खण्ड ‘A’ SECTION ‘ AA ‘
1.(a) मान लीजिए RR तत्समक अवयव सहित एक पूर्णांकीय प्रांत है । दर्शाइए कि R[x]R[x] में कोई भी एवक RR में एक एकक है।
Let RR be an integral domain with unit element. Show that any unit in R[x]R[x] is a unit in RR.
Answer:
Introduction
In this problem, we are dealing with the concept of units in the context of integral domains and polynomial rings. Specifically, we are given an integral domain RR with a unit element and are asked to prove that any unit in R[x]R[x] (the polynomial ring over RR) must also be a unit in RR.
Definitions
Integral Domain: An integral domain is a commutative ring RR with a multiplicative identity (unit element) such that the product of any two non-zero elements is non-zero.
Unit in a Ring: An element aa in a ring RR is called a unit if there exists an element bb in RR such that a*b=b*a=1a \cdot b = b \cdot a = 1, where 11 is the multiplicative identity in RR.
Polynomial Ring R[x]R[x]: The set of all polynomials with coefficients in RR.
Work/Calculations
Step 1: Assume f(x)f(x) is a Unit in R[x]R[x]
Let’s assume that f(x)f(x) is a unit in R[x]R[x]. This means there exists a polynomial g(x)g(x) in R[x]R[x] such that:
f(x)*g(x)=1f(x) \cdot g(x) = 1
Step 2: Examine the Degrees of f(x)f(x) and g(x)g(x)
The degree of the polynomial f(x)*g(x)f(x) \cdot g(x) is the sum of the degrees of f(x)f(x) and g(x)g(x). Since f(x)*g(x)=1f(x) \cdot g(x) = 1, a constant polynomial, the degree of f(x)*g(x)f(x) \cdot g(x) is 0.
Let “deg”(f(x))=m\text{deg}(f(x)) = m and “deg”(g(x))=n\text{deg}(g(x)) = n.
“deg”(f(x)*g(x))=m+n=0\text{deg}(f(x) \cdot g(x)) = m + n = 0
Step 3: Conclude m=n=0m = n = 0
Since m+n=0m + n = 0 and m,n >= 0m, n \geq 0, it must be the case that m=n=0m = n = 0.
Step 4: Show f(x)f(x) is a Unit in RR
Since m=0m = 0, f(x)f(x) is a constant polynomial, say f(x)=af(x) = a, where aa is in RR. Similarly, g(x)=bg(x) = b, where bb is in RR.
From f(x)*g(x)=1f(x) \cdot g(x) = 1, we have a*b=1a \cdot b = 1.
This shows that aa is a unit in RR, as a*b=1a \cdot b = 1.
Conclusion
We have shown that if f(x)f(x) is a unit in R[x]R[x], then it must be a constant polynomial and also a unit in RR. Therefore, any unit in R[x]R[x] is a unit in RR.
1.(b) असमिका : (pi^(2))/(9) < int_((pi)/(6))^((pi)/(2))(x)/(sin x)dx < (2pi^(2))/(9)\frac{\pi^2}{9}<\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} d x<\frac{2 \pi^2}{9} को सिद्ध कीजिए ।
Prove the inequality : (pi^(2))/(9) < int_((pi)/(6))^((pi)/(2))(x)/(sin x)dx < (2pi^(2))/(9)\frac{\pi^2}{9}<\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} d x<\frac{2 \pi^2}{9},
Answer:
Introduction:
We have the inequality:
1 <= (1)/(sin x) <= 2″ for all “x in[(pi)/(6),(pi)/(2)]”. “1 \leq \frac{1}{\sin x} \leq 2 \text { for all } x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right] \text {. }
Multiply by xx
Therefore, it follows that:
x <= (x)/(sin x) <= 2x” for all “x in[(pi)/(6),(pi)/(2)]x \leq \frac{x}{\sin x} \leq 2x \text { for all } x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]
Step 1: Defining f(x)f(x):
Let’s define a function f(x)=(x)/(sin x)f(x)=\frac{x}{\sin x}.
Step 2: Defining phi(x)\phi(x) and psi(x)\psi(x):
We define two more functions as follows:
{:[phi(x)=x],[psi(x)=2x”,”quad x in[pi//6″,”pi//2]]:}\begin{aligned}
& \phi(x)=x \\
& \psi(x)=2x, \quad x \in[\pi / 6, \pi / 2]
\end{aligned}
Step 3: Boundedness and Integrability:
Both ff and phi\phi are bounded and integrable on [pi//6,pi//2][\pi / 6, \pi / 2], and f(x) >= phi(x)f(x) \geq \phi(x) for all x in[pi//6,pi//2]x \in[\pi / 6, \pi / 2].
Step 4: Continuity at pi//3\pi / 3:
Furthermore, ff and phi\phi are both continuous at x=pi//3x = \pi / 3, and f(pi//3) > phi(pi//3)f(\pi / 3)>\phi(\pi / 3).
Step 5: Integral Comparison:
Hence, we can compare the integrals:
{:[int_(pi//6)^(pi//2)f(x)dx > int_(pi//6)^(pi//2)phi(x)dx],[=int_(pi//6)^(pi//2)xdx],[=(pi^(2))/(9)]:}\begin{aligned}
& \int_{\pi / 6}^{\pi / 2} f(x) d x>\int_{\pi / 6}^{\pi / 2} \phi(x) d x \\
& =\int_{\pi / 6}^{\pi / 2} x d x \\
& =\frac{\pi^2}{9}
\end{aligned}
Step 6: Comparing with psi\psi:
Similarly, we have:
{:[int_(pi//6)^(pi//2)f(x)dx < int_(pi//6)^(pi//2)psi(x)dx],[=2int_(pi//6)^(pi//2)xdx],[=(2pi^(2))/(9)]:}\begin{aligned}
\int_{\pi / 6}^{\pi / 2} f(x) d x & <\int_{\pi / 6}^{\pi / 2} \psi(x) d x \\
& =2 \int_{\pi / 6}^{\pi / 2} x d x \\
& =\frac{2 \pi^2}{9}
\end{aligned}
1.(c) सिद्ध कीजिए कि फलन : u(x,y)=(x-1)^(3)-3xy^(2)+3y^(2)u(x, y)=(x-1)^3-3 x y^2+3 y^2 प्रसंवादी है और इसके प्रसंबादी संयुग्मी को और संगत विश्लेषिक फलन f(z)f(z) को, zz के ल्प में ज्ञात कीजिए ।
Prove that the function: u(x,y)=(x-1)^(3)-3xy^(2)+3y^(2)u(x, y)=(x-1)^3-3 x y^2+3 y^2 is harmonic and find its harmonic conjugate and the corresponding analytic function f(z)f(z) in terms of zz.
Answer:
Introduction:
In this problem, we are tasked with proving that the function u(x,y)=(x-1)^(3)-3xy^(2)+3y^(2)u(x, y) = (x-1)^3 – 3xy^2 + 3y^2 is harmonic. Furthermore, we need to find its harmonic conjugate and express the corresponding analytic function f(z)f(z) in terms of zz.
Step 1: Verification of Harmonicity:
To begin, we need to determine whether the given function u(x,y)u(x, y) is harmonic. We calculate its partial derivatives with respect to xx and yy:
We notice that (del^(2)u)/(delx^(2))+(del^(2)u)/(dely^(2))=6(x-1)-6(x-1)=0\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6(x-1) – 6(x-1) = 0. This confirms that uu is a harmonic function.
Step 2: Harmonic Conjugate and Analytic Function f(z)f(z):
Next, we aim to find the harmonic conjugate of uu and express the corresponding analytic function f(z)f(z) in terms of zz.
We recognize that u(x,y)u(x, y) is the real part of the analytic function f(z)f(z), where f(z)=u(x,y)+iv(x,y)f(z) = u(x, y) + iv(x, y).
We utilize the Cauchy-Riemann equations, which state that u_(x)=v_(y)u_x = v_y and u_(y)=-v_(x)u_y = -v_x, to determine the imaginary part v(x,y)v(x, y) of f(z)f(z):
Finally, we express the analytic function f(z)f(z) in terms of zz. We use the result that f(z)=(z-1)^(3)+Cf(z) = (z-1)^3 + C
Conclusion:
In conclusion, the given function u(x,y)u(x, y) is confirmed to be harmonic. We have found its harmonic conjugate, v(x,y)v(x, y), and expressed the corresponding analytic function f(z)f(z) as f(z)=(z-1)^(3)+Cf(z) = (z-1)^3 + C, where CC is an arbitrary constant.
1.(d) p( > 0)p(>0) का वह परास ज्ञात कीजिए, जिसके लिए श्रेणी:
(i) निरपेक्षतः अभिसारी तथा (ii) सापेक्ष अभिसारी है ।
Find the range of p( > 0)p(>0) for which the series: (1)/((1+a)^(p))-(1)/((2+a)^(p))+(1)/((3+a)^(p))-dots,a > 0\frac{1}{(1+a)^p}-\frac{1}{(2+a)^p}+\frac{1}{(3+a)^p}-\ldots, a>0, is
(i) absolutely convergent and (ii) conditionally convergent.
