Free BECC-104 Solved Assignment | July 2023-January 2024 | Mathematical Methods in Economics-II | IGNOU

BECC-104 Solved Assignment

July 2023-January 2024

Assignment A
Answer the following Long Category questions in about 500 words each. Each question carries 2 0 2 0 20\mathbf{2 0}20 marks. Word limit will not apply in the case of numerical questions.
2 × 20 = 40 2 × 20 = 40 2xx20=402 \times 20=402×20=40
  1. Consider the following two matrices
    A = ( 1 1 2 1 1 2 2 2 4 ) A = 1 1 2 1 1 2 2 2 4 A=([-1,1,2],[1,-1,-2],[-2,2,4])A=\left(\begin{array}{ccc}-1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4\end{array}\right)A=(112112224)
    B = ( 1 0 1 1 1 1 1 1 1 ) B = 1 0 1 1 1 1 1 1 1 B=([1,0,-1],[-1,1,1],[1,-1,-1])\mathrm{B}=\left(\begin{array}{ccc}1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1\end{array}\right)B=(101111111)
    (i) Find the rank of ‘ A ‘ and ‘ B ‘
    (ii) Show that ( AB ) 1 = B 1 A 1 ( AB ) 1 = B 1 A 1 (AB)^(-1)=B^(-1)A^(-1)(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}(AB)1=B1 A1
    (iii) Show that ( A 1 ) 1 = A A 1 1 = A (A^(-1))^(-1)=A\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}(A1)1=A
    (iv) Show that ( B 1 ) 1 = B B 1 1 = B (B^(-1))^(-1)=B\left(\mathrm{B}^{-1}\right)^{-1}=\mathrm{B}(B1)1=B
  2. An individual consumer consumes two commodities X 1 & X 2 X 1 & X 2 X_(1)&X_(2)X_1 \& X_2X1&X2. The utility function is
U = X 1 0.4 X 2 0.6 U = X 1 0.4 X 2 0.6 U=X_(1)^(0.4)X_(2)^(0.6)U=X_1^{0.4} X_2^{0.6}U=X10.4X20.6
The price of commodity one is P 1 = P 1 = P_(1)=\mathrm{P}_1=P1= Rs. 3.00 , the price of commodity two is P 2 = P 2 = P_(2)=\mathrm{P}_2=P2= Rs.4.00, the individual’s income per period is Rs.108. Determine the utility maximizing level of X 1 & X 2 X 1 & X 2 X_(1)&X_(2)\mathrm{X}_1 \& \mathrm{X}_2X1&X2 and derive the demand curves for the two commodities.
Assignment B
Answer the following Middle Category questions in about 250 words each. Each question carries 1 0 1 0 10\mathbf{1 0}10 marks. Word limit will not apply in the case of numerical questions.
3 × 10 = 30 3 × 10 = 30 3xx10=303 \times 10=303×10=30
  1. Let Z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 Z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 Z=f(x,y)=3x^(3)-5y^(2)-225 x+70 y+23Z=f(x, y)=3 x^3-5 y^2-225 x+70 y+23Z=f(x,y)=3x35y2225x+70y+23.
    (i) Find the stationary points of z z zzz.
    (ii) Determine if at these points the function is at a relative maximum, relative minimum, infixion point, or saddle point.
  2. Solve the following differential equation
d 2 y d x 2 2 d y d x + 10 y = 0 d 2 y d x 2 2 d y d x + 10 y = 0 (d^(2)y)/(dx^(2))-2(dy)/(dx)+10 y=0\frac{d^2 y}{d x^2}-2 \frac{d y}{d x}+10 y=0d2ydx22dydx+10y=0
given Y ( 0 ) = 4 Y ( 0 ) = 4 Y(0)=4Y(0)=4Y(0)=4
d y d x ( 0 ) = 1 d y d x ( 0 ) = 1 (dy)/(dx)(0)=1\frac{d y}{d x}(0)=1dydx(0)=1
  1. If Z = f ( x , y ) = x y Z = f ( x , y ) = x y Z=f(x,y)=xyZ=f(x, y)=x yZ=f(x,y)=xy
Find the maximum value for f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) if x x xxx and y y yyy are constrained to sum to 1 (That is, x + y = 1 x + y = 1 x+y=1x+y=1x+y=1 ). Solve the problem in two ways: by substitution and by using the Lagrangian multiplier method.
Assignment C
Answer the following Short Category questions in about 100 words each
6. Define
a. Adjugate of a matrix
b. Decomposable matrix
c. Singular matrix
7. Evaluate ( 7 x 2 ) 3 x + 2 d x ( 7 x 2 ) 3 x + 2 d x int(7x-2)sqrt(3x+2)dx\int(7 x-2) \sqrt{3 x+2} d x(7x2)3x+2dx
8. Explain the concept of maximum value function.
  1. Let the production function by Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q=A L^a K^bQ=ALaKb. Find the elasticity of production with respect to labour (L).
  2. Denote by a , b a , b a,b\mathbf{a}, \mathbf{b}a,b and c c c\mathbf{c}c the column vectors
a = ( 1 2 3 ) , b = ( 2 1 3 ) , c = ( 2 1 1 ) a = 1 2 3 , b = 2 1 3 , c = 2 1 1 a=([1],[2],[3]),b=([-2],[1],[-3]),c=([-2],[-1],[1])\mathbf{a}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \mathbf{b}=\left(\begin{array}{l} -2 \\ 1 \\ -3 \end{array}\right), \mathbf{c}=\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right)a=(123),b=(213),c=(211)
Calculate
2 a 5 b , 2 a 5 b + c , a b 2 a 5 b , 2 a 5 b + c , a b 2a-5b,2a-5b+c,a^(‘)*b2 \mathbf{a}-5 \mathbf{b}, \mathbf{2 a}-5 \mathbf{b}+\mathbf{c}, \mathbf{a}^{\prime} \cdot \mathbf{b}2a5b,2a5b+c,ab

Expert Answer:


Question:-1

Consider the following two matrices
A = ( 1 1 2 1 1 2 2 2 4 ) A = 1 1 2 1 1 2 2 2 4 A=([-1,1,2],[1,-1,-2],[-2,2,4])A=\left(\begin{array}{ccc}-1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4\end{array}\right)A=(112112224)
B = ( 1 0 1 1 1 1 1 1 1 ) B = 1 0 1 1 1 1 1 1 1 B=([1,0,-1],[-1,1,1],[1,-1,-1])B=\left(\begin{array}{ccc}1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1\end{array}\right)B=(101111111)
(i) Find the rank of ‘ A ‘ and ‘ B ‘
(ii) Show that ( A B ) 1 = B 1 A 1 ( A B ) 1 = B 1 A 1 (AB)^(-1)=B^(-1)A^(-1)(AB)^{-1}=B^{-1}A^{-1}(AB)1=B1A1
(iii) Show that ( A 1 ) 1 = A ( A 1 ) 1 = A (A^(-1))^(-1)=A(A^{-1})^{-1}=A(A1)1=A
(iv) Show that ( B 1 ) 1 = B ( B 1 ) 1 = B (B^(-1))^(-1)=B(B^{-1})^{-1}=B(B1)1=B

Answer:

