1.(a) मान लीजिए कि S_(3)S_3 व Z_(3)Z_3 क्रमशः 3 प्रतीकों का क्रमचय समूह एवं मॉड्यूल 3 अवशिष्ट वर्गों के समूह हैं। दर्शाइए कि S_(3)S_3 का Z_(3)Z_3 में तुच्छ समाकारिता के अतिरिक्त कोई भी समाकारिता नहीं है ।
Let S_(3)S_3 and Z_(3)Z_3 be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of S_(3)S_3 in Z_(3)Z_3 except the trivial homomorphism.
Answer:
To show that there is no homomorphism of S_(3)S_3 into Z_(3)Z_3 except the trivial homomorphism, we can use the following properties of homomorphisms:
A homomorphism phi:G rarr H\phi: G \to H preserves the identity element, i.e., phi(e_(G))=e_(H)\phi(e_G) = e_H.
A homomorphism phi:G rarr H\phi: G \to H preserves the group operation, i.e., phi(a**b)=phi(a)**phi(b)\phi(a \ast b) = \phi(a) \ast \phi(b).
A homomorphism phi:G rarr H\phi: G \to H preserves the order of elements, i.e., if aa has order nn in GG, then phi(a)\phi(a) has order dividing nn in HH.
Properties of S_(3)S_3 and Z_(3)Z_3
S_(3)S_3 is the permutation group on 3 symbols, and it has 3!=63! = 6 elements.
Z_(3)Z_3 is the group of residue classes modulo 3, and it has 3 elements: [0],[1],[2][0], [1], [2].
Steps to Show No Non-Trivial Homomorphism Exists
Identity Element: Any homomorphism phi:S_(3)rarrZ_(3)\phi: S_3 \to Z_3 must map the identity element of S_(3)S_3 (the identity permutation ee) to the identity element of Z_(3)Z_3 ([0][0]).
phi(e)=[0]\phi(e) = [0]
Order of Elements: The order of any element in Z_(3)Z_3 divides 3. In S_(3)S_3, we have elements of order 2 (e.g., transpositions) and elements of order 3 (e.g., 3-cycles). If there exists a non-trivial homomorphism phi\phi, then it must map elements of S_(3)S_3 to elements of Z_(3)Z_3 in such a way that the order of the image divides the order of the original element.
However, Z_(3)Z_3 only has elements of order 1 ([0][0]) and order 3 ([1],[2][1], [2]). There are no elements of order 2 in Z_(3)Z_3.
Contradiction: S_(3)S_3 contains elements of order 2 (transpositions). Any homomorphism phi\phi would have to map these elements to an element in Z_(3)Z_3 whose order divides 2. Since Z_(3)Z_3 contains no such elements (other than the identity), we reach a contradiction.
Therefore, the only homomorphism that can exist from S_(3)S_3 to Z_(3)Z_3 is the trivial homomorphism that maps all elements of S_(3)S_3 to the identity element [0][0] in Z_(3)Z_3.
1.(b) मान लीजिए RR मुख्य गुणजावली प्रान्त है । दर्शाइए कि RR के विभाग-वलय की प्रत्येक गुणजावली, मुख्य गुणजावली है तथा R//P,RR / P, R के अभाज्यगुणजावली PP के लिए मुख्य गुणजावली प्रान्त है ।
Let RR be a principal ideal domain. Show that every ideal of a quotient ring of RR is principal ideal and R//PR / P is a principal ideal domain for a prime ideal PP of RR.
Answer:
Introduction
The problem asks us to prove two things:
Every ideal of a quotient ring R//PR/P is a principal ideal.
If PP is a prime ideal of RR, then R//PR/P is a principal ideal domain (PID).
To prove these statements, we’ll use the properties of principal ideal domains and quotient rings.
Work/Calculations
Part 1: Every ideal of R//PR/P is a principal ideal
Let I//PI/P be an ideal of R//PR/P, where II is an ideal of RR containing PP.
Step 1: Show that II is a principal ideal in RR
Since RR is a PID, II is generated by a single element aa in RR. That is,
I=(a)I = (a)
Step 2: Show that I//PI/P is generated by a+Pa+P in R//PR/P
Let’s substitute the values:
I//P=(a)+PI/P = (a) + P
After substituting, we can see that I//PI/P is generated by a+Pa+P in R//PR/P.
Therefore, I//PI/P is a principal ideal in R//PR/P.
Part 2: R//PR/P is a PID for a prime ideal PP of RR
Step 1: Show that R//PR/P is an integral domain
Since PP is a prime ideal, R//PR/P is an integral domain.
Step 2: Show that every ideal in R//PR/P is principal
From Part 1, we know that every ideal in R//PR/P is principal.
Step 3: Conclude that R//PR/P is a PID
Since R//PR/P is an integral domain and every ideal in R//PR/P is principal, R//PR/P is a PID.
Conclusion
We have shown that every ideal of a quotient ring R//PR/P is a principal ideal. Additionally, if PP is a prime ideal of RR, then R//PR/P is a principal ideal domain. Both of these statements hold true when RR is a principal ideal domain.
1.(c) सिद्ध कीजिए कि शर्त |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right|, जहाँ पर 0 < alpha < 10<\alpha<1 को सभी प्राकृतिक संख्याओं n >= 2n \geqslant 2 के लिए सन्तुष्ट करने वाला अनुक्रम (a_(n)^(‘))\left(a_n^{\prime}\right), कॉशी-अनुक्रम होता है ।
Prove that the sequence (a_(n))\left(a_n\right) satisfying the condition |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|,0 < alpha < 1\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right|, 0<\alpha<1 for all natural numbers n >= 2n \geqslant 2, is a Cauchy sequence.
Answer:
Introduction
The problem asks us to prove that a sequence (a_(n))\left(a_n\right) satisfying the condition
for all natural numbers n >= 2n \geqslant 2, is a Cauchy sequence. A sequence is said to be Cauchy if for every epsilon > 0\epsilon > 0, there exists an NN such that for all m,n > Nm, n > N, |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon.
Work/Calculations
Step 1: Prove that |a_(n+1)-a_(n)|\left|a_{n+1} – a_n\right| becomes arbitrarily small
After substituting, we see that as nn becomes large, alpha ^(n)\alpha^n approaches zero (since 0 < alpha < 10 < \alpha < 1), making |a_(n+1)-a_(n)|\left|a_{n+1}-a_n\right| arbitrarily small.
Step 2: Prove that (a_(n))\left(a_n\right) is a Cauchy sequence
To prove that (a_(n))\left(a_n\right) is a Cauchy sequence, we need to show that for any epsilon > 0\epsilon > 0, there exists an NN such that for all m,n > Nm, n > N, |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon.
We can make this less than epsilon\epsilon by choosing NN large enough so that alpha ^(N)|a_(2)-a_(1)|(1)/(1-alpha) < epsilon\alpha^N|a_2 – a_1| \frac{1}{1 – \alpha} < \epsilon.
