(a) मान लीजिये कि AA एक 3xx23 \times 2 आव्यूह है और BB एक 2xx32 \times 3 आव्यूह है। दर्शाइये कि C=A*BC=A \cdot B एक अव्युत्क्रमणणीय आव्यूह है।
Let AA be a 3xx23 \times 2 matrix and BB a 2xx32 \times 3 matrix. Show that C=A*BC=A \cdot B is a singular matrix.
Answer:
Introduction
The problem asks us to show that the product C=A*BC = A \cdot B is a singular matrix, given that AA is a 3xx23 \times 2 matrix and BB is a 2xx32 \times 3 matrix. A singular matrix is one that does not have an inverse, which means its determinant is zero.
Work/Calculations
Step 1: Dimensions of CC
First, let’s find the dimensions of the resulting matrix CC when AA and BB are multiplied.
The dimensions of CC can be determined by the outer dimensions of AA and BB. In this case, AA is 3xx23 \times 2 and BB is 2xx32 \times 3, so CC will be 3xx33 \times 3.
Step 2: Rank of CC
The rank of CC is limited by the smaller of the two ranks of AA and BB. Since AA is 3xx23 \times 2, its rank can be at most 2. Similarly, BB is 2xx32 \times 3, so its rank can also be at most 2.
For a 3xx33 \times 3 matrix to be invertible (non-singular), its rank must be 3. However, we’ve established that the rank of CC can be at most 2. Therefore, CC must be singular.
To confirm, the determinant of a singular matrix is zero:
“Det”(C)=0\text{Det}(C) = 0
Conclusion
We have shown that the matrix C=A*BC = A \cdot B will be a 3xx33 \times 3 matrix with a rank of at most 2. Since the rank is less than 3, CC is a singular matrix, and its determinant is zero. Therefore, C=A*BC = A \cdot B is indeed a singular matrix.
(b) आधार सदिशों e_(1)=(1,0)e_1=(1,0) और e_(2)=(0,1)e_2=(0,1) को alpha_(1)=(2,-1)\alpha_1=(2,-1) एवं alpha_(2)=(1,3)\alpha_2=(1,3) के रैखिक संयोग के रूप में ब्यक्त कीजिये।
Express basis vectors e_(1)=(1,0)e_1=(1,0) and e_(2)=(0,1)e_2=(0,1) as linear combinations of alpha_(1)=(2,-1)\alpha_1=(2,-1) and alpha_(2)=(1,3)\alpha_2=(1,3).
Answer:
Introduction
The problem asks us to express the basis vectors e_(1)=(1,0)e_1 = (1, 0) and e_(2)=(0,1)e_2 = (0, 1) as linear combinations of the vectors alpha_(1)=(2,-1)\alpha_1 = (2, -1) and alpha_(2)=(1,3)\alpha_2 = (1, 3). In other words, we want to find constants c_(1)c_1 and c_(2)c_2 such that:
Thus, both e_(1)e_1 and e_(2)e_2 can be represented as linear combinations of alpha_(1)\alpha_1 and alpha_(2)\alpha_2.
(c) निर्धारित कीजिये कि lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2} का अस्तित्व है या कि नहीं। अगर यह सीमा विघ्यमान है, तो इसका मान ज्ञात कीजिये।
Determine if lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2} exists or not. If the limit exists, then find its value.
So, the limit lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2} exists, and its value is (2)/(pi)\frac{2}{\pi}.
(d) सीमा lim_(n rarr oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow \infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2} का मान ज्ञात कीजिये।
Find the limit lim_(n rarr-oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}.
Hence, the limit lim_(n rarr-oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2} is (pi)/(4)\frac{\pi}{4}.
(e) सरल रेखा (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1} का समतल x+y+2z=6x+y+2 z=6 पर प्रक्षेपण ज्ञात कीजिये।
Find the projection of the straight line (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1} on the plane x+y+2z=6x+y+2 z=6.
Answer:
Introduction
The problem asks us to find the projection of the straight line (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1} onto the plane x+y+2z=6x+y+2z=6.
Work/Calculations
Step 1: Find the Direction Vector of the Line
The direction vector of the line is given by [2,3,-1][2, 3, -1].
Step 2: Find the Normal Vector of the Plane
The normal vector of the plane x+y+2z=6x+y+2z=6 is [1,1,2][1, 1, 2].
Step 3: Find the Projection Vector
The projection of the direction vector of the line onto the plane is given by “Projection”=”Direction Vector”-((“Direction Vector”*”Normal Vector”)/(“Normal Vector”*”Normal Vector”))xx”Normal Vector”\text{Projection} = \text{Direction Vector} – \left( \frac{\text{Direction Vector} \cdot \text{Normal Vector}}{\text{Normal Vector} \cdot \text{Normal Vector}} \right) \times \text{Normal Vector}
The projected line will pass through a point on the original line and will have the direction vector as the projection vector. Taking the point (1,1,-1)(1, 1, -1) on the original line, the equation of the projected line is:
The projection of the given straight line (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1} onto the plane x+y+2z=6x+y+2z=6 is the line (x-1)/(1.5)=(y-1)/(2.5)=(z+1)/(-2).\frac{x-1}{1.5} = \frac{y-1}{2.5} = \frac{z+1}{-2}.
(a) अगर AA और BB समरूप n xx nn \times n आव्यूह हैं, तो दर्शाइये कि उनके आइगेन मान एक ही हैं।
Show that if AA and BB are similar n xx nn \times n matrices, then they have the same eigenvalues.
