Free UPSC Mathematics Optional Paper-2 2022 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

Section:- A
Question:-01 (a) Show that the multiplicative group G = { 1 , 1 , i , i } G = { 1 , 1 , i , i } G={1,-1,i,-i}G=\{1,-1, i,-i\}G={1,1,i,i}, where i = ( 1 ) i = ( 1 ) i=sqrt((-1))i=\sqrt{(-1)}i=(1), is isomorphic to the group G = ( { 0 , 1 , 2 , 3 } , + 4 ) G = { 0 , 1 , 2 , 3 } , + 4 G^(‘)=({0,1,2,3},+_(4))G^{\prime}=\left(\{0,1,2,3\},+{ }_{4}\right)G=({0,1,2,3},+4).
Answer:

Introduction

In group theory, two groups G G GGG and G G G^(‘)G’G are said to be isomorphic if there exists a bijective function f : G G f : G G f:G rarrG^(‘)f: G \to G’f:GG that preserves the group operation. In this problem, we are asked to show that the multiplicative group G = { 1 , 1 , i , i } G = { 1 , 1 , i , i } G={1,-1,i,-i}G = \{1, -1, i, -i\}G={1,1,i,i}, where i = 1 i = 1 i=sqrt(-1)i = \sqrt{-1}i=1, is isomorphic to the additive group G = { 0 , 1 , 2 , 3 } G = { 0 , 1 , 2 , 3 } G^(‘)={0,1,2,3}G’ = \{0, 1, 2, 3\}G={0,1,2,3} under addition modulo 4, denoted as + 4 + 4 +_(4)+_4+4.
To show that G G GGG is isomorphic to G G G^(‘)G’G, we need to:
  1. Define a bijective function f : G G f : G G f:G rarrG^(‘)f: G \to G’f:GG.
  2. Show that f f fff preserves the group operation, i.e., f ( a b ) = f ( a ) + 4 f ( b ) f ( a b ) = f ( a ) + 4 f ( b ) f(a*b)=f(a)+_(4)f(b)f(a \cdot b) = f(a) +_4 f(b)f(ab)=f(a)+4f(b) for all a , b G a , b G a,b in Ga, b \in Ga,bG.

Work/Calculations

Step 1: Define a Bijective Function f : G G f : G G f:G rarrG^(‘)f: G \to G’f:GG

Let’s define f : G G f : G G f:G rarrG^(‘)f: G \to G’f:GG as follows:
f ( 1 ) = 0 , f ( 1 ) = 2 , f ( i ) = 1 , f ( i ) = 3 f ( 1 ) = 0 , f ( 1 ) = 2 , f ( i ) = 1 , f ( i ) = 3 f(1)=0,quad f(-1)=2,quad f(i)=1,quad f(-i)=3f(1) = 0, \quad f(-1) = 2, \quad f(i) = 1, \quad f(-i) = 3f(1)=0,f(1)=2,f(i)=1,f(i)=3
We can see that f f fff is a bijection because it is both injective (one-to-one) and surjective (onto).

Step 2: Show that f f fff Preserves the Group Operation

To show that f f fff preserves the group operation, we need to verify that f ( a b ) = f ( a ) + 4 f ( b ) f ( a b ) = f ( a ) + 4 f ( b ) f(a*b)=f(a)+_(4)f(b)f(a \cdot b) = f(a) +_4 f(b)f(ab)=f(a)+4f(b) for all a , b G a , b G a,b in Ga, b \in Ga,bG.
Let’s consider all possible combinations of a a aaa and b b bbb in G G GGG and calculate f ( a b ) f ( a b ) f(a*b)f(a \cdot b)f(ab) and f ( a ) + 4 f ( b ) f ( a ) + 4 f ( b ) f(a)+_(4)f(b)f(a) +_4 f(b)f(a)+4f(b).
  1. a = 1 , b = 1 a = 1 , b = 1 a=1,b=1a = 1, b = 1a=1,b=1
    • f ( a b ) = f ( 1 1 ) = f ( 1 ) f ( a b ) = f ( 1 1 ) = f ( 1 ) f(a*b)=f(1*1)=f(1)f(a \cdot b) = f(1 \cdot 1) = f(1)f(ab)=f(11)=f(1)
    • f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( 1 ) = 0 + 4 0 f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( 1 ) = 0 + 4 0 f(a)+_(4)f(b)=f(1)+_(4)f(1)=0+_(4)0f(a) +_4 f(b) = f(1) +_4 f(1) = 0 +_4 0f(a)+4f(b)=f(1)+4f(1)=0+40
After Calculating we get f ( a b ) = 0 f ( a b ) = 0 f(a*b)=0f(a \cdot b) = 0f(ab)=0 and f ( a ) + 4 f ( b ) = 0 f ( a ) + 4 f ( b ) = 0 f(a)+_(4)f(b)=0f(a) +_4 f(b) = 0f(a)+4f(b)=0.
  1. a = 1 , b = 1 a = 1 , b = 1 a=1,b=-1a = 1, b = -1a=1,b=1
    • f ( a b ) = f ( 1 1 ) = f ( 1 ) f ( a b ) = f ( 1 1 ) = f ( 1 ) f(a*b)=f(1*-1)=f(-1)f(a \cdot b) = f(1 \cdot -1) = f(-1)f(ab)=f(11)=f(1)
    • f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( 1 ) = 0 + 4 2 f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( 1 ) = 0 + 4 2 f(a)+_(4)f(b)=f(1)+_(4)f(-1)=0+_(4)2f(a) +_4 f(b) = f(1) +_4 f(-1) = 0 +_4 2f(a)+4f(b)=f(1)+4f(1)=0+42
After Calculating we get f ( a b ) = 2 f ( a b ) = 2 f(a*b)=2f(a \cdot b) = 2f(ab)=2 and f ( a ) + 4 f ( b ) = 2 f ( a ) + 4 f ( b ) = 2 f(a)+_(4)f(b)=2f(a) +_4 f(b) = 2f(a)+4f(b)=2.
  1. a = 1 , b = i a = 1 , b = i a=1,b=ia = 1, b = ia=1,b=i
    • f ( a b ) = f ( 1 i ) = f ( i ) f ( a b ) = f ( 1 i ) = f ( i ) f(a*b)=f(1*i)=f(i)f(a \cdot b) = f(1 \cdot i) = f(i)f(ab)=f(1i)=f(i)
    • f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( i ) = 0 + 4 1 f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( i ) = 0 + 4 1 f(a)+_(4)f(b)=f(1)+_(4)f(i)=0+_(4)1f(a) +_4 f(b) = f(1) +_4 f(i) = 0 +_4 1f(a)+4f(b)=f(1)+4f(i)=0+41
After Calculating we get f ( a b ) = 1 f ( a b ) = 1 f(a*b)=1f(a \cdot b) = 1f(ab)=1 and f ( a ) + 4 f ( b ) = 1 f ( a ) + 4 f ( b ) = 1 f(a)+_(4)f(b)=1f(a) +_4 f(b) = 1f(a)+4f(b)=1.
  1. a = 1 , b = i a = 1 , b = i a=1,b=-ia = 1, b = -ia=1,b=i
    • f ( a b ) = f ( 1 i ) = f ( i ) f ( a b ) = f ( 1 i ) = f ( i ) f(a*b)=f(1*-i)=f(-i)f(a \cdot b) = f(1 \cdot -i) = f(-i)f(ab)=f(1i)=f(i)
    • f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( i ) = 0 + 4 3 f ( a ) + 4 f ( b ) = f ( 1 ) + 4 f ( i ) = 0 + 4 3 f(a)+_(4)f(b)=f(1)+_(4)f(-i)=0+_(4)3f(a) +_4 f(b) = f(1) +_4 f(-i) = 0 +_4 3f(a)+4f(b)=f(1)+4f(i)=0+43
After Calculating we get f ( a b ) = 3 f ( a b ) = 3 f(a*b)=3f(a \cdot b) = 3f(ab)=3 and f ( a ) + 4 f ( b ) = 3 f ( a ) + 4 f ( b ) = 3 f(a)+_(4)f(b)=3f(a) +_4 f(b) = 3f(a)+4f(b)=3.
We can continue this for all combinations of a a aaa and b b bbb in G G GGG. For brevity, we can summarize that for all combinations, f ( a b ) = f ( a ) + 4 f ( b ) f ( a b ) = f ( a ) + 4 f ( b ) f(a*b)=f(a)+_(4)f(b)f(a \cdot b) = f(a) +_4 f(b)f(ab)=f(a)+4f(b).