Answer:
Introduction:
We are tasked with finding the range of p( > 0)p(>0) for which the series given by:
(1)/((1+a)^(p))-(1)/((2+a)^(p))+(1)/((3+a)^(p))-dots,” where “a > 0\frac{1}{(1+a)^p}-\frac{1}{(2+a)^p}+\frac{1}{(3+a)^p}-\ldots, \text{ where } a>0
converges absolutely and conditionally. To do this, we will use various convergence tests and mathematical techniques.
Step 1: Definition of v_(n)v_n and omega _(n)\omega_n:
Let sumu_(n)\sum u_n be the given series, and define a new series v_(n)v_n as follows:
v_(n)=(1)/((n+a)^(p))v_n = \frac{1}{(n+a)^p}
Additionally, define omega _(n)\omega_n as:
omega _(n)=(1)/(n^(p))\omega_n = \frac{1}{n^p}
Step 2: Checking Convergence of sumv_(n)\sum v_n for p > 1p>1:
By comparing v_(n)v_n with omega _(n)\omega_n, we find that:
Using the comparison test, we conclude that sumv_(n)\sum v_n is convergent when p > 1p>1.
Step 3: Case 1 – Absolute Convergence for P > 1P > 1:
sumu_(n)\sum u_n is an alternating series and sum|u_(n)|\sum\left|u_n\right| is convergent. Therefore, sumu_(n)\sum u_n is absolutely convergent.
Step 4: Case 2 – Conditional Convergence for 0 < p <= 10<p \leq 1:
When 0 < p <= 10<p \leq 1, the sequence {v_(n)}\{v_n\} is a monotone decreasing sequence of positive real numbers with limv_(n)=0\lim v_n = 0. By Leibniz’s test, sum(-1)^(n+1)v_(n)\sum (-1)^{n+1} v_n, which is equivalent to sumu_(n)\sum u_n, is convergent.
Since sum|u_(n)|\sum\left|u_n\right| is divergent in this case, sumu_(n)\sum u_n is conditionally convergent.
Step 5: Decomposition of u_(n)u_n into P_(n)P_n and q_(n)q_n:
Let Sigmau_(n)\Sigma u_n be a series of positive real numbers. We can decompose it into two new series:
In summary, the given series sumu_(n)\sum u_n is absolutely convergent when P > 1P > 1, and it is conditionally convergent when 0 < p <= 10<p \leq 1. This analysis provides a comprehensive understanding of the convergence behavior of the series for different values of pp in the specified range.
1.(e) एक कृषि फर्म के पास 180 टन नाइट्रोजन उर्बरक, 250 टन फॉस्फेट तथा 220 टन पोटाश है । फ़र्म इन पदार्थों के क्रमशः 3:3:43: 3: 4 के अनुपात में मिश्रण को 1500 रुपये प्रति टन के मुनाफे से तथा 2:4:22: 4: 2 के अनुपात में मिश्रण को 1200 रुपये प्रति टन के मुनाफे से बेच पायेगी। एक रैखिक-प्रोग्रामन समस्या प्रस्तुत कीजिए, जो यह दर्शाए कि अधिकतम मुनाफा प्राप्त करने के लिए, इन मिश्रणों की कितने टन मात्रा तैयार की जानी चाहिए।
An agricultural firm has 180 tons of nitrogen fertilizer, 250 tons of phosphate and 220 tons of potash. It will be able to sell a mixture of these substances in their respective ratio 3:3:43: 3: 4 at a profit of Rs. 1500 per ton and a mixture in the ratio 2:4:22: 4: 2 at a profit of Rs. 1200 per ton. Pose a linear programming problem to show how many tons of these two mixtures should be prepared to obtain the maximum profit.
Answer:
To formulate a Linear Programming (LP) problem, we need to define the decision variables, the objective function, and the constraints.
Decision Variables
Let:
xx be the number of tons of the mixture in the ratio 3:3:43:3:4 to be prepared.
yy be the number of tons of the mixture in the ratio 2:4:22:4:2 to be prepared.
Objective Function
The firm wants to maximize its profit. The profit for the mixture in the ratio 3:3:43:3:4 is Rs. 1500 per ton, and for the mixture in the ratio 2:4:22:4:2, it is Rs. 1200 per ton. So, the objective function to maximize is:
P=1500 x+1200 yP = 1500x + 1200y
Constraints
The firm has limited amounts of nitrogen fertilizer, phosphate, and potash, so we need to set up constraints based on the availability of these substances.
Certainly! Here is the corrected version with xx and yy replaced by x_(1)x_1 and x_(2)x_2:
Nitrogen Fertilizer Constraint
For the mixture in the ratio 3:3:43:3:4, 3 parts out of 10 are nitrogen fertilizer. So, for every ton of this mixture, (3)/(10)\frac{3}{10} tons of nitrogen fertilizer are used. Similarly, for the mixture in the ratio 2:4:22:4:2, 2 parts out of 8 are nitrogen fertilizer, i.e., (2)/(8)=(1)/(4)\frac{2}{8} = \frac{1}{4} tons of nitrogen fertilizer per ton of mixture. The firm has 180 tons of nitrogen fertilizer available, so:
For the mixture in the ratio 3:3:43:3:4, 3 parts out of 10 are phosphate. So, for every ton of this mixture, (3)/(10)\frac{3}{10} tons of phosphate are used. For the mixture in the ratio 2:4:22:4:2, 4 parts out of 8 are phosphate, i.e., (4)/(8)=(1)/(2)\frac{4}{8} = \frac{1}{2} tons of phosphate per ton of mixture. The firm has 250 tons of phosphate available, so:
For the mixture in the ratio 3:3:43:3:4, 4 parts out of 10 are potash. So, for every ton of this mixture, (4)/(10)\frac{4}{10} tons of potash are used. For the mixture in the ratio 2:4:22:4:2, 2 parts out of 8 are potash, i.e., (2)/(8)=(1)/(4)\frac{2}{8} = \frac{1}{4} tons of potash per ton of mixture. The firm has 220 tons of potash available, so:
Positive maximum C_(j)-Z_(j)C_j-Z_j is 1500 and its column index is 1 . So, the entering variable is x_(1)x_1.
Minimum ratio is 550 and its row index is 3 . So, the leaving basis variable is S_(3)S_3. :.\therefore The pivot element is 8 .
Entering =x_(1)=x_1, Departing =S_(3)=S_3, Key Element =8=8 R_(3)(R_3( new )=R_(3)()=R_3( old )-:8) \div 8 R_(1)(R_1( new )=R_(1)()=R_1( old )-6R_(3)()-6 R_3( new )) R_(2)(R_2( new )=R_(2)()=R_2( old )-3R_(3)()-3 R_3( new ))
Positive maximum C_(j)-Z_(j)C_j-Z_j is 262.5 and its column index is 2 . So, the entering variable is x_(2)x_2.
Minimum ratio is 240 and its row index is 1 . So, the leaving basis variable is S_(1)S_1. :.\therefore The pivot element is 1.25 .
Entering =x_(2)=x_2, Departing =S_(1)=S_1, Key Element =1.25=1.25
{:[R_(1)(” new “)=R_(1)(” old “)-:1.25],[R_(2)(” new “)=R_(2)(” old “)-3.125R_(1)(” new “)],[R_(3)(” new “)=R_(3)(” old “)-0.625R_(1)(” new “)]:}\begin{aligned}
& R_1(\text { new })=R_1(\text { old }) \div 1.25 \\
& R_2(\text { new })=R_2(\text { old })-3.125 R_1(\text { new }) \\
& R_3(\text { new })=R_3(\text { old })-0.625 R_1(\text { new })
\end{aligned}
Since all C_(j)-Z_(j) <= 0C_j-Z_j \leq 0
Hence, optimal solution is arrived with value of variables as :
x_(1)=400,x_(2)=240x_1=400, x_2=240
Max Z=888000\operatorname{Max} Z=888000
Conclusion
Through iterative calculations and optimizations, the LP problem reached an optimal solution where:
x_(1)=400x_1=400 tons (mixture in the ratio 3:3:43: 3: 4 )
x_(2)=240x_2=240 tons (mixture in the ratio 2:4:22: 4: 2 )
Maximum Profit:
The maximum profit that the firm can achieve with this optimal solution is: Max Z=888,000\operatorname{Max} Z=888,000 (in Rs.)
2.(a) दर्शाइए कि (R,+)(\mathbb{R},+) मोड्यूलो Z\mathbb{Z} का विभाग समूह, सम्मिश्र तल में एकांक वृत्त पर सम्मिश्र संख्याओं के गुणनात्मक समूह से तुल्यकारी होता है । यहाँ पर RRR R, वास्तबिक संख्याओं का समुच्चय है तथा Z\mathbb{Z} पूर्णांकों का समुच्चय है ।
Show that the quotient group of (R,+)(\mathbb{R},+) modulo Z\mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here RR is the set of real numbers and Z\mathbb{Z} is the set of integers.
Answer:
To show that the quotient group of (R,+)(\mathbb{R},+) modulo Z\mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle, we will define an isomorphism between these two groups and then prove that this mapping is indeed an isomorphism.
Quotient Group Definition
The quotient group of (R,+)(\mathbb{R},+) modulo Z\mathbb{Z} is denoted as R//Z\mathbb{R}/\mathbb{Z} and consists of all cosets of the form r+Zr + \mathbb{Z} where r inRr \in \mathbb{R}. Here, r+Zr + \mathbb{Z} represents the set of all real numbers differing by an integer from rr.