Answer:
Introduction
The problem asks us to prove that if AA and BB are similar n xx nn \times n matrices, then they have the same eigenvalues.
Work/Calculations
Definition of Similar Matrices
Two matrices AA and BB are said to be similar if there exists an invertible matrix PP such that B=P^(-1)APB = P^{-1} A P.
Definition of Eigenvalues
A scalar lambda\lambda is an eigenvalue of a matrix AA if there exists a non-zero vector xx such that Ax=lambda xAx = \lambda x.
Step 1: Assume AA has an Eigenvalue lambda\lambda
Let’s assume that lambda\lambda is an eigenvalue of AA, and xx is the corresponding eigenvector, i.e., Ax=lambda xAx = \lambda x.
Step 2: Multiply Both Sides by P^(-1)P^{-1}
Multiply both sides of Ax=lambda xAx = \lambda x by P^(-1)P^{-1}:
P^(-1)Ax=P^(-1)lambda xP^{-1} A x = P^{-1} \lambda x
Step 3: Use the Similarity Relation B=P^(-1)APB = P^{-1} A P
Substitute B=P^(-1)APB = P^{-1} A P into the equation:
P^(-1)Ax=B(P^(-1)x)P^{-1} A x = B (P^{-1} x)
Step 4: Show that lambda\lambda is an Eigenvalue of BB
From the equation P^(-1)Ax=B(P^(-1)x)P^{-1} A x = B (P^{-1} x), we can see that B(P^(-1)x)=lambda(P^(-1)x)B (P^{-1} x) = \lambda (P^{-1} x).
This shows that lambda\lambda is also an eigenvalue of BB with the corresponding eigenvector P^(-1)xP^{-1} x.
Step 5: Reverse the Argument
Similarly, we can reverse the argument to show that if lambda\lambda is an eigenvalue of BB, then it must also be an eigenvalue of AA.
Conclusion
We have shown that if AA and BB are similar n xx nn \times n matrices, then they have the same eigenvalues. This completes the proof.
(b) बिन्दु (1,0)(1,0) से परबलय y^(2)=4xy^2=4 x तक की न्यूनतम दूरी ज्ञात कीजिये।
Find the shortest distance from the point (1,0)(1,0) to the parabola y^(2)=4xy^2=4 x.
Answer:
Introduction
The problem asks us to find the shortest distance from the point (1,0)(1,0) to the parabola y^(2)=4xy^2 = 4x.
Work/Calculations
Step 1: Parametric Equation of the Parabola
The parabola y^(2)=4xy^2 = 4x can be parameterized as follows:
x=t^(2),quad y=2tx = t^2, \quad y = 2t
where tt is a parameter.
Step 2: Distance Formula
The distance dd between the point (1,0)(1,0) and a point (x,y)(x,y) on the parabola is given by:
To find the minimum distance, we need to minimize d=t^(2)+1d = t^2 + 1. The function dd is a parabola that opens upwards, and its minimum value occurs at the vertex.
The minimum value of dd is d_(“min”)=1d_{\text{min}} = 1.
Conclusion
The shortest distance from the point (1,0)(1,0) to the parabola y^(2)=4xy^2 = 4x is 11.
(c) दीर्घवृत्त (x^(2))/(a^(2))+(y^(2))/(b^(2))=1x\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 x-अक्ष के चारों तरफ परिभ्रमण कर रहा है। परिक्रमित घन का आयतन ज्ञात कीजिये।
The ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 revolves about the xx-axis. Find the volume of the solid of revolution.
Answer:
Introduction
The problem asks us to find the volume of the solid generated when the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 revolves about the xx-axis.
Work/Calculations
Step 1: Solve for yy in terms of xx
We can rewrite the equation of the ellipse as y^(2)=b^(2)(1-(x^(2))/(a^(2)))y^2 = b^2 \left(1 – \frac{x^2}{a^2}\right) or
y=+-bsqrt(1-(x^(2))/(a^(2)))y = \pm b \sqrt{1 – \frac{x^2}{a^2}}
Step 2: Volume of Solid of Revolution
The volume VV of the solid generated by revolving the curve y=f(x)y = f(x) about the xx-axis from x=ax = a to x=bx = b is given by V=piint_(a)^(b)[f(x)]^(2)dxV = \pi \int_{a}^{b} [f(x)]^2 \, dx
For our ellipse, we have f(x)=bsqrt(1-(x^(2))/(a^(2)))f(x) = b \sqrt{1 – \frac{x^2}{a^2}}
Step 3: Set up the Integral
The ellipse extends from x=-ax = -a to x=ax = a. Therefore, the volume VV is V=piint_(-a)^(a)(bsqrt(1-(x^(2))/(a^(2))))^(2)dxV = \pi \int_{-a}^{a} \left(b \sqrt{1 – \frac{x^2}{a^2}}\right)^2 \, dx
Simplifying, we get V=piint_(-a)^(a)b^(2)(1-(x^(2))/(a^(2)))dxV = \pi \int_{-a}^{a} b^2 \left(1 – \frac{x^2}{a^2}\right) \, dx
Step 4: Evaluate the Integral
After Calculating, we get V=pib^(2)[x-(x^(3))/(3a^(2))]_(-a)^(a)V = \pi b^2 \left[x – \frac{x^3}{3a^2}\right]_{-a}^{a}
The volume of the solid generated when the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 revolves about the xx-axis is (4pi ab^(2))/(3)\frac{4\pi a b^2}{3}.
