VMOU MT-05 SOLVED ASSIGNMENT | MA/M.SC. MT- 05(Mechanics) | July-2024 & January-2025

Section -A
(Very Short Answer Type Questions)
Note:- Answer all questions. As per the nature of the question you delimit your answer in one word, one sentence or maximum up to 30 words. Each question carries 1 (one) mark.
  1. (i). Write the moment of Inertia of a circular disc of mass M M MMM and radius ‘ a a aaa ‘ about a diameter.
    (ii). Define moving axes and fixed axes.
    (iii). Write the equation of Locus of an Invariable line.
    (iv). Define the generalized co-ordinates.
Section-B
(Short Answer Questions)
Note :- Answer any two questions. Each answer should be given in 200 words. Each question carries 4 marks.
  1. State and prove D D D^(‘)D^{\prime}D Alembert’s principle.
  2. A uniform rod of mass m m mmm is placed at right angles to a smooth plane of inclination α α alpha\alphaα with one end in contact with it. The rod is then released. Show that when the inclination to the plane is ϕ ϕ phi\phiϕ, the reaction of the plane will be { 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 } m g cos α 3 ( 1 sin ϕ ) 2 + 1 1 + 3 cos 2 ϕ 2 m g cos α {(3(1-sin phi)^(2)+1)/((1+3cos^(2)phi)^(2))}mg cos alpha\left\{\frac{3(1-\sin \phi)^2+1}{\left(1+3 \cos ^2 \phi\right)^2}\right\} m g \cos \alpha{3(1sinϕ)2+1(1+3cos2ϕ)2}mgcosα.
  3. A dice in the form of a portion of parabola bounded by its latus rectum and its axis has its vertex A fixed and is stuck by a blow through the end of its latus rectum perpendicular to its plane. Show that the dice starts revolving about a line through A inclined at an angle tan 1 ( 14 25 ) tan 1 14 25 tan^(-1)((14)/(25))\tan ^{-1}\left(\frac{14}{25}\right)tan1(1425) to the axis.
  4. Use Lagrange’s equations to find the equation of motion of a simple pendulum.
Section-C
(Long Answer Questions)
Note :- Answer any one question. Each answer should be given in 800 words. Each question carries 08 marks.
  1. (a) Three equal uniform rods AB , BC , DC AB , BC , DC AB,BC,DC\mathrm{AB}, \mathrm{BC}, \mathrm{DC}AB,BC,DC are smoothly jointed at B and C and the ends A and D are fastened to smooth fixed points whose distance a part is equal to the length of either rod. The frame being at rest in the form of a square. A blow I is given perpendicular to AB at its middle point and in the plane of the square. Show that the energy set up is 3 I 2 40 m 3 I 2 40 m (3I^(2))/(40(m))\frac{3 I^2}{40 \mathrm{~m}}3I240 m, where m is the mass of each rod. Find also the blows at the joints A and C .
(b) Deduce the Lagrange’s equations from Hamilton’s Principle.
  1. (a) A mass of fluid is in motion such that the lines of motion lie on the surface of coaxial cylinders, show that the equation of continuity is P t + 1 r ( P u ) θ + ( P v ) z = 0 P t + 1 r ( P u ) θ + ( P v ) z = 0 (del P)/(del t)+(1)/(r)(del(Pu))/(del theta)+(del(Pv))/(del z)=0\frac{\partial P}{\partial t}+\frac{1}{r} \frac{\partial(P u)}{\partial \theta}+\frac{\partial(P v)}{\partial z}=0Pt+1r(Pu)θ+(Pv)z=0. where u , v u , v u,v\mathrm{u}, \mathrm{v}u,v are the velocity perpendicular and parallel to z .
(b) Find the Cauchy-Riemann equations in polar coordinates.

Answer:

Question:-01(a)

Write the moment of Inertia of a circular disc of mass M M MMM and radius ‘ a a aaa ‘ about a diameter.

Answer:

The moment of inertia of a circular disc of mass M M MMM and radius a a aaa about a diameter is:
I diameter = 1 4 M a 2 . I diameter = 1 4 M a 2 . I_(“diameter”)=(1)/(4)Ma^(2).I_{\text{diameter}} = \frac{1}{4} M a^2.Idiameter=14Ma2.

Derivation:

  1. Moment of Inertia About the Axis Perpendicular to the Plane:
    The moment of inertia of a circular disc about an axis perpendicular to its plane and passing through its center is:
    I perpendicular = 1 2 M a 2 . I perpendicular = 1 2 M a 2 . I_(“perpendicular”)=(1)/(2)Ma^(2).I_{\text{perpendicular}} = \frac{1}{2} M a^2.Iperpendicular=12Ma2.
  2. Using the Perpendicular Axis Theorem:
    The perpendicular axis theorem states:
    I z = I x + I y , I z = I x + I y , I_(z)=I_(x)+I_(y),I_z = I_x + I_y,Iz=Ix+Iy,
    where I z I z I_(z)I_zIz is the moment of inertia about the axis perpendicular to the plane (through the center), and I x , I y I x , I y I_(x),I_(y)I_x, I_yIx,Iy are the moments of inertia about two perpendicular axes in the plane of the disc (e.g., diameters).
    For a circular disc, due to symmetry:
    I x = I y = I diameter . I x = I y = I diameter . I_(x)=I_(y)=I_(“diameter”).I_x = I_y = I_{\text{diameter}}.Ix=Iy=Idiameter.
    Substituting into the perpendicular axis theorem:
    1 2 M a 2 = I diameter + I diameter . 1 2 M a 2 = I diameter + I diameter . (1)/(2)Ma^(2)=I_(“diameter”)+I_(“diameter”).\frac{1}{2} M a^2 = I_{\text{diameter}} + I_{\text{diameter}}.12Ma2=Idiameter+Idiameter.
  3. Solve for I diameter I diameter I_(“diameter”)I_{\text{diameter}}Idiameter:
    2 I diameter = 1 2 M a 2 , 2 I diameter = 1 2 M a 2 , 2I_(“diameter”)=(1)/(2)Ma^(2),2 I_{\text{diameter}} = \frac{1}{2} M a^2,2Idiameter=12Ma2,
    I diameter = 1 4 M a 2 . I diameter = 1 4 M a 2 . I_(“diameter”)=(1)/(4)Ma^(2).I_{\text{diameter}} = \frac{1}{4} M a^2.Idiameter=14Ma2.

Final Result:

The moment of inertia of a circular disc about a diameter is:
I diameter = 1 4 M a 2 . I diameter = 1 4 M a 2 . I_(“diameter”)=(1)/(4)Ma^(2).I_{\text{diameter}} = \frac{1}{4} M a^2.Idiameter=14Ma2.

Question:-01(b)

Define moving axes and fixed axes.

Answer:

Fixed Axes:

  • Definition: Fixed axes refer to a coordinate system or a set of reference axes that remain stationary in space, regardless of the motion of the object being studied.
  • Key Characteristics:
    • The axes do not move or rotate.
    • They provide an external frame of reference.
    • Typically used in problems involving motion relative to an inertial or non-inertial frame.
  • Applications:
    • Describing motion of objects relative to the ground.
    • Used in Newtonian mechanics for describing motion in an inertial frame of reference.
  • Example:
    • The x x xxx, y y yyy, and z z zzz axes of a Cartesian coordinate system fixed relative to the Earth.

Moving Axes:

  • Definition: Moving axes refer to a coordinate system that moves or rotates along with the object being studied.
  • Key Characteristics:
    • The axes are attached to the moving body and follow its motion.
    • They are often used to simplify the description of motion relative to the body.
    • May involve translation, rotation, or both.
  • Applications:
    • Studying the motion of rigid bodies.
    • Used in problems involving rotating reference frames, such as gyroscopes or rotating machinery.
    • Essential in dynamics for analyzing relative motion.
  • Example:
    • Axes attached to a rolling wheel or a rotating spacecraft.


Question:-01(c)

Write the equation of Locus of an Invariable line.

Answer:

The locus of the invariable line can also be expressed in symmetric form:
x L x = y L y = z L z x L x = y L y = z L z (x)/(L_(x))=(y)/(L_(y))=(z)/(L_(z))\frac{x}{L_x}=\frac{y}{L_y}=\frac{z}{L_z}xLx=yLy=zLz
Here, L x , L y , L z L x , L y , L z L_(x),L_(y),L_(z)L_x, L_y, L_zLx,Ly,Lz are constant because the angular momentum vector L L L\mathbf{L}L remains fixed in the inertial frame.

Question:-01(d)

Define the generalized co-ordinates.

Answer:

Generalized Coordinates

Generalized coordinates are a set of parameters used to describe the configuration of a mechanical system in terms of its degrees of freedom (DOFs). They provide a minimal and efficient way to represent the system’s position, especially when the system is constrained.

Definition:

A set of generalized coordinates { q 1 , q 2 , , q n } q 1 , q 2 , , q n {q_(1),q_(2),dots,q_(n)}\left\{q_1, q_2, \ldots, q_n\right\}{q1,q2,,qn} are independent variables that uniquely specify the configuration of a mechanical system with n n nnn degrees of freedom.

Question:-02

State and prove D D D^(‘)D^{\prime}D Alembert’s principle.

Answer:

D’Alembert’s Principle

Statement:
D’Alembert’s principle is a reformulation of Newton’s second law of motion that allows us to incorporate dynamics into the framework of statics. It states:
The difference between the applied forces and the inertial forces acting on a system is in equilibrium. Mathematically:
F applied m a = 0 , F applied m a = 0 , sumF_(“applied”)-sum ma=0,\sum \mathbf{F}_\text{applied} – \sum m \mathbf{a} = 0,Fappliedma=0,
or equivalently:
( F applied + F inertial ) = 0 , F applied + F inertial = 0 , sum(F_(“applied”)+F_(“inertial”))=0,\sum \left( \mathbf{F}_\text{applied} + \mathbf{F}_\text{inertial} \right) = 0,(Fapplied+Finertial)=0,
where:
  • F applied F applied F_(“applied”)\mathbf{F}_\text{applied}Fapplied is the vector sum of all applied forces acting on the system,
  • F inertial = m a F inertial = m a F_(“inertial”)=-ma\mathbf{F}_\text{inertial} = -m \mathbf{a}Finertial=ma is the inertial force (negative of mass times acceleration),
  • m m mmm is the mass of the particle, and a a a\mathbf{a}a is its acceleration.
D’Alembert’s principle essentially transforms a dynamic problem into a static equilibrium problem by introducing inertial forces.