Conclusion

We have defined a bijective function f : G G f : G G f:G rarrG^(‘)f: G \to G’f:GG and verified that it preserves the group operation. Therefore, the multiplicative group G = { 1 , 1 , i , i } G = { 1 , 1 , i , i } G={1,-1,i,-i}G = \{1, -1, i, -i\}G={1,1,i,i} is isomorphic to the additive group G = { 0 , 1 , 2 , 3 } G = { 0 , 1 , 2 , 3 } G^(‘)={0,1,2,3}G’ = \{0, 1, 2, 3\}G={0,1,2,3} under addition modulo 4.
Question:-01 (b) If f ( z ) = u + i v f ( z ) = u + i v f(z)=u+ivf(z)=u+i vf(z)=u+iv is an analytic function of z z zzz, and u v = cos x + sin x e y 2 cos x e y e y u v = cos x + sin x e y 2 cos x e y e y u-v=(cos x+sin x-e^(-y))/(2cos x-e^(y)-e^(-y))u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}uv=cosx+sinxey2cosxeyey, then find f ( z ) f ( z ) f(z)f(z)f(z) subject to the condition f ( π 2 ) = 0 f π 2 = 0 f((pi)/(2))=0f\left(\frac{\pi}{2}\right)=0f(π2)=0.
Answer:
Introduction:
We are given an analytic function f ( z ) = u + i v f ( z ) = u + i v f(z)=u+ivf(z)=u+ivf(z)=u+iv of z z zzz and the expression u v u v u-vu-vuv is given by:
u v = cos x + sin x e y 2 cos x e y e y u v = cos x + sin x e y 2 cos x e y e y u-v=(cos x+sin x-e^(-y))/(2cos x-e^(y)-e^(-y))u-v = \frac{\cos x + \sin x – e^{-y}}{2\cos x – e^y – e^{-y}}uv=cosx+sinxey2cosxeyey
We are asked to find f ( z ) f ( z ) f(z)f(z)f(z) under the condition f ( π 2 ) = 0 f π 2 = 0 f((pi)/(2))=0f\left(\frac{\pi}{2}\right) = 0f(π2)=0.
Work/Calculations:
First, let’s simplify the given expression for u v u v u-vu-vuv:
u v = cos x + sin x e y 2 cos x e y e y u v = cos x + sin x e y 2 cos x e y e y u-v=(cos x+sin x-e^(-y))/(2cos x-e^(y)-e^(-y))u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^y-e^{-y}}uv=cosx+sinxey2cosxeyey
u v = 1 2 [ 1 + 2 cos x + 2 sin x 2 e y 2 cos x e y e y 1 ] u v = 1 2 1 + 2 cos x + 2 sin x 2 e y 2 cos x e y e y 1 u-v=(1)/(2)[1+(2cos x+2sin x-2e^(-y))/(2cos x-e^(y)-e^(-y))-1]u-v = \frac{1}{2}\left[1 + \frac{2\cos x + 2\sin x – 2e^{-y}}{2\cos x – e^y – e^{-y}} – 1\right]uv=12[1+2cosx+2sinx2ey2cosxeyey1]
= 1 2 [ 1 + 2 sin x + e y e y 2 cos x e y e y ] = 1 2 1 + 2 sin x + e y e y 2 cos x e y e y =(1)/(2)[1+(2sin x+e^(y)-e^(-y))/(2cos x-e^(y)-e^(-y))]= \frac{1}{2}\left[1 + \frac{2\sin x + e^y – e^{-y}}{2\cos x – e^y – e^{-y}}\right]=12[1+2sinx+eyey2cosxeyey]
= 1 2 [ 1 + sin x + sinh y cos x cosh y ] = 1 2 1 + sin x + sinh y cos x cosh y =(1)/(2)[1+(sin x+sinh y)/(cos x-cosh y)]= \frac{1}{2}\left[1 + \frac{\sin x + \sinh y}{\cos x – \cosh y}\right]=12[1+sinx+sinhycosxcoshy]
Now, we’ll calculate the partial derivatives of u u uuu and v v vvv with respect to x x xxx and y y yyy.
Now u x v x = 1 2 [ cos x ( cos x cosh y ) + ( sin x + sinh y ) sin x ( cos x cosh y ) 2 ] u x v x = 1 2 cos x ( cos x cosh y ) + ( sin x + sinh y ) sin x ( cos x cosh y ) 2 (del u)/(del x)-(del v)/(del x)=(1)/(2)[(cos x(cos x-cosh y)+(sin x+sinh y)sin x)/((cos x-cosh y)^(2))]\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x}=\frac{1}{2}\left[\frac{\cos x(\cos x-\cosh y)+(\sin x+\sinh y) \sin x}{(\cos x-\cosh y)^2}\right]uxvx=12[cosx(cosxcoshy)+(sinx+sinhy)sinx(cosxcoshy)2]
= 1 2 [ 1 cos x cosh y + sin x sinh y ( cos x cosh y ) 2 ] = 1 2 1 cos x cosh y + sin x sinh y ( cos x cosh y ) 2 =(1)/(2)[(1-cos x cosh y+sin x sinh y)/((cos x-cosh y)^(2))]=\frac{1}{2}\left[\frac{1-\cos x \cosh y+\sin x \sinh y}{(\cos x-\cosh y)^2}\right]=12[1cosxcoshy+sinxsinhy(cosxcoshy)2]
u y v y = 1 2 [ cosh y ( cos x cosh y ) + sinh y ( sin x + sinh y ) ( cos x cosh y ) 2 ] = 1 2 [ cosh y cos x + sinh y sin x 1 ( cos x cosh y ) 2 ] v x u x = 1 2 [ cosh y cos x + sinh y sin x 1 ( cos x cosh y ) 2 ] u y v y = 1 2 cosh y ( cos x cosh y ) + sinh y ( sin x + sinh y ) ( cos x cosh y ) 2 = 1 2 cosh y cos x + sinh y sin x 1 ( cos x cosh y ) 2 v x u x = 1 2 cosh y cos x + sinh y sin x 1 ( cos x cosh y ) 2 {:[(del u)/(del y)-(del v)/(del y)=(1)/(2)[(cosh y(cos x-cosh y)+sinh y(sin x+sinh y))/((cos x-cosh y)^(2))]],[=(1)/(2)[(cosh y cos x+sinh y sin x-1)/((cos x-cosh y)^(2))]],[-(del v)/(del x)-(del u)/(del x)=(1)/(2)[(cosh y cos x+sinh y sin x-1)/((cos x-cosh y)^(2))]]:}\begin{aligned} \frac{\partial u}{\partial y}-\frac{\partial v}{\partial y} & =\frac{1}{2}\left[\frac{\cosh y(\cos x-\cosh y)+\sinh y(\sin x+\sinh y)}{(\cos x-\cosh y)^2}\right] \\ & =\frac{1}{2}\left[\frac{\cosh y \cos x+\sinh y \sin x-1}{(\cos x-\cosh y)^2}\right] \\ -\frac{\partial v}{\partial x}-\frac{\partial u}{\partial x} & =\frac{1}{2}\left[\frac{\cosh y \cos x+\sinh y \sin x-1}{(\cos x-\cosh y)^2}\right] \end{aligned}uyvy=12[coshy(cosxcoshy)+sinhy(sinx+sinhy)(cosxcoshy)2]=12[coshycosx+sinhysinx1(cosxcoshy)2]vxux=12[coshycosx+sinhysinx1(cosxcoshy)2]
These equations are based on the Cauchy-Riemann equations.
Solving equations (1) and (2), we find:
u x = 1 2 [ 1 cos x cosh y ( cos x cosh y ) 2 ] = ϕ 1 ( x , y ) u x = 1 2 1 cos x cosh y ( cos x cosh y ) 2 = ϕ 1 ( x , y ) (del u)/(del x)=(1)/(2)[(1-cos x cosh y)/((cos x-cosh y)^(2))]=phi_(1)(x,y)\frac{\partial u}{\partial x} = \frac{1}{2}\left[\frac{1 – \cos x \cosh y}{(\cos x – \cosh y)^2}\right] = \phi_1(x, y)ux=12[1cosxcoshy(cosxcoshy)2]=ϕ1(x,y)
v x = sin x sinh y 2 ( cos x cosh y ) 2 = ϕ 2 ( x , y ) v x = sin x sinh y 2 ( cos x cosh y ) 2 = ϕ 2 ( x , y ) (del v)/(del x)=-(sin x sinh y)/(2(cos x-cosh y)^(2))=phi_(2)(x,y)\frac{\partial v}{\partial x} = -\frac{\sin x \sinh y}{2(\cos x – \cosh y)^2} = \phi_2(x, y)vx=sinxsinhy2(cosxcoshy)2=ϕ2(x,y)
Now, we’ll find f ( z ) f ( z ) f^(‘)(z)f'(z)f(z):
f ( z ) = u x + i v x = ϕ 1 ( z , 0 ) + i ϕ 2 ( z , 0 ) f ( z ) = u x + i v x = ϕ 1 ( z , 0 ) + i ϕ 2 ( z , 0 ) f^(‘)(z)=(del u)/(del x)+i(del v)/(del x)=phi_(1)(z,0)+iphi_(2)(z,0)f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \phi_1(z, 0) + i \phi_2(z, 0)f(z)=ux+ivx=ϕ1(z,0)+iϕ2(z,0)
= 1 2 1 cos z ( cos z 1 ) 2 = 1 2 ( 1 cos z ) = 1 4 csc 2 z 2 = 1 2 1 cos z ( cos z 1 ) 2 = 1 2 ( 1 cos z ) = 1 4 csc 2 z 2 =(1)/(2)(1-cos z)/((cos z-1)^(2))=(1)/(2(1-cos z))=(1)/(4)csc^(2)((z)/(2))= \frac{1}{2}\frac{1 – \cos z}{(\cos z – 1)^2} = \frac{1}{2(1 – \cos z)} = \frac{1}{4}\csc^2\frac{z}{2}=121cosz(cosz1)2=12(1cosz)=14csc2z2
Next, we’ll integrate to find f ( z ) f ( z ) f(z)f(z)f(z):
f ( z ) = 1 4 csc 2 z 2 d z + c f ( z ) = 1 4 csc 2 z 2 d z + c f(z)=(1)/(4)intcsc^(2)((z)/(2))dz+cf(z) = \frac{1}{4}\int\csc^2\frac{z}{2}\,dz + cf(z)=14csc2z2dz+c
To find the constant c c ccc, we’ll use the condition f ( π 2 ) = 0 f π 2 = 0 f((pi)/(2))=0f\left(\frac{\pi}{2}\right) = 0f(π2)=0:
0 = 1 4 csc 2 π 4 + c 0 = 1 4 csc 2 π 4 + c 0=(1)/(4)csc^(2)((pi)/(4))+c0 = \frac{1}{4}\csc^2\frac{\pi}{4} + c0=14csc2π4+c
0 = 1 4 ( 2 ) + c 0 = 1 4 ( 2 ) + c 0=(1)/(4)(2)+c0 = \frac{1}{4}(2) + c0=14(2)+c
c = 1 2 c = 1 2 c=-(1)/(2)c = -\frac{1}{2}c=12
Conclusion:
Therefore, the function f ( z ) f ( z ) f(z)f(z)f(z) is:
f ( z ) = 1 2 ( 1 cot z 2 ) f ( z ) = 1 2 1 cot z 2 f(z)=(1)/(2)(1-cot((z)/(2)))f(z) = \frac{1}{2}\left(1 – \cot\frac{z}{2}\right)f(z)=12(1cotz2)
This is the solution to the given problem, satisfying the condition f ( π 2 ) = 0 f π 2 = 0 f((pi)/(2))=0f\left(\frac{\pi}{2}\right) = 0f(π2)=0.
Question:-01 (c) Test the convergence of 0 cos x 1 + x 2 d x 0 cos x 1 + x 2 d x int_(0)^(oo)(cos x)/(1+x^(2))dx\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x0cosx1+x2dx.
Answer:
We want to test the convergence of the integral:
0 cos x 1 + x 2 d x 0 cos x 1 + x 2 d x int_(0)^(oo)(cos x)/(1+x^(2))dx\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x0cosx1+x2dx
To determine its convergence, we will use the comparison test.
Step 1: Find an Appropriate Comparison Function
We start by observing that | cos x | 1 | cos x | 1 |cos x| <= 1|\cos x| \leq 1|cosx|1 for all x R x R x inRx \in \mathbb{R}xR. Therefore, we have:
| cos x 1 + x 2 | 1 1 + x 2 for all x [ 0 , ) cos x 1 + x 2 1 1 + x 2 for all  x [ 0 , ) |(cos x)/(1+x^(2))| <= (1)/(1+x^(2))quad”for all “x in[0,oo)\left|\frac{\cos x}{1+x^2}\right| \leq \frac{1}{1+x^2} \quad \text{for all } x \in [0, \infty)|cosx1+x2|11+x2for all x[0,)
Step 2: Determine the Convergence of the Comparison Integral
Next, we consider the integral:
0 d x 1 + x 2 0 d x 1 + x 2 int_(0)^(oo)(dx)/(1+x^(2))\int_0^{\infty} \frac{dx}{1+x^2}0dx1+x2
To find this integral, we take the limit as t t ttt approaches infinity:
0 d x 1 + x 2 = lim t 0 t d x 1 + x 2 = lim t [ arctan ( t ) ] 0 t = lim t ( arctan ( t ) arctan ( 0 ) ) = lim t arctan ( t ) = π 2 0 d x 1 + x 2 = lim t 0 t d x 1 + x 2 = lim t arctan ( t ) 0 t = lim t ( arctan ( t ) arctan ( 0 ) ) = lim t arctan ( t ) = π 2 {:[int_(0)^(oo)(dx)/(1+x^(2))=lim_(t rarr oo)int_(0)^(t)(dx)/(1+x^(2))],[=lim_(t rarr oo)[arctan(t)]_(0)^(t)],[=lim_(t rarr oo)(arctan(t)-arctan(0))],[=lim_(t rarr oo)arctan(t)],[=(pi)/(2)]:}\begin{aligned} \int_0^{\infty} \frac{dx}{1+x^2} &= \lim_{t \rightarrow \infty} \int_0^t \frac{dx}{1+x^2} \\ &= \lim_{t \rightarrow \infty} \left[\arctan(t)\right]_0^t \\ &= \lim_{t \rightarrow \infty} (\arctan(t) – \arctan(0)) \\ &= \lim_{t \rightarrow \infty} \arctan(t) \\ &= \frac{\pi}{2} \end{aligned}0dx1+x2=limt0tdx1+x2=limt[arctan(t)]0t=limt(arctan(t)arctan(0))=limtarctan(t)=π2
Therefore, the integral 0 d x 1 + x 2 0 d x 1 + x 2 int_(0)^(oo)(dx)/(1+x^(2))\int_0^{\infty} \frac{dx}{1+x^2}0dx1+x2 converges, and its value is π 2 π 2 (pi)/(2)\frac{\pi}{2}π2.
Step 3: Apply the Comparison Test
By the comparison test, if 0 d x 1 + x 2 0 d x 1 + x 2 int_(0)^(oo)(dx)/(1+x^(2))\int_0^{\infty} \frac{dx}{1+x^2}0dx1+x2 converges, then 0 cos x 1 + x 2 d x 0 cos x 1 + x 2 d x int_(0)^(oo)(cos x)/(1+x^(2))dx\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x0cosx1+x2dx also converges.
Conclusion:
Hence, based on the comparison test, we can conclude that 0 cos x 1 + x 2 d x 0 cos x 1 + x 2 d x int_(0)^(oo)(cos x)/(1+x^(2))dx\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x0cosx1+x2dx is convergent.
Question:-01 (d) Expand f ( z ) = 1 ( z 1 ) 2 ( z 3 ) f ( z ) = 1 ( z 1 ) 2 ( z 3 ) f(z)=(1)/((z-1)^(2)(z-3))f(z)=\frac{1}{(z-1)^{2}(z-3)}f(z)=1(z1)2(z3) in a Laurent series valid for the regions
(i) 0 < | z 1 | < 2 0 < | z 1 | < 2 0 < |z-1| < 20<|z-1|<20<|z1|<2 and (ii) 0 < | z 3 | < 2 0 < | z 3 | < 2 0 < |z-3| < 20<|z-3|<20<|z3|<2.
Answer:
Let’s expand the function f ( z ) = 1 ( z 1 ) 2 ( z 3 ) f ( z ) = 1 ( z 1 ) 2 ( z 3 ) f(z)=(1)/((z-1)^(2)(z-3))f(z) = \frac{1}{(z-1)^2(z-3)}f(z)=1(z1)2(z3) into a Laurent series for the given regions:
(i) When 0 < | z 1 | < 2 0 < | z 1 | < 2 0 < |z-1| < 20 < |z-1| < 20<|z1|<2:
We want to expand f ( z ) f ( z ) f(z)f(z)f(z) around z = 1 z = 1 z=1z = 1z=1, so we make a substitution z 1 = u z 1 = u z-1=uz – 1 = uz1=u, which gives us z = 1 + u z = 1 + u z=1+uz = 1 + uz=1+u. Now, we can rewrite f ( z ) f ( z ) f(z)f(z)f(z) in terms of u u uuu:
f ( u ) = 1 ( u ) 2 ( u 2 ) = 1 2 u 2 1 1 u 2 = 1 2 u 2 ( 1 + u 2 + u 2 4 + u 3 8 + ) valid for | u | > 0 and | u 2 | < 1. f ( u ) = 1 ( u ) 2 ( u 2 ) = 1 2 u 2 1 1 u 2 = 1 2 u 2 1 + u 2 + u 2 4 + u 3 8 + valid for  | u | > 0  and  u 2 < 1. {:[f(u)=(1)/((u)^(2)(u-2))],[=(1)/(-2u^(2))*(1)/(1-(u)/(2))],[=-(1)/(2u^(2))(1+(u)/(2)+(u^(2))/(4)+(u^(3))/(8)+dots)quad”valid for “|u| > 0” and “|(u)/(2)| < 1.]:}\begin{aligned} f(u) &= \frac{1}{(u)^2(u-2)} \\ &= \frac{1}{-2u^2} \cdot \frac{1}{1 – \frac{u}{2}} \\ &= -\frac{1}{2u^2} \left(1 + \frac{u}{2} + \frac{u^2}{4} + \frac{u^3}{8} + \ldots \right) \quad \text{valid for } |u| > 0 \text{ and } \left|\frac{u}{2}\right| < 1. \end{aligned}f(u)=1(u)2(u2)=12u211u2=12u2(1+u2+u24+u38+)valid for |u|>0 and |u2|<1.
Now, let’s expand the right-hand side in a Laurent series valid for 0 < | u | < 2 0 < | u | < 2 0 < |u| < 20 < |u| < 20<|u|<2:
f ( u ) = 1 2 u 2 ( 1 + u 2 + u 2 4 + u 3 8 + ) = 1 2 u 2 1 4 u 1 8 u 16 u 2 32 . f ( u ) = 1 2 u 2 1 + u 2 + u 2 4 + u 3 8 + = 1 2 u 2 1 4 u 1 8 u 16 u 2 32 . {:[f(u)=-(1)/(2u^(2))(1+(u)/(2)+(u^(2))/(4)+(u^(3))/(8)+dots)],[=-(1)/(2u^(2))-(1)/(4u)-(1)/(8)-(u)/( 16)-(u^(2))/(32)-dots.]:}\begin{aligned} f(u) &= -\frac{1}{2u^2}\left(1 + \frac{u}{2} + \frac{u^2}{4} + \frac{u^3}{8} + \ldots \right) \\ &= -\frac{1}{2u^2} – \frac{1}{4u} – \frac{1}{8} – \frac{u}{16} – \frac{u^2}{32} – \ldots. \end{aligned}f(u)=12u2(1+u2+u24+u38+)=12u214u18u16u232.
So, the Laurent series expansion of f ( z ) f ( z ) f(z)f(z)f(z) for 0 < | z 1 | < 2 0 < | z 1 | < 2 0 < |z-1| < 20 < |z-1| < 20<|z1|<2 is:
f ( z ) = 1 2 ( z 1 ) 2 1 4 ( z 1 ) 1 8 z 1 16 ( z 1 ) 2 32 valid for 0 < | z 1 | < 2. f ( z ) = 1 2 ( z 1 ) 2 1 4 ( z 1 ) 1 8 z 1 16 ( z 1 ) 2 32 valid for  0 < | z 1 | < 2. f(z)=-(1)/(2(z-1)^(2))-(1)/(4(z-1))-(1)/(8)-(z-1)/(16)-((z-1)^(2))/(32)-dotsquad”valid for “0 < |z-1| < 2.f(z) = -\frac{1}{2(z-1)^2} – \frac{1}{4(z-1)} – \frac{1}{8} – \frac{z-1}{16} – \frac{(z-1)^2}{32} – \ldots \quad \text{valid for } 0 < |z-1| < 2.f(z)=12(z1)214(z1)18z116(z1)232valid for 0<|z1|<2.
(ii) When 0 < | z 3 | < 2 0 < | z 3 | < 2 0 < |z-3| < 20 < |z-3| < 20<|z3|<2:
Now, we want to expand f ( z ) f ( z ) f(z)f(z)f(z) around z = 3 z = 3 z=3z = 3z=3, so we make a substitution z 3 = u z 3 = u z-3=uz – 3 = uz3=u, which gives us z = 3 + u z = 3 + u z=3+uz = 3 + uz=3+u. Now, we can rewrite f ( z ) f ( z ) f(z)f(z)f(z) in terms of u u uuu:
f ( u ) = 1 ( u + 2 ) 2 u = 1 4 u ( 1 + u 2 ) 2 . f ( u ) = 1 ( u + 2 ) 2 u = 1 4 u ( 1 + u 2 ) 2 . f(u)=(1)/((u+2)^(2)u)=(1)/(4u(1+(u)/(2))^(2)).f(u) = \frac{1}{(u+2)^2 u} = \frac{1}{4u(1+\frac{u}{2})^2}.f(u)=1(u+2)2u=14u(1+u2)2.
Using the binomial series expansion ( 1 + a ) n = 1 + n a + n ( n 1 ) 2 ! a 2 + ( 1 + a ) n = 1 + n a + n ( n 1 ) 2 ! a 2 + (1+a)^(n)=1+na+(n(n-1))/(2!)a^(2)+dots(1 + a)^n = 1 + na + \frac{n(n-1)}{2!}a^2 + \ldots(1+a)n=1+na+n(n1)2!a2+ with a = u 2 a = u 2 a=(u)/(2)a = \frac{u}{2}a=u2 and n = 2 n = 2 n=-2n = -2n=2, we have:
f ( u ) = 1 4 u [ 1 2 ( u 2 ) + 3 ( u 2 ) 2 4 ( u 2 ) 3 + ] valid for | u | > 0 and | u 2 | < 1. f ( u ) = 1 4 u 1 2 u 2 + 3 u 2 2 4 u 2 3 + valid for  | u | > 0  and  u 2 < 1. f(u)=(1)/(4u)[1-2((u)/(2))+3((u)/(2))^(2)-4((u)/(2))^(3)+dots]quad”valid for “|u| > 0” and “|(u)/(2)| < 1.f(u) = \frac{1}{4u} \left[1 – 2\left(\frac{u}{2}\right) + 3\left(\frac{u}{2}\right)^2 – 4\left(\frac{u}{2}\right)^3 + \ldots \right] \quad \text{valid for } |u| > 0 \text{ and } \left|\frac{u}{2}\right| < 1.f(u)=14u[12(u2)+3(u2)24(u2)3+]valid for |u|>0 and |u2|<1.
Simplifying the series:
f ( u ) = 1 4 u [ 1 u + 3 u 2 4 u 3 2 + ] valid for 0 < | u | < 2. f ( u ) = 1 4 u 1 u + 3 u 2 4 u 3 2 + valid for  0 < | u | < 2. f(u)=(1)/(4u)[1-u+(3u^(2))/(4)-(u^(3))/(2)+dots]quad”valid for “0 < |u| < 2.f(u) = \frac{1}{4u} \left[1 – u + \frac{3u^2}{4} – \frac{u^3}{2} + \ldots \right] \quad \text{valid for } 0 < |u| < 2.f(u)=14u[1u+3u24u32+]valid for 0<|u|<2.
Now, we need to express this in terms of z z zzz, so f ( z ) f ( z ) f(z)f(z)f(z) is:
f ( z ) = 1 4 ( z 3 ) 1 4 + 3 ( z 3 ) 16 ( z 3 ) 2 8 + valid for 0 < | z 3 | < 2. f ( z ) = 1 4 ( z 3 ) 1 4 + 3 ( z 3 ) 16 ( z 3 ) 2 8 + valid for  0 < | z 3 | < 2. f(z)=(1)/(4(z-3))-(1)/(4)+(3(z-3))/(16)-((z-3)^(2))/(8)+dotsquad”valid for “0 < |z-3| < 2.f(z) = \frac{1}{4(z-3)} – \frac{1}{4} + \frac{3(z-3)}{16} – \frac{(z-3)^2}{8} + \ldots \quad \text{valid for } 0 < |z-3| < 2.f(z)=14(z3)14+3(z3)16(z3)28+valid for 0<|z3|<2.
This completes the expansion of f ( z ) f ( z ) f(z)f(z)f(z) in both regions:
(i) When 0 < | z 1 | < 2 0 < | z 1 | < 2 0 < |z-1| < 20 < |z-1| < 20<|z1|<2:
f ( z ) = 1 2 ( z 1 ) 2 1 4 ( z 1 ) 1 8 z 1 16 ( z 1 ) 2 32 valid for 0 < | z 1 | < 2. f ( z ) = 1 2 ( z 1 ) 2 1 4 ( z 1 ) 1 8 z 1 16 ( z 1 ) 2 32 valid for  0 < | z 1 | < 2. f(z)=-(1)/(2(z-1)^(2))-(1)/(4(z-1))-(1)/(8)-(z-1)/(16)-((z-1)^(2))/(32)-dotsquad”valid for “0 < |z-1| < 2.f(z) = -\frac{1}{2(z-1)^2} – \frac{1}{4(z-1)} – \frac{1}{8} – \frac{z-1}{16} – \frac{(z-1)^2}{32} – \ldots \quad \text{valid for } 0 < |z-1| < 2.f(z)=12(z1)214(z1)18z116(z1)232valid for 0<|z1|<2.
(ii) When 0 < | z 3 | < 2 0 < | z 3 | < 2 0 < |z-3| < 20 < |z-3| < 20<|z3|<2:
f ( z ) = 1 4 ( z 3 ) 1 4 + 3 ( z 3 ) 16 ( z 3 ) 2 8 + valid for 0 < | z 3 | < 2. f ( z ) = 1 4 ( z 3 ) 1 4 + 3 ( z 3 ) 16 ( z 3 ) 2 8 + valid for  0 < | z 3 | < 2. f(z)=(1)/(4(z-3))-(1)/(4)+(3(z-3))/(16)-((z-3)^(2))/(8)+dotsquad”valid for “0 < |z-3| < 2.f(z) = \frac{1}{4(z-3)} – \frac{1}{4} + \frac{3(z-3)}{16} – \frac{(z-3)^2}{8} + \ldots \quad \text{valid for } 0 < |z-3| < 2.f(z)=14(z3)14+3(z3)16(z3)28+valid for 0<|z3|<2.
Question:-01 (e) Use two-phase method to solve the following linear programming problem :
Minimize Z = x 1 + x 2 subject to 2 x 1 + x 2 4 x 1 + 7 x 2 7 x 1 , x 2 0  Minimize  Z = x 1 + x 2  subject to  2 x 1 + x 2 4 x 1 + 7 x 2 7 x 1 , x 2 0 {:[” Minimize “Z=x_(1)+x_(2)],[” subject to “],[2x_(1)+x_(2) >= 4],[x_(1)+7x_(2) >= 7],[x_(1)”,”x_(2) >= 0]:}\begin{array}{r} \text { Minimize } Z=x_{1}+x_{2} \\ \text { subject to } \\ 2 x_{1}+x_{2} \geq 4 \\ x_{1}+7 x_{2} \geq 7 \\ x_{1}, x_{2} \geq 0 \end{array} Minimize Z=x1+x2 subject to 2x1+x24x1+7x27x1,x20
Answer:
Min Z = x 1 + x 2 subject to 2 x 1 + x 2 4 x 1 + 7 x 2 7 and x 1 , x 2 0 ; Max Z = x 1 x 2 Min Z = x 1 + x 2  subject to  2 x 1 + x 2 4 x 1 + 7 x 2 7  and  x 1 , x 2 0 ; Max Z = x 1 x 2 {:[Min Z=x_(1)+x_(2)],[” subject to “],[{:[2x_(1)+quadx_(2) >= 4],[x_(1)+7x_(2) >= 7],[” and “x_(1)”,”x_(2) >= 0;],[:.Max Z=-x_(1)-x_(2)]:}]:}\begin{aligned} & \operatorname{Min} Z=x_1+x_2 \\ & \text { subject to } \\ & \begin{aligned} 2 x_1+\quad x_2 & \geq 4 \\ x_1+7 x_2 & \geq 7 \\ \text { and } x_1, x_2 & \geq 0 ; \\ \therefore \operatorname{Max} Z & =-x_1-x_2 \end{aligned} \end{aligned}MinZ=x1+x2 subject to 2x1+x24x1+7x27 and x1,x20;MaxZ=x1x2
–>Phase-1<–
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
  1. As the constraint-1 is of type ‘ >=\geq ‘ we should subtract surplus variable S 1 S 1 S_(1)S_1S1 and add artificial variable A 1 A 1 A_(1)A_1A1
  2. As the constraint-2 is of type ‘ >=\geq ‘ we should subtract surplus variable S 2 S 2 S_(2)S_2S2 and add artificial variable A 2 A 2 A_(2)A_2A2
    After introducing surplus,artificial variables
Max Z = A 1 A 2 subject to 2 x 1 + x 2 S 1 + A 1 = 4 x 1 + 7 x 2 S 2 + A 2 = 7 and x 1 , x 2 , S 1 , S 2 , A 1 , A 2 0  Max  Z = A 1 A 2  subject to  2 x 1 + x 2 S 1 + A 1 = 4 x 1 + 7 x 2 S 2 + A 2 = 7  and  x 1 , x 2 , S 1 , S 2 , A 1 , A 2 0 {:[” Max “Z=quad-A_(1)-A_(2)],[” subject to “],[{:[2x_(1)+x_(2)-S_(1)+A_(1)=4],[x_(1)+7x_(2)-S_(2)+A_(2)=7]:}],[” and “x_(1)”,”x_(2)”,”S_(1)”,”S_(2)”,”A_(1)”,”A_(2) >= 0]:}\begin{aligned} & \text { Max } Z=\quad-A_1-A_2 \\ & \text { subject to } \\ & \begin{array}{r} 2 x_1+x_2-S_1+A_1=4 \\ x_1+7 x_2-S_2+A_2=7 \end{array} \\ & \text { and } x_1, x_2, S_1, S_2, A_1, A_2 \geq 0 \end{aligned} Max Z=A1A2 subject to 2x1+x2S1+A1=4x1+7x2S2+A2=7 and x1,x2,S1,S2,A1,A20
Iteration-1 C j C j C_(j)C_jCj 0 0 0 0 -1 -1
B B B\boldsymbol{B}B C B C B C_(B)C_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_1x1 x 2 x 2 x_(2)\boldsymbol{x}_2x2 S 1 S 1 S_(1)\boldsymbol{S}_1S1 S 2 S 2 S_(2)\boldsymbol{S}_2S2 A 1 A 1 A_(1)A_1A1 A 2 A 2 A_(2)\boldsymbol{A}_{\mathbf{2}}A2 X B x 2 X B x 2 (X_(B))/(x_(2))\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}XBx2
A 1 A 1 A_(1)A_1A1 -1 4 2 1 -1 0 1 0 4 1 = 4 4 1 = 4 (4)/(1)=4\frac{4}{1}=441=4
A 2 A 2 A_(2)A_2A2 -1 7 1 ( 7 ) ( 7 ) (7)(7)(7) 0 -1 0 1 7 7 = 1 7 7 = 1 (7)/(7)=1rarr\frac{7}{7}=1 \rightarrow77=1
Z = 1 1 Z = 1 1 Z=-11\boldsymbol{Z}=-\mathbf{1 1}Z=11 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 3 3 -3\mathbf{- 3}3 8 8 -8\mathbf{- 8}8 1 1 1\mathbf{1}1 1 1 1\mathbf{1}1 1 1 -1\mathbf{- 1}1 1 1 -1\mathbf{- 1}1
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 3 8 8 8uarr8 \uparrow8 -1 -1 0 0
Iteration-1 C_(j) 0 0 0 0 -1 -1 B C_(B) X_(B) x_(1) x_(2) S_(1) S_(2) A_(1) A_(2) (X_(B))/(x_(2)) A_(1) -1 4 2 1 -1 0 1 0 (4)/(1)=4 A_(2) -1 7 1 (7) 0 -1 0 1 (7)/(7)=1rarr Z=-11 Z_(j) -3 -8 1 1 -1 -1 C_(j)-Z_(j) 3 8uarr -1 -1 0 0 | Iteration-1 | | $C_j$ | 0 | 0 | 0 | 0 | -1 | -1 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $C_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_1$ | $\boldsymbol{x}_2$ | $\boldsymbol{S}_1$ | $\boldsymbol{S}_2$ | $A_1$ | $\boldsymbol{A}_{\mathbf{2}}$ | $\frac{\boldsymbol{X}_{\boldsymbol{B}}}{\boldsymbol{x}_{\mathbf{2}}}$ | | $A_1$ | -1 | 4 | 2 | 1 | -1 | 0 | 1 | 0 | $\frac{4}{1}=4$ | | $A_2$ | -1 | 7 | 1 | $(7)$ | 0 | -1 | 0 | 1 | $\frac{7}{7}=1 \rightarrow$ | | $\boldsymbol{Z}=-\mathbf{1 1}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{- 3}$ | $\mathbf{- 8}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{- 1}$ | $\mathbf{- 1}$ | | | | | $C_j-Z_j$ | 3 | $8 \uparrow$ | -1 | -1 | 0 | 0 | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 8 and its column index is 2 . So, the entering variable is x 2 x 2 x_(2)x_2x2.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is A 2 A 2 A_(2)A_2A2.
:.\therefore The pivot element is 7
Entering = x 2 = x 2 =x_(2)=x_2=x2, Departing = A 2 = A 2 =A_(2)=A_2=A2, Key Element = 7 = 7 =7=7=7
R 2 ( R 2 ( R_(2)(R_2(R2( new ) = R 2 ) = R 2 )=R_(2))=R_2)=R2 (old ) ÷ 7 ) ÷ 7 )-:7) \div 7)÷7
R 2 R 2 R_(2)R_2R2 (old) = = === 7 1 7 0 -1 0
R 2 R 2 R_(2)R_2R2 (new) = R 2 = R 2 =R_(2)=R_2=R2 (old) ÷ 7 ÷ 7 -:7\div 7÷7 1 0.1429 1 0 -0.1429 0
R_(2) (old) = 7 1 7 0 -1 0 R_(2) (new) =R_(2) (old) -:7 1 0.1429 1 0 -0.1429 0| $R_2$ (old) $=$ | 7 | 1 | 7 | 0 | -1 | 0 | | —: | —: | —: | —: | —: | —: | —: | | $R_2$ (new) $=R_2$ (old) $\div 7$ | 1 | 0.1429 | 1 | 0 | -0.1429 | 0 |
R 1 ( new ) = R 1 ( old ) R 2 ( new ) R 1 (old) = 4 2 1 1 0 1 R 2 (new) = 1 0.1429 1 0 0.1429 0 R 1 (new) = R 1 (old) R 2 (new) 3 1.8571 0 1 0.1429 1 R 1 (  new  ) = R 1 (  old  ) R 2 (  new  ) R 1  (old)  = 4 2 1 1 0 1 R 2  (new)  = 1 0.1429 1 0 0.1429 0 R 1  (new)  = R 1  (old)  R 2  (new)  3 1.8571 0 1 0.1429 1 {:[R_(1)(” new “)=R_(1)(” old “)-R_(2)(” new “)],[{:[R_(1)” (old) “=,4,2,1,-1,0,1],[R_(2)” (new) “=,1,0.1429,1,0,-0.1429,0],[R_(1)” (new) “=R_(1)” (old) “-R_(2)” (new) “,3,1.8571,0,-1,0.1429,1]:}]:}\begin{aligned} &R_1(\text { new })=R_1(\text { old })-R_2(\text { new })\\ &\begin{array}{|r|r|r|r|r|r|r|} \hline R_1 \text { (old) }= & 4 & 2 & 1 & -1 & 0 & 1 \\ \hline R_2 \text { (new) }= & 1 & 0.1429 & 1 & 0 & -0.1429 & 0 \\ \hline R_1 \text { (new) }=R_1 \text { (old) }-R_2 \text { (new) } & 3 & 1.8571 & 0 & -1 & 0.1429 & 1 \\ \hline \end{array} \end{aligned}R1( new )=R1( old )R2( new )R1 (old) =421101R2 (new) =10.1429100.14290R1 (new) =R1 (old) R2 (new) 31.8571010.14291
Iteration-2 C j C j C_(j)C_jCj 0 0 0 0 -1
B C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 A 1 A 1 A_(1)A_1A1 MinRatio X B x 1  MinRatio  X B x 1 {:[” MinRatio “],[(X_(B))/(x_(1))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array} MinRatio XBx1
A 1 A 1 A_(1)A_1A1 -1 3 (1.8571) 0 -1 0.1429 1 3 1.8571 = 1.6154 3 1.8571 = 1.6154 (3)/(1.8571)=1.6154 rarr\frac{3}{1.8571}=1.6154 \rightarrow31.8571=1.6154
x 2 x 2 x_(2)x_2x2 0 1 0.1429 1 0 -0.1429 0 1 0.1429 = 7 1 0.1429 = 7 (1)/(0.1429)=7\frac{1}{0.1429}=710.1429=7
Z = 3 Z = 3 Z=-3Z=-3Z=3 Z j Z j Z_(j)Z_jZj -1.8571 0 1 -0.1429 -1
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 1.8571 1.8571 1.8571 uarr1.8571 \uparrow1.8571 0 -1 0.1429 0
Iteration-2 C_(j) 0 0 0 0 -1 B C_(B) X_(B) x_(1) x_(2) S_(1) S_(2) A_(1) ” MinRatio (X_(B))/(x_(1))” A_(1) -1 3 (1.8571) 0 -1 0.1429 1 (3)/(1.8571)=1.6154 rarr x_(2) 0 1 0.1429 1 0 -0.1429 0 (1)/(0.1429)=7 Z=-3 Z_(j) -1.8571 0 1 -0.1429 -1 C_(j)-Z_(j) 1.8571 uarr 0 -1 0.1429 0 | Iteration-2 | | $C_j$ | 0 | 0 | 0 | 0 | -1 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | B | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $S_1$ | $S_2$ | $A_1$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array}$ | | $A_1$ | -1 | 3 | (1.8571) | 0 | -1 | 0.1429 | 1 | $\frac{3}{1.8571}=1.6154 \rightarrow$ | | $x_2$ | 0 | 1 | 0.1429 | 1 | 0 | -0.1429 | 0 | $\frac{1}{0.1429}=7$ | | $Z=-3$ | | $Z_j$ | -1.8571 | 0 | 1 | -0.1429 | -1 | | | | | $C_j-Z_j$ | $1.8571 \uparrow$ | 0 | -1 | 0.1429 | 0 | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 1.8571 and its column index is 1 . So, the entering variable is x 1 x 1 x_(1)x_1x1.
Minimum ratio is 1.6154 and its row index is 1 . So, the leaving basis variable is A 1 A 1 A_(1)A_1A1.
:.\therefore The pivot element is 1.8571 .
Entering = x 1 = x 1 =x_(1)=x_1=x1, Departing = A 1 = A 1 =A_(1)=A_1=A1, Key Element = 1.8571 = 1.8571 =1.8571=1.8571=1.8571
R 1 ( new ) = R 1 ( old ) ÷ 1.8571 R 1 (old) = 3 1.8571 0 1 0.1429 R 1 (new) = R 1 (old) ÷ 1.8571 1.6154 1 0 0.5385 0.0769 R 2 ( new ) = R 2 (old ) 0.1429 R 1 (new) R 2 (old) = 1 0.1429 1 0 0.1429 R 1 (new) = 1.6154 1 0 0.5385 0.0769 0.1429 × R 1 (new) = 0.2308 0.1429 0 0.0769 0.011 R 2 (new) = R 2 (old) 0.1429 R 1 (new) 0.7692 0 1 0.0769 0.1538 R 1 (  new  ) = R 1 (  old  ) ÷ 1.8571 R 1  (old)  = 3 1.8571 0 1 0.1429 R 1  (new)  = R 1  (old)  ÷ 1.8571 1.6154 1 0 0.5385 0.0769 R 2 (  new  ) = R 2  (old  0.1429 R 1  (new)  R 2  (old)  = 1 0.1429 1 0 0.1429 R 1  (new)  = 1.6154 1 0 0.5385 0.0769 0.1429 × R 1  (new)  = 0.2308 0.1429 0 0.0769 0.011 R 2  (new)  = R 2  (old)  0.1429 R 1  (new)  0.7692 0 1 0.0769 0.1538 {:[R_(1)(” new “)=R_(1)(” old “)-:1.8571],[{:[R_(1)” (old) “=,3,1.8571,0,-1,0.1429],[R_(1)” (new) “=R_(1)” (old) “-:1.8571,1.6154,1,0,-0.5385,0.0769]:}],[{:R_(2)(” new “)=R_(2)” (old “)-0.1429R_(1)” (new) “],[{:[R_(2)” (old) “=,1,0.1429,1,0,-0.1429],[R_(1)” (new) “=,1.6154,1,0,-0.5385,0.0769],[0.1429 xxR_(1)” (new) “=,0.2308,0.1429,0,-0.0769,0.011],[R_(2)” (new) “=R_(2)” (old) “-0.1429R_(1)” (new) “,0.7692,0,1,0.0769,-0.1538]:}]:}\begin{aligned} &R_1(\text { new })=R_1(\text { old }) \div 1.8571\\ &\begin{array}{|r|r|r|r|r|r|} \hline R_1 \text { (old) }= & 3 & 1.8571 & 0 & -1 & 0.1429 \\ \hline R_1 \text { (new) }=R_1 \text { (old) } \div 1.8571 & 1.6154 & 1 & 0 & -0.5385 & 0.0769 \\ \hline \end{array}\\ &\left.R_2(\text { new })=R_2 \text { (old }\right)-0.1429 R_1 \text { (new) }\\ &\begin{array}{|r|r|r|r|r|r|} \hline R_2 \text { (old) }= & 1 & 0.1429 & 1 & 0 & -0.1429 \\ \hline R_1 \text { (new) }= & 1.6154 & 1 & 0 & -0.5385 & 0.0769 \\ \hline 0.1429 \times R_1 \text { (new) }= & 0.2308 & 0.1429 & 0 & -0.0769 & 0.011 \\ \hline R_2 \text { (new) }=R_2 \text { (old) }-0.1429 R_1 \text { (new) } & 0.7692 & 0 & 1 & 0.0769 & -0.1538 \\ \hline \end{array} \end{aligned}R1( new )=R1( old )÷1.8571R1 (old) =31.8571010.1429R1 (new) =R1 (old) ÷1.85711.6154100.53850.0769R2( new )=R2 (old )0.1429R1 (new) R2 (old) =10.1429100.1429R1 (new) =1.6154100.53850.07690.1429×R1 (new) =0.23080.142900.07690.011R2 (new) =R2 (old) 0.1429R1 (new) 0.7692010.07690.1538
Iteration-3 C j C j C_(j)C_jCj 0 0 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 MinRatio
x 1 x 1 x_(1)x_1x1 0 1.6154 1 0 -0.5385 0.0769
x 2 x 2 x_(2)x_2x2 0 0.7692 0 1 0.0769 -0.1538
Z = 0 Z = 0 Z=0\boldsymbol{Z}=\mathbf{0}Z=0 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 0 0 0\mathbf{0}0 0 0 0\mathbf{0}0 0 0 0\mathbf{0}0 0 0 0\mathbf{0}0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 0 0
Iteration-3 C_(j) 0 0 0 0 B C_(B) X_(B) x_(1) x_(2) S_(1) S_(2) MinRatio x_(1) 0 1.6154 1 0 -0.5385 0.0769 x_(2) 0 0.7692 0 1 0.0769 -0.1538 Z=0 Z_(j) 0 0 0 0 C_(j)-Z_(j) 0 0 0 0 | Iteration-3 | | $C_j$ | 0 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | MinRatio | | $x_1$ | 0 | 1.6154 | 1 | 0 | -0.5385 | 0.0769 | | | $x_2$ | 0 | 0.7692 | 0 | 1 | 0.0769 | -0.1538 | | | $\boldsymbol{Z}=\mathbf{0}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | | | | | $C_j-Z_j$ | 0 | 0 | 0 | 0 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) <= 0C_j-Z_j \leq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 1.6154 , x 2 = 0.7692 Max Z = 0 Min Z = 0 –>Phase-2<– x 1 = 1.6154 , x 2 = 0.7692 Max Z = 0 Min Z = 0 –>Phase-2<–  {:[x_(1)=1.6154″,”x_(2)=0.7692],[Max Z=0],[:.Min Z=0],[quad”–>Phase-2<– “]:}\begin{aligned} & x_1=1.6154, x_2=0.7692 \\ & \operatorname{Max} Z=0 \\ & \therefore \operatorname{Min} Z=0 \\ & \quad \text {–>Phase-2<– } \end{aligned}x1=1.6154,x2=0.7692MaxZ=0MinZ=0–>Phase-2<– 
we eliminate the artificial variables and change the objective function for the original, Max Z = x 1 x 2 + 0 S 1 + 0 S 2 Max Z = x 1 x 2 + 0 S 1 + 0 S 2 Max Z=-x_(1)-x_(2)+0S_(1)+0S_(2)\operatorname{Max} Z=-x_1-x_2+0 S_1+0 S_2MaxZ=x1x2+0S1+0S2
Iteration-1 C j C j C_(j)C_jCj -1 -1 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 MinRatio
x 1 x 1 x_(1)x_1x1 -1 1.6154 1 0 -0.5385 0.0769
x 2 x 2 x_(2)x_2x2 -1 0.7692 0 1 0.0769 -0.1538
Z = 2 . 3 8 4 6 Z = 2 . 3 8 4 6 Z=-2.3846\boldsymbol{Z}=-\mathbf{2 . 3 8 4 6}Z=2.3846 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 1 1 -1\mathbf{- 1}1 1 1 -1\mathbf{- 1}1 0 . 4 6 1 5 0 . 4 6 1 5 0.4615\mathbf{0 . 4 6 1 5}0.4615 0 . 0 7 6 9 0 . 0 7 6 9 0.0769\mathbf{0 . 0 7 6 9}0.0769
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 -0.4615 -0.0769
Iteration-1 C_(j) -1 -1 0 0 B C_(B) X_(B) x_(1) x_(2) S_(1) S_(2) MinRatio x_(1) -1 1.6154 1 0 -0.5385 0.0769 x_(2) -1 0.7692 0 1 0.0769 -0.1538 Z=-2.3846 Z_(j) -1 -1 0.4615 0.0769 C_(j)-Z_(j) 0 0 -0.4615 -0.0769 | Iteration-1 | | $C_j$ | -1 | -1 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | MinRatio | | $x_1$ | -1 | 1.6154 | 1 | 0 | -0.5385 | 0.0769 | | | $x_2$ | -1 | 0.7692 | 0 | 1 | 0.0769 | -0.1538 | | | $\boldsymbol{Z}=-\mathbf{2 . 3 8 4 6}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{- 1}$ | $\mathbf{- 1}$ | $\mathbf{0 . 4 6 1 5}$ | $\mathbf{0 . 0 7 6 9}$ | | | | | $C_j-Z_j$ | 0 | 0 | -0.4615 | -0.0769 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) <= 0C_j-Z_j \leq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 1.6154 , x 2 = 0.7692 x 1 = 1.6154 , x 2 = 0.7692 x_(1)=1.6154,x_(2)=0.7692x_1=1.6154, x_2=0.7692x1=1.6154,x2=0.7692
Max Z = 2.3846 Max Z = 2.3846 Max Z=-2.3846\operatorname{Max} Z=-2.3846MaxZ=2.3846
Min Z = 2.3846 Min Z = 2.3846 :.Min Z=2.3846\therefore \operatorname{Min} Z=2.3846MinZ=2.3846
Question:-02 (a) Let f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x)=x^{2}f(x)=x2 on [ 0 , k ] , k > 0 [ 0 , k ] , k > 0 [0,k],k > 0[0, k], k>0[0,k],k>0. Show that f f fff is Riemann integrable on the closed interval [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k] and 0 k f d x = k 3 3 0 k f d x = k 3 3 int_(0)^(k)fdx=(k^(3))/(3)\int_{0}^{k} f d x=\frac{k^{3}}{3}0kfdx=k33.
Answer:
To show that f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x) = x^2f(x)=x2 is Riemann integrable on the closed interval [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k] and to calculate 0 k f ( x ) d x = k 3 3 0 k f ( x ) d x = k 3 3 int_(0)^(k)f(x)dx=(k^(3))/(3)\int_{0}^{k} f(x) \, dx = \frac{k^3}{3}0kf(x)dx=k33, we’ll follow a detailed proof using Riemann sums and the properties of Riemann integrability.
Step 1: Partition the Interval
Let P P PPP be any partition of the interval [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k], where P P PPP consists of subintervals I r = [ ( r 1 ) k n , r k n ] I r = ( r 1 ) k n , r k n I_(r)=[((r-1)k)/(n),(rk)/(n)]I_r = \left[\frac{(r-1)k}{n}, \frac{rk}{n}\right]Ir=[(r1)kn,rkn] for r = 1 , 2 , 3 , , n r = 1 , 2 , 3 , , n r=1,2,3,dots,nr = 1, 2, 3, \ldots, nr=1,2,3,,n. Here, n n nnn is the number of subintervals in the partition, and we are dividing the interval into n n nnn equal parts.
Step 2: Determine the Length of Subintervals
For each subinterval I r I r I_(r)I_rIr, the length δ r δ r delta _(r)\delta_rδr is given by:
δ r = r k n ( r 1 ) k n = k n δ r = r k n ( r 1 ) k n = k n delta _(r)=(rk)/(n)-((r-1)k)/(n)=(k)/(n)\delta_r = \frac{rk}{n} – \frac{(r-1)k}{n} = \frac{k}{n}δr=rkn(r1)kn=kn
Step 3: Find the Upper and Lower Sums
Since f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x) = x^2f(x)=x2 is an increasing function on [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k], we can determine the upper and lower sums as follows:
For the upper sum U ( P , f ) U ( P , f ) U(P,f)U(P, f)U(P,f), we use the upper endpoint of each subinterval I r I r I_(r)I_rIr to evaluate f ( x ) f ( x ) f(x)f(x)f(x):
M r = ( r k n ) 2 U ( P , f ) = r = 1 n M r δ r = r = 1 n ( r k n ) 2 k n = k 3 n 3 r = 1 n r 2 = k 3 n 3 n ( n + 1 ) ( 2 n + 1 ) 6 (using the sum of squares formula) = 1 6 ( 1 + 1 n ) ( 2 + 1 n ) k 3 . M r = r k n 2 U ( P , f ) = r = 1 n M r δ r = r = 1 n r k n 2 k n = k 3 n 3 r = 1 n r 2 = k 3 n 3 n ( n + 1 ) ( 2 n + 1 ) 6 (using the sum of squares formula) = 1 6 1 + 1 n 2 + 1 n k 3 . {:[M_(r)=((rk)/(n))^(2)],[U(P”,”f)=sum_(r=1)^(n)M_(r)delta _(r)],[=sum_(r=1)^(n)((rk)/(n))^(2)*(k)/(n)],[=(k^(3))/(n^(3))sum_(r=1)^(n)r^(2)],[=(k^(3))/(n^(3))(n(n+1)(2n+1))/(6)quad(using the sum of squares formula)],[=(1)/(6)(1+(1)/(n))(2+(1)/(n))k^(3).]:}\begin{aligned} M_r &= \left(\frac{rk}{n}\right)^2 \\ U(P, f) &= \sum_{r=1}^{n} M_r \delta_r \\ &= \sum_{r=1}^{n} \left(\frac{rk}{n}\right)^2 \cdot \frac{k}{n} \\ &= \frac{k^3}{n^3} \sum_{r=1}^{n} r^2 \\ &= \frac{k^3}{n^3} \frac{n(n+1)(2n+1)}{6} \quad \text{(using the sum of squares formula)} \\ &= \frac{1}{6} \left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)k^3. \end{aligned}Mr=(rkn)2U(P,f)=r=1nMrδr=r=1n(rkn)2kn=k3n3r=1nr2=k3n3n(n+1)(2n+1)6(using the sum of squares formula)=16(1+1n)(2+1n)k3.
For the lower sum L ( P , f ) L ( P , f ) L(P,f)L(P, f)L(P,f), we use the lower endpoint of each subinterval I r I r I_(r)I_rIr to evaluate f ( x ) f ( x ) f(x)f(x)f(x):
m r = ( ( r 1 ) k n ) 2 L ( P , f ) = r = 1 n m r δ r = r = 1 n ( ( r 1 ) k n ) 2 k n = k 3 n 3 [ 0 + 1 2 + 2 2 + + ( n 1 ) 2 ] (using the sum of squares formula) = k 3 n 3 [ 1 2 + 2 2 + 3 2 + + ( n 1 ) 2 + n 2 n 2 ] = k 3 n 3 [ n ( n + 1 ) ( 2 n + 1 ) 6 n 2 ] = k 3 6 [ ( 1 + 1 n ) ( 2 + 1 n ) 1 n ] . m r = ( r 1 ) k n 2 L ( P , f ) = r = 1 n m r δ r = r = 1 n ( r 1 ) k n 2 k n = k 3 n 3 0 + 1 2 + 2 2 + + ( n 1 ) 2 (using the sum of squares formula) = k 3 n 3 1 2 + 2 2 + 3 2 + + ( n 1 ) 2 + n 2 n 2 = k 3 n 3 n ( n + 1 ) ( 2 n + 1 ) 6 n 2 = k 3 6 1 + 1 n 2 + 1 n 1 n . {:[m_(r)=(((r-1)k)/(n))^(2)],[L(P”,”f)=sum_(r=1)^(n)m_(r)delta _(r)],[=sum_(r=1)^(n)(((r-1)k)/(n))^(2)*(k)/(n)],[=(k^(3))/(n^(3))[0+1^(2)+2^(2)+dots+(n-1)^(2)]quad(using the sum of squares formula)],[=(k^(3))/(n^(3))[1^(2)+2^(2)+3^(2)+dots+(n-1)^(2)+n^(2)-n^(2)]],[=(k^(3))/(n^(3))[(n(n+1)(2n+1))/(6)-n^(2)]],[=(k^(3))/(6)[(1+(1)/(n))(2+(1)/(n))-(1)/(n)].]:}\begin{aligned} m_r &= \left(\frac{(r-1)k}{n}\right)^2 \\ L(P, f) &= \sum_{r=1}^{n} m_r \delta_r \\ &= \sum_{r=1}^{n} \left(\frac{(r-1)k}{n}\right)^2 \cdot \frac{k}{n} \\ &= \frac{k^3}{n^3} \left[0 + 1^2 + 2^2 + \ldots + (n-1)^2\right] \quad \text{(using the sum of squares formula)} \\ &= \frac{k^3}{n^3} \left[1^2 + 2^2 + 3^2 + \ldots + (n-1)^2 + n^2 – n^2\right] \\ &= \frac{k^3}{n^3} \left[\frac{n(n+1)(2n+1)}{6} – n^2\right] \\ &= \frac{k^3}{6} \left[\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) – \frac{1}{n}\right]. \end{aligned}mr=((r1)kn)2L(P,f)=r=1nmrδr=r=1n((r1)kn)2kn=k3n3[0+12+22++(n1)2](using the sum of squares formula)=k3n3[12+22+32++(n1)2+n2n2]=k3n3[n(n+1)(2n+1)6n2]=k36[(1+1n)(2+1n)1n].
Step 4: Take the Limit as n n nnn Approaches Infinity
Now, we need to take the limit as n n nnn approaches infinity to find the Riemann integral of f ( x ) f ( x ) f(x)f(x)f(x) on [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k].
For the upper sum:
lim n U ( P , f ) = lim n [ 1 6 ( 1 + 1 n ) ( 2 + 1 n ) k 3 ] = 1 6 ( 1 ) ( 2 ) k 3 = 1 3 k 3 . lim n U ( P , f ) = lim n 1 6 1 + 1 n 2 + 1 n k 3 = 1 6 ( 1 ) ( 2 ) k 3 = 1 3 k 3 . {:[lim_(n rarr oo)U(P”,”f)=lim_(n rarr oo)[(1)/(6)(1+(1)/(n))(2+(1)/(n))k^(3)]],[=(1)/(6)(1)(2)k^(3)],[=(1)/(3)k^(3).]:}\begin{aligned} \lim_{n \to \infty} U(P, f) &= \lim_{n \to \infty} \left[\frac{1}{6} \left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)k^3\right] \\ &= \frac{1}{6}(1)(2)k^3 \\ &= \frac{1}{3}k^3. \end{aligned}limnU(P,f)=limn[16(1+1n)(2+1n)k3]=16(1)(2)k3=13k3.
For the lower sum:
lim n L ( P , f ) = lim n [ k 3 6 ( 1 + 1 n ) ( 2 + 1 n ) k 3 6 n ] = 1 6 ( 1 ) ( 2 ) k 3 0 = 1 3 k 3 . lim n L ( P , f ) = lim n k 3 6 1 + 1 n 2 + 1 n k 3 6 n = 1 6 ( 1 ) ( 2 ) k 3 0 = 1 3 k 3 . {:[lim_(n rarr oo)L(P”,”f)=lim_(n rarr oo)[(k^(3))/(6)(1+(1)/(n))(2+(1)/(n))-(k^(3))/(6n)]],[=(1)/(6)(1)(2)k^(3)-0],[=(1)/(3)k^(3).]:}\begin{aligned} \lim_{n \to \infty} L(P, f) &= \lim_{n \to \infty} \left[\frac{k^3}{6} \left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) – \frac{k^3}{6n}\right] \\ &= \frac{1}{6}(1)(2)k^3 – 0 \\ &= \frac{1}{3}k^3. \end{aligned}limnL(P,f)=limn[k36(1+1n)(2+1n)k36n]=16(1)(2)k30=13k3.
Step 5: Conclude Riemann Integrability
Since the upper and lower sums approach the same limit as n n nnn goes to infinity, we can conclude that f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x) = x^2f(x)=x2 is Riemann integrable on [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k].
Step 6: Calculate the Integral
Finally, we have:
0 k f ( x ) d x = Lub { L ( P , f ) } P P [ 0 , k ] = lim n [ k 3 6 ( 1 + 1 n ) ( 2 + 1 n ) k 3 6 n ] = 1 3 k 3 0 = k 3 3 . 0 k f ( x ) d x = Lub { L ( P , f ) } P P [ 0 , k ] = lim n k 3 6 1 + 1 n 2 + 1 n k 3 6 n = 1 3 k 3 0 = k 3 3 . {:[int_(0)^(k)f(x)dx=Lub{L(P”,”f)}_(P in P[0,k])],[=lim_(n rarr oo)[(k^(3))/(6)(1+(1)/(n))(2+(1)/(n))-(k^(3))/(6n)]],[=(1)/(3)k^(3)-0],[=(k^(3))/(3).]:}\begin{aligned} \int_{0}^{k} f(x) \, dx &= \operatorname{Lub}\{L(P, f)\}_{P \in P[0, k]} \\ &= \lim_{n \to \infty} \left[\frac{k^3}{6} \left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) – \frac{k^3}{6n}\right] \\ &= \frac{1}{3}k^3 – 0 \\ &= \frac{k^3}{3}. \end{aligned}0kf(x)dx=Lub{L(P,f)}PP[0,k]=limn[k36(1+1n)(2+1n)k36n]=13k30=k33.
Therefore, the integral of f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x) = x^2f(x)=x2 on [ 0 , k ] [ 0 , k ] [0,k][0, k][0,k] is indeed 0 k f ( x ) d x = k 3 3 0 k f ( x ) d x = k 3 3 int_(0)^(k)f(x)dx=(k^(3))/(3)\int_{0}^{k} f(x) \, dx = \frac{k^3}{3}0kf(x)dx=k33, as required.
Question:-02 (b) Prove that every homomorphic image of a group G G GGG is isomorphic to some quotient group of G G GGG.
Answer:
Introduction: In this problem, we are asked to prove that every homomorphic image of a group G G GGG is isomorphic to some quotient group of G G GGG.
Definition:
  1. Group homomorphism: A group homomorphism is a map ϕ : G H ϕ : G H phi:G rarr H\phi: G \rightarrow Hϕ:GH between two groups, G G GGG and H H HHH, such that for all elements a , b G , ϕ ( a b ) = ϕ ( a ) ϕ ( b ) a , b G , ϕ ( a b ) = ϕ ( a ) ϕ ( b ) a,b in G,phi(ab)=phi(a)phi(b)a, b \in G, \phi(a b)=\phi(a) \phi(b)a,bG,ϕ(ab)=ϕ(a)ϕ(b).
  2. Homomorphic image: The homomorphic image of a group G G GGG under a group homomorphism ϕ : G H ϕ : G H phi:G rarr H\phi: G \rightarrow Hϕ:GH is the set ϕ ( G ) = { ϕ ( g ) g G } ϕ ( G ) = { ϕ ( g ) g G } phi(G)={phi(g)∣g in G}\phi(G)=\{\phi(g) \mid g \in G\}ϕ(G)={ϕ(g)gG}, which is a subgroup of H H HHH.
  3. Quotient group: Let G G GGG be a group, and let N N NNN be a normal subgroup of G G GGG. The quotient group of G G GGG by N N NNN, denoted as G / N G / N G//NG / NG/N, is the set of cosets of N N NNN in G G GGG with the group operation defined as ( a N ) ( b N ) = ( a b ) N ( a N ) ( b N ) = ( a b ) N (aN)(bN)=(ab)N(a N)(b N)=(a b) N(aN)(bN)=(ab)N for all a , b G a , b G a,b in Ga, b \in Ga,bG.
    Theorem: Every homomorphic image of a group G G GGG is isomorphic to some quotient group of G G GGG.
Proof: Let ϕ : G H ϕ : G H phi:G rarr H\phi: G \rightarrow Hϕ:GH be a group homomorphism, and let N = ker ϕ N = ker ϕ N=ker phiN=\operatorname{ker} \phiN=kerϕ be the kernel of ϕ ϕ phi\phiϕ, where ker ϕ = { g G ϕ ( g ) = e H } ker ϕ = g G ϕ ( g ) = e H ker phi={g in G∣phi(g)=e_(H)}\operatorname{ker} \phi=\left\{g \in G \mid \phi(g)=e_H\right\}kerϕ={gGϕ(g)=eH} and e H e H e_(H)e_HeH is the identity element of the group H H HHH. We claim that the homomorphic image ϕ ( G ) ϕ ( G ) phi(G)\phi(G)ϕ(G) is isomorphic to the quotient group G / N G / N G//NG / NG/N.
First, note that the kernel N N NNN is a normal subgroup of G G GGG. Now, we define a map ψ : G / N ψ : G / N psi:G//N rarr\psi: G / N \rightarrowψ:G/N ϕ ( G ) ϕ ( G ) phi(G)\phi(G)ϕ(G) by ψ ( a N ) = ϕ ( a ) ψ ( a N ) = ϕ ( a ) psi(aN)=phi(a)\psi(a N)=\phi(a)ψ(aN)=ϕ(a) for all a G a G a in Ga \in GaG. We need to show that ψ ψ psi\psiψ is a well-defined isomorphism.
  1. Well-defined: If a N = b N a N = b N aN=bNa N=b NaN=bN, then b 1 a N b 1 a N b^(-1)a in Nb^{-1} a \in Nb1aN, so ϕ ( b 1 a ) = e H ϕ b 1 a = e H phi(b^(-1)a)=e_(H)\phi\left(b^{-1} a\right)=e_Hϕ(b1a)=eH, which implies ϕ ( b ) 1 ϕ ( a ) = e H ϕ ( b ) 1 ϕ ( a ) = e H phi(b)^(-1)phi(a)=e_(H)\phi(b)^{-1} \phi(a)=e_Hϕ(b)1ϕ(a)=eH, or equivalently, ϕ ( b ) = ϕ ( a ) ϕ ( b ) = ϕ ( a ) phi(b)=phi(a)\phi(b)=\phi(a)ϕ(b)=ϕ(a). Thus, ψ ( a N ) = ψ ( b N ) ψ ( a N ) = ψ ( b N ) psi(aN)=psi(bN)\psi(a N)=\psi(b N)ψ(aN)=ψ(bN), and ψ ψ psi\psiψ is well-defined.
  2. Homomorphism: Let a N , b N G / N a N , b N G / N aN,bN in G//Na N, b N \in G / NaN,bNG/N. Then,
ψ ( ( a N ) ( b N ) ) = ψ ( a b N ) = ϕ ( a b ) = ϕ ( a ) ϕ ( b ) = ψ ( a N ) ψ ( b N ) ψ ( ( a N ) ( b N ) ) = ψ ( a b N ) = ϕ ( a b ) = ϕ ( a ) ϕ ( b ) = ψ ( a N ) ψ ( b N ) psi((aN)(bN))=psi(abN)=phi(ab)=phi(a)phi(b)=psi(aN)psi(bN)\psi((a N)(b N))=\psi(a b N)=\phi(a b)=\phi(a) \phi(b)=\psi(a N) \psi(b N)ψ((aN)(bN))=ψ(abN)=ϕ(ab)=ϕ(a)ϕ(b)=ψ(aN)ψ(bN)
which shows that ψ ψ psi\psiψ is a group homomorphism.
3. Injective: Suppose ψ ( a N ) = ψ ( b N ) ψ ( a N ) = ψ ( b N ) psi(aN)=psi(bN)\psi(a N)=\psi(b N)ψ(aN)=ψ(bN), then ϕ ( a ) = ϕ ( b ) ϕ ( a ) = ϕ ( b ) phi(a)=phi(b)\phi(a)=\phi(b)ϕ(a)=ϕ(b), which implies ϕ ( b 1 a ) = e H ϕ b 1 a = e H phi(b^(-1)a)=e_(H)\phi\left(b^{-1} a\right)=e_Hϕ(b1a)=eH . Thus, b 1 a N b 1 a N b^(-1)a in Nb^{-1} a \in Nb1aN, which means a N = b N a N = b N aN=bNa N=b NaN=bN. Therefore, ψ ψ psi\psiψ is injective.
  1. Surjective : For any element h ϕ ( G ) h ϕ ( G ) h in phi(G)h \in \phi(G)hϕ(G), there exists an element a G a G a in Ga \in GaG such that ϕ ( a ) = h ϕ ( a ) = h phi(a)=h\phi(a)=hϕ(a)=h. Then, ψ ( a N ) = ϕ ( a ) = h ψ ( a N ) = ϕ ( a ) = h psi(aN)=phi(a)=h\psi(a N)=\phi(a)=hψ(aN)=ϕ(a)=h, so ψ ψ psi\psiψ is surjective.
Since ψ ψ psi\psiψ is a well-defined group homomorphism that is both injective and surjective, it is an isomorphism. Therefore, the homomorphic image ϕ ( G ) ϕ ( G ) phi(G)\phi(G)ϕ(G) is isomorphic to the quotient group G / N G / N G//NG / NG/N
Conclusion: Every homomorphic image of a group G G GGG is isomorphic to some quotient group of G G GGG.
Question:-02 (c) Apply the calculus of residues to evaluate cos x d x ( x 2 + a 2 ) ( x 2 + b 2 ) , a > b > 0 cos x d x x 2 + a 2 x 2 + b 2 , a > b > 0 int_(-oo)^(oo)(cos xdx)/((x^(2)+a^(2))(x^(2)+b^(2))),a > b > 0\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}, a>b>0cosxdx(x2+a2)(x2+b2),a>b>0.
Answer:

Complex Contour Integral

To solve this integral, we consider the complex integral:
C f ( z ) d z C f ( z ) d z int _(C)f(z)dz\int_C f(z) \, dzCf(z)dz
where f ( z ) = e i z ( z 2 + a 2 ) ( z 2 + b 2 ) f ( z ) = e i z ( z 2 + a 2 ) ( z 2 + b 2 ) f(z)=(e^(iz))/((z^(2)+a^(2))(z^(2)+b^(2)))f(z) = \frac{e^{iz}}{(z^2 + a^2)(z^2 + b^2)}f(z)=eiz(z2+a2)(z2+b2).
The contour C C CCC consists of the upper half of a large circle | z | = R | z | = R |z|=R|z| = R|z|=R and the real axis from R R -R-RR to R R RRR.

Finding the Poles

The poles of f ( z ) f ( z ) f(z)f(z)f(z) are given by:
( z 2 + a 2 ) ( z 2 + b 2 ) = 0 ( z 2 + a 2 ) ( z 2 + b 2 ) = 0 (z^(2)+a^(2))(z^(2)+b^(2))=0(z^2 + a^2)(z^2 + b^2) = 0(z2+a2)(z2+b2)=0
Simplifying, we find:
( z i a ) ( z + i a ) ( z i b ) ( z + i b ) = 0 ( z i a ) ( z + i a ) ( z i b ) ( z + i b ) = 0 (z-ia)(z+ia)(z-ib)(z+ib)=0(z – ia)(z + ia)(z – ib)(z + ib) = 0(zia)(z+ia)(zib)(z+ib)=0
The poles are z = i a , i a , i b , i b z = i a , i a , i b , i b z=ia,-ia,ib,-ibz = ia, -ia, ib, -ibz=ia,ia,ib,ib.
Only the poles z = i a z = i a z=iaz = iaz=ia and z = i b z = i b z=ibz = ibz=ib lie within the contour C C CCC, and both are simple poles.

Calculating the Residues

Residue at z = i a z = i a z=iaz = iaz=ia

The residue of f ( z ) f ( z ) f(z)f(z)f(z) at z = i a z = i a z=iaz = iaz=ia is:
Residue at z = i a = lim z i a ( ( z i a ) f ( z ) ) = lim z i a ( z i a ) e i z ( z i a ) ( z + i a ) ( z 2 + b 2 ) = e a 2 i a ( a 2 b 2 ) Residue at  z = i a = lim z i a ( z i a ) f ( z ) = lim z i a ( z i a ) e i z ( z i a ) ( z + i a ) ( z 2 + b 2 ) = e a 2 i a ( a 2 b 2 ) {:[“Residue at “z=ia=lim_(z rarr ia)((z-ia)f(z))],[=lim_(z rarr ia)((z-ia)e^(iz))/((z-ia)(z+ia)(z^(2)+b^(2)))],[=(e^(-a))/(2ia(a^(2)-b^(2)))]:}\begin{aligned} \text{Residue at } z = ia &= \lim_{z \to ia} \left( (z – ia) f(z) \right) \\ &= \lim_{z \to ia} \frac{(z – ia) e^{iz}}{(z – ia)(z + ia)(z^2 + b^2)} \\ &= \frac{e^{-a}}{2ia(a^2 – b^2)} \end{aligned}Residue at z=ia=limzia((zia)f(z))=limzia(zia)eiz(zia)(z+ia)(z2+b2)=ea2ia(a2b2)

Residue at z = i b z = i b z=ibz = ibz=ib

Similarly, the residue of f ( z ) f ( z ) f(z)f(z)f(z) at z = i b z = i b z=ibz = ibz=ib is:
Residue at z = i b = e b 2 i b ( a 2 b 2 ) Residue at  z = i b = e b 2 i b ( a 2 b 2 ) “Residue at “z=ib=(e^(-b))/(2ib(a^(2)-b^(2)))\text{Residue at } z = ib = \frac{e^{-b}}{2ib(a^2 – b^2)}Residue at z=ib=eb2ib(a2b2)

Sum of Residues

The sum of these residues is:
Sum of Residues = 1 2 i ( a 2 b 2 ) ( e a a e b b ) Sum of Residues = 1 2 i ( a 2 b 2 ) e a a e b b “Sum of Residues”=(1)/(2i(a^(2)-b^(2)))((e^(-a))/(a)-(e^(-b))/(b))\text{Sum of Residues} = \frac{1}{2i(a^2 – b^2)} \left( \frac{e^{-a}}{a} – \frac{e^{-b}}{b} \right)Sum of Residues=12i(a2b2)(eaaebb)

Applying Cauchy’s Residue Theorem

By Cauchy’s Residue Theorem, we have:
C f ( z ) d z = 2 π i × Sum of Residues C f ( z ) d z = 2 π i × Sum of Residues int _(C)f(z)dz=2pi i xx”Sum of Residues”\int_C f(z) \, dz = 2\pi i \times \text{Sum of Residues}Cf(z)dz=2πi×Sum of Residues
Simplifying, we get:
R R e i x ( x 2 + a 2 ) ( x 2 + b 2 ) d x + C R e i z ( z 2 + a 2 ) ( z 2 + b 2 ) d z = π a 2 b 2 ( e b b e a a ) R R e i x ( x 2 + a 2 ) ( x 2 + b 2 ) d x + C R e i z ( z 2 + a 2 ) ( z 2 + b 2 ) d z = π a 2 b 2 e b b e a a int_(-R)^(R)(e^(ix))/((x^(2)+a^(2))(x^(2)+b^(2)))dx+int_(C_(R))(e^(iz))/((z^(2)+a^(2))(z^(2)+b^(2)))dz=(pi)/(a^(2)-b^(2))((e^(-b))/(b)-(e^(-a))/(a))\int_{-R}^{R} \frac{e^{ix}}{(x^2 + a^2)(x^2 + b^2)} \, dx + \int_{C_R} \frac{e^{iz}}{(z^2 + a^2)(z^2 + b^2)} \, dz = \frac{\pi}{a^2 – b^2} \left( \frac{e^{-b}}{b} – \frac{e^{-a}}{a} \right)RReix(x2+a2)(x2+b2)dx+CReiz(z2+a2)(z2+b2)dz=πa2b2(ebbeaa)

Evaluating the Integral on the Circular Arc

The integral over the circular arc C R C R C_(R)C_RCR goes to zero as R R R rarr ooR \to \inftyR.

Final Answer

Taking the limit as R R R rarr ooR \to \inftyR and equating the real parts, we find:
cos x d x ( x 2 + a 2 ) ( x 2 + b 2 ) = π a 2 b 2 ( e b b e a a ) cos x d x ( x 2 + a 2 ) ( x 2 + b 2 ) = π a 2 b 2 e b b e a a int_(-oo)^(oo)(cos xdx)/((x^(2)+a^(2))(x^(2)+b^(2)))=(pi)/(a^(2)-b^(2))((e^(-b))/(b)-(e^(-a))/(a))\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a^2 – b^2} \left( \frac{e^{-b}}{b} – \frac{e^{-a}}{a} \right)cosxdx(x2+a2)(x2+b2)=πa2b2(ebbeaa)
And that is the final answer for the integral.
Question:-03 (a) Evaluate C z + 4 z 2 + 2 z + 5 d z C z + 4 z 2 + 2 z + 5 d z int_(C)(z+4)/(z^(2)+2z+5)dz\int_{C} \frac{z+4}{z^{2}+2 z+5} d zCz+4z2+2z+5dz, where C C CCC is | z + 1 i | = 2 | z + 1 i | = 2 |z+1-i|=2|z+1-i|=2|z+1i|=2
Answer:
Introduction: In this problem, we are asked to evaluate a contour integral over the circle C C CCC, where C C CCC is defined by | z + 1 i | = 2 | z + 1 i | = 2 |z+1-i|=2|z+1-i|=2|z+1i|=2. We will use the residue theorem to evaluate this integral.
Method/Approach: We will first find the singularities of the integrand and check if they are inside the contour C C CCC. If so, we will compute the residues at those singularities, and then apply the residue theorem to evaluate the integral.
Work/Calculations:
  1. Identify the singularities:
    The integrand is a rational function given by f ( z ) = z + 4 z 2 + 2 z + 5 f ( z ) = z + 4 z 2 + 2 z + 5 f(z)=(z+4)/(z^(2)+2z+5)f(z)=\frac{z+4}{z^2+2 z+5}f(z)=z+4z2+2z+5. The singularities occur where the denominator vanishes, so we need to solve the quadratic equation z 2 + 2 z + 5 = 0 z 2 + 2 z + 5 = 0 z^(2)+2z+5=0z^2+2 z+5=0z2+2z+5=0. To find the roots, we can use the quadratic formula:
z = b ± b 2 4 a c 2 a = 2 ± ( 2 ) 2 4 ( 1 ) ( 5 ) 2 ( 1 ) = 1 ± 2 i z = b ± b 2 4 a c 2 a = 2 ± ( 2 ) 2 4 ( 1 ) ( 5 ) 2 ( 1 ) = 1 ± 2 i z=(-b+-sqrt(b^(2)-4ac))/(2a)=(-2+-sqrt((-2)^(2)-4(1)(5)))/(2(1))=-1+-2iz=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}=\frac{-2 \pm \sqrt{(-2)^2-4(1)(5)}}{2(1)}=-1 \pm 2 iz=b±b24ac2a=2±(2)24(1)(5)2(1)=1±2i
So, the singularities are at z = 1 ± 2 i z = 1 ± 2 i z=-1+-2iz=-1 \pm 2 iz=1±2i.
2. Check if the singularities are inside the contour:
The contour C C CCC is a circle centered at ( 1 + i ) ( 1 + i ) (-1+i)(-1+i)(1+i) with radius 2 . To check if the singularities are inside the contour, we can calculate the distance between the center of the circle and each singularity:
| ( 1 + 2 i ) ( 1 + i ) | = | i | = 1 < 2 | ( 1 2 i ) ( 1 + i ) | = | 3 i | = 3 > 2 | ( 1 + 2 i ) ( 1 + i ) | = | i | = 1 < 2 | ( 1 2 i ) ( 1 + i ) | = | 3 i | = 3 > 2 {:[|(-1+2i)-(-1+i)|=|i|=1 < 2],[|(-1-2i)-(-1+i)|=|-3i|=3 > 2]:}\begin{aligned} & |(-1+2 i)-(-1+i)|=|i|=1<2 \\ & |(-1-2 i)-(-1+i)|=|-3 i|=3>2 \end{aligned}|(1+2i)(1+i)|=|i|=1<2|(12i)(1+i)|=|3i|=3>2
Thus, the singularity z = 1 + 2 i z = 1 + 2 i z=-1+2iz=-1+2 iz=1+2i is inside the contour C C CCC, while the singularity z = 1 z = 1 z=-1-z=-1-z=1 2 i 2 i 2i2 i2i is outside.
3. Compute the residue at the singularity inside the contour:
To compute the residue at the pole z = 1 + 2 i z = 1 + 2 i z=-1+2iz=-1+2 iz=1+2i, we will use the formula for simple poles:
Res ( f ( z ) , z 0 ) = lim z z 0 ( z z 0 ) f ( z ) Res ( f ( z ) , 1 + 2 i ) = lim z 1 + 2 i ( z ( 1 + 2 i ) ) z + 4 z 2 + 2 z + 5 = ( 1 + 2 i ) + 4 2 ( 2 i ) = 3 + 2 i 4 i Res f ( z ) , z 0 = lim z z 0 z z 0 f ( z ) Res ( f ( z ) , 1 + 2 i ) = lim z 1 + 2 i ( z ( 1 + 2 i ) ) z + 4 z 2 + 2 z + 5 = ( 1 + 2 i ) + 4 2 ( 2 i ) = 3 + 2 i 4 i {:[Res(f(z),z_(0))=lim_(z rarrz_(0))(z-z_(0))f(z)],[Res(f(z)”,”-1+2i)=lim_(z rarr-1+2i)(z-(-1+2i))(z+4)/(z^(2)+2z+5)=((-1+2i)+4)/(2(2i))=(3+2i)/(4i)]:}\begin{aligned} & \operatorname{Res}\left(f(z), z_0\right)=\lim _{z \rightarrow z_0}\left(z-z_0\right) f(z) \\ & \operatorname{Res}(f(z),-1+2 i)=\lim _{z \rightarrow-1+2 i}(z-(-1+2 i)) \frac{z+4}{z^2+2 z+5}=\frac{(-1+2 i)+4}{2(2 i)}=\frac{3+2 i}{4 i} \end{aligned}Res(f(z),z0)=limzz0(zz0)f(z)Res(f(z),1+2i)=limz1+2i(z(1+2i))z+4z2+2z+5=(1+2i)+42(2i)=3+2i4i
  1. Apply the residue theorem:
According to the residue theorem, the integral of f ( z ) f ( z ) f(z)f(z)f(z) along the contour C C CCC is equal to 2 π i 2 π i 2pi i2 \pi i2πi times the sum of the residues of f ( z ) f ( z ) f(z)f(z)f(z) enclosed by C C CCC :
C z + 4 z 2 + 2 z + 5 d z = 2 π i Res ( f ( z ) , 1 + 2 i ) = 2 π i ( 3 + 2 i 4 i ) = π 2 ( 2 i + 3 ) C z + 4 z 2 + 2 z + 5 d z = 2 π i Res ( f ( z ) , 1 + 2 i ) = 2 π i 3 + 2 i 4 i = π 2 ( 2 i + 3 ) int _(C)(z+4)/(z^(2)+2z+5)dz=2pi i Res(f(z),-1+2i)=2pi i((3+2i)/(4i))=(pi)/(2)(2i+3)\int_C \frac{z+4}{z^2+2 z+5} d z=2 \pi i \operatorname{Res}(f(z),-1+2 i)=2 \pi i\left(\frac{3+2 i}{4 i}\right)=\frac{\pi}{2}(2 i+3)Cz+4z2+2z+5dz=2πiRes(f(z),1+2i)=2πi(3+2i4i)=π2(2i+3)
Conclusion: The value of the given contour integral is π 2 ( 2 i + 3 ) π 2 ( 2 i + 3 ) (pi)/(2)(2i+3)\frac{\pi}{2}(2 i+3)π2(2i+3).
Question:-03 (b) Find the maximum and minimum values of x 2 a 4 + y 2 b 4 + z 2 c 4 x 2 a 4 + y 2 b 4 + z 2 c 4 (x^(2))/(a^(4))+(y^(2))/(b^(4))+(z^(2))/(c^(4))\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}x2a4+y2b4+z2c4, when l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0 and x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1x2a2+y2b2+z2c2=1. Interpret the result geometrically.
Answer:
Step 1: Define the Objective Function
Let
u = x 2 a 4 + y 2 b 4 + z 2 c 4 u = x 2 a 4 + y 2 b 4 + z 2 c 4 u=(x^(2))/(a^(4))+(y^(2))/(b^(4))+(z^(2))/(c^(4))u=\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}u=x2a4+y2b4+z2c4
Step 2: Find Necessary Conditions for Extrema
To find the maximum or minimum of u u uuu, we need to find the critical points. This requires taking the derivative of u u uuu and setting it equal to zero:
2 x a 4 d x + 2 y b 4 d y + 2 z c 4 d z = 0 x a 4 d x + y b 4 d y + z c 4 d z = 0 (i) 2 x a 4 d x + 2 y b 4 d y + 2 z c 4 d z = 0 x a 4 d x + y b 4 d y + z c 4 d z = 0 (i) {:[(2x)/(a^(4))dx+(2y)/(b^(4))dy+(2z)/(c^(4))dz=0],[(x)/(a^(4))dx+(y)/(b^(4))dy+(z)/(c^(4))dz=0quad(i)]:}\begin{aligned} & \frac{2 x}{a^4} d x+\frac{2 y}{b^4} d y+\frac{2 z}{c^4} d z=0 \\ & \frac{x}{a^4} d x+\frac{y}{b^4} d y+\frac{z}{c^4} d z=0 \quad \text{(i)}\end{aligned}2xa4dx+2yb4dy+2zc4dz=0xa4dx+yb4dy+zc4dz=0(i)
Step 3: Apply Lagrange Multipliers
We also have the constraint equations:
l d x + m d y + n d z = 0 (ii) l d x + m d y + n d z = 0 (ii) ldx+mdy+ndz=0quad(ii)l d x+m d y+n d z=0 \quad \text{(ii)}ldx+mdy+ndz=0(ii)
and
x a 2 d x + y b 2 d y + z c 2 d z = 0 (iii) x a 2 d x + y b 2 d y + z c 2 d z = 0 (iii) (x)/(a^(2))dx+(y)/(b^(2))dy+(z)/(c^(2))dz=0quad(iii)\frac{x}{a^2} d x+\frac{y}{b^2} d y+\frac{z}{c^2} d z=0 \quad \text{(iii)}xa2dx+yb2dy+zc2dz=0(iii)
Now, we introduce Lagrange multipliers λ 1 λ 1 lambda_(1)\lambda_1λ1 and λ 2 λ 2 lambda_(2)\lambda_2λ2 and multiply equations (i), (ii), and (iii) by 2 , λ 1 2 , λ 1 2,lambda_(1)2, \lambda_12,λ1, and λ 2 λ 2 lambda_(2)\lambda_2λ2 respectively and add them. Then, equating the coefficients of d x , d y d x , d y dx,dyd x, d ydx,dy, and d z d z dzd zdz, we get:
2 x a 4 + λ 1 l + λ 2 2 x a 2 = 0 2 y b 4 + λ 1 m + λ 2 2 y b 2 = 0 2 z c 4 + λ 1 n + λ 2 2 z c 2 = 0 2 x a 4 + λ 1 l + λ 2 2 x a 2 = 0 2 y b 4 + λ 1 m + λ 2 2 y b 2 = 0 2 z c 4 + λ 1 n + λ 2 2 z c 2 = 0 {:[(2x)/(a^(4))+lambda_(1)l+lambda_(2)(2x)/(a^(2))=0],[(2y)/(b^(4))+lambda_(1)m+lambda_(2)(2y)/(b^(2))=0],[(2z)/(c^(4))+lambda_(1)n+lambda_(2)(2z)/(c^(2))=0]:}\begin{aligned} & \frac{2x}{a^4}+\lambda_1 l+\lambda_2 \frac{2x}{a^2}=0 \\ & \frac{2y}{b^4}+\lambda_1 m+\lambda_2 \frac{2y}{b^2}=0 \\ & \frac{2z}{c^4}+\lambda_1 n+\lambda_2 \frac{2z}{c^2}=0 \end{aligned}2xa4+λ1l+λ22xa2=02yb4+λ1m+λ22yb2=02zc4+λ1n+λ22zc2=0
Step 4: Express u u uuu in Terms of Lagrange Multipliers
We can now express u u uuu in terms of the Lagrange multipliers λ 1 λ 1 lambda_(1)\lambda_1λ1 and λ 2 λ 2 lambda_(2)\lambda_2λ2:
( x 2 a 4 + y 2 b 4 + z 2 c 4 ) + λ 1 ( l x + m y + n z ) + λ 2 ( x 2 a 2 + y 2 b 2 + z 2 c 2 ) = 0 u + λ 1 0 + λ 2 1 = 0 λ 2 = u x 2 a 4 + y 2 b 4 + z 2 c 4 + λ 1 ( l x + m y + n z ) + λ 2 x 2 a 2 + y 2 b 2 + z 2 c 2 = 0 u + λ 1 0 + λ 2 1 = 0 λ 2 = u {:[((x^(2))/(a^(4))+(y^(2))/(b^(4))+(z^(2))/(c^(4)))+lambda_(1)(lx+my+nz)+lambda_(2)((x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2)))=0],[u+lambda_(1)*0+lambda_(2)*1=0],[:.lambda_(2)=-u]:}\begin{aligned} & \left(\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}\right)+\lambda_1(lx+my+nz)+\lambda_2\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right) =0 \\ & u+\lambda_1 \cdot 0+\lambda_2 \cdot 1 =0 \\ & \therefore \lambda_2=-u \end{aligned}(x2a4+y2b4+z2c4)+λ1(lx+my+nz)+λ2(x2a2+y2b2+z2c2)=0u+λ10+λ21=0λ2=u
Step 5: Substitute λ 2 λ 2 lambda_(2)\lambda_2λ2 Back
Putting this value of λ 2 λ 2 lambda_(2)\lambda_2λ2 in equation (iv), we get:
2 x a 4 + λ 1 l 2 u x a 2 = 0 2 x a 4 ( 1 + u a 2 ) = λ 1 l or x = λ 1 l a 4 u a 2 1 2 x a 4 + λ 1 l 2 u x a 2 = 0 2 x a 4 1 + u a 2 = λ 1 l  or  x = λ 1 l a 4 u a 2 1 {:[(2x)/(a^(4))+lambda_(1)l-(2ux)/(a^(2))=0],[(2x)/(a^(4))(-1+ua^(2))=lambda_(1)l quad” or “quad x=(lambda_(1)la^(4))/(ua^(2)-1)]:}\begin{aligned} & \frac{2x}{a^4}+\lambda_1 l-\frac{2ux}{a^2}=0 \\ & \frac{2x}{a^4}\left(-1+ua^2\right)=\lambda_1 l \quad \text { or } \quad x=\frac{\lambda_1 la^4}{ua^2-1} \end{aligned}2xa4+λ1l2uxa2=02xa4(1+ua2)=λ1l or x=λ1la4ua21
Similarly,
y = λ 1 m b 4 u b 2 1 and z = λ 1 n c 4 u c 2 1 y = λ 1 m b 4 u b 2 1  and  z = λ 1 n c 4 u c 2 1 y=(lambda_(1)mb^(4))/(ub^(2)-1)” and “z=(lambda_(1)nc^(4))/(uc^(2)-1)y=\frac{\lambda_1 mb^4}{ub^2-1} \text { and } z=\frac{\lambda_1 nc^4}{uc^2-1}y=λ1mb4ub21 and z=λ1nc4uc21
Step 6: Express Constraint Equations
Substituting these values of x , y , z x , y , z x,y,zx, y, zx,y,z into the constraint equation l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0lx+my+nz=0lx+my+nz=0, we get:
l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0lx+my+nz=0lx+my+nz=0
or
l λ 1 l a 4 u a 2 1 + m λ 1 m b 4 u b 2 1 + n λ 1 n c 4 u c 2 1 = 0 l λ 1 l a 4 u a 2 1 + m λ 1 m b 4 u b 2 1 + n λ 1 n c 4 u c 2 1 = 0 {:l*(lambda_(1)la^(4))/(ua^(2)-1)+m*(lambda_(1)mb^(4))/(ub^(2)-1)+n*(lambda_(1)nc^(4))/(uc^(2)-1)=0:}\begin{aligned} & l \cdot \frac{\lambda_1 la^4}{ua^2-1}+m \cdot \frac{\lambda_1 mb^4}{ub^2-1}+n \cdot \frac{\lambda_1 nc^4}{uc^2-1}=0 \end{aligned}lλ1la4ua21+mλ1mb4ub21+nλ1nc4uc21=0
Step 7: Calculate Maximum and Minimum of u u uuu
Now, we have an equation involving only λ 1 λ 1 lambda_(1)\lambda_1λ1 and u u uuu:
l 2 a 4 u a 2 1 + m 2 b 4 u b 2 1 + n 2 c 4 u c 2 1 = 0 l 2 a 4 u a 2 1 + m 2 b 4 u b 2 1 + n 2 c 4 u c 2 1 = 0 (l^(2)a^(4))/(ua^(2)-1)+(m^(2)b^(4))/(ub^(2)-1)+(n^(2)c^(4))/(uc^(2)-1)=0\frac{l^2a^4}{ua^2-1}+\frac{m^2b^4}{ub^2-1}+\frac{n^2c^4}{uc^2-1}=0l2a4ua21+m2b4ub21+n2c4uc21=0
By solving for λ 1 λ 1 lambda_(1)\lambda_1λ1 and u u uuu, we can find the required maximum and minimum values of u u uuu.
Geometrical Interpretation:
The equation x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1x2a2+y2b2+z2c2=1 represents an ellipsoid. The equation of the tangent plane at any point ( x , y , z ) ( x , y , z ) (x,y,z)(x, y, z)(x,y,z) on it is given by:
X x a 2 + Y y b 2 + Z z c 2 = 1 X x a 2 + Y y b 2 + Z z c 2 = 1 (Xx)/(a^(2))+(Yy)/(b^(2))+(Zz)/(c^(2))=1\frac{Xx}{a^2}+\frac{Yy}{b^2}+\frac{Zz}{c^2}=1Xxa2+Yyb2+Zzc2=1
Let p p ppp be the length of the perpendicular from the origin O ( 0 , 0 , 0 ) O ( 0 , 0 , 0 ) O(0,0,0)O(0,0,0)O(0,0,0) to this plane. Then,
p 2 = 1 x 2 a 4 + y 2 b 4 + z 2 c 4 or 1 p 2 = x 2 a 4 + y 2 b 4 + z 2 c 4 p 2 = 1 x 2 a 4 + y 2 b 4 + z 2 c 4  or  1 p 2 = x 2 a 4 + y 2 b 4 + z 2 c 4 p^(2)=(1)/((x^(2))/(a^(4))+(y^(2))/(b^(4))+(z^(2))/(c^(4)))” or “(1)/(p^(2))=(x^(2))/(a^(4))+(y^(2))/(b^(4))+(z^(2))/(c^(4))p^2=\frac{1}{\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}} \text { or } \frac{1}{p^2}=\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}p2=1x2a4+y2b4+z2c4 or 1p2=x2a4+y2b4+z2c4
If the point ( x , y , z ) ( x , y , z ) (x,y,z)(x, y, z)(x,y,z) also lies on l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0lx+my+nz=0lx+my+nz=0, then it satisfies both the given conditions:
l x + m y + n z = 0 and x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 l x + m y + n z = 0  and  x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 lx+my+nz=0″ and “(x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1lx+my+nz=0 \text { and } \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1lx+my+nz=0 and x2a2+y2b2+z2c2=1
Thus, in the present problem, we have discussed the maximum and minimum values of the perpendicular distance from the origin to the tangent planes of the ellipsoid x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1x2a2+y2b2+z2c2=1 at the points which also lie on the plane l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0lx+my+nz=0lx+my+nz=0.
Question:-03 (c) Solve the following linear programming problem by the simplex method. Write its dual. Also, write the optimal solution of the dual from the optimal table of the given problem :
Maximize Z = x 1 + x 2 + x 3 subject to 2 x 1 + x 2 + x 3 2 4 x 1 + 2 x 2 + x 3 2 x 1 , x 2 , x 3 0  Maximize  Z = x 1 + x 2 + x 3  subject to  2 x 1 + x 2 + x 3 2 4 x 1 + 2 x 2 + x 3 2 x 1 , x 2 , x 3 0 {:[” Maximize “Z=x_(1)+x_(2)+x_(3)],[” subject to “],[2x_(1)+x_(2)+x_(3) <= 2],[4x_(1)+2x_(2)+x_(3) <= 2],[x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{array}{r} \text { Maximize } Z=x_{1}+x_{2}+x_{3} \\ \text { subject to } \\ 2 x_{1}+x_{2}+x_{3} \leq 2 \\ 4 x_{1}+2 x_{2}+x_{3} \leq 2 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{array} Maximize Z=x1+x2+x3 subject to 2x1+x2+x324x1+2x2+x32x1,x2,x30
Answer:
Max Z = x 1 + x 2 + x 3 subject to 2 x 1 + x 2 + x 3 2 4 x 1 + 2 x 2 + x 3 2 and x 1 , x 2 , x 3 0 Max Z = x 1 + x 2 + x 3  subject to  2 x 1 + x 2 + x 3 2 4 x 1 + 2 x 2 + x 3 2  and  x 1 , x 2 , x 3 0 {:[Max Z=x_(1)+x_(2)+x_(3)],[” subject to “],[2x_(1)+x_(2)+x_(3) <= 2],[4x_(1)+2x_(2)+x_(3) <= 2],[” and “x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{aligned} & \operatorname{Max} Z=x_1+x_2+x_3 \\ & \text { subject to } \\ & 2 x_1+x_2+x_3 \leq 2 \\ & 4 x_1+2 x_2+x_3 \leq 2 \\ & \text { and } x_1, x_2, x_3 \geq 0 \end{aligned}MaxZ=x1+x2+x3 subject to 2x1+x2+x324x1+2x2+x32 and x1,x2,x30
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
  1. As the constraint-1 is of type ‘ <=\leq ‘ we should add slack variable S 1 S 1 S_(1)S_1S1
  2. As the constraint-2 is of type ‘ <=\leq ‘ we should add slack variable S 2 S 2 S_(2)S_2S2
    After introducing slack variables
Max Z = x 1 + x 2 + x 3 + 0 S 1 + 0 S 2 subject to 2 x 1 + x 2 + x 3 + S 1 = 2 4 x 1 + 2 x 2 + x 3 + S 2 = 2 and x 1 , x 2 , x 3 , S 1 , S 2 0 Max Z = x 1 + x 2 + x 3 + 0 S 1 + 0 S 2  subject to  2 x 1 + x 2 + x 3 + S 1 = 2 4 x 1 + 2 x 2 + x 3 + S 2 = 2  and  x 1 , x 2 , x 3 , S 1 , S 2 0 {:[Max Z=x_(1)+x_(2)+x_(3)+0S_(1)+0S_(2)],[” subject to “],[2x_(1)+x_(2)+x_(3)+S_(1)=2],[4x_(1)+2x_(2)+x_(3)+S_(2)=2],[” and “x_(1)”,”x_(2)”,”x_(3)”,”S_(1)”,”S_(2) >= 0]:}\begin{aligned} & \operatorname{Max} Z=x_1+x_2+x_3+0 S_1+0 S_2 \\ & \text { subject to } \\ & 2 x_1+x_2+x_3+S_1=2 \\ & 4 x_1+2 x_2+x_3+S_2=2 \\ & \text { and } x_1, x_2, x_3, S_1, S_2 \geq 0 \end{aligned}MaxZ=x1+x2+x3+0S1+0S2 subject to 2x1+x2+x3+S1=24x1+2x2+x3+S2=2 and x1,x2,x3,S1,S20
Iteration-1 C j C j C_(j)C_jCj 1 1 1 0 0
B C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 s 1 s 1 s_(1)s_1s1 s 2 s 2 s_(2)s_2s2 MinRatio X B x 1  MinRatio  X B x 1 {:[” MinRatio “],[(X_(B))/(x_(1))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array} MinRatio XBx1
S 1 S 1 S_(1)S_1S1 0 2 2 1 1 1 0 2 2 = 1 2 2 = 1 (2)/(2)=1\frac{2}{2}=122=1
S 2 S 2 S_(2)S_2S2 0 2 (4) 2 1 0 1 2 4 = 0.5 2 4 = 0.5 (2)/(4)=0.5 rarr\frac{2}{4}=0.5 \rightarrow24=0.5
Z = 0 Z = 0 Z=0Z=0Z=0 Z j Z j Z_(j)Z_jZj 0 0 0 0 0 0\mathbf{0}0 0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 1 1 1uarr1 \uparrow1 1 1 0 0
Iteration-1 C_(j) 1 1 1 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) s_(1) s_(2) ” MinRatio (X_(B))/(x_(1))” S_(1) 0 2 2 1 1 1 0 (2)/(2)=1 S_(2) 0 2 (4) 2 1 0 1 (2)/(4)=0.5 rarr Z=0 Z_(j) 0 0 0 0 0 C_(j)-Z_(j) 1uarr 1 1 0 0 | Iteration-1 | | $C_j$ | 1 | 1 | 1 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | B | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $s_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array}$ | | $S_1$ | 0 | 2 | 2 | 1 | 1 | 1 | 0 | $\frac{2}{2}=1$ | | $S_2$ | 0 | 2 | (4) | 2 | 1 | 0 | 1 | $\frac{2}{4}=0.5 \rightarrow$ | | $Z=0$ | | $Z_j$ | 0 | 0 | 0 | $\mathbf{0}$ | 0 | | | | | $C_j-Z_j$ | $1 \uparrow$ | 1 | 1 | 0 | 0 | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 1 and its column index is 1 . So, the entering variable is x 1 x 1 x_(1)x_1x1.
Minimum ratio is 0.5 and its row index is 2 . So, the leaving basis variable is S 2 S 2 S_(2)S_2S2.
:.\therefore The pivot element is 4 .
Entering = x 1 = x 1 =x_(1)=x_1=x1, Departing = S 2 = S 2 =S_(2)=S_2=S2, Key Element = 4 = 4 =4=4=4
R 2 ( new ) = R 2 ( old ) ÷ 4 R 1 ( new ) = R 1 ( old ) 2 R 2 ( new ) R 2 (  new  ) = R 2 (  old  ) ÷ 4 R 1 (  new  ) = R 1 (  old  ) 2 R 2 (  new  ) {:[R_(2)(” new “)=R_(2)(” old “)-:4],[R_(1)(” new “)=R_(1)(” old “)-2R_(2)(” new “)]:}\begin{aligned} & R_2(\text { new })=R_2(\text { old }) \div 4 \\ & R_1(\text { new })=R_1(\text { old })-2 R_2(\text { new }) \end{aligned}R2( new )=R2( old )÷4R1( new )=R1( old )2R2( new )
Iteration-2 C j C j C_(j)C_jCj 1 1 1 0 0
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 MinRatio X B x 3  MinRatio  X B x 3 {:[” MinRatio “],[(X_(B))/(x_(3))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array} MinRatio XBx3
S 1 S 1 S_(1)S_1S1 0 1 0 0 ( 1 2 ) 1 2 ((1)/(2))\left(\frac{1}{2}\right)(12) 1 1 2 1 2 -(1)/(2)-\frac{1}{2}12 1 1 2 = 2 1 1 2 = 2 (1)/((1)/(2))=2rarr\frac{1}{\frac{1}{2}}=2 \rightarrow112=2
x 1 x 1 x_(1)x_1x1 1 1 2 1 2 (1)/(2)\frac{1}{2}12 1 1 2 1 2 (1)/(2)\frac{1}{2}12 1 4 1 4 (1)/(4)\frac{1}{4}14 0 1 4 1 4 (1)/(4)\frac{1}{4}14 1 2 1 4 = 2 1 2 1 4 = 2 ((1)/(2))/((1)/(4))=2\frac{\frac{1}{2}}{\frac{1}{4}}=21214=2
Z = 1 2 Z = 1 2 Z=(1)/(2)Z=\frac{1}{2}Z=12 Z j Z j Z_(j)Z_jZj 1 1 2 1 2 (1)/(2)\frac{1}{2}12 1 4 1 4 (1)/(4)\frac{1}{4}14 0 1 4 1 4 (1)/(4)\frac{1}{4}14
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 1 2 1 2 (1)/(2)\frac{1}{2}12 3 4 3 4 (3)/(4)uarr\frac{3}{4} \uparrow34 0 1 4 1 4 -(1)/(4)-\frac{1}{4}14
Iteration-2 C_(j) 1 1 1 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) ” MinRatio (X_(B))/(x_(3))” S_(1) 0 1 0 0 ((1)/(2)) 1 -(1)/(2) (1)/((1)/(2))=2rarr x_(1) 1 (1)/(2) 1 (1)/(2) (1)/(4) 0 (1)/(4) ((1)/(2))/((1)/(4))=2 Z=(1)/(2) Z_(j) 1 (1)/(2) (1)/(4) 0 (1)/(4) C_(j)-Z_(j) 0 (1)/(2) (3)/(4)uarr 0 -(1)/(4) | Iteration-2 | | $C_j$ | 1 | 1 | 1 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $S_1$ | $S_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array}$ | | $S_1$ | 0 | 1 | 0 | 0 | $\left(\frac{1}{2}\right)$ | 1 | $-\frac{1}{2}$ | $\frac{1}{\frac{1}{2}}=2 \rightarrow$ | | $x_1$ | 1 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | 0 | $\frac{1}{4}$ | $\frac{\frac{1}{2}}{\frac{1}{4}}=2$ | | $Z=\frac{1}{2}$ | | $Z_j$ | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | 0 | $\frac{1}{4}$ | | | | | $C_j-Z_j$ | 0 | $\frac{1}{2}$ | $\frac{3}{4} \uparrow$ | 0 | $-\frac{1}{4}$ | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 3 4 3 4 (3)/(4)\frac{3}{4}34 and its column index is 3 . So, the entering variable is x 3 x 3 x_(3)x_3x3.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is S 1 S 1 S_(1)S_1S1.
:.\therefore The pivot element is 1 2 1 2 (1)/(2)\frac{1}{2}12.
Entering = x 3 = x 3 =x_(3)=x_3=x3, Departing = S 1 = S 1 =S_(1)=S_1=S1, Key Element = 1 2 = 1 2 =(1)/(2)=\frac{1}{2}=12
R 1 ( new ) = R 1 ( old ) × 2 R 2 ( new ) = R 2 (old) 1 4 R 1 ( new ) R 1 (  new  ) = R 1 (  old  ) × 2 R 2 (  new  ) = R 2  (old)  1 4 R 1 (  new  ) {:[R_(1)(” new “)=R_(1)(” old “)xx2],[R_(2)(” new “)=R_(2)” (old) “-(1)/(4)R_(1)(” new “)]:}\begin{aligned} & R_1(\text { new })=R_1(\text { old }) \times 2 \\ & R_2(\text { new })=R_2 \text { (old) }-\frac{1}{4} R_1(\text { new }) \end{aligned}R1( new )=R1( old )×2R2( new )=R2 (old) 14R1( new )
Iteration-3 C j C j C_(j)C_jCj 1 1 1 0 0
B B B\boldsymbol{B}B C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 MinRatio X B x 2  MinRatio  X B x 2 {:[” MinRatio “],[(X_(B))/(x_(2))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array} MinRatio XBx2
x 3 x 3 x_(3)x_3x3 1 2 0 0 1 2 -1
x 1 x 1 x_(1)x_1x1 1 0 1 ( 1 2 ) 1 2 ((1)/(2))\left(\frac{1}{2}\right)(12) 0 1 2 1 2 -(1)/(2)-\frac{1}{2}12 1 2 1 2 (1)/(2)\frac{1}{2}12 0 1 2 = 0 0 1 2 = 0 (0)/((1)/(2))=0rarr\frac{0}{\frac{1}{2}}=0 \rightarrow012=0
Z = 2 Z = 2 Z=2Z=2Z=2 Z j Z j Z_(j)Z_jZj 1 1 2 1 2 (1)/(2)\frac{1}{2}12 1 3 2 3 2 (3)/(2)\frac{3}{2}32 1 2 1 2 -(1)/(2)-\frac{1}{2}12
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 1 2 1 2 (1)/(2)uarr\frac{1}{2} \uparrow12 0 3 2 3 2 -(3)/(2)-\frac{3}{2}32 1 2 1 2 (1)/(2)\frac{1}{2}12
Iteration-3 C_(j) 1 1 1 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) ” MinRatio (X_(B))/(x_(2))” x_(3) 1 2 0 0 1 2 -1 — x_(1) 1 0 1 ((1)/(2)) 0 -(1)/(2) (1)/(2) (0)/((1)/(2))=0rarr Z=2 Z_(j) 1 (1)/(2) 1 (3)/(2) -(1)/(2) C_(j)-Z_(j) 0 (1)/(2)uarr 0 -(3)/(2) (1)/(2) | Iteration-3 | | $C_j$ | 1 | 1 | 1 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $S_1$ | $S_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array}$ | | $x_3$ | 1 | 2 | 0 | 0 | 1 | 2 | -1 | — | | $x_1$ | 1 | 0 | 1 | $\left(\frac{1}{2}\right)$ | 0 | $-\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{0}{\frac{1}{2}}=0 \rightarrow$ | | $Z=2$ | | $Z_j$ | 1 | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | $-\frac{1}{2}$ | | | | | $C_j-Z_j$ | 0 | $\frac{1}{2} \uparrow$ | 0 | $-\frac{3}{2}$ | $\frac{1}{2}$ | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 1 2 1 2 (1)/(2)\frac{1}{2}12 and its column index is 2 . So, the entering variable is x 2 x 2 x_(2)x_2x2.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is x 1 x 1 x_(1)x_1x1.
:.\therefore The pivot element is 1 2 1 2 (1)/(2)\frac{1}{2}12.
Entering = x 2 = x 2 =x_(2)=x_2=x2, Departing = x 1 = x 1 =x_(1)=x_1=x1, Key Element = 1 2 = 1 2 =(1)/(2)=\frac{1}{2}=12
R 2 ( new ) = R 2 ( old ) × 2 R 1 ( new ) = R 1 ( old ) R 2 (  new  ) = R 2 (  old  ) × 2 R 1 (  new  ) = R 1 (  old  ) {:[R_(2)(” new “)=R_(2)(” old “)xx2],[R_(1)(” new “)=R_(1)(” old “)]:}\begin{aligned} & R_2(\text { new })=R_2(\text { old }) \times 2 \\ & R_1(\text { new })=R_1(\text { old }) \end{aligned}R2( new )=R2( old )×2R1( new )=R1( old )
Iteration-4 C j C j C_(j)C_jCj 1 1 1 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 x 3 x 3 x_(3)\boldsymbol{x}_{\mathbf{3}}x3 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 MinRatio
x 3 x 3 x_(3)x_3x3 1 2 0 0 1 2 -1
x 2 x 2 x_(2)x_2x2 1 0 2 1 0 -1 1
Z = 2 Z = 2 Z=2\boldsymbol{Z}=\mathbf{2}Z=2 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 2 2 2\mathbf{2}2 1 1 1\mathbf{1}1 1 1 1\mathbf{1}1 1 1 1\mathbf{1}1 0 0 0\mathbf{0}0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj -1 0 0 -1 0
Iteration-4 C_(j) 1 1 1 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) MinRatio x_(3) 1 2 0 0 1 2 -1 x_(2) 1 0 2 1 0 -1 1 Z=2 Z_(j) 2 1 1 1 0 C_(j)-Z_(j) -1 0 0 -1 0 | Iteration-4 | | $C_j$ | 1 | 1 | 1 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{x}_{\mathbf{3}}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | MinRatio | | $x_3$ | 1 | 2 | 0 | 0 | 1 | 2 | -1 | | | $x_2$ | 1 | 0 | 2 | 1 | 0 | -1 | 1 | | | $\boldsymbol{Z}=\mathbf{2}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | | | | | $C_j-Z_j$ | -1 | 0 | 0 | -1 | 0 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) <= 0C_j-Z_j \leq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 0 , x 2 = 0 , x 3 = 2 x 1 = 0 , x 2 = 0 , x 3 = 2 x_(1)=0,x_(2)=0,x_(3)=2x_1=0, x_2=0, x_3=2x1=0,x2=0,x3=2
Max Z = 2 Max Z = 2 Max Z=2\operatorname{Max} Z=2MaxZ=2

Optimal Solution of the Given Problem

After performing the Simplex method iterations, the optimal solution for the given linear programming problem is x 1 = 0 , x 2 = 0 , x 3 = 2 x 1 = 0 , x 2 = 0 , x 3 = 2 x_(1)=0,x_(2)=0,x_(3)=2x_1 = 0, x_2 = 0, x_3 = 2x1=0,x2=0,x3=2 with the objective function Z = 2 Z = 2 Z=2Z = 2Z=2.

Dual Problem

The dual of the given linear programming problem can be formulated as follows:
Minimize W = 2 y 1 + 2 y 2 subject to 2 y 1 + 4 y 2 1 y 1 + 2 y 2 1 y 1 + y 2 1 y 1 , y 2 0  Minimize  W = 2 y 1 + 2 y 2  subject to  2 y 1 + 4 y 2 1 y 1 + 2 y 2 1 y 1 + y 2 1 y 1 , y 2 0 {:[” Minimize “W=2y_(1)+2y_(2)],[” subject to “],[2y_(1)+4y_(2) >= 1],[y_(1)+2y_(2) >= 1],[y_(1)+y_(2) >= 1],[y_(1)”,”y_(2) >= 0]:}\begin{array}{r} \text { Minimize } W = 2y_1 + 2y_2 \\ \text { subject to } \\ 2y_1 + 4y_2 \geq 1 \\ y_1 + 2y_2 \geq 1 \\ y_1 + y_2 \geq 1 \\ y_1, y_2 \geq 0 \end{array} Minimize W=2y1+2y2 subject to 2y1+4y21y1+2y21y1+y21y1,y20

Optimal Solution of the Dual Problem from the Optimal Table of the Given Problem

To find the optimal solution of the dual problem from the optimal table of the given problem, we can use the shadow prices (dual variables) corresponding to the constraints of the primal problem.
In the optimal table of the primal problem, the shadow prices for the constraints 2 x 1 + x 2 + x 3 2 2 x 1 + x 2 + x 3 2 2x_(1)+x_(2)+x_(3) <= 22x_1 + x_2 + x_3 \leq 22x1+x2+x32 and 4 x 1 + 2 x 2 + x 3 2 4 x 1 + 2 x 2 + x 3 2 4x_(1)+2x_(2)+x_(3) <= 24x_1 + 2x_2 + x_3 \leq 24x1+2x2+x32 would be the optimal values for y 1 y 1 y_(1)y_1y1 and y 2 y 2 y_(2)y_2y2 in the dual problem.
In the final iteration of the Simplex method, the shadow prices (dual variables) can be read from the Z j Z j Z_(j)Z_jZj row corresponding to the slack variables S 1 S 1 S_(1)S_1S1 and S 2 S 2 S_(2)S_2S2. In this case, Z j Z j Z_(j)Z_jZj for S 1 S 1 S_(1)S_1S1 is 1 and for S 2 S 2 S_(2)S_2S2 is 0.
Therefore, the optimal solution of the dual problem is y 1 = 1 , y 2 = 0 y 1 = 1 , y 2 = 0 y_(1)=1,y_(2)=0y_1 = 1, y_2 = 0y1=1,y2=0 with the objective function W = 2 W = 2 W=2W = 2W=2.
Note: The shadow prices were inferred based on the optimal solution of the primal problem. Normally, these would be directly obtained from the optimal table, but since we only solved the primal problem, we used that information to deduce the dual solution.
Question:-04 (a) Let R R RRR be a field of real numbers and S S SSS, the field of all those polynomials f ( x ) R [ x ] f ( x ) R [ x ] f(x)in R[x]f(x) \in R[x]f(x)R[x] such that f ( 0 ) = 0 = f ( 1 ) f ( 0 ) = 0 = f ( 1 ) f(0)=0=f(1)f(0)=0=f(1)f(0)=0=f(1). Prove that S S SSS is an ideal of R [ x ] R [ x ] R[x]R[x]R[x]. Is the residue class ring R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S an integral domain? Give justification for your answer.
Answer:
Introduction: In this problem, we are asked to prove that the set S S SSS of polynomials in R [ x ] R [ x ] R[x]R[x]R[x] satisfying f ( 0 ) = 0 = f ( 1 ) f ( 0 ) = 0 = f ( 1 ) f(0)=0=f(1)f(0)=0=f(1)f(0)=0=f(1) is an ideal of R [ x ] R [ x ] R[x]R[x]R[x], and to determine whether the residue class ring R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S is an integral domain. We will show that S S SSS satisfies the properties of an ideal and then analyze the structure of the quotient ring.
Assumptions: We assume that R R RRR is a field of real numbers.
Definitions:
  1. An ideal of a ring is a non-empty subset that is closed under addition and multiplication by any element of the ring.
  2. A residue class ring (or quotient ring) is the set of equivalence classes of a ring modulo an ideal.
  3. An integral domain is a commutative ring with unity in which the product of any two nonzero elements is nonzero.
Method/Approach: We will first prove that S S SSS is an ideal by showing that it is closed under addition and multiplication by elements of R [ x ] R [ x ] R[x]R[x]R[x]. Then, we will examine the structure of the residue class ring R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S to determine whether it is an integral domain.
Work/Calculations:
  1. Prove that S S SSS is an ideal:
    a) Closure under addition: Let f ( x ) , g ( x ) S f ( x ) , g ( x ) S f(x),g(x)in Sf(x), g(x) \in Sf(x),g(x)S. Then, f ( 0 ) = 0 = g ( 0 ) f ( 0 ) = 0 = g ( 0 ) f(0)=0=g(0)f(0)=0=g(0)f(0)=0=g(0) and f ( 1 ) = 0 = f ( 1 ) = 0 = f(1)=0=f(1)=0=f(1)=0= g ( 1 ) g ( 1 ) g(1)g(1)g(1). Consider the polynomial h ( x ) = f ( x ) + g ( x ) h ( x ) = f ( x ) + g ( x ) h(x)=f(x)+g(x)h(x)=f(x)+g(x)h(x)=f(x)+g(x). We have:
h ( 0 ) = f ( 0 ) + g ( 0 ) = 0 + 0 = 0 h ( 1 ) = f ( 1 ) + g ( 1 ) = 0 + 0 = 0 h ( 0 ) = f ( 0 ) + g ( 0 ) = 0 + 0 = 0 h ( 1 ) = f ( 1 ) + g ( 1 ) = 0 + 0 = 0 {:[h(0)=f(0)+g(0)=0+0=0],[h(1)=f(1)+g(1)=0+0=0]:}\begin{aligned} & h(0)=f(0)+g(0)=0+0=0 \\ & h(1)=f(1)+g(1)=0+0=0 \end{aligned}h(0)=f(0)+g(0)=0+0=0h(1)=f(1)+g(1)=0+0=0
Thus, h ( x ) S h ( x ) S h(x)in Sh(x) \in Sh(x)S, and S S SSS is closed under addition.
b) Closure under multiplication: Let f ( x ) S f ( x ) S f(x)in Sf(x) \in Sf(x)S and g ( x ) R [ x ] g ( x ) R [ x ] g(x)in R[x]g(x) \in R[x]g(x)R[x]. Consider the polynomial h ( x ) = f ( x ) g ( x ) h ( x ) = f ( x ) g ( x ) h(x)=f(x)g(x)h(x)=f(x) g(x)h(x)=f(x)g(x). We have:
h ( 0 ) = f ( 0 ) g ( 0 ) = 0 g ( 0 ) = 0 h ( 1 ) = f ( 1 ) g ( 1 ) = 0 g ( 1 ) = 0 h ( 0 ) = f ( 0 ) g ( 0 ) = 0 g ( 0 ) = 0 h ( 1 ) = f ( 1 ) g ( 1 ) = 0 g ( 1 ) = 0 {:[h(0)=f(0)g(0)=0*g(0)=0],[h(1)=f(1)g(1)=0*g(1)=0]:}\begin{aligned} & h(0)=f(0) g(0)=0 \cdot g(0)=0 \\ & h(1)=f(1) g(1)=0 \cdot g(1)=0 \end{aligned}h(0)=f(0)g(0)=0g(0)=0h(1)=f(1)g(1)=0g(1)=0
Thus, h ( x ) S h ( x ) S h(x)in Sh(x) \in Sh(x)S, and S S SSS is closed under multiplication by elements of R [ x ] R [ x ] R[x]R[x]R[x].
Since S S SSS is closed under addition and multiplication by elements of R [ x ] , S R [ x ] , S R[x],SR[x], SR[x],S is an ideal of R [ x ] R [ x ] R[x]R[x]R[x].
  1. Determine whether R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S is an integral domain:
    Recall that an integral domain is a commutative ring with unity in which the product of any two nonzero elements is nonzero. To check whether R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S is an integral domain, we will see if there exist any nonzero elements in R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S whose product is zero.
Consider the polynomials f ( x ) = x ( x 1 ) f ( x ) = x ( x 1 ) f(x)=x(x-1)f(x)=x(x-1)f(x)=x(x1) and g ( x ) = x g ( x ) = x g(x)=xg(x)=xg(x)=x. Both f ( x ) , g ( x ) S f ( x ) , g ( x ) S f(x),g(x)in Sf(x), g(x) \in Sf(x),g(x)S. Their product is h ( x ) = f ( x ) g ( x ) = x 2 ( x 1 ) h ( x ) = f ( x ) g ( x ) = x 2 ( x 1 ) h(x)=f(x)g(x)=x^(2)(x-1)h(x)=f(x) g(x)=x^2(x-1)h(x)=f(x)g(x)=x2(x1), which also belongs to S S SSS. However, the equivalence classes [ f ( x ) ] [ f ( x ) ] [f(x)][f(x)][f(x)] and [ g ( x ) ] [ g ( x ) ] [g(x)][g(x)][g(x)] in R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S are nonzero, while their product [ h ( x ) ] [ h ( x ) ] [h(x)][h(x)][h(x)] is zero. Thus, the residue class ring R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S is not an integral domain.
Conclusion: We have shown that the set S S SSS of polynomials in R [ x ] R [ x ] R[x]R[x]R[x] satisfying f ( 0 ) = 0 = f ( 0 ) = 0 = f(0)=0=f(0)=0=f(0)=0= f ( 1 ) f ( 1 ) f(1)f(1)f(1) is an ideal of R [ x ] R [ x ] R[x]R[x]R[x] by proving that it is closed under addition and multiplication by elements of R [ x ] R [ x ] R[x]R[x]R[x]. However, we have also demonstrated that the residue class ring R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S is not an integral domain, as there exist nonzero elements in R [ x ] / S R [ x ] / S R[x]//SR[x] / SR[x]/S whose product is zero.
Question:-04 (b) Test for convergence or divergence of the series
x + 2 2 x 2 2 ! + 3 3 x 3 3 ! + 4 4 x 4 4 ! + 5 5 x 5 5 ! + ( x > 0 ) x + 2 2 x 2 2 ! + 3 3 x 3 3 ! + 4 4 x 4 4 ! + 5 5 x 5 5 ! + ( x > 0 ) x+(2^(2)x^(2))/(2!)+(3^(3)x^(3))/(3!)+(4^(4)x^(4))/(4!)+(5^(5)x^(5))/(5!)+cdotsquad(x > 0)x+\frac{2^{2} x^{2}}{2 !}+\frac{3^{3} x^{3}}{3 !}+\frac{4^{4} x^{4}}{4 !}+\frac{5^{5} x^{5}}{5 !}+\cdots \quad(x>0)x+22x22!+33x33!+44x44!+55x55!+(x>0)
Answer:
Introduction: In this problem, we are asked to determine whether the given series converges or diverges for x > 0 x > 0 x > 0x>0x>0. The series is given by:
n = 1 n n x n n ! n = 1 n n x n n ! sum_(n=1)^(oo)(n^(n)x^(n))/(n!)\sum_{n=1}^{\infty} \frac{n^n x^n}{n !}n=1nnxnn!
Method/Approach: To analyze the convergence of this series, we will use the Ratio Test. The Ratio Test states that for a series n = 1 a n n = 1 a n sum_(n=1)^(oo)a_(n)\sum_{n=1}^{\infty} a_nn=1an, if lim n | a n + 1 a n | = L lim n a n + 1 a n = L lim_(n rarr oo)|(a_(n+1))/(a_(n))|=L\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|=Llimn|an+1an|=L, then:
  1. The series converges if L < 1 L < 1 L < 1L<1L<1.
  2. The series diverges if L > 1 L > 1 L > 1L>1L>1.
  3. The test is inconclusive if L = 1 L = 1 L=1L=1L=1.
    Work/Calculations:
    Applying the Ratio Test, we compute the limit:
lim n | a n + 1 a n | = lim n | ( n + 1 ) ( n + 1 ) x ( n + 1 ) ( n + 1 ) ! n n x n n ! | lim n a n + 1 a n = lim n ( n + 1 ) ( n + 1 ) x ( n + 1 ) ( n + 1 ) ! n n x n n ! lim_(n rarr oo)|(a_(n+1))/(a_(n))|=lim_(n rarr oo)|(((n+1)^((n+1))x^((n+1)))/((n+1)!))/((n^(n)x^(n))/(n!))|\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{(n+1)} x^{(n+1)}}{(n+1) !}}{\frac{n^n x^n}{n !}}\right|limn|an+1an|=limn|(n+1)(n+1)x(n+1)(n+1)!nnxnn!|
Simplify the expression:
lim n | ( n + 1 ) ( n + 1 ) x ( n + 1 ) n ! ( n + 1 ) ! n n x n | lim n ( n + 1 ) ( n + 1 ) x ( n + 1 ) n ! ( n + 1 ) ! n n x n lim_(n rarr oo)|((n+1)^((n+1))x^((n+1))n!)/((n+1)!n^(n)x^(n))|\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{(n+1)} x^{(n+1)} n !}{(n+1) ! n^n x^n}\right|limn|(n+1)(n+1)x(n+1)n!(n+1)!nnxn|
Further simplification:
lim n | ( n + 1 ) n ( n + 1 ) x n n | lim n ( n + 1 ) n ( n + 1 ) x n n lim_(n rarr oo)|((n+1)^(n)(n+1)x)/(n^(n))|\lim _{n \rightarrow \infty}\left|\frac{(n+1)^n(n+1) x}{n^n}\right|limn|(n+1)n(n+1)xnn|
Now, let’s find the limit as n n nnn goes to infinity:
lim n | ( n + 1 ) n ( n + 1 ) x n n | = lim n x | ( n + 1 ) n n n | lim n ( n + 1 ) lim n ( n + 1 ) n ( n + 1 ) x n n = lim n x ( n + 1 ) n n n lim n ( n + 1 ) lim_(n rarr oo)|((n+1)^(n)(n+1)x)/(n^(n))|=lim_(n rarr oo)x|((n+1)^(n))/(n^(n))|*lim_(n rarr oo)(n+1)\lim _{n \rightarrow \infty}\left|\frac{(n+1)^n(n+1) x}{n^n}\right|=\lim _{n \rightarrow \infty} x\left|\frac{(n+1)^n}{n^n}\right| \cdot \lim _{n \rightarrow \infty}(n+1)limn|(n+1)n(n+1)xnn|=limnx|(n+1)nnn|limn(n+1)
The first limit can be computed by taking the limit of the ratio of the exponents:
lim n ( n + 1 ) n n n = lim n ( n + 1 n ) n = lim n ( 1 + 1 n ) n lim n ( n + 1 ) n n n = lim n n + 1 n n = lim n 1 + 1 n n lim_(n rarr oo)((n+1)^(n))/(n^(n))=lim_(n rarr oo)((n+1)/(n))^(n)=lim_(n rarr oo)(1+(1)/(n))^(n)\lim _{n \rightarrow \infty} \frac{(n+1)^n}{n^n}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^n=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^nlimn(n+1)nnn=limn(n+1n)n=limn(1+1n)n
This is the definition of the number e e eee, so the first limit is equal to e e eee. The second limit is infinite since n n nnn goes to infinity. Thus, the overall limit is:
lim n | a n + 1 a n | = lim n a n + 1 a n = lim_(n rarr oo)|(a_(n+1))/(a_(n))|=oo\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|=\inftylimn|an+1an|=
Conclusion: Since the limit of the ratio is greater than 1 ( > 1 ) 1 ( > 1 ) 1(oo > 1)1(\infty>1)1(>1), the series diverges for x > 0 x > 0 x > 0x>0x>0.
Question:-04 (c) Find the initial basic feasible solution of the following transportation problem by Vogel’s approximation method and use it to find the optimal solution and the transportation cost of the problem :
A B C D Supply S 1 21 16 25 13 11 S 2 17 18 14 23 13 S 3 32 27 18 41 19 Demand 6 10 12 15 A B C D  Supply  S 1 21 16 25 13 11 S 2 17 18 14 23 13 S 3 32 27 18 41 19  Demand  6 10 12 15 {:[,A,B,C,D,” Supply “],[S_(1),21,16,25,13,11],[S_(2),17,18,14,23,13],[S_(3),32,27,18,41,19],[” Demand “,6,10,12,15,]:}\begin{array}{|l|l|l|l|l||l|} \hline & A & B & C & D & \text { Supply } \\ \hline S_1 & 21 & 16 & 25 & 13 & 11 \\ \hline S_2 & 17 & 18 & 14 & 23 & 13 \\ \hline S_3 & 32 & 27 & 18 & 41 & 19 \\ \hline \hline \text { Demand } & 6 & 10 & 12 & 15 & \\ \hline \end{array}ABCD Supply S12116251311S21718142313S33227184119 Demand 6101215
Answer:
Initial feasible solution is
A A AAA B B BBB C C CCC D D DDD Supply Row Penalty
S 1 S 1 S_(1)S_1S1 21 16 25 13 ( 11 ) 13 ( 11 ) 13(11)13(11)13(11) 11 3 | | | | | | 3 | | | | | | 3|–|-|-|-|-|3|–|-|-|-|-|3||||||
S 2 S 2 S_(2)S_2S2 17 ( 6 ) 17 ( 6 ) 17(6)17(6)17(6) 18 ( 3 ) 18 ( 3 ) 18(3)18(3)18(3) 14 23 ( 4 ) 23 ( 4 ) 23(4)23(4)23(4) 13 3 | 3 | 3 | 4 | 18 | 18 | 3 | 3 | 3 | 4 | 18 | 18 | 3|3|3|4|18|18|3|3| 3|4| 18|18|3|3|3|4|18|18|
S 3 S 3 S_(3)S_3S3 32 27 ( 7 ) 27 ( 7 ) 27(7)27(7)27(7) 18 ( 12 ) 18 ( 12 ) 18(12)18(12)18(12) 41 19 9 | 9 | 9 | 9 | 27 | | 9 | 9 | 9 | 9 | 27 | | 9|9|9|9|27|-|9|9| 9|9| 27|-|9|9|9|9|27||
Demand 6 10 12 15
Column Penalty  Column   Penalty  {:[” Column “],[” Penalty “]:}\begin{array}{l}\text { Column } \\ \text { Penalty }\end{array} Column  Penalty  4 15 15 4 15 15 {:[4],[15],[15],[–],[–],[–]:}\begin{array}{c}4 \\ 15 \\ 15 \\ — \\ — \\ –\end{array}41515 2 9 9 9 9 18 2 9 9 9 9 18 {:[2],[9],[9],[9],[9],[18]:}\begin{array}{c}2 \\ 9 \\ 9 \\ 9 \\ 9 \\ 18\end{array}2999918 4 4 4 4 4 4 4 4 {:[4],[4],[4],[4],[–],[–]:}\begin{array}{l}4 \\ 4 \\ 4 \\ 4 \\ — \\ –\end{array}4444 10 18 10 18 {:[10],[18],[–],[–],[–],[–]:}\begin{array}{l}10 \\ 18 \\ — \\ — \\ — \\ –\end{array}1018
A B C D Supply Row Penalty S_(1) 21 16 25 13(11) 11 3|–|-|-|-|-| S_(2) 17(6) 18(3) 14 23(4) 13 3|3|3|4|18|18| S_(3) 32 27(7) 18(12) 41 19 9|9|9|9|27|-| Demand 6 10 12 15 ” Column Penalty ” “4 15 15 — — –” “2 9 9 9 9 18” “4 4 4 4 — –” “10 18 — — — –” | | $A$ | $B$ | $C$ | $D$ | Supply | Row Penalty | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $S_1$ | 21 | 16 | 25 | $13(11)$ | 11 | $3\|–\|-\|-\|-\|-\|$ | | $S_2$ | $17(6)$ | $18(3)$ | 14 | $23(4)$ | 13 | $3\|3\| 3\|4\| 18\|18\|$ | | $S_3$ | 32 | $27(7)$ | $18(12)$ | 41 | 19 | $9\|9\| 9\|9\| 27\|-\|$ | | Demand | 6 | 10 | 12 | 15 | | | | $\begin{array}{l}\text { Column } \\ \text { Penalty }\end{array}$ | $\begin{array}{c}4 \\ 15 \\ 15 \\ — \\ — \\ –\end{array}$ | $\begin{array}{c}2 \\ 9 \\ 9 \\ 9 \\ 9 \\ 18\end{array}$ | $\begin{array}{l}4 \\ 4 \\ 4 \\ 4 \\ — \\ –\end{array}$ | $\begin{array}{l}10 \\ 18 \\ — \\ — \\ — \\ –\end{array}$ | | |
The minimum total transportation cost = 13 × 11 + 17 × 6 + 18 × 3 + 23 × 4 + 27 × 7 + 18 × 12 = 796 = 13 × 11 + 17 × 6 + 18 × 3 + 23 × 4 + 27 × 7 + 18 × 12 = 796 =13 xx11+17 xx6+18 xx3+23 xx4+27 xx7+18 xx12=796=13 \times 11+17 \times 6+18 \times 3+23 \times 4+27 \times 7+18 \times 12=796=13×11+17×6+18×3+23×4+27×7+18×12=796
Here, the number of allocated cells = 6 = 6 =6=6=6 is equal to m + n 1 = 3 + 4 1 = 6 m + n 1 = 3 + 4 1 = 6 m+n-1=3+4-1=6m+n-1=3+4-1=6m+n1=3+41=6
:.\therefore This solution is non-degenerate
Optimality test using modi method…
Allocation Table is
A A AAA B B BBB C C CCC D D DDD Supply
S 1 S 1 S_(1)S_1S1 21 16 25 13 ( 11 ) 13 ( 11 ) 13(11)13(11)13(11) 11
S 2 S 2 S_(2)S_2S2 17 ( 6 ) 17 ( 6 ) 17(6)17(6)17(6) 18 ( 3 ) 18 ( 3 ) 18(3)18(3)18(3) 14 23 ( 4 ) 23 ( 4 ) 23(4)23(4)23(4) 13
S 3 S 3 S_(3)S_3S3 32 27 ( 7 ) 27 ( 7 ) 27(7)27(7)27(7) 18 ( 12 ) 18 ( 12 ) 18(12)18(12)18(12) 41 19
Demand 6 10 12 15
A B C D Supply S_(1) 21 16 25 13(11) 11 S_(2) 17(6) 18(3) 14 23(4) 13 S_(3) 32 27(7) 18(12) 41 19 Demand 6 10 12 15 | | $A$ | $B$ | $C$ | $D$ | Supply | | :— | :— | :— | :— | :— | :— | | $S_1$ | 21 | 16 | 25 | $13(11)$ | 11 | | $S_2$ | $17(6)$ | $18(3)$ | 14 | $23(4)$ | 13 | | $S_3$ | 32 | $27(7)$ | $18(12)$ | 41 | 19 | | Demand | 6 | 10 | 12 | 15 | |
Iteration-1 of optimality test
  1. Find u i u i u_(i)u_iui and v j v j v_(j)v_jvj for all occupied cells ( i , j ) ( i , j ) (i,j)(\mathrm{i}, \mathrm{j})(i,j), where c i j = u i + v j c i j = u i + v j c_(ij)=u_(i)+v_(j)c_{i j}=u_i+v_jcij=ui+vj
  2. Substituting, u 2 = 0 u 2 = 0 u_(2)=0u_2=0u2=0, we get
  3. c 21 = u 2 + v 1 v 1 = c 21 u 2 v 1 = 17 0 v 1 = 17 c 21 = u 2 + v 1 v 1 = c 21 u 2 v 1 = 17 0 v 1 = 17 c_(21)=u_(2)+v_(1)=>v_(1)=c_(21)-u_(2)=>v_(1)=17-0=>v_(1)=17c_{21}=u_2+v_1 \Rightarrow v_1=c_{21}-u_2 \Rightarrow v_1=17-0 \Rightarrow v_1=17c21=u2+v1v1=c21u2v1=170v1=17
  4. c 22 = u 2 + v 2 v 2 = c 22 u 2 v 2 = 18 0 v 2 = 18 c 22 = u 2 + v 2 v 2 = c 22 u 2 v 2 = 18 0 v 2 = 18 c_(22)=u_(2)+v_(2)=>v_(2)=c_(22)-u_(2)=>v_(2)=18-0=>v_(2)=18c_{22}=u_2+v_2 \Rightarrow v_2=c_{22}-u_2 \Rightarrow v_2=18-0 \Rightarrow v_2=18c22=u2+v2v2=c22u2v2=180v2=18
  5. c 32 = u 3 + v 2 u 3 = c 32 v 2 u 3 = 27 18 u 3 = 9 c 32 = u 3 + v 2 u 3 = c 32 v 2 u 3 = 27 18 u 3 = 9 c_(32)=u_(3)+v_(2)=>u_(3)=c_(32)-v_(2)=>u_(3)=27-18=>u_(3)=9c_{32}=u_3+v_2 \Rightarrow u_3=c_{32}-v_2 \Rightarrow u_3=27-18 \Rightarrow u_3=9c32=u3+v2u3=c32v2u3=2718u3=9
  6. c 33 = u 3 + v 3 v 3 = c 33 u 3 v 3 = 18 9 v 3 = 9 c 33 = u 3 + v 3 v 3 = c 33 u 3 v 3 = 18 9 v 3 = 9 c_(33)=u_(3)+v_(3)=>v_(3)=c_(33)-u_(3)=>v_(3)=18-9=>v_(3)=9c_{33}=u_3+v_3 \Rightarrow v_3=c_{33}-u_3 \Rightarrow v_3=18-9 \Rightarrow v_3=9c33=u3+v3v3=c33u3v3=189v3=9
  7. c 24 = u 2 + v 4 v 4 = c 24 u 2 v 4 = 23 0 v 4 = 23 c 24 = u 2 + v 4 v 4 = c 24 u 2 v 4 = 23 0 v 4 = 23 c_(24)=u_(2)+v_(4)=>v_(4)=c_(24)-u_(2)=>v_(4)=23-0=>v_(4)=23c_{24}=u_2+v_4 \Rightarrow v_4=c_{24}-u_2 \Rightarrow v_4=23-0 \Rightarrow v_4=23c24=u2+v4v4=c24u2v4=230v4=23
  8. c 14 = u 1 + v 4 u 1 = c 14 v 4 u 1 = 13 23 u 1 = 10 c 14 = u 1 + v 4 u 1 = c 14 v 4 u 1 = 13 23 u 1 = 10 c_(14)=u_(1)+v_(4)=>u_(1)=c_(14)-v_(4)=>u_(1)=13-23=>u_(1)=-10c_{14}=u_1+v_4 \Rightarrow u_1=c_{14}-v_4 \Rightarrow u_1=13-23 \Rightarrow u_1=-10c14=u1+v4u1=c14v4u1=1323u1=10
A B C D Supply u i S 1 21 16 25 13 ( 11 ) 11 u 1 = 10 S 2 17 ( 6 ) 18 ( 3 ) 14 23 ( 4 ) 13 u 2 = 0 S 3 32 27 ( 7 ) 18 ( 12 ) 41 19 u 3 = 9 Demand 6 10 12 15 v j v 1 = 17 v 2 = 18 v 3 = 9 v 4 = 23 A B C D  Supply  u i S 1 21 16 25 13 ( 11 ) 11 u 1 = 10 S 2 17 ( 6 ) 18 ( 3 ) 14 23 ( 4 ) 13 u 2 = 0 S 3 32 27 ( 7 ) 18 ( 12 ) 41 19 u 3 = 9  Demand  6 10 12 15 v j v 1 = 17 v 2 = 18 v 3 = 9 v 4 = 23 {:[,A,B,C,D,” Supply “,u_(i)],[S_(1),21,16,25,13(11),11,u_(1)=-10],[S_(2),17(6),18(3),14,23(4),13,u_(2)=0],[S_(3),32,27(7),18(12),41,19,u_(3)=9],[” Demand “,6,10,12,15,,],[v_(j),v_(1)=17,v_(2)=18,v_(3)=9,v_(4)=23,,]:}\begin{array}{|l|l|l|l|l||l|l|} \hline & A & B & C & D & \text { Supply } & u_i \\ \hline S_1 & 21 & 16 & 25 & 13(11) & 11 & u_1=-10 \\ \hline S_2 & 17(6) & 18(3) & 14 & 23(4) & 13 & u_2=0 \\ \hline S_3 & 32 & 27(7) & 18(12) & 41 & 19 & u_3=9 \\ \hline \hline \text { Demand } & 6 & 10 & 12 & 15 & & \\ \hline v_j & v_1=17 & v_2=18 & v_3=9 & v_4=23 & & \\ \hline \end{array}ABCD Supply uiS121162513(11)11u1=10S217(6)18(3)1423(4)13u2=0S33227(7)18(12)4119u3=9 Demand 6101215vjv1=17v2=18v3=9v4=23
  1. Find d i j d i j d_(ij)d_{i j}dij for all unoccupied cells ( i , j ) ( i , j ) (i,j)(\mathrm{i}, \mathrm{j})(i,j), where d i j = c i j ( u i + v j ) d i j = c i j u i + v j d_(ij)=c_(ij)-(u_(i)+v_(j))d_{i j}=c_{i j}-\left(u_i+v_j\right)dij=cij(ui+vj)
  2. d 11 = c 11 ( u 1 + v 1 ) = 21 ( 10 + 17 ) = 14 d 11 = c 11 u 1 + v 1 = 21 ( 10 + 17 ) = 14 d_(11)=c_(11)-(u_(1)+v_(1))=21-(-10+17)=14d_{11}=c_{11}-\left(u_1+v_1\right)=21-(-10+17)=14d11=c11(u1+v1)=21(10+17)=14
  3. d 12 = c 12 ( u 1 + v 2 ) = 16 ( 10 + 18 ) = 8 d 12 = c 12 u 1 + v 2 = 16 ( 10 + 18 ) = 8 d_(12)=c_(12)-(u_(1)+v_(2))=16-(-10+18)=8d_{12}=c_{12}-\left(u_1+v_2\right)=16-(-10+18)=8d12=c12(u1+v2)=16(10+18)=8
  4. d 13 = c 13 ( u 1 + v 3 ) = 25 ( 10 + 9 ) = 26 d 13 = c 13 u 1 + v 3 = 25 ( 10 + 9 ) = 26 d_(13)=c_(13)-(u_(1)+v_(3))=25-(-10+9)=26d_{13}=c_{13}-\left(u_1+v_3\right)=25-(-10+9)=26d13=c13(u1+v3)=25(10+9)=26
  5. d 23 = c 23 ( u 2 + v 3 ) = 14 ( 0 + 9 ) = 5 d 23 = c 23 u 2 + v 3 = 14 ( 0 + 9 ) = 5 d_(23)=c_(23)-(u_(2)+v_(3))=14-(0+9)=5d_{23}=c_{23}-\left(u_2+v_3\right)=14-(0+9)=5d23=c23(u2+v3)=14(0+9)=5
  6. d 31 = c 31 ( u 3 + v 1 ) = 32 ( 9 + 17 ) = 6 d 31 = c 31 u 3 + v 1 = 32 ( 9 + 17 ) = 6 d_(31)=c_(31)-(u_(3)+v_(1))=32-(9+17)=6d_{31}=c_{31}-\left(u_3+v_1\right)=32-(9+17)=6d31=c31(u3+v1)=32(9+17)=6
  7. d 34 = c 34 ( u 3 + v 4 ) = 41 ( 9 + 23 ) = 9 d 34 = c 34 u 3 + v 4 = 41 ( 9 + 23 ) = 9 d_(34)=c_(34)-(u_(3)+v_(4))=41-(9+23)=9d_{34}=c_{34}-\left(u_3+v_4\right)=41-(9+23)=9d34=c34(u3+v4)=41(9+23)=9
A A AAA B B BBB C C CCC D D DDD Supply u i u i u_(i)u_iui
S 1 S 1 S_(1)S_1S1 21 [ 14 ] 21 [ 14 ] 21[14]21[14]21[14] 16 [ 8 ] 16 [ 8 ] 16[8]16[8]16[8] 25 [ 26 ] 25 [ 26 ] 25[26]25[26]25[26] 13 ( 11 ) 13 ( 11 ) 13(11)13(11)13(11) 11 u 1 = 10 u 1 = 10 u_(1)=-10u_1=-10u1=10
S 2 S 2 S_(2)S_2S2 17 ( 6 ) 17 ( 6 ) 17(6)17(6)17(6) 18 ( 3 ) 18 ( 3 ) 18(3)18(3)18(3) 14 [ 5 ] 14 [ 5 ] 14[5]14[5]14[5] 23 ( 4 ) 23 ( 4 ) 23(4)23(4)23(4) 13 u 2 = 0 u 2 = 0 u_(2)=0u_2=0u2=0
S 3 S 3 S_(3)S_3S3 32 [ 6 ] 32 [ 6 ] 32[6]32[6]32[6] 27 ( 7 ) 27 ( 7 ) 27(7)27(7)27(7) 18 ( 12 ) 18 ( 12 ) 18(12)18(12)18(12) 41 [ 9 ] 41 [ 9 ] 41[9]41[9]41[9] 19 u 3 = 9 u 3 = 9 u_(3)=9u_3=9u3=9
Demand 6 10 12 15
v j v j v_(j)v_jvj v 1 = 17 v 1 = 17 v_(1)=17v_1=17v1=17 v 2 = 18 v 2 = 18 v_(2)=18v_2=18v2=18 v 3 = 9 v 3 = 9 v_(3)=9v_3=9v3=9 v 4 = 23 v 4 = 23 v_(4)=23v_4=23v4=23
A B C D Supply u_(i) S_(1) 21[14] 16[8] 25[26] 13(11) 11 u_(1)=-10 S_(2) 17(6) 18(3) 14[5] 23(4) 13 u_(2)=0 S_(3) 32[6] 27(7) 18(12) 41[9] 19 u_(3)=9 Demand 6 10 12 15 v_(j) v_(1)=17 v_(2)=18 v_(3)=9 v_(4)=23 | | $A$ | $B$ | $C$ | $D$ | Supply | $u_i$ | | :— | :— | :— | :— | :— | :— | :— | | $S_1$ | $21[14]$ | $16[8]$ | $25[26]$ | $13(11)$ | 11 | $u_1=-10$ | | $S_2$ | $17(6)$ | $18(3)$ | $14[5]$ | $23(4)$ | 13 | $u_2=0$ | | $S_3$ | $32[6]$ | $27(7)$ | $18(12)$ | $41[9]$ | 19 | $u_3=9$ | | Demand | 6 | 10 | 12 | 15 | | | | $v_j$ | $v_1=17$ | $v_2=18$ | $v_3=9$ | $v_4=23$ | | |
Since all d i j 0 d i j 0 d_(ij) >= 0d_{i j} \geq 0dij0.
So final optimal solution is arrived.
A A AAA B B BBB C C CCC D D DDD Supply
S 1 S 1 S_(1)S_1S1 21 16 25 13 ( 11 ) 13 ( 11 ) 13(11)13(11)13(11) 11
S 2 S 2 S_(2)S_2S2 17 ( 6 ) 17 ( 6 ) 17(6)17(6)17(6) 18 ( 3 ) 18 ( 3 ) 18(3)18(3)18(3) 14 23 ( 4 ) 23 ( 4 ) 23(4)23(4)23(4) 13
S 3 S 3 S_(3)S_3S3 32 27 ( 7 ) 27 ( 7 ) 27(7)27(7)27(7) 18 ( 12 ) 18 ( 12 ) 18(12)18(12)18(12) 41 19
Demand 6 10 12 15
A B C D Supply S_(1) 21 16 25 13(11) 11 S_(2) 17(6) 18(3) 14 23(4) 13 S_(3) 32 27(7) 18(12) 41 19 Demand 6 10 12 15 | | $A$ | $B$ | $C$ | $D$ | Supply | | :— | :— | :— | :— | :— | :— | | $S_1$ | 21 | 16 | 25 | $13(11)$ | 11 | | $S_2$ | $17(6)$ | $18(3)$ | 14 | $23(4)$ | 13 | | $S_3$ | 32 | $27(7)$ | $18(12)$ | 41 | 19 | | Demand | 6 | 10 | 12 | 15 | |
The minimum total transportation cost = 13 × 11 + 17 × 6 + 18 × 3 + 23 × 4 + 27 × 7 + 18 × 12 = 796 = 13 × 11 + 17 × 6 + 18 × 3 + 23 × 4 + 27 × 7 + 18 × 12 = 796 =13 xx11+17 xx6+18 xx3+23 xx4+27 xx7+18 xx12=796=13 \times 11+17 \times 6+18 \times 3+23 \times 4+27 \times 7+18 \times 12=796=13×11+17×6+18×3+23×4+27×7+18×12=796
Section:- B
Question:-05 (a) It is given that the equation of any cone with vertex at ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) is f ( x a z c , y b z c ) = 0 f x a z c , y b z c = 0 f((x-a)/(z-c),(y-b)/(z-c))=0f\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right)=0f(xazc,ybzc)=0. Find the differential equation of the cone.
Answer:

Initial Definitions and Equation Transformation

Step 1: Define New Variables
Let u ( x , y , z ) = x a z c u ( x , y , z ) = x a z c u(x,y,z)=(x-a)/(z-c)u(x, y, z)=\frac{x-a}{z-c}u(x,y,z)=xazc and v ( x , y , z ) = y b z c v ( x , y , z ) = y b z c v(x,y,z)=(y-b)/(z-c)v(x, y, z)=\frac{y-b}{z-c}v(x,y,z)=ybzc.
Step 2: Rewrite Given Equation
With these new variables, the given equation f ( x a z c , y b z c ) = 0 f x a z c , y b z c = 0 f((x-a)/(z-c),(y-b)/(z-c))=0f\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right)=0f(xazc,ybzc)=0 can be rewritten as f ( u , v ) = 0 ( 1 ) f ( u , v ) = 0 ( 1 ) f(u,v)=0rarr(1)f(u, v) = 0 \rightarrow (1)f(u,v)=0(1).
Step 3: Formulate Differential Equation
The required differential equation of (1) can be represented as P p + Q q = R ( 2 ) P p + Q q = R ( 2 ) Pp+Qq=R rarr(2)Pp + Qq = R \rightarrow (2)Pp+Qq=R(2), where we aim to eliminate the arbitrary function f f fff.

Calculating Partial Derivatives

Step 4: Compute P P PPP
P P PPP is defined as the determinant of the Jacobian matrix for u u uuu and v v vvv with respect to y y yyy and z z zzz:
P = | u y u z v y v z | = | 0 x a ( z c ) 2 1 z c y b ( z c ) 2 | = x a ( z c ) 3 P = u y u z v y v z = 0 x a ( z c ) 2 1 z c y b ( z c ) 2 = x a ( z c ) 3 P=|[(del u)/(del y),(del u)/(del z)],[(del v)/(del y),(del v)/(del z)]|=|[0,-(x-a)/((z-c)^(2))],[(1)/(z-c),-(y-b)/((z-c)^(2))]|=(x-a)/((z-c)^(3))P = \left|\begin{array}{cc}\frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}\end{array}\right| = \left|\begin{array}{cc}0 & -\frac{x-a}{(z-c)^2} \\ \frac{1}{z-c} & -\frac{y-b}{(z-c)^2}\end{array}\right| = \frac{x-a}{(z-c)^3}P=|uyuzvyvz|=|0xa(zc)21zcyb(zc)2|=xa(zc)3
Step 5: Compute Q Q QQQ
Similarly, Q Q QQQ is given by:
Q = | u x u z v x v z | = | x a ( z c ) 2 1 z c y b ( z c ) 2 0 | = y b ( z c ) 3 Q = u x u z v x v z = x a ( z c ) 2 1 z c y b ( z c ) 2 0 = y b ( z c ) 3 Q=|[(del u)/(del x),(del u)/(del z)],[(del v)/(del x),(del v)/(del z)]|=|[-(x-a)/((z-c)^(2)),(1)/(z-c)],[-(y-b)/((z-c)^(2)),0]|=(y-b)/((z-c)^(3))Q =\left|\begin{array}{ll} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial z} \end{array}\right|= \left|\begin{array}{cc}-\frac{x-a}{(z-c)^2} & \frac{1}{z-c} \\ -\frac{y-b}{(z-c)^2} & 0\end{array}\right| = \frac{y-b}{(z-c)^3}Q=|uxuzvxvz|=|xa(zc)21zcyb(zc)20|=yb(zc)3
Step 6: Compute R R RRR
Finally, R R RRR is calculated as:
R = | u x u y v x v y | = | 1 z c 0 0 1 z c | = 1 ( z c ) 2 R = u x u y v x v y = 1 z c 0 0 1 z c = 1 ( z c ) 2 R=|[(del u)/(del x),(del u)/(del y)],[(del v)/(del x),(del v)/(del y)]|=|[(1)/(z-c),0],[0,(1)/(z-c)]|=(1)/((z-c)^(2))R =\left|\begin{array}{ll} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array}\right| = \left|\begin{array}{cc}\frac{1}{z-c} & 0 \\ 0 & \frac{1}{z-c}\end{array}\right| = \frac{1}{(z-c)^2}R=|uxuyvxvy|=|1zc001zc|=1(zc)2

Final Differential Equation

Step 7: Substitute into Equation (2)
Substituting these values into equation (2), we get:
x a ( z c ) 3 p + y b ( z c ) 3 q = 1 ( z c ) 2 x a ( z c ) 3 p + y b ( z c ) 3 q = 1 ( z c ) 2 (x-a)/((z-c)^(3))p+(y-b)/((z-c)^(3))q=(1)/((z-c)^(2))\frac{x-a}{(z-c)^3} p + \frac{y-b}{(z-c)^3} q = \frac{1}{(z-c)^2}xa(zc)3p+yb(zc)3q=1(zc)2
Step 8: Simplify
Simplifying, we arrive at:
( x a ) p + ( y b ) q = ( z c ) ( x a ) p + ( y b ) q = ( z c ) (x-a)p+(y-b)q=(z-c)(x-a)p + (y-b)q = (z-c)(xa)p+(yb)q=(zc)

Conclusion

The above equation is the required differential equation representing the family of cones with vertex at ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c).
Question:-05(b) Solve, by Gauss elimination method, the system of equations
2 x + 2 y + 4 z = 18 x + 3 y + 2 z = 13 . 3 x + y + 3 z = 14 2 x + 2 y + 4 z = 18 x + 3 y + 2 z = 13 . 3 x + y + 3 z = 14 {:[2x+2y+4z=18],[x+3y+2z=13.],[3x+y+3z=14]:}\begin{array}{r} 2 x+2 y+4 z=18 \\ x+3 y+2 z=13 . \\ 3 x+y+3 z=14 \end{array}2x+2y+4z=18x+3y+2z=13.3x+y+3z=14
Answer:
Total Equations are 3
2 x + 2 y + 4 z = 18 ( 1 ) x + 3 y + 2 z = 13 ( 2 ) 3 x + y + 3 z = 14 ( 3 ) 2 x + 2 y + 4 z = 18 ( 1 ) x + 3 y + 2 z = 13 ( 2 ) 3 x + y + 3 z = 14 ( 3 ) {:[2x+2y+4z=18 rarr(1)],[x+3y+2z=13 rarr(2)],[3x+y+3z=14 rarr(3)]:}\begin{aligned} & 2 x+2 y+4 z=18 \rightarrow(1) \\ & x+3 y+2 z=13 \rightarrow(2) \\ & 3 x+y+3 z=14 \rightarrow(3) \end{aligned}2x+2y+4z=18(1)x+3y+2z=13(2)3x+y+3z=14(3)
Converting given equations into matrix form
[ 2 2 4 18 1 3 2 13 3 1 3 14 ] 2 2 4 18 1 3 2 13 3 1 3 14 [[2,2,4,18],[1,3,2,13],[3,1,3,14]]\left[\begin{array}{lll|l} 2 & 2 & 4 & 18 \\ 1 & 3 & 2 & 13 \\ 3 & 1 & 3 & 14 \end{array}\right][224181321331314]
R 2 R 2 0.5 × R 1 = [ 2 2 4 18 0 2 0 4 3 1 3 14 ] R 2 R 2 0.5 × R 1 = 2 2 4 18 0 2 0 4 3 1 3 14 {:[R_(2)larrR_(2)-0.5 xxR_(1)],[=[[2,2,4,18],[0,2,0,4],[3,1,3,14]]]:}\begin{aligned} & R_2 \leftarrow R_2-0.5 \times R_1 \\ & =\left[\begin{array}{rrr|c} 2 & 2 & 4 & 18 \\ 0 & 2 & 0 & 4 \\ 3 & 1 & 3 & 14 \end{array}\right] \end{aligned}R2R20.5×R1=[22418020431314]
R 3 R 3 1.5 × R 1 = [ 2 2 4 18 0 2 0 4 0 2 3 13 ] R 3 R 3 1.5 × R 1 = 2 2 4 18 0 2 0 4 0 2 3 13 {:[R_(3)larrR_(3)-1.5 xxR_(1)],[=[[2,2,4,18],[0,2,0,4],[0,-2,-3,-13]]]:}\begin{aligned} & R_3 \leftarrow R_3-1.5 \times R_1 \\ & =\left[\begin{array}{ccc|c} 2 & 2 & 4 & 18 \\ 0 & 2 & 0 & 4 \\ 0 & -2 & -3 & -13 \end{array}\right] \end{aligned}R3R31.5×R1=[22418020402313]
R 3 R 3 + R 2 = [ 2 2 4 18 0 2 0 4 0 0 3 9 ] R 3 R 3 + R 2 = 2 2 4 18 0 2 0 4 0 0 3 9 {:[R_(3)larrR_(3)+R_(2)],[=[[2,2,4,18],[0,2,0,4],[0,0,-3,-9]]]:}\begin{aligned} & R_3 \leftarrow R_3+R_2 \\ & =\left[\begin{array}{ccc|c} 2 & 2 & 4 & 18 \\ 0 & 2 & 0 & 4 \\ 0 & 0 & -3 & -9 \end{array}\right] \end{aligned}R3R3+R2=[2241802040039]
i.e.
2 x + 2 y + 4 z = 18 ( 1 ) 2 y = 4 ( 2 ) 3 z = 9 ( 3 ) 2 x + 2 y + 4 z = 18 ( 1 ) 2 y = 4 ( 2 ) 3 z = 9 ( 3 ) {:[2x+2y+4z=18 rarr(1)],[2y=4rarr(2)],[-3z=-9rarr(3)]:}\begin{aligned} & 2 x+2 y+4 z=18 \rightarrow(1) \\ & 2 y=4 \rightarrow(2) \\ & -3 z=-9 \rightarrow(3) \end{aligned}2x+2y+4z=18(1)2y=4(2)3z=9(3)
Now use back substitution method From (3)
3 z = 9 3 z = 9 -3z=-9-3 z=-93z=9
z = 9 3 = 3 z = 9 3 = 3 =>z=(-9)/(-3)=3\Rightarrow z=\frac{-9}{-3}=3z=93=3
From (2)
2 y = 4 2 y = 4 y = 4 2 = 2 2 y = 4 2 y = 4 y = 4 2 = 2 {:[2y=4],[=>2y=4],[=>y=(4)/(2)=2]:}\begin{aligned} & 2 y=4 \\ & \Rightarrow 2 y=4 \\ & \Rightarrow y=\frac{4}{2}=2 \end{aligned}2y=42y=4y=42=2
From (1)
2 x + 2 y + 4 z = 18 2 x + 2 ( 2 ) + 4 ( 3 ) = 18 2 x + 16 = 18 2 x = 18 16 2 x = 2 x = 2 2 = 1 2 x + 2 y + 4 z = 18 2 x + 2 ( 2 ) + 4 ( 3 ) = 18 2 x + 16 = 18 2 x = 18 16 2 x = 2 x = 2 2 = 1 {:[2x+2y+4z=18],[=>2x+2(2)+4(3)=18],[=>2x+16=18],[=>2x=18-16],[=>2x=2],[=>x=(2)/(2)=1]:}\begin{aligned} & 2 x+2 y+4 z=18 \\ & \Rightarrow 2 x+2(2)+4(3)=18 \\ & \Rightarrow 2 x+16=18 \\ & \Rightarrow 2 x=18-16 \\ & \Rightarrow 2 x=2 \\ & \Rightarrow x=\frac{2}{2}=1 \end{aligned}2x+2y+4z=182x+2(2)+4(3)=182x+16=182x=18162x=2x=22=1
Solution x = 1 , y = 2 x = 1 , y = 2 x=1,y=2x=1, y=2x=1,y=2 and z = 3 z = 3 z=3z=3z=3
Question:-05 (c) (i) Convert the number ( 1093.21875 ) 10 ( 1093.21875 ) 10 (1093.21875)_(10)(1093.21875)_{10}(1093.21875)10 into octal and the number ( 1693 0628 ) 10 ( 1693 0628 ) 10 (1693*0628)_(10)(1693 \cdot 0628)_{10}(16930628)10 into hexadecimal systems.
Answer:

Conversion of Numbers to Different Number Systems

(i) Conversion of ( 1093.21875 ) 10 ( 1093.21875 ) 10 (1093.21875)_(10)(1093.21875)_{10}(1093.21875)10 to Octal

Step 1: Convert the Integer Part to Octal
To convert the integer part of ( 1093 ) 10 ( 1093 ) 10 (1093)_(10)(1093)_{10}(1093)10 to octal, we use successive division by 8 and note down the remainders.
8 1093 8 136 5 8 17 0 8 2 1 0 2 8 1093 8 136 5 8 17 0 8 2 1 0 2 {:[8,1093,],[8,136,5uarr],[8,17,0uarr],[8,2,1uarr],[,0,2uarr]:}\begin{array}{l|r|l} 8 & 1093 & \\ \hline 8 & 136 & 5 \uparrow \\ \hline 8 & 17 & 0 \uparrow\\ \hline 8 & 2 & 1 \uparrow\\ \hline & 0 & 2\uparrow \end{array}8109381365817082102
Step 2: Convert the Fractional Part to Octal
To convert the fractional part ( 0.21875 ) 10 ( 0.21875 ) 10 (0.21875)_(10)(0.21875)_{10}(0.21875)10 to octal, we use successive multiplication by 8 and note down the integer parts.
0.21875 × 8 = 1.75000 P 1 0.75000 × 8 = 6.0 P 6 0.21875 × 8 = 1.75000  P  1 0.75000 × 8 = 6.0  P  6 {:[0.21875 xx8=1.75000″ P “1darr],[0.75000 xx8=6.0quad” P “6darr]:}\begin{aligned} & 0.21875 \times 8=1.75000 \text { P } 1 \downarrow \\ & 0.75000 \times 8=6.0 \quad \text { P } 6 \downarrow \\ \end{aligned}0.21875×8=1.75000 P 10.75000×8=6.0 P 6
Step 3: Combine the Integer and Fractional Parts
( 1093.21875 ) 10 = ( 2105.16 ) 8 ( 1093.21875 ) 10 = ( 2105.16 _ ) 8 :.(1093.21875)_(10)=(2105.16 _)_(8)\therefore(1093.21875)_{10}=(\underline{2105.16})_8(1093.21875)10=(2105.16)8

(ii) Conversion of ( 1693 0628 ) 10 ( 1693 0628 ) 10 (1693*0628)_(10)(1693 \cdot 0628)_{10}(16930628)10 to Hexadecimal

Step 1: Convert the Integer Part to Hexadecimal
To convert the integer part of ( 1693 ) 10 ( 1693 ) 10 (1693)_(10)(1693)_{10}(1693)10 to hexadecimal, we use successive division by 16 and note down the remainders.
16 1693 16 105 D 16 6 9 0 6 16 1693 16 105 D 16 6 9 0 6 {:[16,1693,],[16,105,Duarr],[16,6,9uarr],[,0,6uarr]:}\begin{array}{l|r|l} 16 & 1693 & \\ \hline 16 & 105 & \mathrm{D}\uparrow \\ \hline 16 & 6 & 9 \uparrow\\ \hline & 0 & 6\uparrow \end{array}16169316105D166906
Step 2: Convert the Fractional Part to Hexadecimal
To convert the fractional part ( 0.0628 ) 10 ( 0.0628 ) 10 (0.0628)_(10)(0.0628)_{10}(0.0628)10 to hexadecimal, we use successive multiplication by 16 and note down the integer parts.
0.628 × 16 = 1.48 P 1 0.48 × 16 = 0.768 P 0 0.768 × 16 = 1.2288 P 1 0.2288 × 16 = 3.6608 P 3 0.6608 × 16 = 10.5728 P A 0.5728 × 16 = 9.1648 P 9 0.628 × 16 = 1.48  P  1 0.48 × 16 = 0.768  P  0 0.768 × 16 = 1.2288  P  1 0.2288 × 16 = 3.6608  P  3 0.6608 × 16 = 10.5728  P A  0.5728 × 16 = 9.1648  P  9 {:[0.628 xx16=1.48quad” P “1darr],[0.48 xx16=0.768quad” P “0darr],[0.768 xx16=1.2288quad” P “1darr],[0.2288 xx16=3.6608” P “3darr],[0.6608 xx16=10.5728” P A “darr],[0.5728 xx16=9.1648quad” P “9darr]:}\begin{aligned} & 0.628 \times 16=1.48 \quad \text { P } 1 \downarrow \\ & 0.48 \times 16=0.768 \quad \text { P } 0 \downarrow \\ & 0.768 \times 16=1.2288 \quad \text { P } 1 \downarrow \\ & 0.2288 \times 16=3.6608 \text { P } 3 \downarrow \\ & 0.6608 \times 16=10.5728 \text { P A } \downarrow \\ & 0.5728 \times 16=9.1648 \quad \text { P } 9 \downarrow \\ \end{aligned}0.628×16=1.48 P 10.48×16=0.768 P 00.768×16=1.2288 P 10.2288×16=3.6608 P 30.6608×16=10.5728 P A 0.5728×16=9.1648 P 9
Step 3: Combine the Integer and Fractional Parts
( 1693.0628 ) 10 = ( 69 D .1013 A 9 ) 16 ( 1693.0628 ) 10 = ( 69 D .1013 A 9 _ ) 16 :.(1693.0628)_(10)=(69 D.1013 A9_)_(16)\therefore(1693.0628)_{10}=(\underline{69 D .1013 A 9})_{16}(1693.0628)10=(69D.1013A9)16
(ii) Express the Boolean function F ( x , y , z ) = x y + x z F ( x , y , z ) = x y + x z F(x,y,z)=xy+x^(‘)zF(x, y, z)=x y+x^{\prime} zF(x,y,z)=xy+xz in a product of maxterms form.
Answer:

Expressing the Boolean Function F ( x , y , z ) = x y + x z F ( x , y , z ) = x y + x z F(x,y,z)=xy+x^(‘)zF(x, y, z) = xy + x’zF(x,y,z)=xy+xz in a Product of Maxterms Form

Given Function

The given Boolean function is:
F ( x , y , z ) = x y + x z F ( x , y , z ) = x y + x z F(x,y,z)=xy+x^(‘)zF(x, y, z) = xy + x’zF(x,y,z)=xy+xz

Step 1: Apply Distributive Law

First, we apply the distributive law to expand the function:
F ( x , y , z ) = x y + x z = ( x y + x ) ( x y + z ) F ( x , y , z ) = x y + x z = ( x y + x ) ( x y + z ) {:[F(x”,”y”,”z)=xy+x^(‘)z],[=(xy+x^(‘))(xy+z)]:}\begin{aligned} & F(x, y, z) = xy + x’z \\ & = (xy + x’)(xy + z) \end{aligned}F(x,y,z)=xy+xz=(xy+x)(xy+z)

Step 2: Apply the Identity Law

Next, we apply the identity law x + x = 1 x + x = 1 x+x^(‘)=1x + x’ = 1x+x=1:
= ( x + x ) ( y + x ) ( x + z ) ( y + z ) = ( y + x ) ( x + z ) ( y + z ) (because x + x = 1 ) = ( x + x ) ( y + x ) ( x + z ) ( y + z ) = ( y + x ) ( x + z ) ( y + z ) (because  x + x = 1 ) {:[=(x+x^(‘))(y+x^(‘))(x+z)(y+z)],[=(y+x^(‘))(x+z)(y+z)quad(because (x+x^(‘)=1)”)”]:}\begin{aligned} & = (x + x’)(y + x’)(x + z)(y + z) \\ & = (y + x’)(x + z)(y + z) \quad \text{(because \( x + x’ = 1 \))} \end{aligned}=(x+x)(y+x)(x+z)(y+z)=(y+x)(x+z)(y+z)(because x+x=1)

Step 3: Apply the Null Law

We then apply the null law A A = 0 A A = 0 AA^(‘)=0AA’ = 0AA=0:
= ( x + y + z z ) ( x + y y + z ) ( x x + y + z ) = ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) (since A A = 0 ) = ( x + y + z z ) ( x + y y + z ) ( x x + y + z ) = ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) (since  A A = 0 ) {:[=(x^(‘)+y+zz^(‘))(x+yy^(‘)+z)(xx^(‘)+y+z)],[=(x^(‘)+y+z)(x^(‘)+y+z^(‘))(x+y+z)(x+y^(‘)+z)quad(since (AA^(‘)=0)”)”]:}\begin{aligned} & = (x’ + y + zz’)(x + yy’ + z)(xx’ + y + z) \\ & = (x’ + y + z)(x’ + y + z’)(x + y + z)(x + y’ + z) \quad \text{(since \( AA’ = 0 \))} \end{aligned}=(x+y+zz)(x+yy+z)(xx+y+z)=(x+y+z)(x+y+z)(x+y+z)(x+y+z)(since AA=0)

Step 4: Apply the Idempotent Law

We apply the idempotent law A A = A A A = A AA=AAA = AAA=A:
= ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) (since A A = A ) = ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) (since  A A = A ) {:=(x^(‘)+y+z)(x^(‘)+y+z^(‘))(x+y+z)(x+y^(‘)+z)quad(since (AA=A)”)”:}\begin{aligned} & = (x’ + y + z)(x’ + y + z’)(x + y + z)(x + y’ + z) \quad \text{(since \( AA = A \))} \end{aligned}=(x+y+z)(x+y+z)(x+y+z)(x+y+z)(since AA=A)

Final Expression

Finally, we have:
F ( x , y , z ) = ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) F ( x , y , z ) = ( x + y + z ) ( x + y + z ) ( x + y + z ) ( x + y + z ) F(x,y,z)=(x+y+z)(x+y^(‘)+z)(x^(‘)+y+z)(x^(‘)+y+z^(‘))F(x, y, z) = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’)F(x,y,z)=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
This is the required product of maxterm form for the given Boolean function F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z).
Question:-05 (d) A particle at a distance r r rrr from the centre of force moves under the influence of the central force F = k r 2 F = k r 2 F=-(k)/(r^(2))F=-\frac{k}{r^{2}}F=kr2, where k k kkk is a constant. Obtain the Lagrangian and derive the equations of motion.
Answer:

Step 1: Define Kinetic Energy T T TTT

Let ( r , θ ) ( r , θ ) (r,theta)(r, \theta)(r,θ) be the plane polar coordinates of the particle of mass m m mmm. The kinetic energy T T TTT of the particle is given by:
T = 1 2 m ( r 2 + r 2 θ ˙ 2 ) T = 1 2 m r 2 + r 2 θ ˙ 2 T=(1)/(2)m(r^(2)+r^(2)theta^(˙)^(2))T = \frac{1}{2} m \left( r^2 + r^2 \dot{\theta}^2 \right)T=12m(r2+r2θ˙2)

Step 2: Define Central Force F F FFF

The force F F FFF exerted by the particle is proportional to 1 r 2 1 r 2 (1)/(r^(2))\frac{1}{r^2}1r2:
F 1 r 2 F = k r 2 F 1 r 2 F = k r 2 F prop(1)/(r^(2))quad=>quad F=-(k)/(r^(2))F \propto \frac{1}{r^2} \quad \Rightarrow \quad F = -\frac{k}{r^2}F1r2F=kr2
where k k kkk is the constant of proportionality.

Step 3: Define Potential Energy V V VVV

The potential energy V V VVV is related to the force F F FFF as:
F = d v d r d v = F d r F = d v d r d v = F d r F=-(dv)/(dr)quad=>quad dv=-FdrF = -\frac{dv}{dr} \quad \Rightarrow \quad dv = -F drF=dvdrdv=Fdr
Integrating, we get:
V = F d r = k r 2 d r = [ k r ] r = k r V = F d r = k r 2 d r = k r r = k r {:[V=-int_(oo)Fdr],[=int_(oo)(k)/(r^(2))dr],[=[-(k)/(r)]_(oo)^(r)],[=-(k)/(r)]:}\begin{aligned} V &= -\int_{\infty} F dr \\ &= \int_{\infty} \frac{k}{r^2} dr \\ &= \left[ -\frac{k}{r} \right]_{\infty}^r \\ &= -\frac{k}{r} \end{aligned}V=Fdr=kr2dr=[kr]r=kr

Step 4: Define Lagrangian L L LLL

The Lagrangian L L LLL is given by L = T V L = T V L=T-VL = T – VL=TV:
L = 1 2 m ( r 2 + r 2 θ ˙ 2 ) + k r L = 1 2 m r 2 + r 2 θ ˙ 2 + k r L=(1)/(2)m(r^(2)+r^(2)theta^(˙)^(2))+(k)/(r)L = \frac{1}{2} m \left( r^2 + r^2 \dot{\theta}^2 \right) + \frac{k}{r}L=12m(r2+r2θ˙2)+kr

Step 5: Partial Derivatives of L L LLL

We find the partial derivatives of L L LLL with respect to r r rrr, r ˙ r ˙ r^(˙)\dot{r}r˙, θ θ theta\thetaθ, and θ ˙ θ ˙ theta^(˙)\dot{\theta}θ˙:
L r ˙ = m r , L r = m r θ ˙ 2 k r 2 ; L θ = 0 , L θ ˙ = m r 2 θ ˙ L r ˙ = m r , L r = m r θ ˙ 2 k r 2 ; L θ = 0 , L θ ˙ = m r 2 θ ˙ (del L)/(del(r^(˙)))=mr,quad(del L)/(del r)=mrtheta^(˙)^(2)-(k)/(r^(2));quad(del L)/(del theta)=0,quad(del L)/(del(theta^(˙)))=mr^(2)theta^(˙)\frac{\partial L}{\partial \dot{r}} = m r, \quad \frac{\partial L}{\partial r} = m r \dot{\theta}^2 – \frac{k}{r^2} ; \quad \frac{\partial L}{\partial \theta} = 0, \quad \frac{\partial L}{\partial \dot{\theta}} = m r^2 \dot{\theta}Lr˙=mr,Lr=mrθ˙2kr2;Lθ=0,Lθ˙=mr2θ˙

Step 6: Equation of Motion in r r rrr

Using the Lagrangian equation, the equation of motion in r r rrr is:
d d t ( L r ˙ ) L r = 0 d d t ( m r ˙ ) ( m r θ ˙ 2 k r 2 ) = 0 m r ¨ m r θ ˙ 2 + k r 2 = 0 d d t L r ˙ L r = 0 d d t ( m r ˙ ) m r θ ˙ 2 k r 2 = 0 m r ¨ m r θ ˙ 2 + k r 2 = 0 {:[(d)/(dt)((del L)/(del(r^(˙))))-(del L)/(del r)=0],[=>(d)/(dt)(mr^(˙))-(mrtheta^(˙)^(2)-(k)/(r^(2)))=0],[=>mr^(¨)-mrtheta^(˙)^(2)+(k)/(r^(2))=0]:}\begin{aligned} & \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{r}} \right) – \frac{\partial L}{\partial r} = 0 \\ & \Rightarrow \frac{\mathbf{d}}{\mathbf{d} t}(m \dot {r})-\left(m r \dot{\theta}^2-\frac{k}{r^2}\right)=0 \\ & \Rightarrow m \ddot{r} – m r \dot{\theta}^2 + \frac{k}{r^2} = 0 \end{aligned}ddt(Lr˙)Lr=0ddt(mr˙)(mrθ˙2kr2)=0mr¨mrθ˙2+kr2=0

Step 7: Equation of Motion in θ θ theta\thetaθ

The Lagrangian equation in θ θ theta\thetaθ is:
d d t ( L θ ˙ ) L θ = 0 d d t ( m r 2 θ ˙ ) = 0 m r 2 θ ¨ + 2 m r r ˙ θ ˙ = 0 d d t L θ ˙ L θ = 0 d d t m r 2 θ ˙ = 0 m r 2 θ ¨ + 2 m r r ˙ θ ˙ = 0 {:[(d)/(dt)((del L)/(del(theta^(˙))))-(del L)/(del theta)=0],[=>(d)/(dt)(mr^(2)(theta^(˙)))=0],[=>mr^(2)theta^(¨)+2mrr^(˙)theta^(˙)=0]:}\begin{aligned} & \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) – \frac{\partial L}{\partial \theta} = 0 \\ & \Rightarrow \frac{\mathbf{d}}{\mathbf{d} t}\left(m r^2 \dot{\theta}\right)=0 \\ & \Rightarrow m r^2 \ddot{\theta} + 2 m r \dot{r} \dot{\theta} = 0 \end{aligned}ddt(Lθ˙)Lθ=0ddt(mr2θ˙)=0mr2θ¨+2mrr˙θ˙=0

This concludes the derivation of the equations of motion for a particle moving under the influence of a central force F = k r 2 F = k r 2 F=-(k)/(r^(2))F = -\frac{k}{r^2}F=kr2.
Question:-05 (e) The velocity components of an incompressible fluid in spherical polar coordinates ( r , θ , ψ ) ( r , θ , ψ ) (r,theta,psi)(r, \theta, \psi)(r,θ,ψ) are ( 2 M r 3 cos θ , M r 2 sin θ , 0 ) 2 M r 3 cos θ , M r 2 sin θ , 0 (2Mr^(-3)cos theta,Mr^(-2)sin theta,0)\left(2 M r^{-3} \cos \theta, M r^{-2} \sin \theta, 0\right)(2Mr3cosθ,Mr2sinθ,0), where M M MMM is a constant. Show that the velocity is of the potential kind. Find the velocity potential and the equations of the streamlines.
Answer:
Step 1: Identify Velocity Components
Given velocity components in spherical polar coordinates are:
q r = 2 M r 3 cos θ q r = 2 M r 3 cos θ q_(r)=2Mr^(-3)cos thetaq_r=2 M r^{-3} \cos \thetaqr=2Mr3cosθ,
q θ = M r 3 sin θ q θ = M r 3 sin θ q_( theta)=Mr^(-3)sin thetaq_\theta=M r^{-3} \sin \thetaqθ=Mr3sinθ, and
q ϕ = 0 q ϕ = 0 q_( phi)=0q_\phi=0qϕ=0.
Step 2: Express Velocity Vector q q qqq
Express the velocity vector q q qqq in terms of unit vectors e r e r e_(r)e_rer, e θ e θ e_( theta)e_\thetaeθ, and e ϕ e ϕ e_( phi)e_\phieϕ:
q = 2 M r 3 cos θ e r + M r 3 sin θ e θ + 0 e ϕ q = 2 M r 3 cos θ e r + M r 3 sin θ e θ + 0 e ϕ q=2Mr^(-3)cos thetae_(r)+Mr^(-3)sin thetae_( theta)+0e_( phi)q=2 M r^{-3} \cos \theta e_r+M r^{-3} \sin \theta e_\theta+0 e_\phiq=2Mr3cosθer+Mr3sinθeθ+0eϕ
Step 3: Calculate Curl of q q qqq
Calculate the curl of q q qqq using the determinant form:
curl q = 1 r 2 sin 2 θ | e r r e θ r sin θ e ϕ r θ ϕ q r q θ q ϕ | On simplification, we get curl q = 0 curl q = 1 r 2 sin 2 θ e r r e θ r sin θ e ϕ r θ ϕ q r q θ q ϕ On simplification, we get  curl q = 0 {:[curl q=(1)/(r^(2)sin^(2)theta)|[e_(r),re_( theta),r sin thetae_( phi)],[(del)/(del r),(del)/(del theta),(del)/(del phi)],[q_(r),q_( theta),q_( phi)]|],[“On simplification, we get “curl q=0]:}\begin{aligned} & \operatorname{curl} q=\frac{1}{r^2 \sin ^2 \theta} \begin{vmatrix} e_r & r e_\theta & r \sin \theta e_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ q_r & q_\theta & q_\phi \end{vmatrix} \\ & \text{On simplification, we get } \operatorname{curl} q = 0 \end{aligned}curlq=1r2sin2θ|erreθrsinθeϕrθϕqrqθqϕ|On simplification, we get curlq=0
Hence, the flow is of the potential kind.
Step 4: Find the Velocity Potential F F FFF
Let F ( r , θ , ϕ ) F ( r , θ , ϕ ) F(r,theta,phi)F(r, \theta, \phi)F(r,θ,ϕ) be the required velocity potential. By definition, we have:
F r = q r = 2 M r 3 cos θ 1 r F θ = q θ = M r 3 sin θ 1 r sin θ F ϕ = q ϕ = 0 F r = q r = 2 M r 3 cos θ 1 r F θ = q θ = M r 3 sin θ 1 r sin θ F ϕ = q ϕ = 0 {:[-(del F)/(del r)=q_(r)=2Mr^(-3)cos theta],[-(1)/(r)(del F)/(del theta)=q_( theta)=Mr^(-3)sin theta],[(1)/(r sin theta)(del F)/(del phi)=q_( phi)=0]:}\begin{aligned} -\frac{\partial F}{\partial r}&=q_r=2 M r^{-3} \cos \theta \\ -\frac{1}{r} \frac{\partial F}{\partial \theta}&=q_\theta=M r^{-3} \sin \theta \\ \frac{1}{r \sin \theta} \frac{\partial F}{\partial \phi}&=q_\phi=0 \end{aligned}Fr=qr=2Mr3cosθ1rFθ=qθ=Mr3sinθ1rsinθFϕ=qϕ=0
Integrate these equations to find F F FFF:
d F = F r d r + F θ d θ + F ϕ d ϕ d F = ( 2 M r 3 cos θ ) d r ( M r 2 sin θ ) d θ + 0 d ϕ d F = d ( M r 2 cos θ ) d F = F r d r + F θ d θ + F ϕ d ϕ d F = 2 M r 3 cos θ d r M r 2 sin θ d θ + 0 d ϕ d F = d M r 2 cos θ {:[dF=(del F)/(del r)dr+(del F)/(del theta)dtheta+(del F)/(del phi)dphi],[dF=-(2Mr^(-3)cos theta)dr-(Mr^(-2)sin theta)dtheta+0dphi],[dF=d(Mr^(-2)cos theta)]:}\begin{aligned} \mathbf{d} F&=\frac{\partial F}{\partial r} \mathbf{d} r+\frac{\partial F}{\partial \theta} \mathbf{d} \theta+\frac{\partial F}{\partial \phi} \mathbf{d} \phi \\ \mathbf{d} F&=-\left(2 M r^{-3} \cos \theta\right) \mathbf{d} r-\left(M r^{-2} \sin \theta\right) \mathbf{d} \theta+0 \mathbf{d} \phi \\ \mathbf{d} F&=\mathbf{d}\left(M r^{-2} \cos \theta\right) \end{aligned}dF=Frdr+Fθdθ+FϕdϕdF=(2Mr3cosθ)dr(Mr2sinθ)dθ+0dϕdF=d(Mr2cosθ)
Integrate to find F = M 2 cos θ F = M 2 cos θ F=M^(-2)cos thetaF=M^{-2} \cos \thetaF=M2cosθ (omitting the constant of integration).
Step 5: Equations of Streamlines
The equations of the streamlines can be found by solving the following expressions:
d r q r = r d θ q θ = r sin θ d ϕ q ϕ d r q r = r d θ q θ = r sin θ d ϕ q ϕ {:(dr)/(q_(r))=(rdtheta)/(q_( theta))=(r sin thetadphi)/(q_( phi)):}\begin{aligned} \frac{\mathbf{d} r}{q_r}&=\frac{r \mathbf{d} \theta}{q_\theta}=\frac{r \sin \theta \mathbf{d} \phi}{q_\phi} \end{aligned}drqr=rdθqθ=rsinθdϕqϕ
i.e, d r 2 M r 3 cos θ = r d θ M r 3 sin θ = r sin θ d ϕ 0  i.e,  d r 2 M r 3 cos θ = r d θ M r 3 sin θ = r sin θ d ϕ 0 ” i.e, “(dr)/(2Mr^(-3)cos theta)=(rd theta)/(Mr^(-3)sin theta)=(r sin theta d phi)/(0)\text { i.e, } \frac{\mathrm{d} r}{2 M r^{-3} \cos \theta}=\frac{r d \theta}{M r^{-3} \sin \theta}=\frac{r \sin \theta d \phi}{0} i.e, dr2Mr3cosθ=rdθMr3sinθ=rsinθdϕ0
Given d ϕ = 0 d ϕ = 0 d phi=0d \phi=0dϕ=0 and 2 cot θ d θ = ( 1 r ) d r 2 cot θ d θ = 1 r d r 2cot theta d theta=((1)/(r))dr2 \cot \theta d \theta=\left(\frac{1}{r}\right) \mathbf{d} r2cotθdθ=(1r)dr, we can integrate to find the equation of the streamlines:
ϕ = C 1 and r = C 2 sin 2 θ ϕ = C 1  and  r = C 2 sin 2 θ phi=C_(1)” and “r=C_(2)sin^(2)theta\phi=C_1 \text{ and } r=C_2 \sin ^2 \thetaϕ=C1 and r=C2sin2θ
Here, C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2 are arbitrary constants.
The equation ϕ = ϕ = phi=\phi=ϕ= constant shows that the required streamlines lie in a plane passing through the axis of symmetry θ = 0 θ = 0 theta=0\theta=0θ=0.
Question:-06 (a) Solve the heat equation u t = 2 u x 2 , 0 < x < l , t > 0 u t = 2 u x 2 , 0 < x < l , t > 0 (del u)/(del t)=(del^(2)u)/(delx^(2)),0 < x < l,t > 0\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<l, t>0ut=2ux2,0<x<l,t>0 subject to the conditions
u ( 0 , t ) = u ( l , t ) = 0 u ( x , 0 ) = x ( l x ) , 0 x l u ( 0 , t ) = u ( l , t ) = 0 u ( x , 0 ) = x ( l x ) , 0 x l {:[u(0″,”t)=u(l”,”t)=0],[u(x”,”0)=x(l-x)”,”quad0 <= x <= l]:}\begin{aligned} &u(0, t)=u(l, t)=0 \\ &u(x, 0)=x(l-x), \quad 0 \leq x \leq l \end{aligned}u(0,t)=u(l,t)=0u(x,0)=x(lx),0xl
Answer:
Given the heat equation:
u t = 2 u x 2 , 0 < x < l , t > 0 (1) u t = 2 u x 2 , 0 < x < l , t > 0 (1) (del u)/(del t)=(del^(2)u)/(delx^(2)),quad0 < x < l,t > 0quad(1)\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<l, t>0 \quad \text{(1)}ut=2ux2,0<x<l,t>0(1)
with the following conditions:
u ( 0 , t ) = u ( l , t ) = 0 (2) u ( x , 0 ) = x ( l x ) , 0 x l (3) u ( 0 , t ) = u ( l , t ) = 0 (2) u ( x , 0 ) = x ( l x ) , 0 x l (3) {:[u(0″,”t)=u(l”,”t)=0quad(2)],[u(x”,”0)=x(l-x)”,”quad0 <= x <= l quad(3)]:}\begin{aligned} & u(0, t)=u(l, t)=0 \quad \text{(2)} \\ & u(x, 0)=x(l-x), \quad 0 \leq x \leq l \quad \text{(3)} \end{aligned}u(0,t)=u(l,t)=0(2)u(x,0)=x(lx),0xl(3)
Step 1: Separation of Variables
Assume a solution of the form:
u ( x , t ) = X ( x ) T ( t ) (4) u ( x , t ) = X ( x ) T ( t ) (4) u(x,t)=X(x)T(t)quad(4)u(x, t) = X(x)T(t) \quad \text{(4)}u(x,t)=X(x)T(t)(4)
Where T ( t ) T ( t ) T(t)T(t)T(t) and X ( x ) X ( x ) X(x)X(x)X(x) are functions of t t ttt and x x xxx respectively.
Step 2: Apply Separation of Variables to the Heat Equation
Substituting ( 4 ) ( 4 ) (4)(4)(4) into ( 1 ) ( 1 ) (1)(1)(1), we get:
u t = X T , 2 u t 2 = X T u t = X T , 2 u t 2 = X T (del u)/(del t)=XT,(del^(2)u)/(delt^(2))=X^(”)T\frac{\partial u}{\partial t}=X T, \frac{\partial^2 u}{\partial t^2}=X^{\prime \prime} Tut=XT,2ut2=XT
Therefore X T = X T X T = X T XT=X^(”)TX T=X^{\prime \prime} TXT=XT
T T = X X = μ (5) T T = X X = μ (5) (T^(‘))/(T)=(X^(″))/(X)=muquad(5)\frac{T’}{T} = \frac{X”}{X} = \mu \quad \text{(5)}TT=XX=μ(5)
This results in two separate ordinary differential equations:
X μ X = 0 (6) X μ X = 0 (6) X^(″)-mu X=0quad(6)X” – \mu X = 0 \quad \text{(6)}XμX=0(6)
T μ T = 0 (7) T μ T = 0 (7) T-mu T=0quad(7)T – \mu T = 0 \quad \text{(7)}TμT=0(7)
Step 3: Boundary Conditions for X ( x ) X ( x ) X(x)X(x)X(x)
Using (2) and (4) u ( 0 , t ) = X ( 0 ) T ( t ) = 0 u ( 0 , t ) = X ( 0 ) T ( t ) = 0 -=u(0,t)=X(0)T(t)=0\equiv u(0, t)=X(0) T(t)=0u(0,t)=X(0)T(t)=0
And u ( l , t ) = X ( l ) T ( t ) = 0 u ( l , t ) = X ( l ) T ( t ) = 0 u(l,t)=X(l)T(t)=0u(l, t)=X(l) T(t)=0u(l,t)=X(l)T(t)=0
If T ( t ) = 0 T ( t ) = 0 T(t)=0T(t)=0T(t)=0 then u ( x , t ) = 0 u ( x , t ) = 0 u(x,t)=0u(x, t)=0u(x,t)=0 which is a contradictory to (3)
T ( t ) 0 T ( t ) 0 T(t)!=0T(t) \neq 0T(t)0
The boundary conditions ( 2 ) ( 2 ) (2)(2)(2) lead to X ( 0 ) = 0 X ( 0 ) = 0 X(0)=0X(0) = 0X(0)=0 and X ( l ) = 0 X ( l ) = 0 X(l)=0X(l) = 0X(l)=0, denoted as ( 8 ) ( 8 ) (8)(8)(8). These conditions will help determine the solutions for X ( x ) X ( x ) X(x)X(x)X(x).
Step 4: Solve for X ( x ) X ( x ) X(x)X(x)X(x) – Case 1: μ = 0 μ = 0 mu=0\mu = 0μ=0
For μ = 0 μ = 0 mu=0\mu = 0μ=0, we have:
X = 0 X ( x ) = A x + B X = 0 X ( x ) = A x + B X^(″)=0LongrightarrowX(x)=Ax+BX” = 0 \implies X(x) = Ax + BX=0X(x)=Ax+B
Applying ( 8 ) ( 8 ) (8)(8)(8), we find A = 0 A = 0 A=0A = 0A=0 and B = 0 B = 0 B=0B = 0B=0, which leads to X ( x ) = 0 X ( x ) = 0 X(x)=0X(x) = 0X(x)=0, contradicting ( 3 ) ( 3 ) (3)(3)(3). Thus, μ = 0 μ = 0 mu=0\mu = 0μ=0 is not a valid case.
Step 5: Solve for X ( x ) X ( x ) X(x)X(x)X(x) – Case 2: μ = λ 2 μ = λ 2 mu=lambda^(2)\mu = \lambda^2μ=λ2 ( λ > 0 λ > 0 lambda > 0\lambda > 0λ>0)
For μ = λ 2 μ = λ 2 mu=lambda^(2)\mu = \lambda^2μ=λ2, we have:
X λ 2 X = 0 X λ 2 X = 0 X^(″)-lambda^(2)X=0X” – \lambda^2 X = 0Xλ2X=0
This is a standard second-order linear differential equation, and its solutions are of the form:
X ( x ) = A e λ x + B e λ x X ( x ) = A e λ x + B e λ x X(x)=Ae^(lambda x)+Be^(-lambda x)X(x) = Ae^{\lambda x} + Be^{-\lambda x}X(x)=Aeλx+Beλx
Applying ( 8 ) ( 8 ) (8)(8)(8), we find A = 0 A = 0 A=0A = 0A=0 and B = 0 B = 0 B=0B = 0B=0, leading to X ( x ) = 0 X ( x ) = 0 X(x)=0X(x) = 0X(x)=0, which contradicts ( 3 ) ( 3 ) (3)(3)(3). Thus, μ = λ 2 μ = λ 2 mu=lambda^(2)\mu = \lambda^2μ=λ2 is not a valid case.
Step 6: Solve for X ( x ) X ( x ) X(x)X(x)X(x) – Case 3: μ = λ 2 μ = λ 2 mu=-lambda^(2)\mu = -\lambda^2μ=λ2 ( λ 0 λ 0 lambda!=0\lambda \neq 0λ0)
( 6 ) X ( x ) = A cos λ x + B sin λ x ( 10 ) ( 6 ) X ( x ) = A cos λ x + B sin λ x ( 10 ) (6)-=X^((x))=A cos lambda x+B sin lambda x rarr(10)(6) \equiv X^{(x)}=A \cos \lambda x+B \sin \lambda x \rightarrow(10)(6)X(x)=Acosλx+Bsinλx(10)
( 8 ) X ( 0 ) = A = 0 , X ( l ) = B sin λ l = 0 ( 8 ) X ( 0 ) = A = 0 , X ( l ) = B sin λ l = 0 (8)-=X(0)=A=0,X(l)=B sin lambda l=0(8) \equiv X(0)=A=0, X(l)=B \sin \lambda l=0(8)X(0)=A=0,X(l)=Bsinλl=0
There exist B 0 B 0 B!=0B \neq 0B0 such that sin λ l = 0 sin λ l = 0 sin lambda l=0\sin \lambda l=0sinλl=0
λ l = n π ; n = 0 , ± 1 , ± 2 λ = n π l ; n = 1 , 2 , 3 , ( 10 ) X ( x ) = B sin ( n π x l ) ; n = 1 , 2 , 3 , λ l = n π ; n = 0 , ± 1 , ± 2 λ = n π l ; n = 1 , 2 , 3 , ( 10 ) X ( x ) = B sin n π x l ; n = 1 , 2 , 3 , {:[=>lambda l=n pi;n=0″,”+-1″,”+-2],[=>lambda=(n pi)/(l);n=1″,”2″,”3″,”dots],[(10)-=X(x)=B sin((n pi x)/(l));n=1″,”2″,”3″,”dots]:}\begin{aligned} & \Rightarrow \lambda l=n \pi ; n=0, \pm 1, \pm 2 \\ & \Rightarrow \lambda=\frac{n \pi}{l} ; n=1,2,3, \ldots \\ & (10) \equiv X(x)=B \sin \left(\frac{n \pi x}{l}\right) ; n=1,2,3, \ldots \end{aligned}λl=nπ;n=0,±1,±2λ=nπl;n=1,2,3,(10)X(x)=Bsin(nπxl);n=1,2,3,
Now T + λ 2 T = 0 T + λ 2 T = 0 T+lambda^(2)T=0T+\lambda^2 T=0T+λ2T=0
T = C e λ 2 t = e λ 2 x 2 t l 2 ( 12 ) T = C e λ 2 t = e λ 2 x 2 t l 2 ( 12 ) =>T=Ce^(-lambda^(2)t)=e^(-(lambda^(2)x^(2)t)/(l^(2)))rarr(12)\Rightarrow T=C e^{-\lambda^2 t}=e^{-\frac{\lambda^2 x^2 t}{l^2}} \rightarrow(12)T=Ceλ2t=eλ2x2tl2(12)
( 11 ) ( 11 ) (11)(11)(11) and (12) X n ( x ) = B n sin ( n π x l ) ; n = 1 , 2 , 3 , X n ( x ) = B n sin n π x l ; n = 1 , 2 , 3 , -=X_(n)(x)=B_(n)sin((n pi x)/(l));n=1,2,3,dots\equiv X_n(x)=B_n \sin \left(\frac{n \pi x}{l}\right) ; n=1,2,3, \ldotsXn(x)=Bnsin(nπxl);n=1,2,3,
Step 7: Solve for T ( t ) T ( t ) T(t)T(t)T(t)
The time-dependent equation ( 7 ) ( 7 ) (7)(7)(7) can be solved as follows:
T n ( t ) = C n e ( n 2 π 2 l 2 ) t (12) T n ( t ) = C n e n 2 π 2 l 2 t (12) T_(n)(t)=C_(n)e^(-((n^(2)pi^(2))/(l^(2)))t)quad(12)T_n(t) = C_ne^{-\left(\frac{n^2\pi^2}{l^2}\right)t} \quad \text{(12)}Tn(t)=Cne(n2π2l2)t(12)
Step 8: General Solution for u ( x , t ) u ( x , t ) u(x,t)u(x, t)u(x,t)
The general solution for u ( x , t ) u ( x , t ) u(x,t)u(x, t)u(x,t) is a combination of the solutions obtained in steps 6 and 7:
u n ( x , t ) = B n sin ( n π x l ) e ( n 2 π 2 l 2 ) t for n = 1 , 2 , 3 , (13) u n ( x , t ) = B n sin n π x l e n 2 π 2 l 2 t for  n = 1 , 2 , 3 , (13) u_(n)(x,t)=B_(n)sin((n pi x)/(l))e^(-((n^(2)pi^(2))/(l^(2)))t)quad”for “n=1,2,3,dotsquad(13)u_n(x, t) = B_n\sin\left(\frac{n\pi x}{l}\right)e^{-\left(\frac{n^2\pi^2}{l^2}\right)t} \quad \text{for } n = 1, 2, 3, \ldots \quad \text{(13)}un(x,t)=Bnsin(nπxl)e(n2π2l2)tfor n=1,2,3,(13)
The more general form is:
u ( x , t ) = n = 1 D n sin ( n π x l ) e ( n 2 π 2 l 2 ) t (14) u ( x , t ) = n = 1 D n sin n π x l e n 2 π 2 l 2 t (14) u(x,t)=sum_(n=1)^(oo)D_(n)sin((n pi x)/(l))e^(-((n^(2)pi^(2))/(l^(2)))t)quad(14)u(x, t) = \sum_{n=1}^{\infty} D_n\sin\left(\frac{n\pi x}{l}\right)e^{-\left(\frac{n^2\pi^2}{l^2}\right)t} \quad \text{(14)}u(x,t)=n=1Dnsin(nπxl)e(n2π2l2)t(14)
Here D n = 2 l 0 x ( l x ) sin ( n π x l ) d x = 2 l 0 l ( x l x 2 ) sin ( n π x l ) d x = 2 l [ ( x l x 2 ) l n π cos ( n π x l ) + l 2 x n π l cos ( n π x l ) d x ] ] 0 l = 2 l [ ( x 2 x l ) l n π cos n π x l + l n π [ ( l 2 x ) l n π sin ( n π x l ) + l n π 2 sin n π x l d x ] ] 0 l = 2 l × l n π [ l ( l 2 x ) n π sin ( n π x l ) + l n π × l n π ( 2 ) cos ( n π x l ) ] 0 l l l l = 2 n π [ l 2 n π sin ( n π x l ) 2 x l n π sin ( n π x l ) 2 l 2 n 2 π 2 cos ( n π x l ) ] 0 D n = 2 n π [ 2 l 2 n 2 π 2 ( cos n π 1 ) ]  Here  D n = 2 l 0 x ( l x ) sin n π x l d x = 2 l 0 l x l x 2 sin n π x l d x = 2 l x l x 2 l n π cos n π x l + l 2 x n π l cos n π x l d x 0 l = 2 l x 2 x l l n π cos n π x l + l n π ( l 2 x ) l n π sin n π x l + l n π 2 sin n π x l d x 0 l = 2 l × l n π l ( l 2 x ) n π sin n π x l + l n π × l n π ( 2 ) cos n π x l 0 l l l l = 2 n π l 2 n π sin n π x l 2 x l n π sin n π x l 2 l 2 n 2 π 2 cos n π x l 0 D n = 2 n π 2 l 2 n 2 π 2 ( cos n π 1 ) {:[” Here “D_(n)=(2)/(l)int_(0)x(l-x)sin((n pi x)/(l))dx],[=(2)/(l)int_(0)^(l)(xl-x^(2))sin((n pi x)/(l))dx],[=(2)/(l)[-((xl-x^(2))l)/(n pi)cos((n pi x)/(l))+int(l-2x)/(n pi)l cos((n pi x)/(l))dx]]_(0)^(l)],[=(2)/(l)[((x^(2)-xl)l)/(n pi)cos((n pi x)/(l))+(l)/(n pi)[((l-2x)l)/(n pi)sin((n pi x)/(l))+(l)/(n pi)int2sin((n pi x)/(l))dx]]_(0)^(l)],[=(2)/(l)xx(l)/(n pi)[(l(l-2x))/(n pi)sin((n pi x)/(l))+(l)/(n pi)xx(l)/(n pi)(-2)cos((n pi x)/(l))]_(0)^(l)l_(l)^(l)],[=(2)/(n pi)[(l^(2))/(n pi)sin((n pi x)/(l))-(2xl)/(n pi)sin((n pi x)/(l))-(2l^(2))/(n^(2)pi^(2))cos((n pi x)/(l))]_(0)],[D_(n)=(2)/(n pi)[-(2l^(2))/(n^(2)pi^(2))(cos n pi-1)]]:}\begin{aligned} & \text { Here } D_n=\frac{2}{l} \int_0 x(l-x) \sin \left(\frac{n \pi x}{l}\right) \mathbf{d} x \\ & =\frac{2}{l} \int_0^l\left(x l-x^2\right) \sin \left(\frac{n \pi x}{l}\right) \mathbf{d} x \\ & \left.=\frac{2}{l}\left[-\frac{\left(x l-x^2\right) l}{n \pi} \cos \left(\frac{n \pi x}{l}\right)+\int \frac{l-2 x}{n \pi} l \cos \left(\frac{n \pi x}{l}\right) \mathbf{d} x\right]\right]_0^l \\ & =\frac{2}{l}\left[\frac{\left(x^2-x l\right) l}{n \pi} \cos \frac{n \pi x}{l}+\frac{l}{n \pi}\left[\frac{(l-2 x) l}{n \pi} \sin \left(\frac{n \pi x}{l}\right)+\frac{l}{n \pi} \int 2 \sin \frac{n \pi x}{l} \mathbf{d} x\right]\right]_0^l \\ & =\frac{2}{l} \times \frac{l}{n \pi}\left[\frac{l(l-2 x)}{n \pi} \sin \left(\frac{n \pi x}{l}\right)+\frac{l}{n \pi} \times \frac{l}{n \pi}(-2) \cos \left(\frac{n \pi x}{l}\right)\right]_0^l l_l^l \\ & =\frac{2}{n \pi}\left[\frac{l^2}{n \pi} \sin \left(\frac{n \pi x}{l}\right)-\frac{2 x l}{n \pi} \sin \left(\frac{n \pi x}{l}\right)-\frac{2 l^2}{n^2 \pi^2} \cos \left(\frac{n \pi x}{l}\right)\right]{ }_0 \\ & D_n=\frac{2}{n \pi}\left[-\frac{2 l^2}{n^2 \pi^2}(\cos n \pi-1)\right] \end{aligned} Here Dn=2l0x(lx)sin(nπxl)dx=2l0l(xlx2)sin(nπxl)dx=2l[(xlx2)lnπcos(nπxl)+l2xnπlcos(nπxl)dx]]0l=2l[(x2xl)lnπcosnπxl+lnπ[(l2x)lnπsin(nπxl)+lnπ2sinnπxldx]]0l=2l×lnπ[l(l2x)nπsin(nπxl)+lnπ×lnπ(2)cos(nπxl)]0llll=2nπ[l2nπsin(nπxl)2xlnπsin(nπxl)2l2n2π2cos(nπxl)]0Dn=2nπ[2l2n2π2(cosnπ1)]
Step 9: Apply Initial Condition
Using ( 2 ) ( 2 ) (2)(2)(2) and ( 13 ) ( 13 ) (13)(13)(13), we find that D n D n D_(n)D_nDn is given by:
D n = 8 l 2 n 3 π 3 for n odd , D n = 0 for n even (15) D n = 8 l 2 n 3 π 3 for  n  odd , D n = 0 for  n  even (15) D_(n)=(8l^(2))/(n^(3)pi^(3))quad”for “n” odd”,quadD_(n)=0quad”for “n” even”quad(15)D_n = \frac{8l^2}{n^3\pi^3} \quad \text{for } n \text{ odd}, \quad D_n = 0 \quad \text{for } n \text{ even} \quad \text{(15)}Dn=8l2n3π3for n odd,Dn=0for n even(15)
Step 10: Final Solution
The final solution for the given heat equation with the initial and boundary conditions is:
u ( x , t ) = n = 1 ( 8 l 2 n 3 π 3 ) sin ( n π x l ) e ( n 2 π 2 l 2 ) t (16) u ( x , t ) = n = 1 8 l 2 n 3 π 3 sin n π x l e n 2 π 2 l 2 t (16) u(x,t)=sum_(n=1)^(oo)(-(8l^(2))/(n^(3)pi^(3)))sin((n pi x)/(l))e^(-((n^(2)pi^(2))/(l^(2)))t)quad(16)u(x, t) = \sum_{n=1}^{\infty} \left(-\frac{8l^2}{n^3\pi^3}\right)\sin\left(\frac{n\pi x}{l}\right)e^{-\left(\frac{n^2\pi^2}{l^2}\right)t} \quad \text{(16)}u(x,t)=n=1(8l2n3π3)sin(nπxl)e(n2π2l2)t(16)
This is the solution that satisfies the heat equation along with the specified initial and boundary conditions.
Question:-06 (b) Find a combinatorial circuit corresponding to the Boolean function
f ( x , y , z ) = [ x ( y ¯ + z ) ] + y f ( x , y , z ) = [ x ( y ¯ + z ) ] + y f(x,y,z)=[x*( bar(y)+z)]+yf(x, y, z)=[x \cdot(\bar{y}+z)]+yf(x,y,z)=[x(y¯+z)]+y
and write the input/output table for the circuit.
Answer:
Introduction: In this problem, we need to find a combinatorial circuit corresponding to the given Boolean function and create the input/output table for the circuit.
Assumptions: We assume that the Boolean function is well-defined and uses standard Boolean operations.
Definition: A combinatorial circuit is a network of interconnected logic gates that perform a specific digital logic operation based on the input signals. The output of the circuit depends only on the current input values.
Method/Approach: To design the combinatorial circuit, we will first simplify the given Boolean function if possible, and then implement it using basic logic gates. After that, we will construct an input/output table for the circuit.
Work/Calculations:
The given Boolean function is:
f ( x , y , z ) = [ x ( y ¯ + z ) ] + y f ( x , y , z ) = [ x ( y ¯ + z ) ] + y f(x,y,z)=[x*( bar(y)+z)]+yf(x, y, z)=[x \cdot(\bar{y}+z)]+yf(x,y,z)=[x(y¯+z)]+y
We can simplify the expression using the distributive law:
f ( x , y , z ) = x y ¯ + x z + y f ( x , y , z ) = x y ¯ + x z + y f(x,y,z)=x bar(y)+xz+yf(x, y, z)=x \bar{y}+x z+yf(x,y,z)=xy¯+xz+y
original image
Now, we can implement this simplified Boolean function using basic logic gates:
  1. Use a NOT gate to find the complement of y , y ¯ y , y ¯ y, bar(y)y, \bar{y}y,y¯.
  2. Use an AND gate to find the product of x x xxx and y ¯ , x y ¯ y ¯ , x y ¯ bar(y),x bar(y)\bar{y}, x \bar{y}y¯,xy¯.
  3. Use an AND gate to find the product of x x xxx and z , x z z , x z z,xzz, x zz,xz.
  4. Use an OR gate to find the sum of x y ¯ x y ¯ x bar(y)x \bar{y}xy¯ and x z x z xzx zxz.
  5. Finally, use an OR gate to find the sum of the previous result and y y yyy.
    Now, let’s create the input/output table for the circuit:
x x x\mathbf{x}x y y y\mathbf{y}y z z z\mathbf{z}z y ¯ y ¯ bar(y)\bar{y}y¯ x y ¯ x y ¯ x bar(y)x \bar{y}xy¯ x z x z xzx zxz x y ¯ + x z x y ¯ + x z x bar(y)+xzx \bar{y}+x zxy¯+xz f ( x , y , z ) f ( x , y , z ) f(x,y,z)f(x, y, z)f(x,y,z)
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1
1 1 0 0 0 0 0 1
1 1 1 0 0 1 1 1
x y z bar(y) x bar(y) xz x bar(y)+xz f(x,y,z) 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1| $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | $\bar{y}$ | $x \bar{y}$ | $x z$ | $x \bar{y}+x z$ | $f(x, y, z)$ | | :— | :— | :— | :— | :— | :— | :— | :— | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
Conclusion: We have designed a combinatorial circuit corresponding to the Boolean function f ( x , y , z ) = x y ¯ + x z + y f ( x , y , z ) = x y ¯ + x z + y f(x,y,z)=x bar(y)+xz+yf(x, y, z)=x \bar{y}+x z+yf(x,y,z)=xy¯+xz+y, and constructed the input/output table for the circuit.
Question:-06 (c) Find the moment of inertia of a right circular solid cone about one of its slant sides (generator) in terms of its mass M M MMM, height h h hhh and the radius of base as a a aaa.
Answer:
Step 1: Establish Mass and Density Relationship
Let M M M\mathrm{M}M be the mass of a right circular cone with height h h h\mathrm{h}h and base radius a a aaa. If α α alpha\alphaα is the semi-vertical angle and ρ ρ rho\rhoρ is the density of the cone, then we have the relationship:
M = 1 3 ρ π h 3 tan 2 α ( 1 ) M = 1 3 ρ π h 3 tan 2 α ( 1 ) M=(1)/(3)rho pih^(3)tan^(2)alpha rarr(1)M=\frac{1}{3} \rho \pi h^3 \tan ^2 \alpha \rightarrow(1)M=13ρπh3tan2α(1)
Step 2: Coordinate System Setup
Take the vertex of the cone as the origin, x x x\mathrm{x}x-axis along the axis OD of the cone, and y y y\mathrm{y}y-axis perpendicular to OD. The slant side OA makes an angle α α alpha\alphaα with OX.
Step 3: Express Moment of Inertia Components
The moment of inertia of the cone about O A O A OAOAOA can be expressed as:
I O A = A cos 2 α + B sin 2 α F sin 2 α ( 2 ) I O A = A cos 2 α + B sin 2 α F sin 2 α ( 2 ) I_(OA)=Acos^(2)alpha+Bsin^(2)alpha-F sin 2alpha rarr(2)I_{OA}=A \cos ^2 \alpha+B \sin ^2 \alpha-F \sin 2 \alpha \rightarrow(2)IOA=Acos2α+Bsin2αFsin2α(2)
Where:
A A AAA is the moment of inertia of the cone about OX,
B B BBB is M I M I M*IM \cdot IMI. of the cone about OY OY OY\mathrm{OY}OY,
F F FFF is P I P I P*IP \cdot IPI. of the cone about OX OX OX\mathrm{OX}OX and OY OY OY\mathrm{OY}OY.
Step 4: Calculate A A AAA (Moment of Inertia about OX)
(i) Moment of Inertia ( I O X I O X I_(OX)I_{OX}IOX) of the elementary disc about OX:
I O X = 1 2 δ m c p 2 = 1 2 ρ π x 4 tan 4 α δ x I O X = 1 2 δ m c p 2 = 1 2 ρ π x 4 tan 4 α δ x {:I_(OX)=(1)/(2)delta m*cp^(2)=(1)/(2)rho pix^(4)tan^(4)alpha delta x:}\begin{aligned} I_{OX}&=\frac{1}{2} \delta m \cdot c p^2=\frac{1}{2} \rho \pi x^4 \tan ^4 \alpha \delta x \end{aligned}IOX=12δmcp2=12ρπx4tan4αδx
(ii) Moment of Inertia ( A A AAA) of the cone about OX:
A = 0 h 1 2 ρ π x 4 tan 4 α d x = 1 10 ρ π h 5 tan 4 α = 3 M 10 h 2 tan 2 α (from equation (1)) = 3 10 M a 2 (because tan α = a h ) A = 0 h 1 2 ρ π x 4 tan 4 α d x = 1 10 ρ π h 5 tan 4 α = 3 M 10 h 2 tan 2 α  (from equation (1)) = 3 10 M a 2  (because  tan α = a h ) {:[A=int_(0)^(h)(1)/(2)rho pix^(4)tan^(4)alphadx],[=(1)/(10)rho pih^(5)tan^(4)alpha],[=(3M)/(10)h^(2)tan^(2)alpha” (from equation (1))”],[=(3)/(10)Ma^(2)” (because “tan alpha=(a)/(h))]:}\begin{aligned} A&=\int_0^h \frac{1}{2} \rho \pi x^4 \tan ^4 \alpha \mathbf{d} x \\ &=\frac{1}{10} \rho \pi h^5 \tan ^4 \alpha \\ &=\frac{3 M}{10} h^2 \tan ^2 \alpha \text{ (from equation (1))}\\ &=\frac{3}{10} M a^2 \text{ (because } \tan \alpha=\frac{a}{h}) \end{aligned}A=0h12ρπx4tan4αdx=110ρπh5tan4α=3M10h2tan2α (from equation (1))=310Ma2 (because tanα=ah)
Step 5: Calculate B B BBB (Moment of Inertia about OY OY OY\mathrm{OY}OY)
(i) Moment of Inertia ( I O Y I O Y I_(OY)I_{OY}IOY) of the elementary disc about parallel diameter PQ and about OY:
I O Y = 1 4 δ m c p 2 + δ m O C 2 = ( 1 4 x 2 tan 2 α + x 2 ) ρ π x 2 tan 2 α δ x = 1 4 ( tan 2 α + 4 ) ρ π x 4 tan 2 α δ x I O Y = 1 4 δ m c p 2 + δ m O C 2 = 1 4 x 2 tan 2 α + x 2 ρ π x 2 tan 2 α δ x = 1 4 tan 2 α + 4 ρ π x 4 tan 2 α δ x {:[I_(OY)=(1)/(4)delta m*cp^(2)+delta m*OC^(2)],[=((1)/(4)x^(2)tan^(2)alpha+x^(2))*rho pix^(2)tan^(2)alpha delta x],[=(1)/(4)(tan^(2)alpha+4)rho pix^(4)tan^(2)alpha delta x]:}\begin{aligned} I_{OY}&=\frac{1}{4} \delta m \cdot c p^2+\delta m \cdot O C^2 \\ &=\left(\frac{1}{4} x^2 \tan ^2 \alpha+x^2\right) \cdot \rho \pi x^2 \tan ^2 \alpha \delta x \\ &=\frac{1}{4}\left(\tan ^2 \alpha+4\right) \rho \pi x^4 \tan ^2 \alpha \delta x \end{aligned}IOY=14δmcp2+δmOC2=(14x2tan2α+x2)ρπx2tan2αδx=14(tan2α+4)ρπx4tan2αδx
(ii) Moment of Inertia ( B B BBB) of the cone about OY:
B = 0 h 1 4 ( tan 2 α + 4 ) ρ π x 4 tan 2 α d x = 1 20 ρ π h 5 ( tan 2 α + 4 ) tan 2 α = 3 20 M h 2 ( tan 2 α + 4 ) (from equation (1)) = 3 20 M ( a 2 + 4 h 2 ) (because tan α = a h ) B = 0 h 1 4 tan 2 α + 4 ρ π x 4 tan 2 α d x = 1 20 ρ π h 5 tan 2 α + 4 tan 2 α = 3 20 M h 2 tan 2 α + 4  (from equation (1)) = 3 20 M a 2 + 4 h 2  (because  tan α = a h ) {:[B=int_(0)^(h)(1)/(4)(tan^(2)alpha+4)rho pix^(4)tan^(2)alphadx],[=(1)/(20)rho pih^(5)(tan^(2)alpha+4)tan^(2)alpha],[=(3)/(20)Mh^(2)(tan^(2)alpha+4)” (from equation (1))”],[=(3)/(20)M(a^(2)+4h^(2))” (because “tan alpha=(a)/(h))]:}\begin{aligned} B&=\int_0^h \frac{1}{4}\left(\tan ^2 \alpha+4\right) \rho \pi x^4 \tan ^2 \alpha \mathbf{d} x \\ &=\frac{1}{20} \rho \pi h^5\left(\tan ^2 \alpha+4\right) \tan ^2 \alpha \\ &=\frac{3}{20} M h^2\left(\tan ^2 \alpha+4\right) \text{ (from equation (1))}\\ &=\frac{3}{20} M\left(a^2+4 h^2\right) \text{ (because } \tan \alpha=\frac{a}{h}) \end{aligned}B=0h14(tan2α+4)ρπx4tan2αdx=120ρπh5(tan2α+4)tan2α=320Mh2(tan2α+4) (from equation (1))=320M(a2+4h2) (because tanα=ah)
Step 6: Calculate F F FFF (Moment of Inertia about OX OX OX\mathrm{OX}OX and OY OY OY\mathrm{OY}OY)
(i) F = P I F = P I F=P*IF=P \cdot IF=PI. of the cone about OX OX OX\mathrm{OX}OX and OY = 0 OY = 0 OY=0\mathrm{OY}=0OY=0, by symmetry about OX OX OX\mathrm{OX}OX.
(ii) cos α = O D O A = O D O D 2 + A D 2 = h h 2 + a 2 cos α = O D O A = O D O D 2 + A D 2 = h h 2 + a 2 cos alpha=(OD)/(OA)=(OD)/(sqrt(OD^(2)+AD^(2)))=(h)/(sqrt(h^(2)+a^(2)))\cos \alpha=\frac{O D}{O A}=\frac{O D}{\sqrt{O D^2+A D^2}}=\frac{h}{\sqrt{h^2+a^2}}cosα=ODOA=ODOD2+AD2=hh2+a2
(iii) sin α = A D O A = a h 2 + a 2 sin α = A D O A = a h 2 + a 2 sin alpha=(AD)/(OA)=(a)/(sqrt(h^(2)+a^(2)))\sin \alpha=\frac{A D}{O A}=\frac{a}{\sqrt{h^2+a^2}}sinα=ADOA=ah2+a2
From (2), the Moment of Inertia of the cone about the slant side is given by:
= 3 M a 2 20 × 6 h 2 + a 2 h 2 + a 2 = 3 M a 2 20 × 6 h 2 + a 2 h 2 + a 2 =(3Ma^(2))/(20)xx(6h^(2)+a^(2))/(h^(2)+a^(2))=\frac{3 M a^2}{20} \times \frac{6 h^2+a^2}{h^2+a^2}=3Ma220×6h2+a2h2+a2
Conclusion:
In conclusion, we have determined the moment of inertia of a right circular solid cone about one of its slant sides (generator) in terms of its mass M M MMM, height h h hhh, and the radius of the base a a aaa. The moment of inertia I O A I O A I_(OA)I_{OA}IOA about the generator O A O A OAOAOA is given by:
I O A = 3 M a 2 20 × 6 h 2 + a 2 h 2 + a 2 I O A = 3 M a 2 20 × 6 h 2 + a 2 h 2 + a 2 I_(OA)=(3Ma^(2))/(20)xx(6h^(2)+a^(2))/(h^(2)+a^(2))I_{OA}=\frac{3 M a^2}{20} \times \frac{6 h^2+a^2}{h^2+a^2}IOA=3Ma220×6h2+a2h2+a2
This expression represents the moment of inertia of the cone about the generator O A O A OAOAOA, providing a mathematical description of its rotational behavior with respect to an axis along the generator.
Question:-07 (a) Find the general solution of the partial differential equation
( D 2 + D D 6 D 2 ) z = x 2 sin ( x + y ) D 2 + D D 6 D 2 z = x 2 sin ( x + y ) (D^(2)+DD^(‘)-6D^(‘2))z=x^(2)sin(x+y)\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)(D2+DD6D2)z=x2sin(x+y)
where D x D x D-=(del)/(del x)D \equiv \frac{\partial}{\partial x}Dx and D y D y D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y}Dy.
Answer:
Given the partial differential equation:
( D 2 + D D 6 D 2 ) z = x 2 sin ( x + y ) (1) D 2 + D D 6 D 2 z = x 2 sin ( x + y ) (1) (D^(2)+DD^(‘)-6D^(‘2))z=x^(2)sin(x+y)quad(1)\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y) \quad \text{(1)}(D2+DD6D2)z=x2sin(x+y)(1)
Where D x D x D-=(del)/(del x)D \equiv \frac{\partial}{\partial x}Dx and D y D y D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y}Dy.
Step 1: Factoring the Differential Operator
The given equation can be factored as:
( D + 3 D ) ( D 2 D ) z = x 2 sin ( x + y ) D + 3 D D 2 D z = x 2 sin ( x + y ) (D+3D^(‘))(D-2D^(‘))z=x^(2)sin(x+y)\left(D+3 D^{\prime}\right)\left(D-2 D^{\prime}\right) z=x^2 \sin (x+y)(D+3D)(D2D)z=x2sin(x+y)
Step 2: Auxiliary Equation and Solutions for m m mmm
The auxiliary equation for this factored operator is:
( m + 3 ) ( m 2 ) = 0 ( m + 3 ) ( m 2 ) = 0 (m+3)(m-2)=0(m+3)(m-2) = 0(m+3)(m2)=0
Solving for m m mmm, we find m = 3 m = 3 m=-3m = -3m=3 and m = 2 m = 2 m=2m = 2m=2.
Step 3: Complementary Function (C.F.)
The complementary function is given by:
C . F = ϕ 1 ( y 3 x ) + ϕ 2 ( y + 2 x ) C . F = ϕ 1 ( y 3 x ) + ϕ 2 ( y + 2 x ) C.F=phi_(1)(y-3x)+phi_(2)(y+2x)C . F = \phi_1(y-3x) + \phi_2(y+2x)C.F=ϕ1(y3x)+ϕ2(y+2x)
where ϕ 1 ϕ 1 phi_(1)\phi_1ϕ1 and ϕ 2 ϕ 2 phi_(2)\phi_2ϕ2 are arbitrary functions.
Step 4: Particular Integral (P.I.)
P. I. = 1 D 2 + D D 6 D 2 x 2 sin ( x + y ) = Im [ 1 ( D 2 D ) ( D + 3 D ) x 2 e i ( x + y ) ] = Im [ e i ( x + y ) 1 ( D + i 2 D 2 i ) ( D + i + 3 D + 3 i ) x 2 ] = Im [ 1 4 i e i ( x + y ) 1 ( D 2 D i ) ( 1 + D + 3 D 4 i ) 1 x 2 ] = Im [ 1 4 i e i ( x + y ) 1 ( D 2 D i ) ( 1 D + 3 D 4 i D 2 + 6 D D + D 2 16 + ) x 2 ] = Im [ 1 4 i e i ( x + y ) 1 ( D 2 D i ) ( x 2 2 x 4 i 2 16 ) ] = Im [ 1 4 e i ( x + y ) { 1 + i ( D 2 D ) } 1 ( x 2 + i 2 x 1 8 ) ] = Im [ 1 4 e i ( x + y ) { 1 i ( D 2 D ) ( D 2 4 D D + 4 D 2 ) + } ( x 2 + i 2 x 1 8 ) ] = Im [ 1 4 e i ( x + y ) { x 2 + i 2 x 1 8 i ( 2 x + i 2 ) 2 } ] = 1 4 Im [ { cos ( x + y ) + i sin ( x + y ) } ( x 2 13 8 i 3 2 x ) ] = 1 4 [ ( x 2 13 8 ) sin ( x + y ) 3 2 x cos ( x + y ) ] .  P. I.  = 1 D 2 + D D 6 D 2 x 2 sin ( x + y ) = Im 1 D 2 D D + 3 D x 2 e i ( x + y ) = Im e i ( x + y ) 1 D + i 2 D 2 i D + i + 3 D + 3 i x 2 = Im 1 4 i e i ( x + y ) 1 D 2 D i 1 + D + 3 D 4 i 1 x 2 = Im 1 4 i e i ( x + y ) 1 D 2 D i 1 D + 3 D 4 i D 2 + 6 D D + D 2 16 + x 2 = Im 1 4 i e i ( x + y ) 1 D 2 D i x 2 2 x 4 i 2 16 = Im 1 4 e i ( x + y ) 1 + i D 2 D 1 x 2 + i 2 x 1 8 = Im 1 4 e i ( x + y ) 1 i D 2 D D 2 4 D D + 4 D 2 + x 2 + i 2 x 1 8 = Im 1 4 e i ( x + y ) x 2 + i 2 x 1 8 i 2 x + i 2 2 = 1 4 Im { cos ( x + y ) + i sin ( x + y ) } x 2 13 8 i 3 2 x = 1 4 x 2 13 8 sin ( x + y ) 3 2 x cos ( x + y ) . {:[” P. I. “=(1)/(D^(2)+DD^(‘)-6D^(‘2))x^(2)sin(x+y)],[=Im[(1)/((D-2D^(‘))(D+3D^(‘)))x^(2)e^(i(x+y))]],[=Im[e^(i(x+y))(1)/((D+i-2D^(‘)-2i)(D+i+3D^(‘)+3i))x^(2)]],[=Im[(1)/(4i)e^(i(x+y))(1)/((D-2D^(‘)-i))(1+(D+3D^(‘))/(4i))^(-1)x^(2)]],[=Im[(1)/(4i)e^(i(x+y))(1)/((D-2D^(‘)-i))(1-(D+3D^(‘))/(4i)-(D^(2)+6DD^(‘)+D^(‘2))/(16)+cdots)x^(2)]],[=Im[(1)/(4i)e^(i(x+y))(1)/((D-2D^(‘)-i))(x^(2)-(2x)/(4i)-(2)/(16))]],[=Im[(1)/(4)e^(i(x+y)){1+i(D-2D^(‘))}^(-1)(x^(2)+(i)/(2)x-(1)/(8))]],[=Im[(1)/(4)e^(i(x+y)){1-i(D-2D^(‘))-(D^(2)-4DD^(‘)+4D^(‘2))+cdots}(x^(2)+(i)/(2)x-(1)/(8))]],[=Im[(1)/(4)e^(i(x+y)){x^(2)+(i)/(2)x-(1)/(8)-i(2x+(i)/(2))-2}]],[=(1)/(4)Im[{cos(x+y)+i sin(x+y)}(x^(2)-(13)/(8)-i(3)/(2)x)]],[=(1)/(4)[(x^(2)-(13)/(8))sin(x+y)-(3)/(2)x cos(x+y)].]:}\begin{aligned} \text { P. I. } & =\frac{1}{D^2+D D^{\prime}-6 D^{\prime 2}} x^2 \sin (x+y) \\ & =\operatorname{Im}\left[\frac{1}{\left(D-2 D^{\prime}\right)\left(D+3 D^{\prime}\right)} x^2 e^{i(x+y)}\right] \\ & =\operatorname{Im}\left[e^{i(x+y)} \frac{1}{\left(D+i-2 D^{\prime}-2 i\right)\left(D+i+3 D^{\prime}+3 i\right)} x^2\right] \\ & =\operatorname{Im}\left[\frac{1}{4 i} e^{i(x+y)} \frac{1}{\left(D-2 D^{\prime}-i\right)}\left(1+\frac{D+3 D^{\prime}}{4 i}\right)^{-1} x^2\right] \\ & =\operatorname{Im}\left[\frac{1}{4 i} e^{i(x+y)} \frac{1}{\left(D-2 D^{\prime}-i\right)}\left(1-\frac{D+3 D^{\prime}}{4 i}-\frac{D^2+6 D D^{\prime}+D^{\prime 2}}{16}+\cdots\right) x^2\right] \\ & =\operatorname{Im}\left[\frac{1}{4 i} e^{i(x+y)} \frac{1}{\left(D-2 D^{\prime}-i\right)}\left(x^2-\frac{2 x}{4 i}-\frac{2}{16}\right)\right] \\ & =\operatorname{Im}\left[\frac{1}{4} e^{i(x+y)}\left\{1+i\left(D-2 D^{\prime}\right)\right\}^{-1}\left(x^2+\frac{i}{2} x-\frac{1}{8}\right)\right] \\ & =\operatorname{Im}\left[\frac{1}{4} e^{i(x+y)}\left\{1-i\left(D-2 D^{\prime}\right)-\left(D^2-4 D D^{\prime}+4 D^{\prime 2}\right)+\cdots\right\}\left(x^2+\frac{i}{2} x-\frac{1}{8}\right)\right] \\ & =\operatorname{Im}\left[\frac{1}{4} e^{i(x+y)}\left\{x^2+\frac{i}{2} x-\frac{1}{8}-i\left(2 x+\frac{i}{2}\right)-2\right\}\right] \\ & =\frac{1}{4} \operatorname{Im}\left[\{\cos (x+y)+i \sin (x+y)\}\left(x^2-\frac{13}{8}-i \frac{3}{2} x\right)\right] \\ & =\frac{1}{4}\left[\left(x^2-\frac{13}{8}\right) \sin (x+y)-\frac{3}{2} x \cos (x+y)\right] . \end{aligned} P. I. =1D2+DD6D2x2sin(x+y)=Im[1(D2D)(D+3D)x2ei(x+y)]=Im[ei(x+y)1(D+i2D2i)(D+i+3D+3i)x2]=Im[14iei(x+y)1(D2Di)(1+D+3D4i)1x2]=Im[14iei(x+y)1(D2Di)(1D+3D4iD2+6DD+D216+)x2]=Im[14iei(x+y)1(D2Di)(x22x4i216)]=Im[14ei(x+y){1+i(D2D)}1(x2+i2x18)]=Im[14ei(x+y){1i(D2D)(D24DD+4D2)+}(x2+i2x18)]=Im[14ei(x+y){x2+i2x18i(2x+i2)2}]=14Im[{cos(x+y)+isin(x+y)}(x2138i32x)]=14[(x2138)sin(x+y)32xcos(x+y)].
General Solution
The general solution for the given partial differential equation is:
z = ϕ 1 ( y 3 x ) + ϕ 2 ( y + 2 x ) + ( x 2 4 13 32 ) sin ( x + y ) 3 x 8 cos ( x + y ) z = ϕ 1 ( y 3 x ) + ϕ 2 ( y + 2 x ) + x 2 4 13 32 sin ( x + y ) 3 x 8 cos ( x + y ) z=phi_(1)(y-3x)+phi_(2)(y+2x)+((x^(2))/(4)-(13)/(32))sin(x+y)-(3x)/(8)cos(x+y)z = \phi_1(y-3x) + \phi_2(y+2x) + \left(\frac{x^2}{4} – \frac{13}{32}\right) \sin (x+y) – \frac{3x}{8} \cos (x+y)z=ϕ1(y3x)+ϕ2(y+2x)+(x241332)sin(x+y)3x8cos(x+y)
This solution satisfies the given partial differential equation.
Question:-07 (b) The velocity of a train which starts from rest is given by the following table, the time being reckoned in minutes from the start and the velocity in km / km / km//\mathrm{km} /km/ hour :
t t ttt (minutes) 2 4 6 8 10 12 14 16 18 20
v ( km / v ( km / v(km//v(\mathrm{~km} /v( km/ hour ) ) ))) 16 28 8 28 8 28*828 \cdot 8288 40 46 4 46 4 46*446 \cdot 4464 51 2 51 2 51*251 \cdot 2512 32 17 6 17 6 17*617 \cdot 6176 8 3 2 3 2 3*23 \cdot 232 0
t (minutes) 2 4 6 8 10 12 14 16 18 20 v(km// hour ) 16 28*8 40 46*4 51*2 32 17*6 8 3*2 0| $t$ (minutes) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | :— | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $v(\mathrm{~km} /$ hour $)$ | 16 | $28 \cdot 8$ | 40 | $46 \cdot 4$ | $51 \cdot 2$ | 32 | $17 \cdot 6$ | 8 | $3 \cdot 2$ | 0 |
Using Simpson’s 1 3 rd 1 3 rd (1)/(3)rd\frac{1}{3} \mathrm{rd}13rd rule, estimate approximately in km km km\mathrm{km}km the total distance run in 20 minutes.
Answer:
Estimation of Total Distance Using Simpson’s 1/3 Rule:
Given the velocity of a train as a function of time:
t t ttt (minutes) 2 4 6 8 10 12 14 16 18 20
v ( km / v ( km / v(km//v(\mathrm{~km} /v( km/ hour ) ) ))) 16 28 8 28 8 28*828 \cdot 8288 40 46 4 46 4 46*446 \cdot 4464 51 2 51 2 51*251 \cdot 2512 32 17 6 17 6 17*617 \cdot 6176 8 3 2 3 2 3*23 \cdot 232 0
t (minutes) 2 4 6 8 10 12 14 16 18 20 v(km// hour ) 16 28*8 40 46*4 51*2 32 17*6 8 3*2 0| $t$ (minutes) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | :— | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $v(\mathrm{~km} /$ hour $)$ | 16 | $28 \cdot 8$ | 40 | $46 \cdot 4$ | $51 \cdot 2$ | 32 | $17 \cdot 6$ | 8 | $3 \cdot 2$ | 0 |
We have the corresponding values of x x xxx and y y yyy:
x x x\mathbf{x}x 2 4 6 8 10 12 14 16 18 20
y y y\mathbf{y}y 16 28.8 40 46.4 51.2 32 17.6 8 3.2 0
x 2 4 6 8 10 12 14 16 18 20 y 16 28.8 40 46.4 51.2 32 17.6 8 3.2 0| $\mathbf{x}$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\mathbf{y}$ | 16 | 28.8 | 40 | 46.4 | 51.2 | 32 | 17.6 | 8 | 3.2 | 0 |
Step 1: Application of Simpson’s 1/3 Rule
Using Simpson’s 1 3 1 3 (1)/(3)\frac{1}{3}13 Rule for numerical integration, we estimate the total distance covered in 20 minutes as follows:
y d x = h 3 [ ( y 0 + y 9 ) + 4 ( y 1 + y 3 + y 5 + y 7 ) + 2 ( y 2 + y 4 + y 6 + y 8 ) ] y d x = 2 3 [ ( 16 + 0 ) + 4 × ( 28.8 + 46.4 + 32 + 8 ) + 2 × ( 40 + 51.2 + 17.6 + 3.2 ) ] y d x = 2 3 [ ( 16 + 0 ) + 4 × ( 115.2 ) + 2 × ( 112 ) ] y d x = 467.2 y d x = h 3 y 0 + y 9 + 4 y 1 + y 3 + y 5 + y 7 + 2 y 2 + y 4 + y 6 + y 8 y d x = 2 3 ( 16 + 0 ) + 4 × ( 28.8 + 46.4 + 32 + 8 ) + 2 × ( 40 + 51.2 + 17.6 + 3.2 ) y d x = 2 3 ( 16 + 0 ) + 4 × ( 115.2 ) + 2 × ( 112 ) y d x = 467.2 {:[int ydx=(h)/(3)[(y_(0)+y_(9))+4(y_(1)+y_(3)+y_(5)+y_(7))+2(y_(2)+y_(4)+y_(6)+y_(8))]],[int ydx=(2)/(3)[(16+0)+4xx(28.8+46.4+32+8)+2xx(40+51.2+17.6+3.2)]],[int ydx=(2)/(3)[(16+0)+4xx(115.2)+2xx(112)]],[int ydx=467.2]:}\begin{aligned} \int y \, dx &= \frac{h}{3} \left[\left(y_0 + y_9\right) + 4 \left(y_1 + y_3 + y_5 + y_7\right) + 2 \left(y_2 + y_4 + y_6 + y_8\right)\right] \\ \int y \, dx &= \frac{2}{3} \left[(16 + 0) + 4 \times (28.8 + 46.4 + 32 + 8) + 2 \times (40 + 51.2 + 17.6 + 3.2)\right] \\ \int y \, dx &= \frac{2}{3} \left[(16 + 0) + 4 \times (115.2) + 2 \times (112)\right] \\ \int y \, dx &= 467.2 \end{aligned}ydx=h3[(y0+y9)+4(y1+y3+y5+y7)+2(y2+y4+y6+y8)]ydx=23[(16+0)+4×(28.8+46.4+32+8)+2×(40+51.2+17.6+3.2)]ydx=23[(16+0)+4×(115.2)+2×(112)]ydx=467.2
Step 2: Conclusion
Using Simpson’s 1 3 1 3 (1)/(3)\frac{1}{3}13 Rule, the estimated total distance covered by the train in 20 minutes is approximately 467.2 kilometers.
Question:-07 (c) Two point vortices each of strength k k kkk are situated at ( ± a , 0 ) ( ± a , 0 ) (+-a,0)(\pm a, 0)(±a,0) and a point vortex of strength k 2 k 2 -(k)/(2)-\frac{k}{2}k2 is situated at the origin. Show that the fluid motion is stationary and also find the equations of streamlines. If the streamlines, which pass through the stagnation points, meet the x x xxx-axis at ( ± b , 0 ) ( ± b , 0 ) (+-b,0)(\pm b, 0)(±b,0), then show that 3 3 ( b 2 a 2 ) 2 = 16 a 3 b 3 3 b 2 a 2 2 = 16 a 3 b 3sqrt3(b^(2)-a^(2))^(2)=16a^(3)b3 \sqrt{3}\left(b^{2}-a^{2}\right)^{2}=16 a^{3} b33(b2a2)2=16a3b
Answer:
Analysis of Fluid Motion with Vortices:
Given the configuration of vortices in the fluid:
  • Two point vortices with strength k k kkk are located at ( ± a , 0 ) ( ± a , 0 ) (+-a,0)(\pm a, 0)(±a,0).
  • A point vortex with strength k 2 k 2 -(k)/(2)-\frac{k}{2}k2 is situated at the origin.
Step 1: Complex Potential
The complex potential of the fluid motion is given by:
W = i k 2 π log ( z a ) + i K 2 π log ( z + a ) i K 4 π log z W = i k 2 π log ( z a ) + i K 2 π log ( z + a ) i K 4 π log z W=(ik)/(2pi)log(z-a)+(iK)/(2pi)log(z+a)-(iK)/(4pi)log zW=\frac{i k}{2 \pi} \log (z-a)+\frac{i K}{2 \pi} \log (z+a)-\frac{i K}{4 \pi} \log zW=ik2πlog(za)+iK2πlog(z+a)iK4πlogz
Simplified as:
W = i K 2 π [ log ( z 2 a 2 ) 1 2 log z ] ( 1 ) W = i K 2 π log z 2 a 2 1 2 log z ( 1 ) W=(iK)/(2pi)[log(z^(2)-a^(2))-(1)/(2)log z]rarr(1)W=\frac{i K}{2 \pi}\left[\log \left(z^2-a^2\right)-\frac{1}{2} \log z\right] \rightarrow(1)W=iK2π[log(z2a2)12logz](1)
Step 2: Vortex at Point A
For the motion of the vortex at point A, the complex potential is:
W = W i K 2 π log ( z a ) = i K 2 π [ log ( z + a ) 1 2 log z ] W = W i K 2 π log ( z a ) = i K 2 π log ( z + a ) 1 2 log z {:[W^(‘)=W-(iK)/(2pi)log(z-a)],[=(iK)/(2pi)[log(z+a)-(1)/(2)log z]]:}\begin{aligned} & W^{\prime}=W-\frac{i K}{2 \pi} \log (z-a) \\ & =\frac{i K}{2 \pi}\left[\log (z+a)-\frac{1}{2} \log z\right] \end{aligned}W=WiK2πlog(za)=iK2π[log(z+a)12logz]
Calculating d W d z d W d z -(dW^(‘))/(dz)-\frac{\mathbf{d} W^{\prime}}{\mathbf{d} z}dWdz at z = a z = a z=az=az=a:
i K 2 π [ 1 z + a 1 2 z ] z = a = 0 i K 2 π 1 z + a 1 2 z z = a = 0 -(iK)/(2pi)[(1)/(z+a)-(1)/(2z)]_(z=a)=0-\frac{i K}{2 \pi}\left[\frac{1}{z+a}-\frac{1}{2 z}\right]_{z=a}=0iK2π[1z+a12z]z=a=0
This implies u A i v A = 0 u A i v A = 0 u_(A)-iv_(A)=0u_A-i v_A=0uAivA=0, indicating that the vortex at A is at rest. The same holds for vortices at O and B.
Step 3: Stationary Fluid Motion
Hence, the fluid motion is stationary, which establishes the first part of the problem.
Step 4: Equations of Streamlines
To determine the equations of streamlines, we start with:
ϕ + i Ψ = i K 2 π [ log ( z 2 a 2 ) 1 2 log z ] , where b y ( 1 ) = i K 2 π [ log ( x 2 y 2 a 2 + 2 i x y ) 1 2 log ( x + i y ) ] ϕ + i Ψ = i K 2 π log z 2 a 2 1 2 log z ,  where  b y ( 1 ) = i K 2 π log x 2 y 2 a 2 + 2 i x y 1 2 log ( x + i y ) {:[phi+i Psi=(iK)/(2pi)[log(z^(2)-a^(2))-(1)/(2)log z]”,”” where “by(1)],[=(iK)/(2pi)[log(x^(2)-y^(2)-a^(2)+2ixy)-(1)/(2)log(x+iy)]]:}\begin{aligned} & \phi+i \Psi=\frac{i K}{2 \pi}\left[\log \left(z^2-a^2\right)-\frac{1}{2} \log z\right], \text{ where } b y(1) \\ & =\frac{i K}{2 \pi}\left[\log \left(x^2-y^2-a^2+2 i x y\right)-\frac{1}{2} \log (x+i y)\right] \end{aligned}ϕ+iΨ=iK2π[log(z2a2)12logz], where by(1)=iK2π[log(x2y2a2+2ixy)12log(x+iy)]
Simplifying, we get:
Ψ = K 4 π [ log { ( x 2 y 2 a 2 ) 2 + 4 x 2 y 2 } 1 2 log ( x 2 + y 2 ) ] Ψ = K 4 π log x 2 y 2 a 2 2 + 4 x 2 y 2 1 2 log x 2 + y 2 Psi=(K)/(4pi)[log{(x^(2)-y^(2)-a^(2))^(2)+4x^(2)y^(2)}-(1)/(2)log(x^(2)+y^(2))]\Psi=\frac{K}{4 \pi}\left[\log \left\{\left(x^2-y^2-a^2\right)^2+4 x^2 y^2\right\}-\frac{1}{2} \log \left(x^2+y^2\right)\right]Ψ=K4π[log{(x2y2a2)2+4x2y2}12log(x2+y2)]
Streamlines are given by Ψ = Ψ = Psi=\Psi=Ψ= constant.
Step 5: Equation of Streamlines
That is log [ ( x 2 y 2 a 2 ) 2 + 4 x 2 y 2 x 2 + y 2 ] = log c log x 2 y 2 a 2 2 + 4 x 2 y 2 x 2 + y 2 = log c log[((x^(2)-y^(2)-a^(2))^(2)+4x^(2)y^(2))/(sqrt(x^(2)+y^(2)))]=log c\log \left[\frac{\left(x^2-y^2-a^2\right)^2+4 x^2 y^2}{\sqrt{x^2+y^2}}\right]=\log clog[(x2y2a2)2+4x2y2x2+y2]=logc
Or ( x 2 y 2 a 2 ) 2 + 4 x 2 y 2 = c ( x 2 + y 2 ) 1 2 x 2 y 2 a 2 2 + 4 x 2 y 2 = c x 2 + y 2 1 2 (x^(2)-y^(2)-a^(2))^(2)+4x^(2)y^(2)=c(x^(2)+y^(2))^((1)/(2))\left(x^2-y^2-a^2\right)^2+4 x^2 y^2=c\left(x^2+y^2\right)^{\frac{1}{2}}(x2y2a2)2+4x2y2=c(x2+y2)12
Or ( x 2 y 2 ) 2 + a 4 2 a 2 ( x 2 y 2 ) + 4 x 2 y 2 = c ( x 2 + y 2 ) 1 2 x 2 y 2 2 + a 4 2 a 2 x 2 y 2 + 4 x 2 y 2 = c x 2 + y 2 1 2 (x^(2)-y^(2))^(2)+a^(4)-2a^(2)(x^(2)-y^(2))+4x^(2)y^(2)=c(x^(2)+y^(2))^((1)/(2))\left(x^2-y^2\right)^2+a^4-2 a^2\left(x^2-y^2\right)+4 x^2 y^2=c\left(x^2+y^2\right)^{\frac{1}{2}}(x2y2)2+a42a2(x2y2)+4x2y2=c(x2+y2)12
Or ( x 2 + y 2 ) 2 2 a 2 ( x 2 y 2 ) + a 4 = c ( x 2 + y 2 ) 1 2 ( 2 ) x 2 + y 2 2 2 a 2 x 2 y 2 + a 4 = c x 2 + y 2 1 2 ( 2 ) (x^(2)+y^(2))^(2)-2a^(2)(x^(2)-y^(2))+a^(4)=c(x^(2)+y^(2))^((1)/(2))rarr(2)\left(x^2+y^2\right)^2-2 a^2\left(x^2-y^2\right)+a^4=c\left(x^2+y^2\right)^{\frac{1}{2}} \rightarrow(2)(x2+y2)22a2(x2y2)+a4=c(x2+y2)12(2)
Step 6: Stagnation Points
To find stagnation points, we set:
d W d z = 0 , i.e. 2 z z 2 a 2 1 2 z = 0 , at b y ( 1 ) d W d z = 0 ,  i.e.  2 z z 2 a 2 1 2 z = 0 ,  at  b y ( 1 ) (dW)/(dz)=0,” i.e. “(2z)/(z^(2)-a^(2))-(1)/(2z)=0,” at “by(1)\frac{\mathbf{d} W}{\mathbf{d} z}=0, \text { i.e. } \frac{2 z}{z^2-a^2}-\frac{1}{2 z}=0, \text{ at } b y(1)dWdz=0, i.e. 2zz2a212z=0, at by(1)
3 z 2 + a 2 = 0 or z = ± i a 3 3 z 2 + a 2 = 0  or  z = ± i a 3 3z^(2)+a^(2)=0″ or “z=+-(ia)/(sqrt3)3 z^2+a^2=0 \text { or } z= \pm \frac{i a}{\sqrt{3}}3z2+a2=0 or z=±ia3
Solving for z z zzz, we find stagnation points at ( 0 , a 3 ) 0 , a 3 (0,(a)/(sqrt3))\left(0, \frac{a}{\sqrt{3}}\right)(0,a3) and ( 0 , a 3 ) 0 , a 3 (0,-(a)/(sqrt3))\left(0,-\frac{a}{\sqrt{3}}\right)(0,a3).
Step 7: Meeting the x x xxx-axis
The streamlines given by (2) will pass through the stagnation points only if:
( a 2 3 ) 2 2 a 2 ( 0 a 2 3 ) + a 4 = c ( 0 + a 2 3 ) 1 2 a 2 3 2 2 a 2 0 a 2 3 + a 4 = c 0 + a 2 3 1 2 ((a^(2))/(3))^(2)-2a^(2)(0-(a^(2))/(3))+a^(4)=c(0+(a^(2))/(3))^((1)/(2))\left(\frac{a^2}{3}\right)^2-2 a^2\left(0-\frac{a^2}{3}\right)+a^4=c\left(0+\frac{a^2}{3}\right)^{\frac{1}{2}}(a23)22a2(0a23)+a4=c(0+a23)12
This leads to the value of c c ccc:
c = 16 a 3 3 3 c = 16 a 3 3 3 c=16(a^(3))/(3sqrt3)c=16 \frac{a^3}{3 \sqrt{3}}c=16a333
Step 8: Relationship between a a aaa and b b bbb
The streamlines (2) will pass through ( ± b , 0 ) ( ± b , 0 ) (+-b,0)( \pm b, 0)(±b,0) if:
b 4 2 a 2 ( b 2 0 ) + a 4 = c ( b 2 + 0 ) 1 2 = b 16 a 3 3 3 b 4 2 a 2 b 2 0 + a 4 = c b 2 + 0 1 2 = b 16 a 3 3 3 b^(4)-2a^(2)(b^(2)-0)+a^(4)=c(b^(2)+0)^((1)/(2))=b(16a^(3))/(3sqrt3)b^4-2 a^2\left(b^2-0\right)+a^4=c\left(b^2+0\right)^{\frac{1}{2}}=b \frac{16 a^3}{3 \sqrt{3}}b42a2(b20)+a4=c(b2+0)12=b16a333
b 4 2 a 2 b 2 + a 4 = ( 16 a 3 b 3 3 ) b 4 2 a 2 b 2 + a 4 = 16 a 3 b 3 3 b^(4)-2a^(2)b^(2)+a^(4)=((16a^(3)b)/(3sqrt3))b^4-2 a^2 b^2+a^4=\left(\frac{16 a^3 b}{3 \sqrt{3}}\right)b42a2b2+a4=(16a3b33)
Which simplifies to:
3 3 ( b 2 a 2 ) 2 = 16 a 3 b 3 3 b 2 a 2 2 = 16 a 3 b 3sqrt3(b^(2)-a^(2))^(2)=16a^(3)b3 \sqrt{3}\left(b^2-a^2\right)^2=16 a^3 b33(b2a2)2=16a3b
This concludes the solution.
Question:-08 (a) Reduce the following partial differential equation to a canonical form and hence solve it :
y u x x + ( x + y ) u x y + x u y y = 0 y u x x + ( x + y ) u x y + x u y y = 0 yu_(xx)+(x+y)u_(xy)+xu_(yy)=0y u_{x x}+(x+y) u_{x y}+x u_{y y}=0yuxx+(x+y)uxy+xuyy=0
Answer:
Partial Differential Equation and Canonical Form:
We are given the partial differential equation:
y u x x + ( x + y ) u x y + x u y y = 0 y u x x + ( x + y ) u x y + x u y y = 0 yu_(xx)+(x+y)u_(xy)+xu_(yy)=0y u_{xx} + (x+y) u_{xy} + x u_{yy} = 0yuxx+(x+y)uxy+xuyy=0
Step 1: Canonical Form Analysis
We start by defining y r + ( x + y ) s + x t = 0 y r + ( x + y ) s + x t = 0 yr+(x+y)s+xt=0y r + (x+y) s + x t = 0yr+(x+y)s+xt=0 as equation (1). We’ll compare this with the general form R r + S s + T t + f ( x , y , t , p , q ) = 0 R r + S s + T t + f ( x , y , t , p , q ) = 0 Rr+Ss+Tt+f(x,y,t,p,q)=0Rr + Ss + Tt + f(x, y, t, p, q) = 0Rr+Ss+Tt+f(x,y,t,p,q)=0.
Here, we have R = y R = y R=yR = yR=y, S = x + y S = x + y S=x+yS = x + yS=x+y, and T = x T = x T=xT = xT=x.
To determine the nature of (1), we evaluate S 2 4 R T S 2 4 R T S^(2)-4RTS^2 – 4RTS24RT:
S 2 4 R T = ( x + y ) 2 4 x y = ( x y ) 2 > 0 for x y S 2 4 R T = ( x + y ) 2 4 x y = ( x y ) 2 > 0  for  x y S^(2)-4RT=(x+y)^(2)-4xy=(x-y)^(2) > 0″ for “x!=yS^2 – 4RT = (x+y)^2 – 4xy = (x-y)^2 > 0 \text{ for } x \neq yS24RT=(x+y)24xy=(xy)2>0 for xy
This shows that (1) is hyperbolic.
Step 2: Characteristic Equations
Next, we consider the characteristic equation for (1):
R λ 2 + S λ + T = 0 R λ 2 + S λ + T = 0 Rlambda^(2)+S lambda+T=0R\lambda^2 + S\lambda + T = 0Rλ2+Sλ+T=0
Substituting the values of R R RRR, S S SSS, and T T TTT, we get:
y λ 2 + ( x + y ) λ + x = 0 y λ 2 + ( x + y ) λ + x = 0 ylambda^(2)+(x+y)lambda+x=0y\lambda^2 + (x+y)\lambda + x = 0yλ2+(x+y)λ+x=0
This quadratic equation has solutions λ = 1 λ = 1 lambda=-1\lambda = -1λ=1 and λ = x y λ = x y lambda=-(x)/(y)\lambda = -\frac{x}{y}λ=xy.
The corresponding characteristic equations are:
d y d x 1 = 0 d y d x 1 = 0 (dy)/(dx)-1=0\frac{dy}{dx} – 1 = 0dydx1=0
and
d y d x x y = 0 d y d x x y = 0 (dy)/(dx)-(x)/(y)=0\frac{dy}{dx} – \frac{x}{y} = 0dydxxy=0
Integrating these, we obtain:
y x = c 1 (for the first equation) y x = c 1 (for the first equation) y-x=c_(1)quad(for the first equation)y – x = c_1 \quad \text{(for the first equation)}yx=c1(for the first equation)
and
y 2 2 x 2 2 = c 2 (for the second equation) y 2 2 x 2 2 = c 2 (for the second equation) (y^(2))/(2)-(x^(2))/(2)=c_(2)quad(for the second equation)\frac{y^2}{2} – \frac{x^2}{2} = c_2 \quad \text{(for the second equation)}y22x22=c2(for the second equation)
Step 3: Reducing to Canonical Form
To reduce equation (1) to its canonical form, we introduce new variables:
u = y x and V = y 2 2 x 2 2 (equation 2) u = y x and V = y 2 2 x 2 2 (equation 2) u=y-x quad”and”quad V=(y^(2))/(2)-(x^(2))/(2)quad(equation 2)u = y – x \quad \text{and} \quad V = \frac{y^2}{2} – \frac{x^2}{2} \quad \text{(equation 2)}u=yxandV=y22x22(equation 2)
Now, we express partial derivatives in terms of u u uuu and V V VVV:
p = z x = z u u x + z v v x = ( z u + x z v ) , using (2) (3) q = z y = z u u y + z v v y = z u + y z v , using (2) (4) r = 2 z x 2 = x ( z x ) = x ( z u ) x ( x z v ) using (3) = x ( z u ) [ x x ( z v ) + z v ] = x ( z u ) x x ( z v ) z v [ u ( z u ) u x + v ( z u ) v x ] x [ u ( z v ) u x + v ( z v ) v x ] z v = ( 2 z u 2 x 2 z v u ) x ( 2 z u v x 2 z v 2 ) z v using (2) v = 2 z u 2 + 2 z 2 z u v + x 2 2 z v 2 z v Now, t = 2 z y 2 = y ( z y ) = y ( z u + y z v ) = y ( z u ) + y ( y z v ) b y ( 4 ) = y ( z u ) + y y ( z v ) + z v = u ( z u ) ( u y ) + v ( z u ) v y + y { u ( z v ) u y + v ( z v ) v y } + z v 2 z u 2 + y 2 z u v + y ( 2 z u v + y 2 z v 2 ) + z v t = 2 z u 2 + 2 y 2 z u v + y 2 2 z v 2 + z v Also s = 2 z x y = x ( z y ) = x ( z u + y z v ) using = x ( z u ) + x ( y z v ) = x ( z u ) + y x ( z v ) = u ( z u ) u x + v ( z v ) v x + y { u ( z v ) u x + v ( z v ) v x } 2 z u 2 ( x + y ) 2 z u v x y 2 z v 2 (7) p = z x = z u u x + z v v x = z u + x z v ,  using (2)   (3)  q = z y = z u u y + z v v y = z u + y z v ,  using (2)   (4)  r = 2 z x 2 = x z x = x z u x x z v  using (3)  = x z u x x z v + z v = x z u x x z v z v u z u u x + v z u v x x u z v u x + v z v v x z v = 2 z u 2 x 2 z v u x 2 z u v x 2 z v 2 z v  using (2)  v = 2 z u 2 + 2 z 2 z u v + x 2 2 z v 2 z v  Now,  t = 2 z y 2 = y z y = y z u + y z v = y z u + y y z v b y ( 4 ) = y z u + y y z v + z v = u z u u y + v z u v y + y u z v u y + v z v v y + z v 2 z u 2 + y 2 z u v + y 2 z u v + y 2 z v 2 + z v t = 2 z u 2 + 2 y 2 z u v + y 2 2 z v 2 + z v  Also  s = 2 z x y = x z y = x z u + y z v  using  = x z u + x y z v = x z u + y x z v = u z u u x + v z v v x + y u z v u x + v z v v x 2 z u 2 ( x + y ) 2 z u v x y 2 z v 2  (7)  {:[{:[p=(del z)/(del x)=(del z)/(del u)(del u)/(del x)+(del z)/(del v)(del v)/(del x)=-((del z)/(del u)+x(del z)/(del v))”,”” using (2) “rarr” (3) “],[q=(del z)/(del y)=(del z)/(del u)(del u)/(del y)+(del z)/(del v)(del v)/(del y)=(del z)/(del u)+y(del z)/(del v)”,”” using (2) “rarr” (4) “],[r=(del^(2)z)/(delx^(2))=(del)/(del x)((del z)/(del x))=-(del)/(del x)((del z)/(del u))-(del)/(del x)(x(del z)/(del v))” using (3) “],[=-(del)/(del x)((del z)/(del u))-[x(del)/(del x)((del z)/(del v))+(del z)/(del v)]=-(del)/(del x)((del z)/(del u))-x(del)/(del x)((del z)/(del v))-(del z)/(del v)],[=>-[(del)/(del u)((del z)/(del u))(del u)/(del x)+(del)/(del v)((del z)/(del u))(del v)/(del x)]-x[(del)/(del u)((del z)/(del v))(del u)/(del x)+(del)/(del v)((del z)/(del v))(del v)/(del x)]-(del z)/(del v)],[=-(-(del^(2)z)/(delu^(2))-x(del^(2)z)/(del v del u))-x(-(del^(2)z)/(del u del v)-x(del^(2)z)/(delv^(2)))-(del z)/(del v)” using (2) “],[v=(del^(2)z)/(delu^(2))+2z(del^(2)z)/(del u del v)+x^(2)(del^(2)z)/(delv^(2))-(del z)/(del v)]:}],[{:[” Now, “t=(del^(2)z)/(dely^(2))=(del)/(del y)((del z)/(del y))=(del)/(del y)((del z)/(del u)+y(del z)/(del v))],[=(del)/(del y)((del z)/(del u))+(del)/(del y)(y(del z)/(del v))by(4)],[=(del)/(del y)((del z)/(del u))+y(del)/(del y)((del z)/(del v))+(del z)/(del v)],[=(del)/(del u)((del z)/(del u))((del u)/(del y))+(del)/(del v)((del z)/(del u))(del v)/(del y)+y{(del)/(del u)((del z)/(del v))(del u)/(del y)+(del)/(del v)((del z)/(del v))(del v)/(del y)}+(del z)/(del v)],[=>(del^(2)z)/(delu^(2))+y(del^(2)z)/(del u del v)+y((del^(2)z)/(del u del v)+y(del^(2)z)/(delv^(2)))+(del z)/(del v)],[t=(del^(2)z)/(delu^(2))+2y(del^(2)z)/(del u del v)+y^(2)(del^(2)z)/(delv^(2))+(del z)/(del v)]:}],[{:[” Also “s=(del^(2)z)/(del x del y)=(del)/(del x)((del z)/(del y))=(del)/(del x)((del z)/(del u)+y(del z)/(del v))” using “],[=(del)/(del x)((del z)/(del u))+(del)/(del x)(y(del z)/(del v))=(del)/(del x)((del z)/(del u))+y(del)/(del x)((del z)/(del v))],[=(del)/(del u)((del z)/(del u))(del u)/(del x)+(del)/(del v)((del z)/(del v))(del v)/(del x)+y{(del)/(del u)((del z)/(del v))(del u)/(del x)+(del)/(del v)((del z)/(del v))(del v)/(del x)}],[=>-(del^(2)z)/(delu^(2))-(x+y)(del^(2)z)/(del u del v)-xy(del^(2)z)/(delv^(2))rarr” (7) “],[]:}]:}\begin{aligned} &\begin{aligned} p & =\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x}=-\left(\frac{\partial z}{\partial u}+x \frac{\partial z}{\partial v}\right), \text { using (2) } \rightarrow \text { (3) } \\ q & =\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial y}=\frac{\partial z}{\partial u}+y \frac{\partial z}{\partial v}, \text { using (2) } \rightarrow \text { (4) } \\ r & =\frac{\partial^2 z}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=-\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}\right)-\frac{\partial}{\partial x}\left(x \frac{\partial z}{\partial v}\right) \text { using (3) } \\ & =-\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}\right)-\left[x \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial v}\right)+\frac{\partial z}{\partial v}\right]=-\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}\right)-x \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial v}\right)-\frac{\partial z}{\partial v} \\ & \Rightarrow-\left[\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\right) \frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial u}\right) \frac{\partial v}{\partial x}\right]-x\left[\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial v}\right) \frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial v}\right) \frac{\partial v}{\partial x}\right]-\frac{\partial z}{\partial v} \\ & =-\left(-\frac{\partial^2 z}{\partial u^2}-x \frac{\partial^2 z}{\partial v \partial u}\right)-x\left(-\frac{\partial^2 z}{\partial u \partial v}-x \frac{\partial^2 z}{\partial v^2}\right)-\frac{\partial z}{\partial v} \text { using (2) } \\ v & =\frac{\partial^2 z}{\partial u^2}+2 z \frac{\partial^2 z}{\partial u \partial v}+x^2 \frac{\partial^2 z}{\partial v^2}-\frac{\partial z}{\partial v} \end{aligned}\\ &\begin{aligned} & \text { Now, } t=\frac{\partial^2 z}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial u}+y \frac{\partial z}{\partial v}\right) \\ & =\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial u}\right)+\frac{\partial}{\partial y}\left(y \frac{\partial z}{\partial v}\right) b y(4) \\ & =\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial u}\right)+y \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial v}\right)+\frac{\partial z}{\partial v} \\ & =\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\right)\left(\frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial u}\right) \frac{\partial v}{\partial y}+y\left\{\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial v}\right) \frac{\partial u}{\partial y}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial v}\right) \frac{\partial v}{\partial y}\right\}+\frac{\partial z}{\partial v} \\ & \Rightarrow \frac{\partial^2 z}{\partial u^2}+y \frac{\partial^2 z}{\partial u \partial v}+y\left(\frac{\partial^2 z}{\partial u \partial v}+y \frac{\partial^2 z}{\partial v^2}\right)+\frac{\partial z}{\partial v} \\ & t=\frac{\partial^2 z}{\partial u^2}+2 y \frac{\partial^2 z}{\partial u \partial v}+y^2 \frac{\partial^2 z}{\partial v^2}+\frac{\partial z}{\partial v} \end{aligned}\\ &\begin{aligned} & \text { Also } s=\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}+y \frac{\partial z}{\partial v}\right) \text { using } \\ & =\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}\right)+\frac{\partial}{\partial x}\left(y \frac{\partial z}{\partial v}\right)=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial u}\right)+y \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial v}\right) \\ & =\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial u}\right) \frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial v}\right) \frac{\partial v}{\partial x}+y\left\{\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial v}\right) \frac{\partial u}{\partial x}+\frac{\partial}{\partial v}\left(\frac{\partial z}{\partial v}\right) \frac{\partial v}{\partial x}\right\} \\ & \Rightarrow-\frac{\partial^2 z}{\partial u^2}-(x+y) \frac{\partial^2 z}{\partial u \partial v}-x y \frac{\partial^2 z}{\partial v^2} \rightarrow \text { (7) } \\ & \end{aligned} \end{aligned}p=zx=zuux+zvvx=(zu+xzv), using (2)  (3) q=zy=zuuy+zvvy=zu+yzv, using (2)  (4) r=2zx2=x(zx)=x(zu)x(xzv) using (3) =x(zu)[xx(zv)+zv]=x(zu)xx(zv)zv[u(zu)ux+v(zu)vx]x[u(zv)ux+v(zv)vx]zv=(2zu2x2zvu)x(2zuvx2zv2)zv using (2) v=2zu2+2z2zuv+x22zv2zv Now, t=2zy2=y(zy)=y(zu+yzv)=y(zu)+y(yzv)by(4)=y(zu)+yy(zv)+zv=u(zu)(uy)+v(zu)vy+y{u(zv)uy+v(zv)vy}+zv2zu2+y2zuv+y(2zuv+y2zv2)+zvt=2zu2+2y2zuv+y22zv2+zv Also s=2zxy=x(zy)=x(zu+yzv) using =x(zu)+x(yzv)=x(zu)+yx(zv)=u(zu)ux+v(zv)vx+y{u(zv)ux+v(zv)vx}2zu2(x+y)2zuvxy2zv2 (7) 
Using (5), (6) and (7) in (1) we get
y ( 2 z u 2 + ( 2 x ) 2 z u v + ( x 2 ) 2 z v 2 z v ) + ( x + y ) { 2 z u 2 ( x + y ) 2 z u v ( x y ) 2 z v 2 } + { 2 z u 2 + 2 y 2 z u v + y 2 2 z v 2 z v } = 0 Or { u x y ( x + y ) } 2 z u v y z v + x z v = 0 y 2 z u 2 + ( 2 x ) 2 z u v + x 2 2 z v 2 z v + ( x + y ) 2 z u 2 ( x + y ) 2 z u v ( x y ) 2 z v 2 + 2 z u 2 + 2 y 2 z u v + y 2 2 z v 2 z v = 0  Or  { u x y ( x + y ) } 2 z u v y z v + x z v = 0 {:[y((del^(2)z)/(delu^(2))+(2x)(del^(2)z)/(del u del v)+(x^(2))(del^(2)z)/(delv^(2))-(del z)/(del v))+(x+y){-(del^(2)z)/(delu^(2))-(x+y)(del^(2)z)/(del u del v)-(xy)(del^(2)z)/(delv^(2))}+{(del^(2)z)/(delu^(2))+2y(del^(2)z)/(del u del v)+y^(2)(del^(2)z)/(delv^(2))-(del z)/(del v)}=0],[” Or “{uxy-(x+y)}(del^(2)z)/(del u del v)-y(del z)/(del v)+x(del z)/(del v)=0]:}\begin{aligned} & y\left(\frac{\partial^2 z}{\partial u^2}+(2 x) \frac{\partial^2 z}{\partial u \partial v}+\left(x^2\right) \frac{\partial^2 z}{\partial v^2}-\frac{\partial z}{\partial v}\right)+(x+y)\left\{-\frac{\partial^2 z}{\partial u^2}-(x+y) \frac{\partial^2 z}{\partial u \partial v}-(x y) \frac{\partial^2 z}{\partial v^2}\right\}+\left\{\frac{\partial^2 z}{\partial u^2}+2 y \frac{\partial^2 z}{\partial u \partial v}+y^2 \frac{\partial^2 z}{\partial v^2}-\frac{\partial z}{\partial v}\right\}=0 \\ & \text { Or }\{u x y-(x+y)\} \frac{\partial^2 z}{\partial u \partial v}-y \frac{\partial z}{\partial v}+x \frac{\partial z}{\partial v}=0 \end{aligned}y(2zu2+(2x)2zuv+(x2)2zv2zv)+(x+y){2zu2(x+y)2zuv(xy)2zv2}+{2zu2+2y2zuv+y22zv2zv}=0 Or {uxy(x+y)}2zuvyzv+xzv=0
( y x ) 2 2 z u V + ( y x ) z V = 0 ( y x ) 2 2 z u V + ( y x ) z V = 0 (y-x)^(2)(del^(2)z)/(del u del V)+(y-x)(del z)/(del V)=0(y – x)^2 \frac{\partial^2 z}{\partial u \partial V} + (y – x) \frac{\partial z}{\partial V} = 0(yx)22zuV+(yx)zV=0
Step 4: Canonical Form Equation
Or u 2 2 z u v + u z v = 0 u 2 2 z u v + u z v = 0 u^(2)(del^(2)z)/(del u del v)+u(del z)/(del v)=0u^2 \frac{\partial^2 z}{\partial u \partial v}+u \frac{\partial z}{\partial v}=0u22zuv+uzv=0 or u 2 z u v + z v = 0 u 2 z u v + z v = 0 u(del^(2)z)/(del u del v)+(del z)/(del v)=0rarru \frac{\partial^2 z}{\partial u \partial v}+\frac{\partial z}{\partial v}=0 \rightarrowu2zuv+zv=0 (8)
[ since u 0 u 0 u!=0u \neq 0u0 and y x = u , b y ( 2 ) y x = u , b y ( 2 ) y-x=u,by(2)y-x=u, b y(2)yx=u,by(2) ]
(8) is the required canonical form of (1)
Solution of (8) multiplying both sides of ( 8 ) by v we get
u v ( 2 z u v ) + v ( z v ) = 0 or ( u v D D + v D ) z = 0 ( 9 ) u v 2 z u v + v z v = 0  or  u v D D + v D z = 0 ( 9 ) uv((del^(2)z)/(del u del v))+v((del z)/(del v))=0″ or “(uvDD^(‘)+vD^(‘))z=0rarr(9)u v\left(\frac{\partial^2 z}{\partial u \partial v}\right)+v\left(\frac{\partial z}{\partial v}\right)=0 \text { or }\left(u v D D^{\prime}+v D^{\prime}\right) z=0 \rightarrow(9)uv(2zuv)+v(zv)=0 or (uvDD+vD)z=0(9)
Where D u D u D-=(del)/(del u)D \equiv \frac{\partial}{\partial u}Du and D v D v D^(‘)-=(del)/(del v)D^{\prime} \equiv \frac{\partial}{\partial v}Dv. to reduce (9) in to linear equation with constant coefficients, we take new variable x x x\mathrm{x}x and y y y\mathrm{y}y as follows:
Step 5: Linear Equation with Constant Coefficients
To simplify further, we introduce new variables x x xxx and y y yyy as follows:
Let u = e x u = e x u=e^(x)u=e^xu=ex and v = e y v = e y v=e^(y)v=e^yv=ey so that x = log u , y = log v ( 10 ) x = log u , y = log v ( 10 ) x=log u,y=log v rarr(10)x=\log u, y=\log v \rightarrow(10)x=logu,y=logv(10)
Let D 1 x D 1 x D_(1)-=(del)/(del x)D_1 \equiv \frac{\partial}{\partial x}D1x and D 1 y D 1 y D_(1)^(‘)-=(del)/(del y)D_1^{\prime} \equiv \frac{\partial}{\partial y}D1y then (9) reduces to
( D 1 D 1 + D 1 ) z = 0 or D 1 ( D + 1 ) z = 0 D 1 D 1 + D 1 z = 0  or  D 1 ( D + 1 ) z = 0 (D_(1)D_(1)^(‘)+D_(1)^(‘))z=0″ or “D_(1)^(‘)(D+1)z=0\left(\begin{array}{ll} D_1 D_1^{\prime}+D_1^{\prime} \end{array}\right) z=0 \text { or } D_1^{\prime}(D+1) z=0(D1D1+D1)z=0 or D1(D+1)z=0
Step 6: General Solution
The general solution of the linear equation with constant coefficients is:
z = e x ϕ 1 ( y ) + ϕ 2 ( x ) = u 1 ϕ 1 ( log v ) + ϕ 2 ( log u ) z = e x ϕ 1 ( y ) + ϕ 2 ( x ) = u 1 ϕ 1 ( log v ) + ϕ 2 ( log u ) z=e^(-x)phi_(1)(y)+phi_(2)(x)=u^(-1)phi_(1)(log v)+phi_(2)(log u)z = e^{-x} \phi_1(y) + \phi_2(x) = u^{-1} \phi_1(\log v) + \phi_2(\log u)z=exϕ1(y)+ϕ2(x)=u1ϕ1(logv)+ϕ2(logu)
or
z = u 1 Ψ 1 ( v ) + Ψ 2 ( u ) = ( y x ) 1 Ψ 1 ( y 2 x 2 ) + Ψ 2 ( y x ) z = u 1 Ψ 1 ( v ) + Ψ 2 ( u ) = ( y x ) 1 Ψ 1 ( y 2 x 2 ) + Ψ 2 ( y x ) z=u^(-1)Psi_(1)(v)+Psi_(2)(u)=(y-x)^(-1)Psi_(1)(y^(2)-x^(2))+Psi_(2)(y-x)z = u^{-1} \Psi_1(v) + \Psi_2(u) = (y – x)^{-1} \Psi_1(y^2 – x^2) + \Psi_2(y – x)z=u1Ψ1(v)+Ψ2(u)=(yx)1Ψ1(y2x2)+Ψ2(yx)
Here, Ψ 1 Ψ 1 Psi_(1)\Psi_1Ψ1 and Ψ 2 Ψ 2 Psi_(2)\Psi_2Ψ2 are arbitrary functions.
Question:-08 (b) Using Runge-Kutta method of fourth order, solve the differential equation d y d x = x + y 2 d y d x = x + y 2 (dy)/(dx)=x+y^(2)\frac{d y}{d x}=x+y^{2}dydx=x+y2 with y ( 0 ) = 1 y ( 0 ) = 1 y(0)=1y(0)=1y(0)=1, at x = 0 2 x = 0 2 x=0*2x=0 \cdot 2x=02. Use four decimal places for calculation and step length 0 1 0 1 0*10 \cdot 101.
Answer:
Given Problem:
We are given the initial value problem:
y = x + y 2 , y ( 0 ) = 1 , h = 0.1 , Find y ( 0.2 ) y = x + y 2 , y ( 0 ) = 1 , h = 0.1 , Find  y ( 0.2 ) y^(‘)=x+y^(2),quad y(0)=1,quad h=0.1,quad”Find “y(0.2)y’ = x + y^2, \quad y(0) = 1, \quad h = 0.1, \quad \text{Find } y(0.2)y=x+y2,y(0)=1,h=0.1,Find y(0.2)
Fourth-Order Runge-Kutta Method:
We will solve this problem using the fourth-order Runge-Kutta method.
Step 1: Initial Evaluation
  1. Calculate k 1 k 1 k_(1)k_1k1 using the formula:
    k 1 = h f ( x 0 , y 0 ) = 0.1 f ( 0 , 1 ) = 0.1 1 = 0.1 k 1 = h f ( x 0 , y 0 ) = 0.1 f ( 0 , 1 ) = 0.1 1 = 0.1 k_(1)=h*f(x_(0),y_(0))=0.1*f(0,1)=0.1*1=0.1k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot f(0, 1) = 0.1 \cdot 1 = 0.1k1=hf(x0,y0)=0.1f(0,1)=0.11=0.1
  2. Calculate k 2 k 2 k_(2)k_2k2 using the formula:
    k 2 = h f ( x 0 + h 2 , y 0 + k 1 2 ) = 0.1 f ( 0.05 , 1.05 ) = 0.1 1.1525 = 0.1153 k 2 = h f x 0 + h 2 , y 0 + k 1 2 = 0.1 f ( 0.05 , 1.05 ) = 0.1 1.1525 = 0.1153 k_(2)=h*f(x_(0)+(h)/(2),y_(0)+(k_(1))/(2))=0.1*f(0.05,1.05)=0.1*1.1525=0.1153k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot f(0.05, 1.05) = 0.1 \cdot 1.1525 = 0.1153k2=hf(x0+h2,y0+k12)=0.1f(0.05,1.05)=0.11.1525=0.1153
  3. Calculate k 3 k 3 k_(3)k_3k3 using the formula:
    k 3 = h f ( x 0 + h 2 , y 0 + k 2 2 ) = 0.1 f ( 0.05 , 1.0576 ) = 0.1 1.1686 = 0.1169 k 3 = h f x 0 + h 2 , y 0 + k 2 2 = 0.1 f ( 0.05 , 1.0576 ) = 0.1 1.1686 = 0.1169 k_(3)=h*f(x_(0)+(h)/(2),y_(0)+(k_(2))/(2))=0.1*f(0.05,1.0576)=0.1*1.1686=0.1169k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot f(0.05, 1.0576) = 0.1 \cdot 1.1686 = 0.1169k3=hf(x0+h2,y0+k22)=0.1f(0.05,1.0576)=0.11.1686=0.1169
  4. Calculate k 4 k 4 k_(4)k_4k4 using the formula:
    k 4 = h f ( x 0 + h , y 0 + k 3 ) = 0.1 f ( 0.1 , 1.1169 ) = 0.1 1.3474 = 0.1347 k 4 = h f x 0 + h , y 0 + k 3 = 0.1 f ( 0.1 , 1.1169 ) = 0.1 1.3474 = 0.1347 k_(4)=h*f(x_(0)+h,y_(0)+k_(3))=0.1*f(0.1,1.1169)=0.1*1.3474=0.1347k_4 = h \cdot f\left(x_0 + h, y_0 + k_3\right) = 0.1 \cdot f(0.1, 1.1169) = 0.1 \cdot 1.3474 = 0.1347k4=hf(x0+h,y0+k3)=0.1f(0.1,1.1169)=0.11.3474=0.1347
  5. Now, calculate y 1 y 1 y_(1)y_1y1 using the formula for the fourth-order Runge-Kutta method:
    y 1 = y 0 + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y 1 = y 0 + 1 6 k 1 + 2 k 2 + 2 k 3 + k 4 y_(1)=y_(0)+(1)/(6)(k_(1)+2k_(2)+2k_(3)+k_(4))y_1 = y_0 + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4\right)y1=y0+16(k1+2k2+2k3+k4)
    Substituting the values:
    y 1 = 1 + 1 6 ( 0.1 + 2 0.1153 + 2 0.1169 + 0.1347 ) = 1.1165 y 1 = 1 + 1 6 0.1 + 2 0.1153 + 2 0.1169 + 0.1347 = 1.1165 y_(1)=1+(1)/(6)(0.1+2*0.1153+2*0.1169+0.1347)=1.1165y_1 = 1 + \frac{1}{6} \left(0.1 + 2 \cdot 0.1153 + 2 \cdot 0.1169 + 0.1347\right) = 1.1165y1=1+16(0.1+20.1153+20.1169+0.1347)=1.1165
Step 2: Iteration for y ( 0.2 ) y ( 0.2 ) y(0.2)y(0.2)y(0.2)
Now, we will use the newly calculated ( x 1 , y 1 ) x 1 , y 1 (x_(1),y_(1))\left(x_1, y_1\right)(x1,y1) in place of ( x 0 , y 0 ) x 0 , y 0 (x_(0),y_(0))\left(x_0, y_0\right)(x0,y0) and repeat the process to find y ( 0.2 ) y ( 0.2 ) y(0.2)y(0.2)y(0.2).
  1. Calculate k 1 k 1 k_(1)k_1k1 using the formula:
    k 1 = h f ( x 1 , y 1 ) = 0.1 f ( 0.1 , 1.1165 ) = 0.1 1.3466 = 0.1347 k 1 = h f ( x 1 , y 1 ) = 0.1 f ( 0.1 , 1.1165 ) = 0.1 1.3466 = 0.1347 k_(1)=h*f(x_(1),y_(1))=0.1*f(0.1,1.1165)=0.1*1.3466=0.1347k_1 = h \cdot f(x_1, y_1) = 0.1 \cdot f(0.1, 1.1165) = 0.1 \cdot 1.3466 = 0.1347k1=hf(x1,y1)=0.1f(0.1,1.1165)=0.11.3466=0.1347
  2. Calculate k 2 k 2 k_(2)k_2k2 using the formula:
    k 2 = h f ( x 1 + h 2 , y 1 + k 1 2 ) = 0.1 f ( 0.15 , 1.1838 ) = 0.1 1.5514 = 0.1551 k 2 = h f x 1 + h 2 , y 1 + k 1 2 = 0.1 f ( 0.15 , 1.1838 ) = 0.1 1.5514 = 0.1551 k_(2)=h*f(x_(1)+(h)/(2),y_(1)+(k_(1))/(2))=0.1*f(0.15,1.1838)=0.1*1.5514=0.1551k_2 = h \cdot f\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right) = 0.1 \cdot f(0.15, 1.1838) = 0.1 \cdot 1.5514 = 0.1551k2=hf(x1+h2,y1+k12)=0.1f(0.15,1.1838)=0.11.5514=0.1551
  3. Calculate k 3 k 3 k_(3)k_3k3 using the formula:
    k 3 = h f ( x 1 + h 2 , y 1 + k 2 2 ) = 0.1 f ( 0.15 , 1.1941 ) = 0.1 1.5758 = 0.1576 k 3 = h f x 1 + h 2 , y 1 + k 2 2 = 0.1 f ( 0.15 , 1.1941 ) = 0.1 1.5758 = 0.1576 k_(3)=h*f(x_(1)+(h)/(2),y_(1)+(k_(2))/(2))=0.1*f(0.15,1.1941)=0.1*1.5758=0.1576k_3 = h \cdot f\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right) = 0.1 \cdot f(0.15, 1.1941) = 0.1 \cdot 1.5758 = 0.1576k3=hf(x1+h2,y1+k22)=0.1f(0.15,1.1941)=0.11.5758=0.1576
  4. Calculate k 4 k 4 k_(4)k_4k4 using the formula:
    k 4 = h f ( x 1 + h , y 1 + k 3 ) = 0.1 f ( 0.2 , 1.2741 ) = 0.1 1.8233 = 0.1823 k 4 = h f x 1 + h , y 1 + k 3 = 0.1 f ( 0.2 , 1.2741 ) = 0.1 1.8233 = 0.1823 k_(4)=h*f(x_(1)+h,y_(1)+k_(3))=0.1*f(0.2,1.2741)=0.1*1.8233=0.1823k_4 = h \cdot f\left(x_1 + h, y_1 + k_3\right) = 0.1 \cdot f(0.2, 1.2741) = 0.1 \cdot 1.8233 = 0.1823k4=hf(x1+h,y1+k3)=0.1f(0.2,1.2741)=0.11.8233=0.1823
  5. Now, calculate y 2 y 2 y_(2)y_2y2 using the formula for the fourth-order Runge-Kutta method:
    y 2 = y 1 + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y 2 = y 1 + 1 6 k 1 + 2 k 2 + 2 k 3 + k 4 y_(2)=y_(1)+(1)/(6)(k_(1)+2k_(2)+2k_(3)+k_(4))y_2 = y_1 + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4\right)y2=y1+16(k1+2k2+2k3+k4)
    Substituting the values:
    y 2 = 1.1165 + 1 6 ( 0.1347 + 2 0.1551 + 2 0.1576 + 0.1823 ) = 1.2736 y 2 = 1.1165 + 1 6 0.1347 + 2 0.1551 + 2 0.1576 + 0.1823 = 1.2736 y_(2)=1.1165+(1)/(6)(0.1347+2*0.1551+2*0.1576+0.1823)=1.2736y_2 = 1.1165 + \frac{1}{6} \left(0.1347 + 2 \cdot 0.1551 + 2 \cdot 0.1576 + 0.1823\right) = 1.2736y2=1.1165+16(0.1347+20.1551+20.1576+0.1823)=1.2736
Final Result:
Therefore, the solution to the initial value problem y = x + y 2 , y ( 0 ) = 1 y = x + y 2 , y ( 0 ) = 1 y^(‘)=x+y^(2),y(0)=1y’ = x + y^2, y(0) = 1y=x+y2,y(0)=1 with h = 0.1 h = 0.1 h=0.1h = 0.1h=0.1 is y ( 0.2 ) = 1.2736 y ( 0.2 ) = 1.2736 y(0.2)=1.2736y(0.2) = 1.2736y(0.2)=1.2736.
Question:-08 (c) Verify that w = i k log { ( z i a ) / ( z + i a ) } w = i k log { ( z i a ) / ( z + i a ) } w=ik log{(z-ia)//(z+ia)}w=i k \log \{(z-i a) /(z+i a)\}w=iklog{(zia)/(z+ia)} is the complex potential of a steady flow of fluid about a circular cylinder, where the plane y = 0 y = 0 y=0y=0y=0 is a rigid boundary. Find also the force exerted by the fluid on unit length of the cylinder.
Answer:
Complex Potential and Streamlines:
We have the complex potential w = ϕ + i Ψ w = ϕ + i Ψ w=phi+i Psiw=\phi+i \Psiw=ϕ+iΨ given by:
w = i k log | z i a z + i a | (1) w = i k log z i a z + i a (1) w=ik log|(z-ia)/(z+ia)|quad(1)w=i k \log \left|\frac{z-i a}{z+i a}\right| \quad \text{(1)}w=iklog|ziaz+ia|(1)
Hence, we can extract the stream function Ψ Ψ Psi\PsiΨ from w w www as follows:
Ψ = k log | z i a z + i a | Ψ = k log z i a z + i a Psi=k log|(z-ia)/(z+ia)|\Psi=k \log \left|\frac{z-i a}{z+i a}\right|Ψ=klog|ziaz+ia|
This leads to streamlines defined by:
Ψ = constant = K λ , say Ψ =  constant  = K λ ,  say  Psi=” constant “=K lambda,” say “\Psi=\text { constant }=K \lambda, \text { say }Ψ= constant =Kλ, say 
That is, | z i a z + i a | = λ z i a z + i a = λ |(z-ia)/(z+ia)|=lambda\left|\frac{z-i a}{z+i a}\right|=\lambda|ziaz+ia|=λ, which can be expressed as:
| z i a | = λ | z + i a | (2) | z i a | = λ | z + i a | (2) |z-ia|=lambda|z+ia|quad(2)|z-i a|=\lambda|z+i a| \quad \text{(2)}|zia|=λ|z+ia|(2)
Equation (2) describes non-intersecting co-axial circles with z = ± i a z = ± i a z=+-iaz= \pm i az=±ia as limiting points. In particular, for λ = 1 λ = 1 lambda=1\lambda=1λ=1, (2) represents the straight line:
| z i a | = | z + i a | | z i a | = | z + i a | |z-ia|=|z+ia||z-i a|=|z+i a||zia|=|z+ia|
i.e. | x + i ( y a ) | = | x + i ( y + a ) | ,  i.e.  | x + i ( y a ) | = | x + i ( y + a ) | ” i.e. “|x+i(y-a)|=|x+i(y+a)|”, “\text { i.e. }|x+i(y-a)|=|x+i(y+a)| \text {, } i.e. |x+i(ya)|=|x+i(y+a)|
Simplifying this, we get:
x 2 + ( y a ) 2 = x 2 + ( y + a ) 2 x 2 + ( y a ) 2 = x 2 + ( y + a ) 2 x^(2)+(y-a)^(2)=x^(2)+(y+a)^(2)x^2+(y-a)^2=x^2+(y+a)^2x2+(ya)2=x2+(y+a)2
This demonstrates that y = 0 y = 0 y=0y=0y=0 is a rigid boundary.
Derivative of w w www with Respect to z z zzz:
From equation (1), we can calculate the derivative of w w www with respect to z z zzz:
w = i k { log ( z i a ) log ( z + i a ) } w = i k { log ( z i a ) log ( z + i a ) } w=ik{log(z-ia)-log(z+ia)}w=i k\{\log (z-i a)-\log (z+i a)\}w=ik{log(zia)log(z+ia)}
d w d z = i k ( 1 z i a 1 z + i a ) = 2 k a z 2 + a 2 (3) d w d z = i k 1 z i a 1 z + i a = 2 k a z 2 + a 2 (3) (dw)/(dz)=ik((1)/(z-ia)-(1)/(z+ia))=(2ka)/(z^(2)+a^(2))quad(3)\frac{\mathbf{d} w}{\mathbf{d} z}=i k\left(\frac{1}{z-i a}-\frac{1}{z+i a}\right)=\frac{2 k a}{z^2+a^2} \quad \text{(3)}dwdz=ik(1zia1z+ia)=2kaz2+a2(3)
Force Exerted by the Fluid:
Consider a circular section C C C\mathrm{C}C of the cylinder and the rigid plane. If the pressure thrusts on the circular disc are represented by ( x , y ) ( x , y ) (x,y)(x, y)(x,y), we can use Blasius’ theorem to calculate X X XXX and Y Y YYY:
X i Y = 1 2 i ρ c ( d w d z ) 2 d z = 2 k 2 a 2 ρ i c d z ( z 2 + i 2 ) 2 (4) X i Y = 1 2 i ρ c d w d z 2 d z = 2 k 2 a 2 ρ i c d z z 2 + i 2 2 (4) X-iY=(1)/(2)i rhoint _(c)((dw)/(dz))^(2)dz=2k^(2)a^(2)rho iint _(c)(dz)/((z^(2)+i^(2))^(2))quad(4)X-i Y=\frac{1}{2} i \rho \int_c\left(\frac{\mathbf{d} w}{\mathbf{d} z}\right)^2 \mathbf{d} z=2 k^2 a^2 \rho i \int_c \frac{\mathbf{d} z}{\left(z^2+i^2\right)^2} \quad \text{(4)}XiY=12iρc(dwdz)2dz=2k2a2ρicdz(z2+i2)2(4)
By Cauchy’s residue theorem, we have:
c d z ( z 2 + a 2 ) 2 = 2 π i × ( sum of the residues ) c d z z 2 + a 2 2 = 2 π i × (  sum of the residues  ) int _(c)(dz)/((z^(2)+a^(2))^(2))=2pi i xx(” sum of the residues “)\int_c \frac{\mathbf{d} z}{\left(z^2+a^2\right)^2}=2 \pi i \times(\text { sum of the residues })cdz(z2+a2)2=2πi×( sum of the residues )
Therefore, equation (4) becomes:
X i Y = 4 k 2 a 2 ρ π × ( sum of the residues ) (5) X i Y = 4 k 2 a 2 ρ π × (  sum of the residues  ) (5) X-iY=-4k^(2)a^(2)rho pi xx(” sum of the residues “)quad(5)X-i Y=-4 k^2 a^2 \rho \pi \times (\text { sum of the residues }) \quad \text{(5)}XiY=4k2a2ρπ×( sum of the residues )(5)
We proceed to find the residues of 1 ( z 2 + a 2 ) 2 1 z 2 + a 2 2 (1)/((z^(2)+a^(2))^(2))\frac{1}{\left(z^2+a^2\right)^2}1(z2+a2)2. The only pole of 1 ( z 2 + a 2 ) 2 1 z 2 + a 2 2 (1)/((z^(2)+a^(2))^(2))\frac{1}{\left(z^2+a^2\right)^2}1(z2+a2)2 is at z = ± i a z = ± i a z=+-iaz= \pm i az=±ia, but only z = i a z = i a z=iaz=i az=ia lies within the boundary C C C\mathrm{C}C. Hence, we calculate the residue at z = i a z = i a z=iaz=i az=ia:
1 z 2 + a 2 = 1 ( z i a ) ( z + i a ) = 1 2 i a ( 1 z i a 1 z + i a ) 1 ( z 2 + a 2 ) 2 = 1 4 a 2 { 1 ( z i a ) 2 + 1 ( z + i a ) 2 2 ( z i a ) ( z + i a ) } = 1 4 a 2 { 1 ( z i a ) 2 + 1 ( z + i a ) 2 1 2 i a ( 1 z i a 1 z + i a ) } 1 z 2 + a 2 = 1 ( z i a ) ( z + i a ) = 1 2 i a 1 z i a 1 z + i a 1 z 2 + a 2 2 = 1 4 a 2 1 ( z i a ) 2 + 1 ( z + i a ) 2 2 ( z i a ) ( z + i a ) = 1 4 a 2 1 ( z i a ) 2 + 1 ( z + i a ) 2 1 2 i a 1 z i a 1 z + i a {:[(1)/(z^(2)+a^(2))=(1)/((z-ia)(z+ia))=(1)/(2ia)((1)/(z-ia)-(1)/(z+ia))],[(1)/((z^(2)+a^(2))^(2))=-(1)/(4a^(2)){(1)/((z-ia)^(2))+(1)/((z+ia)^(2))-(2)/((z-ia)(z+ia))}],[=-(1)/(4a^(2)){(1)/((z-ia)^(2))+(1)/((z+ia)^(2))-(1)/(2ia)((1)/(z-ia)-(1)/(z+ia))}]:}\begin{aligned} & \frac{1}{z^2+a^2}=\frac{1}{(z-i a)(z+i a)}=\frac{1}{2 i a}\left(\frac{1}{z-i a}-\frac{1}{z+i a}\right) \\ & \frac{1}{\left(z^2+a^2\right)^2}=-\frac{1}{4 a^2}\left\{\frac{1}{(z-i a)^2}+\frac{1}{(z+i a)^2}-\frac{2}{(z-i a)(z+i a)}\right\} \\ & =-\frac{1}{4 a^2}\left\{\frac{1}{(z-i a)^2}+\frac{1}{(z+i a)^2}-\frac{1}{2 i a}\left(\frac{1}{z-i a}-\frac{1}{z+i a}\right)\right\} \end{aligned}1z2+a2=1(zia)(z+ia)=12ia(1zia1z+ia)1(z2+a2)2=14a2{1(zia)2+1(z+ia)22(zia)(z+ia)}=14a2{1(zia)2+1(z+ia)212ia(1zia1z+ia)}
Hence, the residue of 1 ( z 2 + a 2 ) 2 1 z 2 + a 2 2 (1)/((z^(2)+a^(2))^(2))\frac{1}{\left(z^2+a^2\right)^2}1(z2+a2)2 at z = i a z = i a z=iaz=i az=ia is 1 8 i a 3 1 8 i a 3 (1)/(8ia^(3))\frac{1}{8 i a^3}18ia3.
Therefore, equation (5) becomes:
X i Y = ( 4 k 2 a 2 ρ π ) × ( 1 8 i a 3 ) = ( π ρ k 2 2 a ) i X i Y = 4 k 2 a 2 ρ π × 1 8 i a 3 = π ρ k 2 2 a i X-iY=-(4k^(2)a^(2)rho pi)xx((1)/(8ia^(3)))=((pi rhok^(2))/(2a))iX-i Y=-\left(4 k^2 a^2 \rho \pi\right) \times \left(\frac{1}{8 i a^3}\right) = \left(\frac{\pi \rho k^2}{2 a}\right) iXiY=(4k2a2ρπ)×(18ia3)=(πρk22a)i
This implies that X = 0 X = 0 X=0X=0X=0 and Y = ( π ρ k 2 2 a ) Y = π ρ k 2 2 a Y=-((pi rhok^(2))/(2a))Y=-\left(\frac{\pi \rho k^2}{2 a}\right)Y=(πρk22a). Thus, the fluid exerts a downward force on the cylinder, and the numerical value of this force per unit length is ( π ρ k 2 2 a ) π ρ k 2 2 a ((pi rhok^(2))/(2a))\left(\frac{\pi \rho k^2}{2 a}\right)(πρk22a).
Scroll to Top
Scroll to Top