(i) Rank of ‘A’
Rank [ 1 1 2 1 1 2 2 2 4 ] Rank 1 1 2 1 1 2 2 2 4 Rank[[-1,1,2],[1,-1,-2],[-2,2,4]]\operatorname{Rank}\left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4 \end{array}\right]Rank[112112224]
Now, reduce this matrix interchanging rows R 1 R 3 R 1 R 3 R_(1)harrR_(3)R_1 \leftrightarrow R_3R1R3
= [ 2 2 4 1 1 2 1 1 2 ] R 1 R 1 ÷ 2 = [ 1 1 2 1 1 2 1 1 2 ] R 2 R 2 R 1 = 2 2 4 1 1 2 1 1 2 R 1 R 1 ÷ 2 = 1 1 2 1 1 2 1 1 2 R 2 R 2 R 1 {:[=[[-2,2,4],[1,-1,-2],[-1,1,2]]],[R_(1)larrR_(1)-:-2],[=[[1,-1,-2],[1,-1,-2],[-1,1,2]]],[R_(2)larrR_(2)-R_(1)]:}\begin{aligned} & =\left[\begin{array}{ccc} -2 & 2 & 4 \\ 1 & -1 & -2 \\ -1 & 1 & 2 \end{array}\right] \\ & R_1 \leftarrow R_1 \div-2 \\ & =\left[\begin{array}{ccc} 1 & -1 & -2 \\ 1 & -1 & -2 \\ -1 & 1 & 2 \end{array}\right] \\ & R_2 \leftarrow R_2-R_1 \end{aligned}=[224112112]R1R1÷2=[112112112]R2R2R1
= [ 1 1 2 0 0 0 1 1 2 ] = 1 1 2 0 0 0 1 1 2 =[[1,-1,-2],[0,0,0],[-1,1,2]]=\left[\begin{array}{ccc} 1 & -1 & -2 \\ 0 & 0 & 0 \\ -1 & 1 & 2 \end{array}\right]=[112000112]
R 3 R 3 + R 1 = [ 1 1 2 0 0 0 0 0 0 ] R 3 R 3 + R 1 = 1 1 2 0 0 0 0 0 0 {:[R_(3)larrR_(3)+R_(1)],[=[[1,-1,-2],[0,0,0],[0,0,0]]]:}\begin{aligned} & R_3 \leftarrow R_3+R_1 \\ & =\left[\begin{array}{ccc} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \end{aligned}R3R3+R1=[112000000]
The rank of a matrix is the number of non all-zeros rows
:.\therefore Rank = 1 = 1 =1=1=1
(ii) Rank of ‘B’
Rank [ 1 0 1 1 1 1 1 1 1 ] Now, reduce this matrix R 2 R 2 + R 1 = [ 1 0 1 0 1 0 1 1 1 ] R 3 R 3 R 1 = [ 1 0 1 0 1 0 0 1 0 ] R 3 R 3 + R 2 Rank 1 0 1 1 1 1 1 1 1  Now, reduce this matrix  R 2 R 2 + R 1 = 1 0 1 0 1 0 1 1 1 R 3 R 3 R 1 = 1 0 1 0 1 0 0 1 0 R 3 R 3 + R 2 {:[Rank[[1,0,-1],[-1,1,1],[1,-1,-1]]],[” Now, reduce this matrix “],[{:[R_(2)larrR_(2)+R_(1)],[=[[1,0,-1],[0,1,0],[1,-1,-1]]]:}],[{:[R_(3)larrR_(3)-R_(1)],[=[[1,0,-1],[0,1,0],[0,-1,0]]]:}],[R_(3)larrR_(3)+R_(2)]:}\begin{aligned} &\operatorname{Rank}\left[\begin{array}{ccc} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{array}\right]\\ &\text { Now, reduce this matrix }\\ &\begin{aligned} & R_2 \leftarrow R_2+R_1 \\ & =\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & -1 \end{array}\right] \end{aligned}\\ &\begin{aligned} & R_3 \leftarrow R_3-R_1 \\ & =\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{array}\right] \end{aligned}\\ &R_3 \leftarrow R_3+R_2 \end{aligned}Rank[101111111] Now, reduce this matrix R2R2+R1=[101010111]R3R3R1=[101010010]R3R3+R2
= [ 1 0 1 0 1 0 0 0 0 ] = 1 0 1 0 1 0 0 0 0 =[[1,0,-1],[0,1,0],[0,0,0]]=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]=[101010000]
The rank of a matrix is the number of non all-zeros rows
Rank = 2  Rank  = 2 :.” Rank “=2\therefore \text { Rank }=2 Rank =2
(ii) Show that ( A B ) 1 = B 1 A 1 ( A B ) 1 = B 1 A 1 (AB)^(-1)=B^(-1)A^(-1)(AB)^{-1}=B^{-1}A^{-1}(AB)1=B1A1
A × B = [ 1 1 2 1 1 2 2 2 4 ] × [ 1 0 1 1 1 1 1 1 1 ] = [ 1 × 1 + 1 × 1 + 2 × 1 1 × 0 + 1 × 1 + 2 × 1 1 × 1 + 1 × 1 + 2 × 1 1 × 1 1 × 1 2 × 1 1 × 0 1 × 1 2 × 1 1 × 1 1 × 1 2 × 1 2 × 1 + 2 × 1 + 4 × 1 2 × 0 + 2 × 1 + 4 × 1 2 × 1 + 2 × 1 + 4 × 1 ] = [ 1 1 + 2 0 + 1 2 1 + 1 2 1 + 1 2 0 1 + 2 1 1 + 2 2 2 + 4 0 + 2 4 2 + 2 4 ] = [ 0 1 0 0 1 0 0 2 0 ] | A × B | = | 0 1 0 0 1 0 0 2 0 | A × B = [ 1 1 2 1 1 2 2 2 4 ] × [ 1 0 1 1 1 1 1 1 1 ] = [ 1 × 1 + 1 × 1 + 2 × 1 1 × 0 + 1 × 1 + 2 × 1 1 × 1 + 1 × 1 + 2 × 1 1 × 1 1 × 1 2 × 1 1 × 0 1 × 1 2 × 1 1 × 1 1 × 1 2 × 1 2 × 1 + 2 × 1 + 4 × 1 2 × 0 + 2 × 1 + 4 × 1 2 × 1 + 2 × 1 + 4 × 1 ] = [ 1 1 + 2 0 + 1 2 1 + 1 2 1 + 1 2 0 1 + 2 1 1 + 2 2 2 + 4 0 + 2 4 2 + 2 4 ] = [ 0 1 0 0 1 0 0 2 0 ] | A × B | = | 0 1 0 0 1 0 0 2 0 | A × B = 1 1 2 1 1 2 2 2 4 × 1 0 1 1 1 1 1 1 1 = 1 × 1 + 1 × 1 + 2 × 1 1 × 0 + 1 × 1 + 2 × 1 1 × 1 + 1 × 1 + 2 × 1 1 × 1 1 × 1 2 × 1 1 × 0 1 × 1 2 × 1 1 × 1 1 × 1 2 × 1 2 × 1 + 2 × 1 + 4 × 1 2 × 0 + 2 × 1 + 4 × 1 2 × 1 + 2 × 1 + 4 × 1 = 1 1 + 2 0 + 1 2 1 + 1 2 1 + 1 2 0 1 + 2 1 1 + 2 2 2 + 4 0 + 2 4 2 + 2 4 = 0 1 0 0 1 0 0 2 0 | A × B | = 0 1 0 0 1 0 0 2 0 A × B = 1 1 2 1 1 2 2 2 4 × 1 0 1 1 1 1 1 1 1 = 1 × 1 + 1 × 1 + 2 × 1 1 × 0 + 1 × 1 + 2 × 1 1 × 1 + 1 × 1 + 2 × 1 1 × 1 1 × 1 2 × 1 1 × 0 1 × 1 2 × 1 1 × 1 1 × 1 2 × 1 2 × 1 + 2 × 1 + 4 × 1 2 × 0 + 2 × 1 + 4 × 1 2 × 1 + 2 × 1 + 4 × 1 = 1 1 + 2 0 + 1 2 1 + 1 2 1 + 1 2 0 1 + 2 1 1 + 2 2 2 + 4 0 + 2 4 2 + 2 4 = 0 1 0 0 1 0 0 2 0 | A × B | = 0 1 0 0 1 0 0 2 0 {:[{:[A xx B=[[-1,1,2],[1,-1,-2],[-2,2,4]]xx[[1,0,-1],[-1,1,1],[1,-1,-1]]],[=[[-1xx1+1xx-1+2xx1,-1xx0+1xx1+2xx-1,-1xx-1+1xx1+2xx-1],[1xx1-1xx-1-2xx1,1xx0-1xx1-2xx-1,1xx-1-1xx1-2xx-1],[-2xx1+2xx-1+4xx1,-2xx0+2xx1+4xx-1,-2xx-1+2xx1+4xx-1]]],[=[[-1-1+2,0+1-2,1+1-2],[1+1-2,0-1+2,-1-1+2],[-2-2+4,0+2-4,2+2-4]]],[=[[0,-1,0],[0,1,0],[0,-2,0]]],[|A xx B|=|[0,-1,0],[0,1,0],[0,-2,0]|]:}],[A xx B=[[-1,1,2],[1,-1,-2],[-2,2,4]]xx[[1,0,-1],[-1,1,1],[1,-1,-1]]],[=[[-1xx1+1xx-1+2xx1,-1xx0+1xx1+2xx-1,-1xx-1+1xx1+2xx-1],[1xx1-1xx-1-2xx1,1xx0-1xx1-2xx-1,1xx-1-1xx1-2xx-1],[-2xx1+2xx-1+4xx1,-2xx0+2xx1+4xx-1,-2xx-1+2xx1+4xx-1]]],[=[[-1-1+2,0+1-2,1+1-2],[1+1-2,0-1+2,-1-1+2],[-2-2+4,0+2-4,2+2-4]]],[=[[0,-1,0],[0,1,0],[0,-2,0]]],[|A xx B|=|[0,-1,0],[0,1,0],[0,-2,0]|]:}\begin{aligned} &\begin{aligned} & A \times B=\left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4 \end{array}\right] \times\left[\begin{array}{ccc} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{array}\right] \\ & =\left[\begin{array}{ccc} -1 \times 1+1 \times-1+2 \times 1 & -1 \times 0+1 \times 1+2 \times-1 & -1 \times-1+1 \times 1+2 \times-1 \\ 1 \times 1-1 \times-1-2 \times 1 & 1 \times 0-1 \times 1-2 \times-1 & 1 \times-1-1 \times 1-2 \times-1 \\ -2 \times 1+2 \times-1+4 \times 1 & -2 \times 0+2 \times 1+4 \times-1 & -2 \times-1+2 \times 1+4 \times-1 \end{array}\right] \\ & =\left[\begin{array}{ccc} -1-1+2 & 0+1-2 & 1+1-2 \\ 1+1-2 & 0-1+2 & -1-1+2 \\ -2-2+4 & 0+2-4 & 2+2-4 \end{array}\right] \\ & =\left[\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{array}\right] \\ & |A \times B|=\left|\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{array}\right| \end{aligned}\\ &A \times B=\left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4 \end{array}\right] \times\left[\begin{array}{ccc} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{array}\right]\\ &=\left[\begin{array}{ccc} -1 \times 1+1 \times-1+2 \times 1 & -1 \times 0+1 \times 1+2 \times-1 & -1 \times-1+1 \times 1+2 \times-1 \\ 1 \times 1-1 \times-1-2 \times 1 & 1 \times 0-1 \times 1-2 \times-1 & 1 \times-1-1 \times 1-2 \times-1 \\ -2 \times 1+2 \times-1+4 \times 1 & -2 \times 0+2 \times 1+4 \times-1 & -2 \times-1+2 \times 1+4 \times-1 \end{array}\right]\\ &=\left[\begin{array}{ccc} -1-1+2 & 0+1-2 & 1+1-2 \\ 1+1-2 & 0-1+2 & -1-1+2 \\ -2-2+4 & 0+2-4 & 2+2-4 \end{array}\right]\\ &=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{array}\right]\\ &|A \times B|=\left|\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{array}\right| \end{aligned}A×B=[112112224]×[101111111]=[1×1+1×1+2×11×0+1×1+2×11×1+1×1+2×11×11×12×11×01×12×11×11×12×12×1+2×1+4×12×0+2×1+4×12×1+2×1+4×1]=[11+20+121+121+1201+211+222+40+242+24]=[010010020]|A×B|=|010010020|A×B=[112112224]×[101111111]=[1×1+1×1+2×11×0+1×1+2×11×1+1×1+2×11×11×12×11×01×12×11×11×12×12×1+2×1+4×12×0+2×1+4×12×1+2×1+4×1]=[11+20+121+121+1201+211+222+40+242+24]=[010010020]|A×B|=|010010020|
| A × B | = | 0 1 0 0 1 0 0 2 0 | = 0 × | 1 0 2 0 | + 1 × | 0 0 0 0 | + 0 × | 0 1 0 2 | = 0 × ( 1 × 0 0 × ( 2 ) ) + 1 × ( 0 × 0 0 × 0 ) + 0 × ( 0 × ( 2 ) 1 × 0 ) = 0 × ( 0 + 0 ) + 1 × ( 0 + 0 ) + 0 × ( 0 + 0 ) = 0 × ( 0 ) + 1 × ( 0 ) + 0 × ( 0 ) = 0 + 0 + 0 = 0 Here, | A × B | = 0 , So ( A × B ) 1 is not possible. | A × B | = 0 1 0 0 1 0 0 2 0 = 0 × 1 0 2 0 + 1 × 0 0 0 0 + 0 × 0 1 0 2 = 0 × ( 1 × 0 0 × ( 2 ) ) + 1 × ( 0 × 0 0 × 0 ) + 0 × ( 0 × ( 2 ) 1 × 0 ) = 0 × ( 0 + 0 ) + 1 × ( 0 + 0 ) + 0 × ( 0 + 0 ) = 0 × ( 0 ) + 1 × ( 0 ) + 0 × ( 0 ) = 0 + 0 + 0 = 0  Here,  | A × B | = 0 , So  ( A × B ) 1  is not possible.  {:[{:[|A xx B|=|[0,-1,0],[0,1,0],[0,-2,0]|],[=0xx|[1,0],[-2,0]|+1xx|[0,0],[0,0]|+0xx|[0,1],[0,-2]|],[=0xx(1xx0-0xx(-2))+1xx(0xx0-0xx0)+0xx(0xx(-2)-1xx0)],[=0xx(0+0)+1xx(0+0)+0xx(0+0)],[=0xx(0)+1xx(0)+0xx(0)],[=0+0+0],[=0]:}],[” Here, “|A xx B|=0”, So “(A xx B)^(-1)” is not possible. “]:}\begin{aligned} &\begin{aligned} & |A \times B|=\left|\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{array}\right| \\ & =0 \times\left|\begin{array}{cc} 1 & 0 \\ -2 & 0 \end{array}\right|+1 \times\left|\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right|+0 \times\left|\begin{array}{cc} 0 & 1 \\ 0 & -2 \end{array}\right| \\ & =0 \times(1 \times 0-0 \times(-2))+1 \times(0 \times 0-0 \times 0)+0 \times(0 \times(-2)-1 \times 0) \\ & =0 \times(0+0)+1 \times(0+0)+0 \times(0+0) \\ & =0 \times(0)+1 \times(0)+0 \times(0) \\ & =0+0+0 \\ & =0 \end{aligned}\\ &\text { Here, }|A \times B|=0 \text {, So }(A \times B)^{-1} \text { is not possible. } \end{aligned}|A×B|=|010010020|=0×|1020|+1×|0000|+0×|0102|=0×(1×00×(2))+1×(0×00×0)+0×(0×(2)1×0)=0×(0+0)+1×(0+0)+0×(0+0)=0×(0)+1×(0)+0×(0)=0+0+0=0 Here, |A×B|=0, So (A×B)1 is not possible. 
(iii) Show that ( A 1 ) 1 = A ( A 1 ) 1 = A (A^(-1))^(-1)=A(A^{-1})^{-1}=A(A1)1=A
| A | = | 1 1 2 1 1 2 2 2 4 | = 1 × | 1 2 2 4 | 1 × | 1 2 2 4 | + 2 × | 1 1 2 2 | = 1 × ( 1 × 4 ( 2 ) × 2 ) 1 × ( 1 × 4 ( 2 ) × ( 2 ) ) + 2 × ( 1 × 2 ( 1 ) × ( 2 ) ) = 1 × ( 4 + 4 ) 1 × ( 4 4 ) + 2 × ( 2 2 ) = 1 × ( 0 ) 1 × ( 0 ) + 2 × ( 0 ) = 0 + 0 + 0 = 0 Here, | A | = 0 , So ( A ) 1 is not possible. | A | = 1 1 2 1 1 2 2 2 4 = 1 × 1 2 2 4 1 × 1 2 2 4 + 2 × 1 1 2 2 = 1 × ( 1 × 4 ( 2 ) × 2 ) 1 × ( 1 × 4 ( 2 ) × ( 2 ) ) + 2 × ( 1 × 2 ( 1 ) × ( 2 ) ) = 1 × ( 4 + 4 ) 1 × ( 4 4 ) + 2 × ( 2 2 ) = 1 × ( 0 ) 1 × ( 0 ) + 2 × ( 0 ) = 0 + 0 + 0 = 0  Here,  | A | = 0 , So  ( A ) 1  is not possible.  {:[{:[|A|=|[-1,1,2],[1,-1,-2],[-2,2,4]|],[=-1xx|[-1,-2],[2,4]|-1xx|[1,-2],[-2,4]|+2xx|[1,-1],[-2,2]|],[=-1xx(-1xx4-(-2)xx2)-1xx(1xx4-(-2)xx(-2))+2xx(1xx2-(-1)xx(-2))],[=-1xx(-4+4)-1xx(4-4)+2xx(2-2)],[=-1xx(0)-1xx(0)+2xx(0)],[=0+0+0],[=0]:}],[” Here, “|A|=0”, So “(A)^(-1)” is not possible. “]:}\begin{aligned} &\begin{aligned} & |A|=\left|\begin{array}{ccc} -1 & 1 & 2 \\ 1 & -1 & -2 \\ -2 & 2 & 4 \end{array}\right| \\ & =-1 \times\left|\begin{array}{cc} -1 & -2 \\ 2 & 4 \end{array}\right|-1 \times\left|\begin{array}{cc} 1 & -2 \\ -2 & 4 \end{array}\right|+2 \times\left|\begin{array}{cc} 1 & -1 \\ -2 & 2 \end{array}\right| \\ & =-1 \times(-1 \times 4-(-2) \times 2)-1 \times(1 \times 4-(-2) \times(-2))+2 \times(1 \times 2-(-1) \times(-2)) \\ & =-1 \times(-4+4)-1 \times(4-4)+2 \times(2-2) \\ & =-1 \times(0)-1 \times(0)+2 \times(0) \\ & =0+0+0 \\ & =0 \end{aligned}\\ &\text { Here, }|A|=0 \text {, So }(A)^{-1} \text { is not possible. } \end{aligned}|A|=|112112224|=1×|1224|1×|1224|+2×|1122|=1×(1×4(2)×2)1×(1×4(2)×(2))+2×(1×2(1)×(2))=1×(4+4)1×(44)+2×(22)=1×(0)1×(0)+2×(0)=0+0+0=0 Here, |A|=0, So (A)1 is not possible. 
(iv) Show that ( B 1 ) 1 = B ( B 1 ) 1 = B (B^(-1))^(-1)=B(B^{-1})^{-1}=B(B1)1=B
| B | = | 1 0 1 1 1 1 1 1 1 | = 1 × | 1 1 1 1 | + 0 × | 1 1 1 1 | 1 × | 1 1 1 1 | = 1 × ( 1 × ( 1 ) 1 × ( 1 ) ) + 0 × ( 1 × ( 1 ) 1 × 1 ) 1 × ( 1 × ( 1 ) 1 × 1 ) = 1 × ( 1 + 1 ) + 0 × ( 1 1 ) 1 × ( 1 1 ) = 1 × ( 0 ) + 0 × ( 0 ) 1 × ( 0 ) = 0 + 0 + 0 = 0 Here, | B | = 0 , So ( B ) 1 is not possible. | B | = 1 0 1 1 1 1 1 1 1 = 1 × 1 1 1 1 + 0 × 1 1 1 1 1 × 1 1 1 1 = 1 × ( 1 × ( 1 ) 1 × ( 1 ) ) + 0 × ( 1 × ( 1 ) 1 × 1 ) 1 × ( 1 × ( 1 ) 1 × 1 ) = 1 × ( 1 + 1 ) + 0 × ( 1 1 ) 1 × ( 1 1 ) = 1 × ( 0 ) + 0 × ( 0 ) 1 × ( 0 ) = 0 + 0 + 0 = 0  Here,  | B | = 0 , So  ( B ) 1  is not possible.  {:[{:[|B|=|[1,0,-1],[-1,1,1],[1,-1,-1]|],[=1xx|[1,1],[-1,-1]|+0xx|[-1,1],[1,-1]|-1xx|[-1,1],[1,-1]|],[=1xx(1xx(-1)-1xx(-1))+0xx(-1xx(-1)-1xx1)-1xx(-1xx(-1)-1xx1)],[=1xx(-1+1)+0xx(1-1)-1xx(1-1)],[=1xx(0)+0xx(0)-1xx(0)],[=0+0+0],[=0]:}],[” Here, “|B|=0”, So “(B)^(-1)” is not possible. “]:}\begin{aligned} &\begin{aligned} & |B|=\left|\begin{array}{ccc} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{array}\right| \\ & =1 \times\left|\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right|+0 \times\left|\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right|-1 \times\left|\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right| \\ & =1 \times(1 \times(-1)-1 \times(-1))+0 \times(-1 \times(-1)-1 \times 1)-1 \times(-1 \times(-1)-1 \times 1) \\ & =1 \times(-1+1)+0 \times(1-1)-1 \times(1-1) \\ & =1 \times(0)+0 \times(0)-1 \times(0) \\ & =0+0+0 \\ & =0 \end{aligned}\\ &\text { Here, }|B|=0 \text {, So }(B)^{-1} \text { is not possible. } \end{aligned}|B|=|101111111|=1×|1111|+0×|1111|1×|1111|=1×(1×(1)1×(1))+0×(1×(1)1×1)1×(1×(1)1×1)=1×(1+1)+0×(11)1×(11)=1×(0)+0×(0)1×(0)=0+0+0=0 Here, |B|=0, So (B)1 is not possible. 

