    Cofactor ( A 31 ) = ( 1 ) 3 | 4 7 1 3 | = ( 1 ) ( 4 ( 3 ) 7 ( 1 ) ) = ( 12 + 7 ) = 19 Cofactor ( A 31 ) = ( 1 ) 3 4 7 1 3 = ( 1 ) 4 ( 3 ) 7 ( 1 ) = ( 12 + 7 ) = 19 “Cofactor”(A_(31))=(-1)^(3)*|[4,7],[-1,3]|=(-1)*(4(3)-7(-1))=-(12+7)=-19\text{Cofactor}(A_{31}) = (-1)^3 \cdot \begin{vmatrix} 4 & 7 \\ -1 & 3 \end{vmatrix} = (-1) \cdot \left( 4(3) – 7(-1) \right) = -(12 + 7) = -19Cofactor(A31)=(1)3|4713|=(1)(4(3)7(1))=(12+7)=19
  • The cofactor of A 32 A 32 A_(32)A_{32}A32 (2) is:
    Cofactor ( A 32 ) = ( 1 ) 4 | 3 7 2 3 | = ( 3 ( 3 ) 7 ( 2 ) ) = 9 14 = 5 Cofactor ( A 32 ) = ( 1 ) 4 3 7 2 3 = 3 ( 3 ) 7 ( 2 ) = 9 14 = 5 “Cofactor”(A_(32))=(-1)^(4)*|[3,7],[2,3]|=(3(3)-7(2))=9-14=-5\text{Cofactor}(A_{32}) = (-1)^4 \cdot \begin{vmatrix} 3 & 7 \\ 2 & 3 \end{vmatrix} = \left( 3(3) – 7(2) \right) = 9 – 14 = -5Cofactor(A32)=(1)4|3723|=(3(3)7(2))=914=5
  • The cofactor of A 33 A 33 A_(33)A_{33}A33 (-3) is:
    Cofactor ( A 33 ) = ( 1 ) 5 | 3 4 2 1 | = ( 1 ) ( 3 ( 1 ) 4 ( 2 ) ) = ( 3 8 ) = 11 Cofactor ( A 33 ) = ( 1 ) 5 3 4 2 1 = ( 1 ) 3 ( 1 ) 4 ( 2 ) = ( 3 8 ) = 11 “Cofactor”(A_(33))=(-1)^(5)*|[3,4],[2,-1]|=(-1)*(3(-1)-4(2))=-(-3-8)=11\text{Cofactor}(A_{33}) = (-1)^5 \cdot \begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix} = (-1) \cdot \left( 3(-1) – 4(2) \right) = -(-3 – 8) = 11Cofactor(A33)=(1)5|3421|=(1)(3(1)4(2))=(38)=11
Thus, the cofactor matrix is:
Cofactor ( A ) = [ 9 12 6 26 23 2 19 5 11 ] Cofactor ( A ) = 9 12 6 26 23 2 19 5 11 “Cofactor”(A)=[[-9,-12,-6],[-26,23,-2],[-19,-5,11]]\text{Cofactor}(A) = \begin{bmatrix} -9 & -12 & -6 \\ -26 & 23 & -2 \\ -19 & -5 & 11 \end{bmatrix}Cofactor(A)=[91262623219511]
Now, take the transpose of the cofactor matrix to get the adjugate matrix adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A):
adj ( A ) = [ 9 26 19 12 23 5 6 2 11 ] adj ( A ) = 9 26 19 12 23 5 6 2 11 “adj”(A)=[[-9,-26,-19],[-12,23,-5],[-6,-2,11]]\text{adj}(A) = \begin{bmatrix} -9 & -26 & -19 \\ -12 & 23 & -5 \\ -6 & -2 & 11 \end{bmatrix}adj(A)=[92619122356211]

Step 3: Find the inverse of A A AAA

The inverse of A A AAA is given by:
A 1 = 1 det ( A ) adj ( A ) = 1 81 [ 9 26 19 12 23 5 6 2 11 ] A 1 = 1 det ( A ) adj ( A ) = 1 81 9 26 19 12 23 5 6 2 11 A^(-1)=(1)/(“det”(A))”adj”(A)=(1)/(81)[[-9,-26,-19],[-12,23,-5],[-6,-2,11]]A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \frac{1}{81} \begin{bmatrix} -9 & -26 & -19 \\ -12 & 23 & -5 \\ -6 & -2 & 11 \end{bmatrix}A1=1det(A)adj(A)=181[92619122356211]

Step 4: Solve for x x x\mathbf{x}x

Now, use the inverse matrix to solve for x x x\mathbf{x}x by multiplying both sides of A x = b A x = b Ax=bA \mathbf{x} = \mathbf{b}Ax=b by A 1 A 1 A^(-1)A^{-1}A1:
x = A 1 b = 1 81 [ 9 26 19 12 23 5 6 2 11 ] [ 14 4 0 ] x = A 1 b = 1 81 9 26 19 12 23 5 6 2 11 14 4 0 x=A^(-1)b=(1)/(81)[[-9,-26,-19],[-12,23,-5],[-6,-2,11]][[14],[4],[0]]\mathbf{x} = A^{-1} \mathbf{b} = \frac{1}{81} \begin{bmatrix} -9 & -26 & -19 \\ -12 & 23 & -5 \\ -6 & -2 & 11 \end{bmatrix} \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}x=A1b=181[92619122356211][1440]
Multiply the matrices:
x = 1 81 [ ( 9 ) ( 14 ) + ( 26 ) ( 4 ) + ( 19 ) ( 0 ) ( 12 ) ( 14 ) + ( 23 ) ( 4 ) + ( 5 ) ( 0 ) ( 6 ) ( 14 ) + ( 2 ) ( 4 ) + ( 11 ) ( 0 ) ] x = 1 81 ( 9 ) ( 14 ) + ( 26 ) ( 4 ) + ( 19 ) ( 0 ) ( 12 ) ( 14 ) + ( 23 ) ( 4 ) + ( 5 ) ( 0 ) ( 6 ) ( 14 ) + ( 2 ) ( 4 ) + ( 11 ) ( 0 ) x=(1)/(81)[[(-9)(14)+(-26)(4)+(-19)(0)],[(-12)(14)+(23)(4)+(-5)(0)],[(-6)(14)+(-2)(4)+(11)(0)]]\mathbf{x} = \frac{1}{81} \begin{bmatrix} (-9)(14) + (-26)(4) + (-19)(0) \\ (-12)(14) + (23)(4) + (-5)(0) \\ (-6)(14) + (-2)(4) + (11)(0) \end{bmatrix}x=181[(9)(14)+(26)(4)+(19)(0)(12)(14)+(23)(4)+(5)(0)(6)(14)+(2)(4)+(11)(0)]
Simplifying:
x = 1 81 [ 126 104 + 0 168 + 92 + 0 84 8 + 0 ] = 1 81 [ 230 76 92 ] x = 1 81 126 104 + 0 168 + 92 + 0 84 8 + 0 = 1 81 230 76 92 x=(1)/(81)[[-126-104+0],[-168+92+0],[-84-8+0]]=(1)/(81)[[-230],[-76],[-92]]\mathbf{x} = \frac{1}{81} \begin{bmatrix} -126 – 104 + 0 \\ -168 + 92 + 0 \\ -84 – 8 + 0 \end{bmatrix} = \frac{1}{81} \begin{bmatrix} -230 \\ -76 \\ -92 \end{bmatrix}x=181[126104+0168+92+0848+0]=181[2307692]
Finally, divide each element by 81:
x = [ 230 81 76 81 92 81 ] x = 230 81 76 81 92 81 x=[[(-230)/(81)],[(-76)/(81)],[(-92)/(81)]]\mathbf{x} = \begin{bmatrix} \frac{-230}{81} \\ \frac{-76}{81} \\ \frac{-92}{81} \end{bmatrix}x=[2308176819281]
Thus, the solution to the system is:
x = 230 81 , y = 76 81 , z = 92 81 x = 230 81 , y = 76 81 , z = 92 81 x=(-230)/(81),quad y=(-76)/(81),quad z=(-92)/(81)x = \frac{-230}{81}, \quad y = \frac{-76}{81}, \quad z = \frac{-92}{81}x=23081,y=7681,z=9281

Question:-03

Use principle of Mathematical Induction to prove that:

1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 (1)/(1**2)+(1)/(2**3)+dots dots dots+(1)/(n(n+1))=(n)/(n+1)\frac{1}{1 * 2} + \frac{1}{2 * 3} + \ldots \ldots \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}112+123++1n(n+1)=nn+1

Answer:

We will use the principle of Mathematical Induction to prove the statement:
P ( n ) : 1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 P ( n ) : 1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 P(n):(1)/(1*2)+(1)/(2*3)+cdots+(1)/(n(n+1))=(n)/(n+1)P(n): \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}P(n):112+123++1n(n+1)=nn+1

Step 1: Base Case

We first check the base case n = 1 n = 1 n=1n = 1n=1.
For n = 1 n = 1 n=1n = 1n=1, the left-hand side is:
1 1 2 = 1 2 1 1 2 = 1 2 (1)/(1*2)=(1)/(2)\frac{1}{1 \cdot 2} = \frac{1}{2}112=12
The right-hand side for n = 1 n = 1 n=1n = 1n=1 is:
1 1 + 1 = 1 2 1 1 + 1 = 1 2 (1)/(1+1)=(1)/(2)\frac{1}{1 + 1} = \frac{1}{2}11+1=12
Since both sides are equal, the base case holds true.