Hence, the shortest distance between the given lines and the zz-axis is represented as S.D.S.D..
(a) रेखिक समीकरण निकाय
{:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned}
x+3 y-2 z &=-1 \\
5 y+3 z &=-8 \\
x-2 y-5 z &=7
\end{aligned}
के लिये निर्धारित कीजिये कि निम्नलिखित कथर्नों में से कौन-से सही हैं और कौन-से गलत :
(i) समीकरण निकाय का कोई भी हल नही है।
(ii) समीकरण निकाय का सिर्फ एक ही हल है।
(iii) समीकरण निकाय के असीम मात्रा में अनेक हल है।
For the system of linear equations
{:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned}
x+3 y-2 z &=-1 \\
5 y+3 z &=-8 \\
x-2 y-5 z &=7
\end{aligned}
Determine which of the following statements are true and which are false :
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.
Answer:
Introduction
The problem asks us to determine the nature of the solutions for the given system of linear equations:
{:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned}
x+3 y-2 z &= -1 \\
5 y+3 z &= -8 \\
x-2 y-5 z &= 7
\end{aligned}
We have three statements to verify:
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.
Work/Calculations
Step 1: Form the Augmented Matrix
The augmented matrix for the system of equations is:
The rank of the coefficient matrix and the augmented matrix is the same, and it is less than the number of unknowns (33). According to the Rouché–Capelli theorem, this means the system has infinitely many solutions.
Conclusion
Based on the row-reduced form and the rank of the matrix, we can conclude the following:
(i) The system has no solution. – False
(ii) The system has a unique solution. – False
(iii) The system has infinitely many solutions. – True
The system of equations has infinitely many solutions, as confirmed by the rank of the matrix.
(b) मान लीजिये कि
{:[f(x”,”y)=xy^(2)”,”” यदि “y > 0],[=-xy^(2)”,”” यदि “y <= 0]:}\begin{aligned}
f(x, y) &=x y^2, & \text { यदि } y>0 \\
&=-x y^2, & \text { यदि } y \leq 0
\end{aligned}यदियदि
निर्धारित कीजिये कि (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1) और (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1) में से किसका अस्तित्व है और किसका अस्तित्व नहीं है।
Let
{:[f(x”,”y)=xy^(2)”,”” if “y > 0],[=-xy^(2)”,”” if “y <= 0]:}\begin{aligned}
f(x, y) &=x y^2, & \text { if } & y>0 \\
&=-x y^2, & \text { if } & y \leq 0
\end{aligned}
Determine which of (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1) and (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1) exists and which does not exist.
Answer:
Introduction
The function f(x,y)f(x, y) is defined as follows:
{:[f(x”,”y)=xy^(2)”,”” if “y > 0],[=-xy^(2)”,”” if “y <= 0]:}\begin{aligned}
f(x, y) &= x y^2, & \text{ if } & y > 0 \\
&= -x y^2, & \text{ if } & y \leq 0
\end{aligned}
We are asked to determine which of (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1) and (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1) exists and which does not.
Work/Calculations
Step 1: Partial Derivative with respect to xx at (0,1)(0,1)
The formula for the partial derivative with respect to xx is:
After Calculating, we get (del f)/(del y)=0\frac{\partial f}{\partial y} = 0.
Since the values are the same, (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1) exists and is 00.
Conclusion
(del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1) does not exist.
(del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1) exists and is 00.
(c) परबलयज (x+y+z)(2x+y-z)=6z(x+y+z)(2 x+y-z)=6 z की उन जनक रेखाओं के समीकरणों को ज्ञात कीजिये, जो बिन्दु (1,1,1)(1,1,1) में से गुज्जरती है।
Find the equations to the generating lines of the paraboloid (x+y+z)(2x+y-z)=6z(x+y+z)(2 x+y-z)=6 z which pass through the point (1,1,1)(1,1,1).
Answer:
Introduction
The problem asks us to find the equations of the generating lines of the paraboloid (x+y+z)(2x+y-z)=6z(x+y+z)(2x+y-z)=6z that pass through the point (1,1,1)(1,1,1).
Work/Calculations
Step 1: Generators of the Surface
The two generators of the given surface belonging to the lambda\lambda– and mu\mu-systems are given by:
These lines describe the shape of the paraboloid and pass through the specified point.
(d) xyz-समतल में स्थित, बिन्दुओं (0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,-1),(-1,2,0) और (1,2,3)(1,2,3) में से गुज़रते हुये गोले का समीकरण ज्ञात कीजिये।
Find the equation of the sphere in xyz-plane passing through the points (0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,-1),(-1,2,0) and (1,2,3)(1,2,3).
Answer:
Introduction
The problem asks us to find the equation of the sphere in the xyzxyz-plane that passes through the points (0,0,0)(0,0,0), (0,1,-1)(0,1,-1), (-1,2,0)(-1,2,0), and (1,2,3)(1,2,3).
Work/Calculations
Step 1: General Equation of a Sphere
The general equation of a sphere in Cartesian coordinates is:
4.(a) अन्तराल [2,3][2,3] पर x^(4)-5x^(2)+4x^4-5 x^2+4 के अधिकतम और न्यूनतम मान ज्ञात कीजिये।
Find the maximum and the minimum values of x^(4)-5x^(2)+4x^4-5 x^2+4 on the interval [2,3][2,3].
