VMOU MT-03 SOLVED ASSIGNMENT | MA/M.SC. MT- 03 (Differential Equations, Calculus of Variations and Special Functions) | July-2024 & January-2025

Section-A
(Very Short Answer Type Questions)
Note:- Answer all questions. As per the nature of the question you delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 (one) mark.
  1. (i). Write down the Riccati’s equation.
    (ii). Write down Euler-Largange equation.
    (iii). If | z | < 1 | z | < 1 |z| < 1|z|<1|z|<1 and | z 1 z | < 1 z 1 z < 1 |(z)/(1-z)| < 1\left|\frac{z}{1-z}\right|<1|z1z|<1 then write the value of 2 F 1 ( a , b ; c ; 1 2 ) 2 F 1 a , b ; c ; 1 2 2F_(1)(a,b;c;(1)/(2))2 F_1\left(a, b ; c ; \frac{1}{2}\right)2F1(a,b;c;12).
    (iv). Write down the Legendre equation.
Section-B
(Short Answer Questions)
Note :- Answer any two questions. Each answer should be given in 200 words.
Each question carries 4 marks.
  1. Find the general solution of the Riccati’s equation.
d y d x = 2 2 y + y 2 d y d x = 2 2 y + y 2 (dy)/(dx)=2-2y+y^(2)\frac{d y}{d x}=2-2 y+y^2dydx=22y+y2
Whose one particular solution is ( 1 + tan x ) ( 1 + tan x ) (1+tan x)(1+\tan x)(1+tanx).
  1. Prove that
d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) d d x 2 F 1 ( a , b ; c ; x ) = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)_(2)F_(1)(a+1,b+1;c+1;x)\frac{d}{d x}\left[{ }_2 F_1(a, b ; c ; x)\right]=\frac{a b}{c}{ }_2 F_1(a+1, b+1 ; c+1 ; x)ddx[2F1(a,b;c;x)]=abc2F1(a+1,b+1;c+1;x)
  1. Solve the following strem Liouville problem.
y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0 y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0 y^(”)+lambda y=0,quady^(‘)(-pi)=0,quady^(‘)(pi)=0y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(-\pi)=0, \quad y^{\prime}(\pi)=0y+λy=0,y(π)=0,y(π)=0
  1. Prove that:
( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) Section – C (Long Answer Questions) ( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) Section – C (Long Answer Questions) {:[(n+1)L_(n+1)(x)=(2n+1-x)L_(n)(x)-nL_(n-1)(x)],[quad” Section – C “],[” (Long Answer Questions) “]:}\begin{gathered} (n+1) L_{n+1}(x)=(2 n+1-x) L_n(x)-n L_{n-1}(x) \\ \quad \text { Section – C } \\ \text { (Long Answer Questions) } \end{gathered}(n+1)Ln+1(x)=(2n+1x)Ln(x)nLn1(x) Section – C (Long Answer Questions)
Note :- Answer any one question. Each answer should be given in 800 words. Each question carries 08 marks.
  1. (a) Find the curve with fixed boundary revolves such that its rotation about x x xxx-axis generated minimal surface area.
(b) Solve in series :
x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0 x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0 x(1-x)(d^(2)y)/(dx^(2))+(1+5x)(dy)/(dx)-4y=0x(1-x) \frac{d^2 y}{d x^2}+(1+5 x) \frac{d y}{d x}-4 y=0x(1x)d2ydx2+(1+5x)dydx4y=0
  1. (a) Prove that :
B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 f 1 ( a , b ; λ ; z t ) d t B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 f 1 ( a , b ; λ ; z t ) d t B(lambda,c-lambda)2F_(1)(a,b;c;z)=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)2f_(1)(a,b;lambda;zt)dtB(\lambda, c-\lambda) 2 F_1(a, b ; c ; z)=\int_0^1 t^{\lambda-1}(1-t)^{c-\lambda-1} 2 f_1(a, b ; \lambda ; z t) d tB(λ,cλ)2F1(a,b;c;z)=01tλ1(1t)cλ12f1(a,b;λ;zt)dt
(b) Prove that:
( 2 n + 1 ) ( x 2 1 ) P n = n ( n + 1 ) ( P n + 1 P n 1 ) ( 2 n + 1 ) x 2 1 P n = n ( n + 1 ) P n + 1 P n 1 (2n+1)(x^(2)-1)P_(n)^(‘)=n(n+1)(P_(n+1)-P_(n-1))(2 n+1)\left(x^2-1\right) P_n^{\prime}=n(n+1)\left(P_{n+1}-P_{n-1}\right)(2n+1)(x21)Pn=n(n+1)(Pn+1Pn1)
and hence deduce that
1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) 1 1 x 2 1 P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) int_(-1)^(1)(x^(2)-1)P_(n+1)(x)P_(n)^(‘)(x)dx=(2n(n+1))/((2n+1)(2n+3))\int_{-1}^1\left(x^2-1\right) P_{n+1}(x) P_n^{\prime}(x) d x=\frac{2 n(n+1)}{(2 n+1)(2 n+3)}11(x21)Pn+1(x)Pn(x)dx=2n(n+1)(2n+1)(2n+3)

Answer:

Question:-01(a)

Write down the Riccati’s equation.

Answer:

Riccati’s Equation:

The Riccati equation is a first-order, nonlinear differential equation of the form:
d y d x = a ( x ) y 2 + b ( x ) y + c ( x ) , d y d x = a ( x ) y 2 + b ( x ) y + c ( x ) , (dy)/(dx)=a(x)y^(2)+b(x)y+c(x),\frac{dy}{dx} = a(x) y^2 + b(x) y + c(x),dydx=a(x)y2+b(x)y+c(x),
where:
  • y = y ( x ) y = y ( x ) y=y(x)y = y(x)y=y(x) is the unknown function,
  • a ( x ) , b ( x ) , c ( x ) a ( x ) , b ( x ) , c ( x ) a(x),b(x),c(x)a(x), b(x), c(x)a(x),b(x),c(x) are given functions of x x xxx.

Special Cases:

  1. If a ( x ) = 0 a ( x ) = 0 a(x)=0a(x) = 0a(x)=0, the Riccati equation reduces to a linear first-order differential equation:
    d y d x = b ( x ) y + c ( x ) . d y d x = b ( x ) y + c ( x ) . (dy)/(dx)=b(x)y+c(x).\frac{dy}{dx} = b(x) y + c(x).dydx=b(x)y+c(x).
  2. If b ( x ) = 0 b ( x ) = 0 b(x)=0b(x) = 0b(x)=0, it becomes:
    d y d x = a ( x ) y 2 + c ( x ) , d y d x = a ( x ) y 2 + c ( x ) , (dy)/(dx)=a(x)y^(2)+c(x),\frac{dy}{dx} = a(x) y^2 + c(x),dydx=a(x)y2+c(x),
    which is a Bernoulli equation when c ( x ) = 0 c ( x ) = 0 c(x)=0c(x) = 0c(x)=0.


Question:-01(b)

Write down Euler-Lagrange equation.

Answer:

Euler-Lagrange Equation

The Euler-Lagrange equation is a fundamental equation in the calculus of variations. It provides the necessary condition for a functional to have an extremum.

Statement:

Given a functional of the form:
J [ y ] = x 1 x 2 L ( x , y ( x ) , y ( x ) ) d x , J [ y ] = x 1 x 2 L ( x , y ( x ) , y ( x ) ) d x , J[y]=int_(x_(1))^(x_(2))L(x,y(x),y^(‘)(x))dx,J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) \, dx,J[y]=x1x2L(x,y(x),y(x))dx,
where:
  • L ( x , y , y ) L ( x , y , y ) L(x,y,y^(‘))L(x, y, y’)L(x,y,y) is the Lagrangian, a function of x x xxx, y ( x ) y ( x ) y(x)y(x)y(x), and y ( x ) y ( x ) y^(‘)(x)y'(x)y(x),
  • y ( x ) y ( x ) y(x)y(x)y(x) is the function to be determined,
  • y ( x ) = d y d x y ( x ) = d y d x y^(‘)(x)=(dy)/(dx)y'(x) = \frac{dy}{dx}y(x)=dydx,
the Euler-Lagrange equation is:
L y d d x ( L y ) = 0. L y d d x L y = 0. (del L)/(del y)-(d)/(dx)((del L)/(dely^(‘)))=0.\frac{\partial L}{\partial y} – \frac{d}{dx} \left( \frac{\partial L}{\partial y’} \right) = 0.Lyddx(Ly)=0.

Derivation Idea:

The Euler-Lagrange equation arises from requiring that the first variation of the functional J [ y ] J [ y ] J[y]J[y]J[y] vanishes, i.e., δ J [ y ] = 0 δ J [ y ] = 0 delta J[y]=0\delta J[y] = 0δJ[y]=0.

Example Application:

If L ( x , y , y ) = 1 2 ( y ) 2 V ( y ) L ( x , y , y ) = 1 2 ( y ) 2 V ( y ) L(x,y,y^(‘))=(1)/(2)(y^(‘))^(2)-V(y)L(x, y, y’) = \frac{1}{2}(y’)^2 – V(y)L(x,y,y)=12(y)2V(y), the Euler-Lagrange equation gives:
d 2 y d x 2 + d V d y = 0. d 2 y d x 2 + d V d y = 0. (d^(2)y)/(dx^(2))+(dV)/(dy)=0.\frac{d^2y}{dx^2} + \frac{dV}{dy} = 0.d2ydx2+dVdy=0.

Question:-01(c)

If | z | < 1 | z | < 1 |z| < 1|z| < 1|z|<1 and | z 1 z | < 1 z 1 z < 1 |(z)/(1-z)| < 1\left|\frac{z}{1-z}\right| < 1|z1z|<1, then write the value of 2 F 1 ( a , b ; c ; 1 2 ) 2 F 1 a , b ; c ; 1 2 2F_(1)(a,b;c;(1)/(2))2 F_1\left(a, b ; c ; \frac{1}{2}\right)2F1(a,b;c;12).

Answer:

To evaluate 2 F 1 ( a , b ; c ; 1 2 ) 2 F 1 ( a , b ; c ; 1 2 ) 2F_(1)(a,b;c;(1)/(2))2 F_1(a, b; c; \frac{1}{2})2F1(a,b;c;12), let’s analyze the given conditions and the structure of the hypergeometric function 2 F 1 2 F 1 _(2)F_(1){}_2F_12F1.

Problem Setup

The hypergeometric function 2 F 1 ( a , b ; c ; z ) 2 F 1 ( a , b ; c ; z ) _(2)F_(1)(a,b;c;z){}_2F_1(a, b; c; z)2F1(a,b;c;z) is defined as:
2 F 1 ( a , b ; c ; z ) = n = 0 ( a ) n ( b ) n ( c ) n z n n ! , 2 F 1 ( a , b ; c ; z ) = n = 0 ( a ) n ( b ) n ( c ) n z n n ! , _(2)F_(1)(a,b;c;z)=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n))(z^(n))/(n!),{}_2F_1(a, b; c; z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!},2F1(a,b;c;z)=n=0(a)n(b)n(c)nznn!,
where:
  • ( a ) n ( a ) n (a)_(n)(a)_n(a)n is the Pochhammer symbol: ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) (a)_(n)=a(a+1)(a+2)cdots(a+n-1)(a)_n = a (a+1)(a+2)\cdots(a+n-1)(a)n=a(a+1)(a+2)(a+n1),
  • | z | < 1 | z | < 1 |z| < 1|z| < 1|z|<1 ensures convergence of the series.
Given:
  1. | z | < 1 | z | < 1 |z| < 1|z| < 1|z|<1,
  2. | z 1 z | < 1 z 1 z < 1 |(z)/(1-z)| < 1\left| \frac{z}{1-z} \right| < 1|z1z|<1.

Interpretation and Simplification

Step 1: Analyze z 1 z z 1 z (z)/(1-z)\frac{z}{1-z}z1z

The condition | z 1 z | < 1 z 1 z < 1 |(z)/(1-z)| < 1\left| \frac{z}{1-z} \right| < 1|z1z|<1 implies:
| z | | 1 z | < 1 | z | < | 1 z | . | z | | 1 z | < 1 | z | < | 1 z | . (|z|)/(|1-z|) < 1quadLongrightarrowquad|z| < |1-z|.\frac{|z|}{|1-z|} < 1 \quad \implies \quad |z| < |1-z|.|z||1z|<1|z|<|1z|.
This suggests the series for 2 F 1 ( a , b ; c ; z ) 2 F 1 ( a , b ; c ; z ) _(2)F_(1)(a,b;c;z){}_2F_1(a, b; c; z)2F1(a,b;c;z) converges, as z z zzz remains well within the unit disk.

Step 2: Evaluate 2 F 1 2 F 1 _(2)F_(1){}_2F_12F1 at z = 1 2 z = 1 2 z=(1)/(2)z = \frac{1}{2}z=12

The value of 2 F 1 ( a , b ; c ; 1 2 ) 2 F 1 ( a , b ; c ; 1 2 ) _(2)F_(1)(a,b;c;(1)/(2)){}_2F_1(a, b; c; \frac{1}{2})2F1(a,b;c;12) is derived from the series expansion:
2 F 1 ( a , b ; c ; 1 2 ) = n = 0 ( a ) n ( b ) n ( c ) n ( 1 / 2 ) n n ! . 2 F 1 ( a , b ; c ; 1 2 ) = n = 0 ( a ) n ( b ) n ( c ) n ( 1 / 2 ) n n ! . _(2)F_(1)(a,b;c;(1)/(2))=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n))((1//2)^(n))/(n!).{}_2F_1(a, b; c; \frac{1}{2}) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{(1/2)^n}{n!}.2F1(a,b;c;12)=n=0(a)n(b)n(c)n(1/2)nn!.
For a general evaluation, the exact closed form of this series depends on the parameters a , b , c a , b , c a,b,ca, b, ca,b,c. However, in some cases, known results for specific parameter values can be used.

Step 3: Factor of 2

The problem asks for 2 F 1 ( a , b ; c ; 1 2 ) 2 F 1 ( a , b ; c ; 1 2 ) 2F_(1)(a,b;c;(1)/(2))2 F_1(a, b; c; \frac{1}{2})2F1(a,b;c;12), so the final value will be twice the sum.

Final Answer

Without specific values for a , b , c a , b , c a,b,ca, b, ca,b,c, the value of 2 2 F 1 ( a , b ; c ; 1 2 ) 2 2 F 1 ( a , b ; c ; 1 2 ) 2_(2)F_(1)(a,b;c;(1)/(2))2 {}_2F_1(a, b; c; \frac{1}{2})22F1(a,b;c;12) is written as:
2 n = 0 ( a ) n ( b ) n ( c ) n ( 1 / 2 ) n n ! . 2 n = 0 ( a ) n ( b ) n ( c ) n ( 1 / 2 ) n n ! . 2sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n))((1//2)^(n))/(n!).2 \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{(1/2)^n}{n!}.2n=0(a)n(b)n(c)n(1/2)nn!.

Question:-01(d)

Write down the Legendre equation.

Answer:

Legendre’s Differential Equation:

The Legendre equation is a second-order linear differential equation of the form:
( 1 x 2 ) d 2 y d x 2 2 x d y d x + n ( n + 1 ) y = 0 , ( 1 x 2 ) d 2 y d x 2 2 x d y d x + n ( n + 1 ) y = 0 , (1-x^(2))(d^(2)y)/(dx^(2))-2x(dy)/(dx)+n(n+1)y=0,(1 – x^2) \frac{d^2y}{dx^2} – 2x \frac{dy}{dx} + n(n+1)y = 0,(1x2)d2ydx22xdydx+n(n+1)y=0,
where:
  • n n nnn is a non-negative integer (degree of the associated Legendre polynomial),
  • y = y ( x ) y = y ( x ) y=y(x)y = y(x)y=y(x) is the unknown function,
  • x ( 1 , 1 ) x ( 1 , 1 ) x in(-1,1)x \in (-1, 1)x(1,1).

General Solution:

The solutions to Legendre’s equation are the Legendre polynomials P n ( x ) P n ( x ) P_(n)(x)P_n(x)Pn(x), which form a complete orthogonal set over [ 1 , 1 ] [ 1 , 1 ] [-1,1][-1, 1][1,1] and are defined recursively or by the Rodrigues formula:
P n ( x ) = 1 2 n n ! d n d x n ( ( x 2 1 ) n ) . P n ( x ) = 1 2 n n ! d n d x n ( x 2 1 ) n . P_(n)(x)=(1)/(2^(n)n!)(d^(n))/(dx^(n))((x^(2)-1)^(n)).P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left( (x^2 – 1)^n \right).Pn(x)=12nn!dndxn((x21)n).