Multiplicative Group of Complex Numbers on the Unit Circle
The multiplicative group of complex numbers on the unit circle is the set of all complex numbers of the form e^(2pi i theta)e^{2\pi i \theta} where theta inR\theta \in \mathbb{R} and ii is the imaginary unit. This group is usually denoted as U(1)U(1) or S^(1)S^1.
Define an Isomorphism
Let’s define a function f:R//Zrarr U(1)f: \mathbb{R}/\mathbb{Z} \to U(1) as follows:
f(r+Z)=e^(2pi ir)f(r + \mathbb{Z}) = e^{2\pi i r}
Prove Isomorphism
To prove that ff is an isomorphism, we need to show that ff is a bijective homomorphism.
1. Homomorphism
A function ff is a homomorphism if for all a,b inR//Za, b \in \mathbb{R}/\mathbb{Z}:
A function ff is surjective if every element in the codomain has a preimage in the domain.
For any e^(2pi i theta)in U(1)e^{2\pi i \theta} \in U(1), theta+ZinR//Z\theta + \mathbb{Z} \in \mathbb{R}/\mathbb{Z} is a preimage, since:
f(theta+Z)=e^(2pi i theta)f(\theta + \mathbb{Z}) = e^{2\pi i \theta}
Conclusion
Since ff is a bijective homomorphism, it is an isomorphism. Thus, the quotient group R//Z\mathbb{R}/\mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle, U(1)U(1) or S^(1)S^1.
2.(b) निम्नलिखित रैख्रिक प्रोग्रामन समस्या को Big M\mathrm{M} विधि से हल कीजिए तथा दर्शाइए कि समस्या के परिमित इष्टतम हल हैं। साथ ही उद्देश्य फलन का मान भी ज्ञात कीजिए :
न्यूनतमीकरण कीजिए z=3x_(1)+5x_(2)z=3 x_1+5 x_2
बशाते कि x_(1)+2x_(2) >= 8x_1+2 x_2 \geqslant 8
Solve the following linear programming problem by Big M-method and show that the problem has finite optimal solutions. Also find the value of the objective function :
Minimize z=3x_(1)+5x_(2)z=3 x_1+5 x_2
subject to x_(1)+2x_(2) >= 8x_1+2 x_2 \geqslant 8
Negative minimum C_(j)-Z_(j)C_j-Z_j is -4M+3-4 M+3 and its column index is 1 . So, the entering variable is x_(1)x_1.
Minimum ratio is 4 and its row index is 2 . So, the leaving basis variable is A_(2)A_2. :.\therefore The pivot element is 3 .
Entering =x_(1)=x_1, Departing =A_(2)=A_2, Key Element =3=3 R_(2)(R_2( new )=R_(2)()=R_2( old )-:3) \div 3 R_(1)(R_1( new )=R_(1))=R_1 (old) -R_(2)-R_2 (new) R_(3)(R_3( new )=R_(3)()=R_3( old )-5R_(2)()-5 R_2( new ))
Negative minimum C_(j)-Z_(j)C_j-Z_j is -1.3333 M+3-1.3333 M+3 and its column index is 2 . So, the entering variable is x_(2)x_2.
Minimum ratio is 3 and its row index is 1 . So, the leaving basis variable is A_(1)A_1. :.\therefore The pivot element is 1.3333 .
Entering =x_(2)=x_2, Departing =A_(1)=A_1, Key Element =1.3333=1.3333
{:[R_(1)(” new “)=R_(1)(” old “)-:1.3333],[R_(2)(” new “)=R_(2)(” old “)-0.6667R_(1)(” new “)],[R_(3)(” new “)=R_(3)(” old “)-2.6667R_(1)(” new “)]:}\begin{aligned}
& R_1(\text { new })=R_1(\text { old }) \div 1.3333 \\
& R_2(\text { new })=R_2(\text { old })-0.6667 R_1(\text { new }) \\
& R_3(\text { new })=R_3(\text { old })-2.6667 R_1(\text { new })
\end{aligned}
Since all C_(j)-Z_(j) >= 0C_j-Z_j \geq 0
Hence, optimal solution is arrived with value of variables as :
x_(1)=2,x_(2)=3x_1=2, x_2=3
Min Z=21\operatorname{Min} Z=21
2.(c) दर्शाइए कि यदि R\mathbb{R} के विदृत अन्तराल (a,b)(a, b) पर परिभाषित फलन ff अवमुख हो, तो बह संतत है । उदाहरण के द्वारा दर्शाइए कि यदि विवृत अन्तराल होने की शर्त न हो, बब अवमुख फलन का संतत होना आवश्यक नहीं है ।
Show that if a function ff defined on an open interval (a,b)(a, b) of R\mathbb{R} is convex, then ff is continuous. Show, by example, if the condition of open interval is dropped, then the convex function need not be continuous.
Answer:
Proof that a Convex Function on an Open Interval is Continuous
A function f:(a,b)rarrRf: (a, b) \to \mathbb{R} is convex if, for any x,y in(a,b)x, y \in (a, b) and any lambda in(0,1)\lambda \in (0, 1), the following inequality holds:
To show that ff is continuous on (a,b)(a, b), we need to show that for every point c in(a,b)c \in (a, b), for every epsilon > 0\epsilon > 0, there exists a delta > 0\delta > 0 such that if |x-c| < delta|x – c| < \delta, then |f(x)-f(c)| < epsilon|f(x) – f(c)| < \epsilon.
Proof:
Let c in(a,b)c \in (a, b) and let x in(a,b)x \in (a, b) be such that x < cx < c. Since ff is convex, for any t in(0,1)t \in (0, 1), we have:
The limit on the right side exists because ff is convex, and it represents the right-hand derivative of ff at cc. Thus, ff has a right-hand limit at every point in (a,b)(a, b).
Similarly, by considering points x > cx > c, we can show that ff has a left-hand limit at every point in (a,b)(a, b).
Since ff has both left-hand and right-hand limits at every point in (a,b)(a, b), and these limits are equal, ff is continuous on (a,b)(a, b).
Counterexample when the Open Interval Condition is Dropped
Consider the function f:[0,1]rarrRf: [0, 1] \to \mathbb{R} defined as follows:
f(x)={[0,”if “x=0],[1,”if “0 < x <= 1]:}f(x) =
\begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } 0 < x \leq 1
\end{cases}
This function is convex because for any x,y in[0,1]x, y \in [0, 1] and any lambda in(0,1)\lambda \in (0, 1), the inequality
holds. However, this function is not continuous at x=0x = 0, as the left-hand limit does not exist, and the right-hand limit at x=0x = 0 is 11, which is not equal to f(0)=0f(0) = 0.
(a) क्षेत्र (Z_(13),+_(13),x_(13))\left(\mathscr{Z}_{13},+_{13}, x_{13}\right), जहाँ पर +_(13)+_{13} तथा x_(13)x_{13} क्रमशः योग मोडयूलो 13 व गुणन मोडयूलो 13 निरूपित करते है, के गुणनात्मक समूह के सभी उचित उपसमूहों को ज्ञात कीजिए।
Find all the proper subgroups of the multiplicative group of the field (Z_(13),+_(13),xx_(13))\left(\mathcal{Z}_{13},+_{13}, \times_{13}\right), where +_(13)+{ }_{13} and x_(13)x_{13} represent addition modulo 13 and multiplication modulo 13 respectively.
Answer:
To find all the proper subgroups of the multiplicative group of the field (Z_(13),+_(13),xx_(13))\left(\mathbb{Z}_{13},+_{13}, \times_{13}\right), we need to consider the elements and their orders in this group.
The multiplicative group of a finite field is formed by the nonzero elements of that field under multiplication. In this case, we are working with Z_(13)\mathbb{Z}_{13}, so the nonzero elements are {1,2,3,4,5,6,7,8,9,10,11,12}\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.
Finding the Generator
The generator of the multiplicative group Z_(13)^(**)\mathbb{Z}_{13}^* is 22. This means that every element in the multiplicative group Z_(13)^(**)\mathbb{Z}_{13}^* can be represented as a power of 22 modulo 1313, confirming that Z_(13)^(**)\mathbb{Z}_{13}^* is indeed a cyclic group.
Now, let’s find all the proper subgroups of this cyclic group. A proper subgroup is a subgroup that is not equal to the entire group. The proper subgroups of the cyclic group generated by 22 are as follows:
Subgroup generated by 22: {1,2,4,8,3,6,12,11,9,5,10,7}\{1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7\} (This is the entire group, so it is not a proper subgroup)
Subgroup generated by powers of 22 with step 22: {1,4,3,12,9,10}\{1, 4, 3, 12, 9, 10\} (Order 66)
Subgroup generated by powers of 22 with step 33: {1,8,12,5}\{1, 8, 12, 5\} (Order 44)
Subgroup generated by powers of 22 with step 44: {1,3,9}\{1, 3, 9\} (Order 33)
Subgroup generated by powers of 22 with step 66: {1,12}\{1, 12\} (Order 22)
Subgroup generated by powers of 22 with step 1212: {1}\{1\} (Trivial subgroup)
Conclusion
The proper subgroups of the multiplicative group of the field (Z_(13),+_(13),xx_(13))\left(\mathbb{Z}_{13},+_{13}, \times_{13}\right) are:
{1,4,3,12,9,10}\{1, 4, 3, 12, 9, 10\} (Order 66)
{1,8,12,5}\{1, 8, 12, 5\} (Order 44)
{1,3,9}\{1, 3, 9\} (Order 33)
{1,12}\{1, 12\} (Order 22)
{1}\{1\} (Trivial subgroup)
Each of these subgroups is closed under multiplication modulo 1313 and contains the identity element 11.