Question:-2

An individual consumer consumes two commodities X 1 & X 2 X 1 & X 2 X_(1)&X_(2)X_1 \& X_2X1&X2. The utility function is
U = X 1 0.4 X 2 0.6 U = X 1 0.4 X 2 0.6 U=X_(1)^(0.4)X_(2)^(0.6)U=X_1^{0.4} X_2^{0.6}U=X10.4X20.6
The price of commodity one is P 1 = P 1 = P_(1)=\mathrm{P}_1=P1= Rs. 3.00 , the price of commodity two is P 2 = P 2 = P_(2)=\mathrm{P}_2=P2= Rs.4.00, the individual’s income per period is Rs.108. Determine the utility maximizing level of X 1 & X 2 X 1 & X 2 X_(1)&X_(2)X_1 \& X_2X1&X2 and derive the demand curves for the two commodities.

Answer:

To determine the utility-maximizing quantities of commodities X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2 and to derive the demand curves, we’ll follow these steps:
  1. Set up the utility maximization problem.
  2. Formulate the budget constraint.
  3. Use the Lagrangian method to find the optimal consumption bundle.
  4. Derive the demand curves for X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2.

1. Utility Function and Budget Constraint

The utility function is given by:
U = X 1 0.4 X 2 0.6 U = X 1 0.4 X 2 0.6 U=X_(1)^(0.4)X_(2)^(0.6)U = X_1^{0.4} X_2^{0.6}U=X10.4X20.6
The prices and income are:
  • Price of X 1 X 1 X_(1)X_1X1: P 1 = 3 P 1 = 3 P_(1)=3P_1 = 3P1=3
  • Price of X 2 X 2 X_(2)X_2X2: P 2 = 4 P 2 = 4 P_(2)=4P_2 = 4P2=4
  • Income: I = 108 I = 108 I=108I = 108I=108
The budget constraint is:
3 X 1 + 4 X 2 = 108 3 X 1 + 4 X 2 = 108 3X_(1)+4X_(2)=1083X_1 + 4X_2 = 1083X1+4X2=108

2. Lagrangian Function

Given the utility function and budget constraint, we can set up the Lagrangian function ( L L L\mathcal{L}L) as follows:
L = X 1 0.4 X 2 0.6 + λ ( 108 3 X 1 4 X 2 ) L = X 1 0.4 X 2 0.6 + λ ( 108 3 X 1 4 X 2 ) L=X_(1)^(0.4)X_(2)^(0.6)+lambda(108-3X_(1)-4X_(2))\mathcal{L} = X_1^{0.4} X_2^{0.6} + \lambda (108 – 3X_1 – 4X_2)L=X10.4X20.6+λ(1083X14X2)
Here, λ λ lambda\lambdaλ is the Lagrange multiplier, which represents the marginal utility of income.

3. First-Order Conditions

To find the utility-maximizing quantities of X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2, we take the partial derivatives of L L L\mathcal{L}L with respect to X 1 X 1 X_(1)X_1X1, X 2 X 2 X_(2)X_2X2, and λ λ lambda\lambdaλ, and set them to zero:
L X 1 = 0.4 X 1 0.6 X 2 0.6 3 λ = 0 L X 1 = 0.4 X 1 0.6 X 2 0.6 3 λ = 0 (delL)/(delX_(1))=0.4X_(1)^(-0.6)X_(2)^(0.6)-3lambda=0\frac{\partial \mathcal{L}}{\partial X_1} = 0.4X_1^{-0.6} X_2^{0.6} – 3\lambda = 0LX1=0.4X10.6X20.63λ=0
L X 2 = 0.6 X 1 0.4 X 2 0.4 4 λ = 0 L X 2 = 0.6 X 1 0.4 X 2 0.4 4 λ = 0 (delL)/(delX_(2))=0.6X_(1)^(0.4)X_(2)^(-0.4)-4lambda=0\frac{\partial \mathcal{L}}{\partial X_2} = 0.6X_1^{0.4} X_2^{-0.4} – 4\lambda = 0LX2=0.6X10.4X20.44λ=0
L λ = 108 3 X 1 4 X 2 = 0 L λ = 108 3 X 1 4 X 2 = 0 (delL)/(del lambda)=108-3X_(1)-4X_(2)=0\frac{\partial \mathcal{L}}{\partial \lambda} = 108 – 3X_1 – 4X_2 = 0Lλ=1083X14X2=0

4. Solve for X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2

First, solve for λ λ lambda\lambdaλ from the first two equations:
λ = 0.4 X 1 0.6 X 2 0.6 3 λ = 0.4 X 1 0.6 X 2 0.6 3 lambda=(0.4X_(1)^(-0.6)X_(2)^(0.6))/(3)\lambda = \frac{0.4X_1^{-0.6} X_2^{0.6}}{3}λ=0.4X10.6X20.63
λ = 0.6 X 1 0.4 X 2 0.4 4 λ = 0.6 X 1 0.4 X 2 0.4 4 lambda=(0.6X_(1)^(0.4)X_(2)^(-0.4))/(4)\lambda = \frac{0.6X_1^{0.4} X_2^{-0.4}}{4}λ=0.6X10.4X20.44
Equating the two expressions for λ λ lambda\lambdaλ:
0.4 X 1 0.6 X 2 0.6 3 = 0.6 X 1 0.4 X 2 0.4 4 0.4 X 1 0.6 X 2 0.6 3 = 0.6 X 1 0.4 X 2 0.4 4 (0.4X_(1)^(-0.6)X_(2)^(0.6))/(3)=(0.6X_(1)^(0.4)X_(2)^(-0.4))/(4)\frac{0.4X_1^{-0.6} X_2^{0.6}}{3} = \frac{0.6X_1^{0.4} X_2^{-0.4}}{4}0.4X10.6X20.63=0.6X10.4X20.44
Cross-multiply and simplify:
0.4 × 4 X 1 0.6 X 2 0.6 = 0.6 × 3 X 1 0.4 X 2 0.4 0.4 × 4 X 1 0.6 X 2 0.6 = 0.6 × 3 X 1 0.4 X 2 0.4 0.4 xx4X_(1)^(-0.6)X_(2)^(0.6)=0.6 xx3X_(1)^(0.4)X_(2)^(-0.4)0.4 \times 4 X_1^{-0.6} X_2^{0.6} = 0.6 \times 3 X_1^{0.4} X_2^{-0.4}0.4×4X10.6X20.6=0.6×3X10.4X20.4
1.6 X 1 0.6 X 2 0.6 = 1.8 X 1 0.4 X 2 0.4 1.6 X 1 0.6 X 2 0.6 = 1.8 X 1 0.4 X 2 0.4 1.6X_(1)^(-0.6)X_(2)^(0.6)=1.8X_(1)^(0.4)X_(2)^(-0.4)1.6 X_1^{-0.6} X_2^{0.6} = 1.8 X_1^{0.4} X_2^{-0.4}1.6X10.6X20.6=1.8X10.4X20.4
Divide both sides by X 1 0.4 X 2 0.4 X 1 0.4 X 2 0.4 X_(1)^(0.4)X_(2)^(-0.4)X_1^{0.4} X_2^{-0.4}X10.4X20.4:
1.6 X 1 1 X 2 = 1.8 1.6 X 1 1 X 2 = 1.8 1.6X_(1)^(-1)X_(2)=1.81.6 X_1^{-1} X_2 = 1.81.6X11X2=1.8
X 2 = 1.8 1.6 X 1 X 2 = 1.8 1.6 X 1 X_(2)=(1.8)/(1.6)X_(1)X_2 = \frac{1.8}{1.6} X_1X2=1.81.6X1
X 2 = 1.125 X 1 X 2 = 1.125 X 1 X_(2)=1.125X_(1)X_2 = 1.125 X_1X2=1.125X1
Substitute X 2 = 1.125 X 1 X 2 = 1.125 X 1 X_(2)=1.125X_(1)X_2 = 1.125 X_1X2=1.125X1 into the budget constraint:
3 X 1 + 4 ( 1.125 X 1 ) = 108 3 X 1 + 4 ( 1.125 X 1 ) = 108 3X_(1)+4(1.125X_(1))=1083X_1 + 4(1.125 X_1) = 1083X1+4(1.125X1)=108
3 X 1 + 4.5 X 1 = 108 3 X 1 + 4.5 X 1 = 108 3X_(1)+4.5X_(1)=1083X_1 + 4.5X_1 = 1083X1+4.5X1=108
7.5 X 1 = 108 7.5 X 1 = 108 7.5X_(1)=1087.5X_1 = 1087.5X1=108
X 1 = 108 7.5 = 14.4 X 1 = 108 7.5 = 14.4 X_(1)=(108)/(7.5)=14.4X_1 = \frac{108}{7.5} = 14.4X1=1087.5=14.4
Substitute X 1 = 14.4 X 1 = 14.4 X_(1)=14.4X_1 = 14.4X1=14.4 back into the expression for X 2 X 2 X_(2)X_2X2:
X 2 = 1.125 × 14.4 = 16.2 X 2 = 1.125 × 14.4 = 16.2 X_(2)=1.125 xx14.4=16.2X_2 = 1.125 \times 14.4 = 16.2X2=1.125×14.4=16.2