Conclusion
We have shown that for any epsilon > 0\epsilon > 0, there exists an NN such that for all m,n > Nm, n > N, |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon. Therefore, the sequence (a_(n))\left(a_n\right) is a Cauchy sequence, as required.
1.(d) समाकल int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d z का, (2,0)(2,0) से (0,2)(0,2) तक वक्र CC के वामावर्त अनुगत जहाँ पर CC वृत्त |z|=2|z|=2 है, मान निकालिए ।
Evaluate the integral int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d z counterclockwise from (2,0)(2,0) to (0,2)(0,2) along the curve CC, where CC is the circle |z|=2|z|=2.
Answer:
Introduction
The problem asks us to evaluate the integral int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d z counterclockwise from (2,0)(2,0) to (0,2)(0,2) along the curve CC, where CC is the circle |z|=2|z|=2.
Given Parameters and Parametrization
Given |z|=2|z|=2, i.e. z=2e^(i theta)quadz=2 e^{i \theta} \quad and quad0 <= theta <= (pi)/(2)\quad 0 \leq \theta \leq \frac{\pi}{2}.
Integral Setup
:.int _(C)(z^(2)+3z)dz=int_(|z|=2)(z^(2)+3z)dz\therefore \int_C\left(z^2+3 z\right) d z =\int_{|z|=2}\left(z^2+3 z\right) d z
Substitution and Simplification
=int_(0)^(pi//2)[(2e^(i theta))^(2)+3(2e^(i theta))]2e^(i theta)*id theta=\int_0^{\pi / 2}\left[\left(2 e^{i \theta}\right)^2+3\left(2 e^{i \theta}\right)\right] 2 e^{i \theta} \cdot i d \theta
Evaluation of the Integral
=[8i(e^(3i theta))/(3i)+12 i(e^(2i theta))/(2i)]_(0)^((pi)/(2))=\left[8 i \frac{e^{3 i \theta}}{3 i}+12 i \frac{e^{2 i \theta}}{2 i}\right]_0^{\frac{\pi}{2}}
The integral int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d z along the curve CC, where CC is the circle |z|=2|z|=2, is (-44)/(3)-(8)/(3)i\frac{-44}{3}-\frac{8}{3} i.
1.(e) यू.पी.एस.सी. के रखरखाव विभाग ने भवन में पर्दों की आवश्यकता-पूर्ति हेतु पर्दा-कपडे के पर्याप्त संख्या में टुकड़े खरीदे हैं। प्रत्येक टुकड़े की लम्बाई 17 फुट है। पर्दों की लम्बाई के अनुसार आवश्यकता निम्नलिखित है : {:[” पर्दे की लम्बाई (फुटों में) आवश्यक संख्या “],[5,700],[9,400],[7,300]:}\begin{array}{cc}\text { पर्दे की लम्बाई (फुटों में) आवश्यक संख्या } \\ 5 & 700 \\ 9 & 400 \\ 7 & 300\end{array}
टुकडों एवं सभी पर्दों की चौड़ाइयाँ समान हैं। विभिन्न रूप से काटे गये टुकड़ों की संख्या का निर्णय इस प्रकार करने हेतु कि कुल कटान-हानि न्यूनतम हो, एक रैखिक प्रोग्रामन समस्या का प्रामाणिक इस प्रकार करने हेतु कि कुल कटान-हानि न्यूनतम हो, एक रैखिक प्रोग्रामन समस्या का प्रामाणिक रूप में निर्धारण कीजिए । इसका एक आधारी सुसंगत हल भी दीजिए ।
UPSC maintenance section has purchased sufficient number of curtain cloth pieces to meet the curtain requirement of its building. The length of each piece is 17 feet. The requirement according to curtain length is as follows: {:[” Curtain length (in feet) “,” Number required “],[5,700],[9,400],[7,300]:}\begin{array}{cc}\text { Curtain length (in feet) } & \text { Number required } \\ 5 & 700 \\ 9 & 400 \\ 7 & 300\end{array}
The width of all curtains is same as that of available pieces. Form a linear programming problem in standard form that decides the number of pieces cut in different ways so that the total trim loss is minimum. Also give a basic feasible solution to it.
Answer:
Introduction
The UPSC maintenance section has purchased curtain cloth pieces, each of length 17 feet, to meet the curtain requirements of its building. The goal is to cut these 17-foot pieces into smaller lengths of 5, 9, and 7 feet to meet the specific requirements while minimizing the total trim loss. We will formulate this as a linear programming problem (LPP) in standard form.
Variables
Let x_(1)x_1 be the number of 17-foot pieces cut into one 5-foot piece and one 12-foot piece.
Let x_(2)x_2 be the number of 17-foot pieces cut into one 9-foot piece and one 8-foot piece.
Let x_(3)x_3 be the number of 17-foot pieces cut into one 7-foot piece and one 10-foot piece.
Objective Function
The objective is to minimize the total trim loss, which is the sum of the remaining lengths after cutting the 17-foot pieces. The total trim loss TT can be represented as:
“Minimize “T=12x_(1)+8x_(2)+10x_(3)\text{Minimize } T = 12x_1 + 8x_2 + 10x_3
Constraints
The number of 5-foot pieces should be at least 700: x_(1) >= 700x_1 \geq 700
The number of 9-foot pieces should be at least 400: x_(2) >= 400x_2 \geq 400
The number of 7-foot pieces should be at least 300: x_(3) >= 300x_3 \geq 300
All variables must be non-negative: x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geq 0
Linear Programming Problem in Standard Form
“Minimize “T=12x_(1)+8x_(2)+10x_(3)\text{Minimize } T = 12x_1 + 8x_2 + 10x_3
A basic feasible solution can be obtained by setting the slack variables to zero and solving the constraints for x_(1),x_(2),x_(3),x_1, x_2, x_3, and TT.
The linear programming problem to minimize the total trim loss while meeting the curtain requirements is formulated as above. A basic feasible solution suggests cutting 700 pieces into 5-foot lengths, 400 pieces into 9-foot lengths, and 300 pieces into 7-foot lengths, resulting in a total trim loss of 14,600 feet.
2.(a) मान लीजिए G,nG, n समूहांक का परिमित चक्रीय समूह है। तब सिद्ध कीजिए कि GG के phi(n)\phi(n) जनक हैं (जहाँ पर phi\phi ऑयलर phi\phi-फलन है) ।
Let GG be a finite cyclic group of order nn. Then prove that GG has phi(n)\phi(n) generators (where phi\phi is Euler’s phi\phi-function).
Answer:
Introduction
The problem asks us to prove that a finite cyclic group GG of order nn has phi(n)\phi(n) generators, where phi\phi is Euler’s phi\phi-function. Euler’s phi\phi-function phi(n)\phi(n) is defined as the number of positive integers less than nn that are relatively prime to nn.
Preliminaries
Let GG be a finite cyclic group of order nn generated by aa. That is, G={a^(0),a^(1),a^(2),dots,a^(n-1)}G = \{ a^0, a^1, a^2, \ldots, a^{n-1} \}.