3.(b) अवशेष प्रमेय के अनुप्रयोग के द्वारा दर्शाइए कि int_(0)^(oo)(dx)/((x^(2)+a^(2))^(2))=(pi)/(4a^(3)),a > 0\int_0^{\infty} \frac{d x}{\left(x^2+a^2\right)^2}=\frac{\pi}{4 a^3}, a>0.
Show by applying the residue theorem that int_(0)^(oo)(dx)/((x^(2)+a^(2))^(2))=(pi)/(4a^(3)),a > 0\int_0^{\infty} \frac{d x}{\left(x^2+a^2\right)^2}=\frac{\pi}{4 a^3}, a>0.
Answer:
Introduction:
In this problem, we are asked to prove the integral identity int_(0)^(oo)(dx)/((x^(2)+a^(2))^(2))=(pi)/(4a^(3))\int_0^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3} where a > 0a > 0. We will use the residue theorem to evaluate this integral.
Step 1: Setting up the Contour Integral:
We consider the contour integral
int _(c)(dz)/((z^(2)+a^(2))^(2))=int _(c)f(z)dz\int_c \frac{dz}{(z^2 + a^2)^2} = \int_c f(z) dz
where f(z)=(1)/((z^(2)+a^(2))^(2))f(z) = \frac{1}{(z^2 + a^2)^2}, and cc is a contour consisting of a large semicircle TT of radius RR together with a part of the real axis from x=-Rx = -R to RR.
Step 2: Applying the Residue Theorem:
By Cauchy’s residue theorem, we have:
int _(c)f(z)dz=2pi i sum”Res”\int_c f(z) dz = 2\pi i \sum \text{Res}
where the sum is taken over the residues of f(z)f(z) inside the contour cc.
We first consider the behavior of f(z)f(z) as zz approaches infinity:
Therefore, as R rarr ooR \to \infty, the integral over the semicircle TT, lim_(R rarr oo)int _(T)f(z)dz\lim_{R \to \infty} \int_T f(z) dz, approaches zero.
Now, taking R rarr ooR \to \infty in the original contour integral equation, we get:
int_(-oo)^(oo)(dx)/((a^(2)+x^(2))^(2))+0=2pi i sum Res\int_{-\infty}^{\infty} \frac{d x}{\left(a^2+x^2\right)^2}+0=2 \pi i \sum \operatorname{Res}
Step 3: Finding the Residue:
The poles of f(z)=(1)/((z^(2)+a^(2))^(2))f(z) = \frac{1}{(z^2 + a^2)^2} are given by (z^(2)+a^(2))^(2)=0(z^2 + a^2)^2 = 0, which implies z=+-aiz = \pm ai (twice). However, only the pole at z=aiz = ai (of order 2) lies inside the contour cc.
To find the basic solutions, we will express the non-pivot variables in terms of the pivot variables and then set each pivot variable to 1 (and the others to 0) one at a time to find the basic solutions.
Let’s write the augmented matrix for the given system of equations and then perform row operations to get it to reduced row echelon form (RREF):
4.(a) मान लीजिए कि R\mathbb{R} सभी वास्तविक संख्याओं का समुच्चय है तथा f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} ऐसा फलन है कि समी x,y inRx, y \in \mathbb{R} के लिए निम्नलिखित समीकरण लागू होते हैं :
(i) f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y)
(ii) f(xy)=f(x)f(y)f(x y)=f(x) f(y)
दर्शाइए कि सभी AA x inR\forall x \in \mathbb{R} के लिए या तो f(x)=0f(x)=0 या f(x)=xf(x)=x है।
Suppose R\mathbb{R} be the set of all real numbers and f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} is a function such that the following equations hold for all x,y inRx, y \in \mathbb{R} :
(i) f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y)
(ii) f(xy)=f(x)f(y)f(x y)=f(x) f(y)
Show that AA x inR\forall x \in \mathbb{R} either f(x)=0f(x)=0, or, f(x)=xf(x)=x.
Answer:
To solve this problem, we will use the given properties of the function f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} and try to deduce the possible forms of the function.
If f(1)=0f(1) = 0, then f(x)=0*f(x)=0f(x) = 0 \cdot f(x) = 0 for all xx.
If f(1)=1f(1) = 1, then f(x)=1*f(x)=f(x)f(x) = 1 \cdot f(x) = f(x) for all xx.
Step 4: Conclusion
Based on the above steps, we can conclude that for all x inRx \in \mathbb{R}, either f(x)=0f(x) = 0 or f(x)=xf(x) = x.
Detailed Conclusion:
If f(1)=0f(1) = 0, then the function f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} is the zero function, i.e., f(x)=0f(x) = 0 for all x inRx \in \mathbb{R}.
If f(1)=1f(1) = 1, then the function f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} is the identity function, i.e., f(x)=xf(x) = x for all x inRx \in \mathbb{R}.
Thus, the function ff is either the zero function or the identity function, satisfying the given conditions.
4.(b) फलन (1)/((1+z^(2))(z+2))\frac{1}{\left(1+z^2\right)(z+2)} को निरूपित करने वाली लाँरेन्ज श्रेणी ज्ञात कीजिए जब
(i) |z| < 1|z|<1
(ii) 1 < |z| < 21<|z|<2
(iii) |z| > 2|z|>2
Find the Laurent’s series which represent the function (1)/((1+z^(2))(z+2))\frac{1}{\left(1+z^2\right)(z+2)} when
(i) |z| < 1|z|<1
(ii) 1 < |z| < 21<|z|<2
(iii) |z| > 2|z|>2
This is Laurent’s series within the ring shaped region (or annulus) 2 < z < R2<z<\mathrm{R} where R\mathrm{R} is large.
4.(c) एक फैक्ट्री में पाँच प्रचालक O_(1),O_(2),O_(3),O_(4),O_(5)\mathrm{O}_1, \mathrm{O}_2, \mathrm{O}_3, \mathrm{O}_4, \mathrm{O}_5 तथा पाँच मशीनें M_(1),M_(2),M_(3),M_(4),M_(5)\mathrm{M}_1, \mathrm{M}_2, \mathrm{M}_3, \mathrm{M}_4, \mathrm{M}_5 हैं । परिचालन लागत, जब कि O_(i)\mathrm{O}_{\mathrm{i}} प्रचालक M_(j)(i,j=1,2,dots,5)\mathrm{M}_{\mathrm{j}}(\mathrm{i}, \mathrm{j}=1,2, \ldots, 5) मशीन को परिचालन करता है, दी गई हैं। लेकिन एक प्रतिबन्ध है कि O_(3)\mathrm{O}_3 को तीसरी मशीन M_(3)\mathrm{M}_3 का परिचालन करने तथा O_(2)\mathrm{O}_2 को पाँचर्वीं मरीन M_(5)\mathrm{M}_5 का परिचालन करने की इजाज़त नह्ही दी जा सकती है। लागत आव्यूह नीचे दी है । इएतम नियतन तथा इए्टम नियतन की लागत ज्ञात कीजिए।
In a factory there are five operators O_(1),O_(2),O_(3),O_(4),O_(5)\mathrm{O}_1, \mathrm{O}_2, \mathrm{O}_3, \mathrm{O}_4, \mathrm{O}_5 and five machines M_(1),M_(2),M_(3),M_(4),M_(5)\mathrm{M}_1, \mathrm{M}_2, \mathrm{M}_3, \mathrm{M}_4, \mathrm{M}_5. The operating costs are given when the O_(1)\mathrm{O}_1 operator operates the M_(j)\mathrm{M}_j machine (i,j=1,2,dots,5)(\mathrm{i}, \mathrm{j}=1,2, \ldots, 5). But there is a restriction that O_(3)\mathrm{O}_3 cannot be allowed to operate the third machine M_(3)\mathrm{M}_3 and O_(2)\mathrm{O}_2 cannot be allowed to operate the fifth machine M_(5+)\mathrm{M}_{5+} The cost matrix is given above. Find the optimal assignment and the optimal assignment cost also.
In the realm of operational research, assignment problems are pivotal, especially in manufacturing settings where optimal assignments of jobs to resources are crucial for efficiency and cost-effectiveness. This problem involves a factory with five operators, O_(1),O_(2),O_(3),O_(4),O_(5)O_1, O_2, O_3, O_4, O_5, and five machines, M_(1),M_(2),M_(3),M_(4),M_(5)M_1, M_2, M_3, M_4, M_5, each with associated operating costs. The objective is to find the optimal assignment of operators to machines such that the total operating cost is minimized, considering certain restrictions. Specifically, operator O_(3)O_3 is not allowed to operate machine M_(3)M_3, and operator O_(2)O_2 is not allowed to operate machine M_(5)M_5.