Utility-Maximizing Quantities

The utility-maximizing levels of X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2 are:
  • X 1 = 14.4 X 1 = 14.4 X_(1)=14.4X_1 = 14.4X1=14.4
  • X 2 = 16.2 X 2 = 16.2 X_(2)=16.2X_2 = 16.2X2=16.2

5. Derive the Demand Curves

The demand functions for X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2 can be derived from the optimal conditions using the price and income.
The general form for Cobb-Douglas demand functions are:
X 1 = α I P 1 , X 2 = β I P 2 X 1 = α I P 1 , X 2 = β I P 2 X_(1)=(alpha I)/(P_(1)),quadX_(2)=(beta I)/(P_(2))X_1 = \frac{\alpha I}{P_1}, \quad X_2 = \frac{\beta I}{P_2}X1=αIP1,X2=βIP2
Given our specific exponents ( α = 0.4 , β = 0.6 α = 0.4 , β = 0.6 alpha=0.4,beta=0.6\alpha = 0.4, \beta = 0.6α=0.4,β=0.6), the demand functions become:
X 1 = 0.4 × 108 3 = 14.4 X 1 = 0.4 × 108 3 = 14.4 X_(1)=(0.4 xx108)/(3)=14.4X_1 = \frac{0.4 \times 108}{3} = 14.4X1=0.4×1083=14.4
X 2 = 0.6 × 108 4 = 16.2 X 2 = 0.6 × 108 4 = 16.2 X_(2)=(0.6 xx108)/(4)=16.2X_2 = \frac{0.6 \times 108}{4} = 16.2X2=0.6×1084=16.2
Thus, the demand curves for X 1 X 1 X_(1)X_1X1 and X 2 X 2 X_(2)X_2X2 based on prices and income are:
X 1 = 0.4 I P 1 , X 2 = 0.6 I P 2 X 1 = 0.4 I P 1 , X 2 = 0.6 I P 2 X_(1)=(0.4 I)/(P_(1)),quadX_(2)=(0.6 I)/(P_(2))X_1 = \frac{0.4I}{P_1}, \quad X_2 = \frac{0.6I}{P_2}X1=0.4IP1,X2=0.6IP2
Plugging in the values for P 1 P 1 P_(1)P_1P1, P 2 P 2 P_(2)P_2P2, and I I III:
  • Demand for X 1 X 1 X_(1)X_1X1: X 1 = 43.2 P 1 X 1 = 43.2 P 1 X_(1)=(43.2)/(P_(1))X_1 = \frac{43.2}{P_1}X1=43.2P1
  • Demand for X 2 X 2 X_(2)X_2X2: X 2 = 64.8 P 2 X 2 = 64.8 P 2 X_(2)=(64.8)/(P_(2))X_2 = \frac{64.8}{P_2}X2=64.8P2
These equations represent the demand curves for the two commodities.

Question:-3

Let Z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 Z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 Z=f(x,y)=3x^(3)-5y^(2)-225 x+70 y+23Z=f(x, y)=3 x^3-5 y^2-225 x+70 y+23Z=f(x,y)=3x35y2225x+70y+23.
(i) Find the stationary points of z z zzz.
(ii) Determine if at these points the function is at a relative maximum, relative minimum, inflection point, or saddle point.

Answer:

To solve this problem, we’ll follow these steps:
  1. Find the stationary points by setting the first partial derivatives equal to zero.
  2. Classify these points using the second derivative test.

(i) Finding the Stationary Points

The function is given by:
z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 z = f ( x , y ) = 3 x 3 5 y 2 225 x + 70 y + 23 z=f(x,y)=3x^(3)-5y^(2)-225 x+70 y+23z = f(x, y) = 3x^3 – 5y^2 – 225x + 70y + 23z=f(x,y)=3x35y2225x+70y+23
To find the stationary points, we need to find where both partial derivatives z x z x (del z)/(del x)\frac{\partial z}{\partial x}zx and z y z y (del z)/(del y)\frac{\partial z}{\partial y}zy are equal to zero.

Step 1: Compute the First Partial Derivatives

z x = 9 x 2 225 z x = 9 x 2 225 (del z)/(del x)=9x^(2)-225\frac{\partial z}{\partial x} = 9x^2 – 225zx=9x2225
z y = 10 y + 70 z y = 10 y + 70 (del z)/(del y)=-10 y+70\frac{\partial z}{\partial y} = -10y + 70zy=10y+70

Step 2: Set the Partial Derivatives to Zero

Set z x = 0 z x = 0 (del z)/(del x)=0\frac{\partial z}{\partial x} = 0zx=0 and z y = 0 z y = 0 (del z)/(del y)=0\frac{\partial z}{\partial y} = 0zy=0:
  1. 9 x 2 225 = 0 9 x 2 225 = 0 9x^(2)-225=09x^2 – 225 = 09x2225=0
  2. 10 y + 70 = 0 10 y + 70 = 0 -10 y+70=0-10y + 70 = 010y+70=0
Solve each equation:
For x x xxx:
9 x 2 = 225 9 x 2 = 225 9x^(2)=2259x^2 = 2259x2=225
x 2 = 25 x 2 = 25 x^(2)=25x^2 = 25x2=25
x = 5 or x = 5 x = 5 or x = 5 x=5quad”or”quad x=-5x = 5 \quad \text{or} \quad x = -5x=5orx=5
For y y yyy:
10 y = 70 10 y = 70 -10 y=-70-10y = -7010y=70
y = 7 y = 7 y=7y = 7y=7

Stationary Points

The stationary points are ( 5 , 7 ) ( 5 , 7 ) (5,7)(5, 7)(5,7) and ( 5 , 7 ) ( 5 , 7 ) (-5,7)(-5, 7)(5,7).

(ii) Classifying the Stationary Points

To classify these points, we use the second derivative test. We need the second partial derivatives:

Step 1: Compute the Second Partial Derivatives

2 z x 2 = 18 x 2 z x 2 = 18 x (del^(2)z)/(delx^(2))=18 x\frac{\partial^2 z}{\partial x^2} = 18x2zx2=18x
2 z y 2 = 10 2 z y 2 = 10 (del^(2)z)/(dely^(2))=-10\frac{\partial^2 z}{\partial y^2} = -102zy2=10
2 z x y = 0 2 z x y = 0 (del^(2)z)/(del x del y)=0\frac{\partial^2 z}{\partial x \partial y} = 02zxy=0

Step 2: Calculate the Hessian Determinant

The Hessian matrix H H HHH is:

[
H = [ 2 z x 2 2 z x y 2 z x y 2 z y 2 ] 2 z x 2 2 z x y 2 z x y 2 z y 2 [[(del^(2)z)/(delx^(2)),(del^(2)z)/(del x del y)],[(del^(2)z)/(del x del y),(del^(2)z)/(dely^(2))]]\begin{bmatrix} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial x \partial y} & \frac{\partial^2 z}{\partial y^2} \end{bmatrix}[2zx22zxy2zxy2zy2]

[ 18 x 0 0 10 ] 18 x 0 0 10 [[18 x,0],[0,-10]]\begin{bmatrix} 18x & 0 \\ 0 & -10 \end{bmatrix}[18x0010]
]
The determinant of the Hessian, D ( x , y ) D ( x , y ) D(x,y)D(x, y)D(x,y), is:
D ( x , y ) = ( 18 x ) ( 10 ) ( 0 ) ( 0 ) = 180 x D ( x , y ) = ( 18 x ) ( 10 ) ( 0 ) ( 0 ) = 180 x D(x,y)=(18 x)(-10)-(0)(0)=-180 xD(x, y) = (18x)(-10) – (0)(0) = -180xD(x,y)=(18x)(10)(0)(0)=180x

Step 3: Evaluate the Hessian at the Stationary Points

For ( 5 , 7 ) ( 5 , 7 ) (5,7)(5, 7)(5,7):
D ( 5 , 7 ) = 180 × 5 = 900 D ( 5 , 7 ) = 180 × 5 = 900 D(5,7)=-180 xx5=-900D(5, 7) = -180 \times 5 = -900D(5,7)=180×5=900
Since D ( 5 , 7 ) < 0 D ( 5 , 7 ) < 0 D(5,7) < 0D(5, 7) < 0D(5,7)<0, the point ( 5 , 7 ) ( 5 , 7 ) (5,7)(5, 7)(5,7) is a saddle point.
For ( 5 , 7 ) ( 5 , 7 ) (-5,7)(-5, 7)(5,7):
D ( 5 , 7 ) = 180 × ( 5 ) = 900 D ( 5 , 7 ) = 180 × ( 5 ) = 900 D(-5,7)=-180 xx(-5)=900D(-5, 7) = -180 \times (-5) = 900D(5,7)=180×(5)=900
Since D ( 5 , 7 ) > 0 D ( 5 , 7 ) > 0 D(-5,7) > 0D(-5, 7) > 0D(5,7)>0 and 2 z x 2 = 18 ( 5 ) = 90 < 0 2 z x 2 = 18 ( 5 ) = 90 < 0 (del^(2)z)/(delx^(2))=18(-5)=-90 < 0\frac{\partial^2 z}{\partial x^2} = 18(-5) = -90 < 02zx2=18(5)=90<0, the point ( 5 , 7 ) ( 5 , 7 ) (-5,7)(-5, 7)(5,7) is a relative maximum.

Summary of Results

  • The stationary points are ( 5 , 7 ) ( 5 , 7 ) (5,7)(5, 7)(5,7) and ( 5 , 7 ) ( 5 , 7 ) (-5,7)(-5, 7)(5,7).
  • ( 5 , 7 ) ( 5 , 7 ) (5,7)(5, 7)(5,7) is a saddle point.
  • ( 5 , 7 ) ( 5 , 7 ) (-5,7)(-5, 7)(5,7) is a relative maximum.

