IGNOU BPHCT-131 Solved Assignment 2024 B.Sc (G) CBCS cover page

IGNOU BPHCT-131 Solved Assignment 2024 | B.Sc (G) CBCS

Solved By – Narendra Kr. Sharma – M.Sc (Mathematics Honors) – Delhi University

101.00

Please read the following points before ordering this IGNOU Assignment Solution.

Share with your Friends

Details For BPHCT-131 Solved Assignment

IGNOU BPHCT-131 Assignment Question Paper 2024

bphct-131-solved-assignment-2024–qp-b0a87631-f2d0-400e-939b-0b99078c2d98

bphct-131-solved-assignment-2024–qp-b0a87631-f2d0-400e-939b-0b99078c2d98

BPHCT-131 Solved Assignment 2024 QP
PART A
  1. a) Determine the projection of A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}}+\mathbf{2} \overrightarrow{\mathbf{B}}A+2B on B B vec(B)\overrightarrow{\mathbf{B}}B where A = 2 i ^ j ^ + 3 k ^ A = 2 i ^ j ^ + 3 k ^ vec(A)=2 hat(i)- hat(j)+3 hat(k)\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}A=2i^j^+3k^ and B = i ^ + 4 j ^ + k ^ B = i ^ + 4 j ^ + k ^ vec(B)=- hat(i)+4 hat(j)+ hat(k)\overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}B=i^+4j^+k^.
b) Obtain the derivative and unit tangent vector at t = 1 t = 1 t=1t=1t=1 for a vector function
a ( t ) = t i ^ + e t 2 j ^ + sin 2 t k ^ a ( t ) = t i ^ + e t 2 j ^ + sin 2 t k ^ vec(a)(t)=t hat(i)+e^(t^(2)) hat(j)+sin 2t hat(k)\overrightarrow{\mathbf{a}}(t)=t \hat{\mathbf{i}}+e^{t^2} \hat{\mathbf{j}}+\sin 2 t \hat{\mathbf{k}}a(t)=ti^+et2j^+sin2tk^
  1. Solve the following ordinary differential equations:
    a) ( 4 x 3 y 3 + 1 x ) d x + ( 3 x 4 y 2 1 y ) d y = 0 4 x 3 y 3 + 1 x d x + 3 x 4 y 2 1 y d y = 0 (4x^(3)y^(3)+(1)/(x))dx+(3x^(4)y^(2)-(1)/(y))dy=0\left(4 x^3 y^3+\frac{1}{x}\right) d x+\left(3 x^4 y^2-\frac{1}{y}\right) d y=0(4x3y3+1x)dx+(3x4y21y)dy=0.
b) d 2 y d x 2 2 d y d x + y = 0 d 2 y d x 2 2 d y d x + y = 0 (d^(2)y)/(dx^(2))-2(dy)/(dx)+y=0\frac{d^2 y}{d x^2}-2 \frac{d y}{d x}+y=0d2ydx22dydx+y=0 for y ( 0 ) = 1 , y ( 0 ) = 3 y ( 0 ) = 1 , y ( 0 ) = 3 y(0)=1,quady^(‘)(0)=3y(0)=1, \quad y^{\prime}(0)=3y(0)=1,y(0)=3.
  1. a) A mass of 10 k g 10 k g 10kg10 \mathrm{~kg}10 kg, is released from rest on an incline that makes a 30 30 30^(@)30^{\circ}30 angle with the horizontal. In 2 s 2 s 2s2 \mathrm{~s}2 s, the mass is observed to have moved a distance of 4 m 4 m 4m4 \mathrm{~m}4 m. What is the coefficient of kinetic friction between the mass and the surface of the incline? Draw the free body diagram.
b) A ball of mass 0.5 k g 0.5 k g 0.5kg0.5 \mathrm{~kg}0.5 kg collides with a wall at a speed of 15.0 m s 1 15.0 m s 1 15.0ms^(-1)15.0 \mathrm{~ms}^{-1}15.0 ms1 and bounces back with a speed of 12.5 m s 1 12.5 m s 1 12.5ms^(-1)12.5 \mathrm{~ms}^{-1}12.5 ms1. If the average force exerted by the ball is 1100 N 1100 N 1100N1100 \mathrm{~N}1100 N calculate the impulse and the time for which the collision lasted.
c) A box of mass 8 k g 8 k g 8kg8 \mathrm{~kg}8 kg slides at a speed of 10 m s 1 10 m s 1 10ms^(-1)10 \mathrm{~ms}^{-1}10 ms1 across a smooth level floor before it encounters a rough patch of length 3.0 m 3.0 m 3.0m3.0 \mathrm{~m}3.0 m. The frictional force on the box due to this part of the floor is 70 N 70 N 70N70 \mathrm{~N}70 N. What is the speed of the box when it leaves this rough surface? What length of the rough surface would bring the box completely to rest?
PART B
4. a) A cylindrical drum has a radius of 0.45 m 0.45 m 0.45m0.45 \mathrm{~m}0.45 m and is initially at rest. It is then given an angular acceleration of 0.40 r a d s 2 0.40 r a d s 2 0.40rads^(-2)0.40 \mathrm{rad} \mathrm{s}^{-2}0.40rads2. At time t = 8.0 s t = 8.0 s t=8.0st=8.0 \mathrm{~s}t=8.0 s calculate (i) the angular speed of the drum, (ii) the centripetal acceleration of a point on the rim of the drum, (iii) the tangential acceleration at that point, and (iv) the resultant acceleration at that point.
b) The distance between the oxygen molecule and each of the hydrogen atoms in a water ( H 2 O ) H 2 O (H_(2)O)\left(\mathrm{H}_2 \mathrm{O}\right)(H2O) molecule is 0.96 0.96 0.96″Å”0.96 \AA0.96 and the angle between the two oxygen-hydrogen bonds is 105 105 105^(@)105^{\circ}105. Treating the atoms as particles, find the centre of mass of the system.
c) The planet earth is 1.5 × 10 11 m 1.5 × 10 11 m 1.5 xx10^(11)m1.5 \times 10^{11} \mathrm{~m}1.5×1011 m from the sun and orbits the sun in one year. The planet Pluto takes 248 years to orbit the sun. How far is Pluto from the sun?
d) A 1400 k g 1400 k g 1400kg1400 \mathrm{~kg}1400 kg car moving south at 11 m s 1 11 m s 1 11ms^(-1)11 \mathrm{~ms}^{-1}11 ms1 is struck by a 1800 k g 1800 k g 1800kg1800 \mathrm{~kg}1800 kg car moving east at 30 m s 1 30 m s 1 30ms^(-1)30 \mathrm{~ms}^{-1}30 ms1. The cars are stuck together. How fast and in what direction do they move immediately after the collision? (2016)
  1. a) The oscillation of a simple harmonic oscillator is described by the equation
x ( t ) = 0.6 sin ( 0.2 t + 0.8 ) m x ( t ) = 0.6 sin ( 0.2 t + 0.8 ) m x(t)=0.6 sin(0.2 t+0.8)mx(t)=0.6 \sin (0.2 t+0.8) \mathrm{m}x(t)=0.6sin(0.2t+0.8)m
where t t ttt is expressed in seconds. Determine the amplitude, time-period and frequency of oscillation, maximum velocity, maximum acceleration and initial displacement of the oscillator.
b) The following two orthogonal oscillations act on a body simultaneously:
x ( t ) = 0.4 cos ( 10 π t ) m ; y ( t ) = 0.4 cos ( 10 π t + π 2 ) m x ( t ) = 0.4 cos ( 10 π t ) m ; y ( t ) = 0.4 cos 10 π t + π 2 m x(t)=0.4 cos(10 pi t)m;y(t)=0.4 cos(10 pi t+(pi)/(2))mx(t)=0.4 \cos (10 \pi t) \mathrm{m} ; y(t)=0.4 \cos \left(10 \pi t+\frac{\pi}{2}\right) \mathrm{m}x(t)=0.4cos(10πt)m;y(t)=0.4cos(10πt+π2)m
Determine the path of resultant motion of the body.
c) A damped harmonic oscillator has a first amplitude of 30 c m 30 c m 30cm30 \mathrm{~cm}30 cm. The amplitude reduces to 3 c m 3 c m 3cm3 \mathrm{~cm}3 cm after 100 oscillations. If the period of damping is 9.2 s 9.2 s 9.2s9.2 \mathrm{~s}9.2 s calculate the logarithmic decrement and damping factor. Also determine the number of oscillations in which the amplitude drops by 50 percent.
d) A progressive transverse wave is given by y ( x , t ) = 0.06 sin ( 1256 t 31.4 x ) m y ( x , t ) = 0.06 sin ( 1256 t 31.4 x ) m y(x,t)=0.06 sin(1256 t-31.4 x)my(x, t)=0.06 \sin (1256 t-31.4 x) \mathrm{m}y(x,t)=0.06sin(1256t31.4x)m, where t t ttt is in seconds. Determine the direction of propagation of the wave and calculate its amplitude, wavelength, frequency and velocity.
\(c^2=a^2+b^2-2ab\:Cos\left(C\right)\)

BPHCT-131 Sample Solution 2024

bphct-131-solved-assignment-2024–ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

bphct-131-solved-assignment-2024–ss-8e24e610-06c9-4b43-84f6-a5bf6ef5ab5c

BPHCT-131 Solved Assignment 2024 SS
PART A
  1. a) Determine the projection of A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}}+\mathbf{2} \overrightarrow{\mathbf{B}}A+2B on B B vec(B)\overrightarrow{\mathbf{B}}B where A = 2 i ^ j ^ + 3 k ^ A = 2 i ^ j ^ + 3 k ^ vec(A)=2 hat(i)- hat(j)+3 hat(k)\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}A=2i^j^+3k^ and B = i ^ + 4 j ^ + k ^ B = i ^ + 4 j ^ + k ^ vec(B)=- hat(i)+4 hat(j)+ hat(k)\overrightarrow{\mathbf{B}}=-\hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}B=i^+4j^+k^.
Answer:
To determine the projection of A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}} + 2\overrightarrow{\mathbf{B}}A+2B on B B vec(B)\overrightarrow{\mathbf{B}}B, we first need to find the vector A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}} + 2\overrightarrow{\mathbf{B}}A+2B, and then calculate its projection on B B vec(B)\overrightarrow{\mathbf{B}}B.
Given vectors:
A = 2 i ^ j ^ + 3 k ^ A = 2 i ^ j ^ + 3 k ^ vec(A)=2 hat(i)- hat(j)+3 hat(k)\overrightarrow{\mathbf{A}} = 2\hat{\mathbf{i}} – \hat{\mathbf{j}} + 3\hat{\mathbf{k}}A=2i^j^+3k^
B = i ^ + 4 j ^ + k ^ B = i ^ + 4 j ^ + k ^ vec(B)=- hat(i)+4 hat(j)+ hat(k)\overrightarrow{\mathbf{B}} = -\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}B=i^+4j^+k^
First, let’s find A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}} + 2\overrightarrow{\mathbf{B}}A+2B:
A + 2 B = ( 2 i ^ j ^ + 3 k ^ ) + 2 ( i ^ + 4 j ^ + k ^ ) A + 2 B = ( 2 i ^ j ^ + 3 k ^ ) + 2 ( i ^ + 4 j ^ + k ^ ) vec(A)+2 vec(B)=(2 hat(i)- hat(j)+3 hat(k))+2(- hat(i)+4 hat(j)+ hat(k))\overrightarrow{\mathbf{A}} + 2\overrightarrow{\mathbf{B}} = (2\hat{\mathbf{i}} – \hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + 2(-\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}})A+2B=(2i^j^+3k^)+2(i^+4j^+k^)
Let’s substitute the values:
= 2 i ^ j ^ + 3 k ^ 2 i ^ + 8 j ^ + 2 k ^ = 2 i ^ j ^ + 3 k ^ 2 i ^ + 8 j ^ + 2 k ^ =2 hat(i)- hat(j)+3 hat(k)-2 hat(i)+8 hat(j)+2 hat(k)= 2\hat{\mathbf{i}} – \hat{\mathbf{j}} + 3\hat{\mathbf{k}} – 2\hat{\mathbf{i}} + 8\hat{\mathbf{j}} + 2\hat{\mathbf{k}}=2i^j^+3k^2i^+8j^+2k^
After Calculating we get:
= ( 2 2 ) i ^ + ( 1 + 8 ) j ^ + ( 3 + 2 ) k ^ = ( 2 2 ) i ^ + ( 1 + 8 ) j ^ + ( 3 + 2 ) k ^ =(2-2) hat(i)+(-1+8) hat(j)+(3+2) hat(k)= (2 – 2)\hat{\mathbf{i}} + (-1 + 8)\hat{\mathbf{j}} + (3 + 2)\hat{\mathbf{k}}=(22)i^+(1+8)j^+(3+2)k^
= 0 i ^ + 7 j ^ + 5 k ^ = 0 i ^ + 7 j ^ + 5 k ^ =0 hat(i)+7 hat(j)+5 hat(k)= 0\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}}=0i^+7j^+5k^
Now, the projection of a vector V V vec(V)\overrightarrow{\mathbf{V}}V on U U vec(U)\overrightarrow{\mathbf{U}}U is given by the formula:
proj U V = V U U 2 U proj U V = V U U 2 U “proj”_( vec(U)) vec(V)=( vec(V)* vec(U))/(|| vec(U)||^(2)) vec(U)\text{proj}_{\overrightarrow{\mathbf{U}}} \overrightarrow{\mathbf{V}} = \frac{\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{U}}}{\|\overrightarrow{\mathbf{U}}\|^2} \overrightarrow{\mathbf{U}}projUV=VUU2U
Where V U V U vec(V)* vec(U)\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{U}}VU is the dot product of V V vec(V)\overrightarrow{\mathbf{V}}V and U U vec(U)\overrightarrow{\mathbf{U}}U, and U 2 U 2 || vec(U)||^(2)\|\overrightarrow{\mathbf{U}}\|^2U2 is the magnitude squared of U U vec(U)\overrightarrow{\mathbf{U}}U.
Let’s calculate the dot product V U V U vec(V)* vec(U)\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{U}}VU where V = 0 i ^ + 7 j ^ + 5 k ^ V = 0 i ^ + 7 j ^ + 5 k ^ vec(V)=0 hat(i)+7 hat(j)+5 hat(k)\overrightarrow{\mathbf{V}} = 0\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 5\hat{\mathbf{k}}V=0i^+7j^+5k^ and U = B = i ^ + 4 j ^ + k ^ U = B = i ^ + 4 j ^ + k ^ vec(U)= vec(B)=- hat(i)+4 hat(j)+ hat(k)\overrightarrow{\mathbf{U}} = \overrightarrow{\mathbf{B}} = -\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}U=B=i^+4j^+k^:
V U = ( 0 ) ( 1 ) + ( 7 ) ( 4 ) + ( 5 ) ( 1 ) V U = ( 0 ) ( 1 ) + ( 7 ) ( 4 ) + ( 5 ) ( 1 ) vec(V)* vec(U)=(0)(-1)+(7)(4)+(5)(1)\overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{U}} = (0)(-1) + (7)(4) + (5)(1)VU=(0)(1)+(7)(4)+(5)(1)
After Calculating we get:
= 0 + 28 + 5 = 33 = 0 + 28 + 5 = 33 =0+28+5=33= 0 + 28 + 5 = 33=0+28+5=33
Next, calculate U 2 U 2 || vec(U)||^(2)\|\overrightarrow{\mathbf{U}}\|^2U2:
U 2 = ( 1 ) 2 + ( 4 ) 2 + ( 1 ) 2 U 2 = ( 1 ) 2 + ( 4 ) 2 + ( 1 ) 2 || vec(U)||^(2)=(-1)^(2)+(4)^(2)+(1)^(2)\|\overrightarrow{\mathbf{U}}\|^2 = (-1)^2 + (4)^2 + (1)^2U2=(1)2+(4)2+(1)2
After Calculating we get:
= 1 + 16 + 1 = 18 = 1 + 16 + 1 = 18 =1+16+1=18= 1 + 16 + 1 = 18=1+16+1=18
Finally, the projection of V V vec(V)\overrightarrow{\mathbf{V}}V on U U vec(U)\overrightarrow{\mathbf{U}}U is:
proj U V = 33 18 U proj U V = 33 18 U “proj”_( vec(U)) vec(V)=(33)/(18) vec(U)\text{proj}_{\overrightarrow{\mathbf{U}}} \overrightarrow{\mathbf{V}} = \frac{33}{18} \overrightarrow{\mathbf{U}}projUV=3318U
Substituting U = i ^ + 4 j ^ + k ^ U = i ^ + 4 j ^ + k ^ vec(U)=- hat(i)+4 hat(j)+ hat(k)\overrightarrow{\mathbf{U}} = -\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}}U=i^+4j^+k^:
= 33 18 ( i ^ + 4 j ^ + k ^ ) = 33 18 ( i ^ + 4 j ^ + k ^ ) =(33)/(18)(- hat(i)+4 hat(j)+ hat(k))= \frac{33}{18}(-\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \hat{\mathbf{k}})=3318(i^+4j^+k^)
= ( 33 18 × 1 ) i ^ + ( 33 18 × 4 ) j ^ + ( 33 18 × 1 ) k ^ = 33 18 × 1 i ^ + 33 18 × 4 j ^ + 33 18 × 1 k ^ =((33)/(18)xx-1) hat(i)+((33)/(18)xx4) hat(j)+((33)/(18)xx1) hat(k)= \left(\frac{33}{18} \times -1\right)\hat{\mathbf{i}} + \left(\frac{33}{18} \times 4\right)\hat{\mathbf{j}} + \left(\frac{33}{18} \times 1\right)\hat{\mathbf{k}}=(3318×1)i^+(3318×4)j^+(3318×1)k^
= 33 18 i ^ + 132 18 j ^ + 33 18 k ^ = 33 18 i ^ + 132 18 j ^ + 33 18 k ^ =-(33)/(18) hat(i)+(132)/(18) hat(j)+(33)/(18) hat(k)= -\frac{33}{18}\hat{\mathbf{i}} + \frac{132}{18}\hat{\mathbf{j}} + \frac{33}{18}\hat{\mathbf{k}}=3318i^+13218j^+3318k^
Simplifying:
= 11 6 i ^ + 44 6 j ^ + 11 6 k ^ = 11 6 i ^ + 44 6 j ^ + 11 6 k ^ =-(11)/(6) hat(i)+(44)/(6) hat(j)+(11)/(6) hat(k)= -\frac{11}{6}\hat{\mathbf{i}} + \frac{44}{6}\hat{\mathbf{j}} + \frac{11}{6}\hat{\mathbf{k}}=116i^+446j^+116k^
Thus, the projection of A + 2 B A + 2 B vec(A)+2 vec(B)\overrightarrow{\mathbf{A}} + 2\overrightarrow{\mathbf{B}}A+2B on B B vec(B)\overrightarrow{\mathbf{B}}B is 11 6 i ^ + 44 6 j ^ + 11 6 k ^ 11 6 i ^ + 44 6 j ^ + 11 6 k ^ -(11)/(6) hat(i)+(44)/(6) hat(j)+(11)/(6) hat(k)-\frac{11}{6}\hat{\mathbf{i}} + \frac{44}{6}\hat{\mathbf{j}} + \frac{11}{6}\hat{\mathbf{k}}116i^+446j^+116k^.
b) Obtain the derivative and unit tangent vector at t = 1 t = 1 t=1t=1t=1 for a vector function
a ( t ) = t i ^ + e t 2 j ^ + sin 2 t k ^ a ( t ) = t i ^ + e t 2 j ^ + sin 2 t k ^ vec(a)(t)=t hat(i)+e^(t^(2)) hat(j)+sin 2t hat(k)\overrightarrow{\mathbf{a}}(t)=t \hat{\mathbf{i}}+e^{t^2} \hat{\mathbf{j}}+\sin 2 t \hat{\mathbf{k}}a(t)=ti^+et2j^+sin2tk^
Answer:
To find the derivative of the vector function a ( t ) = t i ^ + e t 2 j ^ + sin ( 2 t ) k ^ a ( t ) = t i ^ + e t 2 j ^ + sin ( 2 t ) k ^ vec(a)(t)=t hat(i)+e^(t^(2)) hat(j)+sin(2t) hat(k)\overrightarrow{\mathbf{a}}(t) = t\hat{\mathbf{i}} + e^{t^2}\hat{\mathbf{j}} + \sin(2t)\hat{\mathbf{k}}a(t)=ti^+et2j^+sin(2t)k^ with respect to t t ttt, we need to differentiate each component of the vector function with respect to t t ttt.
Given:
a ( t ) = t i ^ + e t 2 j ^ + sin ( 2 t ) k ^ a ( t ) = t i ^ + e t 2 j ^ + sin ( 2 t ) k ^ vec(a)(t)=t hat(i)+e^(t^(2)) hat(j)+sin(2t) hat(k)\overrightarrow{\mathbf{a}}(t) = t\hat{\mathbf{i}} + e^{t^2}\hat{\mathbf{j}} + \sin(2t)\hat{\mathbf{k}}a(t)=ti^+et2j^+sin(2t)k^
The derivative d a d t d a d t (d vec(a))/(dt)\frac{d\overrightarrow{\mathbf{a}}}{dt}dadt is found by differentiating each component:
  1. For t i ^ t i ^ t hat(i)t\hat{\mathbf{i}}ti^, the derivative is d t d t i ^ = 1 i ^ d t d t i ^ = 1 i ^ (dt)/(dt) hat(i)=1 hat(i)\frac{dt}{dt}\hat{\mathbf{i}} = 1\hat{\mathbf{i}}dtdti^=1i^.
  2. For e t 2 j ^ e t 2 j ^ e^(t^(2)) hat(j)e^{t^2}\hat{\mathbf{j}}et2j^, using the chain rule, the derivative is d d t ( e t 2 ) j ^ = 2 t e t 2 j ^ d d t ( e t 2 ) j ^ = 2 t e t 2 j ^ (d)/(dt)(e^(t^(2))) hat(j)=2te^(t^(2)) hat(j)\frac{d}{dt}(e^{t^2})\hat{\mathbf{j}} = 2te^{t^2}\hat{\mathbf{j}}ddt(et2)j^=2tet2j^.
  3. For sin ( 2 t ) k ^ sin ( 2 t ) k ^ sin(2t) hat(k)\sin(2t)\hat{\mathbf{k}}sin(2t)k^, the derivative is d d t ( sin ( 2 t ) ) k ^ = 2 cos ( 2 t ) k ^ d d t ( sin ( 2 t ) ) k ^ = 2 cos ( 2 t ) k ^ (d)/(dt)(sin(2t)) hat(k)=2cos(2t) hat(k)\frac{d}{dt}(\sin(2t))\hat{\mathbf{k}} = 2\cos(2t)\hat{\mathbf{k}}ddt(sin(2t))k^=2cos(2t)k^.
Thus, the derivative of a ( t ) a ( t ) vec(a)(t)\overrightarrow{\mathbf{a}}(t)a(t) is:
d a d t = 1 i ^ + 2 t e t 2 j ^ + 2 cos ( 2 t ) k ^ d a d t = 1 i ^ + 2 t e t 2 j ^ + 2 cos ( 2 t ) k ^ (d vec(a))/(dt)=1 hat(i)+2te^(t^(2)) hat(j)+2cos(2t) hat(k)\frac{d\overrightarrow{\mathbf{a}}}{dt} = 1\hat{\mathbf{i}} + 2te^{t^2}\hat{\mathbf{j}} + 2\cos(2t)\hat{\mathbf{k}}dadt=1i^+2tet2j^+2cos(2t)k^
Now, to find the unit tangent vector at t = 1 t = 1 t=1t=1t=1, we first evaluate the derivative at t = 1 t = 1 t=1t=1t=1:
d a d t | t = 1 = 1 i ^ + 2 ( 1 ) e ( 1 ) 2 j ^ + 2 cos ( 2 ( 1 ) ) k ^ d a d t t = 1 = 1 i ^ + 2 ( 1 ) e ( 1 ) 2 j ^ + 2 cos ( 2 ( 1 ) ) k ^ (d vec(a))/(dt)|_(t=1)=1 hat(i)+2(1)e^((1)^(2)) hat(j)+2cos(2(1)) hat(k)\left.\frac{d\overrightarrow{\mathbf{a}}}{dt}\right|_{t=1} = 1\hat{\mathbf{i}} + 2(1)e^{(1)^2}\hat{\mathbf{j}} + 2\cos(2(1))\hat{\mathbf{k}}dadt|t=1=1i^+2(1)e(1)2j^+2cos(2(1))k^
= 1 i ^ + 2 e j ^ + 2 cos ( 2 ) k ^ = 1 i ^ + 2 e j ^ + 2 cos ( 2 ) k ^ =1 hat(i)+2e hat(j)+2cos(2) hat(k)= 1\hat{\mathbf{i}} + 2e\hat{\mathbf{j}} + 2\cos(2)\hat{\mathbf{k}}=1i^+2ej^+2cos(2)k^
The unit tangent vector T ( t ) T ( t ) T(t)\mathbf{T}(t)T(t) is given by:
T ( t ) = d a d t d a d t T ( t ) = d a d t d a d t T(t)=((d vec(a))/(dt))/(||(d vec(a))/(dt)||)\mathbf{T}(t) = \frac{\frac{d\overrightarrow{\mathbf{a}}}{dt}}{\left\|\frac{d\overrightarrow{\mathbf{a}}}{dt}\right\|}T(t)=dadtdadt
At t = 1 t = 1 t=1t=1t=1, we need to calculate the magnitude of the derivative vector and then divide the derivative vector by its magnitude to get the unit tangent vector.
The magnitude of the derivative vector at t = 1 t = 1 t=1t=1t=1 is:
d a d t t = 1 = ( 1 ) 2 + ( 2 e ) 2 + ( 2 cos ( 2 ) ) 2 d a d t t = 1 = ( 1 ) 2 + ( 2 e ) 2 + ( 2 cos ( 2 ) ) 2 ||(d vec(a))/(dt)||_(t=1)=sqrt((1)^(2)+(2e)^(2)+(2cos(2))^(2))\left\|\frac{d\overrightarrow{\mathbf{a}}}{dt}\right\|_{t=1} = \sqrt{(1)^2 + (2e)^2 + (2\cos(2))^2}dadtt=1=(1)2+(2e)2+(2cos(2))2
Let’s calculate the magnitude and then find the unit tangent vector.
The magnitude of the derivative vector at t = 1 t = 1 t=1t=1t=1 is approximately 5.5901 5.5901 5.59015.59015.5901.
Now, to find the unit tangent vector T ( t ) T ( t ) T(t)\mathbf{T}(t)T(t) at t = 1 t = 1 t=1t=1t=1, we divide the derivative vector by its magnitude:
T ( 1 ) = 1 i ^ + 2 e j ^ + 2 cos ( 2 ) k ^ 5.5901 T ( 1 ) = 1 i ^ + 2 e j ^ + 2 cos ( 2 ) k ^ 5.5901 T(1)=(1( hat(i))+2e( hat(j))+2cos(2)( hat(k)))/(5.5901)\mathbf{T}(1) = \frac{1\hat{\mathbf{i}} + 2e\hat{\mathbf{j}} + 2\cos(2)\hat{\mathbf{k}}}{5.5901}T(1)=1i^+2ej^+2cos(2)k^5.5901
Let’s calculate each component:
  • For i ^ i ^ hat(i)\hat{\mathbf{i}}i^ component: 1 5.5901 1 5.5901 (1)/(5.5901)\frac{1}{5.5901}15.5901
  • For j ^ j ^ hat(j)\hat{\mathbf{j}}j^ component: 2 e 5.5901 2 e 5.5901 (2e)/(5.5901)\frac{2e}{5.5901}2e5.5901
  • For k ^ k ^ hat(k)\hat{\mathbf{k}}k^ component: 2 cos ( 2 ) 5.5901 2 cos ( 2 ) 5.5901 (2cos(2))/(5.5901)\frac{2\cos(2)}{5.5901}2cos(2)5.5901
After Calculating we get:
  • i ^ i ^ hat(i)\hat{\mathbf{i}}i^ component: 1 5.5901 0.1789 1 5.5901 0.1789 (1)/(5.5901)~~0.1789\frac{1}{5.5901} \approx 0.178915.59010.1789
  • j ^ j ^ hat(j)\hat{\mathbf{j}}j^ component: 2 e 5.5901 0.9802 2 e 5.5901 0.9802 (2e)/(5.5901)~~0.9802\frac{2e}{5.5901} \approx 0.98022e5.59010.9802
  • k ^ k ^ hat(k)\hat{\mathbf{k}}k^ component: 2 cos ( 2 ) 5.5901 0.7554 2 cos ( 2 ) 5.5901 0.7554 (2cos(2))/(5.5901)~~-0.7554\frac{2\cos(2)}{5.5901} \approx -0.75542cos(2)5.59010.7554
Therefore, the unit tangent vector T ( 1 ) T ( 1 ) T(1)\mathbf{T}(1)T(1) at t = 1 t = 1 t=1t=1t=1 is approximately:
T ( 1 ) = 0.1789 i ^ + 0.9802 j ^ 0.7554 k ^ T ( 1 ) = 0.1789 i ^ + 0.9802 j ^ 0.7554 k ^ T(1)=0.1789 hat(i)+0.9802 hat(j)-0.7554 hat(k)\mathbf{T}(1) = 0.1789\hat{\mathbf{i}} + 0.9802\hat{\mathbf{j}} – 0.7554\hat{\mathbf{k}}T(1)=0.1789i^+0.9802j^0.7554k^
This vector represents the direction of the curve described by a ( t ) a ( t ) vec(a)(t)\overrightarrow{\mathbf{a}}(t)a(t) at the point where t = 1 t = 1 t=1t=1t=1, normalized to have a magnitude of 1.

Frequently Asked Questions (FAQs)

You can access the Complete Solution through our app, which can be downloaded using this link:

App Link 

Simply click “Install” to download and install the app, and then follow the instructions to purchase the required assignment solution. Currently, the app is only available for Android devices. We are working on making the app available for iOS in the future, but it is not currently available for iOS devices.

Yes, It is Complete Solution, a comprehensive solution to the assignments for IGNOU. Valid from January 1, 2023 to December 31, 2023.

Yes, the Complete Solution is aligned with the IGNOU requirements and has been solved accordingly.

Yes, the Complete Solution is guaranteed to be error-free.The solutions are thoroughly researched and verified by subject matter experts to ensure their accuracy.

As of now, you have access to the Complete Solution for a period of 6 months after the date of purchase, which is sufficient to complete the assignment. However, we can extend the access period upon request. You can access the solution anytime through our app.

The app provides complete solutions for all assignment questions. If you still need help, you can contact the support team for assistance at Whatsapp +91-9958288900

No, access to the educational materials is limited to one device only, where you have first logged in. Logging in on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Payments can be made through various secure online payment methods available in the app.Your payment information is protected with industry-standard security measures to ensure its confidentiality and safety. You will receive a receipt for your payment through email or within the app, depending on your preference.

The instructions for formatting your assignments are detailed in the Assignment Booklet, which includes details on paper size, margins, precision, and submission requirements. It is important to strictly follow these instructions to facilitate evaluation and avoid delays.

\(sin\left(2\theta \right)=2\:sin\:\theta \:cos\:\theta \)

Terms and Conditions

  • The educational materials provided in the app are the sole property of the app owner and are protected by copyright laws.
  • Reproduction, distribution, or sale of the educational materials without prior written consent from the app owner is strictly prohibited and may result in legal consequences.
  • Any attempt to modify, alter, or use the educational materials for commercial purposes is strictly prohibited.
  • The app owner reserves the right to revoke access to the educational materials at any time without notice for any violation of these terms and conditions.
  • The app owner is not responsible for any damages or losses resulting from the use of the educational materials.
  • The app owner reserves the right to modify these terms and conditions at any time without notice.
  • By accessing and using the app, you agree to abide by these terms and conditions.
  • Access to the educational materials is limited to one device only. Logging in to the app on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Our educational materials are solely available on our website and application only. Users and students can report the dealing or selling of the copied version of our educational materials by any third party at our email address (abstract4math@gmail.com) or mobile no. (+91-9958288900).

In return, such users/students can expect free our educational materials/assignments and other benefits as a bonafide gesture which will be completely dependent upon our discretion.

Scroll to Top
Scroll to Top