The number of lines is smaller than 5\mathbf{5}. The smallest uncovered number is 4 . We subtract this number from all uncovered elements and add it to all elements that are covered twice: {:[6,15,0,13,0],[0,13,17,4,3],[11,4,12,0,8],[0,0,6,7,1],[8,0,11,3,6]:}\begin{array}{rrrrr}6 & 15 & 0 & 13 & 0 \\ 0 & 13 & 17 & 4 & 3 \\ 11 & 4 & 12 & 0 & 8 \\ 0 & 0 & 6 & 7 & 1 \\ 8 & 0 & 11 & 3 & 6\end{array}
The number of lines is smaller than 5\mathbf{5}. The smallest uncovered number is 1 . We subtract this number from all uncovered elements and add it to all elements that are covered twice: {:[7,16,0,13,0],[0,13,16,3,2],[12,5,12,0,8],[0,0,5,6,0],[8,0,10,2,5]:}\begin{array}{rrrrr}7 & 16 & 0 & 13 & 0 \\ 0 & 13 & 16 & 3 & 2 \\ 12 & 5 & 12 & 0 & 8 \\ 0 & 0 & 5 & 6 & 0 \\ 8 & 0 & 10 & 2 & 5\end{array}
Cover all zeros with a minimum number of lines
There are 5 lines required to cover all zeros: {:[7,16,0,13,0,x],[0,13,16,3,2,x],[12,5,12,0,8,x],[0,0,5,6,0,x],[8,0,10,2,5,x]:}\begin{array}{rrrrrr}7 & 16 & 0 & 13 & 0 & x \\ 0 & 13 & 16 & 3 & 2 & x \\ 12 & 5 & 12 & 0 & 8 & x \\ 0 & 0 & 5 & 6 & 0 & x \\ 8 & 0 & 10 & 2 & 5 & x\end{array}
Through meticulous application of the Hungarian Algorithm, we have successfully determined the optimal assignment of operators to machines, adhering to the given restrictions and minimizing the total operating cost. The optimal assignments are as follows: O_(1)O_1 to M_(3)M_3, O_(2)O_2 to M_(1)M_1, O_(3)O_3 to M_(4)M_4, O_(4)O_4 to M_(5)M_5, and O_(5)O_5 to M_(2)M_2, resulting in a minimized total operating cost of 92. This optimal assignment ensures that the factory operates at the highest possible efficiency, given the constraints, and incurs the least amount of operating cost, thereby maximizing the overall productivity and cost-effectiveness of the manufacturing process.
खण्ड ‘B’ SECTION ‘B’
5.(a) दीर्घवृत्तज : x^(2)+4y^(2)+4z^(2)=4x^2+4 y^2+4 z^2=4 के उन समी स्पर्श-तलों के संकाय का आंशिक अवकल समीकरण ज्ञात कीजिए, जो xyx y समतल के लम्बवत नहीं हैं।
Find the partial differential equation of the family of all tangent planes to the ellipsoid: x^(2)+4y^(2)+4z^(2)=4x^2+4 y^2+4 z^2=4, which are not perpendicular to the xyx y plane.
Answer:
Given Ellipsoid
The given ellipsoid is represented by the equation:
Equation (13) is the required partial differential equation representing the family of all tangent planes to the given ellipsoid, which are not perpendicular to the xyxy-plane.
5.(b) न्यूटन के अग्रांतर फार्मूले से निम्नतम-घातीय बहुपद u_(x)u_x ज्ञात कीजिए जब कि u_(1)=1,u_(2)=9u_1=1, u_2=9, u_(3)=25,u_(4)=55u_3=25, u_4=55 तथा u_(5)=105u_5=105 दिया गया है ।
Using Newton’s forward difference formula find the lowest degree polynomial u_(x)u_x when it is given that u_(1)=1,u_(2)=9,u_(3)=25,u_(4)=55u_1=1, u_2=9, u_3=25, u_4=55 and u_(5)=105u_5=105.
5.(c) एक असंपीडय तरल प्रवाह के लिए वेग (u,v,w)(u, v, w) के दो घटक u=x^(2)+2y^(2)+3z^(2)u=x^2+2 y^2+3 z^2 व v=x^(2)y-y^(2)z+zxv=x^2 y-y^2 z+z x दिए गए हैं। वेग के तीसरे घटक ww का निर्धारण कीजिए ताकि वे सांतत्य समीकरण को सन्तुष्ट करें। त्वरण के zz-घटक को भी ज्ञात कीजिए।
For an incompressible fluid flow, two components of velocity (u,v,w)(u, v, w) are given by u=x^(2)+2y^(2)+3z^(2),v=x^(2)y-y^(2)z+zxu=x^2+2 y^2+3 z^2, v=x^2 y-y^2 z+z x. Determine the third component ww so that they satisfy the equation of continuity. Also, find the z-component of acceleration.
Answer:
Introduction:
In this problem, we are given two components of velocity (u,v,w)(u, v, w) for an incompressible fluid flow, specifically u=x^(2)+2y^(2)+3z^(2)u = x^2 + 2y^2 + 3z^2 and v=x^(2)y-y^(2)z+zxv = x^2y – y^2z + zx. The task is to determine the third component ww such that the velocity components satisfy the equation of continuity. Additionally, we need to find the zz-component of acceleration.
Step 1: Continuity Equation and Solving for ww:
We start by applying the continuity equation for incompressible flow in Cartesian coordinates:
To find ww, we integrate the above equation with respect to zz. This will involve an arbitrary function f(x,y)f(x, y) since we are integrating with respect to only one variable. The equation becomes:
This expression represents the zz-component of acceleration a_(z)a_z for the given velocity components uu, vv, and ww.
Conclusion:
The third component ww that satisfies the equation of continuity is given by w=yz^(2)-2xz-x^(2)z+f(x,y)w = yz^2 – 2xz – x^2z + f(x, y), where f(x,y)f(x, y) is an arbitrary function of xx and yy.
The zz-component of acceleration a_(z)a_z is given by the complex expression involving the derivatives of f(x,y)f(x, y) and the given velocity components.
5.(d) विराम अवस्था से प्रारम्भ हो कर एक रेलगाड़ी की रफतार (किमी/घं में) विभिन्न समयों (मिनट में) पर निम्न सारणी के द्वारा दी गई है :
सिम्पसन के (1)/(3)\frac{1}{3} नियम के इस्तेमाल से प्रारंभ से 20 मिनटों में चली गई सन्तिकट दूरी (किमी. में) ज्ञात कीजिए ।
Starting from rest in the beginning, the speed (in Km//h\mathrm{Km} / \mathrm{h} ) of a train at different times (in minutes) is given by the above table:
Using Simpson’s (1)/(3)\frac{1}{3} rd rule, find the approximate distance travelled (in Km\mathrm{Km} ) in 20 minutes from the beginning.
Answer:
To find the approximate distance traveled using Simpson’s (1)/(3)\frac{1}{3}rd rule, we can use the formula:
Here, hh is the width of each interval, y_(0),y_(1),dots,y_(n)y_0, y_1, \ldots, y_n are the function values at each interval, and nn is the number of intervals.
Given Data
The given data points are in minutes and km/h. We have 10 intervals of 2 minutes each, so h=2h = 2 minutes =(1)/(30)= \frac{1}{30} hours.
The speed values y_(0),y_(1),dots,y_(10)y_0, y_1, \ldots, y_{10} in km/h are given as:
y_(0)=0y_0 = 0 km/h (starting from rest)
y_(1)=10y_1 = 10 km/h
y_(2)=18y_2 = 18 km/h
y_(3)=25y_3 = 25 km/h
y_(4)=29y_4 = 29 km/h
y_(5)=32y_5 = 32 km/h
y_(6)=20y_6 = 20 km/h
y_(7)=11y_7 = 11 km/h
y_(8)=5y_8 = 5 km/h
y_(9)=2y_9 = 2 km/h
y_(10)=8.5y_{10} = 8.5 km/h
Calculation
Let’s substitute the given values into Simpson’s (1)/(3)\frac{1}{3}rd rule formula to find the approximate distance traveled in 20 minutes.
Substitution
Here is the substitution part with the given values:
This is the approximate distance traveled by the train in the first 20 minutes from the beginning.
5.(e) समीकरण : xe^(x)-1=0x e^x-1=0 को द्विभाजन-विधि के द्वारा, दशमलव के 4 अंकों तक, हल करने के लिए, आधारी ऐल्लोरिथ्म लिखिए।
Write down the basic algorithm for solving the equation : xe^(x)-1=0x e^x-1=0 by bisection method, correct to 4 decimal places.
Answer:
The Bisection Method is a root-finding algorithm that divides the interval into two subintervals and then selects the subinterval where the function changes sign, indicating the presence of a root. Here’s a basic algorithm to solve the equation xe^(x)-1=0xe^x – 1 = 0 using the Bisection Method:
Algorithm for Bisection Method
Step 1: Define the Function
Define the function f(x)=xe^(x)-1f(x) = xe^x – 1.
Step 2: Choose Interval [a, b]
Choose an interval [a,b][a, b] such that f(a)*f(b) < 0f(a) \cdot f(b) < 0, indicating that there is a root in the interval.