Question:-4

Solve the following differential equation
d 2 y d x 2 2 d y d x + 10 y = 0 d 2 y d x 2 2 d y d x + 10 y = 0 (d^(2)y)/(dx^(2))-2(dy)/(dx)+10 y=0\frac{d^2 y}{d x^2}-2 \frac{d y}{d x}+10 y=0d2ydx22dydx+10y=0
given Y ( 0 ) = 4 Y ( 0 ) = 4 Y(0)=4Y(0)=4Y(0)=4
d y d x ( 0 ) = 1 d y d x ( 0 ) = 1 (dy)/(dx)(0)=1\frac{d y}{d x}(0)=1dydx(0)=1

Answer:

To solve the differential equation
d 2 y d x 2 2 d y d x + 10 y = 0 d 2 y d x 2 2 d y d x + 10 y = 0 (d^(2)y)/(dx^(2))-2(dy)/(dx)+10 y=0\frac{d^2 y}{d x^2} – 2 \frac{d y}{d x} + 10y = 0d2ydx22dydx+10y=0
with the initial conditions y ( 0 ) = 4 y ( 0 ) = 4 y(0)=4y(0) = 4y(0)=4 and d y d x ( 0 ) = 1 d y d x ( 0 ) = 1 (dy)/(dx)(0)=1\frac{d y}{d x}(0) = 1dydx(0)=1, we will follow these steps:
  1. Find the general solution to the homogeneous differential equation.
  2. Apply the initial conditions to determine the constants.

Step 1: Solve the Characteristic Equation

The given differential equation is a linear homogeneous second-order differential equation with constant coefficients. We start by finding the characteristic equation associated with it:
r 2 2 r + 10 = 0 r 2 2 r + 10 = 0 r^(2)-2r+10=0r^2 – 2r + 10 = 0r22r+10=0
To solve for r r rrr, use the quadratic formula:
r = b ± b 2 4 a c 2 a r = b ± b 2 4 a c 2 a r=(-b+-sqrt(b^(2)-4ac))/(2a)r = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}r=b±b24ac2a
For our equation, a = 1 a = 1 a=1a = 1a=1, b = 2 b = 2 b=-2b = -2b=2, and c = 10 c = 10 c=10c = 10c=10. Plugging these into the formula gives:
r = ( 2 ) ± ( 2 ) 2 4 ( 1 ) ( 10 ) 2 ( 1 ) r = ( 2 ) ± ( 2 ) 2 4 ( 1 ) ( 10 ) 2 ( 1 ) r=(-(-2)+-sqrt((-2)^(2)-4(1)(10)))/(2(1))r = \frac{-(-2) \pm \sqrt{(-2)^2 – 4(1)(10)}}{2(1)}r=(2)±(2)24(1)(10)2(1)
r = 2 ± 4 40 2 r = 2 ± 4 40 2 r=(2+-sqrt(4-40))/(2)r = \frac{2 \pm \sqrt{4 – 40}}{2}r=2±4402
r = 2 ± 36 2 r = 2 ± 36 2 r=(2+-sqrt(-36))/(2)r = \frac{2 \pm \sqrt{-36}}{2}r=2±362
r = 2 ± 6 i 2 r = 2 ± 6 i 2 r=(2+-6i)/(2)r = \frac{2 \pm 6i}{2}r=2±6i2
r = 1 ± 3 i r = 1 ± 3 i r=1+-3ir = 1 \pm 3ir=1±3i
Thus, the roots are complex: r = 1 + 3 i r = 1 + 3 i r=1+3ir = 1 + 3ir=1+3i and r = 1 3 i r = 1 3 i r=1-3ir = 1 – 3ir=13i.

Step 2: Write the General Solution

For complex roots r = α ± β i r = α ± β i r=alpha+-beta ir = \alpha \pm \beta ir=α±βi, the general solution to the differential equation is:
y ( x ) = e α x ( C 1 cos ( β x ) + C 2 sin ( β x ) ) y ( x ) = e α x ( C 1 cos ( β x ) + C 2 sin ( β x ) ) y(x)=e^(alpha x)(C_(1)cos(beta x)+C_(2)sin(beta x))y(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))y(x)=eαx(C1cos(βx)+C2sin(βx))
Here, α = 1 α = 1 alpha=1\alpha = 1α=1 and β = 3 β = 3 beta=3\beta = 3β=3, so the general solution becomes:
y ( x ) = e x ( C 1 cos ( 3 x ) + C 2 sin ( 3 x ) ) y ( x ) = e x ( C 1 cos ( 3 x ) + C 2 sin ( 3 x ) ) y(x)=e^(x)(C_(1)cos(3x)+C_(2)sin(3x))y(x) = e^{x} (C_1 \cos(3x) + C_2 \sin(3x))y(x)=ex(C1cos(3x)+C2sin(3x))

Step 3: Apply the Initial Conditions

Now we use the initial conditions to find C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2.
  1. Initial condition: y ( 0 ) = 4 y ( 0 ) = 4 y(0)=4y(0) = 4y(0)=4
y ( 0 ) = e 0 ( C 1 cos ( 0 ) + C 2 sin ( 0 ) ) = C 1 y ( 0 ) = e 0 ( C 1 cos ( 0 ) + C 2 sin ( 0 ) ) = C 1 y(0)=e^(0)(C_(1)cos(0)+C_(2)sin(0))=C_(1)y(0) = e^{0} (C_1 \cos(0) + C_2 \sin(0)) = C_1y(0)=e0(C1cos(0)+C2sin(0))=C1
C 1 = 4 C 1 = 4 C_(1)=4C_1 = 4C1=4
  1. Initial condition: d y d x ( 0 ) = 1 d y d x ( 0 ) = 1 (dy)/(dx)(0)=1\frac{dy}{dx}(0) = 1dydx(0)=1
First, compute the derivative of y ( x ) y ( x ) y(x)y(x)y(x):
d y d x = e x ( C 1 cos ( 3 x ) + C 2 sin ( 3 x ) ) + e x ( 3 C 1 sin ( 3 x ) + 3 C 2 cos ( 3 x ) ) d y d x = e x ( C 1 cos ( 3 x ) + C 2 sin ( 3 x ) ) + e x ( 3 C 1 sin ( 3 x ) + 3 C 2 cos ( 3 x ) ) (dy)/(dx)=e^(x)(C_(1)cos(3x)+C_(2)sin(3x))+e^(x)(-3C_(1)sin(3x)+3C_(2)cos(3x))\frac{dy}{dx} = e^x(C_1 \cos(3x) + C_2 \sin(3x)) + e^x(-3C_1 \sin(3x) + 3C_2 \cos(3x))dydx=ex(C1cos(3x)+C2sin(3x))+ex(3C1sin(3x)+3C2cos(3x))
Simplify and plug in x = 0 x = 0 x=0x = 0x=0:
d y d x ( 0 ) = e 0 [ C 1 0 + C 2 3 ] + e 0 [ 1 C 1 0 3 C 1 0 + 3 C 2 1 ] d y d x ( 0 ) = e 0 [ C 1 0 + C 2 3 ] + e 0 [ 1 C 1 0 3 C 1 0 + 3 C 2 1 ] (dy)/(dx)(0)=e^(0)[C_(1)*0+C_(2)*3]+e^(0)[1*C_(1)*0-3C_(1)*0+3C_(2)*1]\frac{dy}{dx}(0) = e^0 [C_1 \cdot 0 + C_2 \cdot 3] + e^0 [1 \cdot C_1 \cdot 0 – 3C_1 \cdot 0 + 3C_2 \cdot 1]dydx(0)=e0[C10+C23]+e0[1C103C10+3C21]
d y d x ( 0 ) = C 1 + 3 C 2 d y d x ( 0 ) = C 1 + 3 C 2 (dy)/(dx)(0)=C_(1)+3C_(2)\frac{dy}{dx}(0) = C_1 + 3C_2dydx(0)=C1+3C2
Plugging in C 1 = 4 C 1 = 4 C_(1)=4C_1 = 4C1=4 and d y d x ( 0 ) = 1 d y d x ( 0 ) = 1 (dy)/(dx)(0)=1\frac{dy}{dx}(0) = 1dydx(0)=1:
1 = 4 + 3 C 2 1 = 4 + 3 C 2 1=4+3C_(2)1 = 4 + 3C_21=4+3C2
3 C 2 = 1 4 = 3 3 C 2 = 1 4 = 3 3C_(2)=1-4=-33C_2 = 1 – 4 = -33C2=14=3
C 2 = 1 C 2 = 1 C_(2)=-1C_2 = -1C2=1

Step 4: Write the Final Solution

Now we have C 1 = 4 C 1 = 4 C_(1)=4C_1 = 4C1=4 and C 2 = 1 C 2 = 1 C_(2)=-1C_2 = -1C2=1. Substitute these back into the general solution:
y ( x ) = e x ( 4 cos ( 3 x ) sin ( 3 x ) ) y ( x ) = e x ( 4 cos ( 3 x ) sin ( 3 x ) ) y(x)=e^(x)(4cos(3x)-sin(3x))y(x) = e^x (4 \cos(3x) – \sin(3x))y(x)=ex(4cos(3x)sin(3x))

Final Answer

The solution to the differential equation with the given initial conditions is:
y ( x ) = e x ( 4 cos ( 3 x ) sin ( 3 x ) ) y ( x ) = e x ( 4 cos ( 3 x ) sin ( 3 x ) ) y(x)=e^(x)(4cos(3x)-sin(3x))y(x) = e^x (4 \cos(3x) – \sin(3x))y(x)=ex(4cos(3x)sin(3x))

Question:-5

If Z = f ( x , y ) = x y Z = f ( x , y ) = x y Z=f(x,y)=xyZ=f(x, y)=x yZ=f(x,y)=xy
Find the maximum value for f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) if x x xxx and y y yyy are constrained to sum to 1 (That is, x + y = 1 x + y = 1 x+y=1x+y=1x+y=1). Solve the problem in two ways: by substitution and by using the Lagrangian multiplier method.

Answer:

To find the maximum value of the function Z = f ( x , y ) = x y Z = f ( x , y ) = x y Z=f(x,y)=xyZ = f(x, y) = xyZ=f(x,y)=xy under the constraint x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1, we will solve the problem using two methods:
  1. By Substitution
  2. By Using the Lagrangian Multiplier Method

1. Method of Substitution

Given the constraint x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1, we can solve for y y yyy in terms of x x xxx:
y = 1 x y = 1 x y=1-xy = 1 – xy=1x
Substitute this expression for y y yyy in the function f ( x , y ) = x y f ( x , y ) = x y f(x,y)=xyf(x, y) = xyf(x,y)=xy:
Z = x ( 1 x ) Z = x ( 1 x ) Z=x(1-x)Z = x(1 – x)Z=x(1x)
This simplifies to:
Z = x x 2 Z = x x 2 Z=x-x^(2)Z = x – x^2Z=xx2
Now, to find the maximum value, take the derivative of Z Z ZZZ with respect to x x xxx and set it to zero:
d Z d x = 1 2 x = 0 d Z d x = 1 2 x = 0 (dZ)/(dx)=1-2x=0\frac{dZ}{dx} = 1 – 2x = 0dZdx=12x=0
Solve for x x xxx:
2 x = 1 x = 1 2 2 x = 1 x = 1 2 2x=1Longrightarrowx=(1)/(2)2x = 1 \implies x = \frac{1}{2}2x=1x=12
Given x = 1 2 x = 1 2 x=(1)/(2)x = \frac{1}{2}x=12, we find y y yyy using the constraint:
y = 1 x = 1 1 2 = 1 2 y = 1 x = 1 1 2 = 1 2 y=1-x=1-(1)/(2)=(1)/(2)y = 1 – x = 1 – \frac{1}{2} = \frac{1}{2}y=1x=112=12
Substitute x = 1 2 x = 1 2 x=(1)/(2)x = \frac{1}{2}x=12 and y = 1 2 y = 1 2 y=(1)/(2)y = \frac{1}{2}y=12 into Z = x y Z = x y Z=xyZ = xyZ=xy to find the maximum value:
Z = 1 2 × 1 2 = 1 4 Z = 1 2 × 1 2 = 1 4 Z=(1)/(2)xx(1)/(2)=(1)/(4)Z = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}Z=12×12=14
Maximum value of Z Z ZZZ by substitution is 1 4 1 4 (1)/(4)\frac{1}{4}14.