Answer:
Introduction
The problem asks us to find the maximum and minimum values of the function f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4 on the interval [2,3][2, 3].
Work/Calculations
Step 1: Identify the Function and Interval
The function is f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4, and the interval is [2,3][2, 3].
Step 2: Find the Critical Points
To find the critical points, we need to take the derivative of f(x)f(x) and set it equal to zero:
f^(‘)(x)=4x^(3)-10 xf'(x) = 4x^3 – 10x
4x^(3)-10 x=04x^3 – 10x = 0
After Calculating, the critical points are x=0x = 0, x=-sqrt((5)/(2))x = -\sqrt{\frac{5}{2}}, and x=sqrt((5)/(2))x = \sqrt{\frac{5}{2}}.
However, none of these critical points lie within the interval [2,3][2, 3]. Therefore, we only need to evaluate the function at the endpoints of the interval.
Step 3: Evaluate the Function at the Endpoints
Let’s substitute the values x=2x = 2 and x=3x = 3 into the function f(x)f(x):
The maximum value of f(x)f(x) on the interval [2,3][2, 3] is 4040 at x=3x = 3.
The minimum value of f(x)f(x) on the interval [2,3][2, 3] is 00 at x=2x = 2.
Conclusion
The maximum value of f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4 on the interval [2,3][2, 3] is 4040 at x=3x = 3, and the minimum value is 00 at x=2x = 2.
(b) समाकल int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x d y d x}{x^2+y^2} का मान निकालिये।
Evaluate the integral int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x d y d x}{x^2+y^2}.
Answer:
Introduction
The problem asks us to evaluate the integral int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x \, dy \, dx}{x^2+y^2}. We’ll attempt to change the order of integration to make the integral easier to evaluate.
Work/Calculations
Step 1: Identify the Region of Integration
The original region RR in the xyxy-plane is defined by:
0 <= x <= a0 \leq x \leq a
x//a <= y <= xx/a \leq y \leq x
Step 2: Change the Order of Integration
To change the order of integration, we need to describe the same region RR in terms of yy first and then xx. Observing the original inequalities, we find:
0 <= y <= a0 \leq y \leq a (since xx can go up to aa)
ay <= x <= yay \leq x \leq y (multiplying x//a <= yx/a \leq y by aa and rearranging)
Step 3: Write the New Integral
The integral with the changed order of integration becomes:
int_(0)^(a)(1)/(2)ln((2)/(a^(2)+1))dy=(a)/(2)ln((2)/(a^(2)+1))\int_0^a \frac{1}{2} \ln\left(\frac{2}{a^2+1}\right) \, dy = \frac{a}{2} \ln\left(\frac{2}{a^2+1}\right)
Conclusion
After changing the order of integration, we find that the integral int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x \, dy \, dx}{x^2+y^2} evaluates to (a)/(2)ln((2)/(a^(2)+1))\frac{a}{2} \ln\left(\frac{2}{a^2+1}\right).
(c) उस शंकु, जिसका शीर्ष (0,0,1)(0,0,1) है और जिसका निर्देशक वक्र 2x^(2)-y^(2)=4,z=02 x^2-y^2=4, z=0 है, का समीकरण ज्ञात कीजिये।
Find the equation of the cone with (0,0,1)(0,0,1) as the vertex and 2x^(2)-y^(2)=4,z=02 x^2-y^2=4, z=0 as the guiding curve.
Answer:
Let a line through the vertex (0,0,1)(0,0,1) be given by:
(d) 3x-y+3z=83 x-y+3 z=8 के समांतर और बिन्दु (1,1,1)(1,1,1) में से गुजरते हुये समतल का समीकरण ज्ञात कीजिये।
Find the equation of the plane parallel to 3x-y+3z=83 x-y+3 z=8 and passing through the point (1,1,1)(1,1,1).
Answer:
Introduction
The problem asks us to find the equation of a plane that is parallel to 3x-y+3z=83x – y + 3z = 8 and passes through the point (1,1,1)(1, 1, 1).
Work/Calculations
Step 1: Equation of a Parallel Plane
We know that the equation of any plane parallel to 3x-y+3z-8=03x – y + 3z – 8 = 0 can be written as:
3x-y+3z+k=03x – y + 3z + k = 0
Step 2: Substituting the Point
Since the plane passes through the point (1,1,1)(1, 1, 1), we can substitute these coordinates into the equation to find the value of kk.
Let’s substitute the values into the formula:
3*1-1+3*1+k=03 \cdot 1 – 1 + 3 \cdot 1 + k = 0
After Calculating, we get:
k=-5k = -5
Step 3: Equation of the Required Plane
Substituting the value of kk back into the equation, we get:
3x-y+3z-5=03x – y + 3z – 5 = 0
Conclusion
The equation of the plane that is parallel to 3x-y+3z=83x – y + 3z = 8 and passes through the point (1,1,1)(1, 1, 1) is 3x-y+3z-5=03x – y + 3z – 5 = 0.
(b) x=3t,y=3t^(2),z=3t^(3)x=3 t, y=3 t^2, z=3 t^3 समीकरणों वाले बक्र के एक आय बिन्दु पर स्पर्शं-रेखा और रेखा y=z-x=0y=z-x=0 के बीच का कोण ज्ञात कीजिये।
Find the angle between the tangent at a general point of the curve whose equations are x=3t,y=3t^(2),z=3t^(3)x=3 t, y=3 t^2, z=3 t^3 and the line y=z-x=0y=z-x=0.