Proof

Step 1: Newton’s Second Law

For a system of n n nnn particles, the motion of each particle is governed by Newton’s second law:
F i = m i a i , i = 1 , 2 , , n , F i = m i a i , i = 1 , 2 , , n , F_(i)=m_(i)a_(i),quad i=1,2,dots,n,\mathbf{F}_i = m_i \mathbf{a}_i, \quad i = 1, 2, \ldots, n,Fi=miai,i=1,2,,n,
where:
  • F i F i F_(i)\mathbf{F}_iFi is the total force acting on the i i iii-th particle,
  • m i m i m_(i)m_imi is the mass of the i i iii-th particle,
  • a i a i a_(i)\mathbf{a}_iai is the acceleration of the i i iii-th particle.
Rewriting:
(1) F i m i a i = 0. (1) F i m i a i = 0. {:(1)F_(i)-m_(i)a_(i)=0.:}\mathbf{F}_i – m_i \mathbf{a}_i = 0. \tag{1}(1)Fimiai=0.

Step 2: Include Inertial Forces

Introduce the inertial force acting on the i i iii-th particle:
F inertial,i = m i a i . F inertial,i = m i a i . F_(“inertial,i”)=-m_(i)a_(i).\mathbf{F}_\text{inertial,i} = -m_i \mathbf{a}_i.Finertial,i=miai.
Substitute this into equation (1):
(2) F i + F inertial,i = 0. (2) F i + F inertial,i = 0. {:(2)F_(i)+F_(“inertial,i”)=0.:}\mathbf{F}_i + \mathbf{F}_\text{inertial,i} = 0. \tag{2}(2)Fi+Finertial,i=0.
This equation shows that the total applied force F i F i F_(i)\mathbf{F}_iFi and the inertial force F inertial,i F inertial,i F_(“inertial,i”)\mathbf{F}_\text{inertial,i}Finertial,i are in equilibrium.

Step 3: Principle of Virtual Work

Consider a virtual displacement δ r i δ r i deltar_(i)\delta \mathbf{r}_iδri for the i i iii-th particle, which is consistent with the constraints of the system. The principle of virtual work states:
(3) i = 1 n ( F i + F inertial,i ) δ r i = 0. (3) i = 1 n F i + F inertial,i δ r i = 0. {:(3)sum_(i=1)^(n)(F_(i)+F_(“inertial,i”))*deltar_(i)=0.:}\sum_{i=1}^n \left( \mathbf{F}_i + \mathbf{F}_\text{inertial,i} \right) \cdot \delta \mathbf{r}_i = 0. \tag{3}(3)i=1n(Fi+Finertial,i)δri=0.
Substitute F inertial,i = m i a i F inertial,i = m i a i F_(“inertial,i”)=-m_(i)a_(i)\mathbf{F}_\text{inertial,i} = -m_i \mathbf{a}_iFinertial,i=miai into equation (3):
(4) i = 1 n ( F i m i a i ) δ r i = 0. (4) i = 1 n F i m i a i δ r i = 0. {:(4)sum_(i=1)^(n)(F_(i)-m_(i)a_(i))*deltar_(i)=0.:}\sum_{i=1}^n \left( \mathbf{F}_i – m_i \mathbf{a}_i \right) \cdot \delta \mathbf{r}_i = 0. \tag{4}(4)i=1n(Fimiai)δri=0.

Step 4: Generalize for the System

Equation (4) implies that for the entire system, the total virtual work done by the applied forces and inertial forces vanishes:
i = 1 n ( F i + F inertial,i ) δ r i = 0. i = 1 n F i + F inertial,i δ r i = 0. sum_(i=1)^(n)(F_(i)+F_(“inertial,i”))*deltar_(i)=0.\sum_{i=1}^n \left( \mathbf{F}_i + \mathbf{F}_\text{inertial,i} \right) \cdot \delta \mathbf{r}_i = 0.i=1n(Fi+Finertial,i)δri=0.
This is the mathematical statement of D’Alembert’s principle, which states that the dynamic system can be treated as a system in static equilibrium when inertial forces are included.

Applications of D’Alembert’s Principle

  1. Rigid Body Dynamics: Simplifies the analysis of rotating and translating bodies.
  2. Lagrangian Mechanics: Provides the foundation for deriving Lagrange’s equations of motion.
  3. Constraint Systems: Easily handles systems with holonomic or non-holonomic constraints.

Conclusion

D’Alembert’s principle transforms a dynamic problem into a static equilibrium problem by introducing inertial forces, enabling a powerful method for analyzing mechanical systems. It is particularly useful in constrained motion and forms the basis of advanced formulations like Lagrangian and Hamiltonian mechanics.

Question:-03

A uniform rod of mass m m mmm is placed at right angles to a smooth plane of inclination α α alpha\alphaα with one end in contact with it. The rod is then released. Show that when the inclination to the plane is ϕ ϕ phi\phiϕ, the reaction of the plane will be { 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 } m g cos α 3 ( 1 sin ϕ ) 2 + 1 1 + 3 cos 2 ϕ 2 m g cos α {(3(1-sin phi)^(2)+1)/((1+3cos^(2)phi)^(2))}mg cos alpha\left\{\frac{3(1-\sin \phi)^2+1}{\left(1+3 \cos ^2 \phi\right)^2}\right\} m g \cos \alpha{3(1sinϕ)2+1(1+3cos2ϕ)2}mgcosα.

Answer:

We are analyzing the motion of a uniform rod B C B C BCBCBC of mass m m mmm and length 2 a 2 a 2a2a2a, placed at right angles to a smooth inclined plane A B A B ABABAB. The inclined plane is at an angle α α alpha\alphaα with the horizontal. The rod is initially at rest, and its center of mass G G GGG is located at a distance B G = a B G = a BG=aBG = aBG=a from point B B BBB. The vertical height of the center of mass G G GGG above the inclined plane is:
G H = a cos α (from B G H ) . G H = a cos α (from B G H ) . GH=a cos alphaquad(from (/_\BGH)”)”.GH = a \cos \alpha \quad \text{(from \(\triangle BGH\))}.GH=acosα(from BGH).
When the rod is released, it begins to rotate and slide. After a time t t ttt, let the rod make an angle ϕ ϕ phi\phiϕ with the inclined plane A B A B ABABAB. We analyze the motion of the center of mass G G GGG and the forces acting on the rod.
original image

Coordinates of the Center of Mass:

We define the axes with B A B A BABABA as the horizontal axis and the perpendicular to B A B A BABABA as the vertical axis. The coordinates of the center of mass G G GGG are:
x = B N = a cos ϕ , y = G N = a sin ϕ (from B G N ) . x = B N = a cos ϕ , y = G N = a sin ϕ (from B G N ) . x=BN=a cos phi,quad y=GN=a sin phiquad(from (/_\BGN)”)”.x = BN = a \cos \phi, \quad y = GN = a \sin \phi \quad \text{(from \(\triangle BGN\))}.x=BN=acosϕ,y=GN=asinϕ(from BGN).

Equation of Motion Perpendicular to the Plane:

The motion of the center of mass G G GGG is constrained to be perpendicular to the inclined plane A B A B ABABAB. The equation of motion along the y y yyy-direction is:
m y ¨ = m ( a cos ϕ ϕ ¨ a sin ϕ ϕ ˙ 2 ) = R m g cos α m y ¨ = m a cos ϕ ϕ ¨ a sin ϕ ϕ ˙ 2 = R m g cos α my^(¨)=m(a cos phi(phi^(¨))-a sin phiphi^(˙)^(2))=-R-mg cos alpham \ddot{y} = m \left(a \cos \phi \ddot{\phi} – a \sin \phi \dot{\phi}^2 \right) = -R – mg \cos \alphamy¨=m(acosϕϕ¨asinϕϕ˙2)=Rmgcosα
where:
  • R R RRR is the normal reaction force exerted by the inclined plane on the rod,
  • m g cos α m g cos α mg cos alphamg \cos \alphamgcosα is the component of the gravitational force perpendicular to the plane.

Moment About the Center of Mass G G GGG:

Taking moments about the center of mass G G GGG, the equation of rotational motion is:
m a 2 3 ϕ ¨ = R a cos ϕ m a 2 3 ϕ ¨ = R a cos ϕ m(a^(2))/(3)phi^(¨)=-Ra cos phim \frac{a^2}{3} \ddot{\phi} = -R a \cos \phima23ϕ¨=Racosϕ
where a 2 3 a 2 3 (a^(2))/(3)\frac{a^2}{3}a23 is the moment of inertia of the rod about its center.

Vertical Height of the Center of Mass:

Initially, the vertical height of the center of mass G G GGG above the inclined plane was:
G H = a cos α G H = a cos α GH=a cos alphaGH = a \cos \alphaGH=acosα
At any time t t ttt, the vertical height of G G GGG above the inclined plane is:
G Q = G N cos α = ( a sin ϕ ) cos α G Q = G N cos α = ( a sin ϕ ) cos α GQ=GN cos alpha=(a sin phi)cos alphaGQ = GN \cos \alpha = (a \sin \phi) \cos \alphaGQ=GNcosα=(asinϕ)cosα
The distance fallen by G G GGG in the downward direction is:
Distance fallen = G H G Q = a cos α a sin ϕ cos α = a cos α ( 1 sin ϕ ) Distance fallen = G H G Q = a cos α a sin ϕ cos α = a cos α ( 1 sin ϕ ) “Distance fallen”=GH-GQ=a cos alpha-a sin phi cos alpha=a cos alpha(1-sin phi)\text{Distance fallen} = GH – GQ = a \cos \alpha – a \sin \phi \cos \alpha = a \cos \alpha (1 – \sin \phi)Distance fallen=GHGQ=acosαasinϕcosα=acosα(1sinϕ)

Energy Equation:

The total energy of the system is conserved. The work done by gravity is equal to the kinetic energy of the rod. The energy equation is:
m 2 [ v 2 + k 2 ϕ ˙ 2 ] = Work done by gravity m 2 v 2 + k 2 ϕ ˙ 2 = Work done by gravity (m)/(2)[v^(2)+k^(2)phi^(˙)^(2)]=”Work done by gravity”\frac{m}{2} \left[v^2 + k^2 \dot{\phi}^2 \right] = \text{Work done by gravity}m2[v2+k2ϕ˙2]=Work done by gravity
where:
  • v 2 = y ˙ 2 = ( a cos ϕ ϕ ˙ ) 2 v 2 = y ˙ 2 = ( a cos ϕ ϕ ˙ ) 2 v^(2)=y^(˙)^(2)=(a cos phiphi^(˙))^(2)v^2 = \dot{y}^2 = (a \cos \phi \dot{\phi})^2v2=y˙2=(acosϕϕ˙)2,
  • k 2 ϕ ˙ 2 = a 2 3 ϕ ˙ 2 k 2 ϕ ˙ 2 = a 2 3 ϕ ˙ 2 k^(2)phi^(˙)^(2)=(a^(2))/(3)phi^(˙)^(2)k^2 \dot{\phi}^2 = \frac{a^2}{3} \dot{\phi}^2k2ϕ˙2=a23ϕ˙2 is the rotational kinetic energy.
Substituting these expressions, the energy equation becomes:
m 2 [ a 2 cos 2 ϕ ϕ ˙ 2 + a 2 3 ϕ ˙ 2 ] = m g a cos α ( 1 sin ϕ ) m 2 a 2 cos 2 ϕ ϕ ˙ 2 + a 2 3 ϕ ˙ 2 = m g a cos α ( 1 sin ϕ ) (m)/(2)[a^(2)cos^(2)phiphi^(˙)^(2)+(a^(2))/(3)phi^(˙)^(2)]=mga cos alpha(1-sin phi)\frac{m}{2} \left[a^2 \cos^2 \phi \dot{\phi}^2 + \frac{a^2}{3} \dot{\phi}^2 \right] = m g a \cos \alpha (1 – \sin \phi)m2[a2cos2ϕϕ˙2+a23ϕ˙2]=mgacosα(1sinϕ)
Simplifying:
m a 2 6 [ 3 cos 2 ϕ + 1 ] ϕ ˙ 2 = m g a cos α ( 1 sin ϕ ) m a 2 6 3 cos 2 ϕ + 1 ϕ ˙ 2 = m g a cos α ( 1 sin ϕ ) (ma^(2))/(6)[3cos^(2)phi+1]phi^(˙)^(2)=mga cos alpha(1-sin phi)\frac{m a^2}{6} \left[3 \cos^2 \phi + 1 \right] \dot{\phi}^2 = m g a \cos \alpha (1 – \sin \phi)ma26[3cos2ϕ+1]ϕ˙2=mgacosα(1sinϕ)
Solving for ϕ ˙ 2 ϕ ˙ 2 phi^(˙)^(2)\dot{\phi}^2ϕ˙2:
ϕ ˙ 2 = 6 g a ( 1 sin ϕ ) ( 1 + 3 cos 2 ϕ ) cos α ϕ ˙ 2 = 6 g a ( 1 sin ϕ ) ( 1 + 3 cos 2 ϕ ) cos α phi^(˙)^(2)=(6g)/(a)((1-sin phi))/((1+3cos^(2)phi))cos alpha\dot{\phi}^2 = \frac{6g}{a} \frac{(1 – \sin \phi)}{(1 + 3 \cos^2 \phi)} \cos \alphaϕ˙2=6ga(1sinϕ)(1+3cos2ϕ)cosα

Angular Acceleration:

Differentiating ϕ ˙ 2 ϕ ˙ 2 phi^(˙)^(2)\dot{\phi}^2ϕ˙2 with respect to time t t ttt, we get:
2 ϕ ˙ ϕ ¨ = 6 g a cos α [ ( 1 + 3 cos 2 ϕ ) ( cos ϕ ϕ ˙ ) ( 1 sin ϕ ) ( 6 cos ϕ sin ϕ ϕ ˙ ) ( 1 + 3 cos 2 ϕ ) 2 ] 2 ϕ ˙ ϕ ¨ = 6 g a cos α ( 1 + 3 cos 2 ϕ ) ( cos ϕ ϕ ˙ ) ( 1 sin ϕ ) ( 6 cos ϕ sin ϕ ϕ ˙ ) ( 1 + 3 cos 2 ϕ ) 2 2phi^(˙)phi^(¨)=(6g)/(a)cos alpha[((1+3cos^(2)phi)(-cos phi(phi^(˙)))-(1-sin phi)(-6cos phi sin phi(phi^(˙))))/((1+3cos^(2)phi)^(2))]2 \dot{\phi} \ddot{\phi} = \frac{6g}{a} \cos \alpha \left[\frac{(1 + 3 \cos^2 \phi)(-\cos \phi \dot{\phi}) – (1 – \sin \phi)(-6 \cos \phi \sin \phi \dot{\phi})}{(1 + 3 \cos^2 \phi)^2} \right]2ϕ˙ϕ¨=6gacosα[(1+3cos2ϕ)(cosϕϕ˙)(1sinϕ)(6cosϕsinϕϕ˙)(1+3cos2ϕ)2]
Dividing through by 2 ϕ ˙ 2 ϕ ˙ 2phi^(˙)2 \dot{\phi}2ϕ˙ and simplifying:
ϕ ¨ = 3 g cos α cos ϕ a ( 1 + 3 cos 2 ϕ ) 2 [ 1 + 3 ( 1 sin ϕ ) 2 ] ϕ ¨ = 3 g cos α cos ϕ a ( 1 + 3 cos 2 ϕ ) 2 1 + 3 ( 1 sin ϕ ) 2 phi^(¨)=-(3g cos alpha cos phi)/(a(1+3cos^(2)phi)^(2))[1+3(1-sin phi)^(2)]\ddot{\phi} = -\frac{3g \cos \alpha \cos \phi}{a (1 + 3 \cos^2 \phi)^2} \left[1 + 3 (1 – \sin \phi)^2 \right]ϕ¨=3gcosαcosϕa(1+3cos2ϕ)2[1+3(1sinϕ)2]

Reaction Force R R RRR:

Substituting the value of ϕ ¨ ϕ ¨ phi^(¨)\ddot{\phi}ϕ¨ into the moment equation, we find the normal reaction force R R RRR:
R = m g { 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 } cos α R = m g 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 cos α R=mg{(3(1-sin phi)^(2)+1)/((1+3cos^(2)phi)^(2))}cos alphaR = mg \left\{\frac{3 (1 – \sin \phi)^2 + 1}{(1 + 3 \cos^2 \phi)^2} \right\} \cos \alphaR=mg{3(1sinϕ)2+1(1+3cos2ϕ)2}cosα

Final Results:

  1. Angular Velocity:
    ϕ ˙ 2 = 6 g a ( 1 sin ϕ ) ( 1 + 3 cos 2 ϕ ) cos α ϕ ˙ 2 = 6 g a ( 1 sin ϕ ) ( 1 + 3 cos 2 ϕ ) cos α phi^(˙)^(2)=(6g)/(a)((1-sin phi))/((1+3cos^(2)phi))cos alpha\dot{\phi}^2 = \frac{6g}{a} \frac{(1 – \sin \phi)}{(1 + 3 \cos^2 \phi)} \cos \alphaϕ˙2=6ga(1sinϕ)(1+3cos2ϕ)cosα
  2. Angular Acceleration:
    ϕ ¨ = 3 g cos α cos ϕ a ( 1 + 3 cos 2 ϕ ) 2 [ 1 + 3 ( 1 sin ϕ ) 2 ] ϕ ¨ = 3 g cos α cos ϕ a ( 1 + 3 cos 2 ϕ ) 2 1 + 3 ( 1 sin ϕ ) 2 phi^(¨)=-(3g cos alpha cos phi)/(a(1+3cos^(2)phi)^(2))[1+3(1-sin phi)^(2)]\ddot{\phi} = -\frac{3g \cos \alpha \cos \phi}{a (1 + 3 \cos^2 \phi)^2} \left[1 + 3 (1 – \sin \phi)^2 \right]ϕ¨=3gcosαcosϕa(1+3cos2ϕ)2[1+3(1sinϕ)2]
  3. Normal Reaction Force:
    R = m g { 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 } cos α R = m g 3 ( 1 sin ϕ ) 2 + 1 ( 1 + 3 cos 2 ϕ ) 2 cos α R=mg{(3(1-sin phi)^(2)+1)/((1+3cos^(2)phi)^(2))}cos alphaR = mg \left\{\frac{3 (1 – \sin \phi)^2 + 1}{(1 + 3 \cos^2 \phi)^2} \right\} \cos \alphaR=mg{3(1sinϕ)2+1(1+3cos2ϕ)2}cosα
These equations describe the motion of the rod and the forces acting on it as it slides and rotates on the smooth inclined plane.

Question:-04

A dice in the form of a portion of parabola bounded by its latus rectum and its axis has its vertex A fixed and is stuck by a blow through the end of its latus rectum perpendicular to its plane. Show that the dice starts revolving about a line through A inclined at an angle tan 1 ( 14 25 ) tan 1 14 25 tan^(-1)((14)/(25))\tan ^{-1}\left(\frac{14}{25}\right)tan1(1425) to the axis.