Step 2: Inductive Hypothesis

Assume that the statement is true for some arbitrary positive integer n = k n = k n=kn = kn=k. That is, we assume:
1 1 2 + 1 2 3 + + 1 k ( k + 1 ) = k k + 1 1 1 2 + 1 2 3 + + 1 k ( k + 1 ) = k k + 1 (1)/(1*2)+(1)/(2*3)+cdots+(1)/(k(k+1))=(k)/(k+1)\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} = \frac{k}{k+1}112+123++1k(k+1)=kk+1

Step 3: Inductive Step

We need to prove that the statement is true for n = k + 1 n = k + 1 n=k+1n = k + 1n=k+1. That is, we need to prove:
1 1 2 + 1 2 3 + + 1 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 1 1 2 + 1 2 3 + + 1 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 (1)/(1*2)+(1)/(2*3)+cdots+(1)/((k+1)(k+2))=(k+1)/(k+2)\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}112+123++1(k+1)(k+2)=k+1k+2
Start with the left-hand side for n = k + 1 n = k + 1 n=k+1n = k+1n=k+1:
1 1 2 + 1 2 3 + + 1 k ( k + 1 ) + 1 ( k + 1 ) ( k + 2 ) 1 1 2 + 1 2 3 + + 1 k ( k + 1 ) + 1 ( k + 1 ) ( k + 2 ) (1)/(1*2)+(1)/(2*3)+cdots+(1)/(k(k+1))+(1)/((k+1)(k+2))\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}112+123++1k(k+1)+1(k+1)(k+2)
By the inductive hypothesis, we know that:
1 1 2 + 1 2 3 + + 1 k ( k + 1 ) = k k + 1 1 1 2 + 1 2 3 + + 1 k ( k + 1 ) = k k + 1 (1)/(1*2)+(1)/(2*3)+cdots+(1)/(k(k+1))=(k)/(k+1)\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} = \frac{k}{k+1}112+123++1k(k+1)=kk+1
So, the left-hand side becomes:
k k + 1 + 1 ( k + 1 ) ( k + 2 ) k k + 1 + 1 ( k + 1 ) ( k + 2 ) (k)/(k+1)+(1)/((k+1)(k+2))\frac{k}{k+1} + \frac{1}{(k+1)(k+2)}kk+1+1(k+1)(k+2)
Now, combine these two terms:
k k + 1 + 1 ( k + 1 ) ( k + 2 ) = k ( k + 2 ) + 1 ( k + 1 ) ( k + 2 ) k k + 1 + 1 ( k + 1 ) ( k + 2 ) = k ( k + 2 ) + 1 ( k + 1 ) ( k + 2 ) (k)/(k+1)+(1)/((k+1)(k+2))=(k(k+2)+1)/((k+1)(k+2))\frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2) + 1}{(k+1)(k+2)}kk+1+1(k+1)(k+2)=k(k+2)+1(k+1)(k+2)
Simplify the numerator:
k ( k + 2 ) + 1 = k 2 + 2 k + 1 = ( k + 1 ) 2 k ( k + 2 ) + 1 = k 2 + 2 k + 1 = ( k + 1 ) 2 k(k+2)+1=k^(2)+2k+1=(k+1)^(2)k(k+2) + 1 = k^2 + 2k + 1 = (k+1)^2k(k+2)+1=k2+2k+1=(k+1)2
So, the expression becomes:
( k + 1 ) 2 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 ( k + 1 ) 2 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 ((k+1)^(2))/((k+1)(k+2))=(k+1)/(k+2)\frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}(k+1)2(k+1)(k+2)=k+1k+2
Thus, we have shown that:
1 1 2 + 1 2 3 + + 1 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 1 1 2 + 1 2 3 + + 1 ( k + 1 ) ( k + 2 ) = k + 1 k + 2 (1)/(1*2)+(1)/(2*3)+cdots+(1)/((k+1)(k+2))=(k+1)/(k+2)\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}112+123++1(k+1)(k+2)=k+1k+2

Step 4: Conclusion

By the principle of Mathematical Induction, the statement is true for all n 1 n 1 n >= 1n \geq 1n1. Therefore, we have proven that:
1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 1 1 2 + 1 2 3 + + 1 n ( n + 1 ) = n n + 1 (1)/(1*2)+(1)/(2*3)+cdots+(1)/(n(n+1))=(n)/(n+1)\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}112+123++1n(n+1)=nn+1

Question:-04

How many terms of the sequence 3 , 3 , 3 3 , 3 , 3 , 3 3 , sqrt3,3,3sqrt3,dots\sqrt{3}, 3,3 \sqrt{3}, \ldots3,3,33, must be taken to get the sum 39 + 13 3 39 + 13 3 39+13sqrt339+13 \sqrt{3}39+133 ?

Answer:

a = sqrt 3 r = 3 3 = 3 S n = a ( r n 1 ) r 1 = 39 + 13 3 = 3 ( 3 n 1 ) 3 1 = 39 3 39 + 13 × 3 13 3 = ( 3 ) n + 1 3 = 39 3 13 3 = ( 3 ) n + 1 3 = 27 3 = ( 3 ) n + 1 = 3 3 3 = ( 3 ) n + 1 = ( 3 ) 6 + 1 = ( 3 ) n + 1 n = 6 . a = sqrt 3 r = 3 3 = 3 S n = a r n 1 r 1 = 39 + 13 3 = 3 3 n 1 3 1 = 39 3 39 + 13 × 3 13 3 = ( 3 ) n + 1 3 = 39 3 13 3 = ( 3 ) n + 1 3 = 27 3 = ( 3 ) n + 1 = 3 3 3 = ( 3 ) n + 1 = ( 3 ) 6 + 1 = ( 3 ) n + 1 n = 6 . {:[a=sqrt3],[r=(3)/(sqrt3)=sqrt3],[S_(n)=(a(r^(n)-1))/(r-1)],[=39+13sqrt3=sqrt3((sqrt3^(n)-1))/(sqrt3-1)],[=39sqrt3-39+13 xx3-13sqrt3=(sqrt3)^(n+1)-sqrt3],[=39sqrt3-13sqrt3=(sqrt3)^(n+1)-sqrt3],[=27sqrt3=(sqrt3)^(n+1)],[=3^(3)sqrt3=(sqrt3)^(n+1)],[=(sqrt3)^(6+1)=(sqrt3)^(n+1)],[:.n=6.]:}\begin{aligned} & \mathrm{a}=\mathrm{sqrt3} \\ & \mathrm{r}=\frac{3}{\sqrt{3}}=\sqrt{3} \\ & \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1} \\ & =39+13 \sqrt{3}=\sqrt{3} \frac{\left(\sqrt{3}^{\mathrm{n}}-1\right)}{\sqrt{3}-1} \\ & =39 \sqrt{3}-39+13 \times 3-13 \sqrt{3}=(\sqrt{3})^{\mathrm{n}+1}-\sqrt{3} \\ & =39 \sqrt{3}-13 \sqrt{3}=(\sqrt{3})^{\mathrm{n}+1}-\sqrt{3} \\ & =27 \sqrt{3}=(\sqrt{3})^{\mathrm{n}+1} \\ & =3^3 \sqrt{3}=(\sqrt{3})^{\mathrm{n}+1} \\ & =(\sqrt{3})^{6+1}=(\sqrt{3})^{\mathrm{n}+1} \\ & \therefore \mathrm{n}=6 . \end{aligned}a=sqrt3r=33=3 Sn=a(rn1)r1=39+133=3(3n1)31=39339+13×3133=(3)n+13=393133=(3)n+13=273=(3)n+1=333=(3)n+1=(3)6+1=(3)n+1n=6.

Question:-05

If y = a e m x + b e m x y = a e m x + b e m x y=ae^(mx)+be^(-mx)y = ae^{mx} + be^{-mx}y=aemx+bemx, Prove that d 2 y d x 2 = m 2 y d 2 y d x 2 = m 2 y (d^(2)y)/(dx^(2))=m^(2)y\frac{d^2y}{dx^2} = m^2yd2ydx2=m2y

Answer:

We are given the function:
y = a e m x + b e m x y = a e m x + b e m x y=ae^(mx)+be^(-mx)y = ae^{mx} + be^{-mx}y=aemx+bemx
We are asked to prove that:
d 2 y d x 2 = m 2 y d 2 y d x 2 = m 2 y (d^(2)y)/(dx^(2))=m^(2)y\frac{d^2y}{dx^2} = m^2yd2ydx2=m2y

Step 1: Find the first derivative of y y yyy

Differentiate y = a e m x + b e m x y = a e m x + b e m x y=ae^(mx)+be^(-mx)y = ae^{mx} + be^{-mx}y=aemx+bemx with respect to x x xxx:
d y d x = d d x ( a e m x ) + d d x ( b e m x ) d y d x = d d x ( a e m x ) + d d x ( b e m x ) (dy)/(dx)=(d)/(dx)(ae^(mx))+(d)/(dx)(be^(-mx))\frac{dy}{dx} = \frac{d}{dx}(ae^{mx}) + \frac{d}{dx}(be^{-mx})dydx=ddx(aemx)+ddx(bemx)
Using the chain rule, we get:
d y d x = a m e m x + b ( m ) e m x d y d x = a m e m x + b ( m ) e m x (dy)/(dx)=a*me^(mx)+b*(-m)e^(-mx)\frac{dy}{dx} = a \cdot m e^{mx} + b \cdot (-m) e^{-mx}dydx=amemx+b(m)emx
Simplifying:
d y d x = a m e m x b m e m x d y d x = a m e m x b m e m x (dy)/(dx)=ame^(mx)-bme^(-mx)\frac{dy}{dx} = am e^{mx} – bm e^{-mx}dydx=amemxbmemx

Step 2: Find the second derivative of y y yyy

Now, differentiate d y d x = a m e m x b m e m x d y d x = a m e m x b m e m x (dy)/(dx)=ame^(mx)-bme^(-mx)\frac{dy}{dx} = am e^{mx} – bm e^{-mx}dydx=amemxbmemx with respect to x x xxx:
d 2 y d x 2 = d d x ( a m e m x ) d d x ( b m e m x ) d 2 y d x 2 = d d x ( a m e m x ) d d x ( b m e m x ) (d^(2)y)/(dx^(2))=(d)/(dx)(ame^(mx))-(d)/(dx)(bme^(-mx))\frac{d^2y}{dx^2} = \frac{d}{dx}(am e^{mx}) – \frac{d}{dx}(bm e^{-mx})d2ydx2=ddx(amemx)ddx(bmemx)
Again, applying the chain rule:
d 2 y d x 2 = a m 2 e m x + b m 2 e m x d 2 y d x 2 = a m 2 e m x + b m 2 e m x (d^(2)y)/(dx^(2))=am^(2)e^(mx)+bm^(2)e^(-mx)\frac{d^2y}{dx^2} = am^2 e^{mx} + bm^2 e^{-mx}d2ydx2=am2emx+bm2emx

Step 3: Express d 2 y d x 2 d 2 y d x 2 (d^(2)y)/(dx^(2))\frac{d^2y}{dx^2}d2ydx2 in terms of y y yyy

Notice that:
a e m x + b e m x = y a e m x + b e m x = y ae^(mx)+be^(-mx)=yae^{mx} + be^{-mx} = yaemx+bemx=y
Thus, we can write:
d 2 y d x 2 = m 2 ( a e m x + b e m x ) = m 2 y d 2 y d x 2 = m 2 ( a e m x + b e m x ) = m 2 y (d^(2)y)/(dx^(2))=m^(2)(ae^(mx)+be^(-mx))=m^(2)y\frac{d^2y}{dx^2} = m^2(ae^{mx} + be^{-mx}) = m^2yd2ydx2=m2(aemx+bemx)=m2y

Conclusion:

We have proven that:
d 2 y d x 2 = m 2 y d 2 y d x 2 = m 2 y (d^(2)y)/(dx^(2))=m^(2)y\frac{d^2y}{dx^2} = m^2yd2ydx2=m2y

Question:-06

Integrate function f ( x ) = x ( x + 1 ) ( 2 x 1 ) f ( x ) = x ( x + 1 ) ( 2 x 1 ) f(x)=(x)/((x+1)(2x-1))f(x) = \frac{x}{(x+1)(2x-1)}f(x)=x(x+1)(2x1) w.r.t x x xxx

Answer:

To integrate the function f ( x ) = x ( x + 1 ) ( 2 x 1 ) f ( x ) = x ( x + 1 ) ( 2 x 1 ) f(x)=(x)/((x+1)(2x-1))f(x) = \frac{x}{(x+1)(2x-1)}f(x)=x(x+1)(2x1), we can use partial fraction decomposition to break it down into simpler terms that are easier to integrate.

Step 1: Partial Fraction Decomposition

We want to express x ( x + 1 ) ( 2 x 1 ) x ( x + 1 ) ( 2 x 1 ) (x)/((x+1)(2x-1))\frac{x}{(x+1)(2x-1)}x(x+1)(2x1) as a sum of simpler fractions:
x ( x + 1 ) ( 2 x 1 ) = A x + 1 + B 2 x 1 x ( x + 1 ) ( 2 x 1 ) = A x + 1 + B 2 x 1 (x)/((x+1)(2x-1))=(A)/(x+1)+(B)/(2x-1)\frac{x}{(x+1)(2x-1)} = \frac{A}{x+1} + \frac{B}{2x-1}x(x+1)(2x1)=Ax+1+B2x1
Multiplying both sides by ( x + 1 ) ( 2 x 1 ) ( x + 1 ) ( 2 x 1 ) (x+1)(2x-1)(x+1)(2x-1)(x+1)(2x1) to clear the denominator:
x = A ( 2 x 1 ) + B ( x + 1 ) x = A ( 2 x 1 ) + B ( x + 1 ) x=A(2x-1)+B(x+1)x = A(2x-1) + B(x+1)x=A(2x1)+B(x+1)
Expanding both sides:
x = A ( 2 x 1 ) + B ( x + 1 ) = 2 A x A + B x + B x = A ( 2 x 1 ) + B ( x + 1 ) = 2 A x A + B x + B x=A(2x-1)+B(x+1)=2Ax-A+Bx+Bx = A(2x – 1) + B(x + 1) = 2Ax – A + Bx + Bx=A(2x1)+B(x+1)=2AxA+Bx+B
Simplifying:
x = ( 2 A + B ) x + ( A + B ) x = ( 2 A + B ) x + ( A + B ) x=(2A+B)x+(-A+B)x = (2A + B)x + (-A + B)x=(2A+B)x+(A+B)

Step 2: Solve for A A AAA and B B BBB

Now, compare the coefficients of x x xxx and the constant terms on both sides of the equation.
  • Coefficient of x x xxx: 2 A + B = 1 2 A + B = 1 2A+B=12A + B = 12A+B=1
  • Constant term: A + B = 0 A + B = 0 -A+B=0-A + B = 0A+B=0
We have the system of equations:
2 A + B = 1 2 A + B = 1 2A+B=12A + B = 12A+B=1
A + B = 0 A + B = 0 -A+B=0-A + B = 0A+B=0
Solve the second equation for B B BBB:
B = A B = A B=AB = AB=A
Substitute B = A B = A B=AB = AB=A into the first equation:
2 A + A = 1 3 A = 1 A = 1 3 2 A + A = 1 3 A = 1 A = 1 3 2A+A=1Longrightarrow3A=1LongrightarrowA=(1)/(3)2A + A = 1 \implies 3A = 1 \implies A = \frac{1}{3}2A+A=13A=1A=13
Since B = A B = A B=AB = AB=A, we also have B = 1 3 B = 1 3 B=(1)/(3)B = \frac{1}{3}B=13.

Step 3: Rewrite the integral

Now that we have A = 1 3 A = 1 3 A=(1)/(3)A = \frac{1}{3}A=13 and B = 1 3 B = 1 3 B=(1)/(3)B = \frac{1}{3}B=13, we can rewrite the integrand:
x ( x + 1 ) ( 2 x 1 ) = 1 / 3 x + 1 + 1 / 3 2 x 1 x ( x + 1 ) ( 2 x 1 ) = 1 / 3 x + 1 + 1 / 3 2 x 1 (x)/((x+1)(2x-1))=(1//3)/(x+1)+(1//3)/(2x-1)\frac{x}{(x+1)(2x-1)} = \frac{1/3}{x+1} + \frac{1/3}{2x-1}x(x+1)(2x1)=1/3x+1+1/32x1
Thus, the integral becomes:
x ( x + 1 ) ( 2 x 1 ) d x = 1 3 1 x + 1 d x + 1 3 1 2 x 1 d x x ( x + 1 ) ( 2 x 1 ) d x = 1 3 1 x + 1 d x + 1 3 1 2 x 1 d x int(x)/((x+1)(2x-1))dx=(1)/(3)int(1)/(x+1)dx+(1)/(3)int(1)/(2x-1)dx\int \frac{x}{(x+1)(2x-1)} \, dx = \frac{1}{3} \int \frac{1}{x+1} \, dx + \frac{1}{3} \int \frac{1}{2x-1} \, dxx(x+1)(2x1)dx=131x+1dx+1312x1dx

Step 4: Integrate

The two integrals are straightforward:
1 x + 1 d x = ln | x + 1 | 1 x + 1 d x = ln | x + 1 | int(1)/(x+1)dx=ln |x+1|\int \frac{1}{x+1} \, dx = \ln|x+1|1x+1dx=ln|x+1|
1 2 x 1 d x = 1 2 ln | 2 x 1 | 1 2 x 1 d x = 1 2 ln | 2 x 1 | int(1)/(2x-1)dx=(1)/(2)ln |2x-1|\int \frac{1}{2x-1} \, dx = \frac{1}{2} \ln|2x-1|12x1dx=12ln|2x1|

Step 5: Final Answer

Now, combine the results:
x ( x + 1 ) ( 2 x 1 ) d x = 1 3 ln | x + 1 | + 1 6 ln | 2 x 1 | + C x ( x + 1 ) ( 2 x 1 ) d x = 1 3 ln | x + 1 | + 1 6 ln | 2 x 1 | + C int(x)/((x+1)(2x-1))dx=(1)/(3)ln |x+1|+(1)/(6)ln |2x-1|+C\int \frac{x}{(x+1)(2x-1)} \, dx = \frac{1}{3} \ln|x+1| + \frac{1}{6} \ln|2x-1| + Cx(x+1)(2x1)dx=13ln|x+1|+16ln|2x1|+C
where C C CCC is the constant of integration.

Question:-07

If 1 , w , w 2 1 , w , w 2 1,w,w^(2)1, w, w^21,w,w2 are Cube Roots of unity, show that ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 (1+w)^(2)-(1+w)^(3)+w^(2)=0(1+w)^2 – (1+w)^3 + w^2 = 0(1+w)2(1+w)3+w2=0.

Answer:

We are given that 1 , w , w 2 1 , w , w 2 1,w,w^(2)1, w, w^21,w,w2 are cube roots of unity. This means the following properties hold for w w www:
  1. w 3 = 1 w 3 = 1 w^(3)=1w^3 = 1w3=1
  2. 1 + w + w 2 = 0 1 + w + w 2 = 0 1+w+w^(2)=01 + w + w^2 = 01+w+w2=0
We are asked to show that:
( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 (1+w)^(2)-(1+w)^(3)+w^(2)=0(1 + w)^2 – (1 + w)^3 + w^2 = 0(1+w)2(1+w)3+w2=0

Step 1: Expand ( 1 + w ) 2 ( 1 + w ) 2 (1+w)^(2)(1 + w)^2(1+w)2

First, let’s expand ( 1 + w ) 2 ( 1 + w ) 2 (1+w)^(2)(1 + w)^2(1+w)2:
( 1 + w ) 2 = ( 1 + w ) ( 1 + w ) = 1 + 2 w + w 2 ( 1 + w ) 2 = ( 1 + w ) ( 1 + w ) = 1 + 2 w + w 2 (1+w)^(2)=(1+w)(1+w)=1+2w+w^(2)(1 + w)^2 = (1 + w)(1 + w) = 1 + 2w + w^2(1+w)2=(1+w)(1+w)=1+2w+w2

Step 2: Expand ( 1 + w ) 3 ( 1 + w ) 3 (1+w)^(3)(1 + w)^3(1+w)3

Now, expand ( 1 + w ) 3 ( 1 + w ) 3 (1+w)^(3)(1 + w)^3(1+w)3:
( 1 + w ) 3 = ( 1 + w ) ( 1 + w ) 2 = ( 1 + w ) ( 1 + 2 w + w 2 ) ( 1 + w ) 3 = ( 1 + w ) ( 1 + w ) 2 = ( 1 + w ) ( 1 + 2 w + w 2 ) (1+w)^(3)=(1+w)(1+w)^(2)=(1+w)(1+2w+w^(2))(1 + w)^3 = (1 + w)(1 + w)^2 = (1 + w)(1 + 2w + w^2)(1+w)3=(1+w)(1+w)2=(1+w)(1+2w+w2)
Using distributive property:
( 1 + w ) ( 1 + 2 w + w 2 ) = 1 ( 1 + 2 w + w 2 ) + w ( 1 + 2 w + w 2 ) ( 1 + w ) ( 1 + 2 w + w 2 ) = 1 ( 1 + 2 w + w 2 ) + w ( 1 + 2 w + w 2 ) (1+w)(1+2w+w^(2))=1(1+2w+w^(2))+w(1+2w+w^(2))(1 + w)(1 + 2w + w^2) = 1(1 + 2w + w^2) + w(1 + 2w + w^2)(1+w)(1+2w+w2)=1(1+2w+w2)+w(1+2w+w2)
Simplifying:
= 1 + 2 w + w 2 + w + 2 w 2 + w 3 = 1 + 2 w + w 2 + w + 2 w 2 + w 3 =1+2w+w^(2)+w+2w^(2)+w^(3)= 1 + 2w + w^2 + w + 2w^2 + w^3=1+2w+w2+w+2w2+w3
Since w 3 = 1 w 3 = 1 w^(3)=1w^3 = 1w3=1, this becomes:
1 + 2 w + w 2 + w + 2 w 2 + 1 = 2 + 3 w + 3 w 2 1 + 2 w + w 2 + w + 2 w 2 + 1 = 2 + 3 w + 3 w 2 1+2w+w^(2)+w+2w^(2)+1=2+3w+3w^(2)1 + 2w + w^2 + w + 2w^2 + 1 = 2 + 3w + 3w^21+2w+w2+w+2w2+1=2+3w+3w2

Step 3: Substitute into the original expression

Now, substitute ( 1 + w ) 2 = 1 + 2 w + w 2 ( 1 + w ) 2 = 1 + 2 w + w 2 (1+w)^(2)=1+2w+w^(2)(1 + w)^2 = 1 + 2w + w^2(1+w)2=1+2w+w2 and ( 1 + w ) 3 = 2 + 3 w + 3 w 2 ( 1 + w ) 3 = 2 + 3 w + 3 w 2 (1+w)^(3)=2+3w+3w^(2)(1 + w)^3 = 2 + 3w + 3w^2(1+w)3=2+3w+3w2 into the original expression:
( 1 + w ) 2 ( 1 + w ) 3 + w 2 = ( 1 + 2 w + w 2 ) ( 2 + 3 w + 3 w 2 ) + w 2 ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = ( 1 + 2 w + w 2 ) ( 2 + 3 w + 3 w 2 ) + w 2 (1+w)^(2)-(1+w)^(3)+w^(2)=(1+2w+w^(2))-(2+3w+3w^(2))+w^(2)(1 + w)^2 – (1 + w)^3 + w^2 = (1 + 2w + w^2) – (2 + 3w + 3w^2) + w^2(1+w)2(1+w)3+w2=(1+2w+w2)(2+3w+3w2)+w2
Simplify:
= 1 + 2 w + w 2 2 3 w 3 w 2 + w 2 = 1 + 2 w + w 2 2 3 w 3 w 2 + w 2 =1+2w+w^(2)-2-3w-3w^(2)+w^(2)= 1 + 2w + w^2 – 2 – 3w – 3w^2 + w^2=1+2w+w223w3w2+w2
Combine like terms:
= ( 1 2 ) + ( 2 w 3 w ) + ( w 2 3 w 2 + w 2 ) = ( 1 2 ) + ( 2 w 3 w ) + ( w 2 3 w 2 + w 2 ) =(1-2)+(2w-3w)+(w^(2)-3w^(2)+w^(2))= (1 – 2) + (2w – 3w) + (w^2 – 3w^2 + w^2)=(12)+(2w3w)+(w23w2+w2)
= 1 w w 2 = 1 w w 2 =-1-w-w^(2)= -1 – w – w^2=1ww2
But from the property of cube roots of unity, we know:
1 + w + w 2 = 0 ( 1 + w + w 2 ) = 0 1 + w + w 2 = 0 ( 1 + w + w 2 ) = 0 1+w+w^(2)=0Longrightarrow-(1+w+w^(2))=01 + w + w^2 = 0 \implies – (1 + w + w^2) = 01+w+w2=0(1+w+w2)=0
Thus:
1 w w 2 = 0 1 w w 2 = 0 -1-w-w^(2)=0-1 – w – w^2 = 01ww2=0

Conclusion:

We have shown that:
( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 ( 1 + w ) 2 ( 1 + w ) 3 + w 2 = 0 (1+w)^(2)-(1+w)^(3)+w^(2)=0(1 + w)^2 – (1 + w)^3 + w^2 = 0(1+w)2(1+w)3+w2=0

Question:-08

If α , β α , β alpha,beta\alpha, \betaα,β are roots of equation 2 x 2 3 x 5 = 0 2 x 2 3 x 5 = 0 2x^(2)-3x-5=02x^2 – 3x – 5 = 02x23x5=0, then find a Quadratic equation whose roots are α 2 , β 2 α 2 , β 2 alpha^(2),beta^(2)\alpha^2, \beta^2α2,β2.

Answer:

We are given that α α alpha\alphaα and β β beta\betaβ are the roots of the quadratic equation:
2 x 2 3 x 5 = 0 2 x 2 3 x 5 = 0 2x^(2)-3x-5=02x^2 – 3x – 5 = 02x23x5=0
This implies, from Vieta’s formulas, that:
α + β = ( 3 ) 2 = 3 2 α + β = ( 3 ) 2 = 3 2 alpha+beta=(-(-3))/(2)=(3)/(2)\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}α+β=(3)2=32
α β = 5 2 α β = 5 2 alpha beta=(-5)/(2)\alpha \beta = \frac{-5}{2}αβ=52
We need to find a quadratic equation whose roots are α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2.

Step 1: Find the sum and product of α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2

Sum of α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2:

We use the identity:
α 2 + β 2 = ( α + β ) 2 2 α β α 2 + β 2 = ( α + β ) 2 2 α β alpha^(2)+beta^(2)=(alpha+beta)^(2)-2alpha beta\alpha^2 + \beta^2 = (\alpha + \beta)^2 – 2\alpha \betaα2+β2=(α+β)22αβ
Substitute α + β = 3 2 α + β = 3 2 alpha+beta=(3)/(2)\alpha + \beta = \frac{3}{2}α+β=32 and α β = 5 2 α β = 5 2 alpha beta=(-5)/(2)\alpha \beta = \frac{-5}{2}αβ=52:
α 2 + β 2 = ( 3 2 ) 2 2 × 5 2 α 2 + β 2 = 3 2 2 2 × 5 2 alpha^(2)+beta^(2)=((3)/(2))^(2)-2xx(-5)/(2)\alpha^2 + \beta^2 = \left( \frac{3}{2} \right)^2 – 2 \times \frac{-5}{2}α2+β2=(32)22×52
α 2 + β 2 = 9 4 + 5 = 9 4 + 20 4 = 29 4 α 2 + β 2 = 9 4 + 5 = 9 4 + 20 4 = 29 4 alpha^(2)+beta^(2)=(9)/(4)+5=(9)/(4)+(20)/(4)=(29)/(4)\alpha^2 + \beta^2 = \frac{9}{4} + 5 = \frac{9}{4} + \frac{20}{4} = \frac{29}{4}α2+β2=94+5=94+204=294

Product of α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2:

We use the identity:
α 2 β 2 = ( α β ) 2 α 2 β 2 = ( α β ) 2 alpha^(2)beta^(2)=(alpha beta)^(2)\alpha^2 \beta^2 = (\alpha \beta)^2α2β2=(αβ)2
Substitute α β = 5 2 α β = 5 2 alpha beta=(-5)/(2)\alpha \beta = \frac{-5}{2}αβ=52:
α 2 β 2 = ( 5 2 ) 2 = 25 4 α 2 β 2 = 5 2 2 = 25 4 alpha^(2)beta^(2)=((-5)/(2))^(2)=(25)/(4)\alpha^2 \beta^2 = \left( \frac{-5}{2} \right)^2 = \frac{25}{4}α2β2=(52)2=254

Step 2: Form the quadratic equation

The quadratic equation with roots α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2 is given by:
x 2 ( α 2 + β 2 ) x + α 2 β 2 = 0 x 2 ( α 2 + β 2 ) x + α 2 β 2 = 0 x^(2)-(alpha^(2)+beta^(2))x+alpha^(2)beta^(2)=0x^2 – (\alpha^2 + \beta^2)x + \alpha^2 \beta^2 = 0x2(α2+β2)x+α2β2=0
Substitute α 2 + β 2 = 29 4 α 2 + β 2 = 29 4 alpha^(2)+beta^(2)=(29)/(4)\alpha^2 + \beta^2 = \frac{29}{4}α2+β2=294 and α 2 β 2 = 25 4 α 2 β 2 = 25 4 alpha^(2)beta^(2)=(25)/(4)\alpha^2 \beta^2 = \frac{25}{4}α2β2=254:
x 2 29 4 x + 25 4 = 0 x 2 29 4 x + 25 4 = 0 x^(2)-(29)/(4)x+(25)/(4)=0x^2 – \frac{29}{4}x + \frac{25}{4} = 0x2294x+254=0
Multiply the entire equation by 4 to clear the denominators:
4 x 2 29 x + 25 = 0 4 x 2 29 x + 25 = 0 4x^(2)-29 x+25=04x^2 – 29x + 25 = 04x229x+25=0

Final Answer:

The quadratic equation whose roots are α 2 α 2 alpha^(2)\alpha^2α2 and β 2 β 2 beta^(2)\beta^2β2 is:
4 x 2 29 x + 25 = 0 4 x 2 29 x + 25 = 0 4x^(2)-29 x+25=04x^2 – 29x + 25 = 04x229x+25=0

Question:-09

Solve the inequality 3 5 ( x 2 ) 5 3 ( 2 x ) 3 5 ( x 2 ) 5 3 ( 2 x ) (3)/(5)(x-2) <= (5)/(3)(2-x)\frac{3}{5}(x – 2) \leq \frac{5}{3}(2 – x)35(x2)53(2x) and graph the solution set.

Answer:

To solve the inequality:
3 5 ( x 2 ) 5 3 ( 2 x ) 3 5 ( x 2 ) 5 3 ( 2 x ) (3)/(5)(x-2) <= (5)/(3)(2-x)\frac{3}{5}(x – 2) \leq \frac{5}{3}(2 – x)35(x2)53(2x)

Step 1: Eliminate the fractions

Multiply both sides of the inequality by the least common denominator (LCD) of 5 and 3, which is 15, to eliminate the fractions:
15 × ( 3 5 ( x 2 ) ) 15 × ( 5 3 ( 2 x ) ) 15 × 3 5 ( x 2 ) 15 × 5 3 ( 2 x ) 15 xx((3)/(5)(x-2)) <= 15 xx((5)/(3)(2-x))15 \times \left( \frac{3}{5}(x – 2) \right) \leq 15 \times \left( \frac{5}{3}(2 – x) \right)15×(35(x2))15×(53(2x))
Simplifying both sides:
3 × 3 ( x 2 ) 5 × 5 ( 2 x ) 3 × 3 ( x 2 ) 5 × 5 ( 2 x ) 3xx3(x-2) <= 5xx5(2-x)3 \times 3(x – 2) \leq 5 \times 5(2 – x)3×3(x2)5×5(2x)
This gives:
9 ( x 2 ) 25 ( 2 x ) 9 ( x 2 ) 25 ( 2 x ) 9(x-2) <= 25(2-x)9(x – 2) \leq 25(2 – x)9(x2)25(2x)

Step 2: Expand both sides

Expand the expressions on both sides:
9 x 18 50 25 x 9 x 18 50 25 x 9x-18 <= 50-25 x9x – 18 \leq 50 – 25x9x185025x

Step 3: Collect like terms

Move all terms involving x x xxx to one side and constants to the other side. Add 25 x 25 x 25 x25x25x to both sides and add 18 18 181818 to both sides:
9 x + 25 x 50 + 18 9 x + 25 x 50 + 18 9x+25 x <= 50+189x + 25x \leq 50 + 189x+25x50+18
Simplifying:
34 x 68 34 x 68 34 x <= 6834x \leq 6834x68

Step 4: Solve for x x xxx

Divide both sides by 34:
x 68 34 x 68 34 x <= (68)/(34)x \leq \frac{68}{34}x6834
Simplifying:
x 2 x 2 x <= 2x \leq 2x2

Step 5: Graph the solution

The solution is x 2 x 2 x <= 2x \leq 2x2. To graph this on a number line:
original image

Final Answer:

The solution to the inequality is x 2 x 2 x <= 2x \leq 2x2, and the graph is a number line with a closed circle at x = 2 x = 2 x=2x = 2x=2 and shading to the left of x = 2 x = 2 x=2x = 2x=2.

Question:-10

If a positive number exceeds its positive square root by 12, then find the number.

Answer:

Let the positive number be x x xxx, and its positive square root is x x sqrtx\sqrt{x}x. The problem states that the number exceeds its square root by 12. This gives us the equation:
x = x + 12 x = x + 12 x=sqrtx+12x = \sqrt{x} + 12x=x+12

Step 1: Isolate the square root term

Subtract x x sqrtx\sqrt{x}x from both sides:
x x = 12 x x = 12 x-sqrtx=12x – \sqrt{x} = 12xx=12

Step 2: Substitute y = x y = x y=sqrtxy = \sqrt{x}y=x

Let y = x y = x y=sqrtxy = \sqrt{x}y=x, which means y 2 = x y 2 = x y^(2)=xy^2 = xy2=x. Substituting y y yyy into the equation:
y 2 y = 12 y 2 y = 12 y^(2)-y=12y^2 – y = 12y2y=12

Step 3: Rearrange into a quadratic equation

Rearrange the equation:
y 2 y 12 = 0 y 2 y 12 = 0 y^(2)-y-12=0y^2 – y – 12 = 0y2y12=0

Step 4: Solve the quadratic equation

Now, solve the quadratic equation y 2 y 12 = 0 y 2 y 12 = 0 y^(2)-y-12=0y^2 – y – 12 = 0y2y12=0 using the quadratic formula. The quadratic formula is:
y = b ± b 2 4 a c 2 a y = b ± b 2 4 a c 2 a y=(-b+-sqrt(b^(2)-4ac))/(2a)y = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}y=b±b24ac2a
For the equation y 2 y 12 = 0 y 2 y 12 = 0 y^(2)-y-12=0y^2 – y – 12 = 0y2y12=0, we have a = 1 a = 1 a=1a = 1a=1, b = 1 b = 1 b=-1b = -1b=1, and c = 12 c = 12 c=-12c = -12c=12. Substituting these values into the quadratic formula:
y = ( 1 ) ± ( 1 ) 2 4 ( 1 ) ( 12 ) 2 ( 1 ) y = ( 1 ) ± ( 1 ) 2 4 ( 1 ) ( 12 ) 2 ( 1 ) y=(-(-1)+-sqrt((-1)^(2)-4(1)(-12)))/(2(1))y = \frac{-(-1) \pm \sqrt{(-1)^2 – 4(1)(-12)}}{2(1)}y=(1)±(1)24(1)(12)2(1)
y = 1 ± 1 + 48 2 y = 1 ± 1 + 48 2 y=(1+-sqrt(1+48))/(2)y = \frac{1 \pm \sqrt{1 + 48}}{2}y=1±1+482
y = 1 ± 49 2 y = 1 ± 49 2 y=(1+-sqrt49)/(2)y = \frac{1 \pm \sqrt{49}}{2}y=1±492
y = 1 ± 7 2 y = 1 ± 7 2 y=(1+-7)/(2)y = \frac{1 \pm 7}{2}y=1±72
Thus, we have two possible solutions for y y yyy:
y = 1 + 7 2 = 8 2 = 4 y = 1 + 7 2 = 8 2 = 4 y=(1+7)/(2)=(8)/(2)=4y = \frac{1 + 7}{2} = \frac{8}{2} = 4y=1+72=82=4
y = 1 7 2 = 6 2 = 3 y = 1 7 2 = 6 2 = 3 y=(1-7)/(2)=(-6)/(2)=-3y = \frac{1 – 7}{2} = \frac{-6}{2} = -3y=172=62=3

Step 5: Interpret the solution

Since y = x y = x y=sqrtxy = \sqrt{x}y=x and y y yyy must be positive, we take y = 4 y = 4 y=4y = 4y=4.

Step 6: Find x x xxx

Since y = x y = x y=sqrtxy = \sqrt{x}y=x, we have:
x = 4 x = 4 sqrtx=4\sqrt{x} = 4x=4
Squaring both sides:
x = 4 2 = 16 x = 4 2 = 16 x=4^(2)=16x = 4^2 = 16x=42=16
Thus, the positive number is x = 16 x = 16 x=16x = 16x=16.

Final Answer:

The positive number is 16 16 16\boxed{16}16.

Question:-11

Find the area bounded by the curves x 2 = y x 2 = y x^(2)=yx^2 = yx2=y and y = x y = x y=xy = xy=x.

Answer:

We are tasked with finding the area bounded by the curves x 2 = y x 2 = y x^(2)=yx^2 = yx2=y (a parabola) and y = x y = x y=xy = xy=x (a straight line).

Step 1: Find the points of intersection

To find the points of intersection between the curves, set y = x y = x y=xy = xy=x in the equation x 2 = y x 2 = y x^(2)=yx^2 = yx2=y. Thus, we have:
x 2 = x x 2 = x x^(2)=xx^2 = xx2=x
Rearrange this equation:
x 2 x = 0 x 2 x = 0 x^(2)-x=0x^2 – x = 0x2x=0
Factor the equation:
x ( x 1 ) = 0 x ( x 1 ) = 0 x(x-1)=0x(x – 1) = 0x(x1)=0
So, x = 0 x = 0 x=0x = 0x=0 or x = 1 x = 1 x=1x = 1x=1. These are the x x xxx-coordinates of the points of intersection. Substituting these values of x x xxx into the equation y = x y = x y=xy = xy=x gives y = 0 y = 0 y=0y = 0y=0 when x = 0 x = 0 x=0x = 0x=0 and y = 1 y = 1 y=1y = 1y=1 when x = 1 x = 1 x=1x = 1x=1.
Thus, the points of intersection are ( 0 , 0 ) ( 0 , 0 ) (0,0)(0, 0)(0,0) and ( 1 , 1 ) ( 1 , 1 ) (1,1)(1, 1)(1,1).

Step 2: Set up the integral

We are looking for the area between the curves from x = 0 x = 0 x=0x = 0x=0 to x = 1 x = 1 x=1x = 1x=1. The area between two curves is given by the integral of the difference between the top curve and the bottom curve.
For 0 x 1 0 x 1 0 <= x <= 10 \leq x \leq 10x1:
  • The line y = x y = x y=xy = xy=x is above the parabola x 2 = y x 2 = y x^(2)=yx^2 = yx2=y.
The area A A AAA is:
A = 0 1 [ ( x ) ( x 2 ) ] d x A = 0 1 [ ( x ) ( x 2 ) ] d x A=int_(0)^(1)[(x)-(x^(2))]dxA = \int_0^1 [(x) – (x^2)] \, dxA=01[(x)(x2)]dx

Step 3: Compute the integral

Now, let’s compute the integral:
A = 0 1 ( x x 2 ) d x A = 0 1 ( x x 2 ) d x A=int_(0)^(1)(x-x^(2))dxA = \int_0^1 (x – x^2) \, dxA=01(xx2)dx
Break this into two integrals:
A = 0 1 x d x 0 1 x 2 d x A = 0 1 x d x 0 1 x 2 d x A=int_(0)^(1)xdx-int_(0)^(1)x^(2)dxA = \int_0^1 x \, dx – \int_0^1 x^2 \, dxA=01xdx01x2dx
Now, compute each integral:
  1. 0 1 x d x = [ x 2 2 ] 0 1 = 1 2 2 0 = 1 2 0 1 x d x = x 2 2 0 1 = 1 2 2 0 = 1 2 int_(0)^(1)xdx=[(x^(2))/(2)]_(0)^(1)=(1^(2))/(2)-0=(1)/(2)\int_0^1 x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1^2}{2} – 0 = \frac{1}{2}01xdx=[x22]01=1220=12
  2. 0 1 x 2 d x = [ x 3 3 ] 0 1 = 1 3 3 0 = 1 3 0 1 x 2 d x = x 3 3 0 1 = 1 3 3 0 = 1 3 int_(0)^(1)x^(2)dx=[(x^(3))/(3)]_(0)^(1)=(1^(3))/(3)-0=(1)/(3)\int_0^1 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1^3}{3} – 0 = \frac{1}{3}01x2dx=[x33]01=1330=13
Thus, the total area is:
A = 1 2 1 3 = 3 6 2 6 = 1 6 A = 1 2 1 3 = 3 6 2 6 = 1 6 A=(1)/(2)-(1)/(3)=(3)/(6)-(2)/(6)=(1)/(6)A = \frac{1}{2} – \frac{1}{3} = \frac{3}{6} – \frac{2}{6} = \frac{1}{6}A=1213=3626=16

Final Answer:

The area bounded by the curves x 2 = y x 2 = y x^(2)=yx^2 = yx2=y and y = x y = x y=xy = xy=x is 1 6 1 6 (1)/(6)\boxed{\frac{1}{6}}16.

Question:-12

Find the inverse of the matrix A = ( 1 6 4 2 4 1 1 2 5 ) A = 1 6 4 2 4 1 1 2 5 A=([1,6,4],[2,4,-1],[-1,2,5])A = \left(\begin{array}{ccc} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{array}\right)A=(164241125), if it exists.

Answer:

To find the inverse of matrix A = ( 1 6 4 2 4 1 1 2 5 ) A = 1 6 4 2 4 1 1 2 5 A=([1,6,4],[2,4,-1],[-1,2,5])A = \begin{pmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{pmatrix}A=(164241125), we will use the formula for the inverse of a 3 × 3 3 × 3 3xx33 \times 33×3 matrix. The inverse of a matrix A A AAA, if it exists, is given by:
A 1 = 1 det ( A ) adj ( A ) A 1 = 1 det ( A ) adj ( A ) A^(-1)=(1)/(det(A))*”adj”(A)A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A)A1=1det(A)adj(A)
where det ( A ) det ( A ) det(A)\det(A)det(A) is the determinant of A A AAA, and adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A) is the adjugate (transpose of the cofactor matrix) of A A AAA.

Step 1: Calculate the determinant of A A AAA

The determinant of matrix A A AAA is calculated as:
det ( A ) = 1 | 4 1 2 5 | 6 | 2 1 1 5 | + 4 | 2 4 1 2 | det ( A ) = 1 4 1 2 5 6 2 1 1 5 + 4 2 4 1 2 det(A)=1*|[4,-1],[2,5]|-6*|[2,-1],[-1,5]|+4*|[2,4],[-1,2]|\det(A) = 1 \cdot \begin{vmatrix} 4 & -1 \\ 2 & 5 \end{vmatrix} – 6 \cdot \begin{vmatrix} 2 & -1 \\ -1 & 5 \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix}det(A)=1|4125|6|2115|+4|2412|
Now, let’s calculate each of these 2 × 2 2 × 2 2xx22 \times 22×2 determinants:
  1. | 4 1 2 5 | = ( 4 ) ( 5 ) ( 1 ) ( 2 ) = 20 + 2 = 22 4 1 2 5 = ( 4 ) ( 5 ) ( 1 ) ( 2 ) = 20 + 2 = 22 |[4,-1],[2,5]|=(4)(5)-(-1)(2)=20+2=22\begin{vmatrix} 4 & -1 \\ 2 & 5 \end{vmatrix} = (4)(5) – (-1)(2) = 20 + 2 = 22|4125|=(4)(5)(1)(2)=20+2=22
  2. | 2 1 1 5 | = ( 2 ) ( 5 ) ( 1 ) ( 1 ) = 10 1 = 9 2 1 1 5 = ( 2 ) ( 5 ) ( 1 ) ( 1 ) = 10 1 = 9 |[2,-1],[-1,5]|=(2)(5)-(-1)(-1)=10-1=9\begin{vmatrix} 2 & -1 \\ -1 & 5 \end{vmatrix} = (2)(5) – (-1)(-1) = 10 – 1 = 9|2115|=(2)(5)(1)(1)=101=9
  3. | 2 4 1 2 | = ( 2 ) ( 2 ) ( 4 ) ( 1 ) = 4 + 4 = 8 2 4 1 2 = ( 2 ) ( 2 ) ( 4 ) ( 1 ) = 4 + 4 = 8 |[2,4],[-1,2]|=(2)(2)-(4)(-1)=4+4=8\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = (2)(2) – (4)(-1) = 4 + 4 = 8|2412|=(2)(2)(4)(1)=4+4=8
Substitute these values into the determinant formula:
det ( A ) = 1 22 6 9 + 4 8 = 22 54 + 32 = 0 det ( A ) = 1 22 6 9 + 4 8 = 22 54 + 32 = 0 det(A)=1*22-6*9+4*8=22-54+32=0\det(A) = 1 \cdot 22 – 6 \cdot 9 + 4 \cdot 8 = 22 – 54 + 32 = 0det(A)=12269+48=2254+32=0

Step 2: Conclusion

Since the determinant of A A AAA is zero ( det ( A ) = 0 det ( A ) = 0 det(A)=0\det(A) = 0det(A)=0), the matrix A A AAA is singular and does not have an inverse.

Final Answer:

The matrix A A AAA does not have an inverse because its determinant is zero. No inverse exists No inverse exists “No inverse exists”\boxed{\text{No inverse exists}}No inverse exists.

Question:-13

If m m mmm times the m th m th m^(“th”)m^{\text{th}}mth term of an A.P. is n n nnn times its n th n th n^(“th”)n^{\text{th}}nth term, show that ( m + n ) th ( m + n ) th (m+n)^(“th”)(m+n)^{\text{th}}(m+n)th term of the A.P. is zero.

Answer:

Let the arithmetic progression (A.P.) have the first term a a aaa and common difference d d ddd.
The general term of the A.P., which is the k th k th k^(“th”)k^{\text{th}}kth term, is given by:
T k = a + ( k 1 ) d T k = a + ( k 1 ) d T_(k)=a+(k-1)dT_k = a + (k-1)dTk=a+(k1)d
We are given that m m mmm times the m th m th m^(“th”)m^{\text{th}}mth term is equal to n n nnn times the n th n th n^(“th”)n^{\text{th}}nth term. This can be expressed as:
m T m = n T n m T m = n T n m*T_(m)=n*T_(n)m \cdot T_m = n \cdot T_nmTm=nTn
Using the formula for the k th k th k^(“th”)k^{\text{th}}kth term, the m th m th m^(“th”)m^{\text{th}}mth term and n th n th n^(“th”)n^{\text{th}}nth term are:
T m = a + ( m 1 ) d T m = a + ( m 1 ) d T_(m)=a+(m-1)dT_m = a + (m-1)dTm=a+(m1)d
T n = a + ( n 1 ) d T n = a + ( n 1 ) d T_(n)=a+(n-1)dT_n = a + (n-1)dTn=a+(n1)d
Substitute these into the given condition:
m ( a + ( m 1 ) d ) = n ( a + ( n 1 ) d ) m ( a + ( m 1 ) d ) = n ( a + ( n 1 ) d ) m*(a+(m-1)d)=n*(a+(n-1)d)m \cdot (a + (m-1)d) = n \cdot (a + (n-1)d)m(a+(m1)d)=n(a+(n1)d)

Step 1: Expand both sides

Expand both sides of the equation:
m a + m ( m 1 ) d = n a + n ( n 1 ) d m a + m ( m 1 ) d = n a + n ( n 1 ) d m*a+m*(m-1)*d=n*a+n*(n-1)*dm \cdot a + m \cdot (m-1) \cdot d = n \cdot a + n \cdot (n-1) \cdot dma+m(m1)d=na+n(n1)d
Simplifying both sides:
m a + m ( m 1 ) d = n a + n ( n 1 ) d m a + m ( m 1 ) d = n a + n ( n 1 ) d ma+m(m-1)d=na+n(n-1)dma + m(m-1)d = na + n(n-1)dma+m(m1)d=na+n(n1)d

Step 2: Collect like terms

Rearrange the terms to collect like terms:
m a n a = n ( n 1 ) d m ( m 1 ) d m a n a = n ( n 1 ) d m ( m 1 ) d ma-na=n(n-1)d-m(m-1)dma – na = n(n-1)d – m(m-1)dmana=n(n1)dm(m1)d
Factor out common terms:
a ( m n ) = d ( n ( n 1 ) m ( m 1 ) ) a ( m n ) = d ( n ( n 1 ) m ( m 1 ) ) a(m-n)=d(n(n-1)-m(m-1))a(m-n) = d(n(n-1) – m(m-1))a(mn)=d(n(n1)m(m1))

Step 3: Simplify the equation

Expand n ( n 1 ) n ( n 1 ) n(n-1)n(n-1)n(n1) and m ( m 1 ) m ( m 1 ) m(m-1)m(m-1)m(m1):
a ( m n ) = d ( n 2 n ( m 2 m ) ) a ( m n ) = d ( n 2 n ( m 2 m ) ) a(m-n)=d(n^(2)-n-(m^(2)-m))a(m-n) = d(n^2 – n – (m^2 – m))a(mn)=d(n2n(m2m))
a ( m n ) = d ( n 2 n m 2 + m ) a ( m n ) = d ( n 2 n m 2 + m ) a(m-n)=d(n^(2)-n-m^(2)+m)a(m-n) = d(n^2 – n – m^2 + m)a(mn)=d(n2nm2+m)
Factor the right-hand side:
a ( m n ) = d ( ( n 2 m 2 ) ( n m ) ) a ( m n ) = d ( ( n 2 m 2 ) ( n m ) ) a(m-n)=d((n^(2)-m^(2))-(n-m))a(m-n) = d((n^2 – m^2) – (n – m))a(mn)=d((n2m2)(nm))
Now, use the difference of squares for n 2 m 2 n 2 m 2 n^(2)-m^(2)n^2 – m^2n2m2:
a ( m n ) = d ( ( n m ) ( n + m ) ( n m ) ) a ( m n ) = d ( ( n m ) ( n + m ) ( n m ) ) a(m-n)=d((n-m)(n+m)-(n-m))a(m-n) = d((n-m)(n+m) – (n-m))a(mn)=d((nm)(n+m)(nm))
Factor out ( n m ) ( n m ) (n-m)(n-m)(nm):
a ( m n ) = d ( n m ) ( ( n + m ) 1 ) a ( m n ) = d ( n m ) ( ( n + m ) 1 ) a(m-n)=d(n-m)((n+m)-1)a(m-n) = d(n-m)((n+m) – 1)a(mn)=d(nm)((n+m)1)
Thus, we have:
a ( m n ) = d ( n m ) ( n + m 1 ) a ( m n ) = d ( n m ) ( n + m 1 ) a(m-n)=d(n-m)(n+m-1)a(m-n) = d(n-m)(n+m-1)a(mn)=d(nm)(n+m1)

Step 4: Solve for the relationship

Divide both sides by ( m n ) ( m n ) (m-n)(m-n)(mn) (assuming m n m n m!=nm \neq nmn):
a = d ( n + m 1 ) a = d ( n + m 1 ) a=d(n+m-1)a = d(n+m-1)a=d(n+m1)

Step 5: Find the ( m + n ) th ( m + n ) th (m+n)^(“th”)(m+n)^{\text{th}}(m+n)th term

Now, let’s find the ( m + n ) th ( m + n ) th (m+n)^(“th”)(m+n)^{\text{th}}(m+n)th term of the A.P., which is:
T m + n = a + ( m + n 1 ) d T m + n = a + ( m + n 1 ) d T_(m+n)=a+(m+n-1)dT_{m+n} = a + (m+n-1)dTm+n=a+(m+n1)d
Substitute a = d ( n + m 1 ) a = d ( n + m 1 ) a=d(n+m-1)a = d(n+m-1)a=d(n+m1) into the equation:
T m + n = d ( n + m 1 ) + ( m + n 1 ) d T m + n = d ( n + m 1 ) + ( m + n 1 ) d T_(m+n)=d(n+m-1)+(m+n-1)dT_{m+n} = d(n+m-1) + (m+n-1)dTm+n=d(n+m1)+(m+n1)d
Simplify:
T m + n = d ( n + m 1 ) + d ( m + n 1 ) T m + n = d ( n + m 1 ) + d ( m + n 1 ) T_(m+n)=d(n+m-1)+d(m+n-1)T_{m+n} = d(n+m-1) + d(m+n-1)Tm+n=d(n+m1)+d(m+n1)
T m + n = 2 d ( n + m 1 ) T m + n = 2 d ( n + m 1 ) T_(m+n)=2d(n+m-1)T_{m+n} = 2d(n+m-1)Tm+n=2d(n+m1)
Since a = d ( n + m 1 ) a = d ( n + m 1 ) a=d(n+m-1)a = d(n+m-1)a=d(n+m1), this implies that T m + n = 0 T m + n = 0 T_(m+n)=0T_{m+n} = 0Tm+n=0.

Conclusion:

We have shown that the ( m + n ) th ( m + n ) th (m+n)^(“th”)(m+n)^{\text{th}}(m+n)th term of the A.P. is zero. T m + n = 0 T m + n = 0 T_(m+n)=0\boxed{T_{m+n} = 0}Tm+n=0.

Question:-14

Show that:

i) lim n 0 | x | x lim n 0 | x | x lim_(n rarr0)(|x|)/(x)\lim_{n \to 0} \frac{|x|}{x}limn0|x|x does not exist
ii) f ( x ) = | x | f ( x ) = | x | f(x)=|x|\mathrm{f}(x) = |x|f(x)=|x| is continuous at x = 0 x = 0 x=0x = 0x=0.

Answer:

Let’s analyze both statements one by one:

i) lim x 0 | x | x lim x 0 | x | x lim_(x rarr0)(|x|)/(x)\lim_{x \to 0} \frac{|x|}{x}limx0|x|x does not exist

The expression | x | x | x | x (|x|)/(x)\frac{|x|}{x}|x|x is defined as:
| x | x = { 1 , if x > 0 , 1 , if x < 0. | x | x = 1 ,      if x > 0 , 1 ,      if x < 0. (|x|)/(x)={[1″,”,”if “x > 0″,”],[-1″,”,”if “x < 0.]:}\frac{|x|}{x} = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{if } x < 0. \end{cases}|x|x={1,if x>0,1,if x<0.
We now check the limit from both sides as x 0 x 0 x rarr0x \to 0x0:
  • As x 0 + x 0 + x rarr0^(+)x \to 0^+x0+ (approaching 0 from the right or positive side):
lim x 0 + | x | x = lim x 0 + x x = 1 lim x 0 + | x | x = lim x 0 + x x = 1 lim_(x rarr0^(+))(|x|)/(x)=lim_(x rarr0^(+))(x)/(x)=1\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1limx0+|x|x=limx0+xx=1
  • As x 0 x 0 x rarr0^(-)x \to 0^-x0 (approaching 0 from the left or negative side):
lim x 0 | x | x = lim x 0 x x = 1 lim x 0 | x | x = lim x 0 x x = 1 lim_(x rarr0^(-))(|x|)/(x)=lim_(x rarr0^(-))(-x)/(x)=-1\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1limx0|x|x=limx0xx=1
Since the left-hand limit ( 1 1 -1-11) and the right-hand limit ( 1 1 111) are not equal, the limit does not exist. Hence:
lim x 0 | x | x does not exist. lim x 0 | x | x does not exist. lim_(x rarr0)(|x|)/(x)” does not exist.”\lim_{x \to 0} \frac{|x|}{x} \text{ does not exist.}limx0|x|x does not exist.
Conclusion for part i:
The statement is true because the limit does not exist due to different values from the left and right sides of 0.

ii) f ( x ) = | x | f ( x ) = | x | f(x)=|x|\mathrm{f}(x) = |x|f(x)=|x| is continuous at x = 0 x = 0 x=0x = 0x=0

To check whether the function f ( x ) = | x | f ( x ) = | x | f(x)=|x|f(x) = |x|f(x)=|x| is continuous at x = 0 x = 0 x=0x = 0x=0, we need to verify the following three conditions for continuity at x = 0 x = 0 x=0x = 0x=0:
  1. f ( 0 ) f ( 0 ) f(0)f(0)f(0) is defined.
  2. lim x 0 f ( x ) lim x 0 f ( x ) lim_(x rarr0)f(x)\lim_{x \to 0} f(x)limx0f(x) exists.
  3. lim x 0 f ( x ) = f ( 0 ) lim x 0 f ( x ) = f ( 0 ) lim_(x rarr0)f(x)=f(0)\lim_{x \to 0} f(x) = f(0)limx0f(x)=f(0).
Let’s check each condition:
  • Step 1: Is f ( 0 ) f ( 0 ) f(0)f(0)f(0) defined?
    The function f ( x ) = | x | f ( x ) = | x | f(x)=|x|f(x) = |x|f(x)=|x| is defined for all real x x xxx, so:
    f ( 0 ) = | 0 | = 0 f ( 0 ) = | 0 | = 0 f(0)=|0|=0f(0) = |0| = 0f(0)=|0|=0
  • Step 2: Does lim x 0 f ( x ) lim x 0 f ( x ) lim_(x rarr0)f(x)\lim_{x \to 0} f(x)limx0f(x) exist?
    The limit of f ( x ) = | x | f ( x ) = | x | f(x)=|x|f(x) = |x|f(x)=|x| as x 0 x 0 x rarr0x \to 0x0 from both sides is:
    lim x 0 + | x | = 0 and lim x 0 | x | = 0 lim x 0 + | x | = 0 and lim x 0 | x | = 0 lim_(x rarr0^(+))|x|=0quad”and”quadlim_(x rarr0^(-))|x|=0\lim_{x \to 0^+} |x| = 0 \quad \text{and} \quad \lim_{x \to 0^-} |x| = 0limx0+|x|=0andlimx0|x|=0
    Since both the left-hand and right-hand limits are equal, the overall limit exists and is:
    lim x 0 | x | = 0 lim x 0 | x | = 0 lim_(x rarr0)|x|=0\lim_{x \to 0} |x| = 0limx0|x|=0
  • Step 3: Is lim x 0 f ( x ) = f ( 0 ) lim x 0 f ( x ) = f ( 0 ) lim_(x rarr0)f(x)=f(0)\lim_{x \to 0} f(x) = f(0)limx0f(x)=f(0)?
    We have:
    lim x 0 | x | = 0 = f ( 0 ) lim x 0 | x | = 0 = f ( 0 ) lim_(x rarr0)|x|=0=f(0)\lim_{x \to 0} |x| = 0 = f(0)limx0|x|=0=f(0)
Since all three conditions for continuity are satisfied, the function f ( x ) = | x | f ( x ) = | x | f(x)=|x|f(x) = |x|f(x)=|x| is continuous at x = 0 x = 0 x=0x = 0x=0.
Conclusion for part ii:
The statement is true because f ( x ) = | x | f ( x ) = | x | f(x)=|x|f(x) = |x|f(x)=|x| is continuous at x = 0 x = 0 x=0x = 0x=0.

Question:-15

Suriti wants to invest at most 12000 in saving certificates and National Saving Bonds. She has to invest at least 2000 in Saving certificates and at least 4000 in National Saving Bonds. If Rate of Interest on saving certificates is 8 % 8 % 8%8\%8% per annum and rate of interest on National Saving Bonds is 10 % 10 % 10%10\%10% per annum, how much money should she invest to earn maximum yearly income? Find also the maximum yearly income.

Answer:

We are tasked with maximizing the yearly income Suriti can earn by investing in saving certificates and National Saving Bonds, subject to certain constraints.

Let:

  • x x xxx be the amount (in dollars) she invests in saving certificates.
  • y y yyy be the amount (in dollars) she invests in National Saving Bonds.

Given Constraints:

  1. The total investment cannot exceed 12,000:
    x + y 12000 x + y 12000 x+y <= 12000x + y \leq 12000x+y12000
  2. The amount invested in saving certificates must be at least 2,000:
    x 2000 x 2000 x >= 2000x \geq 2000x2000
  3. The amount invested in National Saving Bonds must be at least 4,000:
    y 4000 y 4000 y >= 4000y \geq 4000y4000

Objective:

The yearly income is determined by the interest earned from both investments. The interest from:
  • Saving certificates is 8 % 8 % 8%8\%8% per annum.
  • National Saving Bonds is 10 % 10 % 10%10\%10% per annum.
The total yearly income I ( x , y ) I ( x , y ) I(x,y)I(x, y)I(x,y) is:
I ( x , y ) = 0.08 x + 0.10 y I ( x , y ) = 0.08 x + 0.10 y I(x,y)=0.08 x+0.10 yI(x, y) = 0.08x + 0.10yI(x,y)=0.08x+0.10y
We aim to maximize I ( x , y ) I ( x , y ) I(x,y)I(x, y)I(x,y), subject to the constraints.

Step 1: Write the problem in a structured form

We need to maximize:
I ( x , y ) = 0.08 x + 0.10 y I ( x , y ) = 0.08 x + 0.10 y I(x,y)=0.08 x+0.10 yI(x, y) = 0.08x + 0.10yI(x,y)=0.08x+0.10y
Subject to the following constraints:
x + y 12000 x + y 12000 x+y <= 12000x + y \leq 12000x+y12000
x 2000 x 2000 x >= 2000x \geq 2000x2000
y 4000 y 4000 y >= 4000y \geq 4000y4000

Step 2: Identify the feasible region

The constraints define a feasible region in the x x xxx y y yyy plane. The region is bounded by:
  1. x + y 12000 x + y 12000 x+y <= 12000x + y \leq 12000x+y12000
  2. x 2000 x 2000 x >= 2000x \geq 2000x2000
  3. y 4000 y 4000 y >= 4000y \geq 4000y4000

Step 3: Solve for the vertices of the feasible region

To find the vertices of the feasible region, we solve for the intersection points of the boundary lines.
  1. Intersection of x = 2000 x = 2000 x=2000x = 2000x=2000 and x + y = 12000 x + y = 12000 x+y=12000x + y = 12000x+y=12000:
    Substituting x = 2000 x = 2000 x=2000x = 2000x=2000 into x + y = 12000 x + y = 12000 x+y=12000x + y = 12000x+y=12000:
    2000 + y = 12000 y = 10000 2000 + y = 12000 y = 10000 2000+y=12000Longrightarrowy=100002000 + y = 12000 \implies y = 100002000+y=12000y=10000
    So, one vertex is ( 2000 , 10000 ) ( 2000 , 10000 ) (2000,10000)(2000, 10000)(2000,10000).
  2. Intersection of y = 4000 y = 4000 y=4000y = 4000y=4000 and x + y = 12000 x + y = 12000 x+y=12000x + y = 12000x+y=12000:
    Substituting y = 4000 y = 4000 y=4000y = 4000y=4000 into x + y = 12000 x + y = 12000 x+y=12000x + y = 12000x+y=12000:
    x + 4000 = 12000 x = 8000 x + 4000 = 12000 x = 8000 x+4000=12000Longrightarrowx=8000x + 4000 = 12000 \implies x = 8000x+4000=12000x=8000
    So, another vertex is ( 8000 , 4000 ) ( 8000 , 4000 ) (8000,4000)(8000, 4000)(8000,4000).
  3. Intersection of x = 2000 x = 2000 x=2000x = 2000x=2000 and y = 4000 y = 4000 y=4000y = 4000y=4000:
    This gives the point ( 2000 , 4000 ) ( 2000 , 4000 ) (2000,4000)(2000, 4000)(2000,4000).

Step 4: Calculate the objective function at each vertex

Now, evaluate I ( x , y ) = 0.08 x + 0.10 y I ( x , y ) = 0.08 x + 0.10 y I(x,y)=0.08 x+0.10 yI(x, y) = 0.08x + 0.10yI(x,y)=0.08x+0.10y at each of the vertices:
  1. At ( 2000 , 10000 ) ( 2000 , 10000 ) (2000,10000)(2000, 10000)(2000,10000):
    I ( 2000 , 10000 ) = 0.08 ( 2000 ) + 0.10 ( 10000 ) = 160 + 1000 = 1160 I ( 2000 , 10000 ) = 0.08 ( 2000 ) + 0.10 ( 10000 ) = 160 + 1000 = 1160 I(2000,10000)=0.08(2000)+0.10(10000)=160+1000=1160I(2000, 10000) = 0.08(2000) + 0.10(10000) = 160 + 1000 = 1160I(2000,10000)=0.08(2000)+0.10(10000)=160+1000=1160
  2. At ( 8000 , 4000 ) ( 8000 , 4000 ) (8000,4000)(8000, 4000)(8000,4000):
    I ( 8000 , 4000 ) = 0.08 ( 8000 ) + 0.10 ( 4000 ) = 640 + 400 = 1040 I ( 8000 , 4000 ) = 0.08 ( 8000 ) + 0.10 ( 4000 ) = 640 + 400 = 1040 I(8000,4000)=0.08(8000)+0.10(4000)=640+400=1040I(8000, 4000) = 0.08(8000) + 0.10(4000) = 640 + 400 = 1040I(8000,4000)=0.08(8000)+0.10(4000)=640+400=1040
  3. At ( 2000 , 4000 ) ( 2000 , 4000 ) (2000,4000)(2000, 4000)(2000,4000):
    I ( 2000 , 4000 ) = 0.08 ( 2000 ) + 0.10 ( 4000 ) = 160 + 400 = 560 I ( 2000 , 4000 ) = 0.08 ( 2000 ) + 0.10 ( 4000 ) = 160 + 400 = 560 I(2000,4000)=0.08(2000)+0.10(4000)=160+400=560I(2000, 4000) = 0.08(2000) + 0.10(4000) = 160 + 400 = 560I(2000,4000)=0.08(2000)+0.10(4000)=160+400=560

Step 5: Conclusion

The maximum yearly income occurs at the point ( 2000 , 10000 ) ( 2000 , 10000 ) (2000,10000)(2000, 10000)(2000,10000), and the maximum yearly income is:
1160 1160 1160\boxed{1160}1160

Final Answer:

Suriti should invest $2000 in saving certificates and $10000 in National Saving Bonds to earn the maximum yearly income of $1160.

Question:-16

A spherical balloon is being inflated at the rate of 900 cm 3 / sec 900 cm 3 / sec 900cm^(3)//sec900 \, \mathrm{cm}^3/\mathrm{sec}900cm3/sec. How fast is the radius of the balloon increasing when the radius is 15 cm?

Answer:

We are given that the volume of the spherical balloon is increasing at the rate of 900 cm 3 / sec 900 cm 3 / sec 900cm^(3)//sec900 \, \mathrm{cm}^3/\mathrm{sec}900cm3/sec, and we need to find how fast the radius of the balloon is increasing when the radius is 15 cm.

Step 1: Formula for the volume of a sphere

The volume V V VVV of a sphere with radius r r rrr is given by the formula:
V = 4 3 π r 3 V = 4 3 π r 3 V=(4)/(3)pir^(3)V = \frac{4}{3} \pi r^3V=43πr3

Step 2: Differentiate with respect to time

We are interested in how the radius changes over time, so we differentiate both sides of the volume equation with respect to time t t ttt:
d V d t = 4 π r 2 d r d t d V d t = 4 π r 2 d r d t (dV)/(dt)=4pir^(2)(dr)/(dt)\frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt}dVdt=4πr2drdt
Where:
  • d V d t d V d t (dV)/(dt)\frac{dV}{dt}dVdt is the rate of change of volume (given as 900 cm 3 / sec 900 cm 3 / sec 900cm^(3)//sec900 \, \mathrm{cm}^3/\mathrm{sec}900cm3/sec),
  • d r d t d r d t (dr)/(dt)\frac{dr}{dt}drdt is the rate of change of the radius, which we need to find.

Step 3: Substitute the given values

We are given that:
  • d V d t = 900 cm 3 / sec d V d t = 900 cm 3 / sec (dV)/(dt)=900cm^(3)//sec\frac{dV}{dt} = 900 \, \mathrm{cm}^3/\mathrm{sec}dVdt=900cm3/sec,
  • r = 15 cm r = 15 cm r=15cmr = 15 \, \mathrm{cm}r=15cm.
Substitute these values into the differentiated equation:
900 = 4 π ( 15 ) 2 d r d t 900 = 4 π ( 15 ) 2 d r d t 900=4pi(15)^(2)(dr)/(dt)900 = 4 \pi (15)^2 \frac{dr}{dt}900=4π(15)2drdt

Step 4: Solve for d r d t d r d t (dr)/(dt)\frac{dr}{dt}drdt

Simplify the equation:
900 = 4 π 225 d r d t 900 = 4 π 225 d r d t 900=4pi*225*(dr)/(dt)900 = 4 \pi \cdot 225 \cdot \frac{dr}{dt}900=4π225drdt
900 = 900 π d r d t 900 = 900 π d r d t 900=900 pi*(dr)/(dt)900 = 900 \pi \cdot \frac{dr}{dt}900=900πdrdt
Now, solve for d r d t d r d t (dr)/(dt)\frac{dr}{dt}drdt:
d r d t = 900 900 π = 1 π cm / sec d r d t = 900 900 π = 1 π cm / sec (dr)/(dt)=(900)/(900 pi)=(1)/(pi)cm//sec\frac{dr}{dt} = \frac{900}{900\pi} = \frac{1}{\pi} \, \mathrm{cm/sec}drdt=900900π=1πcm/sec

Final Answer:

The radius of the balloon is increasing at a rate of 1 π cm / sec 1 π cm / sec (1)/(pi)cm//sec\frac{1}{\pi} \, \mathrm{cm/sec}1πcm/sec when the radius is 15 cm.

Search Free Solved Assignment

Just Type atleast 3 letters of your Paper Code

Scroll to Top
Scroll to Top