Answer:
Introduction
The problem asks us to find the angle theta\theta between the tangent at a general point of the curve vec(r)_(1)=3t hat(i)+3t^(2) hat(j)+3t^(3) hat(k)\vec{r}_1 = 3t\hat{i} + 3t^2\hat{j} + 3t^3\hat{k} and the line y=z-x=0y = z – x = 0.
Work/Calculations
Step 1: Derivative of the Curve
The first step is to find the derivative of vec(r)_(1)\vec{r}_1 with respect to tt:
The equation of the line y=z-x=0y = z – x = 0 can be rewritten as:
y=0,quad x=zy = 0, \quad x = z
This gives us the direction ratios [1,0,1][1, 0, 1] for the line, and we can write its vector equation as vec(r)_(2)= hat(i)+ hat(k)\vec{r}_2 = \hat{i} + \hat{k}.
The angle theta\theta between the tangent at a general point of the curve vec(r)_(1)=3t hat(i)+3t^(2) hat(j)+3t^(3) hat(k)\vec{r}_1 = 3t\hat{i} + 3t^2\hat{j} + 3t^3\hat{k} and the line y=z-x=0y = z – x = 0 is:
(d) (i) f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}} का लाप्लास रूपान्तर ज्ञात कीजिये। Find the Laplace transform of f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}}.
Answer:
We know that L(t^(n))=(sqrt(n+1))/(s^(n+1))\mathrm{L}\left(t^n\right)=\frac{\sqrt{n+1}}{s^{n+1}}.
So, the Laplace transform of f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}} is (sqrtpi)/(sqrts)\frac{\sqrt{\pi}}{\sqrt{s}}.
(ii) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)} का विलोम लाप्लास रुपान्तर ज्ञात कीजिये। Find the inverse Laplace transform of (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}.
Answer:
Introduction
The problem asks us to find the inverse Laplace transform of (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}. To find the inverse Laplace transform, we’ll:
Perform partial fraction decomposition on the given expression.
Use the inverse Laplace transform formulas for each term.
Work/Calculations
Step 1: Partial Fraction Decomposition
The given expression is (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}.
The inverse Laplace transform of (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)} is 2e^(t)+2e^(2t)+e^(-3t)2e^{t} + 2e^{2t} + e^{-3t}.
(e) एक कण को धरती के एक बिन्दु से प्रक्षेपित करने पर वह एक दीवार, जो प्रक्षेपण बिन्दु से dd दूरी पर है और जिसकी ऊँचाई hh है, को छूते हुये पार करता है। अगर यह कण ऊर्ध्वाधर तल पर गतिमान है और इसकी क्षैतिज पहुँच RR है, तो प्रक्षेपण की उच्चता ज्ञात कीजिये।
A particle projected from a given point on the ground just clears a wall of height hh at a distance dd from the point of projection. If the particle moves in a vertical plane and if the horizontal range is RR, find the elevation of the projection.
Answer:
Introduction
The problem deals with finding the angle of elevation theta\theta of a particle projected from a point on the ground such that it just clears a wall of height hh at a distance dd. The particle moves in a vertical plane and has a horizontal range of RR.
Work/Calculations
Step 1: Initial Conditions and Equations of Motion
Let the initial velocity of the particle be uu and the angle of elevation be theta\theta. The equations of motion are:
{:[x=u cos theta t quad(1)],[y=u sin theta t-(1)/(2)gt^(2)quad(2)]:}\begin{aligned}
x &= u \cos \theta t \quad &(1) \\
y &= u \sin \theta t – \frac{1}{2} g t^2 \quad &(2)
\end{aligned}
Step 2: Equation of the Trajectory
The equation of the trajectory can be derived from equations (1) and (2) as:
y=x tan theta-(1)/(2)(gx^(2))/(u^(2)cos^(2)theta)quad(3)y = x \tan \theta – \frac{1}{2} \frac{g x^2}{u^2 \cos^2 \theta} \quad (3)
This equation can also be written as:
h=x tan theta[1-(x)/(R)]quad(4)h = x \tan \theta \left[1-\frac{x}{R}\right] \quad (4)
Step 3: Conditions for the Wall and the Ground
When the particle clears the wall, y=hy=h and x=dx=d. Thus:
h=d tan theta-(1)/(2)g((d^(2))/(u^(2)cos^(2)theta))quad(5)h = d \tan \theta – \frac{1}{2} g \frac{d^2}{u^2 \cos^2 \theta} \quad (5)
When the particle strikes the ground, y=0y=0 and x=Rx=R. Thus:
0=R tan theta-(1)/(2)g((R^(2))/(u^(2)cos^(2)theta))quad(6)0 = R \tan \theta – \frac{1}{2} g \frac{R^2}{u^2 \cos^2 \theta} \quad (6)
Step 4: Correcting the Formula for theta\theta
To eliminate u^(2)u^2, we multiply equation (5) by R^(2)R^2 and equation (6) by d^(2)d^2 and subtract the two:
hR^(2)=dR^(2)tan theta-d^(2)R tan thetahR^2 = dR^2 \tan \theta – d^2 R \tan \theta
Let’s simplify this to isolate tan theta\tan \theta:
(b) एक कण, जो एक सरल रेखा में सरल आवर्त गति से चल रहा है, के पथ के केन्द्र से x_(1)x_1 और x_(2)x_2 की दूरी पर वेग क्रमशः v_(1)v_1 और v_(2)v_2 है। उसकी गति का आवर्तकाल ज्ञात कीजिये।
A particle moving with simple harmonic motion in a straight line has velocities v_(1)v_1 and v_(2)v_2 at distances x_(1)x_1 and x_(2)x_2 respectively from the centre of its path. Find the period of its motion.