Answer:

We are analyzing the moment of inertia (M.I.) and the dynamics of a parabolic portion in the Z X Z X ZXZXZX-plane. The equation of the parabola is given as:
z 2 = 4 a x z 2 = 4 a x z^(2)=4axz^2 = 4axz2=4ax
where a a aaa is the parameter of the parabola.
Let the moments of inertia of the parabolic portion about the axes A X A X AXAXAX, A Y A Y AYAYAY, and A Z A Z AZAZAZ be A A AAA, B B BBB, and C C CCC, respectively. Additionally, let D D DDD, E E EEE, and F F FFF represent the products of inertia about these axes.

original image

Moments of Inertia:

1. Moment of Inertia About A X A X AXAXAX:

The moment of inertia about the A X A X AXAXAX-axis is calculated as:
A = 0 a z d x ρ 1 3 z 2 A = 0 a z d x ρ 1 3 z 2 A=int_(0)^(a)zdxrho*(1)/(3)z^(2)A = \int_0^a z \, dx \, \rho \cdot \frac{1}{3} z^2A=0azdxρ13z2
Substituting the equation of the parabola z 2 = 4 a x z 2 = 4 a x z^(2)=4axz^2 = 4axz2=4ax, we get:
A = 16 15 a 4 ρ A = 16 15 a 4 ρ A=(16)/(15)a^(4)rhoA = \frac{16}{15} a^4 \rhoA=1615a4ρ

2. Moment of Inertia About A Z A Z AZAZAZ:

The moment of inertia about the A Z A Z AZAZAZ-axis is:
C = 0 a ρ z d x x 2 C = 0 a ρ z d x x 2 C=int_(0)^(a)rho zdx*x^(2)C = \int_0^a \rho z \, dx \cdot x^2C=0aρzdxx2
Substituting the equation of the parabola and solving:
C = 4 7 a 4 ρ C = 4 7 a 4 ρ C=(4)/(7)a^(4)rhoC = \frac{4}{7} a^4 \rhoC=47a4ρ

3. Moment of Inertia About A Y A Y AYAYAY:

The moment of inertia about the A Y A Y AYAYAY-axis is the sum of the moments of inertia about A X A X AXAXAX and A Z A Z AZAZAZ:
B = A + C = 16 15 a 4 ρ + 4 7 a 4 ρ = 172 105 a 4 ρ B = A + C = 16 15 a 4 ρ + 4 7 a 4 ρ = 172 105 a 4 ρ B=A+C=(16)/(15)a^(4)rho+(4)/(7)a^(4)rho=(172)/(105)a^(4)rhoB = A + C = \frac{16}{15} a^4 \rho + \frac{4}{7} a^4 \rho = \frac{172}{105} a^4 \rhoB=A+C=1615a4ρ+47a4ρ=172105a4ρ

Products of Inertia:

1. Products of Inertia D D DDD, E E EEE, and F F FFF:

For the parabolic portion, the products of inertia about the axes are:
D = 0 , F = 0 D = 0 , F = 0 D=0,quad F=0D = 0, \quad F = 0D=0,F=0
The product of inertia E E EEE is calculated as:
E = 0 a ρ z d x x 1 2 z E = 0 a ρ z d x x 1 2 z E=int_(0)^(a)rho zdx*x*(1)/(2)zE = \int_0^a \rho z \, dx \cdot x \cdot \frac{1}{2} zE=0aρzdxx12z
Substituting the equation of the parabola and solving:
E = 2 3 a 4 ρ E = 2 3 a 4 ρ E=(2)/(3)a^(4)rhoE = \frac{2}{3} a^4 \rhoE=23a4ρ

Using Euler’s Equations for Impulsive Forces:

Euler’s equations for impulsive forces are applied to the system. The equations are:
  1. For rotation about the A X A X AXAXAX-axis:
    16 15 ρ a 4 w x 2 3 a 4 ρ w z = P 2 a 16 15 ρ a 4 w x 2 3 a 4 ρ w z = P 2 a (16)/(15)rhoa^(4)w_(x)^(‘)-(2)/(3)a^(4)rhow_(z)^(‘)=-P*2a\frac{16}{15} \rho a^4 w_x’ – \frac{2}{3} a^4 \rho w_z’ = -P \cdot 2a1615ρa4wx23a4ρwz=P2a
  2. For rotation about the A Y A Y AYAYAY-axis:
    172 105 ρ a 4 w y = 0 172 105 ρ a 4 w y = 0 (172)/(105)rhoa^(4)w_(y)^(‘)=0\frac{172}{105} \rho a^4 w_y’ = 0172105ρa4wy=0
    Since w y = 0 w y = 0 w_(y)^(‘)=0w_y’ = 0wy=0, there is no rotation about the A Y A Y AYAYAY-axis.
  3. For rotation about the A Z A Z AZAZAZ-axis:
    4 7 ρ a 4 w z 2 3 ρ a 4 w x = P a 4 7 ρ a 4 w z 2 3 ρ a 4 w x = P a (4)/(7)rhoa^(4)w_(z)^(‘)-(2)/(3)rhoa^(4)w_(x)^(‘)=P*a\frac{4}{7} \rho a^4 w_z’ – \frac{2}{3} \rho a^4 w_x’ = P \cdot a47ρa4wz23ρa4wx=Pa

Eliminating P P PPP:

From equations (1) and (3), we eliminate P P PPP to find the relationship between w x w x w_(x)^(‘)w_x’wx and w z w z w_(z)^(‘)w_z’wz. Solving these equations:
25 w z = 14 w x 25 w z = 14 w x 25w_(z)^(‘)=14w_(x)^(‘)25 w_z’ = 14 w_x’25wz=14wx

Angle of Rotation:

If the axis of rotation makes an angle ϕ ϕ phi\phiϕ with the axis of the parabola, then:
tan ϕ = w z w x = 14 25 tan ϕ = w z w x = 14 25 tan phi=(w_(z)^(‘))/(w_(x)^(‘))=(14)/(25)\tan \phi = \frac{w_z’}{w_x’} = \frac{14}{25}tanϕ=wzwx=1425
Thus:
ϕ = tan 1 ( 14 25 ) ϕ = tan 1 14 25 phi=tan^(-1)((14)/(25))\phi = \tan^{-1} \left(\frac{14}{25}\right)ϕ=tan1(1425)


Question:-05

Use Lagrange’s equations to find the equation of motion of a simple pendulum.

Answer:

Equation of Motion of a Simple Pendulum Using Lagrange’s Equations

A simple pendulum consists of a mass m m mmm attached to a string of length l l lll, which is fixed at the other end. The pendulum swings in a vertical plane under the influence of gravity.

Step 1: Generalized Coordinate

The motion of the pendulum can be described using a single generalized coordinate, θ θ theta\thetaθ, the angle the string makes with the vertical.

Step 2: Kinetic Energy ( T T TTT)

The kinetic energy of the pendulum is purely due to the motion of the mass m m mmm. The velocity of the mass is given by:
v = l d θ d t = l θ ˙ , v = l d θ d t = l θ ˙ , v=l(d theta)/(dt)=ltheta^(˙),v = l \frac{d\theta}{dt} = l \dot{\theta},v=ldθdt=lθ˙,
where θ ˙ = d θ d t θ ˙ = d θ d t theta^(˙)=(d theta)/(dt)\dot{\theta} = \frac{d\theta}{dt}θ˙=dθdt is the angular velocity.
The kinetic energy is:
T = 1 2 m v 2 = 1 2 m ( l θ ˙ ) 2 = 1 2 m l 2 θ ˙ 2 . T = 1 2 m v 2 = 1 2 m ( l θ ˙ ) 2 = 1 2 m l 2 θ ˙ 2 . T=(1)/(2)mv^(2)=(1)/(2)m(ltheta^(˙))^(2)=(1)/(2)ml^(2)theta^(˙)^(2).T = \frac{1}{2} m v^2 = \frac{1}{2} m (l \dot{\theta})^2 = \frac{1}{2} m l^2 \dot{\theta}^2.T=12mv2=12m(lθ˙)2=12ml2θ˙2.

Step 3: Potential Energy ( V V VVV)

The potential energy is due to gravity. Let the lowest point of the swing (where θ = 0 θ = 0 theta=0\theta = 0θ=0) be the reference point for potential energy. The height of the mass above this point is:
h = l ( 1 cos θ ) . h = l ( 1 cos θ ) . h=l(1-cos theta).h = l (1 – \cos\theta).h=l(1cosθ).
The potential energy is:
V = m g h = m g l ( 1 cos θ ) . V = m g h = m g l ( 1 cos θ ) . V=mgh=mgl(1-cos theta).V = m g h = m g l (1 – \cos\theta).V=mgh=mgl(1cosθ).

Step 4: Lagrangian ( L L LLL)

The Lagrangian is the difference between the kinetic and potential energies:
L = T V . L = T V . L=T-V.L = T – V.L=TV.
Substitute the expressions for T T TTT and V V VVV:
L = 1 2 m l 2 θ ˙ 2 m g l ( 1 cos θ ) . L = 1 2 m l 2 θ ˙ 2 m g l ( 1 cos θ ) . L=(1)/(2)ml^(2)theta^(˙)^(2)-mgl(1-cos theta).L = \frac{1}{2} m l^2 \dot{\theta}^2 – m g l (1 – \cos\theta).L=12ml2θ˙2mgl(1cosθ).
Simplify:
L = 1 2 m l 2 θ ˙ 2 + m g l cos θ m g l . L = 1 2 m l 2 θ ˙ 2 + m g l cos θ m g l . L=(1)/(2)ml^(2)theta^(˙)^(2)+mgl cos theta-mgl.L = \frac{1}{2} m l^2 \dot{\theta}^2 + m g l \cos\theta – m g l.L=12ml2θ˙2+mglcosθmgl.
The term m g l m g l -mgl-m g lmgl is a constant and can be ignored in the equations of motion since it does not affect the dynamics:
L = 1 2 m l 2 θ ˙ 2 + m g l cos θ . L = 1 2 m l 2 θ ˙ 2 + m g l cos θ . L=(1)/(2)ml^(2)theta^(˙)^(2)+mgl cos theta.L = \frac{1}{2} m l^2 \dot{\theta}^2 + m g l \cos\theta.L=12ml2θ˙2+mglcosθ.

Step 5: Lagrange’s Equation

Lagrange’s equation is:
d d t ( L θ ˙ ) L θ = 0. d d t L θ ˙ L θ = 0. (d)/(dt)((del L)/(del(theta^(˙))))-(del L)/(del theta)=0.\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) – \frac{\partial L}{\partial \theta} = 0.ddt(Lθ˙)Lθ=0.

1. Compute L θ ˙ L θ ˙ (del L)/(del(theta^(˙)))\frac{\partial L}{\partial \dot{\theta}}Lθ˙:

L θ ˙ = θ ˙ ( 1 2 m l 2 θ ˙ 2 + m g l cos θ ) = m l 2 θ ˙ . L θ ˙ = θ ˙ 1 2 m l 2 θ ˙ 2 + m g l cos θ = m l 2 θ ˙ . (del L)/(del(theta^(˙)))=(del)/(del(theta^(˙)))((1)/(2)ml^(2)theta^(˙)^(2)+mgl cos theta)=ml^(2)theta^(˙).\frac{\partial L}{\partial \dot{\theta}} = \frac{\partial}{\partial \dot{\theta}} \left( \frac{1}{2} m l^2 \dot{\theta}^2 + m g l \cos\theta \right) = m l^2 \dot{\theta}.Lθ˙=θ˙(12ml2θ˙2+mglcosθ)=ml2θ˙.

2. Compute d d t ( L θ ˙ ) d d t L θ ˙ (d)/(dt)((del L)/(del(theta^(˙))))\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right)ddt(Lθ˙):

d d t ( L θ ˙ ) = d d t ( m l 2 θ ˙ ) = m l 2 θ ¨ . d d t L θ ˙ = d d t m l 2 θ ˙ = m l 2 θ ¨ . (d)/(dt)((del L)/(del(theta^(˙))))=(d)/(dt)(ml^(2)(theta^(˙)))=ml^(2)theta^(¨).\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left( m l^2 \dot{\theta} \right) = m l^2 \ddot{\theta}.ddt(Lθ˙)=ddt(ml2θ˙)=ml2θ¨.

3. Compute L θ L θ (del L)/(del theta)\frac{\partial L}{\partial \theta}Lθ:

L θ = θ ( 1 2 m l 2 θ ˙ 2 + m g l cos θ ) = m g l sin θ . L θ = θ 1 2 m l 2 θ ˙ 2 + m g l cos θ = m g l sin θ . (del L)/(del theta)=(del)/(del theta)((1)/(2)ml^(2)theta^(˙)^(2)+mgl cos theta)=-mgl sin theta.\frac{\partial L}{\partial \theta} = \frac{\partial}{\partial \theta} \left( \frac{1}{2} m l^2 \dot{\theta}^2 + m g l \cos\theta \right) = -m g l \sin\theta.Lθ=θ(12ml2θ˙2+mglcosθ)=mglsinθ.

Step 6: Lagrange’s Equation

Substitute into the Lagrange equation:
d d t ( L θ ˙ ) L θ = 0. d d t L θ ˙ L θ = 0. (d)/(dt)((del L)/(del(theta^(˙))))-(del L)/(del theta)=0.\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) – \frac{\partial L}{\partial \theta} = 0.ddt(Lθ˙)Lθ=0.
m l 2 θ ¨ ( m g l sin θ ) = 0. m l 2 θ ¨ ( m g l sin θ ) = 0. ml^(2)theta^(¨)-(-mgl sin theta)=0.m l^2 \ddot{\theta} – (-m g l \sin\theta) = 0.ml2θ¨(mglsinθ)=0.
Simplify:
m l 2 θ ¨ + m g l sin θ = 0. m l 2 θ ¨ + m g l sin θ = 0. ml^(2)theta^(¨)+mgl sin theta=0.m l^2 \ddot{\theta} + m g l \sin\theta = 0.ml2θ¨+mglsinθ=0.
Cancel m m mmm (since m 0 m 0 m!=0m \neq 0m0):
l 2 θ ¨ + g l sin θ = 0. l 2 θ ¨ + g l sin θ = 0. l^(2)theta^(¨)+gl sin theta=0.l^2 \ddot{\theta} + g l \sin\theta = 0.l2θ¨+glsinθ=0.
Divide by l 2 l 2 l^(2)l^2l2:
(1) θ ¨ + g l sin θ = 0. (1) θ ¨ + g l sin θ = 0. {:(1)theta^(¨)+(g)/(l)sin theta=0.:}\ddot{\theta} + \frac{g}{l} \sin\theta = 0. \tag{1}(1)θ¨+glsinθ=0.

Step 7: Small Angle Approximation (Optional)

For small oscillations ( sin θ θ sin θ θ sin theta~~theta\sin\theta \approx \thetasinθθ in radians), equation (1) simplifies to:
θ ¨ + g l θ = 0. θ ¨ + g l θ = 0. theta^(¨)+(g)/(l)theta=0.\ddot{\theta} + \frac{g}{l} \theta = 0.θ¨+glθ=0.
This is the equation of simple harmonic motion with angular frequency:
ω = g l . ω = g l . omega=sqrt((g)/(l)).\omega = \sqrt{\frac{g}{l}}.ω=gl.

Final Equation:

The equation of motion for a simple pendulum is:
θ ¨ + g l sin θ = 0. θ ¨ + g l sin θ = 0. theta^(¨)+(g)/(l)sin theta=0.\ddot{\theta} + \frac{g}{l} \sin\theta = 0.θ¨+glsinθ=0.

Question:-06(a)

Three equal uniform rods AB , BC , DC AB , BC , DC AB,BC,DC\mathrm{AB}, \mathrm{BC}, \mathrm{DC}AB,BC,DC are smoothly jointed at B and C and the ends A and D are fastened to smooth fixed points whose distance apart is equal to the length of either rod. The frame being at rest in the form of a square. A blow I I III is given perpendicular to AB at its middle point and in the plane of the square. Show that the energy set up is 3 I 2 40 m 3 I 2 40 m (3I^(2))/(40(m))\frac{3 I^2}{40 \mathrm{~m}}3I240 m, where m m mmm is the mass of each rod. Find also the blows at the joints A and C.

Answer:

We are analyzing the motion of a system consisting of three identical rods A B A B ABABAB, B C B C BCBCBC, and C D C D CDCDCD, each of mass m m mmm and length 2 a 2 a 2a2a2a. These rods are arranged to form a square, with A A AAA and D D DDD fixed such that A D = 2 a A D = 2 a AD=2aAD = 2aAD=2a. A blow I I III is applied at the midpoint G 1 G 1 G_(1)G_1G1 of rod A B A B ABABAB, perpendicular to the rod. This causes the rods A B A B ABABAB and C D C D CDCDCD to rotate through the same angle θ θ theta\thetaθ, while rod B C B C BCBCBC remains parallel to A D A D ADADAD.
original image

Motion of the Rods:

  • After the blow, the velocities of the rods are as follows:
    • Rod A B A B ABABAB: Velocity = a θ ˙ a θ ˙ atheta^(˙)a \dot{\theta}aθ˙
    • Rod C D C D CDCDCD: Velocity = a θ ˙ a θ ˙ atheta^(˙)a \dot{\theta}aθ˙
    • Rod B C B C BCBCBC: Velocity = 2 a θ ˙ 2 a θ ˙ 2atheta^(˙)2a \dot{\theta}2aθ˙

Kinetic Energy of the System:

The total kinetic energy ( T T TTT) of the system just after the blow is the sum of the kinetic energies of the three rods:
T = K.E. of rod A B + K.E. of rod C D + K.E. of rod B C T = K.E. of rod A B + K.E. of rod C D + K.E. of rod B C T=”K.E. of rod “AB+”K.E. of rod “CD+”K.E. of rod “BCT = \text{K.E. of rod } AB + \text{K.E. of rod } CD + \text{K.E. of rod } BCT=K.E. of rod AB+K.E. of rod CD+K.E. of rod BC
Since rods A B A B ABABAB and C D C D CDCDCD are identical, their kinetic energies are equal. Thus:
T = 2 × ( K.E. of rod A B ) + K.E. of rod B C T = 2 × ( K.E. of rod A B ) + K.E. of rod B C T=2xx(“K.E. of rod “AB)+”K.E. of rod “BCT = 2 \times (\text{K.E. of rod } AB) + \text{K.E. of rod } BCT=2×(K.E. of rod AB)+K.E. of rod BC

Kinetic Energy of Rod A B A B ABABAB:

The kinetic energy of a rod is the sum of its translational and rotational kinetic energies. For rod A B A B ABABAB:
  • Translational K.E. = m 2 ( a θ ˙ ) 2 m 2 ( a θ ˙ ) 2 (m)/(2)(atheta^(˙))^(2)\frac{m}{2} (a \dot{\theta})^2m2(aθ˙)2
  • Rotational K.E. = 1 2 I ω 2 = 1 2 ( m ( 2 a ) 2 3 ) θ ˙ 2 = m a 2 3 θ ˙ 2 1 2 I ω 2 = 1 2 m ( 2 a ) 2 3 θ ˙ 2 = m a 2 3 θ ˙ 2 (1)/(2)Iomega^(2)=(1)/(2)((m(2a)^(2))/(3))theta^(˙)^(2)=(ma^(2))/(3)theta^(˙)^(2)\frac{1}{2} I \omega^2 = \frac{1}{2} \left(\frac{m (2a)^2}{3}\right) \dot{\theta}^2 = \frac{m a^2}{3} \dot{\theta}^212Iω2=12(m(2a)23)θ˙2=ma23θ˙2
Thus:
K.E. of rod A B = m 2 a 2 θ ˙ 2 + m a 2 3 θ ˙ 2 = 5 6 m a 2 θ ˙ 2 K.E. of rod A B = m 2 a 2 θ ˙ 2 + m a 2 3 θ ˙ 2 = 5 6 m a 2 θ ˙ 2 “K.E. of rod “AB=(m)/(2)a^(2)theta^(˙)^(2)+(ma^(2))/(3)theta^(˙)^(2)=(5)/(6)ma^(2)theta^(˙)^(2)\text{K.E. of rod } AB = \frac{m}{2} a^2 \dot{\theta}^2 + \frac{m a^2}{3} \dot{\theta}^2 = \frac{5}{6} m a^2 \dot{\theta}^2K.E. of rod AB=m2a2θ˙2+ma23θ˙2=56ma2θ˙2

Kinetic Energy of Rod B C B C BCBCBC:

For rod B C B C BCBCBC, which moves purely translationally:
K.E. of rod B C = m 2 ( 2 a θ ˙ ) 2 = 2 m a 2 θ ˙ 2 K.E. of rod B C = m 2 ( 2 a θ ˙ ) 2 = 2 m a 2 θ ˙ 2 “K.E. of rod “BC=(m)/(2)(2atheta^(˙))^(2)=2ma^(2)theta^(˙)^(2)\text{K.E. of rod } BC = \frac{m}{2} (2a \dot{\theta})^2 = 2m a^2 \dot{\theta}^2K.E. of rod BC=m2(2aθ˙)2=2ma2θ˙2

Total Kinetic Energy:

Substituting the above results:
T = 2 × 5 6 m a 2 θ ˙ 2 + 2 m a 2 θ ˙ 2 = 10 6 m a 2 θ ˙ 2 + 2 m a 2 θ ˙ 2 = 10 3 m a 2 θ ˙ 2 T = 2 × 5 6 m a 2 θ ˙ 2 + 2 m a 2 θ ˙ 2 = 10 6 m a 2 θ ˙ 2 + 2 m a 2 θ ˙ 2 = 10 3 m a 2 θ ˙ 2 T=2xx(5)/(6)ma^(2)theta^(˙)^(2)+2ma^(2)theta^(˙)^(2)=(10)/(6)ma^(2)theta^(˙)^(2)+2ma^(2)theta^(˙)^(2)=(10)/(3)ma^(2)theta^(˙)^(2)T = 2 \times \frac{5}{6} m a^2 \dot{\theta}^2 + 2m a^2 \dot{\theta}^2 = \frac{10}{6} m a^2 \dot{\theta}^2 + 2m a^2 \dot{\theta}^2 = \frac{10}{3} m a^2 \dot{\theta}^2T=2×56ma2θ˙2+2ma2θ˙2=106ma2θ˙2+2ma2θ˙2=103ma2θ˙2

Virtual Work Done by the Impulse:

The virtual work done by the impulse I I III is given by:
δ u = I a δ θ δ u = I a δ θ delta u=I*a delta theta\delta u = I \cdot a \delta \thetaδu=Iaδθ

Lagrange’s Equation:

Before the impulse, the system was at rest, so the kinetic energy just before the impulse was zero. Using Lagrange’s equation:
( T θ ˙ ) 1 ( T θ ˙ ) 0 = Coefficient of δ θ in δ u T θ ˙ 1 T θ ˙ 0 = Coefficient of δ θ in δ u ((del T)/(del(theta^(˙))))_(1)-((del T)/(del(theta^(˙))))_(0)=”Coefficient of “delta theta” in “delta u\left(\frac{\partial T}{\partial \dot{\theta}}\right)_1 – \left(\frac{\partial T}{\partial \dot{\theta}}\right)_0 = \text{Coefficient of } \delta \theta \text{ in } \delta u(Tθ˙)1(Tθ˙)0=Coefficient of δθ in δu
From the expression for T T TTT:
T θ ˙ = 20 3 m a 2 θ ˙ T θ ˙ = 20 3 m a 2 θ ˙ (del T)/(del(theta^(˙)))=(20)/(3)ma^(2)theta^(˙)\frac{\partial T}{\partial \dot{\theta}} = \frac{20}{3} m a^2 \dot{\theta}Tθ˙=203ma2θ˙
Substituting into Lagrange’s equation:
20 3 m a 2 θ ˙ 0 = I a 20 3 m a 2 θ ˙ 0 = I a (20)/(3)ma^(2)theta^(˙)-0=Ia\frac{20}{3} m a^2 \dot{\theta} – 0 = I a203ma2θ˙0=Ia
Solving for θ ˙ θ ˙ theta^(˙)\dot{\theta}θ˙:
θ ˙ = 3 I 20 m a θ ˙ = 3 I 20 m a theta^(˙)=(3I)/(20 ma)\dot{\theta} = \frac{3I}{20ma}θ˙=3I20ma

Energy Setup by the Blow:

Substituting θ ˙ = 3 I 20 m a θ ˙ = 3 I 20 m a theta^(˙)=(3I)/(20 ma)\dot{\theta} = \frac{3I}{20ma}θ˙=3I20ma into the expression for T T TTT:
T = 10 3 m a 2 ( 3 I 20 m a ) 2 = 3 I 2 40 m T = 10 3 m a 2 3 I 20 m a 2 = 3 I 2 40 m T=(10)/(3)ma^(2)((3I)/(20 ma))^(2)=(3I^(2))/(40 m)T = \frac{10}{3} m a^2 \left(\frac{3I}{20ma}\right)^2 = \frac{3I^2}{40m}T=103ma2(3I20ma)2=3I240m

Impulses at Points B B BBB and C C CCC:

Let I B I B I_(B)I_BIB and I C I C I_(C)I_CIC be the impulses at points B B BBB and C C CCC, respectively.

For Rod A B A B ABABAB:

Taking moments about point A A AAA, the change in angular momentum is equal to the moment of the impulses:
m 4 3 a 2 θ ˙ = I a I B 2 a m 4 3 a 2 θ ˙ = I a I B 2 a m*(4)/(3)a^(2)theta^(˙)=I*a-I_(B)*2am \cdot \frac{4}{3} a^2 \dot{\theta} = I \cdot a – I_B \cdot 2am43a2θ˙=IaIB2a
Substituting θ ˙ = 3 I 20 m a θ ˙ = 3 I 20 m a theta^(˙)=(3I)/(20 ma)\dot{\theta} = \frac{3I}{20ma}θ˙=3I20ma:
I B = I 2 2 3 m a 3 I 20 m a = I 2 I 10 = 2 5 I I B = I 2 2 3 m a 3 I 20 m a = I 2 I 10 = 2 5 I I_(B)=(I)/(2)-(2)/(3)ma*(3I)/(20 ma)=(I)/(2)-(I)/( 10)=(2)/(5)II_B = \frac{I}{2} – \frac{2}{3} m a \cdot \frac{3I}{20ma} = \frac{I}{2} – \frac{I}{10} = \frac{2}{5} IIB=I223ma3I20ma=I2I10=25I

For Rod C D C D CDCDCD:

Taking moments about point D D DDD:
m 4 3 a 2 θ ˙ = I C 2 a m 4 3 a 2 θ ˙ = I C 2 a m*(4)/(3)a^(2)theta^(˙)=I_(C)*2am \cdot \frac{4}{3} a^2 \dot{\theta} = I_C \cdot 2am43a2θ˙=IC2a
Solving for I C I C I_(C)I_CIC:
I C = I 10 I C = I 10 I_(C)=(I)/( 10)I_C = \frac{I}{10}IC=I10

Final Results:

  1. Angular velocity after the blow: θ ˙ = 3 I 20 m a θ ˙ = 3 I 20 m a theta^(˙)=(3I)/(20 ma)\dot{\theta} = \frac{3I}{20ma}θ˙=3I20ma
  2. Kinetic energy of the system: T = 3 I 2 40 m T = 3 I 2 40 m T=(3I^(2))/(40 m)T = \frac{3I^2}{40m}T=3I240m
  3. Impulses:
    • I B = 2 5 I I B = 2 5 I I_(B)=(2)/(5)II_B = \frac{2}{5} IIB=25I
    • I C = I 10 I C = I 10 I_(C)=(I)/( 10)I_C = \frac{I}{10}IC=I10

Question:-06(b)

Deduce the Lagrange’s equations from Hamilton’s Principle.

Answer:

We are considering a holonomic, conservative dynamical system with n n nnn generalized coordinates θ 1 , θ 2 , θ 3 , , θ n θ 1 , θ 2 , θ 3 , , θ n theta_(1),theta_(2),theta_(3),dots,theta _(n)\theta_1, \theta_2, \theta_3, \ldots, \theta_nθ1,θ2,θ3,,θn. In such a system:
  • T T TTT represents the kinetic energy of the system.
  • V V VVV represents the potential energy of the system.
  • The Lagrangian function L L LLL is defined as: L = T V L = T V L=T-VL = T – VL=TV
The Lagrangian L L LLL is a function of the generalized coordinates θ 1 , θ 2 , , θ n θ 1 , θ 2 , , θ n theta_(1),theta_(2),dots,theta _(n)\theta_1, \theta_2, \ldots, \theta_nθ1,θ2,,θn, their time derivatives θ ˙ 1 , θ ˙ 2 , , θ ˙ n θ ˙ 1 , θ ˙ 2 , , θ ˙ n theta^(˙)_(1),theta^(˙)_(2),dots,theta^(˙)_(n)\dot{\theta}_1, \dot{\theta}_2, \ldots, \dot{\theta}_nθ˙1,θ˙2,,θ˙n, and time t t ttt. Therefore, any variation in L L LLL can be expressed as:
δ L = r = 1 n L θ r δ θ r + r = 1 n L θ ˙ r δ θ ˙ r δ L = r = 1 n L θ r δ θ r + r = 1 n L θ ˙ r δ θ ˙ r delta L=sum_(r=1)^(n)(del L)/(deltheta _(r))deltatheta _(r)+sum_(r=1)^(n)(del L)/(deltheta^(˙)_(r))deltatheta^(˙)_(r)\delta L = \sum_{r=1}^n \frac{\partial L}{\partial \theta_r} \delta \theta_r + \sum_{r=1}^n \frac{\partial L}{\partial \dot{\theta}_r} \delta \dot{\theta}_rδL=r=1nLθrδθr+r=1nLθ˙rδθ˙r

Hamilton’s Principle:

Hamilton’s Principle states that the actual path taken by the system between two points in time, t 0 t 0 t_(0)t_0t0 and t 1 t 1 t_(1)t_1t1, is the one that minimizes the action S S SSS, where:
S = t 0 t 1 L d t S = t 0 t 1 L d t S=int_(t_(0))^(t_(1))LdtS = \int_{t_0}^{t_1} L \, dtS=t0t1Ldt
The principle requires that the variation of S S SSS is zero:
δ S = δ t 0 t 1 L d t = 0 δ S = δ t 0 t 1 L d t = 0 delta S=deltaint_(t_(0))^(t_(1))Ldt=0\delta S = \delta \int_{t_0}^{t_1} L \, dt = 0δS=δt0t1Ldt=0
Substituting the expression for δ L δ L delta L\delta LδL into the integral:
t 0 t 1 δ L d t = t 0 t 1 { r = 1 n L θ r δ θ r + r = 1 n L θ ˙ r δ θ ˙ r } d t = 0 t 0 t 1 δ L d t = t 0 t 1 r = 1 n L θ r δ θ r + r = 1 n L θ ˙ r δ θ ˙ r d t = 0 int_(t_(0))^(t_(1))delta Ldt=int_(t_(0))^(t_(1)){sum_(r=1)^(n)(del L)/(deltheta _(r))deltatheta _(r)+sum_(r=1)^(n)(del L)/(deltheta^(˙)_(r))deltatheta^(˙)_(r)}dt=0\int_{t_0}^{t_1} \delta L \, dt = \int_{t_0}^{t_1} \left\{ \sum_{r=1}^n \frac{\partial L}{\partial \theta_r} \delta \theta_r + \sum_{r=1}^n \frac{\partial L}{\partial \dot{\theta}_r} \delta \dot{\theta}_r \right\} dt = 0t0t1δLdt=t0t1{r=1nLθrδθr+r=1nLθ˙rδθ˙r}dt=0
This can be split into two separate integrals:
t 0 t 1 { r = 1 n L θ r δ θ r } d t + t 0 t 1 { r = 1 n L θ ˙ r δ θ ˙ r } d t = 0 t 0 t 1 r = 1 n L θ r δ θ r d t + t 0 t 1 r = 1 n L θ ˙ r δ θ ˙ r d t = 0 int_(t_(0))^(t_(1)){sum_(r=1)^(n)(del L)/(deltheta _(r))deltatheta _(r)}dt+int_(t_(0))^(t_(1)){sum_(r=1)^(n)(del L)/(deltheta^(˙)_(r))deltatheta^(˙)_(r)}dt=0\int_{t_0}^{t_1} \left\{ \sum_{r=1}^n \frac{\partial L}{\partial \theta_r} \delta \theta_r \right\} dt + \int_{t_0}^{t_1} \left\{ \sum_{r=1}^n \frac{\partial L}{\partial \dot{\theta}_r} \delta \dot{\theta}_r \right\} dt = 0t0t1{r=1nLθrδθr}dt+t0t1{r=1nLθ˙rδθ˙r}dt=0

Integration by Parts:

In the second integral, δ θ ˙ r = d d t ( δ θ r ) δ θ ˙ r = d d t ( δ θ r ) deltatheta^(˙)_(r)=(d)/(dt)(deltatheta _(r))\delta \dot{\theta}_r = \frac{d}{dt} (\delta \theta_r)δθ˙r=ddt(δθr). Using integration by parts, where d d t ( δ θ r ) d d t ( δ θ r ) (d)/(dt)(deltatheta _(r))\frac{d}{dt} (\delta \theta_r)ddt(δθr) is treated as the second function, we get:
t 0 t 1 L θ ˙ r δ θ ˙ r d t = [ L θ ˙ r δ θ r ] t 0 t 1 t 0 t 1 d d t ( L θ ˙ r ) δ θ r d t t 0 t 1 L θ ˙ r δ θ ˙ r d t = L θ ˙ r δ θ r t 0 t 1 t 0 t 1 d d t L θ ˙ r δ θ r d t int_(t_(0))^(t_(1))(del L)/(deltheta^(˙)_(r))deltatheta^(˙)_(r)dt=[(del L)/(deltheta^(˙)_(r))deltatheta _(r)]_(t_(0))^(t_(1))-int_(t_(0))^(t_(1))(d)/(dt)((del L)/(deltheta^(˙)_(r)))deltatheta _(r)dt\int_{t_0}^{t_1} \frac{\partial L}{\partial \dot{\theta}_r} \delta \dot{\theta}_r \, dt = \left[ \frac{\partial L}{\partial \dot{\theta}_r} \delta \theta_r \right]_{t_0}^{t_1} – \int_{t_0}^{t_1} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_r} \right) \delta \theta_r \, dtt0t1Lθ˙rδθ˙rdt=[Lθ˙rδθr]t0t1t0t1ddt(Lθ˙r)δθrdt
At the boundaries t 0 t 0 t_(0)t_0t0 and t 1 t 1 t_(1)t_1t1, the variations δ θ r δ θ r deltatheta _(r)\delta \theta_rδθr vanish ( δ θ r = 0 δ θ r = 0 deltatheta _(r)=0\delta \theta_r = 0δθr=0), so the boundary term disappears. Substituting this result back, the total variation becomes:
t 0 t 1 { r = 1 n L θ r δ θ r r = 1 n d d t ( L θ ˙ r ) δ θ r } d t = 0 t 0 t 1 r = 1 n L θ r δ θ r r = 1 n d d t L θ ˙ r δ θ r d t = 0 int_(t_(0))^(t_(1)){sum_(r=1)^(n)(del L)/(deltheta _(r))deltatheta _(r)-sum_(r=1)^(n)(d)/(dt)((del L)/(deltheta^(˙)_(r)))deltatheta _(r)}dt=0\int_{t_0}^{t_1} \left\{ \sum_{r=1}^n \frac{\partial L}{\partial \theta_r} \delta \theta_r – \sum_{r=1}^n \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_r} \right) \delta \theta_r \right\} dt = 0t0t1{r=1nLθrδθrr=1nddt(Lθ˙r)δθr}dt=0
Factoring out δ θ r δ θ r deltatheta _(r)\delta \theta_rδθr, we get:
t 0 t 1 r = 1 n [ d d t ( L θ ˙ r ) L θ r ] δ θ r d t = 0 t 0 t 1 r = 1 n d d t L θ ˙ r L θ r δ θ r d t = 0 int_(t_(0))^(t_(1))sum_(r=1)^(n)[(d)/(dt)((del L)/(deltheta^(˙)_(r)))-(del L)/(deltheta _(r))]deltatheta _(r)dt=0\int_{t_0}^{t_1} \sum_{r=1}^n \left[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_r} \right) – \frac{\partial L}{\partial \theta_r} \right] \delta \theta_r \, dt = 0t0t1r=1n[ddt(Lθ˙r)Lθr]δθrdt=0

Lagrange’s Equations of Motion:

Since the system is holonomic, the variations δ θ 1 , δ θ 2 , , δ θ n δ θ 1 , δ θ 2 , , δ θ n deltatheta_(1),deltatheta_(2),dots,deltatheta _(n)\delta \theta_1, \delta \theta_2, \ldots, \delta \theta_nδθ1,δθ2,,δθn are arbitrary and independent. For the integral to vanish, the coefficient of each δ θ r δ θ r deltatheta _(r)\delta \theta_rδθr must independently be zero. This gives the Lagrange’s equations of motion:
d d t ( L θ ˙ r ) L θ r = 0 , r = 1 , 2 , 3 , , n d d t L θ ˙ r L θ r = 0 , r = 1 , 2 , 3 , , n (d)/(dt)((del L)/(deltheta^(˙)_(r)))-(del L)/(deltheta _(r))=0,quad r=1,2,3,dots,n\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_r} \right) – \frac{\partial L}{\partial \theta_r} = 0, \quad r = 1, 2, 3, \ldots, nddt(Lθ˙r)Lθr=0,r=1,2,3,,n
These are the fundamental equations of motion for a conservative system in terms of the Lagrangian function L L LLL.

Question:-07(a)

A mass of fluid is in motion such that the lines of motion lie on the surface of coaxial cylinders, show that the equation of continuity is:

P t + 1 r ( P u ) θ + ( P v ) z = 0 P t + 1 r ( P u ) θ + ( P v ) z = 0 (del P)/(del t)+(1)/(r)(del(Pu))/(del theta)+(del(Pv))/(del z)=0\frac{\partial P}{\partial t} + \frac{1}{r} \frac{\partial (P u)}{\partial \theta} + \frac{\partial (P v)}{\partial z} = 0Pt+1r(Pu)θ+(Pv)z=0
where u , v u , v u,v\mathrm{u}, \mathrm{v}u,v are the velocity perpendicular and parallel to z.

Answer:

We are analyzing the continuity equation for a fluid particle P P PPP in cylindrical coordinates ( r , θ , z ) ( r , θ , z ) (r,theta,z)(r, \theta, z)(r,θ,z). To do this, we construct a curvilinear parallelepiped with P P PPP as one corner. The edges of the parallelepiped are:
  • P Q = δ r P Q = δ r PQ=delta rPQ = \delta rPQ=δr (along the radial direction),
  • P S = r δ θ P S = r δ θ PS=r delta thetaPS = r \delta \thetaPS=rδθ (along the angular direction),
  • P P = δ z P P = δ z PP^(‘)=delta zPP’ = \delta zPP=δz (along the axial direction).
The fluid motion is constrained to the surface of co-axial cylinders, meaning there is no motion along the radial direction ( P Q P Q PQPQPQ). This simplifies the analysis.

original image

Flow Analysis:

1. Excess Flow Along P Q P Q PQPQPQ:

Since there is no motion along P Q P Q PQPQPQ (radial direction), the excess flow along P Q P Q PQPQPQ is zero.

2. Excess Flow Along P S P S PSPSPS:

The flow along P S P S PSPSPS (angular direction) is given by the product of density ρ ρ rho\rhoρ, velocity u u uuu, and the cross-sectional area r δ θ δ z r δ θ δ z r delta theta delta zr \delta \theta \delta zrδθδz. The excess flow in over flow out along P S P S PSPSPS is:
Excess flow along P S = r δ θ r δ θ ( ρ u δ r δ z ) Excess flow along P S = r δ θ r δ θ ( ρ u δ r δ z ) “Excess flow along “PS=-r delta theta(del)/(r delta theta)(rho u delta r delta z)\text{Excess flow along } PS = -r \delta \theta \frac{\partial}{r \delta \theta} (\rho u \delta r \delta z)Excess flow along PS=rδθrδθ(ρuδrδz)
Simplifying:
Excess flow along P S = δ r δ θ δ z θ ( ρ u ) Excess flow along P S = δ r δ θ δ z θ ( ρ u ) “Excess flow along “PS=-delta r delta theta delta z(del)/(del theta)(rho u)\text{Excess flow along } PS = -\delta r \delta \theta \delta z \frac{\partial}{\partial \theta} (\rho u)Excess flow along PS=δrδθδzθ(ρu)

3. Excess Flow Along P P P P PP^(‘)PP’PP:

The flow along P P P P PP^(‘)PP’PP (axial direction) is given by the product of density ρ ρ rho\rhoρ, velocity v v vvv, and the cross-sectional area r δ θ δ r r δ θ δ r r delta theta delta rr \delta \theta \delta rrδθδr. The excess flow in over flow out along P P P P PP^(‘)PP’PP is:
Excess flow along P P = δ z z ( ρ v r δ θ δ r ) Excess flow along P P = δ z z ( ρ v r δ θ δ r ) “Excess flow along “PP^(‘)=-delta z(del)/(del z)(rho vr delta theta delta r)\text{Excess flow along } PP’ = -\delta z \frac{\partial}{\partial z} (\rho v r \delta \theta \delta r)Excess flow along PP=δzz(ρvrδθδr)
Simplifying:
Excess flow along P P = δ r δ θ δ z z ( ρ v r ) Excess flow along P P = δ r δ θ δ z z ( ρ v r ) “Excess flow along “PP^(‘)=-delta r delta theta delta z(del)/(del z)(rho vr)\text{Excess flow along } PP’ = -\delta r \delta \theta \delta z \frac{\partial}{\partial z} (\rho v r)Excess flow along PP=δrδθδzz(ρvr)

Mass of the Fluid in the Parallelepiped:

The mass of the fluid contained within the parallelepiped is:
Mass = ρ Volume = ρ ( r δ θ δ r δ z ) Mass = ρ Volume = ρ ( r δ θ δ r δ z ) “Mass”=rho*”Volume”=rho*(r delta theta delta r delta z)\text{Mass} = \rho \cdot \text{Volume} = \rho \cdot (r \delta \theta \delta r \delta z)Mass=ρVolume=ρ(rδθδrδz)

Rate of Change of Mass:

The rate of change of mass of the fluid in the parallelepiped is:
Rate of change of mass = r δ θ δ r δ z ρ t Rate of change of mass = r δ θ δ r δ z ρ t “Rate of change of mass”=r delta theta delta r delta z(del rho)/(del t)\text{Rate of change of mass} = r \delta \theta \delta r \delta z \frac{\partial \rho}{\partial t}Rate of change of mass=rδθδrδzρt

Continuity Equation:

The principle of conservation of mass states that the rate of change of mass within the parallelepiped must equal the net flow of mass into the parallelepiped. Therefore:
r δ θ δ r δ z ρ t = δ θ δ r δ z [ θ ( ρ u ) + z ( ρ v r ) ] r δ θ δ r δ z ρ t = δ θ δ r δ z θ ( ρ u ) + z ( ρ v r ) r delta theta delta r delta z(del rho)/(del t)=-delta theta delta r delta z[(del)/(del theta)(rho u)+(del)/(del z)(rho vr)]r \delta \theta \delta r \delta z \frac{\partial \rho}{\partial t} = -\delta \theta \delta r \delta z \left[ \frac{\partial}{\partial \theta} (\rho u) + \frac{\partial}{\partial z} (\rho v r) \right]rδθδrδzρt=δθδrδz[θ(ρu)+z(ρvr)]
Dividing through by δ θ δ r δ z δ θ δ r δ z delta theta delta r delta z\delta \theta \delta r \delta zδθδrδz, we get:
ρ t + 1 r θ ( ρ u ) + z ( ρ v r ) = 0 ρ t + 1 r θ ( ρ u ) + z ( ρ v r ) = 0 (del rho)/(del t)+(1)/(r)(del)/(del theta)(rho u)+(del)/(del z)(rho vr)=0\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho u) + \frac{\partial}{\partial z} (\rho v r) = 0ρt+1rθ(ρu)+z(ρvr)=0
This is the required equation of continuity in cylindrical coordinates.


Question:-07(b)

Find the Cauchy-Riemann equations in polar coordinates.

Answer:

The Cauchy-Riemann equations in polar coordinates relate the partial derivatives of the real and imaginary parts of a complex function in terms of the polar coordinate system.

Step 1: Define the Complex Function

Let f ( z ) f ( z ) f(z)f(z)f(z) be a complex-valued function:
f ( z ) = u ( x , y ) + i v ( x , y ) , f ( z ) = u ( x , y ) + i v ( x , y ) , f(z)=u(x,y)+iv(x,y),f(z) = u(x, y) + i v(x, y),f(z)=u(x,y)+iv(x,y),
where:
  • u ( x , y ) u ( x , y ) u(x,y)u(x, y)u(x,y) is the real part,
  • v ( x , y ) v ( x , y ) v(x,y)v(x, y)v(x,y) is the imaginary part,
  • z = x + i y z = x + i y z=x+iyz = x + i yz=x+iy is the complex variable.

Step 2: Transform to Polar Coordinates

In polar coordinates:
  • x = r cos θ x = r cos θ x=r cos thetax = r \cos\thetax=rcosθ,
  • y = r sin θ y = r sin θ y=r sin thetay = r \sin\thetay=rsinθ,
  • z = x + i y = r e i θ z = x + i y = r e i θ z=x+iy=re^(i theta)z = x + iy = r e^{i\theta}z=x+iy=reiθ.
The function f ( z ) f ( z ) f(z)f(z)f(z) can now be expressed as:
f ( z ) = f ( r , θ ) = u ( r , θ ) + i v ( r , θ ) , f ( z ) = f ( r , θ ) = u ( r , θ ) + i v ( r , θ ) , f(z)=f(r,theta)=u(r,theta)+iv(r,theta),f(z) = f(r, \theta) = u(r, \theta) + i v(r, \theta),f(z)=f(r,θ)=u(r,θ)+iv(r,θ),
where u ( r , θ ) u ( r , θ ) u(r,theta)u(r, \theta)u(r,θ) and v ( r , θ ) v ( r , θ ) v(r,theta)v(r, \theta)v(r,θ) are now expressed in terms of polar coordinates.

Step 3: Cauchy-Riemann Equations in Cartesian Coordinates

The standard Cauchy-Riemann equations in Cartesian coordinates are:
u x = v y , u y = v x . u x = v y , u y = v x . (del u)/(del x)=(del v)/(del y),quad(del u)/(del y)=-(del v)/(del x).\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.ux=vy,uy=vx.
We need to transform these equations to polar coordinates using the chain rule.

Step 4: Partial Derivatives in Polar Coordinates

Using the chain rule:
  1. For x = r cos θ x = r cos θ x=r cos thetax = r \cos\thetax=rcosθ and y = r sin θ y = r sin θ y=r sin thetay = r \sin\thetay=rsinθ:
    x = cos θ r r sin θ r 2 θ , x = cos θ r r sin θ r 2 θ , (del)/(del x)=(cos theta)/(r)(del)/(del r)-(sin theta)/(r^(2))(del)/(del theta),\frac{\partial}{\partial x} = \frac{\cos\theta}{r} \frac{\partial}{\partial r} – \frac{\sin\theta}{r^2} \frac{\partial}{\partial \theta},x=cosθrrsinθr2θ,
    y = sin θ r r + cos θ r 2 θ . y = sin θ r r + cos θ r 2 θ . (del)/(del y)=(sin theta)/(r)(del)/(del r)+(cos theta)/(r^(2))(del)/(del theta).\frac{\partial}{\partial y} = \frac{\sin\theta}{r} \frac{\partial}{\partial r} + \frac{\cos\theta}{r^2} \frac{\partial}{\partial \theta}.y=sinθrr+cosθr2θ.
  2. Transform the partial derivatives of u u uuu and v v vvv using these relations.

Step 5: Transform Cauchy-Riemann Equations

Substitute into the Cauchy-Riemann equations:
  1. From u x = v y u x = v y (del u)/(del x)=(del v)/(del y)\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}ux=vy:
    cos θ r u r sin θ r 2 u θ = sin θ r v r + cos θ r 2 v θ . cos θ r u r sin θ r 2 u θ = sin θ r v r + cos θ r 2 v θ . (cos theta)/(r)(del u)/(del r)-(sin theta)/(r^(2))(del u)/(del theta)=(sin theta)/(r)(del v)/(del r)+(cos theta)/(r^(2))(del v)/(del theta).\frac{\cos\theta}{r} \frac{\partial u}{\partial r} – \frac{\sin\theta}{r^2} \frac{\partial u}{\partial \theta} = \frac{\sin\theta}{r} \frac{\partial v}{\partial r} + \frac{\cos\theta}{r^2} \frac{\partial v}{\partial \theta}.cosθrursinθr2uθ=sinθrvr+cosθr2vθ.
    Multiply through by r r rrr:
    cos θ u r sin θ r u θ = sin θ v r + cos θ r v θ . cos θ u r sin θ r u θ = sin θ v r + cos θ r v θ . cos theta(del u)/(del r)-(sin theta)/(r)(del u)/(del theta)=sin theta(del v)/(del r)+(cos theta)/(r)(del v)/(del theta).\cos\theta \frac{\partial u}{\partial r} – \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} = \sin\theta \frac{\partial v}{\partial r} + \frac{\cos\theta}{r} \frac{\partial v}{\partial \theta}.cosθursinθruθ=sinθvr+cosθrvθ.
  2. From u y = v x u y = v x (del u)/(del y)=-(del v)/(del x)\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}uy=vx:
    sin θ r u r + cos θ r 2 u θ = ( cos θ r v r sin θ r 2 v θ ) . sin θ r u r + cos θ r 2 u θ = cos θ r v r sin θ r 2 v θ . (sin theta)/(r)(del u)/(del r)+(cos theta)/(r^(2))(del u)/(del theta)=-((cos theta)/(r)(del v)/(del r)-(sin theta)/(r^(2))(del v)/(del theta)).\frac{\sin\theta}{r} \frac{\partial u}{\partial r} + \frac{\cos\theta}{r^2} \frac{\partial u}{\partial \theta} = -\left(\frac{\cos\theta}{r} \frac{\partial v}{\partial r} – \frac{\sin\theta}{r^2} \frac{\partial v}{\partial \theta}\right).sinθrur+cosθr2uθ=(cosθrvrsinθr2vθ).
    Multiply through by r r rrr:
    sin θ u r + cos θ r u θ = cos θ v r + sin θ r v θ . sin θ u r + cos θ r u θ = cos θ v r + sin θ r v θ . sin theta(del u)/(del r)+(cos theta)/(r)(del u)/(del theta)=-cos theta(del v)/(del r)+(sin theta)/(r)(del v)/(del theta).\sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta} = -\cos\theta \frac{\partial v}{\partial r} + \frac{\sin\theta}{r} \frac{\partial v}{\partial \theta}.sinθur+cosθruθ=cosθvr+sinθrvθ.

Step 6: Simplify the Equations

The equations simplify to the Cauchy-Riemann equations in polar coordinates:
u r = 1 r v θ , v r = 1 r u θ . u r = 1 r v θ , v r = 1 r u θ . (del u)/(del r)=(1)/(r)(del v)/(del theta),quad(del v)/(del r)=-(1)/(r)(del u)/(del theta).\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.ur=1rvθ,vr=1ruθ.

Final Result

The Cauchy-Riemann equations in polar coordinates are:
u r = 1 r v θ , v r = 1 r u θ . u r = 1 r v θ , v r = 1 r u θ . (del u)/(del r)=(1)/(r)(del v)/(del theta),quad(del v)/(del r)=-(1)/(r)(del u)/(del theta).\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.ur=1rvθ,vr=1ruθ.

Scroll to Top
Scroll to Top