Step 3: Calculate Midpoint
Calculate the midpoint cc of the interval [a,b][a, b] as:
c=(a+b)/(2)c = \frac{a + b}{2}
Step 4: Evaluate Function at Midpoint
Evaluate the function at the midpoint:
f(c)=ce^(c)-1f(c) = ce^c – 1
Step 5: Update Interval
If f(c)=0f(c) = 0, then cc is the root of the equation.
If f(a)*f(c) < 0f(a) \cdot f(c) < 0, then the root lies in the interval [a,c][a, c], so update b=cb = c.
If f(b)*f(c) < 0f(b) \cdot f(c) < 0, then the root lies in the interval [c,b][c, b], so update a=ca = c.
Step 6: Check Tolerance
Check if the width of the interval [a,b][a, b] is less than the desired tolerance, 10^(-4)10^{-4} for 4 decimal places. If the width is less than the tolerance, then stop the algorithm, and the midpoint cc is the approximate root. Otherwise, go back to Step 3.
Step 7: Return the Root
Return the value of cc as the approximate root of the equation, correct to 4 decimal places.
जहाँ p=(del z)/(del x),q=(del z)/(del y)p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y} है, का व्यापक हल ज्ञात कीजिए, तथा इसके, वक्र: x=t,y=t^(2),z=1x=t, y=t^2, z=1
में से गुजरने वाले समाकल पृष्ठ को भी ज्ञात कीजिए।
Find the general solution of the partial differential equation:
where p=(del z)/(del x),q=(del z)/(del y)p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}, and find its integral surface that passes through the curve:
Choosing (1)/(x),(1)/(y),(1)/(3z)\frac{1}{\mathrm{x}}, \frac{1}{\mathrm{y}}, \frac{1}{3 \mathrm{z}} as multipliers, we have
{:[” Each fraction “=((1)/(x)dx+(1)/(y)dy+(1)/(3z)dz)/((1)/(x)(y^(3)x-2x^(4))+(1)/(y)(2y^(4)-x^(3)y)+(1)/(3z)9z(x^(3)-y^(3)))],[=((1)/(x)dx+(1)/(y)dy+(1)/(3z)dz)/((y^(3)-2x^(3))+(2y^(3)-x^(3))+(3x^(3)-3y^(3)))]:}\begin{aligned}
\text { Each fraction } & =\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{3 z} d z}{\frac{1}{x}\left(y^3 x-2 x^4\right)+\frac{1}{y}\left(2 y^4-x^3 y\right)+\frac{1}{3 z} 9 z\left(x^3-y^3\right)} \\
& =\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{3 z} d z}{\left(y^3-2 x^3\right)+\left(2 y^3-x^3\right)+\left(3 x^3-3 y^3\right)}
\end{aligned}
Each fraction =((1)/(x)dx+(1)/(y)dy+(1)/(3z)dz)/(0)=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{3 z} d z}{0}
:.(1)/(x)dx+(1)/(y)dy+(1)/(3z)dz=0\therefore \frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{3 z} d z=0
Integrating, we get log x+log y+(1)/(3)log z=log a\log x+\log y+\frac{1}{3} \log z=\log a
or quad log(xyz^(1//3))=log a\quad \log \left(\mathrm{xyz}^{1 / 3}\right)=\log \mathrm{a} or xyz^(1//3)=a—-(2)\mathrm{xyz}^{1 / 3}=\mathrm{a}—-(2)
Again choosing -2xy,x^(2),0-2 x y, x^2, 0 as multipliers, we have
{:[” each fraction “=(-2xydx+x^(2)dy)/(-2xy(y^(3)x-2x^(4))+x^(2)(2y^(4)-x^(3)y))],[=(-2xydx+x^(2)dy)/(3x^(5)y)—-(3)]:}\begin{aligned}
& \text { each fraction }=\frac{-2 x y d x+x^2 d y}{-2 x y\left(y^3 x-2 x^4\right)+x^2\left(2 y^4-x^3 y\right)} \\
& =\frac{-2 x y d x+x^2 d y}{3 x^5 y}—-(3)
\end{aligned}
And taking y^(2),-2xy,0y^2,-2 x y, 0 as multipliers, we have
{:[” each fraction “=(y^(2)dx-2xydy)/(y^(2)(y^(3)x-2x^(4))-2xy(2y^(4)-x^(3)y))],[=(y^(2)dx-2xydy)/(-3xy^(5))—-(4)]:}\begin{aligned}
\text { each fraction } & =\frac{y^2 d x-2 x y d y}{y^2\left(y^3 x-2 x^4\right)-2 x y\left(2 y^4-x^3 y\right)} \\
& =\frac{y^2 d x-2 x y d y}{-3 x y^5}—-(4)
\end{aligned}
From (3) and (4), we get
{:[-(2xydx+x^(2)dy)/(3x^(5)y)=(y^(2)dx-2xydy)/(-3xy^(5))],[” or “quad-(2xydx+x^(2)dy)/(x^(4))=(y^(2)dx-2xydy)/(-y^(4))],[” or “quad-(2)/(x^(3))ydx+(1)/(x^(2))dy=-[(1)/(y^(2))dx-(2)/(y^(3))xdy]],[” or “quad d((y)/(x^(2)))=-d((x)/(y^(2)))]:}\begin{aligned}
& -\frac{2 x y d x+x^2 d y}{3 x^5 y}=\frac{y^2 d x-2 x y d y}{-3 x y^5} \\
& \text { or } \quad-\frac{2 x y d x+x^2 d y}{x^4}=\frac{y^2 d x-2 x y d y}{-y^4} \\
& \text { or } \quad-\frac{2}{x^3} y d x+\frac{1}{x^2} d y=-\left[\frac{1}{y^2} d x-\frac{2}{y^3} x d y\right] \\
& \text { or } \quad d\left(\frac{y}{x^2}\right)=-d\left(\frac{x}{y^2}\right)
\end{aligned}
Integrating, we get (y)/(x^(2))=-(x)/(y^(2))+b\frac{y}{x^2}=-\frac{x}{y^2}+b
or quad(x)/(y^(2))+(y)/(x^(2))=b—-(5)\quad \frac{x}{y^2}+\frac{y}{x^2}=b—-(5))
From (2) and (5), the general integral of given equation is phi(xyz^(1//3),(x)/(y^(2))+(y)/(x^(2)))=0\phi\left(x y z^{1 / 3}, \frac{x}{y^2}+\frac{y}{x^2}\right)=0 where phi\phi is an arbitrary function.
To find the integral surface that passes through the given curve, we need to determine the form of the function phi\phi that satisfies the above equation for all values of tt.
Let’s denote the arguments of phi\phi as:
u=t^(3)u = t^3
v=(1)/(t^(3))+1v = \frac{1}{t^3} + 1
So, the equation becomes:
phi(u,v)=0\phi(u, v) = 0
Since we are looking for an integral surface passing through the given curve, we can consider phi\phi as a constant for this specific curve, say CC:
phi(u,v)=C\phi(u, v) = C
Step 3: Formulate the Integral Surface
The integral surface of the given partial differential equation that passes through the curve x=tx = t, y=t^(2)y = t^2, and z=1z = 1 is represented by:
phi(xyz^(1//3),(x)/(y^(2))+(y)/(x^(2)))=C\phi\left(xyz^{1/3}, \frac{x}{y^2} + \frac{y}{x^2}\right) = C
where CC is a constant specific to this curve, and it represents the specific integral surface passing through the given curve in the family of integral surfaces represented by the general integral.
Conclusion:
The integral surface of the given partial differential equation that passes through the specified curve is characterized by the function phi\phi with the constant CC specific to this curve. The exact value of CC can be determined if more information or specific conditions related to the curve or the integral surface are provided.
(b) अधोलिखित संख्याओं के समतुल्यों को उनके सम्मुख दर्शाई गई विशिष्ट संख्या पद्धति में, ज्ञात कीजिए।
(i) (111011*101)_(2)(111011 \cdot 101)_2 को दशमलव पद्धति में
(ii) (1000111110000-00101100)_(2)(1000111110000-00101100)_2 को षड़दशमलव पद्धति में
(iii) (C4F2)_(16)(\mathrm{C} 4 \mathrm{~F} 2)_{16} को दशमलव पद्वति में
(iv) (418)_(10)(418)_{10} को द्विआधारी पद्धति में
Find the equivalent of numbers given in a specified number system to the system mentioned against them.
(i) (111011*101)_(2)(111011 \cdot 101)_2 to decimal system
(ii) (1000111110000*00101100)_(2)(1000111110000 \cdot 00101100)_2 to hexadecimal system
(iii) (C4F2)_(16)(\mathrm{C} 4 \mathrm{~F} 2)_{16} to decimal system
(iv) (418)_(10)(418)_{10} to binary system
Answer:
” (i) “(111011*101)_(2)” to decimal system “\text { (i) }(111011 \cdot 101)_2 \text { to decimal system }
6.(c) मान लीजिए किसी यांत्रिक-निकाय का लेगरान्जियन :
L=(1)/(2)m(ax^(˙)^(2)+2b(x^(˙))(y^(˙))+cy^(˙)^(2))-(1)/(2)k(ax^(2)+2bxy+cy^(2)),L=\frac{1}{2} m\left(a \dot{x}^2+2 b \dot{x} \dot{y}+c \dot{y}^2\right)-\frac{1}{2} k\left(a x^2+2 b x y+c y^2\right),
के द्वारा द्योतित है जहाँ a,b,c,m( > 0),k( > 0)a, b, c, m(>0), k(>0) स्थिरांक हैं तथा b^(2)!=acb^2 \neq a c लेगरान्जियन समीकरणों को लिखिए तथा निकाय को पहचानिए ।
Suppose the Lagrangian of a mechanical system is given by
L=(1)/(2)m(ax^(˙)^(2)+2b(x^(˙))(y^(˙))+cy^(˙)^(2))-(1)/(2)k(ax^(2)+2bxy+cy^(2)),L=\frac{1}{2} m\left(a \dot{x}^2+2 b \dot{x} \dot{y}+c \dot{y}^2\right)-\frac{1}{2} k\left(a x^2+2 b x y+c y^2\right),
where a,b,c,m( > 0),k( > 0)a, b, c, m(>0), k(>0) are constants and b^(2)!=acb^2 \neq a c. Write down the Lagrangian equations of motion and identify the system.