Answer:
Introduction
The problem is related to a particle moving in Simple Harmonic Motion (SHM). We are given the velocities v_(1)v_1 and v_(2)v_2 at distances x_(1)x_1 and x_(2)x_2 from the center of the motion, respectively. The task is to find the period of this motion.
Work/Calculations
Step 1: General Equation for Velocity in SHM
The general equation for the velocity vv of a particle at a distance xx from the mean (or central) position in SHM is:
v^(2)=mu^(2)(a^(2)-x^(2))v^2 = \mu^2(a^2 – x^2)
where aa is the amplitude and mu\mu is the angular frequency.
The period TT of a particle moving in simple harmonic motion, given velocities v_(1)v_1 and v_(2)v_2 at distances x_(1)x_1 and x_(2)x_2 respectively, is:
We need to find the general solution to this equation, which will be in the form of y=”C.F.”+”P.I.”y = \text{C.F.} + \text{P.I.}, where C.F. is the Complementary Function and P.I. is the Particular Integral.
Work/Calculations
Step 1: Find the Complementary Function (C.F.)
For the homogeneous equation y^(″)+16 y=0y” + 16y = 0, the auxiliary equation is:
We are tasked with finding the curvature and torsion of the curve vec(r)=a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)\vec{r} = a(u – \sin u) \vec{i} + a(1 – \cos u) \vec{j} + b u \vec{k}. Curvature gives us an understanding of how a curve bends in space, whereas torsion explains how the curve twists.
Work/Calculations
Step 1: First Derivative vec(r)^(‘)(u)\vec{r}'(u)
We need to find the first derivative of vec(r)(u)\vec{r}(u) with respect to uu. The derivative is:
{:[(d( vec(r)))/(du)=(d)/(du)[a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)]],[=(a-a cos u) vec(i)+a sin u vec(j)+b vec(k)]:}\begin{aligned}
\frac{d \vec{r}}{d u} &= \frac{d}{du}[ a(u – \sin u) \vec{i} + a(1 – \cos u) \vec{j} + b u \vec{k}] \\
&= (a – a \cos u) \vec{i} + a \sin u \vec{j} + b \vec{k}
\end{aligned}
Step 2: Magnitude of vec(r)^(‘)(u)\vec{r}'(u)
Next, we find the magnitude of vec(r)^(‘)(u)\vec{r}'(u):
{:[|(d( vec(r)))/(du)|=sqrt((a-a cos u)^(2)+(a sin u)^(2)+b^(2))],[=sqrt(a^(2)-2a^(2)cos u+a^(2)cos^(2)u+a^(2)sin^(2)u+b^(2))],[=sqrt(2a^(2)(1-cos u)+b^(2))]:}\begin{aligned}
\left|\frac{d \vec{r}}{d u}\right| &= \sqrt{(a – a \cos u)^2 + (a \sin u)^2 + b^2} \\
&= \sqrt{a^2 – 2a^2 \cos u + a^2 \cos^2 u + a^2 \sin^2 u + b^2} \\
&= \sqrt{2a^2(1-\cos u) + b^2}
\end{aligned}
Step 3: Second Derivative vec(r)^(″)(u)\vec{r}”(u)
The second derivative of vec(r)\vec{r} is:
{:[(d^(2)( vec(r)))/(du^(2))=(d)/(du)[(a-a cos u) vec(i)+a sin u vec(j)+b vec(k)]],[=a sin u vec(i)+a cos u vec(j)]:}\begin{aligned}
\frac{d^2 \vec{r}}{d u^2} &= \frac{d}{du}[ (a – a \cos u) \vec{i} + a \sin u \vec{j} + b \vec{k} ] \\
&= a \sin u \vec{i} + a \cos u \vec{j}
\end{aligned}
Step 4: Third Derivative vec(r)^(‴)(u)\vec{r}”'(u)
The third derivative of vec(r)\vec{r} is:
{:[(d^(3)( vec(r)))/(du^(3))=(d)/(du)[a sin u vec(i)+a cos u vec(j)]],[=a cos u vec(i)-a sin u vec(j)]:}\begin{aligned}
\frac{d^3 \vec{r}}{d u^3} &= \frac{d}{du}[ a \sin u \vec{i} + a \cos u \vec{j} ] \\
&= a \cos u \vec{i} – a \sin u \vec{j}
\end{aligned}
{:T=(a^(2)b)/(a^(2)b^(2)+a^(4)(cos u-1)^(2)):}\begin{aligned}
T &= \frac{a^2b}{a^2b^2 + a^4(\cos u – 1)^2}
\end{aligned}
Conclusion
We found that the curvature is given by |(d( vec(r)))/(du)|=sqrt(2a^(2)(1-cos u)+b^(2))\left|\frac{d \vec{r}}{d u}\right| = \sqrt{2a^2(1-\cos u) + b^2} and the torsion TT is (a^(2)b)/(a^(2)b^(2)+a^(4)(cos u-1)^(2))\frac{a^2b}{a^2b^2 + a^4(\cos u – 1)^2}.