2. Lagrangian Multiplier Method

We use the Lagrangian method to find the maximum of f ( x , y ) = x y f ( x , y ) = x y f(x,y)=xyf(x, y) = xyf(x,y)=xy subject to the constraint x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1.
Define the Lagrangian function:
L ( x , y , λ ) = x y + λ ( 1 x y ) L ( x , y , λ ) = x y + λ ( 1 x y ) L(x,y,lambda)=xy+lambda(1-x-y)\mathcal{L}(x, y, \lambda) = xy + \lambda (1 – x – y)L(x,y,λ)=xy+λ(1xy)
where λ λ lambda\lambdaλ is the Lagrange multiplier.
To find the stationary points, take partial derivatives of L L L\mathcal{L}L with respect to x x xxx, y y yyy, and λ λ lambda\lambdaλ, and set them equal to zero:
L x = y λ = 0 L x = y λ = 0 (delL)/(del x)=y-lambda=0\frac{\partial \mathcal{L}}{\partial x} = y – \lambda = 0Lx=yλ=0
L y = x λ = 0 L y = x λ = 0 (delL)/(del y)=x-lambda=0\frac{\partial \mathcal{L}}{\partial y} = x – \lambda = 0Ly=xλ=0
L λ = 1 x y = 0 L λ = 1 x y = 0 (delL)/(del lambda)=1-x-y=0\frac{\partial \mathcal{L}}{\partial \lambda} = 1 – x – y = 0Lλ=1xy=0
From L x = 0 L x = 0 (delL)/(del x)=0\frac{\partial \mathcal{L}}{\partial x} = 0Lx=0 and L y = 0 L y = 0 (delL)/(del y)=0\frac{\partial \mathcal{L}}{\partial y} = 0Ly=0, we have:
y = λ and x = λ y = λ and x = λ y=lambdaquad”and”quad x=lambday = \lambda \quad \text{and} \quad x = \lambday=λandx=λ
Thus, x = y x = y x=yx = yx=y. Substituting into the constraint equation x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1, we get:
x + x = 1 2 x = 1 x = 1 2 x + x = 1 2 x = 1 x = 1 2 x+x=1Longrightarrow2x=1Longrightarrowx=(1)/(2)x + x = 1 \implies 2x = 1 \implies x = \frac{1}{2}x+x=12x=1x=12
Since x = y x = y x=yx = yx=y, we also have y = 1 2 y = 1 2 y=(1)/(2)y = \frac{1}{2}y=12.
Substitute x = 1 2 x = 1 2 x=(1)/(2)x = \frac{1}{2}x=12 and y = 1 2 y = 1 2 y=(1)/(2)y = \frac{1}{2}y=12 back into Z = x y Z = x y Z=xyZ = xyZ=xy to find the maximum value:
Z = 1 2 × 1 2 = 1 4 Z = 1 2 × 1 2 = 1 4 Z=(1)/(2)xx(1)/(2)=(1)/(4)Z = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}Z=12×12=14
Maximum value of Z Z ZZZ by the Lagrangian method is 1 4 1 4 (1)/(4)\frac{1}{4}14.

Conclusion

In both methods, the maximum value of f ( x , y ) = x y f ( x , y ) = x y f(x,y)=xyf(x, y) = xyf(x,y)=xy under the constraint x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1 is 1 4 1 4 (1)/(4)\frac{1}{4}14.

Question:-6(a)

Define Adjugate of a matrix

Answer:

The adjugate (or adjoint) of a matrix is a key concept in linear algebra that is used in various matrix operations, including finding the inverse of a matrix. Here’s a formal definition:

Definition of the Adjugate of a Matrix

For a given square matrix A = [ a i j ] A = [ a i j ] A=[a_(ij)]A = [a_{ij}]A=[aij] of size n × n n × n n xx nn \times nn×n, the adjugate of A A AAA, denoted as adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A) or sometimes adjugate ( A ) adjugate ( A ) “adjugate”(A)\text{adjugate}(A)adjugate(A), is the transpose of the cofactor matrix of A A AAA.

Steps to Find the Adjugate of a Matrix:

  1. Cofactor Matrix: Compute the cofactor matrix C C CCC of A A AAA. The cofactor C i j C i j C_(ij)C_{ij}Cij of an element a i j a i j a_(ij)a_{ij}aij in A A AAA is given by:
    C i j = ( 1 ) i + j M i j C i j = ( 1 ) i + j M i j C_(ij)=(-1)^(i+j)M_(ij)C_{ij} = (-1)^{i+j} M_{ij}Cij=(1)i+jMij
    where M i j M i j M_(ij)M_{ij}Mij is the minor of the element a i j a i j a_(ij)a_{ij}aij. The minor M i j M i j M_(ij)M_{ij}Mij is the determinant of the ( n 1 ) × ( n 1 ) ( n 1 ) × ( n 1 ) (n-1)xx(n-1)(n-1) \times (n-1)(n1)×(n1) matrix that results from deleting the i i iii-th row and j j jjj-th column from A A AAA.
  2. Transpose of the Cofactor Matrix: Once all cofactors C i j C i j C_(ij)C_{ij}Cij are calculated and arranged into a matrix C C CCC, take the transpose of this matrix to get the adjugate matrix adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A):
    adj ( A ) = C T adj ( A ) = C T “adj”(A)=C^(T)\text{adj}(A) = C^Tadj(A)=CT

Example

Let’s consider a 2 × 2 2 × 2 2xx22 \times 22×2 matrix A A AAA:
A = [ a b c d ] A = a b c d A=[[a,b],[c,d]]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}A=[abcd]
  1. Cofactor Matrix C C CCC:
    • The cofactor of a 11 = a a 11 = a a_(11)=aa_{11} = aa11=a is C 11 = d C 11 = d C_(11)=dC_{11} = dC11=d (minor is d d ddd, no sign change as ( 1 ) 1 + 1 = 1 ( 1 ) 1 + 1 = 1 (-1)^(1+1)=1(-1)^{1+1} = 1(1)1+1=1).
    • The cofactor of a 12 = b a 12 = b a_(12)=ba_{12} = ba12=b is C 12 = c C 12 = c C_(12)=-cC_{12} = -cC12=c (minor is c c ccc, sign change as ( 1 ) 1 + 2 = 1 ( 1 ) 1 + 2 = 1 (-1)^(1+2)=-1(-1)^{1+2} = -1(1)1+2=1).
    • The cofactor of a 21 = c a 21 = c a_(21)=ca_{21} = ca21=c is C 21 = b C 21 = b C_(21)=-bC_{21} = -bC21=b (minor is b b bbb, sign change as ( 1 ) 2 + 1 = 1 ( 1 ) 2 + 1 = 1 (-1)^(2+1)=-1(-1)^{2+1} = -1(1)2+1=1).
    • The cofactor of a 22 = d a 22 = d a_(22)=da_{22} = da22=d is C 22 = a C 22 = a C_(22)=aC_{22} = aC22=a (minor is a a aaa, no sign change as ( 1 ) 2 + 2 = 1 ( 1 ) 2 + 2 = 1 (-1)^(2+2)=1(-1)^{2+2} = 1(1)2+2=1).
    So, the cofactor matrix C C CCC is:
    C = [ d c b a ] C = d c b a C=[[d,-c],[-b,a]]C = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}C=[dcba]
  2. Adjugate Matrix adj ( A ) adj ( A ) “adj”(A)\text{adj}(A)adj(A):
    The adjugate of A A AAA is the transpose of C C CCC:
    adj ( A ) = C T = [ d b c a ] adj ( A ) = C T = d b c a “adj”(A)=C^(T)=[[d,-b],[-c,a]]\text{adj}(A) = C^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}adj(A)=CT=[dbca]

Importance of the Adjugate

The adjugate of a matrix is particularly useful in finding the inverse of a matrix. For an invertible matrix A A AAA, the inverse A 1 A 1 A^(-1)A^{-1}A1 can be found using the adjugate:
A 1 = adj ( A ) det ( A ) A 1 = adj ( A ) det ( A ) A^(-1)=(“adj”(A))/(det(A))A^{-1} = \frac{\text{adj}(A)}{\det(A)}A1=adj(A)det(A)
where det ( A ) det ( A ) det(A)\det(A)det(A) is the determinant of A A AAA.

Question:-6(b)

Define Decomposable matrix

Answer:

A decomposable matrix (also known as a reducible matrix) is a square matrix that can be transformed into a block upper triangular form via simultaneous row and column permutations. This means that the matrix can be rearranged so that it has a block structure with zero entries below the main diagonal block.

Formal Definition

A square matrix A = [ a i j ] A = [ a i j ] A=[a_(ij)]A = [a_{ij}]A=[aij] of size n × n n × n n xx nn \times nn×n is said to be decomposable or reducible if there exists a permutation matrix P P PPP such that:
P A P T = [ B C 0 D ] P A P T = B C 0 D PAP^(T)=[[B,C],[0,D]]PAP^T = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}PAPT=[BC0D]
where:
  • B B BBB and D D DDD are square matrices (of sizes k × k k × k k xx kk \times kk×k and ( n k ) × ( n k ) ( n k ) × ( n k ) (n-k)xx(n-k)(n-k) \times (n-k)(nk)×(nk) respectively, for some 0 < k < n 0 < k < n 0 < k < n0 < k < n0<k<n),
  • C C CCC is a matrix (of size k × ( n k ) k × ( n k ) k xx(n-k)k \times (n-k)k×(nk)),
  • The zero block is a matrix of zeros (of size ( n k ) × k ( n k ) × k (n-k)xx k(n-k) \times k(nk)×k).
If no such permutation matrix P P PPP exists, the matrix A A AAA is called indecomposable or irreducible.

Key Points

  • Permutation Matrix: A permutation matrix is a square binary matrix (containing only 0s and 1s) that has exactly one entry of 1 in each row and each column, with all other entries being 0. It represents a reordering of the rows or columns of the identity matrix.
  • Block Upper Triangular Form: This form has all elements below the main diagonal blocks as zeros, which indicates that the matrix can be divided into independent submatrices. This is significant in many computational and theoretical contexts, such as solving systems of linear equations or in analyzing the structure of matrices.

Example

Consider the matrix A A AAA:
A = [ 1 2 0 0 0 3 0 0 4 5 6 7 0 0 8 9 ] A = 1 2 0 0 0 3 0 0 4 5 6 7 0 0 8 9 A=[[1,2,0,0],[0,3,0,0],[4,5,6,7],[0,0,8,9]]A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \end{bmatrix}A=[1200030045670089]
This matrix can be rearranged into a block upper triangular form:
A = [ 1 2 0 0 0 3 0 0 4 5 6 7 0 0 8 9 ] = [ B C 0 D ] where B = [ 1 2 0 3 ] , C = [ 0 0 4 5 ] , D = [ 6 7 8 9 ] A = 1 2 0 0 0 3 0 0 4 5 6 7 0 0 8 9 = B C 0 D where B = 1 2 0 3 , C = 0 0 4 5 , D = 6 7 8 9 A=[[1,2,0,0],[0,3,0,0],[4,5,6,7],[0,0,8,9]]=[[B,C],[0,D]]quad”where”quad B=[[1,2],[0,3]],quad C=[[0,0],[4,5]],quad D=[[6,7],[8,9]]A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \end{bmatrix} = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix} \quad \text{where} \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 \\ 4 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}A=[1200030045670089]=[BC0D]whereB=[1203],C=[0045],D=[6789]
In this case, A A AAA is decomposable because it can be transformed into an upper block triangular form. The structure of A A AAA shows that the matrix can be split into smaller subproblems (represented by B B BBB and D D DDD) that are more manageable.

Applications

  • Graph Theory: In graph theory, a matrix is decomposable if the corresponding directed graph is not strongly connected. The concept of decomposability is related to finding strongly connected components in graphs.
  • Linear Algebra: Decomposable matrices are useful in simplifying the solution of linear systems, eigenvalue problems, and other matrix-related computations by breaking down complex matrices into simpler components.

Question:-6(c)

Define Singular matrix

Answer:

A singular matrix is a square matrix (a matrix with the same number of rows and columns) that does not have an inverse. In other words, a square matrix A A AAA is singular if there is no matrix B B BBB such that:
A B = B A = I A B = B A = I AB=BA=IAB = BA = IAB=BA=I
where I I III is the identity matrix of the same size as A A AAA.

