VMOU MT-01 SOLVED ASSIGNMENT | MA/M.SC. MT- 01(Advanced Algebra) | July-2024 & January-2025

Section-A
(Very Short Answer Type Questions)
Note:- Answer all questions. As per the nature of the question you delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 (one) mark.
  1. (i). If H and K are two sub groups of G such that G is an internal direct product of H and K . Then find H K H K H nn KH \cap KHK.
    (ii). Write class equation for the finite group.
    (iii). Define normal extension of a field.
    (iv). Write Schwartz inequality.
Section – B
(Short Answer Questions)
Note :- Answer any two questions . Each answer should be given in 200 words. Each question carries 4 marks.
  1. Prove that every Euclidean ring is a principal ideal domain.
  2. If W is any subspace of a finite dimensional inner product space V , the prove that ( W ) = W W = W (W^(_|_))^(_|_)=W\left(W^{\perp}\right)^{\perp}=W(W)=W.
  3. Prove that every additive abelian group is a module over the ring Z of integers.
  4. If K K KKK is a field and d 1 , d 2 , . d n d 1 , d 2 , . d n d_(1),d_(2),dots.d_(n)d_1, d_2, \ldots . d_nd1,d2,.dn are distinct automorphisms of K K KKK. Then prove that it is impossible to find elements b 1 , b 2 , . b n b 1 , b 2 , . b n b_(1),b_(2),dots.b_(n)b_1, b_2, \ldots . b_nb1,b2,.bn not all zero in K K KKK such that b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots dots dots+b_(n)phi _(n)(a)=0AA a in Kb_1 \phi_1(a)+b_2 \phi_2(a)+\ldots \ldots \ldots+b_n \phi_n(a)=0 \forall a \in Kb1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0aK.
Section – C
(Long Answer Questions)
Note :- Answer any one question. Each answer should be given in 800 words. Each question carries 08 marks.
  1. Let M 1 M 1 M_(1)M_1M1 and M 2 M 2 M_(2)M_2M2 are submodule of an R-module M . Then prove that:
M 1 + M 2 M 2 M 1 M 1 M 2 M 1 + M 2 M 2 M 1 M 1 M 2 (M_(1)+M_(2))/(M_(2))~=(M_(1))/(M_(1)nnM_(2))\frac{M_1+M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}M1+M2M2M1M1M2
  1. Let V and V V V^(‘)V^{\prime}V be any two finite dimensional vector space over the same field F . Then prove that the vector space Hom ( V , V ) Hom V , V Hom(V,V^(‘))\operatorname{Hom}\left(\mathrm{V}, V^{\prime}\right)Hom(V,V) of all linear transformation of V to V V V^(‘)V^{\prime}V is also finite dimensional and dim Hom ( V , V ) = dim V × dim V Hom V , V = dim V × dim V Hom(V,V^(‘))=dimVxx dimV^(‘)\operatorname{Hom}\left(\mathrm{V}, V^{\prime}\right)=\operatorname{dim} \mathrm{V} \times \operatorname{dim} V^{\prime}Hom(V,V)=dimV×dimV.

Answer:

Question:-01(a)

If H and K are two subgroups of G such that G is an internal direct product of H and K. Then find H K H K H nn KH \cap KHK.

Answer:

If G G GGG is the internal direct product of the subgroups H H HHH and K K KKK, the following conditions must hold:
  1. Every element of G G GGG can be uniquely written as a product h k h k hkh khk where h H h H h in Hh \in HhH and k K k K k in Kk \in KkK.
  2. H K = { e } H K = { e } H nn K={e}H \cap K = \{ e \}HK={e}, where e e eee is the identity element of G G GGG.
Thus, H K = { e } H K = { e } H nn K={e}H \cap K = \{ e \}HK={e}.

Question:-01(b)

Write class equation for the finite group.

Answer:

The class equation of a finite group G G GGG is a fundamental result in group theory that relates the structure of G G GGG to its conjugacy classes. It is expressed as:
| G | = | Z ( G ) | + i [ G : C G ( g i ) ] , | G | = | Z ( G ) | + i [ G : C G ( g i ) ] , |G|=|Z(G)|+sum_(i)[G:C_(G)(g_(i))],|G| = |Z(G)| + \sum_{i} [G : C_G(g_i)],|G|=|Z(G)|+i[G:CG(gi)],
where:
  • | G | | G | |G||G||G|: The order (size) of the group G G GGG,
  • Z ( G ) Z ( G ) Z(G)Z(G)Z(G): The center of G G GGG, i.e., the set of elements that commute with every element of G G GGG,
  • | Z ( G ) | | Z ( G ) | |Z(G)||Z(G)||Z(G)|: The size (order) of the center Z ( G ) Z ( G ) Z(G)Z(G)Z(G),
  • g i g i g_(i)g_igi: A representative of each conjugacy class outside the center,
  • C G ( g i ) C G ( g i ) C_(G)(g_(i))C_G(g_i)CG(gi): The centralizer of g i g i g_(i)g_igi in G G GGG, i.e., the set of elements in G G GGG that commute with g i g i g_(i)g_igi,
  • [ G : C G ( g i ) ] [ G : C G ( g i ) ] [G:C_(G)(g_(i))][G : C_G(g_i)][G:CG(gi)]: The index of the centralizer C G ( g i ) C G ( g i ) C_(G)(g_(i))C_G(g_i)CG(gi) in G G GGG, which equals the size of the conjugacy class containing g i g i g_(i)g_igi.

Interpretation:

  1. The elements in Z ( G ) Z ( G ) Z(G)Z(G)Z(G) form singleton conjugacy classes (since they commute with all elements).
  2. The remaining conjugacy classes contribute terms of the form [ G : C G ( g i ) ] [ G : C G ( g i ) ] [G:C_(G)(g_(i))][G : C_G(g_i)][G:CG(gi)], representing their sizes.
The class equation is a powerful tool to analyze the structure of G G GGG, especially in applications like Sylow theorems and proving group properties.

Question:-01(c)

Define normal extension of a field.

Answer:

A normal extension of a field is a type of field extension that satisfies a specific algebraic condition related to the splitting of polynomials. Formally:
Let E E EEE be a field extension of F F FFF ( F E F E F sube EF \subseteq EFE). The extension E / F E / F E//FE/FE/F is called a normal extension if:
  1. Every irreducible polynomial f ( x ) F [ x ] f ( x ) F [ x ] f(x)in F[x]f(x) \in F[x]f(x)F[x] that has at least one root in E E EEE splits completely into linear factors over E E EEE, i.e., all the roots of f ( x ) f ( x ) f(x)f(x)f(x) are contained in E E EEE.

Equivalent Definitions:

  1. E / F E / F E//FE/FE/F is normal if E E EEE is the splitting field of some family of polynomials in F [ x ] F [ x ] F[x]F[x]F[x].
  2. E / F E / F E//FE/FE/F is normal if it is closed under conjugation by automorphisms, i.e., for any field automorphism σ σ sigma\sigmaσ of a larger field containing E E EEE, if σ ( e ) E σ ( e ) E sigma(e)in E\sigma(e) \in Eσ(e)E for some e E e E e in Ee \in EeE, then σ ( e ) σ ( e ) sigma(e)\sigma(e)σ(e) is also in E E EEE.

Examples:

  1. The extension Q ( 2 ) / Q Q ( 2 ) / Q Q(sqrt2)//Q\mathbb{Q}(\sqrt{2})/\mathbb{Q}Q(2)/Q is not normal, because the irreducible polynomial x 2 2 x 2 2 x^(2)-2x^2 – 2x22 over Q Q Q\mathbb{Q}Q has a root 2 2 sqrt2\sqrt{2}2 in Q ( 2 ) Q ( 2 ) Q(sqrt2)\mathbb{Q}(\sqrt{2})Q(2), but its other root, 2 2 -sqrt2-\sqrt{2}2, is not in Q ( 2 ) Q ( 2 ) Q(sqrt2)\mathbb{Q}(\sqrt{2})Q(2).
  2. The extension Q ( 2 , 3 3 ) / Q Q ( 2 , 3 3 ) / Q Q(sqrt2,root(3)(3))//Q\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})/\mathbb{Q}Q(2,33)/Q is normal, because it is the splitting field of ( x 2 2 ) ( x 3 3 ) ( x 2 2 ) ( x 3 3 ) (x^(2)-2)(x^(3)-3)(x^2 – 2)(x^3 – 3)(x22)(x33) over Q Q Q\mathbb{Q}Q.
Normal extensions are fundamental in the study of Galois theory, where they play a key role in defining Galois extensions.

Question:-01(d)

Write Schwartz inequality.

Answer:

The Schwarz inequality (or Cauchy-Schwarz inequality) is a fundamental result in mathematics, particularly in linear algebra and analysis. It states:
For any two vectors u , v u , v u,v\mathbf{u}, \mathbf{v}u,v in an inner product space, the following inequality holds:
| u , v | u v , | u , v | u v , |(:u,v:)| <= ||u||*||v||,|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|,|u,v|uv,
where:
  • u , v u , v (:u,v:)\langle \mathbf{u}, \mathbf{v} \rangleu,v: The inner product of u u u\mathbf{u}u and v v v\mathbf{v}v,
  • u = u , u u = u , u ||u||=sqrt((:u,u:))\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}u=u,u: The norm (magnitude) of u u u\mathbf{u}u,
  • v = v , v v = v , v ||v||=sqrt((:v,v:))\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}v=v,v: The norm (magnitude) of v v v\mathbf{v}v.

Equality Condition:

Equality holds if and only if u u u\mathbf{u}u and v v v\mathbf{v}v are linearly dependent, i.e., there exists a scalar λ λ lambda\lambdaλ such that u = λ v u = λ v u=lambdav\mathbf{u} = \lambda \mathbf{v}u=λv.

Special Cases:

  1. In Euclidean space R n R n R^(n)\mathbb{R}^nRn, with the standard dot product: | u v | u v , | u v | u v , |u*v| <= ||u||||v||,|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\| \|\mathbf{v}\|,|uv|uv,where u = i = 1 n u i 2 u = i = 1 n u i 2 ||u||=sqrt(sum_(i=1)^(n)u_(i)^(2))\|\mathbf{u}\| = \sqrt{\sum_{i=1}^n u_i^2}u=i=1nui2.
  2. For functions f , g f , g f,gf, gf,g in an inner product space L 2 [ a , b ] L 2 [ a , b ] L^(2)[a,b]L^2[a, b]L2[a,b]: | a b f ( x ) g ( x ) d x | a b f ( x ) 2 d x a b g ( x ) 2 d x . a b f ( x ) g ( x ) d x a b f ( x ) 2 d x a b g ( x ) 2 d x . |int_(a)^(b)f(x)g(x)dx| <= sqrt(int_(a)^(b)f(x)^(2)dx)*sqrt(int_(a)^(b)g(x)^(2)dx).\left| \int_a^b f(x)g(x) \, dx \right| \leq \sqrt{\int_a^b f(x)^2 \, dx} \cdot \sqrt{\int_a^b g(x)^2 \, dx}.|abf(x)g(x)dx|abf(x)2dxabg(x)2dx.
The Schwarz inequality is widely used in diverse areas of mathematics, physics, and engineering to establish bounds and relationships between quantities.

Question:-02

Prove that every Euclidean ring is a principal ideal domain.

Answer:

Statement:

Every Euclidean ring is a principal ideal domain (PID).

Proof:

Definitions:

  1. Euclidean Ring: A commutative ring R R RRR with unity is a Euclidean ring if there exists a function δ : R { 0 } N δ : R { 0 } N delta:R\\{0}rarrN\delta: R \setminus \{0\} \to \mathbb{N}δ:R{0}N (called a Euclidean norm) such that for all a , b R a , b R a,b in Ra, b \in Ra,bR with b 0 b 0 b!=0b \neq 0b0:
    • There exist q , r R q , r R q,r in Rq, r \in Rq,rR such that a = b q + r a = b q + r a=bq+ra = bq + ra=bq+r, where either r = 0 r = 0 r=0r = 0r=0 or δ ( r ) < δ ( b ) δ ( r ) < δ ( b ) delta(r) < delta(b)\delta(r) < \delta(b)δ(r)<δ(b).
  2. Principal Ideal Domain (PID): A commutative ring R R RRR with unity is a PID if every ideal I R I R I sube RI \subseteq RIR is a principal ideal, i.e., there exists some a R a R a in Ra \in RaR such that I = ( a ) = { r a : r R } I = ( a ) = { r a : r R } I=(a)={ra:r in R}I = (a) = \{ ra : r \in R \}I=(a)={ra:rR}.

Proof:

Let R R RRR be a Euclidean ring, and let I I III be a nonzero ideal of R R RRR. We need to show that I I III is a principal ideal.
  1. Since I I III is nonzero, there exists some b I b I b in Ib \in IbI with b 0 b 0 b!=0b \neq 0b0. Among all nonzero elements of I I III, choose an element d I d I d in Id \in IdI such that δ ( d ) δ ( d ) delta(d)\delta(d)δ(d) is minimal (this is possible because δ δ delta\deltaδ maps elements of R { 0 } R { 0 } R\\{0}R \setminus \{0\}R{0} to N N N\mathbb{N}N, which is well-ordered).
  2. We claim that I = ( d ) I = ( d ) I=(d)I = (d)I=(d). To prove this, we need to show that every element a I a I a in Ia \in IaI can be written as a = r d a = r d a=rda = rda=rd for some r R r R r in Rr \in RrR.
    • Since d I d I d in Id \in IdI, clearly ( d ) I ( d ) I (d)sube I(d) \subseteq I(d)I.
    • Let a I a I a in Ia \in IaI. By the division algorithm in R R RRR, there exist q , r R q , r R q,r in Rq, r \in Rq,rR such that:
      a = q d + r , a = q d + r , a=qd+r,a = qd + r,a=qd+r,
      where either r = 0 r = 0 r=0r = 0r=0 or δ ( r ) < δ ( d ) δ ( r ) < δ ( d ) delta(r) < delta(d)\delta(r) < \delta(d)δ(r)<δ(d).
    • Since a , d I a , d I a,d in Ia, d \in Ia,dI and I I III is an ideal, q d I q d I qd in Iqd \in IqdI. Thus, r = a q d I r = a q d I r=a-qd in Ir = a – qd \in Ir=aqdI.
    • If r 0 r 0 r!=0r \neq 0r0, then δ ( r ) < δ ( d ) δ ( r ) < δ ( d ) delta(r) < delta(d)\delta(r) < \delta(d)δ(r)<δ(d), which contradicts the minimality of δ ( d ) δ ( d ) delta(d)\delta(d)δ(d). Hence, r = 0 r = 0 r=0r = 0r=0, and a = q d a = q d a=qda = qda=qd.
  3. Therefore, a ( d ) a ( d ) a in(d)a \in (d)a(d), and we conclude I ( d ) I ( d ) I sube(d)I \subseteq (d)I(d).
  4. Combining ( d ) I ( d ) I (d)sube I(d) \subseteq I(d)I and I ( d ) I ( d ) I sube(d)I \subseteq (d)I(d), we get I = ( d ) I = ( d ) I=(d)I = (d)I=(d), showing that I I III is a principal ideal.

Conclusion:

Since every ideal in R R RRR is principal, R R RRR is a principal ideal domain. Thus, every Euclidean ring is a PID. Q.E.D. Q.E.D. “Q.E.D.”\boxed{\text{Q.E.D.}}Q.E.D.

Question:-03

If W is any subspace of a finite dimensional inner product space V, prove that ( W ) = W W = W (W^(_|_))^(_|_)=W\left(W^{\perp}\right)^{\perp}=W(W)=W.

Answer:

Statement:

Let V V VVV be a finite-dimensional inner product space, and let W W WWW be a subspace of V V VVV. Then:
( W ) = W . W = W . (W^( _|_))^(_|_)=W.\left( W^\perp \right)^\perp = W.(W)=W.

Proof:

Definitions:

  1. The orthogonal complement W W W^( _|_)W^\perpW of a subspace W V W V W sube VW \subseteq VWV is defined as:
    W = { v V : v , w = 0 for all w W } . W = { v V : v , w = 0 for all w W } . W^( _|_)={v in V:(:v,w:)=0″for all “w in W}.W^\perp = \{ v \in V : \langle v, w \rangle = 0 \ \text{for all } w \in W \}.W={vV:v,w=0 for all wW}.
  2. The space ( W ) W (W^( _|_))^(_|_)\left(W^\perp\right)^\perp(W) is the orthogonal complement of W W W^( _|_)W^\perpW, defined as:
    ( W ) = { v V : v , u = 0 for all u W } . W = { v V : v , u = 0 for all u W } . (W^( _|_))^(_|_)={v in V:(:v,u:)=0″for all “u inW^( _|_)}.\left(W^\perp\right)^\perp = \{ v \in V : \langle v, u \rangle = 0 \ \text{for all } u \in W^\perp \}.(W)={vV:v,u=0 for all uW}.

Key Observations:

  1. Direct Sum Decomposition: In a finite-dimensional inner product space V V VVV, any subspace W V W V W sube VW \subseteq VWV satisfies:
    V = W W , V = W W , V=W o+W^( _|_),V = W \oplus W^\perp,V=WW,
    where:
    • W W = { 0 } W W = { 0 } W nnW^( _|_)={0}W \cap W^\perp = \{0\}WW={0},
    • Every v V v V v in Vv \in VvV can be uniquely written as v = w + w v = w + w v=w+w^( _|_)v = w + w^\perpv=w+w for w W w W w in Ww \in WwW and w W w W w^( _|_)inW^( _|_)w^\perp \in W^\perpwW.
  2. Dimension Relation: The dimensions of W W WWW, W W W^( _|_)W^\perpW, and V V VVV are related as:
    dim ( W ) + dim ( W ) = dim ( V ) . dim ( W ) + dim ( W ) = dim ( V ) . dim(W)+dim(W^( _|_))=dim(V).\dim(W) + \dim(W^\perp) = \dim(V).dim(W)+dim(W)=dim(V).
  3. Orthogonality Property: If v W v W v in Wv \in WvW, then v , u = 0 v , u = 0 (:v,u:)=0\langle v, u \rangle = 0v,u=0 for all u W u W u inW^( _|_)u \in W^\perpuW.

Proof Steps:

  1. Inclusion W ( W ) W ( W ) W sube(W^( _|_))^(_|_)W \subseteq (W^\perp)^\perpW(W):
    • Take any w W w W w in Ww \in WwW. For all u W u W u inW^( _|_)u \in W^\perpuW, by the definition of orthogonal complement: w , u = 0. w , u = 0. (:w,u:)=0.\langle w, u \rangle = 0.w,u=0.
    • Thus, w ( W ) w W w in(W^( _|_))^(_|_)w \in \left(W^\perp\right)^\perpw(W). Therefore, W ( W ) W W W sube(W^( _|_))^(_|_)W \subseteq \left(W^\perp\right)^\perpW(W).
  2. Inclusion ( W ) W ( W ) W (W^( _|_))^(_|_)sube W(W^\perp)^\perp \subseteq W(W)W:
    • Let v ( W ) v W v in(W^( _|_))^(_|_)v \in \left(W^\perp\right)^\perpv(W). Then, v v vvv satisfies v , u = 0 v , u = 0 (:v,u:)=0\langle v, u \rangle = 0v,u=0 for all u W u W u inW^( _|_)u \in W^\perpuW.
    • By the direct sum decomposition V = W W V = W W V=W o+W^( _|_)V = W \oplus W^\perpV=WW, v v vvv can be uniquely written as v = w + w v = w + w v=w+w^( _|_)v = w + w^\perpv=w+w, where w W w W w in Ww \in WwW and w W w W w^( _|_)inW^( _|_)w^\perp \in W^\perpwW.
    • Since v ( W ) v W v in(W^( _|_))^(_|_)v \in \left(W^\perp\right)^\perpv(W), we have:
      0 = v , w = w + w , w = w , w , 0 = v , w = w + w , w = w , w , 0=(:v,w^( _|_):)=(:w+w^( _|_),w^( _|_):)=(:w^( _|_),w^( _|_):),0 = \langle v, w^\perp \rangle = \langle w + w^\perp, w^\perp \rangle = \langle w^\perp, w^\perp \rangle,0=v,w=w+w,w=w,w,
      because w , w = 0 w , w = 0 (:w,w^( _|_):)=0\langle w, w^\perp \rangle = 0w,w=0 (orthogonality of W W WWW and W W W^( _|_)W^\perpW).
    • This implies w 2 = 0 w 2 = 0 ||w^( _|_)||^(2)=0\|w^\perp\|^2 = 0w2=0, so w = 0 w = 0 w^( _|_)=0w^\perp = 0w=0. Hence, v = w W v = w W v=w in Wv = w \in Wv=wW.
    • Therefore, ( W ) W ( W ) W (W^( _|_))^(_|_)sube W(W^\perp)^\perp \subseteq W(W)W.
  3. Conclusion:
    Combining W ( W ) W ( W ) W sube(W^( _|_))^(_|_)W \subseteq (W^\perp)^\perpW(W) and ( W ) W ( W ) W (W^( _|_))^(_|_)sube W(W^\perp)^\perp \subseteq W(W)W, we have:
    ( W ) = W . ( W ) = W . (W^( _|_))^(_|_)=W.(W^\perp)^\perp = W.(W)=W.
Q.E.D. Q.E.D. “Q.E.D.”\boxed{\text{Q.E.D.}}Q.E.D.

Question:-04

Prove that every additive abelian group is a module over the ring Z Z Z\mathbb{Z}Z of integers.

Answer:

Statement:

Every additive abelian group G G GGG is a module over the ring Z Z Z\mathbb{Z}Z of integers.

Proof:

Definitions:

  1. Additive Abelian Group: A set G G GGG with a binary operation + + +++ is called an additive abelian group if:
    • G G GGG is closed under addition,
    • Addition is associative: ( a + b ) + c = a + ( b + c ) ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c)(a + b) + c = a + (b + c)(a+b)+c=a+(b+c) for all a , b , c G a , b , c G a,b,c in Ga, b, c \in Ga,b,cG,
    • There exists an identity element 0 G 0 G 0in G0 \in G0G such that a + 0 = a a + 0 = a a+0=aa + 0 = aa+0=a for all a G a G a in Ga \in GaG,
    • Every element a G a G a in Ga \in GaG has an additive inverse a G a G -a in G-a \in GaG such that a + ( a ) = 0 a + ( a ) = 0 a+(-a)=0a + (-a) = 0a+(a)=0,
    • Addition is commutative: a + b = b + a a + b = b + a a+b=b+aa + b = b + aa+b=b+a for all a , b G a , b G a,b in Ga, b \in Ga,bG.
  2. Module over Z Z Z\mathbb{Z}Z: A module over the ring Z Z Z\mathbb{Z}Z is a set G G GGG with:
    • An additive abelian group structure,
    • A scalar multiplication : Z × G G : Z × G G *:Zxx G rarr G\cdot : \mathbb{Z} \times G \to G:Z×GG such that:
      1. ( m + n ) g = m g + n g ( m + n ) g = m g + n g (m+n)*g=m*g+n*g(m + n) \cdot g = m \cdot g + n \cdot g(m+n)g=mg+ng for all m , n Z m , n Z m,n inZm, n \in \mathbb{Z}m,nZ, g G g G g in Gg \in GgG,
      2. m ( g + h ) = m g + m h m ( g + h ) = m g + m h m*(g+h)=m*g+m*hm \cdot (g + h) = m \cdot g + m \cdot hm(g+h)=mg+mh for all m Z m Z m inZm \in \mathbb{Z}mZ, g , h G g , h G g,h in Gg, h \in Gg,hG,
      3. ( m n ) g = m ( n g ) ( m n ) g = m ( n g ) (m*n)*g=m*(n*g)(m \cdot n) \cdot g = m \cdot (n \cdot g)(mn)g=m(ng) for all m , n Z m , n Z m,n inZm, n \in \mathbb{Z}m,nZ, g G g G g in Gg \in GgG,
      4. 1 g = g 1 g = g 1*g=g1 \cdot g = g1g=g for all g G g G g in Gg \in GgG.

Proof Steps:

  1. Define Scalar Multiplication:
    Define scalar multiplication : Z × G G : Z × G G *:Zxx G rarr G\cdot : \mathbb{Z} \times G \to G:Z×GG as:
    m g = g + g + + g m times if m > 0 , m g = g + g + + g m times if m > 0 , m*g=ubrace(g+g+cdots+gubrace)_(m” times”)quad”if “m > 0,m \cdot g = \underbrace{g + g + \dots + g}_{m \text{ times}} \quad \text{if } m > 0,mg=g+g++gm timesif m>0,
    m g = 0 if m = 0 , m g = 0 if m = 0 , m*g=0quad”if “m=0,m \cdot g = 0 \quad \text{if } m = 0,mg=0if m=0,
    m g = ( g + g + + g | m | times ) if m < 0. m g = ( g + g + + g | m | times ) if m < 0. m*g=-(ubrace(g+g+cdots+gubrace)_(|m|” times”))quad”if “m < 0.m \cdot g = -(\underbrace{g + g + \dots + g}_{|m| \text{ times}}) \quad \text{if } m < 0.mg=(g+g++g|m| times)if m<0.
    This scalar multiplication is well-defined because G G GGG is an additive abelian group, and we can repeatedly add or subtract elements.
  2. Check Module Axioms:
    We need to verify that the scalar multiplication satisfies the module axioms.
    • (1) Distributivity over Z Z Z\mathbb{Z}Z-addition:
      ( m + n ) g = g + g + + g ( m + n ) times = g + g + + g m times + g + g + + g n times = m g + n g . ( m + n ) g = g + g + + g ( m + n ) times = g + g + + g m times + g + g + + g n times = m g + n g . (m+n)*g=ubrace(g+g+cdots+gubrace)_((m+n)” times”)=ubrace(g+g+cdots+gubrace)_(m” times”)+ubrace(g+g+cdots+gubrace)_(n” times”)=m*g+n*g.(m + n) \cdot g = \underbrace{g + g + \dots + g}_{(m + n) \text{ times}} = \underbrace{g + g + \dots + g}_{m \text{ times}} + \underbrace{g + g + \dots + g}_{n \text{ times}} = m \cdot g + n \cdot g.(m+n)g=g+g++g(m+n) times=g+g++gm times+g+g++gn times=mg+ng.
    • (2) Distributivity over group addition:
      m ( g + h ) = ( g + h ) + ( g + h ) + + ( g + h ) m times = g + g + + g m times + h + h + + h m times = m g + m h . m ( g + h ) = ( g + h ) + ( g + h ) + + ( g + h ) m times = g + g + + g m times + h + h + + h m times = m g + m h . m*(g+h)=ubrace((g+h)+(g+h)+cdots+(g+h)ubrace)_(m” times”)=ubrace(g+g+cdots+gubrace)_(m” times”)+ubrace(h+h+cdots+hubrace)_(m” times”)=m*g+m*h.m \cdot (g + h) = \underbrace{(g + h) + (g + h) + \dots + (g + h)}_{m \text{ times}} = \underbrace{g + g + \dots + g}_{m \text{ times}} + \underbrace{h + h + \dots + h}_{m \text{ times}} = m \cdot g + m \cdot h.m(g+h)=(g+h)+(g+h)++(g+h)m times=g+g++gm times+h+h++hm times=mg+mh.
    • (3) Compatibility with multiplication in Z Z Z\mathbb{Z}Z:
      ( m n ) g = g + g + + g ( m n ) times = m ( g + g + + g n times ) = m ( n g ) . ( m n ) g = g + g + + g ( m n ) times = m ( g + g + + g n times ) = m ( n g ) . (m*n)*g=ubrace(g+g+cdots+gubrace)_((m*n)” times”)=m*(ubrace(g+g+cdots+gubrace)_(n” times”))=m*(n*g).(m \cdot n) \cdot g = \underbrace{g + g + \dots + g}_{(m \cdot n) \text{ times}} = m \cdot (\underbrace{g + g + \dots + g}_{n \text{ times}}) = m \cdot (n \cdot g).(mn)g=g+g++g(mn) times=m(g+g++gn times)=m(ng).
    • (4) Action of 1:
      1 g = g 1 time = g . 1 g = g 1 time = g . 1*g=ubrace(gubrace)_(1″ time”)=g.1 \cdot g = \underbrace{g}_{1 \text{ time}} = g.1g=g1 time=g.
  3. Conclusion:
    Since G G GGG satisfies the axioms of a module over Z Z Z\mathbb{Z}Z, every additive abelian group is indeed a module over Z Z Z\mathbb{Z}Z.
Q.E.D. Q.E.D. “Q.E.D.”\boxed{\text{Q.E.D.}}Q.E.D.

Question:-05

If K K KKK is a field and d 1 , d 2 , , d n d 1 , d 2 , , d n d_(1),d_(2),dots,d_(n)d_1, d_2, \ldots, d_nd1,d2,,dn are distinct automorphisms of K K KKK. Then prove that it is impossible to find elements b 1 , b 2 , , b n b 1 , b 2 , , b n b_(1),b_(2),dots,b_(n)b_1, b_2, \ldots, b_nb1,b2,,bn not all zero in K K KKK such that

b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)=0quad AA a in K.b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a) = 0 \quad \forall a \in K.b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0aK.

Answer:

Statement:

Let K K KKK be a field, and let ϕ 1 , ϕ 2 , , ϕ n ϕ 1 , ϕ 2 , , ϕ n phi_(1),phi_(2),dots,phi _(n)\phi_1, \phi_2, \ldots, \phi_nϕ1,ϕ2,,ϕn be distinct automorphisms of K K KKK. Then there are no elements b 1 , b 2 , , b n K b 1 , b 2 , , b n K b_(1),b_(2),dots,b_(n)in Kb_1, b_2, \ldots, b_n \in Kb1,b2,,bnK, not all zero, such that:
b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 for all a K . b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 for all a K . b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)=0quad”for all “a in K.b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a) = 0 \quad \text{for all } a \in K.b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0for all aK.

Proof:

1. Assume the contrary:

Suppose there exist elements b 1 , b 2 , , b n K b 1 , b 2 , , b n K b_(1),b_(2),dots,b_(n)in Kb_1, b_2, \ldots, b_n \in Kb1,b2,,bnK, not all zero, such that:
b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)=0quad AA a in K.b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a) = 0 \quad \forall a \in K.b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0aK.
This equation implies that the map:
L ( a ) = b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) L ( a ) = b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) L(a)=b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)L(a) = b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a)L(a)=b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)
is identically zero for all a K a K a in Ka \in KaK.

2. Linearity of L L LLL:

The map L : K K L : K K L:K rarr KL: K \to KL:KK is linear because:
L ( a + c ) = b 1 ϕ 1 ( a + c ) + b 2 ϕ 2 ( a + c ) + + b n ϕ n ( a + c ) , L ( a + c ) = b 1 ϕ 1 ( a + c ) + b 2 ϕ 2 ( a + c ) + + b n ϕ n ( a + c ) , L(a+c)=b_(1)phi_(1)(a+c)+b_(2)phi_(2)(a+c)+dots+b_(n)phi _(n)(a+c),L(a + c) = b_1 \phi_1(a + c) + b_2 \phi_2(a + c) + \ldots + b_n \phi_n(a + c),L(a+c)=b1ϕ1(a+c)+b2ϕ2(a+c)++bnϕn(a+c),
and since ϕ i ϕ i phi _(i)\phi_iϕi are automorphisms (which are linear maps over K K KKK), this becomes:
L ( a + c ) = b 1 ( ϕ 1 ( a ) + ϕ 1 ( c ) ) + + b n ( ϕ n ( a ) + ϕ n ( c ) ) , L ( a + c ) = b 1 ( ϕ 1 ( a ) + ϕ 1 ( c ) ) + + b n ( ϕ n ( a ) + ϕ n ( c ) ) , L(a+c)=b_(1)(phi_(1)(a)+phi_(1)(c))+dots+b_(n)(phi _(n)(a)+phi _(n)(c)),L(a + c) = b_1 (\phi_1(a) + \phi_1(c)) + \ldots + b_n (\phi_n(a) + \phi_n(c)),L(a+c)=b1(ϕ1(a)+ϕ1(c))++bn(ϕn(a)+ϕn(c)),
which simplifies to:
L ( a + c ) = L ( a ) + L ( c ) . L ( a + c ) = L ( a ) + L ( c ) . L(a+c)=L(a)+L(c).L(a + c) = L(a) + L(c).L(a+c)=L(a)+L(c).
Similarly, for λ K λ K lambda in K\lambda \in KλK:
L ( λ a ) = b 1 ϕ 1 ( λ a ) + b 2 ϕ 2 ( λ a ) + + b n ϕ n ( λ a ) , L ( λ a ) = b 1 ϕ 1 ( λ a ) + b 2 ϕ 2 ( λ a ) + + b n ϕ n ( λ a ) , L(lambda a)=b_(1)phi_(1)(lambda a)+b_(2)phi_(2)(lambda a)+dots+b_(n)phi _(n)(lambda a),L(\lambda a) = b_1 \phi_1(\lambda a) + b_2 \phi_2(\lambda a) + \ldots + b_n \phi_n(\lambda a),L(λa)=b1ϕ1(λa)+b2ϕ2(λa)++bnϕn(λa),
and since ϕ i ϕ i phi _(i)\phi_iϕi are automorphisms:
L ( λ a ) = λ ( b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) ) = λ L ( a ) . L ( λ a ) = λ ( b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) ) = λ L ( a ) . L(lambda a)=lambda(b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a))=lambda L(a).L(\lambda a) = \lambda (b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a)) = \lambda L(a).L(λa)=λ(b1ϕ1(a)+b2ϕ2(a)++bnϕn(a))=λL(a).
Thus, L L LLL is a linear map over K K KKK.

3. Evaluating L ( a ) = 0 L ( a ) = 0 L(a)=0L(a) = 0L(a)=0 for all a K a K a in Ka \in KaK:

Since L ( a ) = 0 L ( a ) = 0 L(a)=0L(a) = 0L(a)=0 for all a K a K a in Ka \in KaK, the coefficients b 1 , b 2 , , b n b 1 , b 2 , , b n b_(1),b_(2),dots,b_(n)b_1, b_2, \ldots, b_nb1,b2,,bn must satisfy a specific linear independence property.

4. Distinct automorphisms imply independence:

The automorphisms ϕ 1 , ϕ 2 , , ϕ n ϕ 1 , ϕ 2 , , ϕ n phi_(1),phi_(2),dots,phi _(n)\phi_1, \phi_2, \ldots, \phi_nϕ1,ϕ2,,ϕn are distinct. If b 1 , b 2 , , b n b 1 , b 2 , , b n b_(1),b_(2),dots,b_(n)b_1, b_2, \ldots, b_nb1,b2,,bn are not all zero, consider the set of functions ϕ 1 , ϕ 2 , , ϕ n ϕ 1 , ϕ 2 , , ϕ n phi_(1),phi_(2),dots,phi _(n)\phi_1, \phi_2, \ldots, \phi_nϕ1,ϕ2,,ϕn acting on K K KKK. These functions are linearly independent over K K KKK, meaning no non-trivial linear combination of these functions can yield the zero map.
In particular, if:
b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K , b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K , b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)=0quad AA a in K,b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a) = 0 \quad \forall a \in K,b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0aK,
then b 1 = b 2 = = b n = 0 b 1 = b 2 = = b n = 0 b_(1)=b_(2)=dots=b_(n)=0b_1 = b_2 = \ldots = b_n = 0b1=b2==bn=0, contradicting the assumption that b 1 , b 2 , , b n b 1 , b 2 , , b n b_(1),b_(2),dots,b_(n)b_1, b_2, \ldots, b_nb1,b2,,bn are not all zero.

5. Conclusion:

Thus, it is impossible to find b 1 , b 2 , , b n K b 1 , b 2 , , b n K b_(1),b_(2),dots,b_(n)in Kb_1, b_2, \ldots, b_n \in Kb1,b2,,bnK, not all zero, such that:
b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b 1 ϕ 1 ( a ) + b 2 ϕ 2 ( a ) + + b n ϕ n ( a ) = 0 a K . b_(1)phi_(1)(a)+b_(2)phi_(2)(a)+dots+b_(n)phi _(n)(a)=0quad AA a in K.b_1 \phi_1(a) + b_2 \phi_2(a) + \ldots + b_n \phi_n(a) = 0 \quad \forall a \in K.b1ϕ1(a)+b2ϕ2(a)++bnϕn(a)=0aK.
Q.E.D. Q.E.D. “Q.E.D.”\boxed{\text{Q.E.D.}}Q.E.D.

Question:-06

Let M 1 M 1 M_(1)M_1M1 and M 2 M 2 M_(2)M_2M2 be submodules of an R R RRR-module M M MMM. Then prove that:

M 1 + M 2 M 2 M 1 M 1 M 2 M 1 + M 2 M 2 M 1 M 1 M 2 (M_(1)+M_(2))/(M_(2))~=(M_(1))/(M_(1)nnM_(2))\frac{M_1 + M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}M1+M2M2M1M1M2

Answer:

Statement:

Let M 1 M 1 M_(1)M_1M1 and M 2 M 2 M_(2)M_2M2 be submodules of an R R RRR-module M M MMM. Then:
M 1 + M 2 M 2 M 1 M 1 M 2 . M 1 + M 2 M 2 M 1 M 1 M 2 . (M_(1)+M_(2))/(M_(2))~=(M_(1))/(M_(1)nnM_(2)).\frac{M_1 + M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}.M1+M2M2M1M1M2.

Detailed Proof:

Step 1: Define a Map

Define a map φ : M 1 M 1 + M 2 M 2 φ : M 1 M 1 + M 2 M 2 varphi:M_(1)rarr(M_(1)+M_(2))/(M_(2))\varphi: M_1 \to \frac{M_1 + M_2}{M_2}φ:M1M1+M2M2 by:
φ ( m 1 ) = m 1 + M 2 , for m 1 M 1 . φ ( m 1 ) = m 1 + M 2 , for m 1 M 1 . varphi(m_(1))=m_(1)+M_(2),quad”for “m_(1)inM_(1).\varphi(m_1) = m_1 + M_2, \quad \text{for } m_1 \in M_1.φ(m1)=m1+M2,for m1M1.
Here:
  • φ ( m 1 ) φ ( m 1 ) varphi(m_(1))\varphi(m_1)φ(m1) represents the coset m 1 + M 2 m 1 + M 2 m_(1)+M_(2)m_1 + M_2m1+M2, which is a member of the quotient module M 1 + M 2 M 2 M 1 + M 2 M 2 (M_(1)+M_(2))/(M_(2))\frac{M_1 + M_2}{M_2}M1+M2M2.

Step 2: Verify φ φ varphi\varphiφ is Well-Defined

Since m 1 M 1 M 1 + M 2 m 1 M 1 M 1 + M 2 m_(1)inM_(1)subeM_(1)+M_(2)m_1 \in M_1 \subseteq M_1 + M_2m1M1M1+M2, the coset m 1 + M 2 m 1 + M 2 m_(1)+M_(2)m_1 + M_2m1+M2 is a valid element of M 1 + M 2 M 2 M 1 + M 2 M 2 (M_(1)+M_(2))/(M_(2))\frac{M_1 + M_2}{M_2}M1+M2M2. Thus, φ φ varphi\varphiφ is well-defined.

Step 3: Check Linearity of φ φ varphi\varphiφ

Let m 1 , m 1 M 1 m 1 , m 1 M 1 m_(1),m_(1)^(‘)inM_(1)m_1, m_1′ \in M_1m1,m1M1 and r R r R r in Rr \in RrR. Then:
  1. Additivity: φ ( m 1 + m 1 ) = ( m 1 + m 1 ) + M 2 = ( m 1 + M 2 ) + ( m 1 + M 2 ) = φ ( m 1 ) + φ ( m 1 ) . φ ( m 1 + m 1 ) = ( m 1 + m 1 ) + M 2 = ( m 1 + M 2 ) + ( m 1 + M 2 ) = φ ( m 1 ) + φ ( m 1 ) . varphi(m_(1)+m_(1)^(‘))=(m_(1)+m_(1)^(‘))+M_(2)=(m_(1)+M_(2))+(m_(1)^(‘)+M_(2))=varphi(m_(1))+varphi(m_(1)^(‘)).\varphi(m_1 + m_1′) = (m_1 + m_1′) + M_2 = (m_1 + M_2) + (m_1′ + M_2) = \varphi(m_1) + \varphi(m_1′).φ(m1+m1)=(m1+m1)+M2=(m1+M2)+(m1+M2)=φ(m1)+φ(m1).
  2. Scalar Multiplication: φ ( r m 1 ) = ( r m 1 ) + M 2 = r ( m 1 + M 2 ) = r φ ( m 1 ) . φ ( r m 1 ) = ( r m 1 ) + M 2 = r ( m 1 + M 2 ) = r φ ( m 1 ) . varphi(rm_(1))=(rm_(1))+M_(2)=r(m_(1)+M_(2))=r varphi(m_(1)).\varphi(rm_1) = (rm_1) + M_2 = r(m_1 + M_2) = r\varphi(m_1).φ(rm1)=(rm1)+M2=r(m1+M2)=rφ(m1).
Thus, φ φ varphi\varphiφ is an R R RRR-module homomorphism.

Step 4: Kernel of φ φ varphi\varphiφ

The kernel of φ φ varphi\varphiφ is:
ker ( φ ) = { m 1 M 1 : φ ( m 1 ) = 0 + M 2 } . ker ( φ ) = { m 1 M 1 : φ ( m 1 ) = 0 + M 2 } . ker(varphi)={m_(1)inM_(1):varphi(m_(1))=0+M_(2)}.\ker(\varphi) = \{ m_1 \in M_1 : \varphi(m_1) = 0 + M_2 \}.ker(φ)={m1M1:φ(m1)=0+M2}.
From the definition of φ φ varphi\varphiφ, φ ( m 1 ) = 0 + M 2 φ ( m 1 ) = 0 + M 2 varphi(m_(1))=0+M_(2)\varphi(m_1) = 0 + M_2φ(m1)=0+M2 if and only if m 1 M 2 m 1 M 2 m_(1)inM_(2)m_1 \in M_2m1M2. Therefore:
ker ( φ ) = M 1 M 2 . ker ( φ ) = M 1 M 2 . ker(varphi)=M_(1)nnM_(2).\ker(\varphi) = M_1 \cap M_2.ker(φ)=M1M2.

Step 5: Image of φ φ varphi\varphiφ

The image of φ φ varphi\varphiφ is:
im ( φ ) = { φ ( m 1 ) : m 1 M 1 } = { m 1 + M 2 : m 1 M 1 } . im ( φ ) = { φ ( m 1 ) : m 1 M 1 } = { m 1 + M 2 : m 1 M 1 } . “im”(varphi)={varphi(m_(1)):m_(1)inM_(1)}={m_(1)+M_(2):m_(1)inM_(1)}.\text{im}(\varphi) = \{ \varphi(m_1) : m_1 \in M_1 \} = \{ m_1 + M_2 : m_1 \in M_1 \}.im(φ)={φ(m1):m1M1}={m1+M2:m1M1}.
By definition of M 1 + M 2 M 1 + M 2 M_(1)+M_(2)M_1 + M_2M1+M2, every element of M 1 + M 2 M 1 + M 2 M_(1)+M_(2)M_1 + M_2M1+M2 can be written as m 1 + m 2 m 1 + m 2 m_(1)+m_(2)m_1 + m_2m1+m2 for some m 1 M 1 m 1 M 1 m_(1)inM_(1)m_1 \in M_1m1M1 and m 2 M 2 m 2 M 2 m_(2)inM_(2)m_2 \in M_2m2M2. Hence, the coset m 1 + M 2 m 1 + M 2 m_(1)+M_(2)m_1 + M_2m1+M2 represents all elements in M 1 + M 2 M 2 M 1 + M 2 M 2 (M_(1)+M_(2))/(M_(2))\frac{M_1 + M_2}{M_2}M1+M2M2. Therefore:
im ( φ ) = M 1 + M 2 M 2 . im ( φ ) = M 1 + M 2 M 2 . “im”(varphi)=(M_(1)+M_(2))/(M_(2)).\text{im}(\varphi) = \frac{M_1 + M_2}{M_2}.im(φ)=M1+M2M2.

Step 6: Apply the First Isomorphism Theorem

The First Isomorphism Theorem for modules states:
M 1 / ker ( φ ) im ( φ ) . M 1 / ker ( φ ) im ( φ ) . M_(1)//ker(varphi)~=”im”(varphi).M_1 / \ker(\varphi) \cong \text{im}(\varphi).M1/ker(φ)im(φ).
Substituting the results:
  • ker ( φ ) = M 1 M 2 ker ( φ ) = M 1 M 2 ker(varphi)=M_(1)nnM_(2)\ker(\varphi) = M_1 \cap M_2ker(φ)=M1M2,
  • im ( φ ) = M 1 + M 2 M 2 im ( φ ) = M 1 + M 2 M 2 “im”(varphi)=(M_(1)+M_(2))/(M_(2))\text{im}(\varphi) = \frac{M_1 + M_2}{M_2}im(φ)=M1+M2M2,
we have:
M 1 M 1 M 2 M 1 + M 2 M 2 . M 1 M 1 M 2 M 1 + M 2 M 2 . (M_(1))/(M_(1)nnM_(2))~=(M_(1)+M_(2))/(M_(2)).\frac{M_1}{M_1 \cap M_2} \cong \frac{M_1 + M_2}{M_2}.M1M1M2M1+M2M2.

Conclusion:

The modules M 1 + M 2 M 2 M 1 + M 2 M 2 (M_(1)+M_(2))/(M_(2))\frac{M_1 + M_2}{M_2}M1+M2M2 and M 1 M 1 M 2 M 1 M 1 M 2 (M_(1))/(M_(1)nnM_(2))\frac{M_1}{M_1 \cap M_2}M1M1M2 are isomorphic, as required.
M 1 + M 2 M 2 M 1 M 1 M 2 M 1 + M 2 M 2 M 1 M 1 M 2 (M_(1)+M_(2))/(M_(2))~=(M_(1))/(M_(1)nnM_(2))\boxed{\frac{M_1 + M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}}M1+M2M2M1M1M2

Question:-07

Let V V VVV and V V V^(‘)V^{\prime}V be any two finite dimensional vector spaces over the same field F F FFF. Then prove that the vector space Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V^{\prime})Hom(V,V) of all linear transformations from V V VVV to V V V^(‘)V^{\prime}V is also finite dimensional and

dim Hom ( V , V ) = dim V × dim V . dim Hom ( V , V ) = dim V × dim V . dim Hom(V,V^(‘))=dim V xx dim V^(‘).\dim \operatorname{Hom}(V, V^{\prime}) = \dim V \times \dim V^{\prime}.dimHom(V,V)=dimV×dimV.

Answer:

Statement:

Let V V VVV and V V V^(‘)V’V be finite-dimensional vector spaces over the same field F F FFF, with dim V = n dim V = n dim V=n\dim V = ndimV=n and dim V = m dim V = m dim V^(‘)=m\dim V’ = mdimV=m. Then:
  1. The vector space Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V), consisting of all linear transformations from V V VVV to V V V^(‘)V’V, is finite-dimensional.
  2. Its dimension is given by: dim Hom ( V , V ) = dim V × dim V = n × m . dim Hom ( V , V ) = dim V × dim V = n × m . dim Hom(V,V^(‘))=dim V xx dim V^(‘)=n xx m.\dim \operatorname{Hom}(V, V’) = \dim V \times \dim V’ = n \times m.dimHom(V,V)=dimV×dimV=n×m.

Detailed Proof:

Step 1: Define Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V):

  • The set Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V) is the collection of all linear transformations T : V V T : V V T:V rarrV^(‘)T: V \to V’T:VV.
  • For any T Hom ( V , V ) T Hom ( V , V ) T in Hom(V,V^(‘))T \in \operatorname{Hom}(V, V’)THom(V,V), the action of T T TTT is completely determined by how it maps basis elements of V V VVV. This is because T T TTT is linear, and any vector v V v V v in Vv \in VvV can be written as a linear combination of basis elements.

Step 2: Basis of V V VVV and V V V^(‘)V’V:

  • Let { v 1 , v 2 , , v n } { v 1 , v 2 , , v n } {v_(1),v_(2),dots,v_(n)}\{v_1, v_2, \ldots, v_n\}{v1,v2,,vn} be a basis of V V VVV, so every v V v V v in Vv \in VvV can be written uniquely as:
    v = i = 1 n c i v i , where c i F . v = i = 1 n c i v i , where c i F . v=sum_(i=1)^(n)c_(i)v_(i),quad”where “c_(i)in F.v = \sum_{i=1}^n c_i v_i, \quad \text{where } c_i \in F.v=i=1ncivi,where ciF.
  • Let { w 1 , w 2 , , w m } { w 1 , w 2 , , w m } {w_(1),w_(2),dots,w_(m)}\{w_1, w_2, \ldots, w_m\}{w1,w2,,wm} be a basis of V V V^(‘)V’V, so every w V w V w inV^(‘)w \in V’wV can be written uniquely as:
    w = j = 1 m d j w j , where d j F . w = j = 1 m d j w j , where d j F . w=sum_(j=1)^(m)d_(j)w_(j),quad”where “d_(j)in F.w = \sum_{j=1}^m d_j w_j, \quad \text{where } d_j \in F.w=j=1mdjwj,where djF.

Step 3: Represent T Hom ( V , V ) T Hom ( V , V ) T in Hom(V,V^(‘))T \in \operatorname{Hom}(V, V’)THom(V,V):

  • Since T T TTT is linear, for any i = 1 , 2 , , n i = 1 , 2 , , n i=1,2,dots,ni = 1, 2, \ldots, ni=1,2,,n, T ( v i ) T ( v i ) T(v_(i))T(v_i)T(vi) must lie in V V V^(‘)V’V.
  • Write T ( v i ) T ( v i ) T(v_(i))T(v_i)T(vi) as a linear combination of the basis elements of V V V^(‘)V’V:
    T ( v i ) = j = 1 m a i j w j , where a i j F . T ( v i ) = j = 1 m a i j w j , where a i j F . T(v_(i))=sum_(j=1)^(m)a_(ij)w_(j),quad”where “a_(ij)in F.T(v_i) = \sum_{j=1}^m a_{ij} w_j, \quad \text{where } a_{ij} \in F.T(vi)=j=1maijwj,where aijF.
  • The coefficients { a i j } 1 i n , 1 j m { a i j } 1 i n , 1 j m {a_(ij)}_(1 <= i <= n,1 <= j <= m)\{a_{ij} \}_{1 \leq i \leq n, 1 \leq j \leq m}{aij}1in,1jm completely determine the linear transformation T T TTT.

Step 4: Matrix Representation of T T TTT:

  • The map T T TTT can be represented as a matrix A A AAA of size m × n m × n m xx nm \times nm×n, where the ( j , i ) ( j , i ) (j,i)(j, i)(j,i)-th entry of A A AAA is a i j a i j a_(ij)a_{ij}aij.
    A = [ a 11 a 12 a 1 n a 21 a 22 a 2 n a m 1 a m 2 a m n ] . A = a 11 a 12 a 1 n a 21 a 22 a 2 n a m 1 a m 2 a m n . A=[[a_(11),a_(12),cdots,a_(1n)],[a_(21),a_(22),cdots,a_(2n)],[vdots,vdots,ddots,vdots],[a_(m1),a_(m2),cdots,a_(mn)]].A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.A=[a11a12a1na21a22a2nam1am2amn].
  • Each column of A A AAA corresponds to the image of a basis element v i v i v_(i)v_ivi of V V VVV under T T TTT.

Step 5: Vector Space Structure of Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V):

  • The set Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V) has a natural structure as a vector space:
    1. Addition of linear transformations: For T 1 , T 2 Hom ( V , V ) T 1 , T 2 Hom ( V , V ) T_(1),T_(2)in Hom(V,V^(‘))T_1, T_2 \in \operatorname{Hom}(V, V’)T1,T2Hom(V,V) and v V v V v in Vv \in VvV: ( T 1 + T 2 ) ( v ) = T 1 ( v ) + T 2 ( v ) . ( T 1 + T 2 ) ( v ) = T 1 ( v ) + T 2 ( v ) . (T_(1)+T_(2))(v)=T_(1)(v)+T_(2)(v).(T_1 + T_2)(v) = T_1(v) + T_2(v).(T1+T2)(v)=T1(v)+T2(v).
    2. Scalar multiplication: For c F c F c in Fc \in FcF and T Hom ( V , V ) T Hom ( V , V ) T in Hom(V,V^(‘))T \in \operatorname{Hom}(V, V’)THom(V,V): ( c T ) ( v ) = c T ( v ) . ( c T ) ( v ) = c T ( v ) . (cT)(v)=c*T(v).(cT)(v) = c \cdot T(v).(cT)(v)=cT(v).
  • The space Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V) is isomorphic to the space of m × n m × n m xx nm \times nm×n matrices over F F FFF.

Step 6: Dimension of Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V):

  • The space of m × n m × n m xx nm \times nm×n matrices over F F FFF has dimension m n m n m*nm \cdot nmn, as there are m × n m × n m xx nm \times nm×n independent entries in the matrix.
  • Each entry of the matrix corresponds to a coefficient a i j F a i j F a_(ij)in Fa_{ij} \in FaijF, and choosing these coefficients independently determines a unique linear transformation T T TTT.
  • Thus:
    dim Hom ( V , V ) = m n = dim V dim V . dim Hom ( V , V ) = m n = dim V dim V . dim Hom(V,V^(‘))=m*n=dim V^(‘)*dim V.\dim \operatorname{Hom}(V, V’) = m \cdot n = \dim V’ \cdot \dim V.dimHom(V,V)=mn=dimVdimV.

Conclusion:

The vector space Hom ( V , V ) Hom ( V , V ) Hom(V,V^(‘))\operatorname{Hom}(V, V’)Hom(V,V) is finite-dimensional, and its dimension is:
dim Hom ( V , V ) = dim V × dim V = n × m . dim Hom ( V , V ) = dim V × dim V = n × m . dim Hom(V,V^(‘))=dim V xx dim V^(‘)=n xx m.\boxed{\dim \operatorname{Hom}(V, V’) = \dim V \times \dim V’ = n \times m.}dimHom(V,V)=dimV×dimV=n×m.
Scroll to Top
Scroll to Top