Applications:

  1. Legendre’s equation arises in solving Laplace’s equation in spherical coordinates.
  2. It is used extensively in physics, particularly in potential theory and quantum mechanics.

Question:-02

Find the general solution of the Riccati’s equation:

d y d x = 2 2 y + y 2 d y d x = 2 2 y + y 2 (dy)/(dx)=2-2y+y^(2)\frac{d y}{d x} = 2 – 2 y + y^2dydx=22y+y2
Whose one particular solution is ( 1 + tan x ) ( 1 + tan x ) (1+tan x)(1 + \tan x)(1+tanx).

Answer:

To solve the Riccati equation:
d y d x = 2 2 y + y 2 , d y d x = 2 2 y + y 2 , (dy)/(dx)=2-2y+y^(2),\frac{dy}{dx} = 2 – 2y + y^2,dydx=22y+y2,
with a known particular solution y p ( x ) = 1 + tan x y p ( x ) = 1 + tan x y_(p)(x)=1+tan xy_p(x) = 1 + \tan xyp(x)=1+tanx, we will transform the equation into a linear equation by substituting y ( x ) = y p ( x ) + 1 z ( x ) y ( x ) = y p ( x ) + 1 z ( x ) y(x)=y_(p)(x)+(1)/(z(x))y(x) = y_p(x) + \frac{1}{z(x)}y(x)=yp(x)+1z(x).

Step 1: General Substitution

Let:
y ( x ) = y p ( x ) + 1 z ( x ) , y ( x ) = y p ( x ) + 1 z ( x ) , y(x)=y_(p)(x)+(1)/(z(x)),y(x) = y_p(x) + \frac{1}{z(x)},y(x)=yp(x)+1z(x),
where y p ( x ) = 1 + tan x y p ( x ) = 1 + tan x y_(p)(x)=1+tan xy_p(x) = 1 + \tan xyp(x)=1+tanx is the given particular solution. Substituting this into the Riccati equation, we aim to derive a linear equation for z ( x ) z ( x ) z(x)z(x)z(x).

Step 2: Differentiate y ( x ) y ( x ) y(x)y(x)y(x):

Differentiating y ( x ) = y p ( x ) + 1 z ( x ) y ( x ) = y p ( x ) + 1 z ( x ) y(x)=y_(p)(x)+(1)/(z(x))y(x) = y_p(x) + \frac{1}{z(x)}y(x)=yp(x)+1z(x), we get:
d y d x = d y p d x 1 z 2 d z d x . d y d x = d y p d x 1 z 2 d z d x . (dy)/(dx)=(dy_(p))/(dx)-(1)/(z^(2))(dz)/(dx).\frac{dy}{dx} = \frac{dy_p}{dx} – \frac{1}{z^2} \frac{dz}{dx}.dydx=dypdx1z2dzdx.
Substitute d y d x d y d x (dy)/(dx)\frac{dy}{dx}dydx into the Riccati equation.

Step 3: Simplify Using the Particular Solution:

Using the fact that y p ( x ) = 1 + tan x y p ( x ) = 1 + tan x y_(p)(x)=1+tan xy_p(x) = 1 + \tan xyp(x)=1+tanx satisfies the Riccati equation, we know:
d y p d x = 2 2 y p + y p 2 . d y p d x = 2 2 y p + y p 2 . (dy_(p))/(dx)=2-2y_(p)+y_(p)^(2).\frac{dy_p}{dx} = 2 – 2y_p + y_p^2.dypdx=22yp+yp2.
Now substitute y ( x ) = y p ( x ) + 1 z y ( x ) = y p ( x ) + 1 z y(x)=y_(p)(x)+(1)/(z)y(x) = y_p(x) + \frac{1}{z}y(x)=yp(x)+1z and d y d x = d y p d x 1 z 2 d z d x d y d x = d y p d x 1 z 2 d z d x (dy)/(dx)=(dy_(p))/(dx)-(1)/(z^(2))(dz)/(dx)\frac{dy}{dx} = \frac{dy_p}{dx} – \frac{1}{z^2} \frac{dz}{dx}dydx=dypdx1z2dzdx into the equation:
d y d x = 2 2 y + y 2 . d y d x = 2 2 y + y 2 . (dy)/(dx)=2-2y+y^(2).\frac{dy}{dx} = 2 – 2y + y^2.dydx=22y+y2.
Simplify step by step:
  1. Substitute y = y p + 1 z y = y p + 1 z y=y_(p)+(1)/(z)y = y_p + \frac{1}{z}y=yp+1z:
    2 2 y + y 2 = 2 2 ( y p + 1 z ) + ( y p + 1 z ) 2 . 2 2 y + y 2 = 2 2 y p + 1 z + y p + 1 z 2 . 2-2y+y^(2)=2-2(y_(p)+(1)/(z))+(y_(p)+(1)/(z))^(2).2 – 2y + y^2 = 2 – 2\left(y_p + \frac{1}{z}\right) + \left(y_p + \frac{1}{z}\right)^2.22y+y2=22(yp+1z)+(yp+1z)2.
  2. Expand ( y p + 1 z ) 2 y p + 1 z 2 (y_(p)+(1)/(z))^(2)\left(y_p + \frac{1}{z}\right)^2(yp+1z)2:
    ( y p + 1 z ) 2 = y p 2 + 2 y p z + 1 z 2 . y p + 1 z 2 = y p 2 + 2 y p z + 1 z 2 . (y_(p)+(1)/(z))^(2)=y_(p)^(2)+(2y_(p))/(z)+(1)/(z^(2)).\left(y_p + \frac{1}{z}\right)^2 = y_p^2 + \frac{2y_p}{z} + \frac{1}{z^2}.(yp+1z)2=yp2+2ypz+1z2.
  3. Collect terms:
    2 2 ( y p + 1 z ) + y p 2 + 2 y p z + 1 z 2 . 2 2 y p + 1 z + y p 2 + 2 y p z + 1 z 2 . 2-2(y_(p)+(1)/(z))+y_(p)^(2)+(2y_(p))/(z)+(1)/(z^(2)).2 – 2\left(y_p + \frac{1}{z}\right) + y_p^2 + \frac{2y_p}{z} + \frac{1}{z^2}.22(yp+1z)+yp2+2ypz+1z2.
Substituting d y p d x = 2 2 y p + y p 2 d y p d x = 2 2 y p + y p 2 (dy_(p))/(dx)=2-2y_(p)+y_(p)^(2)\frac{dy_p}{dx} = 2 – 2y_p + y_p^2dypdx=22yp+yp2, the terms involving y p y p y_(p)y_pyp cancel out, leaving:
1 z 2 d z d x = 2 z . 1 z 2 d z d x = 2 z . -(1)/(z^(2))(dz)/(dx)=-(2)/(z).-\frac{1}{z^2} \frac{dz}{dx} = -\frac{2}{z}.1z2dzdx=2z.

Step 4: Linear Equation for z ( x ) z ( x ) z(x)z(x)z(x):

Simplify the equation:
1 z 2 d z d x = 2 z . 1 z 2 d z d x = 2 z . (1)/(z^(2))(dz)/(dx)=(2)/(z).\frac{1}{z^2} \frac{dz}{dx} = \frac{2}{z}.1z2dzdx=2z.
Multiply through by z 2 z 2 z^(2)z^2z2:
d z d x = 2 z . d z d x = 2 z . (dz)/(dx)=2z.\frac{dz}{dx} = 2z.dzdx=2z.

Step 5: Solve the Linear Equation:

This is a first-order linear differential equation for z ( x ) z ( x ) z(x)z(x)z(x):
d z d x = 2 z . d z d x = 2 z . (dz)/(dx)=2z.\frac{dz}{dx} = 2z.dzdx=2z.
The solution is:
z ( x ) = C e 2 x , z ( x ) = C e 2 x , z(x)=Ce^(2x),z(x) = Ce^{2x},z(x)=Ce2x,
where C C CCC is an arbitrary constant.

Step 6: Back-Substitute for y ( x ) y ( x ) y(x)y(x)y(x):

Recall the substitution y ( x ) = y p ( x ) + 1 z ( x ) y ( x ) = y p ( x ) + 1 z ( x ) y(x)=y_(p)(x)+(1)/(z(x))y(x) = y_p(x) + \frac{1}{z(x)}y(x)=yp(x)+1z(x). Substituting z ( x ) = C e 2 x z ( x ) = C e 2 x z(x)=Ce^(2x)z(x) = Ce^{2x}z(x)=Ce2x, we get:
y ( x ) = y p ( x ) + 1 C e 2 x . y ( x ) = y p ( x ) + 1 C e 2 x . y(x)=y_(p)(x)+(1)/(Ce^(2x)).y(x) = y_p(x) + \frac{1}{Ce^{2x}}.y(x)=yp(x)+1Ce2x.
Since y p ( x ) = 1 + tan x y p ( x ) = 1 + tan x y_(p)(x)=1+tan xy_p(x) = 1 + \tan xyp(x)=1+tanx, the general solution is:
y ( x ) = 1 + tan x + 1 C e 2 x . y ( x ) = 1 + tan x + 1 C e 2 x . y(x)=1+tan x+(1)/(Ce^(2x)).y(x) = 1 + \tan x + \frac{1}{Ce^{2x}}.y(x)=1+tanx+1Ce2x.

Final Answer:

The general solution of the Riccati equation is:
y ( x ) = 1 + tan x + 1 C e 2 x , y ( x ) = 1 + tan x + 1 C e 2 x , y(x)=1+tan x+(1)/(Ce^(2x)),y(x) = 1 + \tan x + \frac{1}{Ce^{2x}},y(x)=1+tanx+1Ce2x,
where C C CCC is an arbitrary constant.

Question:-03

Prove that:

d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) d d x 2 F 1 ( a , b ; c ; x ) = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)_(2)F_(1)(a+1,b+1;c+1;x)\frac{d}{d x}\left[{ }_2 F_1(a, b ; c ; x)\right] = \frac{a b}{c} {_2 F_1(a+1, b+1 ; c+1 ; x)}ddx[2F1(a,b;c;x)]=abc2F1(a+1,b+1;c+1;x)

Answer:

To Prove:

d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . d d x 2 F 1 ( a , b ; c ; x ) = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)_(2)F_(1)(a+1,b+1;c+1;x).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \frac{ab}{c} \, {}_2F_1(a+1, b+1; c+1; x).ddx[2F1(a,b;c;x)]=abc2F1(a+1,b+1;c+1;x).

Proof:

Definition of the Hypergeometric Function:

The hypergeometric function 2 F 1 ( a , b ; c ; x ) 2 F 1 ( a , b ; c ; x ) _(2)F_(1)(a,b;c;x){}_2F_1(a, b; c; x)2F1(a,b;c;x) is given by the series:
2 F 1 ( a , b ; c ; x ) = n = 0 ( a ) n ( b ) n ( c ) n x n n ! , 2 F 1 ( a , b ; c ; x ) = n = 0 ( a ) n ( b ) n ( c ) n x n n ! , _(2)F_(1)(a,b;c;x)=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n))(x^(n))/(n!),{}_2F_1(a, b; c; x) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!},2F1(a,b;c;x)=n=0(a)n(b)n(c)nxnn!,
where:
  • ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) (a)_(n)=a(a+1)(a+2)cdots(a+n-1)(a)_n = a (a+1)(a+2)\cdots(a+n-1)(a)n=a(a+1)(a+2)(a+n1) is the Pochhammer symbol,
  • ( c ) n = c ( c + 1 ) ( c + 2 ) ( c + n 1 ) ( c ) n = c ( c + 1 ) ( c + 2 ) ( c + n 1 ) (c)_(n)=c(c+1)(c+2)cdots(c+n-1)(c)_n = c (c+1)(c+2)\cdots(c+n-1)(c)n=c(c+1)(c+2)(c+n1),
  • x x xxx is the argument, and the series converges for | x | < 1 | x | < 1 |x| < 1|x| < 1|x|<1.

Step 1: Differentiate Term by Term

Differentiating the series term-by-term:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = d d x [ n = 0 ( a ) n ( b ) n ( c ) n x n n ! ] . d d x 2 F 1 ( a , b ; c ; x ) = d d x n = 0 ( a ) n ( b ) n ( c ) n x n n ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(d)/(dx)[sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n))(x^(n))/(n!)].\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \frac{d}{dx} \left[ \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{x^n}{n!} \right].ddx[2F1(a,b;c;x)]=ddx[n=0(a)n(b)n(c)nxnn!].
Since differentiation with respect to x x xxx acts only on the x n x n x^(n)x^nxn term:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = n = 1 ( a ) n ( b ) n ( c ) n n x n 1 n ! . d d x 2 F 1 ( a , b ; c ; x ) = n = 1 ( a ) n ( b ) n ( c ) n n x n 1 n ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=sum_(n=1)^(oo)((a)_(n)(b)_(n))/((c)_(n))(nx^(n-1))/(n!).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \sum_{n=1}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{n x^{n-1}}{n!}.ddx[2F1(a,b;c;x)]=n=1(a)n(b)n(c)nnxn1n!.
Simplify the term:
n n ! = 1 ( n 1 ) ! , n n ! = 1 ( n 1 ) ! , (n)/(n!)=(1)/((n-1)!),\frac{n}{n!} = \frac{1}{(n-1)!},nn!=1(n1)!,
so the series becomes:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = n = 1 ( a ) n ( b ) n ( c ) n x n 1 ( n 1 ) ! . d d x 2 F 1 ( a , b ; c ; x ) = n = 1 ( a ) n ( b ) n ( c ) n x n 1 ( n 1 ) ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=sum_(n=1)^(oo)((a)_(n)(b)_(n))/((c)_(n))(x^(n-1))/((n-1)!).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \sum_{n=1}^\infty \frac{(a)_n (b)_n}{(c)_n} \frac{x^{n-1}}{(n-1)!}.ddx[2F1(a,b;c;x)]=n=1(a)n(b)n(c)nxn1(n1)!.

Step 2: Shift the Index

Change the index of summation by letting m = n 1 m = n 1 m=n-1m = n-1m=n1. When n = 1 n = 1 n=1n = 1n=1, m = 0 m = 0 m=0m = 0m=0, and when n n n rarr oon \to \inftyn, m m m rarr oom \to \inftym. Substituting n = m + 1 n = m + 1 n=m+1n = m+1n=m+1:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = m = 0 ( a ) m + 1 ( b ) m + 1 ( c ) m + 1 x m m ! . d d x 2 F 1 ( a , b ; c ; x ) = m = 0 ( a ) m + 1 ( b ) m + 1 ( c ) m + 1 x m m ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=sum_(m=0)^(oo)((a)_(m+1)(b)_(m+1))/((c)_(m+1))(x^(m))/(m!).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \sum_{m=0}^\infty \frac{(a)_{m+1} (b)_{m+1}}{(c)_{m+1}} \frac{x^m}{m!}.ddx[2F1(a,b;c;x)]=m=0(a)m+1(b)m+1(c)m+1xmm!.

Step 3: Simplify the Pochhammer Symbols

Using the property of the Pochhammer symbol:
( a ) m + 1 = a ( a + 1 ) m , ( b ) m + 1 = b ( b + 1 ) m , ( c ) m + 1 = c ( c + 1 ) m , ( a ) m + 1 = a ( a + 1 ) m , ( b ) m + 1 = b ( b + 1 ) m , ( c ) m + 1 = c ( c + 1 ) m , (a)_(m+1)=a(a+1)_(m),quad(b)_(m+1)=b(b+1)_(m),quad(c)_(m+1)=c(c+1)_(m),(a)_{m+1} = a (a+1)_m, \quad (b)_{m+1} = b (b+1)_m, \quad (c)_{m+1} = c (c+1)_m,(a)m+1=a(a+1)m,(b)m+1=b(b+1)m,(c)m+1=c(c+1)m,
the series becomes:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = m = 0 a b ( a + 1 ) m ( b + 1 ) m c ( c + 1 ) m x m m ! . d d x 2 F 1 ( a , b ; c ; x ) = m = 0 a b ( a + 1 ) m ( b + 1 ) m c ( c + 1 ) m x m m ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=sum_(m=0)^(oo)(ab(a+1)_(m)(b+1)_(m))/(c(c+1)_(m))(x^(m))/(m!).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \sum_{m=0}^\infty \frac{a b (a+1)_m (b+1)_m}{c (c+1)_m} \frac{x^m}{m!}.ddx[2F1(a,b;c;x)]=m=0ab(a+1)m(b+1)mc(c+1)mxmm!.
Factor out a b c a b c (ab)/(c)\frac{ab}{c}abc, leaving:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c m = 0 ( a + 1 ) m ( b + 1 ) m ( c + 1 ) m x m m ! . d d x 2 F 1 ( a , b ; c ; x ) = a b c m = 0 ( a + 1 ) m ( b + 1 ) m ( c + 1 ) m x m m ! . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)sum_(m=0)^(oo)((a+1)_(m)(b+1)_(m))/((c+1)_(m))(x^(m))/(m!).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \frac{ab}{c} \sum_{m=0}^\infty \frac{(a+1)_m (b+1)_m}{(c+1)_m} \frac{x^m}{m!}.ddx[2F1(a,b;c;x)]=abcm=0(a+1)m(b+1)m(c+1)mxmm!.