Characteristics of a Singular Matrix

  1. Determinant is Zero: The most straightforward criterion for a matrix to be singular is that its determinant is zero. For a square matrix A A AAA, if det ( A ) = 0 det ( A ) = 0 det(A)=0\det(A) = 0det(A)=0, then A A AAA is singular. Conversely, if det ( A ) 0 det ( A ) 0 det(A)!=0\det(A) \neq 0det(A)0, the matrix is said to be nonsingular (or invertible).
  2. No Inverse: A singular matrix does not have an inverse matrix. If you attempt to compute the inverse of a singular matrix using standard algorithms (like Gaussian elimination), you will not be able to complete the operation because of a division by zero or the inability to achieve row reduction to an identity matrix.
  3. Linearly Dependent Rows or Columns: A matrix is singular if its rows or columns are linearly dependent. This means that at least one row (or column) can be expressed as a linear combination of the other rows (or columns). When this happens, the matrix loses full rank, and its determinant becomes zero.
  4. Rank Deficiency: The rank of a matrix is the maximum number of linearly independent rows or columns. A square matrix A A AAA of size n × n n × n n xx nn \times nn×n is singular if its rank is less than n n nnn. A nonsingular matrix, by contrast, has full rank n n nnn.

Example of a Singular Matrix

Consider the following 2 × 2 2 × 2 2xx22 \times 22×2 matrix:
A = [ 2 4 1 2 ] A = 2 4 1 2 A=[[2,4],[1,2]]A = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}A=[2412]
To check if A A AAA is singular, compute its determinant:
det ( A ) = ( 2 × 2 ) ( 4 × 1 ) = 4 4 = 0 det ( A ) = ( 2 × 2 ) ( 4 × 1 ) = 4 4 = 0 det(A)=(2xx2)-(4xx1)=4-4=0\det(A) = (2 \times 2) – (4 \times 1) = 4 – 4 = 0det(A)=(2×2)(4×1)=44=0
Since the determinant is zero, matrix A A AAA is singular.
Additionally, you can observe that the second row is a scalar multiple of the first row (specifically, the second row is half of the first row). This indicates that the rows are linearly dependent, confirming that the matrix is singular.

Implications of a Singular Matrix

  • Systems of Linear Equations: A singular matrix implies that a system of linear equations represented by this matrix has either no solutions or infinitely many solutions. This is because there isn’t a unique solution when the determinant is zero.
  • Computational Issues: In numerical computations, singular matrices can cause problems because algorithms that depend on matrix inversion will fail. Techniques such as regularization or pseudo-inverse methods (like the Moore-Penrose inverse) are used to handle singular or nearly singular matrices.
In summary, a singular matrix is a square matrix without an inverse, characterized by a zero determinant and linear dependence among its rows or columns.

Question:-7

Evaluate ( 7 x 2 ) 3 x + 2 d x ( 7 x 2 ) 3 x + 2 d x int(7x-2)sqrt(3x+2)dx\int(7 x-2) \sqrt{3 x+2} d x(7x2)3x+2dx

Answer:

To evaluate the integral
( 7 x 2 ) 3 x + 2 d x , ( 7 x 2 ) 3 x + 2 d x , int(7x-2)sqrt(3x+2)dx,\int (7x – 2) \sqrt{3x + 2} \, dx,(7x2)3x+2dx,
we can use substitution to simplify the expression.

Step 1: Substitution

Let
u = 3 x + 2. u = 3 x + 2. u=3x+2.u = 3x + 2.u=3x+2.
Then, the derivative of u u uuu with respect to x x xxx is
d u d x = 3 , or d x = d u 3 . d u d x = 3 , or d x = d u 3 . (du)/(dx)=3,quad”or”quad dx=(du)/(3).\frac{du}{dx} = 3, \quad \text{or} \quad dx = \frac{du}{3}.dudx=3,ordx=du3.
We also need to express x x xxx in terms of u u uuu:
x = u 2 3 . x = u 2 3 . x=(u-2)/(3).x = \frac{u – 2}{3}.x=u23.
Substitute x x xxx and d x d x dxdxdx into the integral:
( 7 x 2 ) 3 x + 2 d x = ( 7 ( u 2 3 ) 2 ) u d u 3 . ( 7 x 2 ) 3 x + 2 d x = 7 u 2 3 2 u d u 3 . int(7x-2)sqrt(3x+2)dx=int(7((u-2)/(3))-2)sqrtu*(du)/(3).\int (7x – 2) \sqrt{3x + 2} \, dx = \int \left(7 \left(\frac{u – 2}{3}\right) – 2\right) \sqrt{u} \cdot \frac{du}{3}.(7x2)3x+2dx=(7(u23)2)udu3.
Simplify the expression inside the integral:
( 7 ( u 2 ) 3 2 ) u d u 3 . 7 ( u 2 ) 3 2 u d u 3 . int((7(u-2))/(3)-2)sqrtu*(du)/(3).\int \left( \frac{7(u – 2)}{3} – 2 \right) \sqrt{u} \cdot \frac{du}{3}.(7(u2)32)udu3.
Further simplifying:
( 7 u 14 6 3 ) u d u 3 = ( 7 u 20 3 ) u d u 3 . 7 u 14 6 3 u d u 3 = 7 u 20 3 u d u 3 . int((7u-14-6)/(3))sqrtu*(du)/(3)=int((7u-20)/(3))sqrtu*(du)/(3).\int \left( \frac{7u – 14 – 6}{3} \right) \sqrt{u} \cdot \frac{du}{3} = \int \left( \frac{7u – 20}{3} \right) \sqrt{u} \cdot \frac{du}{3}.(7u1463)udu3=(7u203)udu3.
Combine the fractions:
( 7 u 20 ) u 9 d u = 1 9 ( 7 u 20 ) u d u . ( 7 u 20 ) u 9 d u = 1 9 ( 7 u 20 ) u d u . int((7u-20)sqrtu)/(9)du=(1)/(9)int(7u-20)sqrtudu.\int \frac{(7u – 20) \sqrt{u}}{9} \, du = \frac{1}{9} \int (7u – 20) \sqrt{u} \, du.(7u20)u9du=19(7u20)udu.

Step 2: Distribute and Integrate

Distribute u u sqrtu\sqrt{u}u inside the parentheses:
1 9 ( 7 u 3 / 2 20 u 1 / 2 ) d u . 1 9 ( 7 u 3 / 2 20 u 1 / 2 ) d u . (1)/(9)int(7u^(3//2)-20u^(1//2))du.\frac{1}{9} \int (7u^{3/2} – 20u^{1/2}) \, du.19(7u3/220u1/2)du.
Now, integrate each term separately:
1 9 ( 7 u 3 / 2 d u 20 u 1 / 2 d u ) . 1 9 7 u 3 / 2 d u 20 u 1 / 2 d u . (1)/(9)(int7u^(3//2)du-int20u^(1//2)du).\frac{1}{9} \left( \int 7u^{3/2} \, du – \int 20u^{1/2} \, du \right).19(7u3/2du20u1/2du).
Integrate each term:
7 u 3 / 2 d u = 7 u 5 / 2 5 / 2 = 14 5 u 5 / 2 , 7 u 3 / 2 d u = 7 u 5 / 2 5 / 2 = 14 5 u 5 / 2 , int7u^(3//2)du=7*(u^(5//2))/(5//2)=(14)/(5)u^(5//2),\int 7u^{3/2} \, du = 7 \cdot \frac{u^{5/2}}{5/2} = \frac{14}{5} u^{5/2},7u3/2du=7u5/25/2=145u5/2,
20 u 1 / 2 d u = 20 u 3 / 2 3 / 2 = 40 3 u 3 / 2 . 20 u 1 / 2 d u = 20 u 3 / 2 3 / 2 = 40 3 u 3 / 2 . int20u^(1//2)du=20*(u^(3//2))/(3//2)=(40)/(3)u^(3//2).\int 20u^{1/2} \, du = 20 \cdot \frac{u^{3/2}}{3/2} = \frac{40}{3} u^{3/2}.20u1/2du=20u3/23/2=403u3/2.
Thus, the integral becomes:
1 9 ( 14 5 u 5 / 2 40 3 u 3 / 2 ) . 1 9 14 5 u 5 / 2 40 3 u 3 / 2 . (1)/(9)((14)/(5)u^(5//2)-(40)/(3)u^(3//2)).\frac{1}{9} \left( \frac{14}{5} u^{5/2} – \frac{40}{3} u^{3/2} \right).19(145u5/2403u3/2).
Simplify the fractions:
14 45 u 5 / 2 40 27 u 3 / 2 . 14 45 u 5 / 2 40 27 u 3 / 2 . (14)/(45)u^(5//2)-(40)/(27)u^(3//2).\frac{14}{45} u^{5/2} – \frac{40}{27} u^{3/2}.1445u5/24027u3/2.

Step 3: Substitute Back in Terms of x x xxx

Recall u = 3 x + 2 u = 3 x + 2 u=3x+2u = 3x + 2u=3x+2. Substitute u u uuu back into the expression:
14 45 ( 3 x + 2 ) 5 / 2 40 27 ( 3 x + 2 ) 3 / 2 . 14 45 ( 3 x + 2 ) 5 / 2 40 27 ( 3 x + 2 ) 3 / 2 . (14)/(45)(3x+2)^(5//2)-(40)/(27)(3x+2)^(3//2).\frac{14}{45} (3x + 2)^{5/2} – \frac{40}{27} (3x + 2)^{3/2}.1445(3x+2)5/24027(3x+2)3/2.

Final Answer

Thus, the evaluated integral is:
( 7 x 2 ) 3 x + 2 d x = 14 45 ( 3 x + 2 ) 5 / 2 40 27 ( 3 x + 2 ) 3 / 2 + C , ( 7 x 2 ) 3 x + 2 d x = 14 45 ( 3 x + 2 ) 5 / 2 40 27 ( 3 x + 2 ) 3 / 2 + C , int(7x-2)sqrt(3x+2)dx=(14)/(45)(3x+2)^(5//2)-(40)/(27)(3x+2)^(3//2)+C,\int (7x – 2) \sqrt{3x + 2} \, dx = \frac{14}{45} (3x + 2)^{5/2} – \frac{40}{27} (3x + 2)^{3/2} + C,(7x2)3x+2dx=1445(3x+2)5/24027(3x+2)3/2+C,
where C C CCC is the constant of integration.

Question:-8

Explain the concept of maximum value function.

Answer:

The maximum value function refers to a function that determines the greatest value of a given function over a specific domain or under certain conditions. This concept is fundamental in calculus, optimization, economics, and various fields where finding optimal solutions is essential.

Understanding the Maximum Value of a Function

  1. Definition:
    • The maximum value of a function f ( x ) f ( x ) f(x)f(x)f(x) is the highest output value that the function achieves within a particular domain (a specified set of input values).
  2. Local vs. Global Maximum:
    • Local Maximum: A point x = c x = c x=cx = cx=c is a local maximum if, within some small neighborhood around c c ccc, f ( c ) f ( c ) f(c)f(c)f(c) is greater than or equal to all other function values. Formally, f ( c ) f ( c ) f(c)f(c)f(c) is a local maximum if there exists an interval ( a , b ) ( a , b ) (a,b)(a, b)(a,b) containing c c ccc such that f ( x ) f ( c ) f ( x ) f ( c ) f(x) <= f(c)f(x) \leq f(c)f(x)f(c) for all x ( a , b ) x ( a , b ) x in(a,b)x \in (a, b)x(a,b).
    • Global Maximum: A point x = c x = c x=cx = cx=c is a global (or absolute) maximum if f ( c ) f ( c ) f(c)f(c)f(c) is greater than or equal to all other function values over the entire domain of f ( x ) f ( x ) f(x)f(x)f(x). Formally, f ( c ) f ( c ) f(c)f(c)f(c) is a global maximum if f ( x ) f ( c ) f ( x ) f ( c ) f(x) <= f(c)f(x) \leq f(c)f(x)f(c) for all x x xxx in the domain of f f fff.
  3. Finding Maximum Values:
    • To find the maximum value of a function, one can use various methods depending on the nature of the function:
      • Calculus (Derivative Test): For a differentiable function, you find the critical points by setting the first derivative f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) equal to zero or where f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) does not exist. The critical points are then tested using the second derivative test or first derivative test to determine if they are maxima.
      • Closed Interval Method: If the function is defined on a closed interval [ a , b ] [ a , b ] [a,b][a, b][a,b], evaluate the function at critical points and endpoints a a aaa and b b bbb. The greatest value among these is the maximum value of the function on that interval.
      • Graphical Analysis: Sometimes visualizing the function can help identify maximum points, especially for more intuitive understanding or for functions that are not easily differentiable.
  4. Applications:
    • Optimization Problems: Finding maximum values is central to optimization problems where one seeks to maximize profit, efficiency, yield, or other desirable outcomes.
    • Economics: In economics, the maximum value of a utility function, production function, or profit function represents the optimal point where a firm or consumer achieves the highest satisfaction, output, or profit.
    • Physics and Engineering: Maximum values can represent peak stress points, maximum energy states, or other critical conditions in physical systems.

Examples

  1. Quadratic Function:
    Consider f ( x ) = x 2 + 4 x + 1 f ( x ) = x 2 + 4 x + 1 f(x)=-x^(2)+4x+1f(x) = -x^2 + 4x + 1f(x)=x2+4x+1. To find its maximum value:
    • The first derivative is f ( x ) = 2 x + 4 f ( x ) = 2 x + 4 f^(‘)(x)=-2x+4f'(x) = -2x + 4f(x)=2x+4.
    • Set f ( x ) = 0 f ( x ) = 0 f^(‘)(x)=0f'(x) = 0f(x)=0 to find the critical point: 2 x + 4 = 0 2 x + 4 = 0 -2x+4=0-2x + 4 = 02x+4=0 implies x = 2 x = 2 x=2x = 2x=2.
    • The second derivative f ( x ) = 2 f ( x ) = 2 f^(″)(x)=-2f”(x) = -2f(x)=2 is negative, indicating a local maximum.
    • Thus, the maximum value occurs at x = 2 x = 2 x=2x = 2x=2 and f ( 2 ) = 2 2 + 4 × 2 + 1 = 5 f ( 2 ) = 2 2 + 4 × 2 + 1 = 5 f(2)=-2^(2)+4xx2+1=5f(2) = -2^2 + 4 \times 2 + 1 = 5f(2)=22+4×2+1=5. So, the maximum value is 5 5 555.
  2. Constraint Optimization:
    Consider a function f ( x , y ) = x y f ( x , y ) = x y f(x,y)=xyf(x, y) = xyf(x,y)=xy subject to a constraint x + y = 1 x + y = 1 x+y=1x + y = 1x+y=1. Using substitution or the Lagrangian method, one can find the maximum value of f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) given the constraint, which, in this case, is 1 4 1 4 (1)/(4)\frac{1}{4}14.

Conclusion

The concept of the maximum value function is pivotal in understanding and solving problems where determining the highest achievable value is crucial. It leverages tools from calculus, algebra, and numerical methods, and it plays a significant role in various practical and theoretical applications across many disciplines.

Question:-9

Let the production function be Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q=A L^a K^bQ=ALaKb. Find the elasticity of production with respect to labour (L).

Answer:

The elasticity of production with respect to labor (often referred to as the output elasticity of labor) measures the responsiveness of output (production, Q Q QQQ) to a change in the amount of labor ( L L LLL), holding all other factors constant.
Given the Cobb-Douglas production function:
Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q = A L^a K^bQ=ALaKb
where:
  • Q Q QQQ is the total output,
  • A A AAA is a constant representing total factor productivity,
  • L L LLL is the quantity of labor,
  • K K KKK is the quantity of capital,
  • a a aaa and b b bbb are the output elasticities of labor and capital, respectively.

Elasticity of Production with Respect to Labor

The elasticity of production with respect to labor, E L E L E_(L)E_LEL, is defined as the percentage change in output resulting from a one percent change in labor, holding capital constant. Mathematically, it’s given by:
E L = Q / Q L / L E L = Q / Q L / L E_(L)=(del Q//Q)/(del L//L)E_L = \frac{\partial Q / Q}{\partial L / L}EL=Q/QL/L
This can be simplified to:
E L = Q L L Q E L = Q L L Q E_(L)=(del Q)/(del L)*(L)/(Q)E_L = \frac{\partial Q}{\partial L} \cdot \frac{L}{Q}EL=QLLQ

Step-by-Step Calculation

  1. Find the Partial Derivative of Q Q QQQ with Respect to L L LLL:
    Differentiate Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q = A L^a K^bQ=ALaKb with respect to L L LLL:
    Q L = A a L a 1 K b Q L = A a L a 1 K b (del Q)/(del L)=A*a*L^(a-1)*K^(b)\frac{\partial Q}{\partial L} = A \cdot a \cdot L^{a-1} \cdot K^bQL=AaLa1Kb
  2. Substitute into the Elasticity Formula:
    Now, plug Q L Q L (del Q)/(del L)\frac{\partial Q}{\partial L}QL and Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q = A L^a K^bQ=ALaKb into the elasticity formula:
    E L = ( A a L a 1 K b ) L A L a K b E L = A a L a 1 K b L A L a K b E_(L)=(A*a*L^(a-1)*K^(b))*(L)/(AL^(a)K^(b))E_L = \left( A \cdot a \cdot L^{a-1} \cdot K^b \right) \cdot \frac{L}{A L^a K^b}EL=(AaLa1Kb)LALaKb
  3. Simplify the Expression:
    Simplify the expression by canceling out common terms:
    E L = a L a 1 L L a = a L a L a = a E L = a L a 1 L L a = a L a L a = a E_(L)=a*(L^(a-1)*L)/(L^(a))=a*(L^(a))/(L^(a))=aE_L = a \cdot \frac{L^{a-1} \cdot L}{L^a} = a \cdot \frac{L^a}{L^a} = aEL=aLa1LLa=aLaLa=a

Conclusion

The elasticity of production with respect to labor for the Cobb-Douglas production function Q = A L a K b Q = A L a K b Q=AL^(a)K^(b)Q = A L^a K^bQ=ALaKb is a a aaa. This means that the exponent a a aaa in the production function represents the output elasticity of labor. If a = 0.5 a = 0.5 a=0.5a = 0.5a=0.5, for instance, a 1% increase in labor input would lead to a 0.5% increase in output, assuming capital input K K KKK is held constant.

Question:-10

Denote by a , b a , b a,b\mathbf{a}, \mathbf{b}a,b and c c c\mathbf{c}c the column vectors
a = ( 1 2 3 ) , b = ( 2 1 3 ) , c = ( 2 1 1 ) a = 1 2 3 , b = 2 1 3 , c = 2 1 1 a=([1],[2],[3]),b=([-2],[1],[-3]),c=([-2],[-1],[1])\mathbf{a}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \mathbf{b}=\left(\begin{array}{l} -2 \\ 1 \\ -3 \end{array}\right), \mathbf{c}=\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right)a=(123),b=(213),c=(211)
Calculate
2 a 5 b , 2 a 5 b + c , a b 2 a 5 b , 2 a 5 b + c , a b 2a-5b,2a-5b+c,a*b2 \mathbf{a}-5 \mathbf{b}, \mathbf{2 a}-5 \mathbf{b}+\mathbf{c}, \mathbf{a} \cdot \mathbf{b}2a5b,2a5b+c,ab

Answer:

To calculate 2 a 5 b 2 a 5 b 2a-5b2 \mathbf{a} – 5 \mathbf{b}2a5b, 2 a 5 b + c 2 a 5 b + c 2a-5b+c2 \mathbf{a} – 5 \mathbf{b} + \mathbf{c}2a5b+c, and a b a b a*b\mathbf{a} \cdot \mathbf{b}ab, we’ll perform vector operations such as scalar multiplication, vector addition, and the dot product.
Given vectors:
a = ( 1 2 3 ) , b = ( 2 1 3 ) , c = ( 2 1 1 ) a = 1 2 3 , b = 2 1 3 , c = 2 1 1 a=([1],[2],[3]),quadb=([-2],[1],[-3]),quadc=([-2],[-1],[1])\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}a=(123),b=(213),c=(211)

1. Calculate 2 a 5 b 2 a 5 b 2a-5b2 \mathbf{a} – 5 \mathbf{b}2a5b

First, perform scalar multiplication:
2 a = 2 ( 1 2 3 ) = ( 2 4 6 ) 2 a = 2 1 2 3 = 2 4 6 2a=2([1],[2],[3])=([2],[4],[6])2\mathbf{a} = 2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}2a=2(123)=(246)
5 b = 5 ( 2 1 3 ) = ( 10 5 15 ) 5 b = 5 2 1 3 = 10 5 15 5b=5([-2],[1],[-3])=([-10],[5],[-15])5\mathbf{b} = 5 \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -10 \\ 5 \\ -15 \end{pmatrix}5b=5(213)=(10515)
Now subtract 5 b 5 b 5b5\mathbf{b}5b from 2 a 2 a 2a2\mathbf{a}2a:
2 a 5 b = ( 2 4 6 ) ( 10 5 15 ) = ( 2 + 10 4 5 6 + 15 ) = ( 12 1 21 ) 2 a 5 b = 2 4 6 10 5 15 = 2 + 10 4 5 6 + 15 = 12 1 21 2a-5b=([2],[4],[6])-([-10],[5],[-15])=([2+10],[4-5],[6+15])=([12],[-1],[21])2\mathbf{a} – 5\mathbf{b} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} – \begin{pmatrix} -10 \\ 5 \\ -15 \end{pmatrix} = \begin{pmatrix} 2 + 10 \\ 4 – 5 \\ 6 + 15 \end{pmatrix} = \begin{pmatrix} 12 \\ -1 \\ 21 \end{pmatrix}2a5b=(246)(10515)=(2+10456+15)=(12121)

2. Calculate 2 a 5 b + c 2 a 5 b + c 2a-5b+c2 \mathbf{a} – 5 \mathbf{b} + \mathbf{c}2a5b+c

Using the previously computed 2 a 5 b = ( 12 1 21 ) 2 a 5 b = 12 1 21 2a-5b=([12],[-1],[21])2\mathbf{a} – 5\mathbf{b} = \begin{pmatrix} 12 \\ -1 \\ 21 \end{pmatrix}2a5b=(12121):
c = ( 2 1 1 ) c = 2 1 1 c=([-2],[-1],[1])\mathbf{c} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}c=(211)
Add c c c\mathbf{c}c to 2 a 5 b 2 a 5 b 2a-5b2\mathbf{a} – 5\mathbf{b}2a5b:
2 a 5 b + c = ( 12 1 21 ) + ( 2 1 1 ) = ( 12 2 1 1 21 + 1 ) = ( 10 2 22 ) 2 a 5 b + c = 12 1 21 + 2 1 1 = 12 2 1 1 21 + 1 = 10 2 22 2a-5b+c=([12],[-1],[21])+([-2],[-1],[1])=([12-2],[-1-1],[21+1])=([10],[-2],[22])2\mathbf{a} – 5\mathbf{b} + \mathbf{c} = \begin{pmatrix} 12 \\ -1 \\ 21 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 12 – 2 \\ -1 – 1 \\ 21 + 1 \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \\ 22 \end{pmatrix}2a5b+c=(12121)+(211)=(1221121+1)=(10222)

3. Calculate a b a b a*b\mathbf{a} \cdot \mathbf{b}ab (Dot Product)

The dot product of vectors a a a\mathbf{a}a and b b b\mathbf{b}b is computed as follows:
a b = 1 × ( 2 ) + 2 × 1 + 3 × ( 3 ) a b = 1 × ( 2 ) + 2 × 1 + 3 × ( 3 ) a*b=1xx(-2)+2xx1+3xx(-3)\mathbf{a} \cdot \mathbf{b} = 1 \times (-2) + 2 \times 1 + 3 \times (-3)ab=1×(2)+2×1+3×(3)
a b = 2 + 2 9 = 9 a b = 2 + 2 9 = 9 a*b=-2+2-9=-9\mathbf{a} \cdot \mathbf{b} = -2 + 2 – 9 = -9ab=2+29=9

Summary of Results

  • 2 a 5 b = ( 12 1 21 ) 2 a 5 b = 12 1 21 2a-5b=([12],[-1],[21])2 \mathbf{a} – 5 \mathbf{b} = \begin{pmatrix} 12 \\ -1 \\ 21 \end{pmatrix}2a5b=(12121)
  • 2 a 5 b + c = ( 10 2 22 ) 2 a 5 b + c = 10 2 22 2a-5b+c=([10],[-2],[22])2 \mathbf{a} – 5 \mathbf{b} + \mathbf{c} = \begin{pmatrix} 10 \\ -2 \\ 22 \end{pmatrix}2a5b+c=(10222)
  • a b = 9 a b = 9 a*b=-9\mathbf{a} \cdot \mathbf{b} = -9ab=9

Search Free Solved Assignment

Just Type atleast 3 letters of your Paper Code

Scroll to Top
Scroll to Top