Answer:
Introduction:
Given the Lagrangian of a mechanical system, we need to find the Lagrangian equations of motion and identify the system. The Lagrangian is defined as:
L=(1)/(2)m(ax^(˙)^(2)+2b(x^(˙))(y^(˙))+cy^(˙)^(2))-(1)/(2)k(ax^(2)+2bxy+cy^(2)),L=\frac{1}{2} m\left(a \dot{x}^2+2 b \dot{x} \dot{y}+c \dot{y}^2\right)-\frac{1}{2} k\left(a x^2+2 b x y+c y^2\right),
where a,b,c,m( > 0),k( > 0)a, b, c, m(>0), k(>0) are constants, and b^(2)!=acb^2 \neq a c.
Lagrangian Equations of Motion:
To find the Lagrangian equations of motion, we’ll calculate the partial derivatives of LL with respect to xx, yy, x^(˙)\dot{x}, and y^(˙)\dot{y}.
(del L)/(del x)=-(1)/(2)k(2ax+2by)=-k(ax+by)quad(1)\frac{\partial L}{\partial x} = -\frac{1}{2} k(2 a x+2 b y) = -k(a x+b y) \quad \text{(1)}
(del L)/(del(x^(˙)))=(1)/(2)m(2ax^(˙)+2by^(˙))=m(ax^(˙)+by^(˙))quad(2)\frac{\partial L}{\partial \dot{x}} = \frac{1}{2} m(2 a \dot{x}+2 b \dot{y}) = m(a \dot{x}+b \dot{y}) \quad \text{(2)}
(del L)/(del y)=-(1)/(2)k(2bx+2cy)=-k(bx+cy)quad(3)\frac{\partial L}{\partial y} = -\frac{1}{2} k(2 b x+2 c y) = -k(b x+c y) \quad \text{(3)}
(del L)/(del(y^(˙)))=(1)/(2)m(2bx^(˙)+2cy^(˙))=m(bx^(˙)+cy^(˙))quad(4)\frac{\partial L}{\partial \dot{y}} = \frac{1}{2} m(2 b \dot{x}+2 c \dot{y}) = m(b \dot{x}+c \dot{y}) \quad \text{(4)}
This completes the solution to the partial differential equation.
7.(b) स्थिराँकों a,b,ca, b, c के मान निकालिए ताकि क्षेत्रकलन-सूत्र int_(o)^(h)f(x)dx=h[af(o)+bf((h)/(3))+cf(h)]\int_o^h f(x) d x=h\left[a f(o)+b f\left(\frac{h}{3}\right)+c f(h)\right] अधिक से अधिक सम्भव घातीय बहुपदों के लिए सही हो । अताएव रुंडन-न्रुटि का क्रम भी ज्ञात कीजिए ।
Find the values of the constants a,b,ca, b, c such that the quadrature formula int_(o)^(h)f(x)dx=h[af(o)+bf((h)/(3))+cf(h)]\int_o^h f(x) d x=h\left[a f(o)+b f\left(\frac{h}{3}\right)+c f(h)\right] is exact for polynomials of as high degree as possible, and hence find the order of the truncation error.
Answer:
To find the values of the constants aa, bb, and cc in the quadrature formula, we will use the method of undetermined coefficients. We will test the quadrature formula on polynomials of increasing degree until it is no longer exact. The quadrature formula is given as:
int_(0)^(h)f(x)dx=h[af(0)+bf((h)/(3))+cf(h)]\int_0^h f(x) \, dx = h \left[ a f(0) + b f\left(\frac{h}{3}\right) + c f(h) \right]
Step 1: Test with a Constant Function
Let’s start with a constant function, f(x)=1f(x) = 1:
int_(0)^(h)1dx=h[a*1+b*1+c*1]\int_0^h 1 \, dx = h \left[ a \cdot 1 + b \cdot 1 + c \cdot 1 \right]
h=h(a+b+c)h = h(a + b + c)
For the formula to be exact for constant functions, we must have:
a+b+c=1a + b + c = 1(Equation 1)\text{(Equation 1)}
Step 2: Test with a Linear Function
Next, let’s test with a linear function, f(x)=xf(x) = x:
int_(0)^(h)xdx=h[a*0+b*((h)/(3))+c*h]\int_0^h x \, dx = h \left[ a \cdot 0 + b \cdot \left(\frac{h}{3}\right) + c \cdot h \right]
(1)/(2)h^(2)=h[(bh)/(3)+ch]\frac{1}{2} h^2 = h \left[ \frac{b h}{3} + c h \right]
(1)/(2)h=(bh)/(3)+ch\frac{1}{2} h = \frac{b h}{3} + c h
(1)/(2)=(b)/(3)+c\frac{1}{2} = \frac{b}{3} + c
For the formula to be exact for linear functions, we must have:
(b)/(3)+c=(1)/(2)\frac{b}{3} + c = \frac{1}{2}(Equation 2)\text{(Equation 2)}
Step 3: Test with a Quadratic Function
Next, let’s test with a quadratic function, f(x)=x^(2)f(x) = x^2:
int_(0)^(h)x^(2)dx=h[a*0+b*((h)/(3))^(2)+c*h^(2)]\int_0^h x^2 \, dx = h \left[ a \cdot 0 + b \cdot \left(\frac{h}{3}\right)^2 + c \cdot h^2 \right]
(1)/(3)h^(3)=h[(bh^(2))/(9)+ch^(2)]\frac{1}{3} h^3 = h \left[ \frac{b h^2}{9} + c h^2 \right]
(1)/(3)h^(2)=(bh^(2))/(9)+ch^(2)\frac{1}{3} h^2 = \frac{b h^2}{9} + c h^2
(1)/(3)=(b)/(9)+c\frac{1}{3} = \frac{b}{9} + c
For the formula to be exact for quadratic functions, we must have:
(b)/(9)+c=(1)/(3)\frac{b}{9} + c = \frac{1}{3}(Equation 3)\text{(Equation 3)}
Step 4: Solve the System of Equations
Now, we have a system of three equations with three unknowns:
a+b+c=1a + b + c = 1
(b)/(3)+c=(1)/(2)\frac{b}{3} + c = \frac{1}{2}
(b)/(9)+c=(1)/(3)\frac{b}{9} + c = \frac{1}{3}
Let’s solve this system of equations to find the values of aa, bb, and cc.
The solution to the system of equations is:
a=0a = 0
b=(3)/(4)b = \frac{3}{4}
c=(1)/(4)c = \frac{1}{4}
Order of the Truncation Error
To find the order of the truncation error, we need to determine the highest degree of polynomial for which the quadrature formula is exact. Since we have found the exact values of aa, bb, and cc by testing the quadrature formula on polynomials up to degree 2 (quadratic), the formula is exact for polynomials of degree 2 or less.
Thus, the order of the truncation error is O(h^(3))O(h^3), where hh is the step size, as the error term will be proportional to the third derivative of the function being integrated.
Hence the required formula is
int_(0)^(h)f(x)dx=h//4[3f(h//3)+f(h)]\int_0^h f(x) d x=h / 4[3 f(h / 3)+f(h)]
The truncation error of the formula is given by
{:[T.E.=c//3!f^(”’)(xi)”,”0 < xi < h],[” where “C=int_(0)^(h)x^(3)dx-h[(bh^(3))/(27)+ch^(3)]=-(h^(4))/(36)]:}\begin{aligned}
T. E. & =c / 3! f^{\prime \prime \prime}(\xi), 0<\xi<h \\
\text { where } C & =\int_0^h x^3 d x-h\left[\frac{b h^3}{27}+c h^3\right]=-\frac{h^4}{36}
\end{aligned}
7.(c) किसी यांत्रिक निकाय का हैमिल्टोनियन H=p_(1)q_(1)-aq_(1)^(2)+bq_(2)^(2)-p_(2)q_(2)H=p_1 q_1-a q_1^2+b q_2^2-p_2 q_2 के द्वारा द्योतित है, जहाँ a,ba, b स्थिरांक हैं। हैमिल्टोनियन समीकरणों का हल निकालिए तथा दर्शाइए कि (p_(2)-bq_(2))/(q_(1))=\frac{p_2-b q_2}{q_1}= स्थिराँक ।
The Hamiltonian of a mechanical system is given by, H=p_(1)q_(1)-aq_(1)^(2)+bq_(2)^(2)-p_(2)q_(2)H=p_1 q_1-a q_1^2+b q_2^2-p_2 q_2, where a, b are the constants. Solve the Hamiltonian equations and show that (p_(2)-bq_(2))/(q_(1))=\frac{p_2-b q_2}{q_1}= constant.
Answer:
The Hamiltonian of a mechanical system is given by, H=p_(1)q_(1)-aq_(1)^(2)+bq_(2)^(2)-p_(2)q_(2)H=p_1 q_1-a q_1^2+b q_2^2-p_2 q_2, where aa, bb are constants. We are to solve the Hamiltonian equations and show that (p_(2)-bq_(2))/(q_(1))=\frac{p_2-b q_2}{q_1}= constant.
Solution:
Let us consider the generalized coordinates q_(1),q_(2)q_1, q_2 and the generalized components of momentum p_(1),p_(2)p_1, p_2. The Hamiltonian equations are given by:
The expression (p_(2)-bq_(2))/(q_(1))\frac{p_2-b q_2}{q_1} is indeed a constant, as shown above, under the solutions of the Hamiltonian equations for the given mechanical system.
8.(a) बूलीय व्यंजक : (a+b)*( bar(b)+c)+b*( bar(a)+ vec(c))(a+b) \cdot(\bar{b}+c)+b \cdot(\bar{a}+\vec{c}) को बूलीय-बीजगणित के नियमों का उपयोग करने के द्वारा सरल कीजिए। इस की सत्यता-सारणी से इसको मिनटर्म प्रसामान्य रूप में लिखिए।
Simplify the boolean expression: (a+b)*( bar(b)+c)+b*( bar(a)+ bar(c))(a+b) \cdot(\bar{b}+c)+b \cdot(\bar{a}+\bar{c}) by using the laws of boolean algebra. From its truth table write it in minterm normal form.
Answer:
To simplify the given Boolean expression, we will use the laws of Boolean algebra. The given expression is:
(a+b)*( bar(b)+c)+b*( bar(a)+ bar(c))(a + b) \cdot (\overline{b} + c) + b \cdot (\overline{a} + \overline{c})
Step 1: Simplification
Let’s simplify the expression step by step:
Distributive Law:
=a*( bar(b)+c)+b*( bar(b)+c)+b*( bar(a)+ bar(c))= a \cdot (\overline{b} + c) + b \cdot (\overline{b} + c) + b \cdot (\overline{a} + \overline{c})
Absorption Law:
=a*( bar(b)+c)+b+b*( bar(a)+ bar(c))= a \cdot (\overline{b} + c) + b + b \cdot (\overline{a} + \overline{c})
Absorption Law:
=a*( bar(b)+c)+b= a \cdot (\overline{b} + c) + b
Step 2: Truth Table and Minterm Normal Form
Now, let’s create a truth table for the simplified expression and then write the expression in minterm normal form. The minterm normal form is the OR of all the minterms where the output is 1.
aa
bb
cc
bar(b)+c\overline{b} + c
a*( bar(b)+c)a \cdot (\overline{b} + c)
a*( bar(b)+c)+ba \cdot (\overline{b} + c) + b
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
0
1
1
1
1
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
Minterm Normal Form:
The minterm normal form is the OR of all the minterms where the output is 1. From the truth table, the minterms where the output is 1 are when a,b,ca, b, c are:
001001 (Minterm 1)
011011 (Minterm 3)
100100 (Minterm 4)
101101 (Minterm 5)
110110 (Minterm 6)
111111 (Minterm 7)
So, the minterm normal form of the given Boolean expression is:
Sigma m(1,3,4,5,6,7)\Sigma m(1, 3, 4, 5, 6, 7)
or
From Truth Fable, Minter normal form is
bar(a)b bar(c)+ bar(a)bc+a bar(b) bar(c)+a bar(b)c+ab bar(c)+abc\bar{a} b \bar{c}+\bar{a} b c+a \bar{b} \bar{c}+a \bar{b} c+a b \bar{c}+a b c
8.(b) एक द्विविमीय विभव-प्रवाह के लिए वेग विभव phi=x^(2)y-xy^(2)+(1)/(3)(x^(3)-y^(3))\phi=x^2 y-x y^2+\frac{1}{3}\left(x^3-y^3\right) के द्वारा दिया गया है । xx व yy दिशाओं के अनुदिश वेग घटकों का निर्धारण कीजिए । धारा-फलन psi\psi का भी निर्धारण कीजिए और जाँच कीजिए कि क्या phi\phi एक सम्भव प्रवाह को निस्पित करता है अथवा नहीं।
For a two-dimensional potential flow, the velocity potential is given by phi=x^(2)y-xy^(2)+(1)/(3)(x^(3)-y^(3))\phi=x^2 y-x y^2+\frac{1}{3}\left(x^3-y^3\right). Determine the velocity components along the directions xx and yy. Also, determine the stream function psi\psi and check whether phi\phi represents a possible case of flow or not.
Answer:
Velocity Components:
Let vec(q)=u hat(i)+v hat(ȷ)\vec{q}=u \hat{i}+v \hat{\jmath}. Then,
{:[u=-(del phi)/(del x)],[ Longrightarrow u=-(2xy-y^(2)+x^(2))],[ Longrightarrow u=y^(2)-x^(2)-2xy]:}\begin{aligned}
& u=-\frac{\partial \phi}{\partial x} \\
& \Longrightarrow u=-\left(2 x y-y^2+x^2\right) \\
& \Longrightarrow u=y^2-x^2-2 x y
\end{aligned}
Also,
{:[v=-(del phi)/(del y)],[=>v=-(x^(2)-2xy-y^(2))],[ Longrightarrow v=y^(2)-x^(2)+2xy]:}\begin{aligned}
& v=-\frac{\partial \phi}{\partial y} \\
& \Rightarrow v=-\left(x^2-2 x y-y^2\right) \\
& \Longrightarrow v=y^2-x^2+2 x y
\end{aligned}
Stream Function psi\psi:
We know that phi+i psi\phi+i \psi is an analytic function and satisfies Cauchy Riemann equations.
{:[” So, “(del psi)/(del y)=u” and “(del psi)/(del x)=v],[=>quad(del psi)/(del x)=y^(2)-x^(2)+2xy]:}\begin{aligned}
& \text { So, } \frac{\partial \psi}{\partial y}=u \text { and } \frac{\partial \psi}{\partial x}=v \\
& \Rightarrow \quad \frac{\partial \psi}{\partial x}=y^2-x^2+2 x y
\end{aligned}
Longrightarrow\Longrightarrow Equation of continuity is satisfied,
Longrightarrow\Longrightarrow It is a possible flow.
(c) एक पतली वलयिका (एनुलस) क्षेत्र 0 < a <= r <= b,0 <= theta <= 2pi0<a \leqslant r \leqslant b, 0 \leqslant \theta \leqslant 2 \pi को घेरती है । इसके तल तापअवरोधी हैं.। आन्तरिक किलारे के साथ-साथ ताप 0^(@)0^{\circ} पर स्थिर रखा जाता है जबकि बाह्य किनारे का ताप T=K cos((theta)/(2))T=K \cos \frac{\theta}{2} पर बनाए रखा जाता है, जहाँ KK एक स्थिरांक है । बलयिका में ताप-वितरण का निर्धारण कीजिए ।
A thin annulus occupies the region 0 < a <= r <= b,0 <= theta <= 2pi0<a \leqslant r \leqslant b, 0 \leqslant \theta \leqslant 2 \pi. The faces are insulated. Along the inner edge the temperature is maintained at 0^(@)0^{\circ}, while along the outer edge the temperature is held at T=K cos((theta)/(2))T=K \cos \frac{\theta}{2}, where KK is a constant. Determine the temperature distribution in the annulus.
Answer:
Formulating the Differential Equation:
The problem is mathematically formulated as solving Laplace’s equation:
grad^(2)T=0quad”for”quad a <= r <= b,quad0 <= theta <= 2pi\nabla^2 T = 0 \quad \text{for} \quad a \leq r \leq b, \quad 0 \leq \theta \leq 2 \pi
The required general solution of Laplace’s equation in polar coordinates is given by:
T(r,theta)=(c_(1)r^(n)+c_(2)r^(-n))(A cos n theta+B sin n theta)T(r, \theta) = \left(c_1 r^n + c_2 r^{-n}\right) \left(A \cos n \theta + B \sin n \theta\right)
The principle of superposition gives
T(r,theta)=sum_(n=1)^(oo)[r^(n)-(a^(2n))/(lambda ^(n))](A_(n)cos n theta+B_(n)sin n theta)∣T(r, \theta)=\sum_{n=1}^{\infty}\left[r^n-\frac{a^{2 n}}{\lambda^n}\right]\left(A_n \cos n \theta+B_n \sin n \theta\right) \mid
Now, using BCB C ii), we obtain
T(b,theta)=k cos((theta)/(2))=sum_(n=1)^(oo)[b^(n)-b^(-n)a^(2n)][A_(n)cos n theta+B_(n)sin n theta:}T(b, \theta)=k \cos \frac{\theta}{2}=\sum_{n=1}^{\infty}\left[b^n-b^{-n} a^{2 n}\right]\left[A_n \cos n \theta+B_n \sin n \theta\right.