We are given an initial value problem described by the second-order non-homogeneous differential equation y^(″)-5y^(‘)+4y=e^(2t)y” – 5y’ + 4y = e^{2t} along with the initial conditions y(0)=(19)/(12)y(0) = \frac{19}{12} and y^(‘)(0)=(8)/(3)y'(0) = \frac{8}{3}.
Work/Calculations
Step 1: Complementary Function (y_(c)y_c)
For the homogeneous equation y^(″)-5y^(‘)+4y=0y” – 5y’ + 4y = 0, the auxiliary equation is:
The required solution to the initial value problem y^(″)-5y^(‘)+4y=e^(2t)y” – 5y’ + 4y = e^{2t} with the initial conditions y(0)=(19)/(12)y(0) = \frac{19}{12} and y^(‘)(0)=(8)/(3)y'(0) = \frac{8}{3} is y=(14)/(9)e^(t)+(19)/(36)e^(4t)-(1)/(2)e^(2t)y = \frac{14}{9}e^t + \frac{19}{36}e^{4t} – \frac{1}{2}e^{2t}.
(d) alpha\alpha और beta\beta को, जिसके लिये x^( alpha)y^( beta)x^\alpha y^\beta समीकरण (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0 का एक समाकलन गुण्पक है, ज्ञात कीजिये और समीकरण हल कीजिये।
Find alpha\alpha and beta\beta such that x^( alpha)y^( beta)x^\alpha y^\beta is an integrating factor of (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0 and solve the equation.
Answer:
Find alpha\alpha and beta\beta such that x^( alpha)y^( beta)x^\alpha y^\beta is an integrating factor of (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0 and solve the equation.
Answer:
Given that (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0
Let x^( alpha)y^( beta)x^\alpha y^\beta be an integrating factor of equation (1) then
{:[x^( alpha)y^( beta)(4y^(2)+3xy)dx-x^( alpha)y^( beta)(3xy+2x^(2))dy=0],[{:(4x^( alpha)y^(beta+2)+3x^(alpha+1)y^(beta+1))dx-(3x^(alpha+1)y^(beta+1)+2x^(alpha+2)y^( beta))dy=0rarr” ( “)]:}\begin{aligned}
& x^\alpha y^\beta\left(4 y^2+3 x y\right) d x-x^\alpha y^\beta\left(3 x y+2 x^2\right) d y=0 \\
& \left.\left(4 x^\alpha y^{\beta+2}+3 x^{\alpha+1} y^{\beta+1}\right) d x-\left(3 x^{\alpha+1} y^{\beta+1}+2 x^{\alpha+2} y^\beta\right) d y=0 \rightarrow \text { ( }\right)
\end{aligned}
(a) मान लीजिये कि vec(v)=v_(1) vec(i)+v_(2) vec(j)+v_(3) vec(k)\vec{v}=v_1 \vec{i}+v_2 \vec{j}+v_3 \vec{k} है। दर्शाइये कि curl(curl vec(v))=grad(div vec(v))-grad^(2) vec(v)\operatorname{curl}(\operatorname{curl} \vec{v})=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^2 \vec{v}.
Let vec(v)=v_(1) vec(i)+v_(2) vec(j)+v_(3) vec(k)\vec{v}=v_1 \vec{i}+v_2 \vec{j}+v_3 \vec{k}. Show that curl(curl {:( vec(v)))=grad(div vec(v))-grad^(2) vec(v)\left.\vec{v}\right)=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^2 \vec{v}.
Answer:
Introduction:
We are given a vector field vec(v)=v_(1) hat(i)+v_(2) hat(j)+v_(3) hat(k)\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}, and we need to show that grad xx(grad xx vec(v))=grad(div vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \operatorname{grad}(\operatorname{div} \vec{v}) – \nabla^2 \vec{v}.
Work/Calculations:
First, we find the curl of vec(v)\vec{v} using the determinant form:
grad xx(grad xx vec(v))=sum[{(del)/(del x)(grad*( vec(v)))-grad^(2)v_(1)}( hat(i))]\nabla \times (\nabla \times \vec{v}) = \sum\left[\left\{\frac{\partial}{\partial x}(\nabla \cdot \vec{v}) – \nabla^2 v_1\right\} \hat{i}\right]
Now, let’s write this in a more concise form:
grad xx(grad xx vec(v))=grad(grad* vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \nabla(\nabla \cdot \vec{v}) – \nabla^2 \vec{v}
Conclusion:
Therefore, we have shown that grad xx(grad xx vec(v))=grad(grad* vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \nabla(\nabla \cdot \vec{v}) – \nabla^2 \vec{v}, as required.
(b) स्टोकस प्रमेय का इस्तेमाल करते हुये रेखा समाकल int _(C)-y^(3)dx+x^(3)dy+z^(3)dz\int_C-y^3 d x+x^3 d y+z^3 d z का मान निकालिये। यहाँ सिलिन्डर x^(2)+y^(2)=1x^2+y^2=1 और समतल x+y+z=1x+y+z=1 का प्रतिच्छेद CC है। CC पर अभिकिन्यास xyx y-समतल में वामावर्त गति के संगत है।
Evaluate the line integral int _(C)-y^(3)dx+x^(3)dy+z^(3)dz\int_C-y^3 d x+x^3 d y+z^3 d z using Stokes’ theorem. Here CC is the intersection of the cylinder x^(2)+y^(2)=1x^2+y^2=1 and the plane x+y+z=1x+y+z=1. The orientation on CC corresponds to counterclockwise motion in the xyx y-plane.