Step 4: Recognize the Hypergeometric Function

The series in the summation is precisely 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) _(2)F_(1)(a+1,b+1;c+1;x){}_2F_1(a+1, b+1; c+1; x)2F1(a+1,b+1;c+1;x). Therefore:
d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . d d x 2 F 1 ( a , b ; c ; x ) = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)_(2)F_(1)(a+1,b+1;c+1;x).\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \frac{ab}{c} \, {}_2F_1(a+1, b+1; c+1; x).ddx[2F1(a,b;c;x)]=abc2F1(a+1,b+1;c+1;x).

Final Answer:

d d x [ 2 F 1 ( a , b ; c ; x ) ] = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . d d x 2 F 1 ( a , b ; c ; x ) = a b c 2 F 1 ( a + 1 , b + 1 ; c + 1 ; x ) . (d)/(dx)[_(2)F_(1)(a,b;c;x)]=(ab)/(c)_(2)F_(1)(a+1,b+1;c+1;x).\boxed{\frac{d}{dx} \left[ {}_2F_1(a, b; c; x) \right] = \frac{ab}{c} \, {}_2F_1(a+1, b+1; c+1; x).}ddx[2F1(a,b;c;x)]=abc2F1(a+1,b+1;c+1;x).

Question:-04

Solve the following Sturm-Liouville problem:

y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0 y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0 y^(”)+lambda y=0,quady^(‘)(-pi)=0,quady^(‘)(pi)=0y^{\prime \prime} + \lambda y = 0, \quad y^{\prime}(-\pi) = 0, \quad y^{\prime}(\pi) = 0y+λy=0,y(π)=0,y(π)=0

Answer:

We aim to solve the Sturm-Liouville problem:
y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0. y + λ y = 0 , y ( π ) = 0 , y ( π ) = 0. y^(″)+lambda y=0,quady^(‘)(-pi)=0,quady^(‘)(pi)=0.y” + \lambda y = 0, \quad y'(-\pi) = 0, \quad y'(\pi) = 0.y+λy=0,y(π)=0,y(π)=0.

Step 1: Analyze the Differential Equation

The equation is:
y + λ y = 0. y + λ y = 0. y^(″)+lambda y=0.y” + \lambda y = 0.y+λy=0.
This is a second-order linear differential equation. The solution depends on the value of λ λ lambda\lambdaλ:
  • Case 1: λ = 0 λ = 0 lambda=0\lambda = 0λ=0,
  • Case 2: λ > 0 λ > 0 lambda > 0\lambda > 0λ>0,
  • Case 3: λ < 0 λ < 0 lambda < 0\lambda < 0λ<0.

Step 2: Solve for Each Case

Case 1: λ = 0 λ = 0 lambda=0\lambda = 0λ=0

When λ = 0 λ = 0 lambda=0\lambda = 0λ=0, the equation becomes:
y = 0. y = 0. y^(″)=0.y” = 0.y=0.
Integrate twice:
y ( x ) = C 1 , y ( x ) = C 1 x + C 2 , y ( x ) = C 1 , y ( x ) = C 1 x + C 2 , y^(‘)(x)=C_(1),quad y(x)=C_(1)x+C_(2),y'(x) = C_1, \quad y(x) = C_1x + C_2,y(x)=C1,y(x)=C1x+C2,
where C 1 , C 2 C 1 , C 2 C_(1),C_(2)C_1, C_2C1,C2 are constants.
Apply the boundary conditions y ( π ) = 0 y ( π ) = 0 y^(‘)(-pi)=0y'(-\pi) = 0y(π)=0 and y ( π ) = 0 y ( π ) = 0 y^(‘)(pi)=0y'(\pi) = 0y(π)=0:
y ( x ) = C 1 C 1 = 0. y ( x ) = C 1 C 1 = 0. y^(‘)(x)=C_(1)quadLongrightarrowquadC_(1)=0.y'(x) = C_1 \quad \implies \quad C_1 = 0.y(x)=C1C1=0.
Thus, y ( x ) = C 2 y ( x ) = C 2 y(x)=C_(2)y(x) = C_2y(x)=C2. Since this is a constant function, it satisfies both boundary conditions.
Solution for λ = 0 λ = 0 lambda=0\lambda = 0λ=0:
y ( x ) = C 2 ( constant solution ) . y ( x ) = C 2 ( constant solution ) . y(x)=C_(2)quad(“constant solution”).y(x) = C_2 \quad (\text{constant solution}).y(x)=C2(constant solution).

Case 2: λ > 0 λ > 0 lambda > 0\lambda > 0λ>0

Let λ = μ 2 λ = μ 2 lambda=mu^(2)\lambda = \mu^2λ=μ2, where μ > 0 μ > 0 mu > 0\mu > 0μ>0. The equation becomes:
y + μ 2 y = 0. y + μ 2 y = 0. y^(″)+mu^(2)y=0.y” + \mu^2 y = 0.y+μ2y=0.
The general solution is:
y ( x ) = A cos ( μ x ) + B sin ( μ x ) , y ( x ) = A cos ( μ x ) + B sin ( μ x ) , y(x)=A cos(mu x)+B sin(mu x),y(x) = A \cos(\mu x) + B \sin(\mu x),y(x)=Acos(μx)+Bsin(μx),
where A A AAA and B B BBB are constants.
Apply the boundary conditions:
  1. First Boundary Condition: y ( π ) = 0 y ( π ) = 0 y^(‘)(-pi)=0y'(-\pi) = 0y(π)=0:
    y ( x ) = A μ sin ( μ x ) + B μ cos ( μ x ) . y ( x ) = A μ sin ( μ x ) + B μ cos ( μ x ) . y^(‘)(x)=-A mu sin(mu x)+B mu cos(mu x).y'(x) = -A\mu \sin(\mu x) + B\mu \cos(\mu x).y(x)=Aμsin(μx)+Bμcos(μx).
    At x = π x = π x=-pix = -\pix=π:
    y ( π ) = A μ sin ( μ π ) + B μ cos ( μ π ) = 0. y ( π ) = A μ sin ( μ π ) + B μ cos ( μ π ) = 0. y^(‘)(-pi)=-A mu sin(-mu pi)+B mu cos(-mu pi)=0.y'(-\pi) = -A\mu \sin(-\mu\pi) + B\mu \cos(-\mu\pi) = 0.y(π)=Aμsin(μπ)+Bμcos(μπ)=0.
    Using sin ( z ) = sin ( z ) sin ( z ) = sin ( z ) sin(-z)=-sin(z)\sin(-z) = -\sin(z)sin(z)=sin(z) and cos ( z ) = cos ( z ) cos ( z ) = cos ( z ) cos(-z)=cos(z)\cos(-z) = \cos(z)cos(z)=cos(z):
    (1) A μ sin ( μ π ) + B μ cos ( μ π ) = 0. (1) A μ sin ( μ π ) + B μ cos ( μ π ) = 0. {:(1)A mu sin(mu pi)+B mu cos(mu pi)=0.:}A\mu \sin(\mu\pi) + B\mu \cos(\mu\pi) = 0. \tag{1}(1)Aμsin(μπ)+Bμcos(μπ)=0.
  2. Second Boundary Condition: y ( π ) = 0 y ( π ) = 0 y^(‘)(pi)=0y'(\pi) = 0y(π)=0:
    y ( π ) = A μ sin ( μ π ) + B μ cos ( μ π ) = 0. y ( π ) = A μ sin ( μ π ) + B μ cos ( μ π ) = 0. y^(‘)(pi)=-A mu sin(mu pi)+B mu cos(mu pi)=0.y'(\pi) = -A\mu \sin(\mu\pi) + B\mu \cos(\mu\pi) = 0.y(π)=Aμsin(μπ)+Bμcos(μπ)=0.
    This simplifies to:
    (2) A μ sin ( μ π ) + B μ cos ( μ π ) = 0. (2) A μ sin ( μ π ) + B μ cos ( μ π ) = 0. {:(2)-A mu sin(mu pi)+B mu cos(mu pi)=0.:}-A\mu \sin(\mu\pi) + B\mu \cos(\mu\pi) = 0. \tag{2}(2)Aμsin(μπ)+Bμcos(μπ)=0.

Step 3: Solve for μ μ mu\muμ

From equations (1) and (2):
A μ sin ( μ π ) + B μ cos ( μ π ) = 0 , A μ sin ( μ π ) + B μ cos ( μ π ) = 0. A μ sin ( μ π ) + B μ cos ( μ π ) = 0 , A μ sin ( μ π ) + B μ cos ( μ π ) = 0. A mu sin(mu pi)+B mu cos(mu pi)=0,quad-A mu sin(mu pi)+B mu cos(mu pi)=0.A\mu \sin(\mu\pi) + B\mu \cos(\mu\pi) = 0, \quad -A\mu \sin(\mu\pi) + B\mu \cos(\mu\pi) = 0.Aμsin(μπ)+Bμcos(μπ)=0,Aμsin(μπ)+Bμcos(μπ)=0.
Add the two equations:
2 B μ cos ( μ π ) = 0. 2 B μ cos ( μ π ) = 0. 2B mu cos(mu pi)=0.2B\mu \cos(\mu\pi) = 0.2Bμcos(μπ)=0.
This implies either B = 0 B = 0 B=0B = 0B=0 or cos ( μ π ) = 0 cos ( μ π ) = 0 cos(mu pi)=0\cos(\mu\pi) = 0cos(μπ)=0. If B = 0 B = 0 B=0B = 0B=0, y ( x ) y ( x ) y(x)y(x)y(x) reduces to y ( x ) = A cos ( μ x ) y ( x ) = A cos ( μ x ) y(x)=A cos(mu x)y(x) = A\cos(\mu x)y(x)=Acos(μx), and y ( π ) = 0 y ( π ) = 0 y^(‘)(pi)=0y'(\pi) = 0y(π)=0 leads to no new solutions. Thus, we consider cos ( μ π ) = 0 cos ( μ π ) = 0 cos(mu pi)=0\cos(\mu\pi) = 0cos(μπ)=0, which gives:
μ π = π 2 + n π μ = 1 2 + n ( n Z ) . μ π = π 2 + n π μ = 1 2 + n ( n Z ) . mu pi=(pi)/(2)+n piquadLongrightarrowquad mu=(1)/(2)+n quad(n inZ).\mu\pi = \frac{\pi}{2} + n\pi \quad \implies \quad \mu = \frac{1}{2} + n \quad (n \in \mathbb{Z}).μπ=π2+nπμ=12+n(nZ).
Therefore, λ = μ 2 = ( 1 2 + n ) 2 λ = μ 2 = 1 2 + n 2 lambda=mu^(2)=((1)/(2)+n)^(2)\lambda = \mu^2 = \left(\frac{1}{2} + n\right)^2λ=μ2=(12+n)2.

Case 3: λ < 0 λ < 0 lambda < 0\lambda < 0λ<0

Let λ = ν 2 λ = ν 2 lambda=-nu^(2)\lambda = -\nu^2λ=ν2, where ν > 0 ν > 0 nu > 0\nu > 0ν>0. The equation becomes:
y ν 2 y = 0. y ν 2 y = 0. y^(″)-nu^(2)y=0.y” – \nu^2 y = 0.yν2y=0.
The general solution is:
y ( x ) = A e ν x + B e ν x . y ( x ) = A e ν x + B e ν x . y(x)=Ae^(nu x)+Be^(-nu x).y(x) = A e^{\nu x} + B e^{-\nu x}.y(x)=Aeνx+Beνx.
For x [ π , π ] x [ π , π ] x in[-pi,pi]x \in [-\pi, \pi]x[π,π], the terms e ν x e ν x e^(nu x)e^{\nu x}eνx and e ν x e ν x e^(-nu x)e^{-\nu x}eνx grow unbounded, making it impossible to satisfy the boundary conditions. Hence, there are no non-trivial solutions in this case.

Step 4: General Solution

The general solution to the given Sturm-Liouville problem is:
y ( x ) = C 2 ( λ = 0 ) , y ( x ) = C 2 ( λ = 0 ) , y(x)=C_(2)quad(lambda=0),y(x) = C_2 \quad (\lambda = 0),y(x)=C2(λ=0),
or for λ > 0 λ > 0 lambda > 0\lambda > 0λ>0:
y ( x ) = A cos ( μ x ) + B sin ( μ x ) , y ( x ) = A cos μ x + B sin μ x , y(x)=A cos(mu x)+B sin(mu x),y(x) = A \cos\left(\mu x\right) + B \sin\left(\mu x\right),y(x)=Acos(μx)+Bsin(μx),
with eigenvalues λ = ( 1 2 + n ) 2 λ = 1 2 + n 2 lambda=((1)/(2)+n)^(2)\lambda = \left(\frac{1}{2} + n\right)^2λ=(12+n)2, n Z n Z n inZn \in \mathbb{Z}nZ.

Question:-05

Prove that:

( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) ( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) (n+1)L_(n+1)(x)=(2n+1-x)L_(n)(x)-nL_(n-1)(x)(n+1) L_{n+1}(x) = (2n+1-x) L_n(x) – n L_{n-1}(x)(n+1)Ln+1(x)=(2n+1x)Ln(x)nLn1(x)

Answer:


Step 1: Start with the Generating Function

The generating function for Laguerre polynomials is given as:
n = 0 L n ( x ) t n = exp ( x t 1 t ) 1 t . n = 0 L n ( x ) t n = exp x t 1 t 1 t . sum_(n=0)^(oo)L_(n)(x)t^(n)=(exp(-(xt)/(1-t)))/(1-t).\sum_{n=0}^\infty L_n(x)t^n = \frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t}.n=0Ln(x)tn=exp(xt1t)1t.

Step 2: Differentiate Both Sides with Respect to t t ttt

Differentiate the equation with respect to t t ttt:
t ( n = 0 L n ( x ) t n ) = t ( exp ( x t 1 t ) 1 t ) . t n = 0 L n ( x ) t n = t exp x t 1 t 1 t . (del)/(del t)(sum_(n=0)^(oo)L_(n)(x)t^(n))=(del)/(del t)((exp(-(xt)/(1-t)))/(1-t)).\frac{\partial}{\partial t}\left(\sum_{n=0}^\infty L_n(x)t^n\right) = \frac{\partial}{\partial t} \left( \frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t} \right).t(n=0Ln(x)tn)=t(exp(xt1t)1t).

Left-hand side:

Using the chain rule on the summation:
t ( n = 0 L n ( x ) t n ) = n = 0 n L n ( x ) t n 1 . t n = 0 L n ( x ) t n = n = 0 n L n ( x ) t n 1 . (del)/(del t)(sum_(n=0)^(oo)L_(n)(x)t^(n))=sum_(n=0)^(oo)nL_(n)(x)t^(n-1).\frac{\partial}{\partial t}\left(\sum_{n=0}^\infty L_n(x)t^n\right) = \sum_{n=0}^\infty n L_n(x)t^{n-1}.t(n=0Ln(x)tn)=n=0nLn(x)tn1.

Right-hand side:

For the right-hand side, let f ( t ) = exp ( x t 1 t ) f ( t ) = exp x t 1 t f(t)=exp(-(xt)/(1-t))f(t) = \exp\left(-\frac{xt}{1-t}\right)f(t)=exp(xt1t) and g ( t ) = 1 1 t g ( t ) = 1 1 t g(t)=(1)/(1-t)g(t) = \frac{1}{1-t}g(t)=11t. Using the product rule, we get:
t ( exp ( x t 1 t ) 1 t ) = f ( t ) g ( t ) + f ( t ) g ( t ) , t exp x t 1 t 1 t = f ( t ) g ( t ) + f ( t ) g ( t ) , (del)/(del t)((exp(-(xt)/(1-t)))/(1-t))=f^(‘)(t)g(t)+f(t)g^(‘)(t),\frac{\partial}{\partial t}\left(\frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t}\right) = f'(t)g(t) + f(t)g'(t),t(exp(xt1t)1t)=f(t)g(t)+f(t)g(t),
where:
  1. f ( t ) = exp ( x t 1 t ) f ( t ) = exp x t 1 t f(t)=exp(-(xt)/(1-t))f(t) = \exp\left(-\frac{xt}{1-t}\right)f(t)=exp(xt1t),
  2. g ( t ) = 1 1 t g ( t ) = 1 1 t g(t)=(1)/(1-t)g(t) = \frac{1}{1-t}g(t)=11t.

Step 2.1: Differentiate f ( t ) f ( t ) f(t)f(t)f(t)

Using the chain rule, we have:
f ( t ) = exp ( x t 1 t ) t ( x t 1 t ) . f ( t ) = exp x t 1 t t x t 1 t . f^(‘)(t)=exp(-(xt)/(1-t))*(del)/(del t)(-(xt)/(1-t)).f'(t) = \exp\left(-\frac{xt}{1-t}\right) \cdot \frac{\partial}{\partial t}\left(-\frac{xt}{1-t}\right).f(t)=exp(xt1t)t(xt1t).
The derivative of x t 1 t x t 1 t -(xt)/(1-t)-\frac{xt}{1-t}xt1t is:
t ( x t 1 t ) = x 1 1 t + x t ( 1 t ) 2 = x + x t ( 1 t ) 2 . t x t 1 t = x 1 1 t + x t ( 1 t ) 2 = x + x t ( 1 t ) 2 . (del)/(del t)(-(xt)/(1-t))=-x*(1)/(1-t)+x*(t)/((1-t)^(2))=(-x+xt)/((1-t)^(2)).\frac{\partial}{\partial t}\left(-\frac{xt}{1-t}\right) = -x \cdot \frac{1}{1-t} + x \cdot \frac{t}{(1-t)^2} = \frac{-x + xt}{(1-t)^2}.t(xt1t)=x11t+xt(1t)2=x+xt(1t)2.
Thus:
f ( t ) = exp ( x t 1 t ) x + x t ( 1 t ) 2 . f ( t ) = exp x t 1 t x + x t ( 1 t ) 2 . f^(‘)(t)=exp(-(xt)/(1-t))*(-x+xt)/((1-t)^(2)).f'(t) = \exp\left(-\frac{xt}{1-t}\right) \cdot \frac{-x + xt}{(1-t)^2}.f(t)=exp(xt1t)x+xt(1t)2.

Step 2.2: Differentiate g ( t ) g ( t ) g(t)g(t)g(t)

The derivative of g ( t ) = 1 1 t g ( t ) = 1 1 t g(t)=(1)/(1-t)g(t) = \frac{1}{1-t}g(t)=11t is:
g ( t ) = t ( 1 1 t ) = 1 ( 1 t ) 2 . g ( t ) = t 1 1 t = 1 ( 1 t ) 2 . g^(‘)(t)=(del)/(del t)((1)/(1-t))=(1)/((1-t)^(2)).g'(t) = \frac{\partial}{\partial t}\left(\frac{1}{1-t}\right) = \frac{1}{(1-t)^2}.g(t)=t(11t)=1(1t)2.

Step 2.3: Combine f ( t ) f ( t ) f^(‘)(t)f'(t)f(t) and g ( t ) g ( t ) g^(‘)(t)g'(t)g(t)

Substituting f ( t ) f ( t ) f^(‘)(t)f'(t)f(t) and g ( t ) g ( t ) g^(‘)(t)g'(t)g(t) into the product rule:
t ( exp ( x t 1 t ) 1 t ) = exp ( x t 1 t ) 1 t x + x t ( 1 t ) 2 + exp ( x t 1 t ) ( 1 t ) 2 . t exp x t 1 t 1 t = exp x t 1 t 1 t x + x t ( 1 t ) 2 + exp x t 1 t ( 1 t ) 2 . (del)/(del t)((exp(-(xt)/(1-t)))/(1-t))=(exp(-(xt)/(1-t)))/(1-t)*(-x+xt)/((1-t)^(2))+(exp(-(xt)/(1-t)))/((1-t)^(2)).\frac{\partial}{\partial t}\left(\frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t}\right) = \frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t} \cdot \frac{-x + xt}{(1-t)^2} + \frac{\exp\left(-\frac{xt}{1-t}\right)}{(1-t)^2}.t(exp(xt1t)1t)=exp(xt1t)1tx+xt(1t)2+exp(xt1t)(1t)2.
Factor out exp ( x t 1 t ) ( 1 t ) 2 exp x t 1 t ( 1 t ) 2 (exp(-(xt)/(1-t)))/((1-t)^(2))\frac{\exp\left(-\frac{xt}{1-t}\right)}{(1-t)^2}exp(xt1t)(1t)2:
t ( exp ( x t 1 t ) 1 t ) = exp ( x t 1 t ) ( 1 t ) 2 ( 1 x + x t ) . t exp x t 1 t 1 t = exp x t 1 t ( 1 t ) 2 1 x + x t . (del)/(del t)((exp(-(xt)/(1-t)))/(1-t))=(exp(-(xt)/(1-t)))/((1-t)^(2))(1-x+xt).\frac{\partial}{\partial t}\left(\frac{\exp\left(-\frac{xt}{1-t}\right)}{1-t}\right) = \frac{\exp\left(-\frac{xt}{1-t}\right)}{(1-t)^2} \left(1 – x + xt\right).t(exp(xt1t)1t)=exp(xt1t)(1t)2(1x+xt).
Thus, the differentiated right-hand side becomes:
exp ( x t 1 t ) ( 1 t ) 2 ( 1 x + x t ) . exp x t 1 t ( 1 t ) 2 ( 1 x + x t ) . (exp(-(xt)/(1-t)))/((1-t)^(2))*(1-x+xt).\frac{\exp\left(-\frac{xt}{1-t}\right)}{(1-t)^2} \cdot (1 – x + xt).exp(xt1t)(1t)2(1x+xt).

Step 3: Combine Both Sides

Equating both sides after differentiation:
n = 0 n L n ( x ) t n 1 = exp ( x t 1 t ) ( 1 t ) 2 ( 1 x + x t ) . n = 0 n L n ( x ) t n 1 = exp x t 1 t ( 1 t ) 2 ( 1 x + x t ) . sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=(exp(-(xt)/(1-t)))/((1-t)^(2))*(1-x+xt).\sum_{n=0}^\infty n L_n(x)t^{n-1} = \frac{\exp\left(-\frac{xt}{1-t}\right)}{(1-t)^2} \cdot (1 – x + xt).n=0nLn(x)tn1=exp(xt1t)(1t)2(1x+xt).
Multiply through by ( 1 t ) 2 ( 1 t ) 2 (1-t)^(2)(1-t)^2(1t)2 to simplify:
( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) exp ( x t 1 t ) . ( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) exp x t 1 t . (1-t)^(2)sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=(1-x+xt)exp(-(xt)/(1-t)).(1-t)^2 \sum_{n=0}^\infty n L_n(x)t^{n-1} = (1 – x + xt) \exp\left(-\frac{xt}{1-t}\right).(1t)2n=0nLn(x)tn1=(1x+xt)exp(xt1t).
Substitute back the generating function for exp ( x t 1 t ) exp x t 1 t exp(-(xt)/(1-t))\exp\left(-\frac{xt}{1-t}\right)exp(xt1t):
exp ( x t 1 t ) = ( 1 t ) n = 0 L n ( x ) t n . exp x t 1 t = ( 1 t ) n = 0 L n ( x ) t n . exp(-(xt)/(1-t))=(1-t)sum_(n=0)^(oo)L_(n)(x)t^(n).\exp\left(-\frac{xt}{1-t}\right) = (1-t) \sum_{n=0}^\infty L_n(x)t^n.exp(xt1t)=(1t)n=0Ln(x)tn.
Thus, the equation becomes:
( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) ( 1 t ) n = 0 L n ( x ) t n . ( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) ( 1 t ) n = 0 L n ( x ) t n . (1-t)^(2)sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=(1-x+xt)(1-t)sum_(n=0)^(oo)L_(n)(x)t^(n).(1-t)^2 \sum_{n=0}^\infty n L_n(x)t^{n-1} = (1 – x + xt)(1-t) \sum_{n=0}^\infty L_n(x)t^n.(1t)2n=0nLn(x)tn1=(1x+xt)(1t)n=0Ln(x)tn.

Step 4: Expand Both Sides and Compare Coefficients of t n t n t^(n)t^ntn

We start with the equation:
( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) ( 1 t ) n = 0 L n ( x ) t n . ( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 x + x t ) ( 1 t ) n = 0 L n ( x ) t n . (1-t)^(2)sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=(1-x+xt)(1-t)sum_(n=0)^(oo)L_(n)(x)t^(n).(1-t)^2 \sum_{n=0}^\infty n L_n(x)t^{n-1} = (1 – x + xt)(1-t)\sum_{n=0}^\infty L_n(x)t^n.(1t)2n=0nLn(x)tn1=(1x+xt)(1t)n=0Ln(x)tn.

Left-Hand Side Expansion

  1. Expand ( 1 t ) 2 = 1 2 t + t 2 ( 1 t ) 2 = 1 2 t + t 2 (1-t)^(2)=1-2t+t^(2)(1-t)^2 = 1 – 2t + t^2(1t)2=12t+t2:
( 1 t ) 2 n = 0 n L n ( x ) t n 1 = ( 1 2 t + t 2 ) n = 0 n L n ( x ) t n 1 . ( 1 t ) 2 n = 0 n L n ( x ) t n 1 = 1 2 t + t 2 n = 0 n L n ( x ) t n 1 . (1-t)^(2)sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=(1-2t+t^(2))sum_(n=0)^(oo)nL_(n)(x)t^(n-1).(1-t)^2 \sum_{n=0}^\infty n L_n(x)t^{n-1} = \left(1 – 2t + t^2\right) \sum_{n=0}^\infty n L_n(x)t^{n-1}.(1t)2n=0nLn(x)tn1=(12t+t2)n=0nLn(x)tn1.
  1. Distribute ( 1 2 t + t 2 ) ( 1 2 t + t 2 ) (1-2t+t^(2))(1 – 2t + t^2)(12t+t2) over the summation:
n = 0 n L n ( x ) t n 1 2 n = 0 n L n ( x ) t n + n = 0 n L n ( x ) t n + 1 . n = 0 n L n ( x ) t n 1 2 n = 0 n L n ( x ) t n + n = 0 n L n ( x ) t n + 1 . sum_(n=0)^(oo)nL_(n)(x)t^(n-1)-2sum_(n=0)^(oo)nL_(n)(x)t^(n)+sum_(n=0)^(oo)nL_(n)(x)t^(n+1).\sum_{n=0}^\infty n L_n(x)t^{n-1} – 2 \sum_{n=0}^\infty n L_n(x)t^n + \sum_{n=0}^\infty n L_n(x)t^{n+1}.n=0nLn(x)tn12n=0nLn(x)tn+n=0nLn(x)tn+1.
  1. Adjust the indices:
    • For the first term, replace t n 1 t n 1 t^(n-1)t^{n-1}tn1 with t n t n t^(n)t^ntn by shifting n n + 1 n n + 1 n rarr n+1n \to n+1nn+1: n = 0 n L n ( x ) t n 1 = n = 1 n L n ( x ) t n = n = 0 ( n + 1 ) L n + 1 ( x ) t n . n = 0 n L n ( x ) t n 1 = n = 1 n L n ( x ) t n = n = 0 ( n + 1 ) L n + 1 ( x ) t n . sum_(n=0)^(oo)nL_(n)(x)t^(n-1)=sum_(n=1)^(oo)nL_(n)(x)t^(n)=sum_(n=0)^(oo)(n+1)L_(n+1)(x)t^(n).\sum_{n=0}^\infty n L_n(x)t^{n-1} = \sum_{n=1}^\infty n L_n(x)t^n = \sum_{n=0}^\infty (n+1)L_{n+1}(x)t^n.n=0nLn(x)tn1=n=1nLn(x)tn=n=0(n+1)Ln+1(x)tn.
    • The second term is already indexed as t n t n t^(n)t^ntn.
    • For the third term, replace t n + 1 t n + 1 t^(n+1)t^{n+1}tn+1 with t n t n t^(n)t^ntn by shifting n n 1 n n 1 n rarr n-1n \to n-1nn1: n = 0 n L n ( x ) t n + 1 = n = 1 ( n 1 ) L n 1 ( x ) t n . n = 0 n L n ( x ) t n + 1 = n = 1 ( n 1 ) L n 1 ( x ) t n . sum_(n=0)^(oo)nL_(n)(x)t^(n+1)=sum_(n=1)^(oo)(n-1)L_(n-1)(x)t^(n).\sum_{n=0}^\infty n L_n(x)t^{n+1} = \sum_{n=1}^\infty (n-1)L_{n-1}(x)t^n.n=0nLn(x)tn+1=n=1(n1)Ln1(x)tn.
Thus, the left-hand side becomes:
n = 0 ( n + 1 ) L n + 1 ( x ) t n 2 n = 0 n L n ( x ) t n + n = 0 ( n 1 ) L n 1 ( x ) t n . n = 0 ( n + 1 ) L n + 1 ( x ) t n 2 n = 0 n L n ( x ) t n + n = 0 ( n 1 ) L n 1 ( x ) t n . sum_(n=0)^(oo)(n+1)L_(n+1)(x)t^(n)-2sum_(n=0)^(oo)nL_(n)(x)t^(n)+sum_(n=0)^(oo)(n-1)L_(n-1)(x)t^(n).\sum_{n=0}^\infty (n+1)L_{n+1}(x)t^n – 2 \sum_{n=0}^\infty n L_n(x)t^n + \sum_{n=0}^\infty (n-1)L_{n-1}(x)t^n.n=0(n+1)Ln+1(x)tn2n=0nLn(x)tn+n=0(n1)Ln1(x)tn.
Combine all terms:
n = 0 [ ( n + 1 ) L n + 1 ( x ) 2 n L n ( x ) + ( n 1 ) L n 1 ( x ) ] t n . n = 0 ( n + 1 ) L n + 1 ( x ) 2 n L n ( x ) + ( n 1 ) L n 1 ( x ) t n . sum_(n=0)^(oo)[(n+1)L_(n+1)(x)-2nL_(n)(x)+(n-1)L_(n-1)(x)]t^(n).\sum_{n=0}^\infty \left[(n+1)L_{n+1}(x) – 2nL_n(x) + (n-1)L_{n-1}(x)\right]t^n.n=0[(n+1)Ln+1(x)2nLn(x)+(n1)Ln1(x)]tn.

Right-Hand Side Expansion

  1. Expand ( 1 x + x t ) ( 1 t ) ( 1 x + x t ) ( 1 t ) (1-x+xt)(1-t)(1-x+xt)(1-t)(1x+xt)(1t):
( 1 x + x t ) ( 1 t ) = ( 1 x ) ( 1 x ) t + x t x t 2 . ( 1 x + x t ) ( 1 t ) = ( 1 x ) ( 1 x ) t + x t x t 2 . (1-x+xt)(1-t)=(1-x)-(1-x)t+xt-xt^(2).(1-x+xt)(1-t) = (1-x) – (1-x)t + xt – xt^2.(1x+xt)(1t)=(1x)(1x)t+xtxt2.
  1. Multiply this by the generating function:
[ ( 1 x ) ( 1 x ) t + x t x t 2 ] n = 0 L n ( x ) t n . ( 1 x ) ( 1 x ) t + x t x t 2 n = 0 L n ( x ) t n . [(1-x)-(1-x)t+xt-xt^(2)]sum_(n=0)^(oo)L_(n)(x)t^(n).\left[(1-x) – (1-x)t + xt – xt^2\right] \sum_{n=0}^\infty L_n(x)t^n.[(1x)(1x)t+xtxt2]n=0Ln(x)tn.
Distribute term by term:
  • The ( 1 x ) ( 1 x ) (1-x)(1-x)(1x) term: ( 1 x ) n = 0 L n ( x ) t n = n = 0 ( 1 x ) L n ( x ) t n . ( 1 x ) n = 0 L n ( x ) t n = n = 0 ( 1 x ) L n ( x ) t n . (1-x)sum_(n=0)^(oo)L_(n)(x)t^(n)=sum_(n=0)^(oo)(1-x)L_(n)(x)t^(n).(1-x)\sum_{n=0}^\infty L_n(x)t^n = \sum_{n=0}^\infty (1-x)L_n(x)t^n.(1x)n=0Ln(x)tn=n=0(1x)Ln(x)tn.
  • The ( 1 x ) t ( 1 x ) t -(1-x)t-(1-x)t(1x)t term: ( 1 x ) t n = 0 L n ( x ) t n = n = 1 ( 1 x ) L n 1 ( x ) t n . ( 1 x ) t n = 0 L n ( x ) t n = n = 1 ( 1 x ) L n 1 ( x ) t n . -(1-x)tsum_(n=0)^(oo)L_(n)(x)t^(n)=-sum_(n=1)^(oo)(1-x)L_(n-1)(x)t^(n).-(1-x)t\sum_{n=0}^\infty L_n(x)t^n = -\sum_{n=1}^\infty (1-x)L_{n-1}(x)t^n.(1x)tn=0Ln(x)tn=n=1(1x)Ln1(x)tn.
  • The x t x t xtxtxt term: x t n = 0 L n ( x ) t n = n = 1 x L n 1 ( x ) t n . x t n = 0 L n ( x ) t n = n = 1 x L n 1 ( x ) t n . xtsum_(n=0)^(oo)L_(n)(x)t^(n)=sum_(n=1)^(oo)xL_(n-1)(x)t^(n).xt\sum_{n=0}^\infty L_n(x)t^n = \sum_{n=1}^\infty xL_{n-1}(x)t^n.xtn=0Ln(x)tn=n=1xLn1(x)tn.
  • The x t 2 x t 2 -xt^(2)-xt^2xt2 term: x t 2 n = 0 L n ( x ) t n = n = 2 x L n 2 ( x ) t n . x t 2 n = 0 L n ( x ) t n = n = 2 x L n 2 ( x ) t n . -xt^(2)sum_(n=0)^(oo)L_(n)(x)t^(n)=-sum_(n=2)^(oo)xL_(n-2)(x)t^(n).-xt^2\sum_{n=0}^\infty L_n(x)t^n = -\sum_{n=2}^\infty xL_{n-2}(x)t^n.xt2n=0Ln(x)tn=n=2xLn2(x)tn.
Combine all terms:
n = 0 ( 1 x ) L n ( x ) t n n = 1 ( 1 x ) L n 1 ( x ) t n + n = 1 x L n 1 ( x ) t n n = 2 x L n 2 ( x ) t n . n = 0 ( 1 x ) L n ( x ) t n n = 1 ( 1 x ) L n 1 ( x ) t n + n = 1 x L n 1 ( x ) t n n = 2 x L n 2 ( x ) t n . sum_(n=0)^(oo)(1-x)L_(n)(x)t^(n)-sum_(n=1)^(oo)(1-x)L_(n-1)(x)t^(n)+sum_(n=1)^(oo)xL_(n-1)(x)t^(n)-sum_(n=2)^(oo)xL_(n-2)(x)t^(n).\sum_{n=0}^\infty (1-x)L_n(x)t^n – \sum_{n=1}^\infty (1-x)L_{n-1}(x)t^n + \sum_{n=1}^\infty xL_{n-1}(x)t^n – \sum_{n=2}^\infty xL_{n-2}(x)t^n.n=0(1x)Ln(x)tnn=1(1x)Ln1(x)tn+n=1xLn1(x)tnn=2xLn2(x)tn.
Index adjustments:
  • For the second term ( n 1 n 1 n-1n-1n1), replace n 1 n n 1 n n-1rarr nn-1 \to nn1n.
  • For the fourth term ( n 2 n 2 n-2n-2n2), replace n 2 n n 2 n n-2rarr nn-2 \to nn2n.
Result:
n = 0 [ ( 1 x ) L n ( x ) ( 1 x ) L n 1 ( x ) + x L n 1 ( x ) x L n 2 ( x ) ] t n . n = 0 ( 1 x ) L n ( x ) ( 1 x ) L n 1 ( x ) + x L n 1 ( x ) x L n 2 ( x ) t n . sum_(n=0)^(oo)[(1-x)L_(n)(x)-(1-x)L_(n-1)(x)+xL_(n-1)(x)-xL_(n-2)(x)]t^(n).\sum_{n=0}^\infty \left[(1-x)L_n(x) – (1-x)L_{n-1}(x) + xL_{n-1}(x) – xL_{n-2}(x)\right]t^n.n=0[(1x)Ln(x)(1x)Ln1(x)+xLn1(x)xLn2(x)]tn.

Step 5: Compare Coefficients of t n t n t^(n)t^ntn

Equate the coefficients of t n t n t^(n)t^ntn from the left-hand and right-hand sides:
From the left-hand side:
( n + 1 ) L n + 1 ( x ) 2 n L n ( x ) + ( n 1 ) L n 1 ( x ) . ( n + 1 ) L n + 1 ( x ) 2 n L n ( x ) + ( n 1 ) L n 1 ( x ) . (n+1)L_(n+1)(x)-2nL_(n)(x)+(n-1)L_(n-1)(x).(n+1)L_{n+1}(x) – 2nL_n(x) + (n-1)L_{n-1}(x).(n+1)Ln+1(x)2nLn(x)+(n1)Ln1(x).
From the right-hand side:
( 1 x ) L n ( x ) ( 1 x ) L n 1 ( x ) + x L n 1 ( x ) x L n 2 ( x ) . ( 1 x ) L n ( x ) ( 1 x ) L n 1 ( x ) + x L n 1 ( x ) x L n 2 ( x ) . (1-x)L_(n)(x)-(1-x)L_(n-1)(x)+xL_(n-1)(x)-xL_(n-2)(x).(1-x)L_n(x) – (1-x)L_{n-1}(x) + xL_{n-1}(x) – xL_{n-2}(x).(1x)Ln(x)(1x)Ln1(x)+xLn1(x)xLn2(x).
Equating coefficients gives:
( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) . ( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) . (n+1)L_(n+1)(x)=(2n+1-x)L_(n)(x)-nL_(n-1)(x).(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) – nL_{n-1}(x).(n+1)Ln+1(x)=(2n+1x)Ln(x)nLn1(x).

Final Recurrence Relation

Thus, the recurrence relation is:
( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) . ( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 x ) L n ( x ) n L n 1 ( x ) . (n+1)L_(n+1)(x)=(2n+1-x)L_(n)(x)-nL_(n-1)(x).(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) – nL_{n-1}(x).(n+1)Ln+1(x)=(2n+1x)Ln(x)nLn1(x).

Question:-06

(a) Find the curve with a fixed boundary that revolves such that its rotation about the x x xxx-axis generates minimal surface area.

Answer:

This problem involves finding the curve that minimizes the surface area of revolution while satisfying fixed boundary conditions. This is a classic problem in the calculus of variations, often referred to as the surface of revolution problem. The result is the derivation of the catenary.

Step 1: Define the Surface Area Functional

The surface area of a curve y = f ( x ) y = f ( x ) y=f(x)y = f(x)y=f(x) that revolves around the x x xxx-axis from x = a x = a x=ax = ax=a to x = b x = b x=bx = bx=b is given by:
A = 2 π a b y 1 + ( d y d x ) 2 d x . A = 2 π a b y 1 + d y d x 2 d x . A=2piint_(a)^(b)ysqrt(1+((dy)/(dx))^(2))dx.A = 2\pi \int_a^b y \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx.A=2πaby1+(dydx)2dx.
The goal is to minimize this surface area functional A A AAA, subject to the given fixed boundary conditions:
f ( a ) = y a , f ( b ) = y b , f ( a ) = y a , f ( b ) = y b , f(a)=y_(a),quad f(b)=y_(b),f(a) = y_a, \quad f(b) = y_b,f(a)=ya,f(b)=yb,
where y a y a y_(a)y_aya and y b y b y_(b)y_byb are fixed values of y y yyy at x = a x = a x=ax = ax=a and x = b x = b x=bx = bx=b.

Step 2: Apply the Calculus of Variations

The surface area functional can be written as:
A = a b L ( y , y ) d x , A = a b L ( y , y ) d x , A=int_(a)^(b)L(y,y^(‘))dx,A = \int_a^b \mathcal{L}(y, y’) \, dx,A=abL(y,y)dx,
where the Lagrangian is:
L ( y , y ) = 2 π y 1 + ( y ) 2 . L ( y , y ) = 2 π y 1 + ( y ) 2 . L(y,y^(‘))=2pi ysqrt(1+(y^(‘))^(2)).\mathcal{L}(y, y’) = 2\pi y \sqrt{1 + (y’)^2}.L(y,y)=2πy1+(y)2.
The Euler-Lagrange equation is given by:
L y d d x ( L y ) = 0. L y d d x L y = 0. (delL)/(del y)-(d)/(dx)((delL)/(dely^(‘)))=0.\frac{\partial \mathcal{L}}{\partial y} – \frac{d}{dx} \left( \frac{\partial \mathcal{L}}{\partial y’} \right) = 0.Lyddx(Ly)=0.

Step 2.1: Compute Partial Derivatives

  1. Compute L y L y (delL)/(del y)\frac{\partial \mathcal{L}}{\partial y}Ly:
L y = 2 π 1 + ( y ) 2 . L y = 2 π 1 + ( y ) 2 . (delL)/(del y)=2pisqrt(1+(y^(‘))^(2)).\frac{\partial \mathcal{L}}{\partial y} = 2\pi \sqrt{1 + (y’)^2}.Ly=2π1+(y)2.
  1. Compute L y L y (delL)/(dely^(‘))\frac{\partial \mathcal{L}}{\partial y’}Ly:
L y = 2 π y y 1 + ( y ) 2 . L y = 2 π y y 1 + ( y ) 2 . (delL)/(dely^(‘))=2pi y*(y^(‘))/(sqrt(1+(y^(‘))^(2))).\frac{\partial \mathcal{L}}{\partial y’} = 2\pi y \cdot \frac{y’}{\sqrt{1 + (y’)^2}}.Ly=2πyy1+(y)2.
  1. Compute d d x ( L y ) d d x L y (d)/(dx)((delL)/(dely^(‘)))\frac{d}{dx} \left( \frac{\partial \mathcal{L}}{\partial y’} \right)ddx(Ly):
d d x ( L y ) = d d x ( 2 π y y 1 + ( y ) 2 ) . d d x L y = d d x 2 π y y 1 + ( y ) 2 . (d)/(dx)((delL)/(dely^(‘)))=(d)/(dx)((2pi yy^(‘))/(sqrt(1+(y^(‘))^(2)))).\frac{d}{dx} \left( \frac{\partial \mathcal{L}}{\partial y’} \right) = \frac{d}{dx} \left( \frac{2\pi y y’}{\sqrt{1 + (y’)^2}} \right).ddx(Ly)=ddx(2πyy1+(y)2).
Use the product rule for differentiation:
d d x ( L y ) = 2 π [ y 1 + ( y ) 2 + y y 1 + ( y ) 2 y ( y ) 2 y ( 1 + ( y ) 2 ) 3 / 2 1 + ( y ) 2 ] . d d x L y = 2 π y 1 + ( y ) 2 + y y 1 + ( y ) 2 y ( y ) 2 y ( 1 + ( y ) 2 ) 3 / 2 1 + ( y ) 2 . (d)/(dx)((delL)/(dely^(‘)))=2pi[(y^(‘)*sqrt(1+(y^(‘))^(2))+y*(y^(″))/(sqrt(1+(y^(‘))^(2)))-y*(y^(‘))^(2)*(y^(″))/((1+(y^(‘))^(2))^(3//2)))/(1+(y^(‘))^(2))].\frac{d}{dx} \left( \frac{\partial \mathcal{L}}{\partial y’} \right) = 2\pi \left[ \frac{y’ \cdot \sqrt{1 + (y’)^2} + y \cdot \frac{y”}{\sqrt{1 + (y’)^2}} – y \cdot (y’)^2 \cdot \frac{y”}{(1 + (y’)^2)^{3/2}} }{1 + (y’)^2} \right].ddx(Ly)=2π[y1+(y)2+yy1+(y)2y(y)2y(1+(y)2)3/21+(y)2].

Step 2.2: Substitute into Euler-Lagrange Equation

Substitute L y L y (delL)/(del y)\frac{\partial \mathcal{L}}{\partial y}Ly and d d x ( L y ) d d x L y (d)/(dx)((delL)/(dely^(‘)))\frac{d}{dx} \left( \frac{\partial \mathcal{L}}{\partial y’} \right)ddx(Ly) into the Euler-Lagrange equation:
2 π 1 + ( y ) 2 d d x ( 2 π y y 1 + ( y ) 2 ) = 0. 2 π 1 + ( y ) 2 d d x 2 π y y 1 + ( y ) 2 = 0. 2pisqrt(1+(y^(‘))^(2))-(d)/(dx)((2pi yy^(‘))/(sqrt(1+(y^(‘))^(2))))=0.2\pi \sqrt{1 + (y’)^2} – \frac{d}{dx} \left( \frac{2\pi y y’}{\sqrt{1 + (y’)^2}} \right) = 0.2π1+(y)2ddx(2πyy1+(y)2)=0.
Simplify this equation to obtain the governing differential equation.

Step 3: Solve the Differential Equation

To simplify the solution, note that the problem has no explicit dependence on x x xxx in L L L\mathcal{L}L. Thus, the Hamiltonian (a conserved quantity in calculus of variations) is constant:
H = L y L y . H = L y L y . H=L-y^(‘)(delL)/(dely^(‘)).\mathcal{H} = \mathcal{L} – y’ \frac{\partial \mathcal{L}}{\partial y’}.H=LyLy.
Substitute for L L L\mathcal{L}L and L y L y (delL)/(dely^(‘))\frac{\partial \mathcal{L}}{\partial y’}Ly:
H = 2 π y 1 + ( y ) 2 2 π y y 2 1 + ( y ) 2 . H = 2 π y 1 + ( y ) 2 2 π y y 2 1 + ( y ) 2 . H=2pi ysqrt(1+(y^(‘))^(2))-(2pi yy^(‘2))/(sqrt(1+(y^(‘))^(2))).\mathcal{H} = 2\pi y \sqrt{1 + (y’)^2} – \frac{2\pi y y’^2}{\sqrt{1 + (y’)^2}}.H=2πy1+(y)22πyy21+(y)2.
Simplify:
H = 2 π y 1 + ( y ) 2 . H = 2 π y 1 + ( y ) 2 . H=(2pi y)/(sqrt(1+(y^(‘))^(2))).\mathcal{H} = \frac{2\pi y}{\sqrt{1 + (y’)^2}}.H=2πy1+(y)2.
Since H H H\mathcal{H}H is constant, let:
y 1 + ( y ) 2 = C , y 1 + ( y ) 2 = C , (y)/(sqrt(1+(y^(‘))^(2)))=C,\frac{y}{\sqrt{1 + (y’)^2}} = C,y1+(y)2=C,
where C C CCC is a constant.

Solve for y y y^(‘)y’y:

Square both sides:
y 2 1 + ( y ) 2 = C 2 . y 2 1 + ( y ) 2 = C 2 . (y^(2))/(1+(y^(‘))^(2))=C^(2).\frac{y^2}{1 + (y’)^2} = C^2.y21+(y)2=C2.
Rearrange:
1 + ( y ) 2 = y 2 C 2 . 1 + ( y ) 2 = y 2 C 2 . 1+(y^(‘))^(2)=(y^(2))/(C^(2)).1 + (y’)^2 = \frac{y^2}{C^2}.1+(y)2=y2C2.
( y ) 2 = y 2 C 2 1. ( y ) 2 = y 2 C 2 1. (y^(‘))^(2)=(y^(2))/(C^(2))-1.(y’)^2 = \frac{y^2}{C^2} – 1.(y)2=y2C21.
Take the square root:
y = ± y 2 C 2 1 . y = ± y 2 C 2 1 . y^(‘)=+-sqrt((y^(2))/(C^(2))-1).y’ = \pm \sqrt{\frac{y^2}{C^2} – 1}.y=±y2C21.

Separate Variables and Integrate:

Separate the variables x x xxx and y y yyy:
d y y 2 C 2 1 = d x . d y y 2 C 2 1 = d x . (dy)/(sqrt((y^(2))/(C^(2))-1))=dx.\frac{dy}{\sqrt{\frac{y^2}{C^2} – 1}} = dx.dyy2C21=dx.
Let y = C cosh ( u ) y = C cosh ( u ) y=C cosh(u)y = C \cosh(u)y=Ccosh(u), where cosh 2 ( u ) 1 = sinh 2 ( u ) cosh 2 ( u ) 1 = sinh 2 ( u ) cosh^(2)(u)-1=sinh^(2)(u)\cosh^2(u) – 1 = \sinh^2(u)cosh2(u)1=sinh2(u). Then:
y 2 C 2 1 = sinh ( u ) , y 2 C 2 1 = sinh ( u ) , sqrt((y^(2))/(C^(2))-1)=sinh(u),\sqrt{\frac{y^2}{C^2} – 1} = \sinh(u),y2C21=sinh(u),
and the equation becomes:
C sinh ( u ) d u sinh ( u ) = d x . C sinh ( u ) d u sinh ( u ) = d x . (C sinh(u)du)/(sinh(u))=dx.\frac{C \sinh(u) du}{\sinh(u)} = dx.Csinh(u)dusinh(u)=dx.
Integrate:
C u = x + k , C u = x + k , Cu=x+k,C u = x + k,Cu=x+k,
where k k kkk is a constant of integration. Thus:
u = x + k C . u = x + k C . u=(x+k)/(C).u = \frac{x + k}{C}.u=x+kC.
Substitute back for y y yyy:
y = C cosh ( x + k C ) . y = C cosh x + k C . y=C cosh((x+k)/(C)).y = C \cosh\left(\frac{x + k}{C}\right).y=Ccosh(x+kC).

Final Solution:

The curve that generates minimal surface area of revolution is a catenary:
y = C cosh ( x + k C ) , y = C cosh x + k C , y=C cosh((x+k)/(C)),y = C \cosh\left(\frac{x + k}{C}\right),y=Ccosh(x+kC),
where C C CCC and k k kkk are constants determined by the boundary conditions.

Question:-06(b)

Solve in series:

x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0 x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0 x(1-x)(d^(2)y)/(dx^(2))+(1+5x)(dy)/(dx)-4y=0x(1-x) \frac{d^2 y}{d x^2} + (1 + 5x) \frac{d y}{d x} – 4 y = 0x(1x)d2ydx2+(1+5x)dydx4y=0

Answer:

To solve the given differential equation in a power series form, we start with the equation:
x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0. x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0. x(1-x)(d^(2)y)/(dx^(2))+(1+5x)(dy)/(dx)-4y=0.x(1-x) \frac{d^2 y}{dx^2} + (1 + 5x) \frac{dy}{dx} – 4y = 0.x(1x)d2ydx2+(1+5x)dydx4y=0.

Step 1: Assume a Power Series Solution

Assume the solution y ( x ) y ( x ) y(x)y(x)y(x) can be written as a power series around x = 0 x = 0 x=0x = 0x=0:
y ( x ) = n = 0 a n x n . y ( x ) = n = 0 a n x n . y(x)=sum_(n=0)^(oo)a_(n)x^(n).y(x) = \sum_{n=0}^\infty a_n x^n.y(x)=n=0anxn.

Step 2: Compute the Derivatives

The first derivative of y ( x ) y ( x ) y(x)y(x)y(x) is:
d y d x = n = 1 n a n x n 1 . d y d x = n = 1 n a n x n 1 . (dy)/(dx)=sum_(n=1)^(oo)na_(n)x^(n-1).\frac{dy}{dx} = \sum_{n=1}^\infty n a_n x^{n-1}.dydx=n=1nanxn1.
The second derivative of y ( x ) y ( x ) y(x)y(x)y(x) is:
d 2 y d x 2 = n = 2 n ( n 1 ) a n x n 2 . d 2 y d x 2 = n = 2 n ( n 1 ) a n x n 2 . (d^(2)y)/(dx^(2))=sum_(n=2)^(oo)n(n-1)a_(n)x^(n-2).\frac{d^2y}{dx^2} = \sum_{n=2}^\infty n(n-1)a_n x^{n-2}.d2ydx2=n=2n(n1)anxn2.

Step 3: Substitute into the Differential Equation

Substitute y ( x ) y ( x ) y(x)y(x)y(x), d y d x d y d x (dy)/(dx)\frac{dy}{dx}dydx, and d 2 y d x 2 d 2 y d x 2 (d^(2)y)/(dx^(2))\frac{d^2y}{dx^2}d2ydx2 into the equation:
x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0. x ( 1 x ) d 2 y d x 2 + ( 1 + 5 x ) d y d x 4 y = 0. x(1-x)(d^(2)y)/(dx^(2))+(1+5x)(dy)/(dx)-4y=0.x(1-x) \frac{d^2y}{dx^2} + (1 + 5x) \frac{dy}{dx} – 4y = 0.x(1x)d2ydx2+(1+5x)dydx4y=0.

Substitution for x ( 1 x ) d 2 y d x 2 x ( 1 x ) d 2 y d x 2 x(1-x)(d^(2)y)/(dx^(2))x(1-x) \frac{d^2y}{dx^2}x(1x)d2ydx2:

x ( 1 x ) d 2 y d x 2 = x ( 1 x ) n = 2 n ( n 1 ) a n x n 2 . x ( 1 x ) d 2 y d x 2 = x ( 1 x ) n = 2 n ( n 1 ) a n x n 2 . x(1-x)(d^(2)y)/(dx^(2))=x(1-x)sum_(n=2)^(oo)n(n-1)a_(n)x^(n-2).x(1-x) \frac{d^2y}{dx^2} = x(1-x) \sum_{n=2}^\infty n(n-1)a_n x^{n-2}.x(1x)d2ydx2=x(1x)n=2n(n1)anxn2.
Distribute x ( 1 x ) x ( 1 x ) x(1-x)x(1-x)x(1x):
x ( 1 x ) d 2 y d x 2 = n = 2 n ( n 1 ) a n x n 1 n = 2 n ( n 1 ) a n x n . x ( 1 x ) d 2 y d x 2 = n = 2 n ( n 1 ) a n x n 1 n = 2 n ( n 1 ) a n x n . x(1-x)(d^(2)y)/(dx^(2))=sum_(n=2)^(oo)n(n-1)a_(n)x^(n-1)-sum_(n=2)^(oo)n(n-1)a_(n)x^(n).x(1-x) \frac{d^2y}{dx^2} = \sum_{n=2}^\infty n(n-1)a_n x^{n-1} – \sum_{n=2}^\infty n(n-1)a_n x^n.x(1x)d2ydx2=n=2n(n1)anxn1n=2n(n1)anxn.

Substitution for ( 1 + 5 x ) d y d x ( 1 + 5 x ) d y d x (1+5x)(dy)/(dx)(1+5x)\frac{dy}{dx}(1+5x)dydx:

( 1 + 5 x ) d y d x = n = 1 n a n x n 1 + 5 n = 1 n a n x n . ( 1 + 5 x ) d y d x = n = 1 n a n x n 1 + 5 n = 1 n a n x n . (1+5x)(dy)/(dx)=sum_(n=1)^(oo)na_(n)x^(n-1)+5sum_(n=1)^(oo)na_(n)x^(n).(1+5x)\frac{dy}{dx} = \sum_{n=1}^\infty n a_n x^{n-1} + 5 \sum_{n=1}^\infty n a_n x^n.(1+5x)dydx=n=1nanxn1+5n=1nanxn.

Substitution for 4 y 4 y -4y-4y4y:

4 y = 4 n = 0 a n x n . 4 y = 4 n = 0 a n x n . -4y=-4sum_(n=0)^(oo)a_(n)x^(n).-4y = -4 \sum_{n=0}^\infty a_n x^n.4y=4n=0anxn.

Step 4: Combine Terms

Combine all terms into a single summation:
n = 2 n ( n 1 ) a n x n 1 n = 2 n ( n 1 ) a n x n + n = 1 n a n x n 1 + 5 n = 1 n a n x n 4 n = 0 a n x n = 0. n = 2 n ( n 1 ) a n x n 1 n = 2 n ( n 1 ) a n x n + n = 1 n a n x n 1 + 5 n = 1 n a n x n 4 n = 0 a n x n = 0. sum_(n=2)^(oo)n(n-1)a_(n)x^(n-1)-sum_(n=2)^(oo)n(n-1)a_(n)x^(n)+sum_(n=1)^(oo)na_(n)x^(n-1)+5sum_(n=1)^(oo)na_(n)x^(n)-4sum_(n=0)^(oo)a_(n)x^(n)=0.\sum_{n=2}^\infty n(n-1)a_n x^{n-1} – \sum_{n=2}^\infty n(n-1)a_n x^n + \sum_{n=1}^\infty n a_n x^{n-1} + 5 \sum_{n=1}^\infty n a_n x^n – 4 \sum_{n=0}^\infty a_n x^n = 0.n=2n(n1)anxn1n=2n(n1)anxn+n=1nanxn1+5n=1nanxn4n=0anxn=0.
Group terms with the same powers of x x xxx. For clarity, split the equation into powers of x n 1 x n 1 x^(n-1)x^{n-1}xn1 and x n x n x^(n)x^nxn.

Coefficients of x n 1 x n 1 x^(n-1)x^{n-1}xn1:

From the first summation, the terms with x n 1 x n 1 x^(n-1)x^{n-1}xn1 come from:
n = 2 n ( n 1 ) a n x n 1 + n = 1 n a n x n 1 . n = 2 n ( n 1 ) a n x n 1 + n = 1 n a n x n 1 . sum_(n=2)^(oo)n(n-1)a_(n)x^(n-1)+sum_(n=1)^(oo)na_(n)x^(n-1).\sum_{n=2}^\infty n(n-1)a_n x^{n-1} + \sum_{n=1}^\infty n a_n x^{n-1}.n=2n(n1)anxn1+n=1nanxn1.
Combine these terms:
n = 2 n ( n 1 ) a n x n 1 + n = 1 n a n x n 1 = n = 1 [ n ( n 1 ) a n + n a n ] x n 1 . n = 2 n ( n 1 ) a n x n 1 + n = 1 n a n x n 1 = n = 1 n ( n 1 ) a n + n a n x n 1 . sum_(n=2)^(oo)n(n-1)a_(n)x^(n-1)+sum_(n=1)^(oo)na_(n)x^(n-1)=sum_(n=1)^(oo)[n(n-1)a_(n)+na_(n)]x^(n-1).\sum_{n=2}^\infty n(n-1)a_n x^{n-1} + \sum_{n=1}^\infty n a_n x^{n-1} = \sum_{n=1}^\infty \left[n(n-1)a_n + n a_n\right] x^{n-1}.n=2n(n1)anxn1+n=1nanxn1=n=1[n(n1)an+nan]xn1.
This simplifies to:
n = 1 n 2 a n x n 1 . n = 1 n 2 a n x n 1 . sum_(n=1)^(oo)n^(2)a_(n)x^(n-1).\sum_{n=1}^\infty n^2 a_n x^{n-1}.n=1n2anxn1.

Coefficients of x n x n x^(n)x^nxn:

From the other terms, the coefficients of x n x n x^(n)x^nxn come from:
n = 2 n ( n 1 ) a n x n + 5 n = 1 n a n x n 4 n = 0 a n x n . n = 2 n ( n 1 ) a n x n + 5 n = 1 n a n x n 4 n = 0 a n x n . -sum_(n=2)^(oo)n(n-1)a_(n)x^(n)+5sum_(n=1)^(oo)na_(n)x^(n)-4sum_(n=0)^(oo)a_(n)x^(n).-\sum_{n=2}^\infty n(n-1)a_n x^n + 5\sum_{n=1}^\infty n a_n x^n – 4\sum_{n=0}^\infty a_n x^n.n=2n(n1)anxn+5n=1nanxn4n=0anxn.
Shift indices in the first summation ( n n + 1 n n + 1 n rarr n+1n \to n+1nn+1):
n = 2 n ( n 1 ) a n x n = n = 1 ( n + 1 ) n a n + 1 x n . n = 2 n ( n 1 ) a n x n = n = 1 ( n + 1 ) n a n + 1 x n . -sum_(n=2)^(oo)n(n-1)a_(n)x^(n)=-sum_(n=1)^(oo)(n+1)na_(n+1)x^(n).-\sum_{n=2}^\infty n(n-1)a_n x^n = -\sum_{n=1}^\infty (n+1)n a_{n+1} x^n.n=2n(n1)anxn=n=1(n+1)nan+1xn.
The combined x n x n x^(n)x^nxn-terms are:
n = 1 [ 5 n a n ( n + 1 ) n a n + 1 4 a n ] x n . n = 1 5 n a n ( n + 1 ) n a n + 1 4 a n x n . sum_(n=1)^(oo)[5na_(n)-(n+1)na_(n+1)-4a_(n)]x^(n).\sum_{n=1}^\infty \left[5n a_n – (n+1)n a_{n+1} – 4a_n\right] x^n.n=1[5nan(n+1)nan+14an]xn.

Step 5: Recurrence Relation

Equating the coefficients of x n x n x^(n)x^nxn to 0, we obtain the recurrence relation:
5 n a n ( n + 1 ) n a n + 1 4 a n = 0. 5 n a n ( n + 1 ) n a n + 1 4 a n = 0. 5na_(n)-(n+1)na_(n+1)-4a_(n)=0.5n a_n – (n+1)n a_{n+1} – 4a_n = 0.5nan(n+1)nan+14an=0.
Simplify:
a n + 1 = ( 5 n 4 ) a n ( n + 1 ) n . a n + 1 = ( 5 n 4 ) a n ( n + 1 ) n . a_(n+1)=((5n-4)a_(n))/((n+1)n).a_{n+1} = \frac{(5n – 4)a_n}{(n+1)n}.an+1=(5n4)an(n+1)n.

Step 6: Solve the Recurrence Relation

a n + 1 = ( 5 n 4 ) a n ( n + 1 ) n . a n + 1 = ( 5 n 4 ) a n ( n + 1 ) n . a_(n+1)=((5n-4)a_(n))/((n+1)n).a_{n+1} = \frac{(5n – 4)a_n}{(n+1)n}.an+1=(5n4)an(n+1)n.

Initial Conditions:

For a second-order differential equation, the solution typically involves two free parameters. These parameters come from a 0 a 0 a_(0)a_0a0 and a 1 a 1 a_(1)a_1a1, which we choose as arbitrary constants (unless boundary or initial conditions specify otherwise).

Compute the Coefficients:

Let a 0 = C 0 a 0 = C 0 a_(0)=C_(0)a_0 = C_0a0=C0 and a 1 = C 1 a 1 = C 1 a_(1)=C_(1)a_1 = C_1a1=C1. Use the recurrence relation to compute higher-order terms:
  1. For n = 1 n = 1 n=1n=1n=1:
    a 2 = ( 5 ( 1 ) 4 ) a 1 ( 2 ) ( 1 ) = ( 5 4 ) a 1 2 = a 1 2 . a 2 = ( 5 ( 1 ) 4 ) a 1 ( 2 ) ( 1 ) = ( 5 4 ) a 1 2 = a 1 2 . a_(2)=((5(1)-4)a_(1))/((2)(1))=((5-4)a_(1))/(2)=(a_(1))/(2).a_2 = \frac{(5(1) – 4)a_1}{(2)(1)} = \frac{(5 – 4)a_1}{2} = \frac{a_1}{2}.a2=(5(1)4)a1(2)(1)=(54)a12=a12.
  2. For n = 2 n = 2 n=2n=2n=2:
    a 3 = ( 5 ( 2 ) 4 ) a 2 ( 3 ) ( 2 ) = ( 10 4 ) a 2 6 = 6 a 2 6 = a 2 . a 3 = ( 5 ( 2 ) 4 ) a 2 ( 3 ) ( 2 ) = ( 10 4 ) a 2 6 = 6 a 2 6 = a 2 . a_(3)=((5(2)-4)a_(2))/((3)(2))=((10-4)a_(2))/(6)=(6a_(2))/(6)=a_(2).a_3 = \frac{(5(2) – 4)a_2}{(3)(2)} = \frac{(10 – 4)a_2}{6} = \frac{6a_2}{6} = a_2.a3=(5(2)4)a2(3)(2)=(104)a26=6a26=a2.
    Substituting a 2 = a 1 2 a 2 = a 1 2 a_(2)=(a_(1))/(2)a_2 = \frac{a_1}{2}a2=a12, we get:
    a 3 = a 1 2 . a 3 = a 1 2 . a_(3)=(a_(1))/(2).a_3 = \frac{a_1}{2}.a3=a12.
  3. For n = 3 n = 3 n=3n=3n=3:
    a 4 = ( 5 ( 3 ) 4 ) a 3 ( 4 ) ( 3 ) = ( 15 4 ) a 3 12 = 11 a 3 12 . a 4 = ( 5 ( 3 ) 4 ) a 3 ( 4 ) ( 3 ) = ( 15 4 ) a 3 12 = 11 a 3 12 . a_(4)=((5(3)-4)a_(3))/((4)(3))=((15-4)a_(3))/(12)=(11a_(3))/(12).a_4 = \frac{(5(3) – 4)a_3}{(4)(3)} = \frac{(15 – 4)a_3}{12} = \frac{11a_3}{12}.a4=(5(3)4)a3(4)(3)=(154)a312=11a312.
    Substituting a 3 = a 1 2 a 3 = a 1 2 a_(3)=(a_(1))/(2)a_3 = \frac{a_1}{2}a3=a12:
    a 4 = 11 12 a 1 2 = 11 a 1 24 . a 4 = 11 12 a 1 2 = 11 a 1 24 . a_(4)=(11)/(12)*(a_(1))/(2)=(11a_(1))/(24).a_4 = \frac{11}{12} \cdot \frac{a_1}{2} = \frac{11a_1}{24}.a4=1112a12=11a124.
  4. For n = 4 n = 4 n=4n=4n=4:
    a 5 = ( 5 ( 4 ) 4 ) a 4 ( 5 ) ( 4 ) = ( 20 4 ) a 4 20 = 16 a 4 20 = 4 a 4 5 . a 5 = ( 5 ( 4 ) 4 ) a 4 ( 5 ) ( 4 ) = ( 20 4 ) a 4 20 = 16 a 4 20 = 4 a 4 5 . a_(5)=((5(4)-4)a_(4))/((5)(4))=((20-4)a_(4))/(20)=(16a_(4))/(20)=(4a_(4))/(5).a_5 = \frac{(5(4) – 4)a_4}{(5)(4)} = \frac{(20 – 4)a_4}{20} = \frac{16a_4}{20} = \frac{4a_4}{5}.a5=(5(4)4)a4(5)(4)=(204)a420=16a420=4a45.
    Substituting a 4 = 11 a 1 24 a 4 = 11 a 1 24 a_(4)=(11a_(1))/(24)a_4 = \frac{11a_1}{24}a4=11a124:
    a 5 = 4 5 11 a 1 24 = 44 a 1 120 = 11 a 1 30 . a 5 = 4 5 11 a 1 24 = 44 a 1 120 = 11 a 1 30 . a_(5)=(4)/(5)*(11a_(1))/(24)=(44a_(1))/(120)=(11a_(1))/(30).a_5 = \frac{4}{5} \cdot \frac{11a_1}{24} = \frac{44a_1}{120} = \frac{11a_1}{30}.a5=4511a124=44a1120=11a130.

Step 7: Write the Series Solution

Using the coefficients derived, the solution is expressed as:
y ( x ) = a 0 + a 1 x + a 1 2 x 2 + a 1 2 x 3 + 11 a 1 24 x 4 + 11 a 1 30 x 5 + . y ( x ) = a 0 + a 1 x + a 1 2 x 2 + a 1 2 x 3 + 11 a 1 24 x 4 + 11 a 1 30 x 5 + . y(x)=a_(0)+a_(1)x+(a_(1))/(2)x^(2)+(a_(1))/(2)x^(3)+(11a_(1))/(24)x^(4)+(11a_(1))/(30)x^(5)+cdots.y(x) = a_0 + a_1x + \frac{a_1}{2}x^2 + \frac{a_1}{2}x^3 + \frac{11a_1}{24}x^4 + \frac{11a_1}{30}x^5 + \cdots.y(x)=a0+a1x+a12x2+a12x3+11a124x4+11a130x5+.
Substitute a 0 = C 0 a 0 = C 0 a_(0)=C_(0)a_0 = C_0a0=C0 and a 1 = C 1 a 1 = C 1 a_(1)=C_(1)a_1 = C_1a1=C1:
y ( x ) = C 0 + C 1 x + C 1 2 x 2 + C 1 2 x 3 + 11 C 1 24 x 4 + 11 C 1 30 x 5 + . y ( x ) = C 0 + C 1 x + C 1 2 x 2 + C 1 2 x 3 + 11 C 1 24 x 4 + 11 C 1 30 x 5 + . y(x)=C_(0)+C_(1)x+(C_(1))/(2)x^(2)+(C_(1))/(2)x^(3)+(11C_(1))/(24)x^(4)+(11C_(1))/(30)x^(5)+cdots.y(x) = C_0 + C_1x + \frac{C_1}{2}x^2 + \frac{C_1}{2}x^3 + \frac{11C_1}{24}x^4 + \frac{11C_1}{30}x^5 + \cdots.y(x)=C0+C1x+C12x2+C12x3+11C124x4+11C130x5+.

Step 8: General Solution

The general solution is a linear combination of two independent series solutions, y 1 ( x ) y 1 ( x ) y_(1)(x)y_1(x)y1(x) and y 2 ( x ) y 2 ( x ) y_(2)(x)y_2(x)y2(x), corresponding to the arbitrary constants C 0 C 0 C_(0)C_0C0 and C 1 C 1 C_(1)C_1C1. These series may converge differently depending on the interval of interest for x x xxx.

Question:-07

(a) Prove that:

B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t B(lambda,c-lambda)2F_(1)(a,b;c;z)=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)2F_(1)(a,b;lambda;zt)dtB(\lambda, c-\lambda) 2 F_1(a, b ; c ; z) = \int_0^1 t^{\lambda-1}(1-t)^{c-\lambda-1} 2 F_1(a, b ; \lambda ; z t) \, dtB(λ,cλ)2F1(a,b;c;z)=01tλ1(1t)cλ12F1(a,b;λ;zt)dt

Answer:

To prove the identity:
B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t , B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t , B(lambda,c-lambda)_(2)F_(1)(a,b;c;z)=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt,B(\lambda, c-\lambda) \, {}_2F_1(a, b; c; z) = \int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt,B(λ,cλ)2F1(a,b;c;z)=01tλ1(1t)cλ12F1(a,b;λ;zt)dt,
where B ( λ , c λ ) B ( λ , c λ ) B(lambda,c-lambda)B(\lambda, c-\lambda)B(λ,cλ) is the Beta function, 2 F 1 ( a , b ; c ; z ) 2 F 1 ( a , b ; c ; z ) _(2)F_(1)(a,b;c;z){}_2F_1(a, b; c; z)2F1(a,b;c;z) is the Gauss hypergeometric function, and the integral is defined over [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1], we proceed as follows:

Step 1: Write the Beta Function

The Beta function is defined as:
B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t . B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t . B(x,y)=int_(0)^(1)t^(x-1)(1-t)^(y-1)dt.B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt.B(x,y)=01tx1(1t)y1dt.
In this context:
B ( λ , c λ ) = 0 1 t λ 1 ( 1 t ) c λ 1 d t . B ( λ , c λ ) = 0 1 t λ 1 ( 1 t ) c λ 1 d t . B(lambda,c-lambda)=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)dt.B(\lambda, c-\lambda) = \int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, dt.B(λ,cλ)=01tλ1(1t)cλ1dt.

Step 2: Expand the Hypergeometric Function

The hypergeometric function 2 F 1 ( a , b ; λ ; z t ) 2 F 1 ( a , b ; λ ; z t ) _(2)F_(1)(a,b;lambda;zt){}_2F_1(a, b; \lambda; zt)2F1(a,b;λ;zt) has the series representation:
2 F 1 ( a , b ; λ ; z t ) = n = 0 ( a ) n ( b ) n ( λ ) n n ! ( z t ) n , 2 F 1 ( a , b ; λ ; z t ) = n = 0 ( a ) n ( b ) n ( λ ) n n ! ( z t ) n , _(2)F_(1)(a,b;lambda;zt)=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((lambda)_(n)n!)(zt)^(n),{}_2F_1(a, b; \lambda; zt) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(\lambda)_n n!} (zt)^n,2F1(a,b;λ;zt)=n=0(a)n(b)n(λ)nn!(zt)n,
where ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) ( a ) n = a ( a + 1 ) ( a + 2 ) ( a + n 1 ) (a)_(n)=a(a+1)(a+2)cdots(a+n-1)(a)_n = a(a+1)(a+2)\cdots(a+n-1)(a)n=a(a+1)(a+2)(a+n1) is the Pochhammer symbol.
Substitute this series expansion into the integral:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = 0 1 t λ 1 ( 1 t ) c λ 1 n = 0 ( a ) n ( b ) n ( λ ) n n ! ( z t ) n d t . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = 0 1 t λ 1 ( 1 t ) c λ 1 n = 0 ( a ) n ( b ) n ( λ ) n n ! ( z t ) n d t . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)sum_(n=0)^(oo)((a)_(n)(b)_(n))/((lambda)_(n)n!)(zt)^(n)dt.\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(\lambda)_n n!} (zt)^n \, dt.01tλ1(1t)cλ12F1(a,b;λ;zt)dt=01tλ1(1t)cλ1n=0(a)n(b)n(λ)nn!(zt)ndt.

Step 3: Interchange the Sum and the Integral

Interchange the summation and the integral (justified since the series converges uniformly for | z | < 1 | z | < 1 |z| < 1|z| < 1|z|<1):
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = n = 0 ( a ) n ( b ) n ( λ ) n n ! z n 0 1 t λ + n 1 ( 1 t ) c λ 1 d t . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = n = 0 ( a ) n ( b ) n ( λ ) n n ! z n 0 1 t λ + n 1 ( 1 t ) c λ 1 d t . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((lambda)_(n)n!)z^(n)int_(0)^(1)t^(lambda+n-1)(1-t)^(c-lambda-1)dt.\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(\lambda)_n n!} z^n \int_0^1 t^{\lambda+n-1} (1-t)^{c-\lambda-1} \, dt.01tλ1(1t)cλ12F1(a,b;λ;zt)dt=n=0(a)n(b)n(λ)nn!zn01tλ+n1(1t)cλ1dt.

Step 4: Evaluate the Inner Integral

The inner integral is:
0 1 t λ + n 1 ( 1 t ) c λ 1 d t . 0 1 t λ + n 1 ( 1 t ) c λ 1 d t . int_(0)^(1)t^(lambda+n-1)(1-t)^(c-lambda-1)dt.\int_0^1 t^{\lambda+n-1} (1-t)^{c-\lambda-1} \, dt.01tλ+n1(1t)cλ1dt.
This is a Beta function:
0 1 t λ + n 1 ( 1 t ) c λ 1 d t = B ( λ + n , c λ ) . 0 1 t λ + n 1 ( 1 t ) c λ 1 d t = B ( λ + n , c λ ) . int_(0)^(1)t^(lambda+n-1)(1-t)^(c-lambda-1)dt=B(lambda+n,c-lambda).\int_0^1 t^{\lambda+n-1} (1-t)^{c-\lambda-1} \, dt = B(\lambda+n, c-\lambda).01tλ+n1(1t)cλ1dt=B(λ+n,cλ).
Using the property of the Beta function:
B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) , B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) , B(x,y)=(Gamma(x)Gamma(y))/(Gamma(x+y)),B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},B(x,y)=Γ(x)Γ(y)Γ(x+y),
we have:
B ( λ + n , c λ ) = Γ ( λ + n ) Γ ( c λ ) Γ ( c + n ) . B ( λ + n , c λ ) = Γ ( λ + n ) Γ ( c λ ) Γ ( c + n ) . B(lambda+n,c-lambda)=(Gamma(lambda+n)Gamma(c-lambda))/(Gamma(c+n)).B(\lambda+n, c-\lambda) = \frac{\Gamma(\lambda+n)\Gamma(c-\lambda)}{\Gamma(c+n)}.B(λ+n,cλ)=Γ(λ+n)Γ(cλ)Γ(c+n).

Step 5: Substitute Back into the Summation

Substitute B ( λ + n , c λ ) B ( λ + n , c λ ) B(lambda+n,c-lambda)B(\lambda+n, c-\lambda)B(λ+n,cλ) into the summation:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = n = 0 ( a ) n ( b ) n ( λ ) n n ! z n Γ ( λ + n ) Γ ( c λ ) Γ ( c + n ) . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = n = 0 ( a ) n ( b ) n ( λ ) n n ! z n Γ ( λ + n ) Γ ( c λ ) Γ ( c + n ) . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((lambda)_(n)n!)z^(n)(Gamma(lambda+n)Gamma(c-lambda))/(Gamma(c+n)).\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(\lambda)_n n!} z^n \frac{\Gamma(\lambda+n)\Gamma(c-\lambda)}{\Gamma(c+n)}.01tλ1(1t)cλ12F1(a,b;λ;zt)dt=n=0(a)n(b)n(λ)nn!znΓ(λ+n)Γ(cλ)Γ(c+n).

Step 6: Simplify the Expression

Factor out Γ ( c λ ) Γ ( c λ ) Gamma(c-lambda)\Gamma(c-\lambda)Γ(cλ), which is independent of n n nnn:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( c λ ) n = 0 ( a ) n ( b ) n Γ ( λ + n ) ( λ ) n Γ ( c + n ) n ! z n . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( c λ ) n = 0 ( a ) n ( b ) n Γ ( λ + n ) ( λ ) n Γ ( c + n ) n ! z n . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=Gamma(c-lambda)sum_(n=0)^(oo)((a)_(n)(b)_(n)Gamma(lambda+n))/((lambda)_(n)Gamma(c+n)n!)z^(n).\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \Gamma(c-\lambda) \sum_{n=0}^\infty \frac{(a)_n (b)_n \Gamma(\lambda+n)}{(\lambda)_n \Gamma(c+n) n!} z^n.01tλ1(1t)cλ12F1(a,b;λ;zt)dt=Γ(cλ)n=0(a)n(b)nΓ(λ+n)(λ)nΓ(c+n)n!zn.
Using the relationship between Gamma functions and Pochhammer symbols:
Γ ( λ + n ) = ( λ ) n Γ ( λ ) , Γ ( λ + n ) = ( λ ) n Γ ( λ ) , Gamma(lambda+n)=(lambda)_(n)Gamma(lambda),\Gamma(\lambda+n) = (\lambda)_n \Gamma(\lambda),Γ(λ+n)=(λ)nΓ(λ),
this becomes:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( λ ) Γ ( c λ ) n = 0 ( a ) n ( b ) n ( c ) n n ! z n . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( λ ) Γ ( c λ ) n = 0 ( a ) n ( b ) n ( c ) n n ! z n . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=Gamma(lambda)Gamma(c-lambda)sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n)n!)z^(n).\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \Gamma(\lambda) \Gamma(c-\lambda) \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n n!} z^n.01tλ1(1t)cλ12F1(a,b;λ;zt)dt=Γ(λ)Γ(cλ)n=0(a)n(b)n(c)nn!zn.

Step 7: Recognize the Hypergeometric Series

The summation is precisely the series definition of 2 F 1 ( a , b ; c ; z ) 2 F 1 ( a , b ; c ; z ) _(2)F_(1)(a,b;c;z){}_2F_1(a, b; c; z)2F1(a,b;c;z):
2 F 1 ( a , b ; c ; z ) = n = 0 ( a ) n ( b ) n ( c ) n n ! z n . 2 F 1 ( a , b ; c ; z ) = n = 0 ( a ) n ( b ) n ( c ) n n ! z n . _(2)F_(1)(a,b;c;z)=sum_(n=0)^(oo)((a)_(n)(b)_(n))/((c)_(n)n!)z^(n).{}_2F_1(a, b; c; z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n}{(c)_n n!} z^n.2F1(a,b;c;z)=n=0(a)n(b)n(c)nn!zn.
Thus:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( λ ) Γ ( c λ ) 2 F 1 ( a , b ; c ; z ) . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = Γ ( λ ) Γ ( c λ ) 2 F 1 ( a , b ; c ; z ) . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=Gamma(lambda)Gamma(c-lambda)_(2)F_(1)(a,b;c;z).\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = \Gamma(\lambda) \Gamma(c-\lambda) \, {}_2F_1(a, b; c; z).01tλ1(1t)cλ12F1(a,b;λ;zt)dt=Γ(λ)Γ(cλ)2F1(a,b;c;z).

Step 8: Express Using the Beta Function

Recall that:
B ( λ , c λ ) = Γ ( λ ) Γ ( c λ ) Γ ( c ) . B ( λ , c λ ) = Γ ( λ ) Γ ( c λ ) Γ ( c ) . B(lambda,c-lambda)=(Gamma(lambda)Gamma(c-lambda))/(Gamma(c)).B(\lambda, c-\lambda) = \frac{\Gamma(\lambda) \Gamma(c-\lambda)}{\Gamma(c)}.B(λ,cλ)=Γ(λ)Γ(cλ)Γ(c).
Multiply both sides by Γ ( c ) Γ ( c ) Gamma(c)\Gamma(c)Γ(c) to isolate the Beta function:
0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) . 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t = B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) . int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt=B(lambda,c-lambda)_(2)F_(1)(a,b;c;z).\int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt = B(\lambda, c-\lambda) \, {}_2F_1(a, b; c; z).01tλ1(1t)cλ12F1(a,b;λ;zt)dt=B(λ,cλ)2F1(a,b;c;z).

Final Result:

B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t . B ( λ , c λ ) 2 F 1 ( a , b ; c ; z ) = 0 1 t λ 1 ( 1 t ) c λ 1 2 F 1 ( a , b ; λ ; z t ) d t . B(lambda,c-lambda)_(2)F_(1)(a,b;c;z)=int_(0)^(1)t^(lambda-1)(1-t)^(c-lambda-1)_(2)F_(1)(a,b;lambda;zt)dt.B(\lambda, c-\lambda) \, {}_2F_1(a, b; c; z) = \int_0^1 t^{\lambda-1} (1-t)^{c-\lambda-1} \, {}_2F_1(a, b; \lambda; zt) \, dt.B(λ,cλ)2F1(a,b;c;z)=01tλ1(1t)cλ12F1(a,b;λ;zt)dt.

Question:-07(b)

Prove that:

( 2 n + 1 ) ( x 2 1 ) P n = n ( n + 1 ) ( P n + 1 P n 1 ) ( 2 n + 1 ) x 2 1 P n = n ( n + 1 ) P n + 1 P n 1 (2n+1)(x^(2)-1)P_(n)^(‘)=n(n+1)(P_(n+1)-P_(n-1))(2 n+1)\left(x^2 – 1\right) P_n^{\prime} = n(n+1)\left(P_{n+1} – P_{n-1}\right)(2n+1)(x21)Pn=n(n+1)(Pn+1Pn1)
and hence deduce that:
1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) 1 1 x 2 1 P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) int_(-1)^(1)(x^(2)-1)P_(n+1)(x)P_(n)^(‘)(x)dx=(2n(n+1))/((2n+1)(2n+3))\int_{-1}^1 \left(x^2 – 1\right) P_{n+1}(x) P_n^{\prime}(x) \, dx = \frac{2n(n+1)}{(2n+1)(2n+3)}11(x21)Pn+1(x)Pn(x)dx=2n(n+1)(2n+1)(2n+3)

Answer:

Let’s prove the first equation and then use it to deduce the given integral.

Part 1: Proof of the Relation

Statement to Prove:

( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) ( P n + 1 ( x ) P n 1 ( x ) ) , ( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) P n + 1 ( x ) P n 1 ( x ) , (2n+1)(x^(2)-1)P_(n)^(‘)(x)=n(n+1)(P_(n+1)(x)-P_(n-1)(x)),(2n+1)(x^2-1)P_n'(x) = n(n+1)\left(P_{n+1}(x) – P_{n-1}(x)\right),(2n+1)(x21)Pn(x)=n(n+1)(Pn+1(x)Pn1(x)),
where P n ( x ) P n ( x ) P_(n)(x)P_n(x)Pn(x) are the Legendre polynomials.

Step 1: Legendre Polynomial Recurrence Relations

The Legendre polynomials satisfy the following standard recurrence relations:
  1. Rodrigues’ formula:
    P n ( x ) = 1 2 n n ! d n d x n ( x 2 1 ) n . P n ( x ) = 1 2 n n ! d n d x n x 2 1 n . P_(n)(x)=(1)/(2^(n)n!)(d^(n))/(dx^(n))(x^(2)-1)^(n).P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left( x^2 – 1 \right)^n.Pn(x)=12nn!dndxn(x21)n.
  2. A three-term recurrence relation:
    ( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) n P n 1 ( x ) . ( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) n P n 1 ( x ) . (n+1)P_(n+1)(x)=(2n+1)xP_(n)(x)-nP_(n-1)(x).(n+1)P_{n+1}(x) = (2n+1)xP_n(x) – nP_{n-1}(x).(n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x).
  3. Derivative formula:
    d d x ( P n ( x ) ) = n ( x P n ( x ) P n 1 ( x ) ) . d d x P n ( x ) = n x P n ( x ) P n 1 ( x ) . (d)/(dx)(P_(n)(x))=n(xP_(n)(x)-P_(n-1)(x)).\frac{d}{dx} \left( P_n(x) \right) = n \left( xP_n(x) – P_{n-1}(x) \right).ddx(Pn(x))=n(xPn(x)Pn1(x)).

Step 2: Use the Derivative Formula

The derivative of P n ( x ) P n ( x ) P_(n)(x)P_n(x)Pn(x) is:
P n ( x ) = n ( x P n ( x ) P n 1 ( x ) ) . P n ( x ) = n x P n ( x ) P n 1 ( x ) . P_(n)^(‘)(x)=n(xP_(n)(x)-P_(n-1)(x)).P_n'(x) = n \left(xP_n(x) – P_{n-1}(x)\right).Pn(x)=n(xPn(x)Pn1(x)).
Multiply both sides by ( x 2 1 ) ( x 2 1 ) (x^(2)-1)(x^2 – 1)(x21):
( x 2 1 ) P n ( x ) = n ( x 2 1 ) ( x P n ( x ) P n 1 ( x ) ) . ( x 2 1 ) P n ( x ) = n ( x 2 1 ) ( x P n ( x ) P n 1 ( x ) ) . (x^(2)-1)P_(n)^(‘)(x)=n(x^(2)-1)(xP_(n)(x)-P_(n-1)(x)).(x^2-1)P_n'(x) = n(x^2-1)(xP_n(x) – P_{n-1}(x)).(x21)Pn(x)=n(x21)(xPn(x)Pn1(x)).
Distribute the terms:
( x 2 1 ) P n ( x ) = n [ ( x 2 1 ) x P n ( x ) ( x 2 1 ) P n 1 ( x ) ] . ( x 2 1 ) P n ( x ) = n ( x 2 1 ) x P n ( x ) ( x 2 1 ) P n 1 ( x ) . (x^(2)-1)P_(n)^(‘)(x)=n[(x^(2)-1)xP_(n)(x)-(x^(2)-1)P_(n-1)(x)].(x^2-1)P_n'(x) = n \left[(x^2-1)xP_n(x) – (x^2-1)P_{n-1}(x)\right].(x21)Pn(x)=n[(x21)xPn(x)(x21)Pn1(x)].

Step 3: Simplify Using the Recurrence Relation

Using the recurrence relation:
x P n ( x ) = ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) 2 n + 1 , x P n ( x ) = ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) 2 n + 1 , xP_(n)(x)=((n+1)P_(n+1)(x)+nP_(n-1)(x))/(2n+1),xP_n(x) = \frac{(n+1)P_{n+1}(x) + nP_{n-1}(x)}{2n+1},xPn(x)=(n+1)Pn+1(x)+nPn1(x)2n+1,
substitute x P n ( x ) x P n ( x ) xP_(n)(x)xP_n(x)xPn(x) into the first term:
( x 2 1 ) P n ( x ) = n [ ( x 2 1 ) ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) 2 n + 1 ( x 2 1 ) P n 1 ( x ) ] . ( x 2 1 ) P n ( x ) = n ( x 2 1 ) ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) 2 n + 1 ( x 2 1 ) P n 1 ( x ) . (x^(2)-1)P_(n)^(‘)(x)=n[(x^(2)-1)((n+1)P_(n+1)(x)+nP_(n-1)(x))/(2n+1)-(x^(2)-1)P_(n-1)(x)].(x^2-1)P_n'(x) = n \left[(x^2-1) \frac{(n+1)P_{n+1}(x) + nP_{n-1}(x)}{2n+1} – (x^2-1)P_{n-1}(x)\right].(x21)Pn(x)=n[(x21)(n+1)Pn+1(x)+nPn1(x)2n+1(x21)Pn1(x)].
Factor out ( x 2 1 ) ( x 2 1 ) (x^(2)-1)(x^2 – 1)(x21):
( x 2 1 ) P n ( x ) = n ( x 2 1 ) 2 n + 1 [ ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) ( 2 n + 1 ) P n 1 ( x ) ] . ( x 2 1 ) P n ( x ) = n ( x 2 1 ) 2 n + 1 ( n + 1 ) P n + 1 ( x ) + n P n 1 ( x ) ( 2 n + 1 ) P n 1 ( x ) . (x^(2)-1)P_(n)^(‘)(x)=(n(x^(2)-1))/(2n+1)[(n+1)P_(n+1)(x)+nP_(n-1)(x)-(2n+1)P_(n-1)(x)].(x^2-1)P_n'(x) = \frac{n(x^2-1)}{2n+1} \left[ (n+1)P_{n+1}(x) + nP_{n-1}(x) – (2n+1)P_{n-1}(x) \right].(x21)Pn(x)=n(x21)2n+1[(n+1)Pn+1(x)+nPn1(x)(2n+1)Pn1(x)].
Simplify the term in brackets:
n P n 1 ( x ) ( 2 n + 1 ) P n 1 ( x ) = n P n 1 ( x ) . n P n 1 ( x ) ( 2 n + 1 ) P n 1 ( x ) = n P n 1 ( x ) . nP_(n-1)(x)-(2n+1)P_(n-1)(x)=-nP_(n-1)(x).nP_{n-1}(x) – (2n+1)P_{n-1}(x) = -nP_{n-1}(x).nPn1(x)(2n+1)Pn1(x)=nPn1(x).
Thus:
( x 2 1 ) P n ( x ) = n ( x 2 1 ) 2 n + 1 [ ( n + 1 ) P n + 1 ( x ) n P n 1 ( x ) ] . ( x 2 1 ) P n ( x ) = n ( x 2 1 ) 2 n + 1 ( n + 1 ) P n + 1 ( x ) n P n 1 ( x ) . (x^(2)-1)P_(n)^(‘)(x)=(n(x^(2)-1))/(2n+1)[(n+1)P_(n+1)(x)-nP_(n-1)(x)].(x^2-1)P_n'(x) = \frac{n(x^2-1)}{2n+1} \left[(n+1)P_{n+1}(x) – nP_{n-1}(x)\right].(x21)Pn(x)=n(x21)2n+1[(n+1)Pn+1(x)nPn1(x)].
Multiply through by 2 n + 1 2 n + 1 2n+12n+12n+1:
( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) P n + 1 ( x ) n 2 P n 1 ( x ) . ( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) P n + 1 ( x ) n 2 P n 1 ( x ) . (2n+1)(x^(2)-1)P_(n)^(‘)(x)=n(n+1)P_(n+1)(x)-n^(2)P_(n-1)(x).(2n+1)(x^2-1)P_n'(x) = n(n+1)P_{n+1}(x) – n^2P_{n-1}(x).(2n+1)(x21)Pn(x)=n(n+1)Pn+1(x)n2Pn1(x).
Simplify:
( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) ( P n + 1 ( x ) P n 1 ( x ) ) . ( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) P n + 1 ( x ) P n 1 ( x ) . (2n+1)(x^(2)-1)P_(n)^(‘)(x)=n(n+1)(P_(n+1)(x)-P_(n-1)(x)).(2n+1)(x^2-1)P_n'(x) = n(n+1)\left(P_{n+1}(x) – P_{n-1}(x)\right).(2n+1)(x21)Pn(x)=n(n+1)(Pn+1(x)Pn1(x)).
This proves the first part.

Part 2: Deduce the Integral

We want to compute:
I = 1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x . I = 1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x . I=int_(-1)^(1)(x^(2)-1)P_(n+1)(x)P_(n)^(‘)(x)dx.I = \int_{-1}^1 (x^2-1)P_{n+1}(x)P_n'(x) \, dx.I=11(x21)Pn+1(x)Pn(x)dx.

Step 1: Use the Proven Relation

From the proven relation:
( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) ( P n + 1 ( x ) P n 1 ( x ) ) . ( 2 n + 1 ) ( x 2 1 ) P n ( x ) = n ( n + 1 ) P n + 1 ( x ) P n 1 ( x ) . (2n+1)(x^(2)-1)P_(n)^(‘)(x)=n(n+1)(P_(n+1)(x)-P_(n-1)(x)).(2n+1)(x^2-1)P_n'(x) = n(n+1)\left(P_{n+1}(x) – P_{n-1}(x)\right).(2n+1)(x21)Pn(x)=n(n+1)(Pn+1(x)Pn1(x)).
Substitute into the integral:
( 2 n + 1 ) I = n ( n + 1 ) 1 1 P n + 1 ( x ) ( P n + 1 ( x ) P n 1 ( x ) ) d x . ( 2 n + 1 ) I = n ( n + 1 ) 1 1 P n + 1 ( x ) P n + 1 ( x ) P n 1 ( x ) d x . (2n+1)I=n(n+1)int_(-1)^(1)P_(n+1)(x)(P_(n+1)(x)-P_(n-1)(x))dx.(2n+1)I = n(n+1) \int_{-1}^1 P_{n+1}(x) \left(P_{n+1}(x) – P_{n-1}(x)\right) \, dx.(2n+1)I=n(n+1)11Pn+1(x)(Pn+1(x)Pn1(x))dx.
Expand the product:
( 2 n + 1 ) I = n ( n + 1 ) [ 1 1 P n + 1 2 ( x ) d x 1 1 P n + 1 ( x ) P n 1 ( x ) d x ] . ( 2 n + 1 ) I = n ( n + 1 ) 1 1 P n + 1 2 ( x ) d x 1 1 P n + 1 ( x ) P n 1 ( x ) d x . (2n+1)I=n(n+1)[int_(-1)^(1)P_(n+1)^(2)(x)dx-int_(-1)^(1)P_(n+1)(x)P_(n-1)(x)dx].(2n+1)I = n(n+1) \left[\int_{-1}^1 P_{n+1}^2(x) \, dx – \int_{-1}^1 P_{n+1}(x)P_{n-1}(x) \, dx\right].(2n+1)I=n(n+1)[11Pn+12(x)dx11Pn+1(x)Pn1(x)dx].

Step 2: Orthogonality of Legendre Polynomials

The Legendre polynomials satisfy the orthogonality relation:
1 1 P m ( x ) P n ( x ) d x = 2 2 n + 1 δ m n . 1 1 P m ( x ) P n ( x ) d x = 2 2 n + 1 δ m n . int_(-1)^(1)P_(m)(x)P_(n)(x)dx=(2)/(2n+1)delta_(mn).\int_{-1}^1 P_m(x)P_n(x) \, dx = \frac{2}{2n+1} \delta_{mn}.11Pm(x)Pn(x)dx=22n+1δmn.
Using this:
  1. For 1 1 P n + 1 2 ( x ) d x 1 1 P n + 1 2 ( x ) d x int_(-1)^(1)P_(n+1)^(2)(x)dx\int_{-1}^1 P_{n+1}^2(x) \, dx11Pn+12(x)dx:
    1 1 P n + 1 2 ( x ) d x = 2 2 n + 3 . 1 1 P n + 1 2 ( x ) d x = 2 2 n + 3 . int_(-1)^(1)P_(n+1)^(2)(x)dx=(2)/(2n+3).\int_{-1}^1 P_{n+1}^2(x) \, dx = \frac{2}{2n+3}.11Pn+12(x)dx=22n+3.
  2. For 1 1 P n + 1 ( x ) P n 1 ( x ) d x 1 1 P n + 1 ( x ) P n 1 ( x ) d x int_(-1)^(1)P_(n+1)(x)P_(n-1)(x)dx\int_{-1}^1 P_{n+1}(x)P_{n-1}(x) \, dx11Pn+1(x)Pn1(x)dx:
    1 1 P n + 1 ( x ) P n 1 ( x ) d x = 0 (since n + 1 n 1 ) . 1 1 P n + 1 ( x ) P n 1 ( x ) d x = 0 (since n + 1 n 1 ) . int_(-1)^(1)P_(n+1)(x)P_(n-1)(x)dx=0quad(since (n+1!=n-1)”)”.\int_{-1}^1 P_{n+1}(x)P_{n-1}(x) \, dx = 0 \quad \text{(since \(n+1 \neq n-1\))}.11Pn+1(x)Pn1(x)dx=0(since n+1n1).
Substitute these into the equation for I I III:
( 2 n + 1 ) I = n ( n + 1 ) [ 2 2 n + 3 0 ] . ( 2 n + 1 ) I = n ( n + 1 ) 2 2 n + 3 0 . (2n+1)I=n(n+1)[(2)/(2n+3)-0].(2n+1)I = n(n+1) \left[\frac{2}{2n+3} – 0\right].(2n+1)I=n(n+1)[22n+30].
Simplify:
( 2 n + 1 ) I = 2 n ( n + 1 ) 2 n + 3 . ( 2 n + 1 ) I = 2 n ( n + 1 ) 2 n + 3 . (2n+1)I=(2n(n+1))/(2n+3).(2n+1)I = \frac{2n(n+1)}{2n+3}.(2n+1)I=2n(n+1)2n+3.

Step 3: Solve for I I III

Divide through by 2 n + 1 2 n + 1 2n+12n+12n+1:
I = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) . I = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) . I=(2n(n+1))/((2n+1)(2n+3)).I = \frac{2n(n+1)}{(2n+1)(2n+3)}.I=2n(n+1)(2n+1)(2n+3).

Final Answer:

1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) . 1 1 ( x 2 1 ) P n + 1 ( x ) P n ( x ) d x = 2 n ( n + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) . int_(-1)^(1)(x^(2)-1)P_(n+1)(x)P_(n)^(‘)(x)dx=(2n(n+1))/((2n+1)(2n+3)).\int_{-1}^1 (x^2-1)P_{n+1}(x)P_n'(x) \, dx = \frac{2n(n+1)}{(2n+1)(2n+3)}.11(x21)Pn+1(x)Pn(x)dx=2n(n+1)(2n+1)(2n+3).

Scroll to Top
Scroll to Top