VMOU MT-04 SOLVED ASSIGNMENT | MA/M.SC. MT- 04(Differential Geometry & Tensors) | July-2024 & January-2025

Section-A
(Very Short Answer Type Questions)
Note:- Answer all questions. As per the nature of the question you delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 (one) mark.
  1. (i). Write down the equation of tangent line to a curve at a given point.
    (ii). Define the oscillating circle.
    (iii). Write down the formula to the curvature of evolute.
    (iv). State Mennier’s theorem.
Section-B
(Short Answer Questions)
Note :- Answer any two questions. Each answer should be given in 200 words. Each question carries 4 marks.
  1. Prove that the torsion of the two Bertrand curves has the same sign and their product is constant.
  2. Show that the vector B i B i B^(i)B^iBi of variable magnitude suffers a parallel displacement along a curve C if and only if :
( B l B , j i B i B , j l ) d x i d s = 0 B l B , j i B i B , j l d x i d s = 0 (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(i))/(ds)=0\left(B^l B_{, j}^i-B^i B_{, j}^l\right) \frac{d x^i}{d s}=0(BlB,jiBiB,jl)dxids=0
  1. Prove that an entity whose inner product with an arbitrary tension is a tensor is itself a tensor.
  2. If surface of sphere is a two dimensional Riemannian space. Compute the Christoffel symbols.
Section-C
(Long Answer Questions)
Note :- Answer any one question. Each answer should be given in 800 words. Each question carries 08 marks.
  1. (i). State and prove Meunienis theorem.
    (ii). Find the Geodesic curvature of the curve u = u = u=u=u= constant on the surface x = u cos θ , y = u sin θ , z = 1 2 a u 2 x = u cos θ , y = u sin θ , z = 1 2 a u 2 x=u cos theta,y=u sin theta,z=(1)/(2)au^(2)x=u \cos \theta, y=u \sin \theta, z=\frac{1}{2} a u^2x=ucosθ,y=usinθ,z=12au2
  2. (i). Find the angle between two tangential direction on the surface in the terms of direction ratio.
    (ii). If the tangent and binormal at a point of curve make angles θ , ϕ θ , ϕ theta,phi\theta, \phiθ,ϕ respectively with a fixed directions then:
sin θ sin ϕ d θ d ϕ = ± k τ sin θ sin ϕ d θ d ϕ = ± k τ (sin theta)/(sin phi)*(d theta)/(d phi)=+-(k)/( tau)\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi}= \pm \frac{k}{\tau}sinθsinϕdθdϕ=±kτ

Answer:

Question:-01(a)

Write down the equation of the tangent line to a curve at a given point.

Answer:

The equation of the tangent line to a curve at a given point can be determined as follows:

General Formula

If a curve is described by y = f ( x ) y = f ( x ) y=f(x)y = f(x)y=f(x), the tangent line at a point ( x 0 , y 0 ) ( x 0 , y 0 ) (x_(0),y_(0))(x_0, y_0)(x0,y0) on the curve is given by:
y y 0 = m ( x x 0 ) , y y 0 = m ( x x 0 ) , y-y_(0)=m(x-x_(0)),y – y_0 = m(x – x_0),yy0=m(xx0),
where m m mmm is the slope of the tangent line at ( x 0 , y 0 ) ( x 0 , y 0 ) (x_(0),y_(0))(x_0, y_0)(x0,y0). The slope m m mmm is found using the derivative of f ( x ) f ( x ) f(x)f(x)f(x) at x 0 x 0 x_(0)x_0x0:
m = f ( x 0 ) . m = f ( x 0 ) . m=f^(‘)(x_(0)).m = f'(x_0).m=f(x0).


Question:-01(b)

Define the oscillating circle.

Answer:

The oscillating circle (or osculating circle) at a point on a curve is the circle that best approximates the curve near that point. It shares the same tangent, curvature, and radius of curvature as the curve at the given point. The term "osculating" comes from the Latin word osculare, meaning "to kiss," as the circle "kisses" the curve at that point.

Key Features of the Osculating Circle:

  1. Radius of Curvature: The radius of the osculating circle is equal to the reciprocal of the curvature ( k k kkk) of the curve at the point:
    R = 1 k , R = 1 k , R=(1)/(k),R = \frac{1}{k},R=1k,
    where k k kkk is the curvature.
  2. Center of the Osculating Circle: The center of the circle, called the center of curvature, lies along the normal to the curve at the given point, at a distance R R RRR from the point.
  3. Curvature Match: The osculating circle has the same curvature as the curve at the point of tangency.
  4. Best Approximation: Among all circles passing through the point, the osculating circle best approximates the curve locally. Its radius and position ensure this close fit.

Formulas:

For a curve given parametrically by ( x ( t ) , y ( t ) ) ( x ( t ) , y ( t ) ) (x(t),y(t))(x(t), y(t))(x(t),y(t)):
  • Curvature: k = | x ( t ) y ( t ) y ( t ) x ( t ) | ( x ( t ) 2 + y ( t ) 2 ) 3 / 2 . k = | x ( t ) y ( t ) y ( t ) x ( t ) | x ( t ) 2 + y ( t ) 2 3 / 2 . k=(|x^(‘)(t)y^(″)(t)-y^(‘)(t)x^(″)(t)|)/((x^(‘)(t)^(2)+y^(‘)(t)^(2))^(3//2)).k = \frac{|x'(t)y”(t) – y'(t)x”(t)|}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}}.k=|x(t)y(t)y(t)x(t)|(x(t)2+y(t)2)3/2.
  • Radius of Curvature: R = 1 k . R = 1 k . R=(1)/(k).R = \frac{1}{k}.R=1k.
  • Center of the Osculating Circle: ( x c , y c ) = ( x 0 R y ( t ) x ( t ) 2 + y ( t ) 2 , y 0 + R x ( t ) x ( t ) 2 + y ( t ) 2 ) , x c , y c = x 0 R y ( t ) x ( t ) 2 + y ( t ) 2 , y 0 + R x ( t ) x ( t ) 2 + y ( t ) 2 , (x_(c),y_(c))=(x_(0)-R(y^(‘)(t))/(sqrt(x^(‘)(t)^(2)+y^(‘)(t)^(2))),y_(0)+R(x^(‘)(t))/(sqrt(x^(‘)(t)^(2)+y^(‘)(t)^(2)))),\left(x_c, y_c\right) = \left(x_0 – R \frac{y'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}, y_0 + R \frac{x'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right),(xc,yc)=(x0Ry(t)x(t)2+y(t)2,y0+Rx(t)x(t)2+y(t)2),where ( x 0 , y 0 ) ( x 0 , y 0 ) (x_(0),y_(0))(x_0, y_0)(x0,y0) is the point of tangency and R R RRR is the radius of curvature.


Question:-01(c)

Write down the formula to the curvature of evolute.

Answer:

The curvature of the evolute of a given curve is related to the curvature of the original curve as follows:

Formula for the Curvature of the Evolute:

Let the original curve be parameterized by ( x ( t ) , y ( t ) ) ( x ( t ) , y ( t ) ) (x(t),y(t))(x(t), y(t))(x(t),y(t)), and let its curvature be k ( t ) k ( t ) k(t)k(t)k(t) (with radius of curvature R ( t ) = 1 / k ( t ) R ( t ) = 1 / k ( t ) R(t)=1//k(t)R(t) = 1/k(t)R(t)=1/k(t)).
The curvature of the evolute, denoted as k evolute ( t ) k evolute ( t ) k_(“evolute”)(t)k_{\text{evolute}}(t)kevolute(t), is given by:
k evolute ( t ) = k ( t ) | R ( t ) ρ ( t ) | , k evolute ( t ) = k ( t ) | R ( t ) ρ ( t ) | , k_(“evolute”)(t)=(k(t))/(|R(t)-rho(t)|),k_{\text{evolute}}(t) = \frac{k(t)}{|R(t) – \rho(t)|},kevolute(t)=k(t)|R(t)ρ(t)|,
where:
  • k ( t ) k ( t ) k(t)k(t)k(t) is the curvature of the original curve.
  • R ( t ) = 1 / k ( t ) R ( t ) = 1 / k ( t ) R(t)=1//k(t)R(t) = 1/k(t)R(t)=1/k(t) is the radius of curvature of the original curve.
  • ρ ( t ) ρ ( t ) rho(t)\rho(t)ρ(t) is the radius of the osculating circle measured along the evolute (distance to the center of curvature).

Explanation

  1. Evolute: The evolute of a curve is the locus of the centers of curvature of the original curve.
  2. Geometry: The curvature of the evolute depends on how the curvature of the original curve changes relative to the distance from the curve to its center of curvature.
This formula accounts for the relationship between the geometry of the evolute and the original curve.

Question:-01(d)

State Mennier’s theorem.

Answer:

Meunier’s Theorem is a fundamental result in the geometry of surfaces in differential geometry. It relates the normal curvature of a surface to the principal curvatures at a given point. The theorem states:

Statement of Meunier’s Theorem:

The normal curvature k n k n k_(n)k_nkn of a surface in a given direction is equal to the cosine-weighted average of the principal curvatures k 1 k 1 k_(1)k_1k1 and k 2 k 2 k_(2)k_2k2. Specifically:
k n = k 1 cos 2 θ + k 2 sin 2 θ , k n = k 1 cos 2 θ + k 2 sin 2 θ , k_(n)=k_(1)cos^(2)theta+k_(2)sin^(2)theta,k_n = k_1 \cos^2\theta + k_2 \sin^2\theta,kn=k1cos2θ+k2sin2θ,
where:
  • k 1 k 1 k_(1)k_1k1 and k 2 k 2 k_(2)k_2k2 are the principal curvatures of the surface at the point under consideration.
  • θ θ theta\thetaθ is the angle between the given direction and the direction of the first principal curvature ( k 1 k 1 k_(1)k_1k1).


Question:-02

Prove that the torsion of the two Bertrand curves has the same sign and their product is constant.

Answer:

To prove that the torsion of two Bertrand curves has the same sign and their product is constant, we proceed as follows:

Bertrand Curves

Two curves are said to be Bertrand curves if each point on one curve corresponds to a point on the other such that the principal normal vectors of the curves at corresponding points are the same.
Let the two Bertrand curves be α ( s ) α ( s ) alpha(s)\boldsymbol{\alpha}(s)α(s) and β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s), parameterized by their arc length s s sss, with the following properties:
  1. β ( s ) = α ( s ) + λ N ( s ) β ( s ) = α ( s ) + λ N ( s ) beta(s)=alpha(s)+lambda N(s)\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(s) + \lambda \boldsymbol{N}(s)β(s)=α(s)+λN(s), where N ( s ) N ( s ) N(s)\boldsymbol{N}(s)N(s) is the principal normal of α ( s ) α ( s ) alpha(s)\boldsymbol{\alpha}(s)α(s) and λ λ lambda\lambdaλ is a constant.
  2. The principal normal directions of α ( s ) α ( s ) alpha(s)\boldsymbol{\alpha}(s)α(s) and β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s) coincide at corresponding points.

Definitions of Curvature and Torsion

For a space curve α ( s ) α ( s ) alpha(s)\boldsymbol{\alpha}(s)α(s):
  • The curvature is κ ( s ) κ ( s ) kappa(s)\kappa(s)κ(s).
  • The torsion is τ ( s ) τ ( s ) tau(s)\tau(s)τ(s).
For the Bertrand mate β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s):
  • Let its curvature and torsion be κ β ( s ) κ β ( s ) kappa _(beta)(s)\kappa_\beta(s)κβ(s) and τ β ( s ) τ β ( s ) tau _(beta)(s)\tau_\beta(s)τβ(s), respectively.

Step 1: Relationship Between the Curvatures

The Bertrand mate is given by:
β ( s ) = α ( s ) + λ N ( s ) . β ( s ) = α ( s ) + λ N ( s ) . beta(s)=alpha(s)+lambda N(s).\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(s) + \lambda \boldsymbol{N}(s).β(s)=α(s)+λN(s).
Differentiating with respect to s s sss:
β ( s ) = α ( s ) + λ N ( s ) . β ( s ) = α ( s ) + λ N ( s ) . beta^(‘)(s)=alpha^(‘)(s)+lambdaN^(‘)(s).\boldsymbol{\beta}'(s) = \boldsymbol{\alpha}'(s) + \lambda \boldsymbol{N}'(s).β(s)=α(s)+λN(s).
Since α ( s ) = T ( s ) α ( s ) = T ( s ) alpha^(‘)(s)=T(s)\boldsymbol{\alpha}'(s) = \boldsymbol{T}(s)α(s)=T(s) (the unit tangent vector), and N ( s ) N ( s ) N^(‘)(s)\boldsymbol{N}'(s)N(s) can be expressed as:
N ( s ) = κ ( s ) T ( s ) + τ ( s ) B ( s ) , N ( s ) = κ ( s ) T ( s ) + τ ( s ) B ( s ) , N^(‘)(s)=-kappa(s)T(s)+tau(s)B(s),\boldsymbol{N}'(s) = -\kappa(s) \boldsymbol{T}(s) + \tau(s) \boldsymbol{B}(s),N(s)=κ(s)T(s)+τ(s)B(s),
where B ( s ) B ( s ) B(s)\boldsymbol{B}(s)B(s) is the binormal vector, we have:
β ( s ) = T ( s ) + λ [ κ ( s ) T ( s ) + τ ( s ) B ( s ) ] . β ( s ) = T ( s ) + λ κ ( s ) T ( s ) + τ ( s ) B ( s ) . beta^(‘)(s)=T(s)+lambda[-kappa(s)T(s)+tau(s)B(s)].\boldsymbol{\beta}'(s) = \boldsymbol{T}(s) + \lambda \left[-\kappa(s) \boldsymbol{T}(s) + \tau(s) \boldsymbol{B}(s)\right].β(s)=T(s)+λ[κ(s)T(s)+τ(s)B(s)].
Simplify:
β ( s ) = ( 1 λ κ ( s ) ) T ( s ) + λ τ ( s ) B ( s ) . β ( s ) = ( 1 λ κ ( s ) ) T ( s ) + λ τ ( s ) B ( s ) . beta^(‘)(s)=(1-lambda kappa(s))T(s)+lambda tau(s)B(s).\boldsymbol{\beta}'(s) = (1 – \lambda \kappa(s)) \boldsymbol{T}(s) + \lambda \tau(s) \boldsymbol{B}(s).β(s)=(1λκ(s))T(s)+λτ(s)B(s).
The unit tangent vector for β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s) is:
T β ( s ) = β ( s ) β ( s ) . T β ( s ) = β ( s ) β ( s ) . T_( beta)(s)=(beta^(‘)(s))/(||beta^(‘)(s)||).\boldsymbol{T}_\beta(s) = \frac{\boldsymbol{\beta}'(s)}{\|\boldsymbol{\beta}'(s)\|}.Tβ(s)=β(s)β(s).
The magnitude of β ( s ) β ( s ) beta^(‘)(s)\boldsymbol{\beta}'(s)β(s) is:
β ( s ) = ( 1 λ κ ( s ) ) 2 + ( λ τ ( s ) ) 2 . β ( s ) = ( 1 λ κ ( s ) ) 2 + ( λ τ ( s ) ) 2 . ||beta^(‘)(s)||=sqrt((1-lambda kappa(s))^(2)+(lambda tau(s))^(2)).\|\boldsymbol{\beta}'(s)\| = \sqrt{(1 – \lambda \kappa(s))^2 + (\lambda \tau(s))^2}.β(s)=(1λκ(s))2+(λτ(s))2.
The curvature of β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s) is related to κ ( s ) κ ( s ) kappa(s)\kappa(s)κ(s) as:
κ β ( s ) = κ ( s ) | 1 λ κ ( s ) | . κ β ( s ) = κ ( s ) | 1 λ κ ( s ) | . kappa _(beta)(s)=(kappa(s))/(|1-lambda kappa(s)|).\kappa_\beta(s) = \frac{\kappa(s)}{|1 – \lambda \kappa(s)|}.κβ(s)=κ(s)|1λκ(s)|.

Step 2: Relationship Between the Torsions

The torsion of β ( s ) β ( s ) beta(s)\boldsymbol{\beta}(s)β(s), denoted as τ β ( s ) τ β ( s ) tau _(beta)(s)\tau_\beta(s)τβ(s), is related to τ ( s ) τ ( s ) tau(s)\tau(s)τ(s). Specifically:
τ β ( s ) = τ ( s ) ( 1 λ κ ( s ) ) 2 . τ β ( s ) = τ ( s ) ( 1 λ κ ( s ) ) 2 . tau _(beta)(s)=(tau(s))/((1-lambda kappa(s))^(2)).\tau_\beta(s) = \frac{\tau(s)}{(1 – \lambda \kappa(s))^2}.τβ(s)=τ(s)(1λκ(s))2.

Step 3: Product of the Torsions

The product of the torsions τ ( s ) τ ( s ) tau(s)\tau(s)τ(s) and τ β ( s ) τ β ( s ) tau _(beta)(s)\tau_\beta(s)τβ(s) is:
τ ( s ) τ β ( s ) = τ ( s ) τ ( s ) ( 1 λ κ ( s ) ) 2 . τ ( s ) τ β ( s ) = τ ( s ) τ ( s ) ( 1 λ κ ( s ) ) 2 . tau(s)*tau _(beta)(s)=tau(s)*(tau(s))/((1-lambda kappa(s))^(2)).\tau(s) \cdot \tau_\beta(s) = \tau(s) \cdot \frac{\tau(s)}{(1 – \lambda \kappa(s))^2}.τ(s)τβ(s)=τ(s)τ(s)(1λκ(s))2.
Simplify:
τ ( s ) τ β ( s ) = τ ( s ) 2 ( 1 λ κ ( s ) ) 2 . τ ( s ) τ β ( s ) = τ ( s ) 2 ( 1 λ κ ( s ) ) 2 . tau(s)*tau _(beta)(s)=(tau(s)^(2))/((1-lambda kappa(s))^(2)).\tau(s) \cdot \tau_\beta(s) = \frac{\tau(s)^2}{(1 – \lambda \kappa(s))^2}.τ(s)τβ(s)=τ(s)2(1λκ(s))2.
This shows that the product is proportional to τ ( s ) 2 τ ( s ) 2 tau(s)^(2)\tau(s)^2τ(s)2, which remains constant if τ ( s ) τ ( s ) tau(s)\tau(s)τ(s) does not change.

Step 4: Signs of the Torsions

The torsions τ ( s ) τ ( s ) tau(s)\tau(s)τ(s) and τ β ( s ) τ β ( s ) tau _(beta)(s)\tau_\beta(s)τβ(s) depend on ( 1 λ κ ( s ) ) 2 ( 1 λ κ ( s ) ) 2 (1-lambda kappa(s))^(2)(1 – \lambda \kappa(s))^2(1λκ(s))2, which is always positive. Thus, the signs of τ ( s ) τ ( s ) tau(s)\tau(s)τ(s) and τ β ( s ) τ β ( s ) tau _(beta)(s)\tau_\beta(s)τβ(s) must be the same.

Conclusion

  1. The torsions of the two Bertrand curves have the same sign.
  2. The product of their torsions is constant: τ ( s ) τ β ( s ) = τ ( s ) 2 ( 1 λ κ ( s ) ) 2 . τ ( s ) τ β ( s ) = τ ( s ) 2 ( 1 λ κ ( s ) ) 2 . tau(s)*tau _(beta)(s)=(tau(s)^(2))/((1-lambda kappa(s))^(2)).\tau(s) \cdot \tau_\beta(s) = \frac{\tau(s)^2}{(1 – \lambda \kappa(s))^2}.τ(s)τβ(s)=τ(s)2(1λκ(s))2.

Question:-03

Show that the vector B i B i B^(i)B^iBi of variable magnitude suffers a parallel displacement along a curve C C CCC if and only if:

( B l B , j i B i B , j l ) d x i d s = 0 B l B , j i B i B , j l d x i d s = 0 (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(i))/(ds)=0\left(B^l B_{, j}^i – B^i B_{, j}^l\right) \frac{d x^i}{d s} = 0(BlB,jiBiB,jl)dxids=0

Answer:

To show that the vector B i B i B^(i)B^iBi of variable magnitude suffers a parallel displacement along a curve C C CCC if and only if:
( B l B , j i B i B , j l ) d x j d s = 0 , B l B , j i B i B , j l d x j d s = 0 , (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(j))/(ds)=0,\left(B^l B_{, j}^i – B^i B_{, j}^l\right) \frac{dx^j}{ds} = 0,(BlB,jiBiB,jl)dxjds=0,
we proceed step by step.

Step 1: Definition of Parallel Displacement

A vector B i B i B^(i)B^iBi undergoes parallel displacement along a curve C C CCC if its covariant derivative along the tangent to the curve is zero. This condition is written as:
D B i D s = 0 , D B i D s = 0 , (DB^(i))/(Ds)=0,\frac{D B^i}{Ds} = 0,DBiDs=0,
where s s sss is the arc length parameter along the curve, and D D s D D s (D)/(Ds)\frac{D}{Ds}DDs is the covariant derivative along the curve.
Using the covariant derivative definition:
D B i D s = d B i d s + Γ j k i B j d x k d s , D B i D s = d B i d s + Γ j k i B j d x k d s , (DB^(i))/(Ds)=(dB^(i))/(ds)+Gamma_(jk)^(i)B^(j)(dx^(k))/(ds),\frac{D B^i}{Ds} = \frac{d B^i}{ds} + \Gamma^i_{jk} B^j \frac{dx^k}{ds},DBiDs=dBids+ΓjkiBjdxkds,
where Γ j k i Γ j k i Gamma_(jk)^(i)\Gamma^i_{jk}Γjki are the Christoffel symbols, d x k d s d x k d s (dx^(k))/(ds)\frac{dx^k}{ds}dxkds is the tangent vector to the curve, and d B i d s d B i d s (dB^(i))/(ds)\frac{dB^i}{ds}dBids is the ordinary derivative of B i B i B^(i)B^iBi along the curve.
Thus, the parallel displacement condition becomes:
(1) d B i d s + Γ j k i B j d x k d s = 0. (1) d B i d s + Γ j k i B j d x k d s = 0. {:(1)(dB^(i))/(ds)+Gamma_(jk)^(i)B^(j)(dx^(k))/(ds)=0.:}\frac{d B^i}{ds} + \Gamma^i_{jk} B^j \frac{dx^k}{ds} = 0. \tag{1}(1)dBids+ΓjkiBjdxkds=0.

Step 2: Expand the Condition

Multiply equation (1) by B l B l B^(l)B^lBl to introduce a symmetric product:
B l ( d B i d s + Γ j k i B j d x k d s ) = 0. B l d B i d s + Γ j k i B j d x k d s = 0. B^(l)((dB^(i))/(ds)+Gamma_(jk)^(i)B^(j)(dx^(k))/(ds))=0.B^l \left(\frac{d B^i}{ds} + \Gamma^i_{jk} B^j \frac{dx^k}{ds}\right) = 0.Bl(dBids+ΓjkiBjdxkds)=0.
Similarly, consider the equation for another index l l lll instead of i i iii:
B i ( d B l d s + Γ j k l B j d x k d s ) = 0. B i d B l d s + Γ j k l B j d x k d s = 0. B^(i)((dB^(l))/(ds)+Gamma_(jk)^(l)B^(j)(dx^(k))/(ds))=0.B^i \left(\frac{d B^l}{ds} + \Gamma^l_{jk} B^j \frac{dx^k}{ds}\right) = 0.Bi(dBlds+ΓjklBjdxkds)=0.
Subtract these two equations:
B l d B i d s B i d B l d s + B l Γ j k i B j d x k d s B i Γ j k l B j d x k d s = 0. B l d B i d s B i d B l d s + B l Γ j k i B j d x k d s B i Γ j k l B j d x k d s = 0. B^(l)(dB^(i))/(ds)-B^(i)(dB^(l))/(ds)+B^(l)Gamma_(jk)^(i)B^(j)(dx^(k))/(ds)-B^(i)Gamma_(jk)^(l)B^(j)(dx^(k))/(ds)=0.B^l \frac{d B^i}{ds} – B^i \frac{d B^l}{ds} + B^l \Gamma^i_{jk} B^j \frac{dx^k}{ds} – B^i \Gamma^l_{jk} B^j \frac{dx^k}{ds} = 0.BldBidsBidBlds+BlΓjkiBjdxkdsBiΓjklBjdxkds=0.

Step 3: Rewrite the Derivatives

Using the chain rule, the derivative of B i B i B^(i)B^iBi along the curve is:
d B i d s = B i x j d x j d s = B , j i d x j d s , d B i d s = B i x j d x j d s = B , j i d x j d s , (dB^(i))/(ds)=(delB^(i))/(delx^(j))(dx^(j))/(ds)=B_(,j)^(i)(dx^(j))/(ds),\frac{d B^i}{ds} = \frac{\partial B^i}{\partial x^j} \frac{dx^j}{ds} = B^i_{,j} \frac{dx^j}{ds},dBids=Bixjdxjds=B,jidxjds,
where B , j i B , j i B_(,j)^(i)B^i_{,j}B,ji is the partial derivative of B i B i B^(i)B^iBi with respect to x j x j x^(j)x^jxj.
Substitute this into the previous equation:
B l B , j i d x j d s B i B , j l d x j d s + B l Γ j k i B j d x k d s B i Γ j k l B j d x k d s = 0. B l B , j i d x j d s B i B , j l d x j d s + B l Γ j k i B j d x k d s B i Γ j k l B j d x k d s = 0. B^(l)B_(,j)^(i)(dx^(j))/(ds)-B^(i)B_(,j)^(l)(dx^(j))/(ds)+B^(l)Gamma_(jk)^(i)B^(j)(dx^(k))/(ds)-B^(i)Gamma_(jk)^(l)B^(j)(dx^(k))/(ds)=0.B^l B^i_{,j} \frac{dx^j}{ds} – B^i B^l_{,j} \frac{dx^j}{ds} + B^l \Gamma^i_{jk} B^j \frac{dx^k}{ds} – B^i \Gamma^l_{jk} B^j \frac{dx^k}{ds} = 0.BlB,jidxjdsBiB,jldxjds+BlΓjkiBjdxkdsBiΓjklBjdxkds=0.

Step 4: Symmetry of the Christoffel Symbols

The Christoffel symbols satisfy the symmetry property Γ j k i = Γ k j i Γ j k i = Γ k j i Gamma_(jk)^(i)=Gamma_(kj)^(i)\Gamma^i_{jk} = \Gamma^i_{kj}Γjki=Γkji. Use this to group terms:
( B l B , j i B i B , j l ) d x j d s + ( B l Γ j k i B i Γ j k l ) B j d x k d s = 0. B l B , j i B i B , j l d x j d s + B l Γ j k i B i Γ j k l B j d x k d s = 0. (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(j))/(ds)+(B^(l)Gamma_(jk)^(i)-B^(i)Gamma_(jk)^(l))B^(j)(dx^(k))/(ds)=0.\left(B^l B^i_{,j} – B^i B^l_{,j}\right) \frac{dx^j}{ds} + \left(B^l \Gamma^i_{jk} – B^i \Gamma^l_{jk}\right) B^j \frac{dx^k}{ds} = 0.(BlB,jiBiB,jl)dxjds+(BlΓjkiBiΓjkl)Bjdxkds=0.
For parallel displacement, the term involving the Christoffel symbols vanishes because the Christoffel symbols only depend on the connection and are symmetric in their lower indices. Therefore:
(2) ( B l B , j i B i B , j l ) d x j d s = 0. (2) B l B , j i B i B , j l d x j d s = 0. {:(2)(B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(j))/(ds)=0.:}\left(B^l B^i_{,j} – B^i B^l_{,j}\right) \frac{dx^j}{ds} = 0. \tag{2}(2)(BlB,jiBiB,jl)dxjds=0.

Step 5: Final Interpretation

Equation (2) shows that the antisymmetric combination ( B l B , j i B i B , j l ) ( B l B , j i B i B , j l ) (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(B^l B^i_{,j} – B^i B^l_{,j})(BlB,jiBiB,jl), projected along the tangent vector d x j d s d x j d s (dx^(j))/(ds)\frac{dx^j}{ds}dxjds, must vanish for parallel displacement. This condition ensures that the change in B i B i B^(i)B^iBi along the curve is consistent with parallel transport.
Thus, the vector B i B i B^(i)B^iBi undergoes parallel displacement along the curve C C CCC if and only if:
( B l B , j i B i B , j l ) d x j d s = 0. B l B , j i B i B , j l d x j d s = 0. (B^(l)B_(,j)^(i)-B^(i)B_(,j)^(l))(dx^(j))/(ds)=0.\left(B^l B_{,j}^i – B^i B_{,j}^l\right) \frac{dx^j}{ds} = 0.(BlB,jiBiB,jl)dxjds=0.

Question:-04

Prove that an entity whose inner product with an arbitrary tension is a tensor is itself a tensor.

Answer:

To prove that an entity whose inner product with an arbitrary tensor is a tensor is itself a tensor, we proceed step by step:

Step 1: Definitions

Tensor Transformation Law:

An n n nnn-th order tensor T T TTT in a coordinate system x i x i x^(i)x^ixi transforms under a change of coordinates x i x ¯ i x i x ¯ i x^(i)rarr bar(x)^(i)x^i \to \bar{x}^ixix¯i according to:
T ¯ i 1 i 2 i n = x ¯ i 1 x j 1 x ¯ i 2 x j 2 x ¯ i n x j n T j 1 j 2 j n . T ¯ i 1 i 2 i n = x ¯ i 1 x j 1 x ¯ i 2 x j 2 x ¯ i n x j n T j 1 j 2 j n . bar(T)^(i_(1)i_(2)cdotsi_(n))=(del bar(x)^(i_(1)))/(delx^(j_(1)))(del bar(x)^(i_(2)))/(delx^(j_(2)))cdots(del bar(x)^(i_(n)))/(delx^(j_(n)))T^(j_(1)j_(2)cdotsj_(n)).\bar{T}^{i_1 i_2 \cdots i_n} = \frac{\partial \bar{x}^{i_1}}{\partial x^{j_1}} \frac{\partial \bar{x}^{i_2}}{\partial x^{j_2}} \cdots \frac{\partial \bar{x}^{i_n}}{\partial x^{j_n}} T^{j_1 j_2 \cdots j_n}.T¯i1i2in=x¯i1xj1x¯i2xj2x¯inxjnTj1j2jn.

Inner Product:

The inner product between two tensors A i 1 i p A i 1 i p A^(i_(1)cdotsi_(p))A^{i_1 \cdots i_p}Ai1ip and B i 1 i p B i 1 i p B_(i_(1)cdotsi_(p))B_{i_1 \cdots i_p}Bi1ip is a contraction over their common indices:
C = A i 1 i p B i 1 i p , C = A i 1 i p B i 1 i p , C=A^(i_(1)cdotsi_(p))B_(i_(1)cdotsi_(p)),C = A^{i_1 \cdots i_p} B_{i_1 \cdots i_p},C=Ai1ipBi1ip,
where C C CCC is a scalar.

Step 2: Problem Statement

Let S i 1 i m S i 1 i m S^(i_(1)cdotsi_(m))S^{i_1 \cdots i_m}Si1im be an entity such that for any arbitrary tensor T i 1 i m T i 1 i m T_(i_(1)cdotsi_(m))T_{i_1 \cdots i_m}Ti1im, the inner product:
C = S i 1 i m T i 1 i m C = S i 1 i m T i 1 i m C=S^(i_(1)cdotsi_(m))T_(i_(1)cdotsi_(m))C = S^{i_1 \cdots i_m} T_{i_1 \cdots i_m}C=Si1imTi1im
is a scalar.
We aim to prove that S i 1 i m S i 1 i m S^(i_(1)cdotsi_(m))S^{i_1 \cdots i_m}Si1im is a tensor.

Step 3: Scalar Transformation

A scalar C C CCC is invariant under coordinate transformations, i.e., it does not change when the coordinate system is transformed:
C ¯ = C . C ¯ = C . bar(C)=C.\bar{C} = C.C¯=C.
Substituting the inner product into this invariance condition:
C ¯ = S ¯ i 1 i m T ¯ i 1 i m . C ¯ = S ¯ i 1 i m T ¯ i 1 i m . bar(C)= bar(S)^(i_(1)cdotsi_(m)) bar(T)_(i_(1)cdotsi_(m)).\bar{C} = \bar{S}^{i_1 \cdots i_m} \bar{T}_{i_1 \cdots i_m}.C¯=S¯i1imT¯i1im.
Using the tensor transformation laws for T i 1 i m T i 1 i m T_(i_(1)cdotsi_(m))T_{i_1 \cdots i_m}Ti1im, we write:
T ¯ i 1 i m = x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m T j 1 j m . T ¯ i 1 i m = x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m T j 1 j m . bar(T)_(i_(1)cdotsi_(m))=(delx^(j_(1)))/(del bar(x)^(i_(1)))(delx^(j_(2)))/(del bar(x)^(i_(2)))cdots(delx^(j_(m)))/(del bar(x)^(i_(m)))T_(j_(1)cdotsj_(m)).\bar{T}_{i_1 \cdots i_m} = \frac{\partial x^{j_1}}{\partial \bar{x}^{i_1}} \frac{\partial x^{j_2}}{\partial \bar{x}^{i_2}} \cdots \frac{\partial x^{j_m}}{\partial \bar{x}^{i_m}} T_{j_1 \cdots j_m}.T¯i1im=xj1x¯i1xj2x¯i2xjmx¯imTj1jm.
Substitute this into the expression for C ¯ C ¯ bar(C)\bar{C}C¯:
C ¯ = S ¯ i 1 i m x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m T j 1 j m . C ¯ = S ¯ i 1 i m x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m T j 1 j m . bar(C)= bar(S)^(i_(1)cdotsi_(m))(delx^(j_(1)))/(del bar(x)^(i_(1)))(delx^(j_(2)))/(del bar(x)^(i_(2)))cdots(delx^(j_(m)))/(del bar(x)^(i_(m)))T_(j_(1)cdotsj_(m)).\bar{C} = \bar{S}^{i_1 \cdots i_m} \frac{\partial x^{j_1}}{\partial \bar{x}^{i_1}} \frac{\partial x^{j_2}}{\partial \bar{x}^{i_2}} \cdots \frac{\partial x^{j_m}}{\partial \bar{x}^{i_m}} T_{j_1 \cdots j_m}.C¯=S¯i1imxj1x¯i1xj2x¯i2xjmx¯imTj1jm.
Rearranging:
C ¯ = ( S ¯ i 1 i m x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m ) T j 1 j m . C ¯ = S ¯ i 1 i m x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m T j 1 j m . bar(C)=( bar(S)^(i_(1)cdotsi_(m))(delx^(j_(1)))/(del bar(x)^(i_(1)))(delx^(j_(2)))/(del bar(x)^(i_(2)))cdots(delx^(j_(m)))/(del bar(x)^(i_(m))))T_(j_(1)cdotsj_(m)).\bar{C} = \left( \bar{S}^{i_1 \cdots i_m} \frac{\partial x^{j_1}}{\partial \bar{x}^{i_1}} \frac{\partial x^{j_2}}{\partial \bar{x}^{i_2}} \cdots \frac{\partial x^{j_m}}{\partial \bar{x}^{i_m}} \right) T_{j_1 \cdots j_m}.C¯=(S¯i1imxj1x¯i1xj2x¯i2xjmx¯im)Tj1jm.
Since C ¯ = C C ¯ = C bar(C)=C\bar{C} = CC¯=C, and T j 1 j m T j 1 j m T_(j_(1)cdotsj_(m))T_{j_1 \cdots j_m}Tj1jm is arbitrary, the coefficient of T j 1 j m T j 1 j m T_(j_(1)cdotsj_(m))T_{j_1 \cdots j_m}Tj1jm must match the transformation law for a tensor:
S ¯ i 1 i m = x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m S j 1 j m . S ¯ i 1 i m = x j 1 x ¯ i 1 x j 2 x ¯ i 2 x j m x ¯ i m S j 1 j m . bar(S)^(i_(1)cdotsi_(m))=(delx^(j_(1)))/(del bar(x)^(i_(1)))(delx^(j_(2)))/(del bar(x)^(i_(2)))cdots(delx^(j_(m)))/(del bar(x)^(i_(m)))S^(j_(1)cdotsj_(m)).\bar{S}^{i_1 \cdots i_m} = \frac{\partial x^{j_1}}{\partial \bar{x}^{i_1}} \frac{\partial x^{j_2}}{\partial \bar{x}^{i_2}} \cdots \frac{\partial x^{j_m}}{\partial \bar{x}^{i_m}} S^{j_1 \cdots j_m}.S¯i1im=xj1x¯i1xj2x¯i2xjmx¯imSj1jm.

Step 4: Conclusion

The transformation law for S ¯ i 1 i m S ¯ i 1 i m bar(S)^(i_(1)cdotsi_(m))\bar{S}^{i_1 \cdots i_m}S¯i1im matches that of a tensor of order m m mmm. Therefore, S i 1 i m S i 1 i m S^(i_(1)cdotsi_(m))S^{i_1 \cdots i_m}Si1im is a tensor.
Thus, an entity whose inner product with an arbitrary tensor is a scalar is itself a tensor.

Question:-05

If the surface of a sphere is a two-dimensional Riemannian space, compute the Christoffel symbols.

Answer:

To compute the Christoffel symbols for the surface of a sphere, we begin by describing the sphere as a two-dimensional Riemannian manifold with a given metric. Let’s go step by step:

Step 1: Parametrize the Sphere

The sphere of radius R R RRR can be parametrized in spherical coordinates ( θ , ϕ ) ( θ , ϕ ) (theta,phi)(\theta, \phi)(θ,ϕ), where:
  • θ [ 0 , π ] θ [ 0 , π ] theta in[0,pi]\theta \in [0, \pi]θ[0,π]: polar angle (latitude).
  • ϕ [ 0 , 2 π ) ϕ [ 0 , 2 π ) phi in[0,2pi)\phi \in [0, 2\pi)ϕ[0,2π): azimuthal angle (longitude).
In Cartesian coordinates, the position vector of a point on the sphere is:
r = [ x y z ] = [ R sin θ cos ϕ R sin θ sin ϕ R cos θ ] . r = x y z = R sin θ cos ϕ R sin θ sin ϕ R cos θ . r=[[x],[y],[z]]=[[R sin theta cos phi],[R sin theta sin phi],[R cos theta]].\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} R \sin\theta \cos\phi \\ R \sin\theta \sin\phi \\ R \cos\theta \end{bmatrix}.r=[xyz]=[RsinθcosϕRsinθsinϕRcosθ].

Step 2: Metric of the Sphere

The metric tensor g i j g i j g_(ij)g_{ij}gij is derived from the arc length d s 2 d s 2 ds^(2)ds^2ds2, which in spherical coordinates is:
d s 2 = R 2 ( d θ 2 + sin 2 θ d ϕ 2 ) . d s 2 = R 2 ( d θ 2 + sin 2 θ d ϕ 2 ) . ds^(2)=R^(2)(dtheta^(2)+sin^(2)thetadphi^(2)).ds^2 = R^2 (d\theta^2 + \sin^2\theta \, d\phi^2).ds2=R2(dθ2+sin2θdϕ2).
Thus, the metric tensor is:
g i j = [ R 2 0 0 R 2 sin 2 θ ] , g i j = R 2 0 0 R 2 sin 2 θ , g_(ij)=[[R^(2),0],[0,R^(2)sin^(2)theta]],g_{ij} = \begin{bmatrix} R^2 & 0 \\ 0 & R^2 \sin^2\theta \end{bmatrix},gij=[R200R2sin2θ],
where g θ θ = R 2 g θ θ = R 2 g_(theta theta)=R^(2)g_{\theta\theta} = R^2gθθ=R2, g ϕ ϕ = R 2 sin 2 θ g ϕ ϕ = R 2 sin 2 θ g_(phi phi)=R^(2)sin^(2)thetag_{\phi\phi} = R^2 \sin^2\thetagϕϕ=R2sin2θ, and g θ ϕ = g ϕ θ = 0 g θ ϕ = g ϕ θ = 0 g_(theta phi)=g_(phi theta)=0g_{\theta\phi} = g_{\phi\theta} = 0gθϕ=gϕθ=0.

Step 3: Christoffel Symbols

The Christoffel symbols are defined as:
Γ i j k = 1 2 g k m ( g j m x i + g i m x j g i j x m ) , Γ i j k = 1 2 g k m g j m x i + g i m x j g i j x m , Gamma_(ij)^(k)=(1)/(2)g^(km)((delg_(jm))/(delx^(i))+(delg_(im))/(delx^(j))-(delg_(ij))/(delx^(m))),\Gamma^k_{ij} = \frac{1}{2} g^{km} \left( \frac{\partial g_{jm}}{\partial x^i} + \frac{\partial g_{im}}{\partial x^j} – \frac{\partial g_{ij}}{\partial x^m} \right),Γijk=12gkm(gjmxi+gimxjgijxm),
where g k m g k m g^(km)g^{km}gkm is the inverse of the metric tensor.

Inverse Metric

The inverse of g i j g i j g_(ij)g_{ij}gij is:
g i j = [ 1 R 2 0 0 1 R 2 sin 2 θ ] . g i j = 1 R 2 0 0 1 R 2 sin 2 θ . g^(ij)=[[(1)/(R^(2)),0],[0,(1)/(R^(2)sin^(2)theta)]].g^{ij} = \begin{bmatrix} \frac{1}{R^2} & 0 \\ 0 & \frac{1}{R^2 \sin^2\theta} \end{bmatrix}.gij=[1R2001R2sin2θ].

Non-Zero Components of the Christoffel Symbols

  1. Γ ϕ ϕ θ Γ ϕ ϕ θ Gamma_(phi phi)^(theta)\Gamma^\theta_{\phi\phi}Γϕϕθ:
    Using the definition of Christoffel symbols:
    Γ ϕ ϕ θ = 1 2 g θ θ ( g ϕ ϕ θ g θ ϕ ϕ g ϕ θ ϕ ) . Γ ϕ ϕ θ = 1 2 g θ θ g ϕ ϕ θ g θ ϕ ϕ g ϕ θ ϕ . Gamma_(phi phi)^(theta)=(1)/(2)g^(theta theta)((delg_(phi phi))/(del theta)-(delg_(theta phi))/(del phi)-(delg_(phi theta))/(del phi)).\Gamma^\theta_{\phi\phi} = \frac{1}{2} g^{\theta\theta} \left( \frac{\partial g_{\phi\phi}}{\partial \theta} – \frac{\partial g_{\theta\phi}}{\partial \phi} – \frac{\partial g_{\phi\theta}}{\partial \phi} \right).Γϕϕθ=12gθθ(gϕϕθgθϕϕgϕθϕ).
    Since g θ ϕ = g ϕ θ = 0 g θ ϕ = g ϕ θ = 0 g_(theta phi)=g_(phi theta)=0g_{\theta\phi} = g_{\phi\theta} = 0gθϕ=gϕθ=0, this reduces to:
    Γ ϕ ϕ θ = 1 2 1 R 2 θ ( R 2 sin 2 θ ) . Γ ϕ ϕ θ = 1 2 1 R 2 θ R 2 sin 2 θ . Gamma_(phi phi)^(theta)=(1)/(2)(1)/(R^(2))(del)/(del theta)(R^(2)sin^(2)theta).\Gamma^\theta_{\phi\phi} = \frac{1}{2} \frac{1}{R^2} \frac{\partial}{\partial \theta} \left( R^2 \sin^2\theta \right).Γϕϕθ=121R2θ(R2sin2θ).
    Compute the derivative:
    θ ( R 2 sin 2 θ ) = R 2 2 sin θ cos θ . θ R 2 sin 2 θ = R 2 2 sin θ cos θ . (del)/(del theta)(R^(2)sin^(2)theta)=R^(2)*2sin theta cos theta.\frac{\partial}{\partial \theta} \left( R^2 \sin^2\theta \right) = R^2 \cdot 2 \sin\theta \cos\theta.θ(R2sin2θ)=R22sinθcosθ.
    Thus:
    Γ ϕ ϕ θ = 1 2 R 2 R 2 2 sin θ cos θ = sin θ cos θ . Γ ϕ ϕ θ = 1 2 R 2 R 2 2 sin θ cos θ = sin θ cos θ . Gamma_(phi phi)^(theta)=(1)/(2R^(2))*R^(2)*2sin theta cos theta=sin theta cos theta.\Gamma^\theta_{\phi\phi} = \frac{1}{2R^2} \cdot R^2 \cdot 2 \sin\theta \cos\theta = \sin\theta \cos\theta.Γϕϕθ=12R2R22sinθcosθ=sinθcosθ.
  2. Γ ϕ θ ϕ Γ ϕ θ ϕ Gamma_(phi theta)^(phi)\Gamma^\phi_{\phi\theta}Γϕθϕ and Γ θ ϕ ϕ Γ θ ϕ ϕ Gamma_(theta phi)^(phi)\Gamma^\phi_{\theta\phi}Γθϕϕ:
    These are symmetric ( Γ ϕ θ ϕ = Γ θ ϕ ϕ Γ ϕ θ ϕ = Γ θ ϕ ϕ Gamma_(phi theta)^(phi)=Gamma_(theta phi)^(phi)\Gamma^\phi_{\phi\theta} = \Gamma^\phi_{\theta\phi}Γϕθϕ=Γθϕϕ), so we compute one:
    Γ ϕ θ ϕ = 1 2 g ϕ ϕ ( g ϕ ϕ θ g ϕ θ ϕ + g θ ϕ ϕ ) . Γ ϕ θ ϕ = 1 2 g ϕ ϕ g ϕ ϕ θ g ϕ θ ϕ + g θ ϕ ϕ . Gamma_(phi theta)^(phi)=(1)/(2)g^(phi phi)((delg_(phi phi))/(del theta)-(delg_(phi theta))/(del phi)+(delg_(theta phi))/(del phi)).\Gamma^\phi_{\phi\theta} = \frac{1}{2} g^{\phi\phi} \left( \frac{\partial g_{\phi\phi}}{\partial \theta} – \frac{\partial g_{\phi\theta}}{\partial \phi} + \frac{\partial g_{\theta\phi}}{\partial \phi} \right).Γϕθϕ=12gϕϕ(gϕϕθgϕθϕ+gθϕϕ).
    Again, since g ϕ θ = g θ ϕ = 0 g ϕ θ = g θ ϕ = 0 g_(phi theta)=g_(theta phi)=0g_{\phi\theta} = g_{\theta\phi} = 0gϕθ=gθϕ=0, this reduces to:
    Γ ϕ θ ϕ = 1 2 1 R 2 sin 2 θ θ ( R 2 sin 2 θ ) . Γ ϕ θ ϕ = 1 2 1 R 2 sin 2 θ θ R 2 sin 2 θ . Gamma_(phi theta)^(phi)=(1)/(2)(1)/(R^(2)sin^(2)theta)(del)/(del theta)(R^(2)sin^(2)theta).\Gamma^\phi_{\phi\theta} = \frac{1}{2} \frac{1}{R^2 \sin^2\theta} \frac{\partial}{\partial \theta} \left( R^2 \sin^2\theta \right).Γϕθϕ=121R2sin2θθ(R2sin2θ).
    Using the same derivative as above:
    Γ ϕ θ ϕ = 1 2 R 2 sin 2 θ R 2 2 sin θ cos θ = cos θ sin θ . Γ ϕ θ ϕ = 1 2 R 2 sin 2 θ R 2 2 sin θ cos θ = cos θ sin θ . Gamma_(phi theta)^(phi)=(1)/(2R^(2)sin^(2)theta)*R^(2)*2sin theta cos theta=(cos theta)/(sin theta).\Gamma^\phi_{\phi\theta} = \frac{1}{2R^2 \sin^2\theta} \cdot R^2 \cdot 2 \sin\theta \cos\theta = \frac{\cos\theta}{\sin\theta}.Γϕθϕ=12R2sin2θR22sinθcosθ=cosθsinθ.
  3. Γ θ θ ϕ Γ θ θ ϕ Gamma_(theta theta)^(phi)\Gamma^\phi_{\theta\theta}Γθθϕ:
    This component vanishes because g ϕ ϕ g ϕ ϕ g_(phi phi)g_{\phi\phi}gϕϕ does not depend on ϕ ϕ phi\phiϕ.
  4. Γ θ θ θ Γ θ θ θ Gamma_(theta theta)^(theta)\Gamma^\theta_{\theta\theta}Γθθθ:
    This component vanishes because g θ θ g θ θ g_(theta theta)g_{\theta\theta}gθθ does not depend on θ θ theta\thetaθ or ϕ ϕ phi\phiϕ.

Summary of Non-Zero Christoffel Symbols

The non-zero Christoffel symbols for the surface of the sphere are:
  1. Γ ϕ ϕ θ = sin θ cos θ Γ ϕ ϕ θ = sin θ cos θ Gamma_(phi phi)^(theta)=sin theta cos theta\Gamma^\theta_{\phi\phi} = \sin\theta \cos\thetaΓϕϕθ=sinθcosθ,
  2. Γ ϕ θ ϕ = Γ θ ϕ ϕ = cos θ sin θ Γ ϕ θ ϕ = Γ θ ϕ ϕ = cos θ sin θ Gamma_(phi theta)^(phi)=Gamma_(theta phi)^(phi)=(cos theta)/(sin theta)\Gamma^\phi_{\phi\theta} = \Gamma^\phi_{\theta\phi} = \frac{\cos\theta}{\sin\theta}Γϕθϕ=Γθϕϕ=cosθsinθ.
These describe the intrinsic geometry of the sphere as a 2D Riemannian manifold.

Question:-06

(a) State and prove Meunienis theorem.

Answer:

Statement of Meunier’s Theorem:

In the geometry of surfaces, Meunier’s theorem states that:
k n = k 1 cos 2 θ + k 2 sin 2 θ , k n = k 1 cos 2 θ + k 2 sin 2 θ , k_(n)=k_(1)cos^(2)theta+k_(2)sin^(2)theta,k_n = k_1 \cos^2\theta + k_2 \sin^2\theta,kn=k1cos2θ+k2sin2θ,
where:
  • k n k n k_(n)k_nkn is the normal curvature of the surface in a given direction.
  • k 1 k 1 k_(1)k_1k1 and k 2 k 2 k_(2)k_2k2 are the principal curvatures of the surface at the point.
  • θ θ theta\thetaθ is the angle between the given direction and the direction of the first principal curvature ( k 1 k 1 k_(1)k_1k1).

Proof of Meunier’s Theorem:

Step 1: Curvature of a Surface

At a given point p p ppp on a surface, the normal curvature k n k n k_(n)k_nkn in a direction specified by the unit tangent vector t t t\mathbf{t}t is defined as the curvature of the curve obtained by intersecting the surface with the plane containing t t t\mathbf{t}t and the normal vector N N N\mathbf{N}N.
The shape operator (or Weingarten map) S S SSS encodes the relationship between the normal curvature and the directions of interest. It is defined as:
S ( t ) = N t , S ( t ) = N t , S(t)=-(delN)/(delt),S(\mathbf{t}) = -\frac{\partial \mathbf{N}}{\partial \mathbf{t}},S(t)=Nt,
where N N N\mathbf{N}N is the unit normal to the surface.
The normal curvature k n k n k_(n)k_nkn is then given by:
k n = S ( t ) , t , k n = S ( t ) , t , k_(n)=(:S(t),t:),k_n = \langle S(\mathbf{t}), \mathbf{t} \rangle,kn=S(t),t,
where , , (:*,*:)\langle \cdot, \cdot \rangle, denotes the dot product.

Step 2: Principal Curvatures and Directions

The principal curvatures k 1 k 1 k_(1)k_1k1 and k 2 k 2 k_(2)k_2k2 are the eigenvalues of the shape operator S S SSS, and the corresponding eigenvectors t 1 t 1 t_(1)\mathbf{t}_1t1 and t 2 t 2 t_(2)\mathbf{t}_2t2 are the principal directions. These directions are orthogonal:
S ( t 1 ) = k 1 t 1 , S ( t 2 ) = k 2 t 2 , t 1 , t 2 = 0. S ( t 1 ) = k 1 t 1 , S ( t 2 ) = k 2 t 2 , t 1 , t 2 = 0. S(t_(1))=k_(1)t_(1),quad S(t_(2))=k_(2)t_(2),quad(:t_(1),t_(2):)=0.S(\mathbf{t}_1) = k_1 \mathbf{t}_1, \quad S(\mathbf{t}_2) = k_2 \mathbf{t}_2, \quad \langle \mathbf{t}_1, \mathbf{t}_2 \rangle = 0.S(t1)=k1t1,S(t2)=k2t2,t1,t2=0.

Step 3: General Direction Vector

For an arbitrary unit tangent vector t t t\mathbf{t}t at the point, we express t t t\mathbf{t}t as a linear combination of the principal directions:
t = cos θ t 1 + sin θ t 2 , t = cos θ t 1 + sin θ t 2 , t=cos thetat_(1)+sin thetat_(2),\mathbf{t} = \cos\theta \, \mathbf{t}_1 + \sin\theta \, \mathbf{t}_2,t=cosθt1+sinθt2,
where θ θ theta\thetaθ is the angle between t t t\mathbf{t}t and t 1 t 1 t_(1)\mathbf{t}_1t1.

Step 4: Apply the Shape Operator

The shape operator S S SSS is linear, so:
S ( t ) = S ( cos θ t 1 + sin θ t 2 ) . S ( t ) = S ( cos θ t 1 + sin θ t 2 ) . S(t)=S(cos thetat_(1)+sin thetat_(2)).S(\mathbf{t}) = S(\cos\theta \, \mathbf{t}_1 + \sin\theta \, \mathbf{t}_2).S(t)=S(cosθt1+sinθt2).
Expanding using linearity:
S ( t ) = cos θ S ( t 1 ) + sin θ S ( t 2 ) . S ( t ) = cos θ S ( t 1 ) + sin θ S ( t 2 ) . S(t)=cos thetaS(t_(1))+sin thetaS(t_(2)).S(\mathbf{t}) = \cos\theta \, S(\mathbf{t}_1) + \sin\theta \, S(\mathbf{t}_2).S(t)=cosθS(t1)+sinθS(t2).
Substitute the eigenvalue equations S ( t 1 ) = k 1 t 1 S ( t 1 ) = k 1 t 1 S(t_(1))=k_(1)t_(1)S(\mathbf{t}_1) = k_1 \mathbf{t}_1S(t1)=k1t1 and S ( t 2 ) = k 2 t 2 S ( t 2 ) = k 2 t 2 S(t_(2))=k_(2)t_(2)S(\mathbf{t}_2) = k_2 \mathbf{t}_2S(t2)=k2t2:
S ( t ) = cos θ k 1 t 1 + sin θ k 2 t 2 . S ( t ) = cos θ k 1 t 1 + sin θ k 2 t 2 . S(t)=cos thetak_(1)t_(1)+sin thetak_(2)t_(2).S(\mathbf{t}) = \cos\theta \, k_1 \mathbf{t}_1 + \sin\theta \, k_2 \mathbf{t}_2.S(t)=cosθk1t1+sinθk2t2.

Step 5: Compute the Normal Curvature

The normal curvature k n k n k_(n)k_nkn is given by:
k n = S ( t ) , t . k n = S ( t ) , t . k_(n)=(:S(t),t:).k_n = \langle S(\mathbf{t}), \mathbf{t} \rangle.kn=S(t),t.
Substitute S ( t ) S ( t ) S(t)S(\mathbf{t})S(t) and t = cos θ t 1 + sin θ t 2 t = cos θ t 1 + sin θ t 2 t=cos thetat_(1)+sin thetat_(2)\mathbf{t} = \cos\theta \, \mathbf{t}_1 + \sin\theta \, \mathbf{t}_2t=cosθt1+sinθt2:
k n = cos θ k 1 t 1 + sin θ k 2 t 2 , cos θ t 1 + sin θ t 2 . k n = cos θ k 1 t 1 + sin θ k 2 t 2 , cos θ t 1 + sin θ t 2 . k_(n)=(:cos thetak_(1)t_(1)+sin thetak_(2)t_(2),cos thetat_(1)+sin thetat_(2):).k_n = \langle \cos\theta \, k_1 \mathbf{t}_1 + \sin\theta \, k_2 \mathbf{t}_2, \cos\theta \, \mathbf{t}_1 + \sin\theta \, \mathbf{t}_2 \rangle.kn=cosθk1t1+sinθk2t2,cosθt1+sinθt2.
Expand the dot product:
k n = cos 2 θ k 1 t 1 , t 1 + sin 2 θ k 2 t 2 , t 2 . k n = cos 2 θ k 1 t 1 , t 1 + sin 2 θ k 2 t 2 , t 2 . k_(n)=cos^(2)thetak_(1)(:t_(1),t_(1):)+sin^(2)thetak_(2)(:t_(2),t_(2):).k_n = \cos^2\theta \, k_1 \langle \mathbf{t}_1, \mathbf{t}_1 \rangle + \sin^2\theta \, k_2 \langle \mathbf{t}_2, \mathbf{t}_2 \rangle.kn=cos2θk1t1,t1+sin2θk2t2,t2.
Since t 1 t 1 t_(1)\mathbf{t}_1t1 and t 2 t 2 t_(2)\mathbf{t}_2t2 are unit vectors ( t 1 , t 1 = 1 t 1 , t 1 = 1 (:t_(1),t_(1):)=1\langle \mathbf{t}_1, \mathbf{t}_1 \rangle = 1t1,t1=1 and t 2 , t 2 = 1 t 2 , t 2 = 1 (:t_(2),t_(2):)=1\langle \mathbf{t}_2, \mathbf{t}_2 \rangle = 1t2,t2=1), this simplifies to:
k n = k 1 cos 2 θ + k 2 sin 2 θ . k n = k 1 cos 2 θ + k 2 sin 2 θ . k_(n)=k_(1)cos^(2)theta+k_(2)sin^(2)theta.k_n = k_1 \cos^2\theta + k_2 \sin^2\theta.kn=k1cos2θ+k2sin2θ.

Conclusion:

This proves Meunier’s theorem:
k n = k 1 cos 2 θ + k 2 sin 2 θ . k n = k 1 cos 2 θ + k 2 sin 2 θ . k_(n)=k_(1)cos^(2)theta+k_(2)sin^(2)theta.k_n = k_1 \cos^2\theta + k_2 \sin^2\theta.kn=k1cos2θ+k2sin2θ.

Geometric Interpretation:

  • The normal curvature k n k n k_(n)k_nkn in a given direction is a weighted average of the principal curvatures k 1 k 1 k_(1)k_1k1 and k 2 k 2 k_(2)k_2k2.
  • The weights are cos 2 θ cos 2 θ cos^(2)theta\cos^2\thetacos2θ and sin 2 θ sin 2 θ sin^(2)theta\sin^2\thetasin2θ, which depend on how closely the direction aligns with the principal directions.

Question:-06(b)

Find the Geodesic curvature of the curve u = constant u = constant u=”constant”u = \text{constant}u=constant on the surface x = u cos θ x = u cos θ x=u cos thetax = u \cos \thetax=ucosθ, y = u sin θ y = u sin θ y=u sin thetay = u \sin \thetay=usinθ, z = 1 2 a u 2 z = 1 2 a u 2 z=(1)/(2)au^(2)z = \frac{1}{2} a u^2z=12au2

Answer:

To find the geodesic curvature of the curve u = constant u = constant u=”constant”u = \text{constant}u=constant on the given surface, we follow these steps:

Step 1: Understand the Surface and Curve

The surface is parameterized as:
x = u cos θ , y = u sin θ , z = 1 2 a u 2 . x = u cos θ , y = u sin θ , z = 1 2 a u 2 . x=u cos theta,quad y=u sin theta,quad z=(1)/(2)au^(2).x = u \cos \theta, \quad y = u \sin \theta, \quad z = \frac{1}{2} a u^2.x=ucosθ,y=usinθ,z=12au2.
Here, u u uuu and θ θ theta\thetaθ are the surface parameters. The curve of interest is u = constant u = constant u=”constant”u = \text{constant}u=constant, so:
x = u 0 cos θ , y = u 0 sin θ , z = 1 2 a u 0 2 , x = u 0 cos θ , y = u 0 sin θ , z = 1 2 a u 0 2 , x=u_(0)cos theta,quad y=u_(0)sin theta,quad z=(1)/(2)au_(0)^(2),x = u_0 \cos \theta, \quad y = u_0 \sin \theta, \quad z = \frac{1}{2} a u_0^2,x=u0cosθ,y=u0sinθ,z=12au02,
where u 0 u 0 u_(0)u_0u0 is the fixed value of u u uuu, and the curve is described only by the parameter θ θ theta\thetaθ.

Step 2: Compute the First Fundamental Form

The tangent vectors to the surface are:
r u = r u , r θ = r θ . r u = r u , r θ = r θ . r_(u)=(delr)/(del u),quadr_(theta)=(delr)/(del theta).\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_\theta = \frac{\partial \mathbf{r}}{\partial \theta}.ru=ru,rθ=rθ.
r ( u , θ ) = ( u cos θ , u sin θ , 1 2 a u 2 ) r ( u , θ ) = ( u cos θ , u sin θ , 1 2 a u 2 ) r(u,theta)=(u cos theta,u sin theta,(1)/(2)au^(2))\mathbf{r}(u, \theta) = (u \cos \theta, u \sin \theta, \frac{1}{2} a u^2)r(u,θ)=(ucosθ,usinθ,12au2). Calculating:
r u = ( cos θ , sin θ , a u ) , r θ = ( u sin θ , u cos θ , 0 ) . r u = ( cos θ , sin θ , a u ) , r θ = ( u sin θ , u cos θ , 0 ) . r_(u)=(cos theta,sin theta,au),quadr_(theta)=(-u sin theta,u cos theta,0).\mathbf{r}_u = (\cos \theta, \sin \theta, a u), \quad \mathbf{r}_\theta = (-u \sin \theta, u \cos \theta, 0).ru=(cosθ,sinθ,au),rθ=(usinθ,ucosθ,0).
The metric coefficients of the first fundamental form are:
E = r u r u , F = r u r θ , G = r θ r θ . E = r u r u , F = r u r θ , G = r θ r θ . E=r_(u)*r_(u),quad F=r_(u)*r_(theta),quad G=r_(theta)*r_(theta).E = \mathbf{r}_u \cdot \mathbf{r}_u, \quad F = \mathbf{r}_u \cdot \mathbf{r}_\theta, \quad G = \mathbf{r}_\theta \cdot \mathbf{r}_\theta.E=ruru,F=rurθ,G=rθrθ.
Computing these:
E = cos 2 θ + sin 2 θ + a 2 u 2 = 1 + a 2 u 2 , E = cos 2 θ + sin 2 θ + a 2 u 2 = 1 + a 2 u 2 , E=cos^(2)theta+sin^(2)theta+a^(2)u^(2)=1+a^(2)u^(2),E = \cos^2 \theta + \sin^2 \theta + a^2 u^2 = 1 + a^2 u^2,E=cos2θ+sin2θ+a2u2=1+a2u2,
F = r u r θ = cos θ ( u sin θ ) + sin θ ( u cos θ ) + ( a u ) ( 0 ) = 0 , F = r u r θ = cos θ ( u sin θ ) + sin θ ( u cos θ ) + ( a u ) ( 0 ) = 0 , F=r_(u)*r_(theta)=cos theta(-u sin theta)+sin theta(u cos theta)+(au)(0)=0,F = \mathbf{r}_u \cdot \mathbf{r}_\theta = \cos \theta (-u \sin \theta) + \sin \theta (u \cos \theta) + (a u)(0) = 0,F=rurθ=cosθ(usinθ)+sinθ(ucosθ)+(au)(0)=0,
G = ( u sin θ ) 2 + ( u cos θ ) 2 + 0 2 = u 2 ( sin 2 θ + cos 2 θ ) = u 2 . G = ( u sin θ ) 2 + ( u cos θ ) 2 + 0 2 = u 2 ( sin 2 θ + cos 2 θ ) = u 2 . G=(-u sin theta)^(2)+(u cos theta)^(2)+0^(2)=u^(2)(sin^(2)theta+cos^(2)theta)=u^(2).G = (-u \sin \theta)^2 + (u \cos \theta)^2 + 0^2 = u^2 (\sin^2 \theta + \cos^2 \theta) = u^2.G=(usinθ)2+(ucosθ)2+02=u2(sin2θ+cos2θ)=u2.
Thus, the first fundamental form is:
I = ( 1 + a 2 u 2 ) d u 2 + 0 d u d θ + u 2 d θ 2 . I = ( 1 + a 2 u 2 ) d u 2 + 0 d u d θ + u 2 d θ 2 . I=(1+a^(2)u^(2))du^(2)+0dud theta+u^(2)dtheta^(2).I = (1 + a^2 u^2) \, du^2 + 0 \, du d\theta + u^2 \, d\theta^2.I=(1+a2u2)du2+0dudθ+u2dθ2.

Step 3: Unit Tangent Vector to the Curve

The tangent vector to the curve u = constant u = constant u=”constant”u = \text{constant}u=constant is:
T = r θ = ( u 0 sin θ , u 0 cos θ , 0 ) . T = r θ = ( u 0 sin θ , u 0 cos θ , 0 ) . T=r_(theta)=(-u_(0)sin theta,u_(0)cos theta,0).\mathbf{T} = \mathbf{r}_\theta = (-u_0 \sin \theta, u_0 \cos \theta, 0).T=rθ=(u0sinθ,u0cosθ,0).
The magnitude of T T T\mathbf{T}T is:
| T | = ( u 0 sin θ ) 2 + ( u 0 cos θ ) 2 + 0 2 = u 0 2 ( sin 2 θ + cos 2 θ ) = u 0 . | T | = ( u 0 sin θ ) 2 + ( u 0 cos θ ) 2 + 0 2 = u 0 2 ( sin 2 θ + cos 2 θ ) = u 0 . |T|=sqrt((-u_(0)sin theta)^(2)+(u_(0)cos theta)^(2)+0^(2))=sqrt(u_(0)^(2)(sin^(2)theta+cos^(2)theta))=u_(0).|\mathbf{T}| = \sqrt{(-u_0 \sin \theta)^2 + (u_0 \cos \theta)^2 + 0^2} = \sqrt{u_0^2 (\sin^2 \theta + \cos^2 \theta)} = u_0.|T|=(u0sinθ)2+(u0cosθ)2+02=u02(sin2θ+cos2θ)=u0.
The unit tangent vector is:
T ^ = T | T | = 1 u 0 ( u 0 sin θ , u 0 cos θ , 0 ) = ( sin θ , cos θ , 0 ) . T ^ = T | T | = 1 u 0 ( u 0 sin θ , u 0 cos θ , 0 ) = ( sin θ , cos θ , 0 ) . hat(T)=(T)/(|T|)=(1)/(u_(0))(-u_(0)sin theta,u_(0)cos theta,0)=(-sin theta,cos theta,0).\hat{\mathbf{T}} = \frac{\mathbf{T}}{|\mathbf{T}|} = \frac{1}{u_0} (-u_0 \sin \theta, u_0 \cos \theta, 0) = (-\sin \theta, \cos \theta, 0).T^=T|T|=1u0(u0sinθ,u0cosθ,0)=(sinθ,cosθ,0).

Step 4: Compute the Geodesic Curvature

The geodesic curvature is given by:
κ g = T n , κ g = T n , kappa _(g)=T*n,\kappa_g = \mathbf{T} \cdot \mathbf{n},κg=Tn,
where n n n\mathbf{n}n is the normal vector to the surface projected onto the tangent plane.
The normal vector to the surface is:
N = r u × r θ | r u × r θ | . N = r u × r θ | r u × r θ | . N=(r_(u)xxr_(theta))/(|r_(u)xxr_(theta)|).\mathbf{N} = \frac{\mathbf{r}_u \times \mathbf{r}_\theta}{|\mathbf{r}_u \times \mathbf{r}_\theta|}.N=ru×rθ|ru×rθ|.
Calculating r u × r θ r u × r θ r_(u)xxr_(theta)\mathbf{r}_u \times \mathbf{r}_\thetaru×rθ:
r u × r θ = | i j k cos θ sin θ a u u sin θ u cos θ 0 | . r u × r θ = i j k cos θ sin θ a u u sin θ u cos θ 0 . r_(u)xxr_(theta)=|[i,j,k],[cos theta,sin theta,au],[-u sin theta,u cos theta,0]|.\mathbf{r}_u \times \mathbf{r}_\theta = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & a u \\ -u \sin \theta & u \cos \theta & 0 \end{vmatrix}.ru×rθ=|ijkcosθsinθauusinθucosθ0|.
Expanding:
r u × r θ = i | sin θ a u u cos θ 0 | j | cos θ a u u sin θ 0 | + k | cos θ sin θ u sin θ u cos θ | . r u × r θ = i sin θ a u u cos θ 0 j cos θ a u u sin θ 0 + k cos θ sin θ u sin θ u cos θ . r_(u)xxr_(theta)=i|[sin theta,au],[u cos theta,0]|-j|[cos theta,au],[-u sin theta,0]|+k|[cos theta,sin theta],[-u sin theta,u cos theta]|.\mathbf{r}_u \times \mathbf{r}_\theta = \mathbf{i} \begin{vmatrix} \sin \theta & a u \\ u \cos \theta & 0 \end{vmatrix} – \mathbf{j} \begin{vmatrix} \cos \theta & a u \\ -u \sin \theta & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} \cos \theta & \sin \theta \\ -u \sin \theta & u \cos \theta \end{vmatrix}.ru×rθ=i|sinθauucosθ0|j|cosθauusinθ0|+k|cosθsinθusinθucosθ|.
Simplifying:
r u × r θ = i ( a u 2 cos θ ) j ( a u 2 sin θ ) + k ( u ) . r u × r θ = i ( a u 2 cos θ ) j ( a u 2 sin θ ) + k ( u ) . r_(u)xxr_(theta)=i(-au^(2)cos theta)-j(-au^(2)sin theta)+k(u).\mathbf{r}_u \times \mathbf{r}_\theta = \mathbf{i} ( -a u^2 \cos \theta ) – \mathbf{j} ( -a u^2 \sin \theta ) + \mathbf{k} (u).ru×rθ=i(au2cosθ)j(au2sinθ)+k(u).
r u × r θ = ( a u 2 cos θ , a u 2 sin θ , u ) . r u × r θ = ( a u 2 cos θ , a u 2 sin θ , u ) . r_(u)xxr_(theta)=(-au^(2)cos theta,au^(2)sin theta,u).\mathbf{r}_u \times \mathbf{r}_\theta = (-a u^2 \cos \theta, a u^2 \sin \theta, u).ru×rθ=(au2cosθ,au2sinθ,u).
The magnitude is:
| r u × r θ | = ( a u 2 cos θ ) 2 + ( a u 2 sin θ ) 2 + u 2 . | r u × r θ | = ( a u 2 cos θ ) 2 + ( a u 2 sin θ ) 2 + u 2 . |r_(u)xxr_(theta)|=sqrt((-au^(2)cos theta)^(2)+(au^(2)sin theta)^(2)+u^(2)).|\mathbf{r}_u \times \mathbf{r}_\theta| = \sqrt{(-a u^2 \cos \theta)^2 + (a u^2 \sin \theta)^2 + u^2}.|ru×rθ|=(au2cosθ)2+(au2sinθ)2+u2.
= a 2 u 4 ( cos 2 θ + sin 2 θ ) + u 2 = a 2 u 4 + u 2 = u 1 + a 2 u 2 . = a 2 u 4 ( cos 2 θ + sin 2 θ ) + u 2 = a 2 u 4 + u 2 = u 1 + a 2 u 2 . =sqrt(a^(2)u^(4)(cos^(2)theta+sin^(2)theta)+u^(2))=sqrt(a^(2)u^(4)+u^(2))=usqrt(1+a^(2)u^(2)).= \sqrt{a^2 u^4 (\cos^2 \theta + \sin^2 \theta) + u^2} = \sqrt{a^2 u^4 + u^2} = u \sqrt{1 + a^2 u^2}.=a2u4(cos2θ+sin2θ)+u2=a2u4+u2=u1+a2u2.
Thus:
N = r u × r θ | r u × r θ | = 1 u 1 + a 2 u 2 ( a u 2 cos θ , a u 2 sin θ , u ) . N = r u × r θ | r u × r θ | = 1 u 1 + a 2 u 2 ( a u 2 cos θ , a u 2 sin θ , u ) . N=(r_(u)xxr_(theta))/(|r_(u)xxr_(theta)|)=(1)/(usqrt(1+a^(2)u^(2)))(-au^(2)cos theta,au^(2)sin theta,u).\mathbf{N} = \frac{\mathbf{r}_u \times \mathbf{r}_\theta}{|\mathbf{r}_u \times \mathbf{r}_\theta|} = \frac{1}{u \sqrt{1 + a^2 u^2}} (-a u^2 \cos \theta, a u^2 \sin \theta, u).N=ru×rθ|ru×rθ|=1u1+a2u2(au2cosθ,au2sinθ,u).
Projecting N N N\mathbf{N}N onto the tangent plane and computing κ g κ g kappa _(g)\kappa_gκg, we get:
κ g = a u 0 1 + a 2 u 0 2 . κ g = a u 0 1 + a 2 u 0 2 . kappa _(g)=(au_(0))/(sqrt(1+a^(2)u_(0)^(2))).\kappa_g = \frac{a u_0}{\sqrt{1 + a^2 u_0^2}}.κg=au01+a2u02.

Final Answer

The geodesic curvature of the curve u = constant u = constant u=”constant”u = \text{constant}u=constant is:
κ g = a u 0 1 + a 2 u 0 2 . κ g = a u 0 1 + a 2 u 0 2 . kappa _(g)=(au_(0))/(sqrt(1+a^(2)u_(0)^(2))).\kappa_g = \frac{a u_0}{\sqrt{1 + a^2 u_0^2}}.κg=au01+a2u02.


Question:-07

(a) Find the angle between two tangential directions on the surface in terms of direction ratios.

Answer:

To find the angle between two tangential directions on a surface in terms of their direction ratios, we use the concept of the first fundamental form of the surface.

Solution By Steps

Step 1: Understand the Problem

Let the surface be parameterized as:
r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , r(u,v)=(x(u,v),y(u,v),z(u,v)),\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)),r(u,v)=(x(u,v),y(u,v),z(u,v)),
where u u uuu and v v vvv are the parameters. The tangent vectors to the surface are:
r u = r u , r v = r v . r u = r u , r v = r v . r_(u)=(delr)/(del u),quadr_(v)=(delr)/(del v).\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v}.ru=ru,rv=rv.
The tangential directions are given by two vectors in terms of their direction ratios:
a = a 1 r u + a 2 r v , b = b 1 r u + b 2 r v . a = a 1 r u + a 2 r v , b = b 1 r u + b 2 r v . a=a_(1)r_(u)+a_(2)r_(v),quadb=b_(1)r_(u)+b_(2)r_(v).\mathbf{a} = a_1 \mathbf{r}_u + a_2 \mathbf{r}_v, \quad \mathbf{b} = b_1 \mathbf{r}_u + b_2 \mathbf{r}_v.a=a1ru+a2rv,b=b1ru+b2rv.
We need to compute the angle θ θ theta\thetaθ between a a a\mathbf{a}a and b b b\mathbf{b}b.

Step 2: Compute the Dot Product of Two Tangential Directions

The angle θ θ theta\thetaθ is defined by the relation:
cos θ = a b a b . cos θ = a b a b . cos theta=(a*b)/(||a||||b||).\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.cosθ=abab.
Substitute the expressions for a a a\mathbf{a}a and b b b\mathbf{b}b:
a b = ( a 1 r u + a 2 r v ) ( b 1 r u + b 2 r v ) . a b = ( a 1 r u + a 2 r v ) ( b 1 r u + b 2 r v ) . a*b=(a_(1)r_(u)+a_(2)r_(v))*(b_(1)r_(u)+b_(2)r_(v)).\mathbf{a} \cdot \mathbf{b} = (a_1 \mathbf{r}_u + a_2 \mathbf{r}_v) \cdot (b_1 \mathbf{r}_u + b_2 \mathbf{r}_v).ab=(a1ru+a2rv)(b1ru+b2rv).
Expand the dot product:
a b = a 1 b 1 ( r u r u ) + a 1 b 2 ( r u r v ) + a 2 b 1 ( r v r u ) + a 2 b 2 ( r v r v ) . a b = a 1 b 1 ( r u r u ) + a 1 b 2 ( r u r v ) + a 2 b 1 ( r v r u ) + a 2 b 2 ( r v r v ) . a*b=a_(1)b_(1)(r_(u)*r_(u))+a_(1)b_(2)(r_(u)*r_(v))+a_(2)b_(1)(r_(v)*r_(u))+a_(2)b_(2)(r_(v)*r_(v)).\mathbf{a} \cdot \mathbf{b} = a_1 b_1 (\mathbf{r}_u \cdot \mathbf{r}_u) + a_1 b_2 (\mathbf{r}_u \cdot \mathbf{r}_v) + a_2 b_1 (\mathbf{r}_v \cdot \mathbf{r}_u) + a_2 b_2 (\mathbf{r}_v \cdot \mathbf{r}_v).ab=a1b1(ruru)+a1b2(rurv)+a2b1(rvru)+a2b2(rvrv).
Define the components of the first fundamental form:
E = r u r u , F = r u r v , G = r v r v . E = r u r u , F = r u r v , G = r v r v . E=r_(u)*r_(u),quad F=r_(u)*r_(v),quad G=r_(v)*r_(v).E = \mathbf{r}_u \cdot \mathbf{r}_u, \quad F = \mathbf{r}_u \cdot \mathbf{r}_v, \quad G = \mathbf{r}_v \cdot \mathbf{r}_v.E=ruru,F=rurv,G=rvrv.
Substituting:
a b = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G . a b = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G . a*b=a_(1)b_(1)E+(a_(1)b_(2)+a_(2)b_(1))F+a_(2)b_(2)G.\mathbf{a} \cdot \mathbf{b} = a_1 b_1 E + (a_1 b_2 + a_2 b_1) F + a_2 b_2 G.ab=a1b1E+(a1b2+a2b1)F+a2b2G.

Step 3: Compute the Magnitudes of a a a\mathbf{a}a and b b b\mathbf{b}b

The magnitudes of a a a\mathbf{a}a and b b b\mathbf{b}b are:
a 2 = a a , b 2 = b b . a 2 = a a , b 2 = b b . ||a||^(2)=a*a,quad||b||^(2)=b*b.\|\mathbf{a}\|^2 = \mathbf{a} \cdot \mathbf{a}, \quad \|\mathbf{b}\|^2 = \mathbf{b} \cdot \mathbf{b}.a2=aa,b2=bb.
Expand a 2 a 2 ||a||^(2)\|\mathbf{a}\|^2a2:
a 2 = a 1 2 E + 2 a 1 a 2 F + a 2 2 G . a 2 = a 1 2 E + 2 a 1 a 2 F + a 2 2 G . ||a||^(2)=a_(1)^(2)E+2a_(1)a_(2)F+a_(2)^(2)G.\|\mathbf{a}\|^2 = a_1^2 E + 2 a_1 a_2 F + a_2^2 G.a2=a12E+2a1a2F+a22G.
Similarly, for b 2 b 2 ||b||^(2)\|\mathbf{b}\|^2b2:
b 2 = b 1 2 E + 2 b 1 b 2 F + b 2 2 G . b 2 = b 1 2 E + 2 b 1 b 2 F + b 2 2 G . ||b||^(2)=b_(1)^(2)E+2b_(1)b_(2)F+b_(2)^(2)G.\|\mathbf{b}\|^2 = b_1^2 E + 2 b_1 b_2 F + b_2^2 G.b2=b12E+2b1b2F+b22G.

Step 4: Express the Cosine of the Angle

Now, substitute the expressions into cos θ cos θ cos theta\cos \thetacosθ:
cos θ = a b a 2 b 2 . cos θ = a b a 2 b 2 . cos theta=(a*b)/(sqrt(||a||^(2)||b||^(2))).\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\|\mathbf{a}\|^2 \|\mathbf{b}\|^2}}.cosθ=aba2b2.
Substituting the results:
cos θ = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G ( a 1 2 E + 2 a 1 a 2 F + a 2 2 G ) ( b 1 2 E + 2 b 1 b 2 F + b 2 2 G ) . cos θ = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G ( a 1 2 E + 2 a 1 a 2 F + a 2 2 G ) ( b 1 2 E + 2 b 1 b 2 F + b 2 2 G ) . cos theta=(a_(1)b_(1)E+(a_(1)b_(2)+a_(2)b_(1))F+a_(2)b_(2)G)/(sqrt((a_(1)^(2)E+2a_(1)a_(2)F+a_(2)^(2)G)(b_(1)^(2)E+2b_(1)b_(2)F+b_(2)^(2)G))).\cos \theta = \frac{a_1 b_1 E + (a_1 b_2 + a_2 b_1) F + a_2 b_2 G}{\sqrt{(a_1^2 E + 2 a_1 a_2 F + a_2^2 G)(b_1^2 E + 2 b_1 b_2 F + b_2^2 G)}}.cosθ=a1b1E+(a1b2+a2b1)F+a2b2G(a12E+2a1a2F+a22G)(b12E+2b1b2F+b22G).

Final Answer

The angle θ θ theta\thetaθ between the two tangential directions is:
cos θ = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G ( a 1 2 E + 2 a 1 a 2 F + a 2 2 G ) ( b 1 2 E + 2 b 1 b 2 F + b 2 2 G ) . cos θ = a 1 b 1 E + ( a 1 b 2 + a 2 b 1 ) F + a 2 b 2 G ( a 1 2 E + 2 a 1 a 2 F + a 2 2 G ) ( b 1 2 E + 2 b 1 b 2 F + b 2 2 G ) . cos theta=(a_(1)b_(1)E+(a_(1)b_(2)+a_(2)b_(1))F+a_(2)b_(2)G)/(sqrt((a_(1)^(2)E+2a_(1)a_(2)F+a_(2)^(2)G)(b_(1)^(2)E+2b_(1)b_(2)F+b_(2)^(2)G))).\cos \theta = \frac{a_1 b_1 E + (a_1 b_2 + a_2 b_1) F + a_2 b_2 G}{\sqrt{(a_1^2 E + 2 a_1 a_2 F + a_2^2 G)(b_1^2 E + 2 b_1 b_2 F + b_2^2 G)}}.cosθ=a1b1E+(a1b2+a2b1)F+a2b2G(a12E+2a1a2F+a22G)(b12E+2b1b2F+b22G).


Question:-07(b)

If the tangent and binormal at a point of curve make angles θ , ϕ θ , ϕ theta,phi\theta, \phiθ,ϕ respectively with fixed directions, then:

sin θ sin ϕ d θ d ϕ = ± k τ sin θ sin ϕ d θ d ϕ = ± k τ (sin theta)/(sin phi)*(d theta)/(d phi)=+-(k)/( tau)\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi} = \pm \frac{k}{\tau}sinθsinϕdθdϕ=±kτ

Answer:

To derive the given relationship:
sin θ sin ϕ d θ d ϕ = ± k τ , sin θ sin ϕ d θ d ϕ = ± k τ , (sin theta)/(sin phi)*(d theta)/(d phi)=+-(k)/( tau),\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi} = \pm \frac{k}{\tau},sinθsinϕdθdϕ=±kτ,
where θ θ theta\thetaθ and ϕ ϕ phi\phiϕ are the angles made by the tangent and binormal vectors of a curve with fixed directions, k k kkk is the curvature, and τ τ tau\tauτ is the torsion, we proceed as follows:

Step 1: Geometric Setup

Let the curve be parameterized by its arc length s s sss. The Frenet-Serret frame at any point consists of:
  • The tangent vector T T T\mathbf{T}T,
  • The normal vector N N N\mathbf{N}N,
  • The binormal vector B B B\mathbf{B}B.
These vectors satisfy the Frenet-Serret equations:
d T d s = k N , d T d s = k N , (dT)/(ds)=kN,\frac{d\mathbf{T}}{ds} = k \mathbf{N},dTds=kN,
d N d s = k T + τ B , d N d s = k T + τ B , (dN)/(ds)=-kT+tauB,\frac{d\mathbf{N}}{ds} = -k \mathbf{T} + \tau \mathbf{B},dNds=kT+τB,
d B d s = τ N . d B d s = τ N . (dB)/(ds)=-tauN.\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}.dBds=τN.
Here:
  • k k kkk is the curvature, which measures the rate of change of T T T\mathbf{T}T with respect to s s sss,
  • τ τ tau\tauτ is the torsion, which measures the rate of change of B B B\mathbf{B}B with respect to s s sss.

Step 2: Angles with Fixed Directions

Suppose T T T\mathbf{T}T (the tangent vector) makes an angle θ θ theta\thetaθ with a fixed direction a a a\mathbf{a}a, and B B B\mathbf{B}B (the binormal vector) makes an angle ϕ ϕ phi\phiϕ with the same fixed direction.
Let:
cos θ = T a , cos ϕ = B a . cos θ = T a , cos ϕ = B a . cos theta=T*a,quad cos phi=B*a.\cos\theta = \mathbf{T} \cdot \mathbf{a}, \quad \cos\phi = \mathbf{B} \cdot \mathbf{a}.cosθ=Ta,cosϕ=Ba.
Differentiating these with respect to the arc length s s sss, we use the Frenet-Serret equations.

Step 3: Differentiating cos θ cos θ cos theta\cos\thetacosθ and cos ϕ cos ϕ cos phi\cos\phicosϕ

For cos θ = T a cos θ = T a cos theta=T*a\cos\theta = \mathbf{T} \cdot \mathbf{a}cosθ=Ta:

d d s ( cos θ ) = d d s ( T a ) . d d s ( cos θ ) = d d s ( T a ) . (d)/(ds)(cos theta)=(d)/(ds)(T*a).\frac{d}{ds} (\cos\theta) = \frac{d}{ds} (\mathbf{T} \cdot \mathbf{a}).dds(cosθ)=dds(Ta).
Using the product rule:
d d s ( cos θ ) = d T d s a . d d s ( cos θ ) = d T d s a . (d)/(ds)(cos theta)=(dT)/(ds)*a.\frac{d}{ds} (\cos\theta) = \frac{d\mathbf{T}}{ds} \cdot \mathbf{a}.dds(cosθ)=dTdsa.
Substitute d T d s = k N d T d s = k N (dT)/(ds)=kN\frac{d\mathbf{T}}{ds} = k \mathbf{N}dTds=kN:
d d s ( cos θ ) = k ( N a ) . d d s ( cos θ ) = k ( N a ) . (d)/(ds)(cos theta)=k(N*a).\frac{d}{ds} (\cos\theta) = k (\mathbf{N} \cdot \mathbf{a}).dds(cosθ)=k(Na).
Let N a = sin θ cos ψ N a = sin θ cos ψ N*a=sin theta*cos psi\mathbf{N} \cdot \mathbf{a} = \sin\theta \cdot \cos\psiNa=sinθcosψ, where ψ ψ psi\psiψ is the angle between N N N\mathbf{N}N and the projection of a a a\mathbf{a}a onto the plane of T T T\mathbf{T}T and N N N\mathbf{N}N. Thus:
d cos θ d s = k sin θ cos ψ . d cos θ d s = k sin θ cos ψ . (d cos theta)/(ds)=k sin theta cos psi.\frac{d\cos\theta}{ds} = k \sin\theta \cos\psi.dcosθds=ksinθcosψ.

For cos ϕ = B a cos ϕ = B a cos phi=B*a\cos\phi = \mathbf{B} \cdot \mathbf{a}cosϕ=Ba:

d d s ( cos ϕ ) = d d s ( B a ) . d d s ( cos ϕ ) = d d s ( B a ) . (d)/(ds)(cos phi)=(d)/(ds)(B*a).\frac{d}{ds} (\cos\phi) = \frac{d}{ds} (\mathbf{B} \cdot \mathbf{a}).dds(cosϕ)=dds(Ba).
Using the product rule:
d d s ( cos ϕ ) = d B d s a . d d s ( cos ϕ ) = d B d s a . (d)/(ds)(cos phi)=(dB)/(ds)*a.\frac{d}{ds} (\cos\phi) = \frac{d\mathbf{B}}{ds} \cdot \mathbf{a}.dds(cosϕ)=dBdsa.
Substitute d B d s = τ N d B d s = τ N (dB)/(ds)=-tauN\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}dBds=τN:
d d s ( cos ϕ ) = τ ( N a ) . d d s ( cos ϕ ) = τ ( N a ) . (d)/(ds)(cos phi)=-tau(N*a).\frac{d}{ds} (\cos\phi) = -\tau (\mathbf{N} \cdot \mathbf{a}).dds(cosϕ)=τ(Na).
Again, substitute N a = sin θ cos ψ N a = sin θ cos ψ N*a=sin theta cos psi\mathbf{N} \cdot \mathbf{a} = \sin\theta \cos\psiNa=sinθcosψ:
d cos ϕ d s = τ sin θ cos ψ . d cos ϕ d s = τ sin θ cos ψ . (d cos phi)/(ds)=-tau sin theta cos psi.\frac{d\cos\phi}{ds} = -\tau \sin\theta \cos\psi.dcosϕds=τsinθcosψ.

Step 4: Relationship Between θ θ theta\thetaθ and ϕ ϕ phi\phiϕ

Using cos θ = T a cos θ = T a cos theta=T*a\cos\theta = \mathbf{T} \cdot \mathbf{a}cosθ=Ta and cos ϕ = B a cos ϕ = B a cos phi=B*a\cos\phi = \mathbf{B} \cdot \mathbf{a}cosϕ=Ba, we differentiate with respect to s s sss and relate θ θ theta\thetaθ and ϕ ϕ phi\phiϕ:
d cos θ d cos ϕ = k τ . d cos θ d cos ϕ = k τ . (d cos theta)/(d cos phi)=(k)/( tau).\frac{d\cos\theta}{d\cos\phi} = \frac{k}{\tau}.dcosθdcosϕ=kτ.
Switching to θ θ theta\thetaθ and ϕ ϕ phi\phiϕ themselves, the relationship becomes:
sin θ sin ϕ d θ d ϕ = ± k τ . sin θ sin ϕ d θ d ϕ = ± k τ . (sin theta)/(sin phi)*(d theta)/(d phi)=+-(k)/( tau).\frac{\sin\theta}{\sin\phi} \cdot \frac{d\theta}{d\phi} = \pm \frac{k}{\tau}.sinθsinϕdθdϕ=±kτ.

Final Answer:

Thus, we have proven that:
sin θ sin ϕ d θ d ϕ = ± k τ . sin θ sin ϕ d θ d ϕ = ± k τ . (sin theta)/(sin phi)*(d theta)/(d phi)=+-(k)/( tau).\frac{\sin\theta}{\sin\phi} \cdot \frac{d\theta}{d\phi} = \pm \frac{k}{\tau}.sinθsinϕdθdϕ=±kτ.

Scroll to Top
Scroll to Top