Answer:
Introduction:
We are given the line integral int _(C)(-y^(3)dx+x^(3)dy+z^(3)dz)\int_C (-y^3 dx + x^3 dy + z^3 dz), where CC is the intersection of the cylinder x^(2)+y^(2)=1x^2 + y^2 = 1 and the plane x+y+z=1x + y + z = 1. We will evaluate this integral using Stokes’ theorem.
Work/Calculations:
Let’s start by finding the unit normal vector hat(n)\hat{n} for the plane x+y+z=1x + y + z = 1. The orientation on CC corresponds to counterclockwise motion in the xyxy-plane. Therefore,
hat(n)=(i+j+k)/(sqrt(1^(2)+1^(2)+1^(2)))=(1)/(sqrt3)i+(1)/(sqrt3)j+(1)/(sqrt3)k\hat{n} = \frac{i + j + k}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}} i + \frac{1}{\sqrt{3}} j + \frac{1}{\sqrt{3}} k
We will apply Stokes’ theorem with P=-y^(3)P = -y^3, Q=x^(3)Q = x^3, and R=z^(3)R = z^3. Calculate grad xx F\nabla \times F:
{:[grad xx F=|[i,j,k],[(del)/(del x),(del)/(del y),(del)/(del z)],[-y^(3),x^(3),z^(3)]|],[=i[0]-j[0]+k[3x^(2)+3y^(2)]],[=3(x^(2)+y^(2))k]:}\begin{aligned}
\nabla \times F &= \begin{vmatrix}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^3 & x^3 & z^3
\end{vmatrix} \\
&= i \left[0\right] – j \left[0\right] + k \left[3x^2 + 3y^2\right] \\
&= 3\left(x^2 + y^2\right) k
\end{aligned}
Now, we will use Stokes’ theorem:
oint_(C)(-y^(3)dx+x^(3)dy+z^(3)dz)=∬_(S)(grad xx F)*dS\oint_C (-y^3 dx + x^3 dy + z^3 dz) = \iint_S (\nabla \times F) \cdot dS
Here, SS is the surface bounded by CC.
The projection of the surface SS onto the xyxy-plane is the circle x^(2)+y^(2)=1x^2 + y^2 = 1 with a radius of 1. Representing the equation of the plane in the form z=1-x-yz = 1 – x – y and using the formula for the surface integral:
Conclusion:
The line integral int _(C)(-y^(3)dx+x^(3)dy+z^(3)dz)\int_C (-y^3 dx + x^3 dy + z^3 dz) over the curve CC is equal to 3pi3\pi when evaluated using Stokes’ theorem.
(c) मान लीजिये कि vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j} है। ग्रीन के प्रमेय का इस्तेमाल करते हुये प्रथम चतुर्थाश में वक्रों y=x^(2)y=x^2 और y=xy=x द्वारा परिबद्ध क्षेत्र पर (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k} का समाकलन कीजिये।
Let vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j}. Integrate (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k} over the region in the first quadrant bounded by the curves y=x^(2)y=x^2 and y=xy=x using Green’s theorem.
Answer:
Introduction
The problem asks us to integrate (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k} over the region in the first quadrant bounded by the curves y=x^(2)y=x^2 and y=xy=x using Green’s theorem.
Green’s theorem states that for a vector field vec(F)=M vec(i)+N vec(j)\vec{F}=M \vec{i}+N \vec{j} :
oint_(C)(Mdx+Ndy)=∬_(R)((del N)/(del x)-(del M)/(del y))dA\oint_C(M d x+N d y)=\iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
Here, CC is the positively oriented boundary curve of the region RR.
Given vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j}, we have M=xy^(2)M=x y^2 and N=y+xN=y+x.
After calculating , the result is (1)/(12)\frac{1}{12}.
Conclusion
The integral of (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k} over the region in the first quadrant bounded by the curves y=x^(2)y = x^2 and y=xy = x is (1)/(12)\frac{1}{12}.
(d) f(y)f(y), जिसके लिये समीकरण (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0\left(2 x e^y+3 y^2\right) d y+\left(3 x^2+f(y)\right) d x=0 सथातथ्य है, ज्ञात कीजिये और हाल निकालिये।
Find f(y)f(y) such that (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0\left(2 x e^y+3 y^2\right) d y+\left(3 x^2+f(y)\right) d x=0 is exact and hence solve.
Answer:
Introduction:
We are given the differential equation (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0(2xe^y + 3y^2) dy + (3x^2 + f(y)) dx = 0, and our objective is to determine the function f(y)f(y) such that this equation is exact. Once we find f(y)f(y), we can proceed to solve the equation.
Work/Calculations:
To ensure that the equation is exact, we need to satisfy the condition (del M)/(del y)=(del N)/(del x)\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, where MM and NN are the coefficients of dxdx and dydy terms, respectively.
In the given equation, we have M=3x^(2)+f(y)M = 3x^2 + f(y) and N=2xe^(y)+3y^(2)N = 2xe^y + 3y^2.
Compute the partial derivatives (del M)/(del y)\frac{\partial M}{\partial y} and (del N)/(del x)\frac{\partial N}{\partial x}:
To solve this exact equation, we can use the method of exact differentials. We recognize that the equation can be derived from a potential function, so we can write: