Free BECC-102 Solved Assignment | July 2023-January 2024 | Mathematical Methods in Economics-I | IGNOU

BECC-102 Solved Assignment

  1. A monopolist faces the demand curve Q = 60 P / 2 Q = 60 P / 2 Q=60-P//2Q=60-P / 2Q=60P/2. The cost function is C = Q 2 C = Q 2 C=Q^(2)C=Q^2C=Q2. Find the output that maximises this monopolist’s profits. What are the prices at profits and that output? Find the elasticity of demand at the profit maximising output.
OR
A monopolist firm has the following total revenue and total cost functions:
R = mQ 2 + nQ ( m , n > 0 ) C = a Q 2 + bQ + c ( a , b , c > 0 ) R = mQ 2 + nQ      ( m , n > 0 ) C = a Q 2 + bQ + c      ( a , b , c > 0 ) {:[R=-mQ^(2)+nQ,(m”,”n > 0)],[C=aQ^(2)+bQ+c,(a”,”b”,”c > 0)]:}\begin{array}{ll} \mathrm{R}=-\mathrm{mQ}^2+\mathrm{nQ} & (\mathrm{m}, \mathrm{n}>0) \\ \mathrm{C}=\mathrm{a} \mathrm{Q}^2+\mathrm{bQ}+\mathrm{c} & (\mathrm{a}, \mathrm{b}, \mathrm{c}>0) \end{array}R=mQ2+nQ(m,n>0)C=aQ2+bQ+c(a,b,c>0)
Suppose that the government plans to levy an excise tax on the product of this firm and wishes to maximise the total tax revenue T T TTT from this source. What tax rate t t ttt (rupees per unit of output) should the government choose?
2. A firm in a perfectly competitive market has the following cost function:
C = 1 / 3 q 3 5 q 2 + 30 q + 10 C = 1 / 3 q 3 5 q 2 + 30 q + 10 C=1//3q^(3)-5q^(2)+30 q+10C=1 / 3 q^3-5 q^2+30 q+10C=1/3q35q2+30q+10
If the market-clearing price is 6 , obtain the profit maximising level of output.
OR
Given the demand function P D = 27 Q 2 P D = 27 Q 2 P_(D)=27-Q^(2)P_D=27-Q^2PD=27Q2 and supply function P S = 2 Q + 3 P S = 2 Q + 3 P_(S)=2Q+3P_S=2 Q+3PS=2Q+3. Assuming perfect competition, find (i) the consumers’ surplus, (ii) the producers’ surplus.
Assignment B
Answer the following Middle Category questions in about 250 words each. Each question carries 10 marks. Word limit will not apply in the case of numerical questions.
3 × 10 = 30 3 × 10 = 30 3xx10=303 \times 10=303×10=30
  1. Given the total cost function T C = 9 q 2 + 2 q + 8100 T C = 9 q 2 + 2 q + 8100 TC=9q^(2)+2q+8100T C=9 q^2+2 q+8100TC=9q2+2q+8100
    (a) Find marginal cost (MC) and average coat (AC) as functions of q q qqq
    (b) Show that when MC < AC , AC MC < AC , AC MC < AC,AC\mathrm{MC}<\mathrm{AC}, \mathrm{AC}MC<AC,AC is falling, and when MC > AC , AC MC > AC , AC MC > AC,AC\mathrm{MC}>\mathrm{AC}, \mathrm{AC}MC>AC,AC is rising
OR
Given the aggregate consumption function C = 0.9 Y + 100 C = 0.9 Y + 100 C=0.9Y+100\mathrm{C}=0.9 \mathrm{Y}+100C=0.9Y+100 (where C is aggregate consumption and Y Y YYY is aggregate income)
(a) Find the marginal propensity to consume (MPC) and average propensity to consume (APC)
(b) Find the elasticity of consumption with respect to income, and show that it equals MPC/APC
4 Let X = { 1 , 3 , 5 } X = { 1 , 3 , 5 } X={1,3,5}X=\{1,3,5\}X={1,3,5} and Y = { 2 , 4 , 6 } Y = { 2 , 4 , 6 } Y={2,4,6}Y=\{2,4,6\}Y={2,4,6}
Find, X U Y X U Y XUYX U YXUY and the Cartesian Product of X X XXX and Y Y YYY.
OR
Given A = { 1 , 2 } , , B = { 3 , 4 , 5 } A = { 1 , 2 } , , B = { 3 , 4 , 5 } A={1,2},,B={3,4,5}A=\{1,2\},, B=\{3,4,5\}A={1,2},,B={3,4,5} and C = { 3 , 5 , 6 , 7 , 8 } C = { 3 , 5 , 6 , 7 , 8 } C={3,5,6,7,8}C=\{3,5,6,7,8\}C={3,5,6,7,8}, show that
(i) A B = B A A B = B A A uu B=B uu AA \cup B=B \cup AAB=BA
(ii) ( A B ) C = A ( B C ) ( A B ) C = A ( B C ) (AnnB)nnC=Ann(BnnC)(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})(AB)C=A(BC)
5. Create a truth table for
(a) A B A B A<=>BA \Leftrightarrow BAB
(b) the converse of ‘ A A AAA implies B B BBB ‘.
OR
Find the Euclidean distance between
(i) ( 2 , 3 ) ( 2 , 3 ) (2,3)(2,3)(2,3) and ( 4 , 1 ) ( 4 , 1 ) (4,1)(4,1)(4,1)
(ii) ( 2 , 3 , 4 ) ( 2 , 3 , 4 ) (2,3,4)(2,3,4)(2,3,4) and ( 4 , 1 , 5 ) ( 4 , 1 , 5 ) (4,1,-5)(4,1,-5)(4,1,5)
Assignment C C C\mathbf{C}C
Answer the following Short Category questions in about 100 words each
5 × 6 = 30 5 × 6 = 30 5xx6=305 \times 6=305×6=30
6. What is a point of inflexion ? Does f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x)=x^3f(x)=x3 have a point of inflexion at x = 0 x = 0 x=0x=0x=0 ?
7. Find the integral of
( y 2 1 ) d x 2 d y = 0 y 2 1 d x 2 d y = 0 (y^(2)-1)dx-2dy=0\left(y^2-1\right) d x-2 d y=0(y21)dx2dy=0
  1. Evaluate the Limits of
X 2 X 2 X ( X 2 ) As X 2 X 2 X 2 X ( X 2 )  As  X 2 (X^(2)-X-2)/(X(X-2))” As “X rarr2\frac{X^2-X-2}{X(X-2)} \text { As } X \rightarrow 2X2X2X(X2) As X2
  1. If the demand function for a good is Q = 140 5 P Q = 140 5 P Q=140-5P\mathrm{Q}=140-5 \mathrm{P}Q=1405P, what is the price elasticity of demand at P = P = P=\mathrm{P}=P= 15 rupees?
  2. How long will it take a given sum of money (Say in Rupees) to increase 4 times its present value when compounded half yearly at 7 % 7 % 7%7 \%7% rate of interest?

Expert Answer

Question:-1

A monopolist faces the demand curve Q = 60 P / 2 Q = 60 P / 2 Q=60-P//2Q=60-P / 2Q=60P/2. The cost function is C = Q 2 C = Q 2 C=Q^(2)C=Q^2C=Q2. Find the output that maximises this monopolist’s profits. What are the prices at profits and that output? Find the elasticity of demand at the profit-maximising output.

Answer:

To solve this problem, we need to find the profit-maximizing output for the monopolist, the price at that output, and the elasticity of demand at the profit-maximizing output. Let’s go through this step by step.

Step 1: Express the Revenue Function

The demand curve is given by:
Q = 60 P 2 Q = 60 P 2 Q=60-(P)/(2)Q = 60 – \frac{P}{2}Q=60P2
We can rearrange this to express the price P P PPP as a function of quantity Q Q QQQ:
P = 120 2 Q P = 120 2 Q P=120-2QP = 120 – 2QP=1202Q
Revenue R R RRR is given by:
R = P × Q = ( 120 2 Q ) × Q = 120 Q 2 Q 2 R = P × Q = ( 120 2 Q ) × Q = 120 Q 2 Q 2 R=P xx Q=(120-2Q)xx Q=120 Q-2Q^(2)R = P \times Q = (120 – 2Q) \times Q = 120Q – 2Q^2R=P×Q=(1202Q)×Q=120Q2Q2

Step 2: Express the Cost Function

The cost function is given by:
C ( Q ) = Q 2 C ( Q ) = Q 2 C(Q)=Q^(2)C(Q) = Q^2C(Q)=Q2

Step 3: Express the Profit Function

Profit Π Π Pi\PiΠ is revenue minus cost:
Π ( Q ) = R ( Q ) C ( Q ) = ( 120 Q 2 Q 2 ) Q 2 = 120 Q 3 Q 2 Π ( Q ) = R ( Q ) C ( Q ) = ( 120 Q 2 Q 2 ) Q 2 = 120 Q 3 Q 2 Pi(Q)=R(Q)-C(Q)=(120 Q-2Q^(2))-Q^(2)=120 Q-3Q^(2)\Pi(Q) = R(Q) – C(Q) = (120Q – 2Q^2) – Q^2 = 120Q – 3Q^2Π(Q)=R(Q)C(Q)=(120Q2Q2)Q2=120Q3Q2

Step 4: Find the Profit-Maximizing Output

To maximize profit, we take the derivative of the profit function with respect to Q Q QQQ and set it equal to zero:
d Π d Q = 120 6 Q = 0 d Π d Q = 120 6 Q = 0 (d Pi)/(dQ)=120-6Q=0\frac{d\Pi}{dQ} = 120 – 6Q = 0dΠdQ=1206Q=0
Solving for Q Q QQQ:
Q = 120 6 = 20 Q = 120 6 = 20 Q=(120)/(6)=20Q = \frac{120}{6} = 20Q=1206=20
So, the profit-maximizing output is Q = 20 Q = 20 Q=20Q = 20Q=20.

Step 5: Find the Price at Profit-Maximizing Output

Substitute Q = 20 Q = 20 Q=20Q = 20Q=20 into the demand function to find the corresponding price P P PPP:
P = 120 2 ( 20 ) = 120 40 = 80 P = 120 2 ( 20 ) = 120 40 = 80 P=120-2(20)=120-40=80P = 120 – 2(20) = 120 – 40 = 80P=1202(20)=12040=80
So, the profit-maximizing price is P = 80 P = 80 P=80P = 80P=80.

Step 6: Calculate the Profit at the Profit-Maximizing Output

Substitute Q = 20 Q = 20 Q=20Q = 20Q=20 into the profit function:
Π ( 20 ) = 120 ( 20 ) 3 ( 20 ) 2 = 2400 1200 = 1200 Π ( 20 ) = 120 ( 20 ) 3 ( 20 ) 2 = 2400 1200 = 1200 Pi(20)=120(20)-3(20)^(2)=2400-1200=1200\Pi(20) = 120(20) – 3(20)^2 = 2400 – 1200 = 1200Π(20)=120(20)3(20)2=24001200=1200
So, the maximum profit is Π = 1200 Π = 1200 Pi=1200\Pi = 1200Π=1200.

Step 7: Calculate the Elasticity of Demand

The price elasticity of demand E E EEE is given by:
E = d Q d P × P Q E = d Q d P × P Q E=(dQ)/(dP)xx(P)/(Q)E = \frac{dQ}{dP} \times \frac{P}{Q}E=dQdP×PQ
First, we find d Q d P d Q d P (dQ)/(dP)\frac{dQ}{dP}dQdP from the demand curve Q = 60 P 2 Q = 60 P 2 Q=60-(P)/(2)Q = 60 – \frac{P}{2}Q=60P2:
d Q d P = 1 2 d Q d P = 1 2 (dQ)/(dP)=-(1)/(2)\frac{dQ}{dP} = -\frac{1}{2}dQdP=12
Now, substitute the values P = 80 P = 80 P=80P = 80P=80 and Q = 20 Q = 20 Q=20Q = 20Q=20 into the elasticity formula:
E = 1 2 × 80 20 = 1 2 × 4 = 2 E = 1 2 × 80 20 = 1 2 × 4 = 2 E=-(1)/(2)xx(80)/(20)=-(1)/(2)xx4=-2E = -\frac{1}{2} \times \frac{80}{20} = -\frac{1}{2} \times 4 = -2E=12×8020=12×4=2
So, the elasticity of demand at the profit-maximizing output is E = 2 E = 2 E=-2E = -2E=2.

Summary

  • Profit-maximizing output: Q = 20 Q = 20 Q=20Q = 20Q=20
  • Profit-maximizing price: P = 80 P = 80 P=80P = 80P=80
  • Maximum profit: Π = 1200 Π = 1200 Pi=1200\Pi = 1200Π=1200
  • Elasticity of demand at profit-maximizing output: E = 2 E = 2 E=-2E = -2E=2

Question:-1 (OR)

A monopolist firm has the following total revenue and total cost functions:

R = mQ 2 + nQ ( m , n > 0 ) C = a Q 2 + bQ + c ( a , b , c > 0 ) R = mQ 2 + nQ      ( m , n > 0 ) C = a Q 2 + bQ + c      ( a , b , c > 0 ) {:[R=-mQ^(2)+nQ,(m”,”n > 0)],[C=aQ^(2)+bQ+c,(a”,”b”,”c > 0)]:}\begin{array}{ll} \mathrm{R}=-\mathrm{mQ}^2+\mathrm{nQ} & (\mathrm{m}, \mathrm{n}>0) \\ \mathrm{C}=\mathrm{a} \mathrm{Q}^2+\mathrm{bQ}+\mathrm{c} & (\mathrm{a}, \mathrm{b}, \mathrm{c}>0) \end{array}R=mQ2+nQ(m,n>0)C=aQ2+bQ+c(a,b,c>0)
Suppose that the government plans to levy an excise tax on the product of this firm and wishes to maximise the total tax revenue T T TTT from this source. What tax rate t t ttt (rupees per unit of output) should the government choose?

Answer:

To determine the optimal excise tax rate t t ttt that maximizes the total tax revenue T T TTT for the government, we need to follow these steps:
  1. Understand the firm’s profit function and how the tax affects it.
  2. Find the firm’s profit-maximizing output under the tax.
  3. Determine the total tax revenue as a function of the tax rate t t ttt.
  4. Maximize the total tax revenue with respect to t t ttt.

Step 1: Understand the Firm’s Profit Function

Given the total revenue ( R R RRR) and total cost ( C C CCC) functions:
R = m Q 2 + n Q , C = a Q 2 + b Q + c R = m Q 2 + n Q , C = a Q 2 + b Q + c R=-mQ^(2)+nQ,quad C=aQ^(2)+bQ+cR = -mQ^2 + nQ, \quad C = aQ^2 + bQ + cR=mQ2+nQ,C=aQ2+bQ+c
where m , n , a , b , m , n , a , b , m,n,a,b,m, n, a, b,m,n,a,b, and c c ccc are positive constants. If an excise tax t t ttt per unit of output is imposed, the cost function becomes:
C t = a Q 2 + b Q + c + t Q C t = a Q 2 + b Q + c + t Q C_(t)=aQ^(2)+bQ+c+tQC_t = aQ^2 + bQ + c + tQCt=aQ2+bQ+c+tQ

Step 2: Firm’s Profit Function with Tax

The firm’s profit Π Π Pi\PiΠ under the tax is:
Π ( Q ) = R C t = ( m Q 2 + n Q ) ( a Q 2 + b Q + c + t Q ) Π ( Q ) = R C t = ( m Q 2 + n Q ) ( a Q 2 + b Q + c + t Q ) Pi(Q)=R-C_(t)=(-mQ^(2)+nQ)-(aQ^(2)+bQ+c+tQ)\Pi(Q) = R – C_t = (-mQ^2 + nQ) – (aQ^2 + bQ + c + tQ)Π(Q)=RCt=(mQ2+nQ)(aQ2+bQ+c+tQ)
Simplifying this, we get:
Π ( Q ) = m Q 2 + n Q a Q 2 b Q c t Q Π ( Q ) = m Q 2 + n Q a Q 2 b Q c t Q Pi(Q)=-mQ^(2)+nQ-aQ^(2)-bQ-c-tQ\Pi(Q) = -mQ^2 + nQ – aQ^2 – bQ – c – tQΠ(Q)=mQ2+nQaQ2bQctQ
Π ( Q ) = ( m + a ) Q 2 + ( n b t ) Q c Π ( Q ) = ( m + a ) Q 2 + ( n b t ) Q c Pi(Q)=-(m+a)Q^(2)+(n-b-t)Q-c\Pi(Q) = -(m + a)Q^2 + (n – b – t)Q – cΠ(Q)=(m+a)Q2+(nbt)Qc

Step 3: Find the Profit-Maximizing Output

To find the profit-maximizing output Q Q Q^(**)Q^*Q, we take the derivative of Π ( Q ) Π ( Q ) Pi(Q)\Pi(Q)Π(Q) with respect to Q Q QQQ and set it equal to zero:
d Π d Q = 2 ( m + a ) Q + ( n b t ) = 0 d Π d Q = 2 ( m + a ) Q + ( n b t ) = 0 (d Pi)/(dQ)=-2(m+a)Q+(n-b-t)=0\frac{d\Pi}{dQ} = -2(m + a)Q + (n – b – t) = 0dΠdQ=2(m+a)Q+(nbt)=0
Solving for Q Q QQQ:
Q = n b t 2 ( m + a ) Q = n b t 2 ( m + a ) Q^(**)=(n-b-t)/(2(m+a))Q^* = \frac{n – b – t}{2(m + a)}Q=nbt2(m+a)

Step 4: Determine Total Tax Revenue

Total tax revenue T T TTT is given by the tax rate t t ttt multiplied by the quantity produced Q Q Q^(**)Q^*Q:
T ( t ) = t Q = t ( n b t 2 ( m + a ) ) T ( t ) = t Q = t n b t 2 ( m + a ) T(t)=t*Q^(**)=t((n-b-t)/(2(m+a)))T(t) = t \cdot Q^* = t \left(\frac{n – b – t}{2(m + a)}\right)T(t)=tQ=t(nbt2(m+a))
T ( t ) = t ( n b t ) 2 ( m + a ) T ( t ) = t ( n b t ) 2 ( m + a ) T(t)=(t(n-b-t))/(2(m+a))T(t) = \frac{t(n – b – t)}{2(m + a)}T(t)=t(nbt)2(m+a)

Step 5: Maximize Total Tax Revenue with Respect to t t ttt

To find the tax rate t t ttt that maximizes T ( t ) T ( t ) T(t)T(t)T(t), take the derivative of T ( t ) T ( t ) T(t)T(t)T(t) with respect to t t ttt and set it equal to zero:
d T d t = n b 2 t 2 ( m + a ) = 0 d T d t = n b 2 t 2 ( m + a ) = 0 (dT)/(dt)=(n-b-2t)/(2(m+a))=0\frac{dT}{dt} = \frac{n – b – 2t}{2(m + a)} = 0dTdt=nb2t2(m+a)=0
Solving for t t ttt:
n b 2 t = 0 n b 2 t = 0 n-b-2t=0n – b – 2t = 0nb2t=0
2 t = n b 2 t = n b 2t=n-b2t = n – b2t=nb
t = n b 2 t = n b 2 t=(n-b)/(2)t = \frac{n – b}{2}t=nb2

Conclusion

The tax rate t t ttt that the government should choose to maximize total tax revenue from this monopolist firm is:
t = n b 2 t = n b 2 t=(n-b)/(2)t = \frac{n – b}{2}t=nb2
This result shows that the optimal excise tax rate is half of the difference between the coefficient n n nnn of the linear term in the revenue function and the coefficient b b bbb of the linear term in the cost function.

Question:-2

A firm in a perfectly competitive market has the following cost function:

C = 1 / 3 q 3 5 q 2 + 30 q + 10 C = 1 / 3 q 3 5 q 2 + 30 q + 10 C=1//3q^(3)-5q^(2)+30 q+10C=1 / 3 q^3-5 q^2+30 q+10C=1/3q35q2+30q+10
If the market-clearing price is 6, obtain the profit-maximising level of output.

Answer:

To find the profit-maximizing level of output for a firm in a perfectly competitive market, we need to determine the output level q q qqq where marginal cost (MC) equals the market-clearing price P P PPP.

Step 1: Calculate Marginal Cost (MC)

Given the total cost function:
C ( q ) = 1 3 q 3 5 q 2 + 30 q + 10 C ( q ) = 1 3 q 3 5 q 2 + 30 q + 10 C(q)=(1)/(3)q^(3)-5q^(2)+30 q+10C(q) = \frac{1}{3} q^3 – 5q^2 + 30q + 10C(q)=13q35q2+30q+10
The marginal cost (MC) is the derivative of the total cost function with respect to q q qqq:
M C = d C d q M C = d C d q MC=(dC)/(dq)MC = \frac{dC}{dq}MC=dCdq
Calculating the derivative:
M C = d d q ( 1 3 q 3 5 q 2 + 30 q + 10 ) M C = d d q 1 3 q 3 5 q 2 + 30 q + 10 MC=(d)/(dq)((1)/(3)q^(3)-5q^(2)+30 q+10)MC = \frac{d}{dq} \left(\frac{1}{3} q^3 – 5q^2 + 30q + 10\right)MC=ddq(13q35q2+30q+10)
M C = q 2 10 q + 30 M C = q 2 10 q + 30 MC=q^(2)-10 q+30MC = q^2 – 10q + 30MC=q210q+30

Step 2: Set Marginal Cost Equal to Market Price

In a perfectly competitive market, firms maximize profit by producing the output level where marginal cost equals the market-clearing price:
M C = P M C = P MC=PMC = PMC=P
Given that the market-clearing price P P PPP is 6, we set MC equal to 6:
q 2 10 q + 30 = 6 q 2 10 q + 30 = 6 q^(2)-10 q+30=6q^2 – 10q + 30 = 6q210q+30=6
Simplify this equation:
q 2 10 q + 30 6 = 0 q 2 10 q + 30 6 = 0 q^(2)-10 q+30-6=0q^2 – 10q + 30 – 6 = 0q210q+306=0
q 2 10 q + 24 = 0 q 2 10 q + 24 = 0 q^(2)-10 q+24=0q^2 – 10q + 24 = 0q210q+24=0

Step 3: Solve for the Profit-Maximizing Output Level q q qqq

To find the values of q q qqq, we solve the quadratic equation:
q 2 10 q + 24 = 0 q 2 10 q + 24 = 0 q^(2)-10 q+24=0q^2 – 10q + 24 = 0q210q+24=0
The quadratic formula is:
q = b ± b 2 4 a c 2 a q = b ± b 2 4 a c 2 a q=(-b+-sqrt(b^(2)-4ac))/(2a)q = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}q=b±b24ac2a
Here, a = 1 a = 1 a=1a = 1a=1, b = 10 b = 10 b=-10b = -10b=10, and c = 24 c = 24 c=24c = 24c=24. Plugging in these values:
q = ( 10 ) ± ( 10 ) 2 4 ( 1 ) ( 24 ) 2 ( 1 ) q = ( 10 ) ± ( 10 ) 2 4 ( 1 ) ( 24 ) 2 ( 1 ) q=(-(-10)+-sqrt((-10)^(2)-4(1)(24)))/(2(1))q = \frac{-(-10) \pm \sqrt{(-10)^2 – 4(1)(24)}}{2(1)}q=(10)±(10)24(1)(24)2(1)
q = 10 ± 100 96 2 q = 10 ± 100 96 2 q=(10+-sqrt(100-96))/(2)q = \frac{10 \pm \sqrt{100 – 96}}{2}q=10±100962
q = 10 ± 4 2 q = 10 ± 4 2 q=(10+-sqrt4)/(2)q = \frac{10 \pm \sqrt{4}}{2}q=10±42
q = 10 ± 2 2 q = 10 ± 2 2 q=(10+-2)/(2)q = \frac{10 \pm 2}{2}q=10±22
So, the two possible solutions for q q qqq are:
q = 10 + 2 2 = 6 and q = 10 2 2 = 4 q = 10 + 2 2 = 6 and q = 10 2 2 = 4 q=(10+2)/(2)=6quad”and”quad q=(10-2)/(2)=4q = \frac{10 + 2}{2} = 6 \quad \text{and} \quad q = \frac{10 – 2}{2} = 4q=10+22=6andq=1022=4

Step 4: Determine the Profit-Maximizing Output

To determine which of these values is the profit-maximizing output, we need to check the profit at these outputs:
The profit Π ( q ) Π ( q ) Pi(q)\Pi(q)Π(q) is given by:
Π ( q ) = R ( q ) C ( q ) = P q C ( q ) Π ( q ) = R ( q ) C ( q ) = P q C ( q ) Pi(q)=R(q)-C(q)=P*q-C(q)\Pi(q) = R(q) – C(q) = P \cdot q – C(q)Π(q)=R(q)C(q)=PqC(q)
Let’s calculate the profit for q = 4 q = 4 q=4q = 4q=4 and q = 6 q = 6 q=6q = 6q=6:
For q = 4 q = 4 q=4q = 4q=4:
C ( 4 ) = 1 3 ( 4 ) 3 5 ( 4 ) 2 + 30 ( 4 ) + 10 = 64 3 80 + 120 + 10 = 64 3 + 50 C ( 4 ) = 1 3 ( 4 ) 3 5 ( 4 ) 2 + 30 ( 4 ) + 10 = 64 3 80 + 120 + 10 = 64 3 + 50 C(4)=(1)/(3)(4)^(3)-5(4)^(2)+30(4)+10=(64)/(3)-80+120+10=(64)/(3)+50C(4) = \frac{1}{3}(4)^3 – 5(4)^2 + 30(4) + 10 = \frac{64}{3} – 80 + 120 + 10 = \frac{64}{3} + 50C(4)=13(4)35(4)2+30(4)+10=64380+120+10=643+50
C ( 4 ) = 64 + 150 3 = 214 3 71.33 C ( 4 ) = 64 + 150 3 = 214 3 71.33 C(4)=(64+150)/(3)=(214)/(3)~~71.33C(4) = \frac{64 + 150}{3} = \frac{214}{3} \approx 71.33C(4)=64+1503=214371.33
R ( 4 ) = 6 × 4 = 24 R ( 4 ) = 6 × 4 = 24 R(4)=6xx4=24R(4) = 6 \times 4 = 24R(4)=6×4=24
Π ( 4 ) = 24 71.33 = 47.33 Π ( 4 ) = 24 71.33 = 47.33 Pi(4)=24-71.33=-47.33\Pi(4) = 24 – 71.33 = -47.33Π(4)=2471.33=47.33
For q = 6 q = 6 q=6q = 6q=6:
C ( 6 ) = 1 3 ( 6 ) 3 5 ( 6 ) 2 + 30 ( 6 ) + 10 = 216 3 180 + 180 + 10 = 72 + 10 = 82 C ( 6 ) = 1 3 ( 6 ) 3 5 ( 6 ) 2 + 30 ( 6 ) + 10 = 216 3 180 + 180 + 10 = 72 + 10 = 82 C(6)=(1)/(3)(6)^(3)-5(6)^(2)+30(6)+10=(216)/(3)-180+180+10=72+10=82C(6) = \frac{1}{3}(6)^3 – 5(6)^2 + 30(6) + 10 = \frac{216}{3} – 180 + 180 + 10 = 72 + 10 = 82C(6)=13(6)35(6)2+30(6)+10=2163180+180+10=72+10=82
R ( 6 ) = 6 × 6 = 36 R ( 6 ) = 6 × 6 = 36 R(6)=6xx6=36R(6) = 6 \times 6 = 36R(6)=6×6=36
Π ( 6 ) = 36 82 = 46 Π ( 6 ) = 36 82 = 46 Pi(6)=36-82=-46\Pi(6) = 36 – 82 = -46Π(6)=3682=46
Since both profits are negative, the firm incurs a loss in both cases. However, the loss is smaller when q = 6 q = 6 q=6q = 6q=6.

Conclusion

The profit-maximizing level of output for the firm, given the market-clearing price of 6, is q = 6 q = 6 q=6q = 6q=6. While the firm incurs a loss at this output level, it is the smallest possible loss given the current market conditions and cost structure.

Question:-2 (OR)

Given the demand function P D = 27 Q 2 P D = 27 Q 2 P_(D)=27-Q^(2)P_D=27-Q^2PD=27Q2 and supply function P S = 2 Q + 3 P S = 2 Q + 3 P_(S)=2Q+3P_S=2 Q+3PS=2Q+3. Assuming perfect competition, find (i) the consumers’ surplus, (ii) the producers’ surplus.

Answer:

To find the consumer surplus and producer surplus in a perfectly competitive market, we first need to determine the equilibrium price and quantity where the demand function equals the supply function.

Step 1: Find the Equilibrium Price and Quantity

Given the demand function P D = 27 Q 2 P D = 27 Q 2 P_(D)=27-Q^(2)P_D = 27 – Q^2PD=27Q2 and the supply function P S = 2 Q + 3 P S = 2 Q + 3 P_(S)=2Q+3P_S = 2Q + 3PS=2Q+3, the equilibrium occurs where P D = P S P D = P S P_(D)=P_(S)P_D = P_SPD=PS:
27 Q 2 = 2 Q + 3 27 Q 2 = 2 Q + 3 27-Q^(2)=2Q+327 – Q^2 = 2Q + 327Q2=2Q+3
Rearrange this equation to find Q Q QQQ:
27 3 = Q 2 + 2 Q 27 3 = Q 2 + 2 Q 27-3=Q^(2)+2Q27 – 3 = Q^2 + 2Q273=Q2+2Q
24 = Q 2 + 2 Q 24 = Q 2 + 2 Q 24=Q^(2)+2Q24 = Q^2 + 2Q24=Q2+2Q
Q 2 + 2 Q 24 = 0 Q 2 + 2 Q 24 = 0 Q^(2)+2Q-24=0Q^2 + 2Q – 24 = 0Q2+2Q24=0
To solve for Q Q QQQ, we can use the quadratic formula:
Q = b ± b 2 4 a c 2 a Q = b ± b 2 4 a c 2 a Q=(-b+-sqrt(b^(2)-4ac))/(2a)Q = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}Q=b±b24ac2a
where a = 1 a = 1 a=1a = 1a=1, b = 2 b = 2 b=2b = 2b=2, and c = 24 c = 24 c=-24c = -24c=24. Plugging in these values:
Q = 2 ± 2 2 4 ( 1 ) ( 24 ) 2 ( 1 ) Q = 2 ± 2 2 4 ( 1 ) ( 24 ) 2 ( 1 ) Q=(-2+-sqrt(2^(2)-4(1)(-24)))/(2(1))Q = \frac{-2 \pm \sqrt{2^2 – 4(1)(-24)}}{2(1)}Q=2±224(1)(24)2(1)
Q = 2 ± 4 + 96 2 Q = 2 ± 4 + 96 2 Q=(-2+-sqrt(4+96))/(2)Q = \frac{-2 \pm \sqrt{4 + 96}}{2}Q=2±4+962
Q = 2 ± 100 2 Q = 2 ± 100 2 Q=(-2+-sqrt100)/(2)Q = \frac{-2 \pm \sqrt{100}}{2}Q=2±1002
Q = 2 ± 10 2 Q = 2 ± 10 2 Q=(-2+-10)/(2)Q = \frac{-2 \pm 10}{2}Q=2±102
So, the solutions for Q Q QQQ are:
Q = 2 + 10 2 = 4 and Q = 2 10 2 = 6 Q = 2 + 10 2 = 4 and Q = 2 10 2 = 6 Q=(-2+10)/(2)=4quad”and”quad Q=(-2-10)/(2)=-6Q = \frac{-2 + 10}{2} = 4 \quad \text{and} \quad Q = \frac{-2 – 10}{2} = -6Q=2+102=4andQ=2102=6
Since quantity Q Q QQQ cannot be negative, we take Q = 4 Q = 4 Q=4Q = 4Q=4 as the equilibrium quantity.
Now, substitute Q = 4 Q = 4 Q=4Q = 4Q=4 back into either the demand or supply function to find the equilibrium price P P PPP:
Using the supply function P S = 2 Q + 3 P S = 2 Q + 3 P_(S)=2Q+3P_S = 2Q + 3PS=2Q+3:
P = 2 ( 4 ) + 3 = 8 + 3 = 11 P = 2 ( 4 ) + 3 = 8 + 3 = 11 P=2(4)+3=8+3=11P = 2(4) + 3 = 8 + 3 = 11P=2(4)+3=8+3=11
So, the equilibrium price P = 11 P = 11 P=11P = 11P=11 and equilibrium quantity Q = 4 Q = 4 Q=4Q = 4Q=4.

Step 2: Calculate Consumer Surplus (CS)

Consumer surplus is the area between the demand curve and the equilibrium price, up to the equilibrium quantity.
The demand curve is P D = 27 Q 2 P D = 27 Q 2 P_(D)=27-Q^(2)P_D = 27 – Q^2PD=27Q2. To find the maximum price consumers are willing to pay (where Q = 0 Q = 0 Q=0Q = 0Q=0):
P D = 27 ( 0 ) 2 = 27 P D = 27 ( 0 ) 2 = 27 P_(D)=27-(0)^(2)=27P_D = 27 – (0)^2 = 27PD=27(0)2=27
The consumer surplus is the area of the triangle with height 27 11 = 16 27 11 = 16 27-11=1627 – 11 = 162711=16 and base 4 4 444:
Consumer Surplus (CS) = 1 2 × Base × Height = 1 2 × 4 × 16 = 32 Consumer Surplus (CS) = 1 2 × Base × Height = 1 2 × 4 × 16 = 32 “Consumer Surplus (CS)”=(1)/(2)xx”Base”xx”Height”=(1)/(2)xx4xx16=32\text{Consumer Surplus (CS)} = \frac{1}{2} \times \text{Base} \times \text{Height} = \frac{1}{2} \times 4 \times 16 = 32Consumer Surplus (CS)=12×Base×Height=12×4×16=32

Step 3: Calculate Producer Surplus (PS)

Producer surplus is the area between the supply curve and the equilibrium price, up to the equilibrium quantity.
The supply curve is P S = 2 Q + 3 P S = 2 Q + 3 P_(S)=2Q+3P_S = 2Q + 3PS=2Q+3. To find the minimum price producers are willing to accept (where Q = 0 Q = 0 Q=0Q = 0Q=0):
P S = 2 ( 0 ) + 3 = 3 P S = 2 ( 0 ) + 3 = 3 P_(S)=2(0)+3=3P_S = 2(0) + 3 = 3PS=2(0)+3=3
The producer surplus is the area of the triangle with height 11 3 = 8 11 3 = 8 11-3=811 – 3 = 8113=8 and base 4 4 444:
Producer Surplus (PS) = 1 2 × Base × Height = 1 2 × 4 × 8 = 16 Producer Surplus (PS) = 1 2 × Base × Height = 1 2 × 4 × 8 = 16 “Producer Surplus (PS)”=(1)/(2)xx”Base”xx”Height”=(1)/(2)xx4xx8=16\text{Producer Surplus (PS)} = \frac{1}{2} \times \text{Base} \times \text{Height} = \frac{1}{2} \times 4 \times 8 = 16Producer Surplus (PS)=12×Base×Height=12×4×8=16

Summary

  • Consumers’ Surplus (CS): 32 32 323232
  • Producers’ Surplus (PS): 16 16 161616
These values represent the benefits to consumers and producers, respectively, from participating in the market at the equilibrium price and quantity.

Question:-3

Given the total cost function T C = 9 q 2 + 2 q + 8100 T C = 9 q 2 + 2 q + 8100 TC=9q^(2)+2q+8100T C=9 q^2+2 q+8100TC=9q2+2q+8100

(a) Find marginal cost (MC) and average cost (AC) as functions of q q qqq

(b) Show that when MC < AC , AC MC < AC , AC MC < AC,AC\mathrm{MC}<\mathrm{AC}, \mathrm{AC}MC<AC,AC is falling, and when MC > AC , AC MC > AC , AC MC > AC,AC\mathrm{MC}>\mathrm{AC}, \mathrm{AC}MC>AC,AC is rising

Answer:

Let’s go step-by-step to solve each part of the question.

(a) Finding Marginal Cost (MC) and Average Cost (AC)

Given the total cost function:
T C = 9 q 2 + 2 q + 8100 T C = 9 q 2 + 2 q + 8100 TC=9q^(2)+2q+8100TC = 9q^2 + 2q + 8100TC=9q2+2q+8100

Marginal Cost (MC)

Marginal Cost (MC) is the derivative of the Total Cost (TC) with respect to quantity q q qqq:
M C = d ( T C ) d q M C = d ( T C ) d q MC=(d(TC))/(dq)MC = \frac{d(TC)}{dq}MC=d(TC)dq
Calculating the derivative:
M C = d d q ( 9 q 2 + 2 q + 8100 ) M C = d d q ( 9 q 2 + 2 q + 8100 ) MC=(d)/(dq)(9q^(2)+2q+8100)MC = \frac{d}{dq}(9q^2 + 2q + 8100)MC=ddq(9q2+2q+8100)
M C = 18 q + 2 M C = 18 q + 2 MC=18 q+2MC = 18q + 2MC=18q+2

Average Cost (AC)

Average Cost (AC) is the total cost divided by the quantity q q qqq:
A C = T C q A C = T C q AC=(TC)/(q)AC = \frac{TC}{q}AC=TCq
Calculating the average cost:
A C = 9 q 2 + 2 q + 8100 q A C = 9 q 2 + 2 q + 8100 q AC=(9q^(2)+2q+8100)/(q)AC = \frac{9q^2 + 2q + 8100}{q}AC=9q2+2q+8100q
A C = 9 q + 2 q + 8100 A C = 9 q + 2 q + 8100 AC=9q+(2)/(q)+8100AC = 9q + \frac{2}{q} + 8100AC=9q+2q+8100

(b) Relationship Between Marginal Cost (MC) and Average Cost (AC)

We need to show that:
  • When MC < AC MC < AC MC < AC\mathrm{MC} < \mathrm{AC}MC<AC, AC AC AC\mathrm{AC}AC is falling.
  • When MC > AC MC > AC MC > AC\mathrm{MC} > \mathrm{AC}MC>AC, AC AC AC\mathrm{AC}AC is rising.

Relationship Between MC and AC

To understand the relationship between MC and AC, let’s analyze the change in AC when MC is different from AC. The Average Cost A C A C ACACAC will change based on how the marginal cost M C M C MCMCMC compares to it.
We can determine this by analyzing the derivative of the AC function.
d ( A C ) d q d ( A C ) d q (d(AC))/(dq)\frac{d(AC)}{dq}d(AC)dq
First, let’s write down the AC function again for clarity:
A C = 9 q + 2 q + 8100 A C = 9 q + 2 q + 8100 AC=9q+(2)/(q)+8100AC = 9q + \frac{2}{q} + 8100AC=9q+2q+8100
Now, let’s compute the derivative of AC with respect to q q qqq:
d ( A C ) d q = d d q ( 9 q + 2 q + 8100 ) d ( A C ) d q = d d q 9 q + 2 q + 8100 (d(AC))/(dq)=(d)/(dq)(9q+(2)/(q)+8100)\frac{d(AC)}{dq} = \frac{d}{dq}\left(9q + \frac{2}{q} + 8100\right)d(AC)dq=ddq(9q+2q+8100)
d ( A C ) d q = 9 2 q 2 d ( A C ) d q = 9 2 q 2 (d(AC))/(dq)=9-(2)/(q^(2))\frac{d(AC)}{dq} = 9 – \frac{2}{q^2}d(AC)dq=92q2

Analysis of d ( A C ) d q d ( A C ) d q (d(AC))/(dq)\frac{d(AC)}{dq}d(AC)dq

  • When M C < A C M C < A C MC < ACMC < ACMC<AC:
    M C = 18 q + 2 , A C = 9 q + 2 q + 8100 M C = 18 q + 2 , A C = 9 q + 2 q + 8100 MC=18 q+2,quad AC=9q+(2)/(q)+8100MC = 18q + 2, \quad AC = 9q + \frac{2}{q} + 8100MC=18q+2,AC=9q+2q+8100
    To show when A C A C ACACAC is falling, d ( A C ) d q d ( A C ) d q (d(AC))/(dq)\frac{d(AC)}{dq}d(AC)dq should be negative. The expression d ( A C ) d q = 9 2 q 2 d ( A C ) d q = 9 2 q 2 (d(AC))/(dq)=9-(2)/(q^(2))\frac{d(AC)}{dq} = 9 – \frac{2}{q^2}d(AC)dq=92q2 tells us that A C A C ACACAC will be falling when:
    9 2 q 2 < 0 9 < 2 q 2 q 2 < 2 9 9 2 q 2 < 0 9 < 2 q 2 q 2 < 2 9 9-(2)/(q^(2)) < 0Longrightarrow9 < (2)/(q^(2))Longrightarrowq^(2) < (2)/(9)9 – \frac{2}{q^2} < 0 \implies 9 < \frac{2}{q^2} \implies q^2 < \frac{2}{9}92q2<09<2q2q2<29
    In this case, when q 2 < 2 9 q 2 < 2 9 q^(2) < (2)/(9)q^2 < \frac{2}{9}q2<29, the change in average cost d ( A C ) d q d ( A C ) d q (d(AC))/(dq)\frac{d(AC)}{dq}d(AC)dq is negative, and hence A C A C ACACAC is falling.
  • When M C > A C M C > A C MC > ACMC > ACMC>AC:
    Now, let’s look at when M C > A C M C > A C MC > ACMC > ACMC>AC. This happens when:
    18 q + 2 > 9 q + 2 q + 8100 18 q + 2 > 9 q + 2 q + 8100 18 q+2 > 9q+(2)/(q)+810018q + 2 > 9q + \frac{2}{q} + 810018q+2>9q+2q+8100
    Simplifying the inequality:
    9 q + 2 > 2 q + 8100 9 q + 2 > 2 q + 8100 9q+2 > (2)/(q)+81009q + 2 > \frac{2}{q} + 81009q+2>2q+8100
    Rearranging terms, we see that M C > A C M C > A C MC > ACMC > ACMC>AC as q q qqq increases past the point where 9 q = 2 q + 8100 9 q = 2 q + 8100 9q=(2)/(q)+81009q = \frac{2}{q} + 81009q=2q+8100. When q 2 > 2 9 q 2 > 2 9 q^(2) > (2)/(9)q^2 > \frac{2}{9}q2>29, d ( A C ) d q > 0 d ( A C ) d q > 0 (d(AC))/(dq) > 0\frac{d(AC)}{dq} > 0d(AC)dq>0, meaning A C A C ACACAC is rising.

Conclusion

  • If M C < A C M C < A C MC < ACMC < ACMC<AC: A C A C ACACAC is falling because d ( A C ) d q < 0 d ( A C ) d q < 0 (d(AC))/(dq) < 0\frac{d(AC)}{dq} < 0d(AC)dq<0.
  • If M C > A C M C > A C MC > ACMC > ACMC>AC: A C A C ACACAC is rising because d ( A C ) d q > 0 d ( A C ) d q > 0 (d(AC))/(dq) > 0\frac{d(AC)}{dq} > 0d(AC)dq>0.
This demonstrates the relationship between marginal cost and average cost in terms of how they affect the direction of average cost changes.

Question:-3 (OR)

Given the aggregate consumption function C = 0.9 Y + 100 C = 0.9 Y + 100 C=0.9Y+100\mathrm{C}=0.9 \mathrm{Y}+100C=0.9Y+100 (where C is aggregate consumption and Y Y YYY is aggregate income)

(a) Find the marginal propensity to consume (MPC) and average propensity to consume (APC)
(b) Find the elasticity of consumption with respect to income, and show that it equals MPC/APC

Answer:

Let’s go through each part of the problem step-by-step.

(a) Finding the Marginal Propensity to Consume (MPC) and Average Propensity to Consume (APC)

Given the aggregate consumption function:
C = 0.9 Y + 100 C = 0.9 Y + 100 C=0.9 Y+100C = 0.9Y + 100C=0.9Y+100
where C C CCC is aggregate consumption and Y Y YYY is aggregate income.

Marginal Propensity to Consume (MPC)

The Marginal Propensity to Consume (MPC) is the change in consumption resulting from a change in income. It is the coefficient of Y Y YYY in the consumption function.
From the consumption function C = 0.9 Y + 100 C = 0.9 Y + 100 C=0.9 Y+100C = 0.9Y + 100C=0.9Y+100, the MPC is:
MPC = 0.9 MPC = 0.9 “MPC”=0.9\text{MPC} = 0.9MPC=0.9

Average Propensity to Consume (APC)

The Average Propensity to Consume (APC) is the ratio of total consumption to total income:
APC = C Y APC = C Y “APC”=(C)/(Y)\text{APC} = \frac{C}{Y}APC=CY
Using the consumption function:
APC = 0.9 Y + 100 Y APC = 0.9 Y + 100 Y “APC”=(0.9 Y+100)/(Y)\text{APC} = \frac{0.9Y + 100}{Y}APC=0.9Y+100Y
Simplifying this:
APC = 0.9 + 100 Y APC = 0.9 + 100 Y “APC”=0.9+(100 )/(Y)\text{APC} = 0.9 + \frac{100}{Y}APC=0.9+100Y

(b) Finding the Elasticity of Consumption with Respect to Income

The elasticity of consumption with respect to income measures the percentage change in consumption resulting from a percentage change in income.
The formula for elasticity of consumption ( E C ) ( E C ) (E_(C))(E_C)(EC) with respect to income is given by:
E C = d C / d Y C / Y E C = d C / d Y C / Y E_(C)=(dC//dY)/(C//Y)E_C = \frac{dC/dY}{C/Y}EC=dC/dYC/Y
where d C / d Y d C / d Y dC//dYdC/dYdC/dY is the marginal propensity to consume (MPC) and C / Y C / Y C//YC/YC/Y is the average propensity to consume (APC).

Finding the Derivative d C / d Y d C / d Y dC//dYdC/dYdC/dY

The derivative of the consumption function C = 0.9 Y + 100 C = 0.9 Y + 100 C=0.9 Y+100C = 0.9Y + 100C=0.9Y+100 with respect to Y Y YYY is:
d C d Y = 0.9 d C d Y = 0.9 (dC)/(dY)=0.9\frac{dC}{dY} = 0.9dCdY=0.9

Calculating Elasticity

Now, plug the values into the elasticity formula:
E C = d C d Y C / Y = 0.9 C Y E C = d C d Y C / Y = 0.9 C Y E_(C)=((dC)/(dY))/(C//Y)=(0.9)/((C)/(Y))E_C = \frac{\frac{dC}{dY}}{C/Y} = \frac{0.9}{\frac{C}{Y}}EC=dCdYC/Y=0.9CY
Substitute the APC expression for C / Y C / Y C//YC/YC/Y:
E C = 0.9 0.9 + 100 Y E C = 0.9 0.9 + 100 Y E_(C)=(0.9)/(0.9+(100 )/(Y))E_C = \frac{0.9}{0.9 + \frac{100}{Y}}EC=0.90.9+100Y
To demonstrate that E C E C E_(C)E_CEC equals MPC / APC MPC / APC “MPC”//”APC”\text{MPC}/\text{APC}MPC/APC, let’s compute MPC / APC MPC / APC “MPC”//”APC”\text{MPC}/\text{APC}MPC/APC:
MPC APC = 0.9 0.9 + 100 Y MPC APC = 0.9 0.9 + 100 Y (“MPC”)/(“APC”)=(0.9)/(0.9+(100 )/(Y))\frac{\text{MPC}}{\text{APC}} = \frac{0.9}{0.9 + \frac{100}{Y}}MPCAPC=0.90.9+100Y
This matches the expression for E C E C E_(C)E_CEC. Therefore, we have shown that:
E C = MPC APC E C = MPC APC E_(C)=(“MPC”)/(“APC”)E_C = \frac{\text{MPC}}{\text{APC}}EC=MPCAPC

Summary

  • Marginal Propensity to Consume (MPC): 0.9 0.9 0.90.90.9
  • Average Propensity to Consume (APC): 0.9 + 100 Y 0.9 + 100 Y 0.9+(100 )/(Y)0.9 + \frac{100}{Y}0.9+100Y
  • Elasticity of consumption with respect to income ( E C E C E_(C)E_CEC): 0.9 0.9 + 100 Y 0.9 0.9 + 100 Y (0.9)/(0.9+(100 )/(Y))\frac{0.9}{0.9 + \frac{100}{Y}}0.90.9+100Y
  • Equality of Elasticity and MPC/APC: E C = MPC APC E C = MPC APC E_(C)=(“MPC”)/(“APC”)E_C = \frac{\text{MPC}}{\text{APC}}EC=MPCAPC

Question:-4

Let X = { 1 , 3 , 5 } X = { 1 , 3 , 5 } X={1,3,5}X=\{1,3,5\}X={1,3,5} and Y = { 2 , 4 , 6 } Y = { 2 , 4 , 6 } Y={2,4,6}Y=\{2,4,6\}Y={2,4,6}

Find, X Y X Y X uu YX \cup YXY and the Cartesian Product of X X XXX and Y Y YYY.

Answer:

Let’s find the union and the Cartesian product of the sets X X XXX and Y Y YYY.

1. Union of X X XXX and Y Y YYY ( X Y X Y X uu YX \cup YXY)

The union of two sets X X XXX and Y Y YYY, denoted by X Y X Y X uu YX \cup YXY, is the set of all elements that are in X X XXX, in Y Y YYY, or in both.
Given:
X = { 1 , 3 , 5 } , Y = { 2 , 4 , 6 } X = { 1 , 3 , 5 } , Y = { 2 , 4 , 6 } X={1,3,5},quad Y={2,4,6}X = \{1, 3, 5\}, \quad Y = \{2, 4, 6\}X={1,3,5},Y={2,4,6}
The union X Y X Y X uu YX \cup YXY includes all elements from both sets:
X Y = { 1 , 2 , 3 , 4 , 5 , 6 } X Y = { 1 , 2 , 3 , 4 , 5 , 6 } X uu Y={1,2,3,4,5,6}X \cup Y = \{1, 2, 3, 4, 5, 6\}XY={1,2,3,4,5,6}

2. Cartesian Product of X X XXX and Y Y YYY ( X × Y X × Y X xx YX \times YX×Y)

The Cartesian product of two sets X X XXX and Y Y YYY, denoted by X × Y X × Y X xx YX \times YX×Y, is the set of all ordered pairs ( x , y ) ( x , y ) (x,y)(x, y)(x,y) where x x xxx is an element of X X XXX and y y yyy is an element of Y Y YYY.
Given:
X = { 1 , 3 , 5 } , Y = { 2 , 4 , 6 } X = { 1 , 3 , 5 } , Y = { 2 , 4 , 6 } X={1,3,5},quad Y={2,4,6}X = \{1, 3, 5\}, \quad Y = \{2, 4, 6\}X={1,3,5},Y={2,4,6}
The Cartesian product X × Y X × Y X xx YX \times YX×Y is:
X × Y = { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 3 , 2 ) , ( 3 , 4 ) , ( 3 , 6 ) , ( 5 , 2 ) , ( 5 , 4 ) , ( 5 , 6 ) } X × Y = { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 3 , 2 ) , ( 3 , 4 ) , ( 3 , 6 ) , ( 5 , 2 ) , ( 5 , 4 ) , ( 5 , 6 ) } X xx Y={(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)}X \times Y = \{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)\}X×Y={(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)}

Summary

  • Union ( X Y X Y X uu YX \cup YXY): { 1 , 2 , 3 , 4 , 5 , 6 } { 1 , 2 , 3 , 4 , 5 , 6 } {1,2,3,4,5,6}\{1, 2, 3, 4, 5, 6\}{1,2,3,4,5,6}
  • Cartesian Product ( X × Y X × Y X xx YX \times YX×Y): { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 3 , 2 ) , ( 3 , 4 ) , ( 3 , 6 ) , ( 5 , 2 ) , ( 5 , 4 ) , ( 5 , 6 ) } { ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 3 , 2 ) , ( 3 , 4 ) , ( 3 , 6 ) , ( 5 , 2 ) , ( 5 , 4 ) , ( 5 , 6 ) } {(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)}\{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)\}{(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6)}

Question:-4 (OR)

Given A = { 1 , 2 } , B = { 3 , 4 , 5 } A = { 1 , 2 } , B = { 3 , 4 , 5 } A={1,2},B={3,4,5}A=\{1,2\}, B=\{3,4,5\}A={1,2},B={3,4,5} and C = { 3 , 5 , 6 , 7 , 8 } C = { 3 , 5 , 6 , 7 , 8 } C={3,5,6,7,8}C=\{3,5,6,7,8\}C={3,5,6,7,8}, show that

(i) A B = B A A B = B A A uu B=B uu AA \cup B=B \cup AAB=BA
(ii) ( A B ) C = A ( B C ) ( A B ) C = A ( B C ) (AnnB)nnC=Ann(BnnC)(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})(AB)C=A(BC)

Answer:

To show these set operations, we’ll go through each part step-by-step using the definitions of set union ( uu\cup) and intersection ( nn\cap).

(i) Proving A B = B A A B = B A A uu B=B uu AA \cup B = B \cup AAB=BA

The union of two sets A A AAA and B B BBB, denoted A B A B A uu BA \cup BAB, is the set of elements that are in either A A AAA, B B BBB, or both.
Given:
A = { 1 , 2 } , B = { 3 , 4 , 5 } A = { 1 , 2 } , B = { 3 , 4 , 5 } A={1,2},quad B={3,4,5}A = \{1, 2\}, \quad B = \{3, 4, 5\}A={1,2},B={3,4,5}
First, let’s compute A B A B A uu BA \cup BAB and B A B A B uu AB \cup ABA:
  • A B A B A uu BA \cup BAB:
    A B = { 1 , 2 } { 3 , 4 , 5 } = { 1 , 2 , 3 , 4 , 5 } A B = { 1 , 2 } { 3 , 4 , 5 } = { 1 , 2 , 3 , 4 , 5 } A uu B={1,2}uu{3,4,5}={1,2,3,4,5}A \cup B = \{1, 2\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}AB={1,2}{3,4,5}={1,2,3,4,5}
  • B A B A B uu AB \cup ABA:
    B A = { 3 , 4 , 5 } { 1 , 2 } = { 3 , 4 , 5 , 1 , 2 } B A = { 3 , 4 , 5 } { 1 , 2 } = { 3 , 4 , 5 , 1 , 2 } B uu A={3,4,5}uu{1,2}={3,4,5,1,2}B \cup A = \{3, 4, 5\} \cup \{1, 2\} = \{3, 4, 5, 1, 2\}BA={3,4,5}{1,2}={3,4,5,1,2}
Since union operation is commutative (order does not matter), the sets A B A B A uu BA \cup BAB and B A B A B uu AB \cup ABA contain the same elements:
A B = { 1 , 2 , 3 , 4 , 5 } = B A A B = { 1 , 2 , 3 , 4 , 5 } = B A A uu B={1,2,3,4,5}=B uu AA \cup B = \{1, 2, 3, 4, 5\} = B \cup AAB={1,2,3,4,5}=BA
Thus, we have shown that:
A B = B A A B = B A A uu B=B uu AA \cup B = B \cup AAB=BA

(ii) Proving ( A B ) C = A ( B C ) ( A B ) C = A ( B C ) (A nn B)nn C=A nn(B nn C)(A \cap B) \cap C = A \cap (B \cap C)(AB)C=A(BC)

The intersection of two sets A A AAA and B B BBB, denoted A B A B A nn BA \cap BAB, is the set of elements that are in both A A AAA and B B BBB.
Given:
A = { 1 , 2 } , B = { 3 , 4 , 5 } , C = { 3 , 5 , 6 , 7 , 8 } A = { 1 , 2 } , B = { 3 , 4 , 5 } , C = { 3 , 5 , 6 , 7 , 8 } A={1,2},quad B={3,4,5},quad C={3,5,6,7,8}A = \{1, 2\}, \quad B = \{3, 4, 5\}, \quad C = \{3, 5, 6, 7, 8\}A={1,2},B={3,4,5},C={3,5,6,7,8}
Let’s compute ( A B ) C ( A B ) C (A nn B)nn C(A \cap B) \cap C(AB)C and A ( B C ) A ( B C ) A nn(B nn C)A \cap (B \cap C)A(BC):
  1. Find A B A B A nn BA \cap BAB:
    A B = { 1 , 2 } { 3 , 4 , 5 } = { } A B = { 1 , 2 } { 3 , 4 , 5 } = { } A nn B={1,2}nn{3,4,5}={}A \cap B = \{1, 2\} \cap \{3, 4, 5\} = \{\}AB={1,2}{3,4,5}={}
    (There are no common elements between A A AAA and B B BBB, so the intersection is an empty set.)
  2. Compute ( A B ) C ( A B ) C (A nn B)nn C(A \cap B) \cap C(AB)C:
    ( A B ) C = { } { 3 , 5 , 6 , 7 , 8 } = { } ( A B ) C = { } { 3 , 5 , 6 , 7 , 8 } = { } (A nn B)nn C={}nn{3,5,6,7,8}={}(A \cap B) \cap C = \{\} \cap \{3, 5, 6, 7, 8\} = \{\}(AB)C={}{3,5,6,7,8}={}
    (An intersection with an empty set results in an empty set.)
  3. Find B C B C B nn CB \cap CBC:
    B C = { 3 , 4 , 5 } { 3 , 5 , 6 , 7 , 8 } = { 3 , 5 } B C = { 3 , 4 , 5 } { 3 , 5 , 6 , 7 , 8 } = { 3 , 5 } B nn C={3,4,5}nn{3,5,6,7,8}={3,5}B \cap C = \{3, 4, 5\} \cap \{3, 5, 6, 7, 8\} = \{3, 5\}BC={3,4,5}{3,5,6,7,8}={3,5}
    (The common elements between B B BBB and C C CCC are 3 and 5.)
  4. Compute A ( B C ) A ( B C ) A nn(B nn C)A \cap (B \cap C)A(BC):
    A ( B C ) = { 1 , 2 } { 3 , 5 } = { } A ( B C ) = { 1 , 2 } { 3 , 5 } = { } A nn(B nn C)={1,2}nn{3,5}={}A \cap (B \cap C) = \{1, 2\} \cap \{3, 5\} = \{\}A(BC)={1,2}{3,5}={}
    (Again, there are no common elements between A A AAA and B C B C B nn CB \cap CBC, resulting in an empty set.)
Since both ( A B ) C ( A B ) C (A nn B)nn C(A \cap B) \cap C(AB)C and A ( B C ) A ( B C ) A nn(B nn C)A \cap (B \cap C)A(BC) result in the empty set:
( A B ) C = A ( B C ) = { } ( A B ) C = A ( B C ) = { } (A nn B)nn C=A nn(B nn C)={}(A \cap B) \cap C = A \cap (B \cap C) = \{\}(AB)C=A(BC)={}
Thus, we have shown that:
( A B ) C = A ( B C ) ( A B ) C = A ( B C ) (A nn B)nn C=A nn(B nn C)(A \cap B) \cap C = A \cap (B \cap C)(AB)C=A(BC)
This illustrates the associativity of the intersection operation.

Question:-5(a)

Create a truth table for

(a) A B A B A<=>BA \Leftrightarrow BAB
(b) the converse of ‘ A A AAA implies B B BBB ‘.

Answer:

Let’s create the truth tables for each of the statements.

(a) Truth Table for A B A B A<=>BA \Leftrightarrow BAB

The biconditional statement A B A B A<=>BA \Leftrightarrow BAB (also known as "if and only if") is true when both A A AAA and B B BBB have the same truth value (both true or both false). It is false when A A AAA and B B BBB have different truth values.
Here is the truth table for A B A B A<=>BA \Leftrightarrow BAB:
A A AAA B B BBB A B A B A<=>BA \Leftrightarrow BAB
T T T
T F F
F T F
F F T

(b) Truth Table for the Converse of ‘ A A AAA implies B B BBB

The converse of " A A AAA implies B B BBB " is " B B BBB implies A A AAA ". In logical notation, the implication " A A AAA implies B B BBB " is written as A B A B A=>BA \Rightarrow BAB, and the converse is B A B A B=>AB \Rightarrow ABA.
The implication B A B A B=>AB \Rightarrow ABA is true except when B B BBB is true and A A AAA is false.
Here is the truth table for the converse of " A A AAA implies B B BBB " ( B A B A B=>AB \Rightarrow ABA):
A A AAA B B BBB B A B A B=>AB \Rightarrow ABA
T T T
T F T
F T F
F F T

Summary

  • (a) A B A B A<=>BA \Leftrightarrow BAB: The biconditional is true when A A AAA and B B BBB have the same truth values.
  • (b) Converse of ‘ A A AAA implies B B BBB ‘ ( B A B A B=>AB \Rightarrow ABA): The converse is true except when B B BBB is true and A A AAA is false.

Question:-5 (OR)

Find the Euclidean distance between

(i) ( 2 , 3 ) ( 2 , 3 ) (2,3)(2,3)(2,3) and ( 4 , 1 ) ( 4 , 1 ) (4,1)(4,1)(4,1)
(ii) ( 2 , 3 , 4 ) ( 2 , 3 , 4 ) (2,3,4)(2,3,4)(2,3,4) and ( 4 , 1 , 5 ) ( 4 , 1 , 5 ) (4,1,-5)(4,1,-5)(4,1,5)

Answer:

To find the Euclidean distance between two points, we use the Euclidean distance formula.

Euclidean Distance Formula

  1. In 2D (two-dimensional space), the Euclidean distance between points ( x 1 , y 1 ) ( x 1 , y 1 ) (x_(1),y_(1))(x_1, y_1)(x1,y1) and ( x 2 , y 2 ) ( x 2 , y 2 ) (x_(2),y_(2))(x_2, y_2)(x2,y2) is given by:
    d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 d=sqrt((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2))d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2}d=(x2x1)2+(y2y1)2
  2. In 3D (three-dimensional space), the Euclidean distance between points ( x 1 , y 1 , z 1 ) ( x 1 , y 1 , z 1 ) (x_(1),y_(1),z_(1))(x_1, y_1, z_1)(x1,y1,z1) and ( x 2 , y 2 , z 2 ) ( x 2 , y 2 , z 2 ) (x_(2),y_(2),z_(2))(x_2, y_2, z_2)(x2,y2,z2) is given by:
    d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 + ( z 2 z 1 ) 2 d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 + ( z 2 z 1 ) 2 d=sqrt((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2)+(z_(2)-z_(1))^(2))d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}d=(x2x1)2+(y2y1)2+(z2z1)2
Let’s use these formulas to calculate the distances for the given points.

(i) Distance between ( 2 , 3 ) ( 2 , 3 ) (2,3)(2, 3)(2,3) and ( 4 , 1 ) ( 4 , 1 ) (4,1)(4, 1)(4,1)

Given points: ( x 1 , y 1 ) = ( 2 , 3 ) ( x 1 , y 1 ) = ( 2 , 3 ) (x_(1),y_(1))=(2,3)(x_1, y_1) = (2, 3)(x1,y1)=(2,3) and ( x 2 , y 2 ) = ( 4 , 1 ) ( x 2 , y 2 ) = ( 4 , 1 ) (x_(2),y_(2))=(4,1)(x_2, y_2) = (4, 1)(x2,y2)=(4,1)
Applying the 2D distance formula:
d = ( 4 2 ) 2 + ( 1 3 ) 2 d = ( 4 2 ) 2 + ( 1 3 ) 2 d=sqrt((4-2)^(2)+(1-3)^(2))d = \sqrt{(4 – 2)^2 + (1 – 3)^2}d=(42)2+(13)2
Calculate the differences:
d = ( 2 ) 2 + ( 2 ) 2 d = ( 2 ) 2 + ( 2 ) 2 d=sqrt((2)^(2)+(-2)^(2))d = \sqrt{(2)^2 + (-2)^2}d=(2)2+(2)2
d = 4 + 4 = 8 d = 4 + 4 = 8 d=sqrt(4+4)=sqrt8d = \sqrt{4 + 4} = \sqrt{8}d=4+4=8
Simplify the square root:
d = 2 2 d = 2 2 d=2sqrt2d = 2\sqrt{2}d=22
So, the Euclidean distance between ( 2 , 3 ) ( 2 , 3 ) (2,3)(2, 3)(2,3) and ( 4 , 1 ) ( 4 , 1 ) (4,1)(4, 1)(4,1) is 2 2 2 2 2sqrt22\sqrt{2}22.

(ii) Distance between ( 2 , 3 , 4 ) ( 2 , 3 , 4 ) (2,3,4)(2, 3, 4)(2,3,4) and ( 4 , 1 , 5 ) ( 4 , 1 , 5 ) (4,1,-5)(4, 1, -5)(4,1,5)

Given points: ( x 1 , y 1 , z 1 ) = ( 2 , 3 , 4 ) ( x 1 , y 1 , z 1 ) = ( 2 , 3 , 4 ) (x_(1),y_(1),z_(1))=(2,3,4)(x_1, y_1, z_1) = (2, 3, 4)(x1,y1,z1)=(2,3,4) and ( x 2 , y 2 , z 2 ) = ( 4 , 1 , 5 ) ( x 2 , y 2 , z 2 ) = ( 4 , 1 , 5 ) (x_(2),y_(2),z_(2))=(4,1,-5)(x_2, y_2, z_2) = (4, 1, -5)(x2,y2,z2)=(4,1,5)
Applying the 3D distance formula:
d = ( 4 2 ) 2 + ( 1 3 ) 2 + ( 5 4 ) 2 d = ( 4 2 ) 2 + ( 1 3 ) 2 + ( 5 4 ) 2 d=sqrt((4-2)^(2)+(1-3)^(2)+(-5-4)^(2))d = \sqrt{(4 – 2)^2 + (1 – 3)^2 + (-5 – 4)^2}d=(42)2+(13)2+(54)2
Calculate the differences:
d = ( 2 ) 2 + ( 2 ) 2 + ( 9 ) 2 d = ( 2 ) 2 + ( 2 ) 2 + ( 9 ) 2 d=sqrt((2)^(2)+(-2)^(2)+(-9)^(2))d = \sqrt{(2)^2 + (-2)^2 + (-9)^2}d=(2)2+(2)2+(9)2
d = 4 + 4 + 81 d = 4 + 4 + 81 d=sqrt(4+4+81)d = \sqrt{4 + 4 + 81}d=4+4+81
d = 89 d = 89 d=sqrt89d = \sqrt{89}d=89
So, the Euclidean distance between ( 2 , 3 , 4 ) ( 2 , 3 , 4 ) (2,3,4)(2, 3, 4)(2,3,4) and ( 4 , 1 , 5 ) ( 4 , 1 , 5 ) (4,1,-5)(4, 1, -5)(4,1,5) is 89 89 sqrt89\sqrt{89}89.

Question:-6

What is a point of inflexion? Does f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x)=x^3f(x)=x3 have a point of inflexion at x = 0 x = 0 x=0x=0x=0?

Answer:

What is a Point of Inflexion?

A point of inflexion (or inflection point) is a point on the graph of a function where the curvature changes sign. In other words, it is where the function changes from being concave (curved upwards) to convex (curved downwards) or vice versa.
Mathematically, a point x = c x = c x=cx = cx=c is a point of inflexion if the second derivative of the function f ( x ) f ( x ) f(x)f(x)f(x) changes sign as x x xxx passes through c c ccc. This implies that around this point, the function changes concavity:
  • Concave up if f ( x ) > 0 f ( x ) > 0 f^(″)(x) > 0f”(x) > 0f(x)>0
  • Concave down if f ( x ) < 0 f ( x ) < 0 f^(″)(x) < 0f”(x) < 0f(x)<0
For a point c c ccc to be a point of inflexion, f ( c ) f ( c ) f^(″)(c)f”(c)f(c) is typically zero or undefined, and the sign of f ( x ) f ( x ) f^(″)(x)f”(x)f(x) must change on either side of c c ccc.

Does f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x) = x^3f(x)=x3 Have a Point of Inflexion at x = 0 x = 0 x=0x = 0x=0?

To determine if f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x) = x^3f(x)=x3 has a point of inflexion at x = 0 x = 0 x=0x = 0x=0, we will examine the second derivative of f ( x ) f ( x ) f(x)f(x)f(x).
  1. First derivative f ( x ) f ( x ) f^(‘)(x)f'(x)f(x):
f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x) = x^3f(x)=x3
f ( x ) = 3 x 2 f ( x ) = 3 x 2 f^(‘)(x)=3x^(2)f'(x) = 3x^2f(x)=3x2
  1. Second derivative f ( x ) f ( x ) f^(″)(x)f”(x)f(x):
f ( x ) = d d x ( 3 x 2 ) = 6 x f ( x ) = d d x ( 3 x 2 ) = 6 x f^(″)(x)=(d)/(dx)(3x^(2))=6xf”(x) = \frac{d}{dx}(3x^2) = 6xf(x)=ddx(3x2)=6x
Now, let’s analyze the second derivative f ( x ) = 6 x f ( x ) = 6 x f^(″)(x)=6xf”(x) = 6xf(x)=6x to determine the concavity:
  • At x = 0 x = 0 x=0x = 0x=0, f ( 0 ) = 6 × 0 = 0 f ( 0 ) = 6 × 0 = 0 f^(″)(0)=6xx0=0f”(0) = 6 \times 0 = 0f(0)=6×0=0.
  1. Check the sign change around x = 0 x = 0 x=0x = 0x=0:
  • For x > 0 x > 0 x > 0x > 0x>0, f ( x ) = 6 x > 0 f ( x ) = 6 x > 0 f^(″)(x)=6x > 0f”(x) = 6x > 0f(x)=6x>0, indicating the function is concave up.
  • For x < 0 x < 0 x < 0x < 0x<0, f ( x ) = 6 x < 0 f ( x ) = 6 x < 0 f^(″)(x)=6x < 0f”(x) = 6x < 0f(x)=6x<0, indicating the function is concave down.
Since the second derivative f ( x ) f ( x ) f^(″)(x)f”(x)f(x) changes sign from negative to positive as x x xxx passes through 0, there is indeed a change in concavity at x = 0 x = 0 x=0x = 0x=0.

Conclusion

Yes, f ( x ) = x 3 f ( x ) = x 3 f(x)=x^(3)f(x) = x^3f(x)=x3 has a point of inflexion at x = 0 x = 0 x=0x = 0x=0 because the second derivative f ( x ) = 6 x f ( x ) = 6 x f^(″)(x)=6xf”(x) = 6xf(x)=6x changes sign at that point.

Question:-7

Find the integral of

( y 2 1 ) d x 2 d y = 0 y 2 1 d x 2 d y = 0 (y^(2)-1)dx-2dy=0\left(y^2-1\right) dx – 2 dy = 0(y21)dx2dy=0

Answer:

To solve the integral of the differential equation ( y 2 1 ) d x 2 d y = 0 ( y 2 1 ) d x 2 d y = 0 (y^(2)-1)dx-2dy=0(y^2 – 1) \, dx – 2 \, dy = 0(y21)dx2dy=0, we can rewrite this equation in a more standard differential form and solve for a potential function.

Step 1: Rewrite the Equation

The given differential equation is:
( y 2 1 ) d x 2 d y = 0 ( y 2 1 ) d x 2 d y = 0 (y^(2)-1)dx-2dy=0(y^2 – 1) \, dx – 2 \, dy = 0(y21)dx2dy=0
Rearrange it to isolate terms involving d x d x dxdxdx and d y d y dydydy:
( y 2 1 ) d x = 2 d y ( y 2 1 ) d x = 2 d y (y^(2)-1)dx=2dy(y^2 – 1) \, dx = 2 \, dy(y21)dx=2dy
Divide both sides by 2 2 222 to simplify:
y 2 1 2 d x = d y y 2 1 2 d x = d y (y^(2)-1)/(2)dx=dy\frac{y^2 – 1}{2} \, dx = dyy212dx=dy

Step 2: Separate Variables

Now, separate the variables x x xxx and y y yyy:
d x = 2 y 2 1 d y d x = 2 y 2 1 d y dx=(2)/(y^(2)-1)dydx = \frac{2}{y^2 – 1} \, dydx=2y21dy
Integrate both sides with respect to their respective variables:
d x = 2 y 2 1 d y d x = 2 y 2 1 d y int dx=int(2)/(y^(2)-1)dy\int dx = \int \frac{2}{y^2 – 1} \, dydx=2y21dy

Step 3: Integrate Both Sides

The integral on the left side is straightforward:
d x = x + C 1 d x = x + C 1 int dx=x+C_(1)\int dx = x + C_1dx=x+C1
Now, let’s focus on the integral on the right side:
2 y 2 1 d y 2 y 2 1 d y int(2)/(y^(2)-1)dy\int \frac{2}{y^2 – 1} \, dy2y21dy
This integral can be solved using partial fractions. The expression 2 y 2 1 2 y 2 1 (2)/(y^(2)-1)\frac{2}{y^2 – 1}2y21 can be factored as:
y 2 1 = ( y 1 ) ( y + 1 ) y 2 1 = ( y 1 ) ( y + 1 ) y^(2)-1=(y-1)(y+1)y^2 – 1 = (y – 1)(y + 1)y21=(y1)(y+1)
Thus, we write:
2 y 2 1 = A y 1 + B y + 1 2 y 2 1 = A y 1 + B y + 1 (2)/(y^(2)-1)=(A)/(y-1)+(B)/(y+1)\frac{2}{y^2 – 1} = \frac{A}{y – 1} + \frac{B}{y + 1}2y21=Ay1+By+1
To find A A AAA and B B BBB, multiply both sides by ( y 1 ) ( y + 1 ) ( y 1 ) ( y + 1 ) (y-1)(y+1)(y – 1)(y + 1)(y1)(y+1):
2 = A ( y + 1 ) + B ( y 1 ) 2 = A ( y + 1 ) + B ( y 1 ) 2=A(y+1)+B(y-1)2 = A(y + 1) + B(y – 1)2=A(y+1)+B(y1)
Set up equations by substituting convenient values for y y yyy:
  1. Let y = 1 y = 1 y=1y = 1y=1:
2 = A ( 1 + 1 ) + B ( 1 1 ) 2 = 2 A A = 1 2 = A ( 1 + 1 ) + B ( 1 1 ) 2 = 2 A A = 1 2=A(1+1)+B(1-1)Longrightarrow2=2ALongrightarrowA=12 = A(1 + 1) + B(1 – 1) \implies 2 = 2A \implies A = 12=A(1+1)+B(11)2=2AA=1
  1. Let y = 1 y = 1 y=-1y = -1y=1:
2 = A ( 1 + 1 ) + B ( 1 1 ) 2 = 2 B B = 1 2 = A ( 1 + 1 ) + B ( 1 1 ) 2 = 2 B B = 1 2=A(-1+1)+B(-1-1)Longrightarrow2=-2BLongrightarrowB=-12 = A(-1 + 1) + B(-1 – 1) \implies 2 = -2B \implies B = -12=A(1+1)+B(11)2=2BB=1
Thus, we have:
2 y 2 1 = 1 y 1 1 y + 1 2 y 2 1 = 1 y 1 1 y + 1 (2)/(y^(2)-1)=(1)/(y-1)-(1)/(y+1)\frac{2}{y^2 – 1} = \frac{1}{y – 1} – \frac{1}{y + 1}2y21=1y11y+1
Now, integrate each term separately:
1 y 1 d y 1 y + 1 d y = ln | y 1 | ln | y + 1 | + C 2 1 y 1 d y 1 y + 1 d y = ln | y 1 | ln | y + 1 | + C 2 int(1)/(y-1)dy-int(1)/(y+1)dy=ln |y-1|-ln |y+1|+C_(2)\int \frac{1}{y – 1} \, dy – \int \frac{1}{y + 1} \, dy = \ln|y – 1| – \ln|y + 1| + C_21y1dy1y+1dy=ln|y1|ln|y+1|+C2
Combine the logarithms:
ln | y 1 y + 1 | + C 2 ln y 1 y + 1 + C 2 ln|(y-1)/(y+1)|+C_(2)\ln \left| \frac{y – 1}{y + 1} \right| + C_2ln|y1y+1|+C2

Step 4: Combine the Results

Putting it all together:
x + C 1 = ln | y 1 y + 1 | + C 2 x + C 1 = ln y 1 y + 1 + C 2 x+C_(1)=ln|(y-1)/(y+1)|+C_(2)x + C_1 = \ln \left| \frac{y – 1}{y + 1} \right| + C_2x+C1=ln|y1y+1|+C2
Combine the constants C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2 into a single constant C = C 2 C 1 C = C 2 C 1 C=C_(2)-C_(1)C = C_2 – C_1C=C2C1:
x = ln | y 1 y + 1 | + C x = ln y 1 y + 1 + C x=ln|(y-1)/(y+1)|+Cx = \ln \left| \frac{y – 1}{y + 1} \right| + Cx=ln|y1y+1|+C
Therefore, the integral of the differential equation ( y 2 1 ) d x 2 d y = 0 ( y 2 1 ) d x 2 d y = 0 (y^(2)-1)dx-2dy=0(y^2 – 1) \, dx – 2 \, dy = 0(y21)dx2dy=0 is:
x = ln | y 1 y + 1 | + C x = ln y 1 y + 1 + C x=ln|(y-1)/(y+1)|+Cx = \ln \left| \frac{y – 1}{y + 1} \right| + Cx=ln|y1y+1|+C
or equivalently:
ln | y 1 y + 1 | = x C ln y 1 y + 1 = x C ln|(y-1)/(y+1)|=x-C\ln \left| \frac{y – 1}{y + 1} \right| = x – Cln|y1y+1|=xC

Question:-8

Evaluate the Limits of

X 2 X 2 X ( X 2 ) as X 2 X 2 X 2 X ( X 2 )  as  X 2 (X^(2)-X-2)/(X(X-2))” as “X rarr2\frac{X^2-X-2}{X(X-2)} \text{ as } X \rightarrow 2X2X2X(X2) as X2

Answer:

To evaluate the limit
lim X 2 X 2 X 2 X ( X 2 ) , lim X 2 X 2 X 2 X ( X 2 ) , lim_(X rarr2)(X^(2)-X-2)/(X(X-2)),\lim_{X \to 2} \frac{X^2 – X – 2}{X(X – 2)},limX2X2X2X(X2),
we first need to simplify the expression. Direct substitution of X = 2 X = 2 X=2X = 2X=2 into the expression leads to a 0 0 0 0 (0)/(0)\frac{0}{0}00 indeterminate form. Therefore, we should try to simplify the expression by factoring.

Step 1: Factor the Numerator

The numerator X 2 X 2 X 2 X 2 X^(2)-X-2X^2 – X – 2X2X2 can be factored as:
X 2 X 2 = ( X 2 ) ( X + 1 ) . X 2 X 2 = ( X 2 ) ( X + 1 ) . X^(2)-X-2=(X-2)(X+1).X^2 – X – 2 = (X – 2)(X + 1).X2X2=(X2)(X+1).

Step 2: Simplify the Expression

Substitute the factorization into the original expression:
X 2 X 2 X ( X 2 ) = ( X 2 ) ( X + 1 ) X ( X 2 ) . X 2 X 2 X ( X 2 ) = ( X 2 ) ( X + 1 ) X ( X 2 ) . (X^(2)-X-2)/(X(X-2))=((X-2)(X+1))/(X(X-2)).\frac{X^2 – X – 2}{X(X – 2)} = \frac{(X – 2)(X + 1)}{X(X – 2)}.X2X2X(X2)=(X2)(X+1)X(X2).
We can cancel the common factor ( X 2 ) ( X 2 ) (X-2)(X – 2)(X2) in the numerator and the denominator (provided X 2 X 2 X!=2X \neq 2X2):
( X 2 ) ( X + 1 ) X ( X 2 ) = X + 1 X , X 2. ( X 2 ) ( X + 1 ) X ( X 2 ) = X + 1 X , X 2. ((X-2)(X+1))/(X(X-2))=(X+1)/(X),quad X!=2.\frac{(X – 2)(X + 1)}{X(X – 2)} = \frac{X + 1}{X}, \quad X \neq 2.(X2)(X+1)X(X2)=X+1X,X2.

Step 3: Evaluate the Limit

Now, we evaluate the simplified expression as X 2 X 2 X rarr2X \to 2X2:
lim X 2 X + 1 X = 2 + 1 2 = 3 2 . lim X 2 X + 1 X = 2 + 1 2 = 3 2 . lim_(X rarr2)(X+1)/(X)=(2+1)/(2)=(3)/(2).\lim_{X \to 2} \frac{X + 1}{X} = \frac{2 + 1}{2} = \frac{3}{2}.limX2X+1X=2+12=32.

Conclusion

The limit of X 2 X 2 X ( X 2 ) X 2 X 2 X ( X 2 ) (X^(2)-X-2)/(X(X-2))\frac{X^2 – X – 2}{X(X – 2)}X2X2X(X2) as X 2 X 2 X rarr2X \rightarrow 2X2 is:
lim X 2 X 2 X 2 X ( X 2 ) = 3 2 . lim X 2 X 2 X 2 X ( X 2 ) = 3 2 . lim_(X rarr2)(X^(2)-X-2)/(X(X-2))=(3)/(2).\lim_{X \to 2} \frac{X^2 – X – 2}{X(X – 2)} = \frac{3}{2}.limX2X2X2X(X2)=32.

Question:-9

If the demand function for a good is Q = 140 5 P Q = 140 5 P Q=140-5P\mathrm{Q}=140-5 \mathrm{P}Q=1405P, what is the price elasticity of demand at P = 15 P = 15 P=15\mathrm{P}=15P=15 rupees?

Answer:

To find the price elasticity of demand at a specific price, we need to calculate the elasticity using the demand function. The price elasticity of demand measures the responsiveness of the quantity demanded to a change in price.

Price Elasticity of Demand Formula

The price elasticity of demand E d E d E_(d)E_dEd is given by the formula:
E d = d Q d P × P Q E d = d Q d P × P Q E_(d)=(dQ)/(dP)xx(P)/(Q)E_d = \frac{dQ}{dP} \times \frac{P}{Q}Ed=dQdP×PQ
where:
  • d Q d P d Q d P (dQ)/(dP)\frac{dQ}{dP}dQdP is the derivative of the quantity demanded Q Q QQQ with respect to the price P P PPP,
  • P P PPP is the price,
  • Q Q QQQ is the quantity demanded at that price.

Step 1: Find the Derivative of the Demand Function

Given the demand function:
Q = 140 5 P Q = 140 5 P Q=140-5PQ = 140 – 5PQ=1405P
First, find the derivative of Q Q QQQ with respect to P P PPP:
d Q d P = 5 d Q d P = 5 (dQ)/(dP)=-5\frac{dQ}{dP} = -5dQdP=5

Step 2: Find Q Q QQQ at P = 15 P = 15 P=15P = 15P=15

Now, calculate the quantity demanded Q Q QQQ when the price P = 15 P = 15 P=15P = 15P=15:
Q = 140 5 ( 15 ) = 140 75 = 65 Q = 140 5 ( 15 ) = 140 75 = 65 Q=140-5(15)=140-75=65Q = 140 – 5(15) = 140 – 75 = 65Q=1405(15)=14075=65

Step 3: Calculate the Price Elasticity of Demand

Substitute d Q d P = 5 d Q d P = 5 (dQ)/(dP)=-5\frac{dQ}{dP} = -5dQdP=5, P = 15 P = 15 P=15P = 15P=15, and Q = 65 Q = 65 Q=65Q = 65Q=65 into the elasticity formula:
E d = d Q d P × P Q = ( 5 ) × 15 65 E d = d Q d P × P Q = ( 5 ) × 15 65 E_(d)=(dQ)/(dP)xx(P)/(Q)=(-5)xx(15)/(65)E_d = \frac{dQ}{dP} \times \frac{P}{Q} = (-5) \times \frac{15}{65}Ed=dQdP×PQ=(5)×1565
Simplify this expression:
E d = 5 × 15 65 = 5 × 3 13 = 15 13 E d = 5 × 15 65 = 5 × 3 13 = 15 13 E_(d)=-5xx(15)/(65)=-5xx(3)/(13)=-(15)/(13)E_d = -5 \times \frac{15}{65} = -5 \times \frac{3}{13} = -\frac{15}{13}Ed=5×1565=5×313=1513

Conclusion

The price elasticity of demand at P = 15 P = 15 P=15P = 15P=15 rupees is:
E d = 15 13 1.15 E d = 15 13 1.15 E_(d)=-(15)/(13)~~-1.15E_d = -\frac{15}{13} \approx -1.15Ed=15131.15
This means that at P = 15 P = 15 P=15P = 15P=15 rupees, the demand is elastic, as the absolute value of the elasticity is greater than 1 ( | E d | > 1 | E d | > 1 |E_(d)| > 1|E_d| > 1|Ed|>1). This indicates that the quantity demanded is relatively responsive to changes in price.

Question:-10

How long will it take a given sum of money (Say in Rupees) to increase 4 times its present value when compounded half-yearly at 7 % 7 % 7%7 \%7% rate of interest?

Answer:

To determine how long it will take for a given sum of money to increase four times its present value when compounded half-yearly at a 7 % 7 % 7%7\%7% interest rate, we can use the formula for compound interest.

Compound Interest Formula

The compound interest formula is:
A = P ( 1 + r n ) n t A = P 1 + r n n t A=P(1+(r)/(n))^(nt)A = P \left(1 + \frac{r}{n}\right)^{nt}A=P(1+rn)nt
where:
  • A A AAA is the amount of money accumulated after n n nnn years, including interest.
  • P P PPP is the principal amount (the initial sum of money).
  • r r rrr is the annual nominal interest rate (as a decimal).
  • n n nnn is the number of times the interest is compounded per year.
  • t t ttt is the time the money is invested for in years.

Problem Details

In this problem:
  • The amount A A AAA is 4 times the principal P P PPP, so A = 4 P A = 4 P A=4PA = 4PA=4P.
  • The annual interest rate r r rrr is 7 % = 0.07 7 % = 0.07 7%=0.077\% = 0.077%=0.07.
  • Interest is compounded half-yearly, so n = 2 n = 2 n=2n = 2n=2.

Step-by-Step Solution

  1. Set Up the Equation:
    Plug the values into the compound interest formula:
    4 P = P ( 1 + 0.07 2 ) 2 t 4 P = P 1 + 0.07 2 2 t 4P=P(1+(0.07)/(2))^(2t)4P = P \left(1 + \frac{0.07}{2}\right)^{2t}4P=P(1+0.072)2t
  2. Simplify the Equation:
    Divide both sides by P P PPP (assuming P 0 P 0 P!=0P \neq 0P0):
    4 = ( 1 + 0.07 2 ) 2 t 4 = 1 + 0.07 2 2 t 4=(1+(0.07)/(2))^(2t)4 = \left(1 + \frac{0.07}{2}\right)^{2t}4=(1+0.072)2t
  3. Calculate the Rate per Period:
    Compute the rate per half-year period:
    1 + 0.07 2 = 1 + 0.035 = 1.035 1 + 0.07 2 = 1 + 0.035 = 1.035 1+(0.07)/(2)=1+0.035=1.0351 + \frac{0.07}{2} = 1 + 0.035 = 1.0351+0.072=1+0.035=1.035
    So the equation becomes:
    4 = ( 1.035 ) 2 t 4 = ( 1.035 ) 2 t 4=(1.035)^(2t)4 = (1.035)^{2t}4=(1.035)2t
  4. Take the Logarithm of Both Sides:
    To solve for t t ttt, take the natural logarithm (or common logarithm) of both sides:
    ln ( 4 ) = ln ( ( 1.035 ) 2 t ) ln ( 4 ) = ln ( ( 1.035 ) 2 t ) ln(4)=ln((1.035)^(2t))\ln(4) = \ln((1.035)^{2t})ln(4)=ln((1.035)2t)
    Using the logarithmic identity ln ( a b ) = b ln ( a ) ln ( a b ) = b ln ( a ) ln(a^(b))=b ln(a)\ln(a^b) = b \ln(a)ln(ab)=bln(a):
    ln ( 4 ) = 2 t ln ( 1.035 ) ln ( 4 ) = 2 t ln ( 1.035 ) ln(4)=2t ln(1.035)\ln(4) = 2t \ln(1.035)ln(4)=2tln(1.035)
  5. Solve for t t ttt:
    Divide both sides by 2 ln ( 1.035 ) 2 ln ( 1.035 ) 2ln(1.035)2 \ln(1.035)2ln(1.035):
    t = ln ( 4 ) 2 ln ( 1.035 ) t = ln ( 4 ) 2 ln ( 1.035 ) t=(ln(4))/(2ln(1.035))t = \frac{\ln(4)}{2 \ln(1.035)}t=ln(4)2ln(1.035)
  6. Calculate t t ttt:
    Now compute the value using a calculator:
    ln ( 4 ) 1.3863 , ln ( 1.035 ) 0.0344 ln ( 4 ) 1.3863 , ln ( 1.035 ) 0.0344 ln(4)~~1.3863,quad ln(1.035)~~0.0344\ln(4) \approx 1.3863, \quad \ln(1.035) \approx 0.0344ln(4)1.3863,ln(1.035)0.0344
    Plugging these values in:
    t = 1.3863 2 × 0.0344 = 1.3863 0.0688 20.15 t = 1.3863 2 × 0.0344 = 1.3863 0.0688 20.15 t=(1.3863)/(2xx0.0344)=(1.3863)/(0.0688)~~20.15t = \frac{1.3863}{2 \times 0.0344} = \frac{1.3863}{0.0688} \approx 20.15t=1.38632×0.0344=1.38630.068820.15

Conclusion

It will take approximately 20.15 years for a given sum of money to increase to four times its present value when compounded half-yearly at a 7 % 7 % 7%7\%7% interest rate.

Search Free Solved Assignment

Just Type atleast 3 letters of your Paper Code

Scroll to Top
Scroll to Top