Generators of GG
A generator gg of GG is an element such that every element in GG can be written as a power of gg. In other words, G={g^(0),g^(1),g^(2),dots,g^(n-1)}G = \{ g^0, g^1, g^2, \ldots, g^{n-1} \}.
Euler’s phi\phi-Function
Euler’s phi\phi-function phi(n)\phi(n) counts the number of positive integers less than nn that are relatively prime to nn.
Proof
Claim: An element a^(k)a^k generates GG if and only if gcd(k,n)=1\gcd(k, n) = 1.
Proof of Claim:
Forward Direction: Suppose a^(k)a^k generates GG. Then (:a^(k):)=G\langle a^k \rangle = G, which means a^(k)a^k has order nn. By Lagrange’s theorem, the order of a^(k)a^k must divide nn. Since a^(k)a^k has order nn, kk and nn must be relatively prime.
Backward Direction: Suppose gcd(k,n)=1\gcd(k, n) = 1. We want to show that a^(k)a^k generates GG. To do this, we need to show that every element a^(m)a^m in GG can be written as (a^(k))^(r)(a^k)^r for some integer rr.
Since gcd(k,n)=1\gcd(k, n) = 1, there exist integers pp and qq such that pk+qn=1pk + qn = 1. For any a^(m)a^m in GG, we have:
where r=mpr = mp. This shows that a^(k)a^k generates GG.
Counting Generators: The number of generators of GG is the same as the number of integers kk such that 0 < k < n0 < k < n and gcd(k,n)=1\gcd(k, n) = 1. This is precisely phi(n)\phi(n).
Conclusion
We have proven that a finite cyclic group GG of order nn has phi(n)\phi(n) generators. The proof relies on the properties of Euler’s phi\phi-function and the definition of a cyclic group.
2.(b) सिद्ध कीजिए कि फलन f(x)=sin x^(2)f(x)=\sin x^2 अंतराल [0,oo[0, \infty [ पर एकसमान संतत नहीं है।
Prove that the function f(x)=sin x^(2)f(x)=\sin x^2 is not uniformly continuous on the interval [0,oo[[0, \infty[.
Answer:
Introduction
The problem asks us to prove that the function f(x)=sin(x^(2))f(x) = \sin(x^2) is not uniformly continuous on the interval [0,oo)[0, \infty).
Definition of Uniform Continuity
A function f(x)f(x) is said to be uniformly continuous on an interval II if for every epsilon > 0\epsilon > 0, there exists a delta > 0\delta > 0 such that for all x,yx, y in II, if |x-y| < delta|x – y| < \delta, then |f(x)-f(y)| < epsilon|f(x) – f(y)| < \epsilon.
Proof by Contradiction
To prove that f(x)=sin(x^(2))f(x) = \sin(x^2) is not uniformly continuous on [0,oo)[0, \infty), we’ll use a proof by contradiction. Assume that f(x)f(x) is uniformly continuous on [0,oo)[0, \infty).
Assumption: Assume f(x)=sin(x^(2))f(x) = \sin(x^2) is uniformly continuous on [0,oo)[0, \infty).
Choose epsilon\epsilon: Let epsilon=(1)/(2)\epsilon = \frac{1}{2}.
Find delta\delta: According to the definition of uniform continuity, there must exist a delta > 0\delta > 0 such that for all x,yx, y in [0,oo)[0, \infty), if |x-y| < delta|x – y| < \delta, then |sin(x^(2))-sin(y^(2))| < (1)/(2)|\sin(x^2) – \sin(y^2)| < \frac{1}{2}.
Construct Counterexample: Consider the sequence x_(n)=sqrt(n pi)x_n = \sqrt{n\pi} and y_(n)=sqrt((n+1)pi)y_n = \sqrt{(n+1)\pi}. We have:
As nn approaches infinity, |x_(n)-y_(n)||x_n – y_n| approaches 0, which means for sufficiently large nn, |x_(n)-y_(n)| < delta|x_n – y_n| < \delta.
Evaluate f(x_(n))-f(y_(n))f(x_n) – f(y_n): We have f(x_(n))=sin(n pi)=0f(x_n) = \sin(n\pi) = 0 and f(y_(n))=sin((n+1)pi)=0f(y_n) = \sin((n+1)\pi) = 0. Therefore, |f(x_(n))-f(y_(n))|=0|f(x_n) – f(y_n)| = 0.
Contradiction: The function f(x)=sin(x^(2))f(x) = \sin(x^2) oscillates infinitely many times as xx approaches infinity. This means that for any delta > 0\delta > 0, we can find points x,yx, y such that |x-y| < delta|x – y| < \delta but |sin(x^(2))-sin(y^(2))||\sin(x^2) – \sin(y^2)| is close to 1, contradicting the assumption that f(x)f(x) is uniformly continuous.
Conclusion
We have shown that assuming f(x)=sin(x^(2))f(x) = \sin(x^2) is uniformly continuous leads to a contradiction. Therefore, f(x)=sin(x^(2))f(x) = \sin(x^2) is not uniformly continuous on the interval [0,oo)[0, \infty).
2.(c) कन्टूर समाकलन का उपयोग कर, समाकल int_(0)^(2pi)(1)/(3+2sin theta)d theta\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta का मान ज्ञात कीजिए ।
Using contour integration, evaluate the integral int_(0)^(2pi)(1)/(3+2sin theta)d theta\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta.
Answer:
Introduction:
Using contour integration, evaluate the integral
int_(0)^(2pi)(1)/(3+2sin theta)d theta.\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta.
(a) मान लीजिए R,p( > 0)R, p(>0) अभिलक्षण का एक परिमित क्षेत्र है । दर्शाइए कि f(a)=a^(p),AA a in Rf(a)=a^p, \forall a \in R द्वारा परिभाषित प्रतिचित्रण f:R rarr Rf: R \rightarrow R एकैक समाकारी है ।
Let RR be a finite field of characteristic p( > 0)p(>0). Show that the mapping f:R rarr Rf: R \rightarrow R defined by f(a)=a^(p),AA a in Rf(a)=a^p, \forall a \in R is an isomorphism.
Answer:
Introduction
The problem asks us to prove that the mapping f:R rarr Rf: R \rightarrow R defined by f(a)=a^(p)f(a) = a^p for all a in Ra \in R is an isomorphism, where RR is a finite field of characteristic p > 0p > 0.
Definitions
Field: A set RR with two operations ++ and xx\times that satisfy the field axioms.
Characteristic: A field RR has characteristic pp if pp is the smallest positive integer such that p*a=0p \cdot a = 0 for all a in Ra \in R. If no such pp exists, the characteristic is zero.
Isomorphism: A bijective map f:R rarr Rf: R \rightarrow R that preserves the field operations.
Properties Needed
Frobenius Endomorphism: In a field of characteristic pp, (a+b)^(p)=a^(p)+b^(p)(a+b)^p = a^p + b^p and (ab)^(p)=a^(p)b^(p)(ab)^p = a^p b^p.
Proof
To prove that ff is an isomorphism, we need to show that ff is a bijective map that preserves addition and multiplication.
Suppose f(a)=f(b)f(a) = f(b). Then a^(p)=b^(p)a^p = b^p which implies a^(p)-b^(p)=0a^p – b^p = 0. Since RR is a field, it has no zero divisors, and we can factor a^(p)-b^(p)a^p – b^p as (a-b)^(p)(a-b)^p. This means a-b=0a-b = 0 or a=ba = b, proving that ff is injective.
3. ff is Surjective (Onto)
Since RR is finite and ff is injective, ff must also be surjective. Alternatively, for any b in Rb \in R, b=b^(p^(2))b = b^{p^2} (by Fermat’s Little Theorem or the fact that R^(**)R^*, the multiplicative group of RR, has order p^(n)-1p^n – 1). Thus, f(b^(p-1))=(b^(p-1))^(p)=b^(p)=bf(b^{p-1}) = (b^{p-1})^p = b^p = b, showing that ff is surjective.
Conclusion
We have shown that ff preserves both addition and multiplication, and is both injective and surjective. Therefore, f:R rarr Rf: R \rightarrow R defined by f(a)=a^(p)f(a) = a^p is an isomorphism.
3.(b) एकधा विधि के द्वारा निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :
न्यूनतमीकरण कीजिए z=-6X_(1)-2X_(2)-5X_(3)z=-6 X_1-2 X_2-5 X_3
बशर्ते कि
The given Linear Programming Problem (LPP) aims to minimize the objective function z=-6X_(1)-2X_(2)-5X_(3)z = -6X_1 – 2X_2 – 5X_3 subject to certain constraints and variable bounds. The problem is transformed to a standard form by introducing slack variables and then solved using the Simplex method.
Problem Transformation
Let x_(1)+2=X_(1),x_(2)+1=X_(2)x_1+2=X_1, x_2+1=X_2 and x_(3)+1=X_(3)x_3+1=X_3
Negative minimum C_(j)-Z_(j)C_j-Z_j is -6 and its column index is 1 . So, the entering variable is x_(1)x_1.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is S_(1)S_1. :.\therefore The pivot element is 2 .
Entering =x_(1)=x_1, Departing =S_(1)=S_1, Key Element =2=2
{:[R_(1)(” new “)=R_(1)(” old “)-:2],[R_(2)(” new “)=R_(2)(” old “)+4R_(1)(” new “)],[{:R_(3)” (new “)=R_(3)” (old “)-2R_(1)(” new “)]:}\begin{aligned}
& R_1(\text { new })=R_1(\text { old }) \div 2 \\
& R_2(\text { new })=R_2(\text { old })+4 R_1(\text { new }) \\
& \left.\left.R_3 \text { (new }\right)=R_3 \text { (old }\right)-2 R_1(\text { new })
\end{aligned}
Negative minimum C_(j)-Z_(j)C_j-Z_j is -11 and its column index is 2 . So, the entering variable is x_(2)x_2.
Minimum ratio is 6.6 and its row index is 3 . So, the leaving basis variable is S_(3)S_3. :.\therefore The pivot element is 5 .
Entering =x_(2)=x_2, Departing =S_(3)=S_3, Key Element =5=5
{:[R_(3)(” new “)=R_(3)(” old “)-:5],[{:R_(1)(” new “)=R_(1)(” old “)+1.5R_(3)” (new “)],[R_(2)(” new “)=R_(2)(” old “)+2R_(3)(” new “)]:}\begin{aligned}
& R_3(\text { new })=R_3(\text { old }) \div 5 \\
& \left.R_1(\text { new })=R_1(\text { old })+1.5 R_3 \text { (new }\right) \\
& R_2(\text { new })=R_2(\text { old })+2 R_3(\text { new })
\end{aligned}
Negative minimum C_(j)-Z_(j)C_j-Z_j is -13 and its column index is 3 . So, the entering variable is x_(3)x_3.
Minimum ratio is 5.32 and its row index is 2 . So, the leaving basis variable is S_(2)S_2. :.\therefore The pivot element is 10 .
Entering =x_(3)=x_3, Departing =S_(2)=S_2, Key Element =10=10
{:[R_(2)(” new “)=R_(2)(” old “)-:10],[R_(1)(” new “)=R_(1)(” old “)+R_(2)(” new “)],[R_(3)(” new “)=R_(3)(” old “)+R_(2)(” new “)]:}\begin{aligned}
& R_2(\text { new })=R_2(\text { old }) \div 10 \\
& R_1(\text { new })=R_1(\text { old })+R_2(\text { new }) \\
& R_3(\text { new })=R_3(\text { old })+R_2(\text { new })
\end{aligned}
Hence, Min Z=MinZ^(**)-29\operatorname{Min} Z=\operatorname{Min} Z^*-29
Min Z=-171.76-29=-200.76\operatorname{Min} Z=-171.76-29=-200.76
Conclusion
The optimal solution to the given LPP is x_(1)=20.22,x_(2)=11.92,x_(3)=5.32x_1 = 20.22, x_2 = 11.92, x_3 = 5.32 with a minimum value of Z=-200.76Z = -200.76. All C_(j)-Z_(j)C_j – Z_j values are non-negative, confirming that the solution is optimal.
3.(c) यदि u=tan^(-1)((x^(3)+y^(3))/(x-y)),x!=yu=\tan ^{-1} \frac{x^3+y^3}{x-y}, x \neq y
तब दर्शाइए कि x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\left(1-4 \sin ^2 u\right) \sin 2 u
If u=tan^(-1)((x^(3)+y^(3))/(x-y)),x!=yu=\tan ^{-1} \frac{x^3+y^3}{x-y}, x \neq y
then show that x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\left(1-4 \sin ^2 u\right) \sin 2 u
Answer:
Introduction:
Here, we explore the nature of a function u=tan^(-1)((x^(3)+y^(3))/(x-y))u = \tan^{-1}\frac{x^3+y^3}{x-y} and investigate its homogeneity.
Homogeneity of uu:
We start by considering whether uu is a homogeneous function.
However, we express tan u=(x^(3)+y^(3))/(x-y)\tan u = \frac{x^3+y^3}{x-y} as zz, where zz is a new variable. Thus, we obtain:
{:[tan u=(x^(3)+y^(3))/(x-y)=z quad rarr(1)],[=>z=x^(2)[(1+((y)/(x))^(3))/(1-((y)/(x)))]]:}\begin{aligned}
& \tan u = \frac{x^3+y^3}{x-y} = z \quad \rightarrow(1) \\
& \Rightarrow z = x^2\left[\frac{1+\left(\frac{y}{x}\right)^3}{1-\left(\frac{y}{x}\right)}\right]
\end{aligned}
Now, zz is shown to be a homogeneous function of xx and yy of degree 2:
Derivatives of zz and uu:
Next, we calculate the derivatives of zz and uu with respect to xx and yy. These derivatives play a crucial role in our analysis. From equation (1), we have:
From the derivatives in equation (3), we further derive:
{:[(del^(2)z)/(delx^(2))=sec^(2)u(del^(2)u)/(delx^(2))+2sec^(2)u tan u((del u)/(del x))^(2)],[(del^(2)z)/(dely^(2))=sec^(2)u(del^(2)u)/(dely^(2))+2sec^(2)u tan u((del u)/(del y))^(2)]:}\begin{aligned}
& \frac{\partial^2 z}{\partial x^2} = \sec^2 u \frac{\partial^2 u}{\partial x^2} + 2 \sec^2 u \tan u \left(\frac{\partial u}{\partial x}\right)^2 \\
& \frac{\partial^2 z}{\partial y^2} = \sec^2 u \frac{\partial^2 u}{\partial y^2} + 2 \sec^2 u \tan u \left(\frac{\partial u}{\partial y}\right)^2
\end{aligned}
And the mixed partial derivative:
(del^(2)z)/(del x del y)=sec^(2)u(del^(2)u)/(del x del y)+2sec^(2)u tan u(del u)/(del x)(del u)/(del y)\frac{\partial^2 z}{\partial x \partial y} = \sec^2 u \frac{\partial^2 u}{\partial x \partial y} + 2 \sec^2 u \tan u \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}
Euler’s Theorem and Further Simplification:
By a corollary of Euler’s theorem, we reach the following relationships:
{:[x^(2)(del^(2)z)/(delx^(2))+2xy(del^(2)z)/(del x del y)+y^(2)(del^(2)z)/(dely^(2))=2(2-1)z],[=>sec^(2)u(x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2)))+2sec^(2)u tan u[x^(2)((del u)/(del x))^(2)+2xy(del u)/(del x)(del u)/(del y)+y^(2)((del u)/(del y))^(2)]=2tan u]:}\begin{aligned}
& x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 2(2-1)z \\
& \Rightarrow \sec^2 u \left(x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}\right) + 2 \sec^2 u \tan u \left[x^2\left(\frac{\partial u}{\partial x}\right)^2+2xy \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+y^2\left(\frac{\partial u}{\partial y}\right)^2\right] = 2 \tan u
\end{aligned}
divide by sec^(2)usec^2 u
{:[=>x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))+2tan u(x(del u)/(del x)+y(del u)/(del y))^(2)=2sin u cos u],[=>x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=sin 2u-2tan usin^(2)2u(by(4))],[=(1-4sin^(2)u)sin 2u]:}\begin{aligned}
& \Rightarrow x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}+2 \tan u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)^2=2 \sin u \cos u \\
& \Rightarrow x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\sin 2u-2 \tan u \sin ^2 2u(b y(4)) \\
& =\left(1-4 \sin ^2 u\right) \sin 2 u
\end{aligned}
Final Relationship:
Finally, we obtain:
x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} =\left(1-4 \sin ^2 u\right) \sin 2 u
This equation represents a significant relationship in our analysis.
4.(a) यदि v(r,theta)=(r-(1)/(r))sin theta,r!=0v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0,
तब विश्लेषिक फलन f(z)=u(r,theta)+iv(r,theta)f(z)=u(r, \theta)+i v(r, \theta) ज्ञात कीजिए ।
If v(r,theta)=(r-(1)/(r))sin theta,r!=0v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0,
then find an analytic function f(z)=u(r,theta)+iv(r,theta)f(z)=u(r, \theta)+i v(r, \theta)
Answer:
Introduction:
The problem involves finding an analytic function f(z)f(z) given a complex-valued function v(r,theta)v(r, \theta) in polar coordinates.
Solution:
Step 1: Cauchy-Riemann Equations in Polar Coordinates
The Cauchy-Riemann equations in polar coordinates are as follows:
Step 2: Expressions for Partial Derivatives of vv
From the given function v(r,theta)v(r, \theta), we have the following expressions for the partial derivatives:
Step 2: Apply Property of Definite Integrals
By using the property int_(0)^(a)f(x)=int_(0)^(a)f(a-x)\int_0^a f(x) = \int_0^a f(a-x), we can rewrite the integral as follows:
Conclusion:
The integral int_(0)^(pi//2)(sin^(2)x)/(sin x+cos x)dx\int_0^{\pi / 2} \frac{\sin^2 x}{\sin x + \cos x} dx is equal to (1)/(sqrt2)ln(1+sqrt2)\frac{1}{\sqrt{2}} \ln(1+\sqrt{2}), as shown.
(c) वोगेल की सम्निकटन विधि से निम्नलिखित परिवहन समस्या का आरंभिक आधारिक सुसंगत हल ज्ञात कीजिए । इस हल का उपयोग कर समस्या का इष्टतम हल एवं परिवहन लागत ज्ञात कीजिए ।
Find the initial basic feasible solution of the following transportation problem by Vogel’s approximation method and use it to find the optimal solution and the transportation cost of the problem.
The minimum total transportation cost =0xx15+8xx5+9xx15+20 xx5+0xx5+18 xx5=365=0 \times 15+8 \times 5+9 \times 15+20 \times 5+0 \times 5+18 \times 5=365
Here, the number of allocated cells =6=6 is equal to m+n-1=3+4-1=6m+n-1=3+4-1=6 :.\therefore This solution is non-degenerate
Optimality test using modi method…
Allocation Table is
Now choose the minimum negative value from all d_(ij)d_{i j} (opportunity cost) =d_(14)=[-1]=d_{14}=[-1] and draw a closed path from S_(1)D_(4)S_1 D_4.
Closed path is S_(1)D_(4)rarrS_(1)D_(2)rarrS_(2)D_(2)rarrS_(2)D_(4)S_1 D_4 \rightarrow S_1 D_2 \rightarrow S_2 D_2 \rightarrow S_2 D_4
Closed path and plus/minus sign allocation…
” The minimum total transportation cost “=0xx10+11 xx5+8xx10+9xx15+0xx5+18 xx5=360\text { The minimum total transportation cost }=0 \times 10+11 \times 5+8 \times 10+9 \times 15+0 \times 5+18 \times 5=360
खण्ड ‘B’ SECTION ‘B’
5.(a) z=yf(x)+xg(y)z=y f(x)+x g(y) से स्वैच्छिक फलनों f(x)f(x) व g(y)g(y) का विलोपन कर आंशिक अवकल समीकरण बनाइए तथा इसकी प्रकृति (दीर्घवृत्तीय, अतिपरवलीय या परवलीय) x > 0,y > 0x>0, y>0 क्षेत्र में इंगित कीजिए ।
Form a partial differential equation by eliminating the arbitrary functions f(x)f(x) and g(y)g(y) from z=yf(x)+xg(y)z=y f(x)+x g(y) and specify its nature (elliptic, hyperbolic or parabolic) in the region x > 0,y > 0x>0, y>0.
Answer:
Introduction:
The problem requires forming a partial differential equation by eliminating the arbitrary functions f(x)f(x) and g(y)g(y) from the given equation z=yf(x)+xg(y)z=yf(x)+xg(y). Additionally, it asks for specifying the nature of this equation in the region x > 0,y > 0x>0, y>0.
Step 5: Substituting into Equation (4)
Substituting the expressions for f^(‘)(x)f'(x) and g^(‘)(y)g'(y) into equation (4), we obtain:
{:[(del^(2)z)/(del x del y)=(1)/(y)((del z)/(del x)-g(y))+(1)/(x)((del z)/(del y)-f(x))],[=>xy(del^(2)z)/(del x del y)=x(del z)/(del x)+y(del z)/(del y)-{xg(y)+yf(x)}],[=>xy(del^(2)z)/(del x del y)=x(del z)/(del x)+y(del z)/(del y)-z],[xy(del^(2)z)/(del x del y)-x(del z)/(del x)-y(del z)/(del y)+z=0]:}\begin{aligned}
&\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{y}\left(\frac{\partial z}{\partial x} – g(y)\right) + \frac{1}{x}\left(\frac{\partial z}{\partial y} – f(x)\right) \\
&\Rightarrow x y \frac{\partial^2 z}{\partial x \partial y} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} – \{xg(y) + yf(x)\} \\
&\Rightarrow x y \frac{\partial^2 z}{\partial x \partial y} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} – z \\
& x y \frac{\partial^2 z}{\partial x \partial y} – x \frac{\partial z}{\partial x} – y \frac{\partial z}{\partial y} + z = 0
\end{aligned}
Step 6: Compare with General Form
Comparing the obtained equation with the general form R_(r)+S_(s)+T_(t)+f(x,y,z)=0R_r + S_s + T_t + f(x, y, z) = 0, we have:
{:[R=0],[S=xy],[T=0]:}\begin{aligned}
R &= 0 \\
S &= xy \\
T &= 0
\end{aligned}
Step 7: Nature of the Equation
The discriminant of the equation is given by S^(2)-4RT=x^(2)y^(2) > 0S^2 – 4RT = x^2y^2 > 0, indicating that it is a hyperbolic partial differential equation.
Conclusion:
The partial differential equation obtained from eliminating the arbitrary functions f(x)f(x) and g(y)g(y) from z=yf(x)+xg(y)z=yf(x)+xg(y) is hyperbolic in the region x > 0,y > 0x>0, y>0.
5.(b) दर्शाइए कि समीकरण : f(x)=cos((pi(x+1))/(8))+0*148 x-0*9062=0f(x)=\cos \frac{\pi(x+1)}{8}+0 \cdot 148 x-0 \cdot 9062=0
का एक मूल अन्तराल (-1,0)(-1,0) में तथा एक मूल (0,1)(0,1) में है । ऋणात्मक मूल की न्यूटन-रॉफसन विधि से दशमलव के चार स्थान तक सही गणना कीजिए।
Show that the equation: f(x)=cos((pi(x+1))/(8))+0*148 x-0*9062=0f(x)=\cos \frac{\pi(x+1)}{8}+0 \cdot 148 x-0 \cdot 9062=0
has one root in the interval (-1,0)(-1,0) and one in (0,1)(0,1). Calculate the negative root correct to four decimal places using Newton-Raphson method.
Answer:
Introduction:
The problem involves showing that the equation f(x)=cos((pi(x+1))/(8))+0.148 x-0.9062=0f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x – 0.9062 = 0 has one root in the interval (-1,0)(-1,0) and one in (0,1)(0,1). The task is to calculate the negative root accurate to four decimal places using the Newton-Raphson method.
Since f(-1)*f(0) < 0f(-1) \cdot f(0) < 0, it implies that a root lies between (-1,0)(-1,0). Similarly, f(0)*f(1) < 0f(0) \cdot f(1) < 0, indicating that another root lies between (0,1)(0,1).
Step 5: Newton-Raphson Iteration
To calculate the negative root using the Newton-Raphson method, we start with an initial approximation x_(0)=-0.5x_0 = -0.5. The Newton’s iteration formula is given by:
Therefore, x=-0.5022x = -0.5022 is the required root, accurate to four decimal places.
Conclusion:
The equation f(x)=cos((pi(x+1))/(8))+0.148 x-0.9062=0f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x – 0.9062 = 0 has one root in the interval (-1,0)(-1,0) and one in (0,1)(0,1). The negative root has been calculated to be x=-0.5022x = -0.5022 with an accuracy of four decimal places using the Newton-Raphson method.
(c) मान लीजिए g(w,x,y,z)=(w+x+y)(x+ bar(y)+z)(w+ bar(y))g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y}) एक बूलीय-फलन है । g(w,x,y,z)g(w, x, y, z) का योगात्मक प्रसामान्य स्वरूप (कन्जंकटिव नार्मल फॉर्म) प्राप्त कीजिए । g(w,x,y,z)g(w, x, y, z) को उच्च-पदों (मैक्स टर्म्स) के गुणन के रूप में भी व्यक्त कीजिए ।
Let g(w,x,y,z)=(w+x+y)(x+ bar(y)+z)(w+ bar(y))g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y}) be a Boolean function. Obtain the conjunctive normal form for g(w,x,y,z)g(w, x, y, z). Also express g(w,x,y,z)g(w, x, y, z) as a product of maxterms.
Answer:
Introduction:
In this problem, we are given the conjunctive normal form of a boolean function g(w,x,y,z)g(w, x, y, z) and asked to create its truth table. The given function is represented as a product of its max terms.
Step 1: Expressing g(w,x,y,z)g(w, x, y, z)
We are given the conjunctive normal form of g(w,x,y,z)g(w, x, y, z) as follows:
A maxterm is a term that is an OR of all the variables or their complements. The maxterm is 1 when the function is 0. To express g(w,x,y,z)g(w, x, y, z) as a product of maxterms, we need to find the terms that make g(w,x,y,z)=0g(w, x, y, z) = 0.
From the expanded form, we can see that g(w,x,y,z)g(w, x, y, z) will be zero when all the terms are zero. This happens when:
w=0,x=0,y=0,z=0w = 0, x = 0, y = 0, z = 0
w=0,x=0,y=0,z=1w = 0, x = 0, y = 0, z = 1
w=0,x=0,y=1,z=0w = 0, x = 0, y = 1, z = 0
w=0,x=0,y=1,z=1w = 0, x = 0, y = 1, z = 1
w=0,x=1,y=0,z=0w = 0, x = 1, y = 0, z = 0
w=0,x=1,y=0,z=1w = 0, x = 1, y = 0, z = 1
w=0,x=1,y=1,z=0w = 0, x = 1, y = 1, z = 0
So, the maxterms corresponding to these conditions are:
The Conjunctive Normal Form (CNF) of g(w,x,y,z)g(w, x, y, z) is (w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))(w+x+y+z)(w+x+y+\bar{z})(w+x+\bar{y}+z)(w+x+\bar{y}+\bar{z})(w+\bar{x}+\bar{y}+z)(w+\bar{x}+\bar{y}+\bar{z}).
The function g(w,x,y,z)g(w, x, y, z) can be expressed as a product of the maxterms (w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+y+z)(w+ bar(x)+y+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))(w + x + y + z)(w + x + y + \bar{z})(w + x + \bar{y} + z)(w + x + \bar{y} + \bar{z})(w + \bar{x} + y + z)(w + \bar{x} + y + \bar{z})(w + \bar{x} + \bar{y} + z)(w + \bar{x} + \bar{y} + \bar{z}).
where MM is the mass of the lamina and beta,gamma\beta, \gamma are respectively the length of perpendiculars from BB and CC on the axis.
Answer:
Introduction:
In this problem, we are tasked with proving the moment of inertia of a triangular lamina ABCABC about any axis through point AA in its plane. The formula to be proven is:
Where MM is the mass of the lamina, and beta\beta and gamma\gamma represent the lengths of perpendiculars from points BB and CC to the axis, respectively.
Step 1: Mass Distribution
Let mm be the mass of the triangle ABCABC. We consider the triangle as being equipotential to three particles, each with mass (m)/(3)\frac{m}{3}, placed at the midpoints D,E,FD, E, F of its sides.
Step 2: Perpendicular Distances
Now, let LMLM be any line through vertex AA and within the plane of triangle ABCABC. We define beta\beta as the distance from vertex BB to line LMLM (i.e., BT=betaBT = \beta), and gamma\gamma as the distance from vertex CC to line LMLM (i.e., CK=gammaCK = \gamma). Therefore, the perpendicular distances of points D,E,FD, E, F from line LMLM are as follows:
DM=(1)/(2)(beta+gamma),EN=(1)/(2)gamma,”and”FP=(1)/(2)betaDM = \frac{1}{2}(\beta+\gamma),\ EN = \frac{1}{2}\gamma,\ \text{and}\ FP = \frac{1}{2}\beta
Step 3: Moment of Inertia Calculation
The moment of inertia (M.I.M.I.) of triangle ABCABC about line LMLM can be calculated as the sum of the moment of inertia of the masses (m)/(3)\frac{m}{3} at points D,E,FD, E, F about line LMLM. Using the formula for M.I.M.I. of a point mass about an axis, which is I=m*r^(2)I = m \cdot r^2, we have:
{:[M.I.=” Sum of M. I of the masses “(m)/(3)” each at D, E, F about LM “],[=(m)/(3)*DM^(2)+(m)/(3)*EN^(2)+(m)/(3)*FP^(2)],[=(m)/(3)[(1)/(4)(beta+gamma)^(2)+(1)/(4)gamma^(2)+(1)/(4)beta^(2)]],[=(m)/(6)(beta^(2)+gamma^(2)+beta gamma)]:}\begin{aligned}
M.I. & =\text { Sum of M. I of the masses } \frac{m}{3} \text { each at D, E, F about LM } \\
&=\frac{m}{3} \cdot DM^2 + \frac{m}{3} \cdot EN^2 + \frac{m}{3} \cdot FP^2 \\
&= \frac{m}{3} \left[\frac{1}{4}(\beta+\gamma)^2 + \frac{1}{4}\gamma^2 + \frac{1}{4}\beta^2\right] \\
&= \frac{m}{6}\left(\beta^2+\gamma^2+\beta\gamma\right)
\end{aligned}
Conclusion:
The moment of inertia of the triangular lamina ABCABC about any axis passing through point AA in its plane is given by the formula:
Where MM represents the mass of the lamina, and beta\beta and gamma\gamma are the lengths of perpendiculars from points BB and CC to the axis, respectively.
Step 7: Finding the Integral Surface
Substituting the values of C_(1)C_1 and C_(2)C_2 from equations (4) and (5) into equation (9), we arrive at the required integral surface g(1)g(1):
6.(b) समीकरण निकाय : 4x+y+2z=44 x+y+2 z=43x+5y+z=73 x+5 y+z=7x+y+3z=3x+y+3 z=3
के हल के लिए गाउस-सीडल पुनरावर्ती क्रिया-विधि निर्धारित कीजिए तथा आरंभिक सदिश X^((0))=0X^{(0)}=0 से प्रारंभ करके तीन बार पुनरावर्त कीजिए । यथातथ (बिल्कुल ठीक) हल भी निकालिए और पुनरावर्त हलों से तुलना कीजिए।
For the solution of the system of equations : 4x+y+2z=44 x+y+2 z=4
set up the Gauss-Seidel iterative scheme and iterate three times starting with the initial vector X^((0))=0X^{(0)}=0. Also find the exact solutions and compare with the iterated solutions.
Answer:
Introduction:
We were given a system of three linear equations and tasked with solving it using the Gauss-Seidel iterative method. We started with an initial guess X^((0))=(0,0,0)X^{(0)} = (0, 0, 0) and performed three iterations to find approximate solutions for xx, yy, and zz. To check the accuracy of our approximations, we also solved the system exactly using Cramer’s Rule.
After doing three iterations with the Gauss-Seidel method, we got the approximate solutions as x_(3)=0.52x_3 = 0.52, y_(3)=0.992y_3 = 0.992, and z_(3)=0.496z_3 = 0.496.
Then, we used Cramer’s Rule to find the exact solutions, which turned out to be x=(1)/(2)x = \frac{1}{2}, y=1y = 1, and z=(1)/(2)z = \frac{1}{2}.
When we compared the two sets of solutions, we noticed that the approximate solutions were really close to the exact ones. Specifically, x_(3)x_3 was almost (1)/(2)\frac{1}{2}, y_(3)y_3 was nearly 11, and z_(3)z_3 was close to (1)/(2)\frac{1}{2}.
(c) एक कण जिसकी संहति mm है, x^(2)+y^(2)=R^(2)x^2+y^2=R^2, जहाँ पर RR अचर है, द्वारा परिभाषित बेलन पर गति के लिए व्यवरोधित है। कण मूल बिन्दु की ओर लगे बल जो कण की मूल बिन्दु से दूरी rr के अनुपाती है, से प्रतिबन्धित है । बल vec(F)=-k vec(r)\vec{F}=-k \vec{r}, जहाँ पर kk अचर है, से दिया गया है ।
By writing down the Hamiltonian, find the equations of motion of a particle of mass mm constrained to move on the surface of a cylinder defined by x^(2)+y^(2)=R^(2)x^2+y^2=R^2, RR is a constant. The particle is subject to a force directed towards the origin and proportional to the distance rr of the particle from the origin given by vec(F)=-k vec(r),k\vec{F}=-k \vec{r}, k is a constant.
Answer:
Introduction:
We are tasked with finding the equations of motion for a particle of mass mm constrained to move on the surface of a cylinder defined by x^(2)+y^(2)=R^(2)x^2 + y^2 = R^2, where RR is a constant. The particle is subject to a force vec(F)=-k vec(r)\vec{F} = -k \vec{r}, where kk is a constant.
Step 1: Finding Potential Energy
Given the force vec(F)=-k vec(r)\vec{F} = -k \vec{r}, we can find the potential energy VV as follows:
Step 2: Coordinate Transformation
Let’s consider the coordinates x=rho cos phix = \rho \cos \phi, y=rho sin phiy = \rho \sin \phi, and z=zz = z. Now, differentiate these coordinates with respect to time:
Step 4: Constraints
We have the constraint x^(2)+y^(2)=R^(2)x^2 + y^2 = R^2, which implies rho=R\rho = R and rho^(˙)=0\dot{\rho} = 0. Substituting these values, we get vv and TT in terms of zz:
Step 5: Lagrangian
Now, let’s find the Lagrangian LL, which is the difference between kinetic and potential energy:
L=T-V=(1)/(2)m(R^(2)phi^(˙)^(2)+z^(2))-(k)/(2)(R^(2)+z^(2))L = T – V = \frac{1}{2} m\left(R^2 \dot{\phi}^2 + z^2\right) – \frac{k}{2}\left(R^2 + z^2\right)
Importantly, the Lagrangian explicitly does not depend on time tt.
Step 6: Hamiltonian
We need to find the Hamiltonian HH with the help of the generalized coordinates and momenta:
H=T+V=(1)/(2)m(R^(2)phi^(˙)^(2)+z^(2))+(k)/(2)(R^(2)+z^(2))H = T + V = \frac{1}{2} m\left(R^2 \dot{\phi}^2 + z^2\right) + \frac{k}{2}\left(R^2 + z^2\right)
Step 7: Equations of Motion
To find the equations of motion, we differentiate the Hamiltonian with respect to the generalized coordinates and momenta:
{:[H=T+V=(1)/(2)m(R^(2)phi^(2)+y^(2))+(k)/(2)(R^(2)+z^(2))],[p phi=(del L)/(del phi)=mR^(2)phi;pz=(del L)/(del z)=mz],[H=(1)/(2)m(R^(2)((p phi)/(mR^(2)))^(2)+((pz)/(M))^(2))+(k)/(2)(R^(2)+z^(2))],[H=(1)/(2)(pphi^(2))/(mR^(2))+(1)/(2)(pz^(2))/(m)+(k)/(2)(R^(2)+z^(2))” required Hamiltonian “],[phi=(del H)/(delp_( phi))=(p phi)/(mR^(2));z=(del H)/(delp_(z))=(pz)/(m);p phi=-(del H)/(del phi)=0;pz=-(del H)/(del z)=-kz],[phi=(p phi)/(mR^(2))=0;z=(pz)/(m)=-(kz)/(m)” this is the required equation of motion “]:}\begin{aligned}
H & =T+V=\frac{1}{2} m\left(R^2 \phi^2+y^2\right)+\frac{k}{2}\left(R^2+z^2\right) \\
p \phi & =\frac{\partial L}{\partial \phi}=m R^2 \phi ; p z=\frac{\partial L}{\partial z}=m z \\
H & =\frac{1}{2} m\left(R^2\left(\frac{p \phi}{m R^2}\right)^2+\left(\frac{p z}{M}\right)^2\right)+\frac{k}{2}\left(R^2+z^2\right) \\
H & =\frac{1}{2} \frac{p \phi^2}{m R^2}+\frac{1}{2} \frac{p z^2}{m}+\frac{k}{2}\left(R^2+z^2\right) \text { required Hamiltonian } \\
\phi=\frac{\partial H}{\partial p_\phi} & =\frac{p \phi}{m R^2} ; z=\frac{\partial H}{\partial p_z}=\frac{p z}{m} ; p \phi=-\frac{\partial H}{\partial \phi}=0 ; p z=-\frac{\partial H}{\partial z}=-k z \\
\phi=\frac{p \phi}{m R^2} & =0 ; z=\frac{p z}{m}=-\frac{k z}{m} \text { this is the required equation of motion }
\end{aligned}
Conclusion:
The equations of motion for a particle of mass mm constrained to move on the surface of a cylinder, subject to the force vec(F)=-k vec(r)\vec{F} = -k \vec{r}, are given by:
phi=0;quad z=-(kz)/(m)\phi = 0; \quad z = -\frac{kz}{m}
These equations describe the motion of the particle in the phi\phi and zz directions.
where pp is defined as (del z)/(del x)\frac{\partial z}{\partial x} and qq as (del z)/(del y)\frac{\partial z}{\partial y}. We are looking for an integral surface of this equation that passes through the xx-axis.
We want to find an integral surface that satisfies this equation and passes through the xx-axis, which is defined by y=0y = 0 and z=0z = 0.
Step 2: Parametric Form
Rewrite the conditions y=0y = 0 and z=0z = 0 in parametric form:
x=lambda,quad y=0,quad z=0,quad”where”quad lambda” is the parameter”quad(3)x = \lambda, \quad y = 0, \quad z = 0, \quad \text{where} \quad \lambda \text{ is the parameter} \quad \text{(3)}
Step 3: Initial Values
Let the initial values x_(0),y_(0),z_(0),p_(0),q_(0)x_0, y_0, z_0, p_0, q_0 of x,y,z,p,qx, y, z, p, q be taken as:
Let p_(0),q_(0)p_0, q_0 be the initial values of pp and qq corresponding to the initial values x_(0),y_(0),z_(0)x_0, y_0, z_0. Since the initial values (x_(0),y_(0),z_(0),p_(0),q_(0))(x_0, y_0, z_0, p_0, q_0) satisfy equation (1), we have:
Solving (5) and (6) p_(0)=0p_0=0 and q_(0)=2lambda rarr(4A)q_0=2 \lambda \rightarrow(4 A)
Collecting relations (4) and (4A) together, initial value of x_(0),y_(0),z_(0),p_(0),q_(0)x_0, y_0, z_0, p_0, q_0 are given by
x_(0)=lambda,y_(0)=0,z_(0)=0,p_(0)=0,q_(0)=2lambda” where “t=t_(0)=0rarr(7)x_0=\lambda, y_0=0, z_0=0, p_0=0, q_0=2 \lambda \text { where } t=t_0=0 \rightarrow(7)
Let f(x,y,z,p,q)=(1)/(2)(p^(2)+q^(2))-pq-py-qx+xy-z=0rarrf(x, y, z, p, q)=\frac{1}{2}\left(p^2+q^2\right)-p q-p y-q x+x y-z=0 \rightarrow (8)
The usual characteristic equations of (8) are given by
And (dq)/(dt)=-((del f)/(del y))-q((del f)/(del z))=p+q-x rarr\frac{\mathbf{d} q}{\mathbf{d} t}=-\left(\frac{\partial f}{\partial y}\right)-q\left(\frac{\partial f}{\partial z}\right)=p+q-x \rightarrow (3)
From (9) and (12), ( {:(dx)/(dt))-((dp)/(dt))=0\left.\frac{\mathbf{d} x}{\mathbf{d} t}\right)-\left(\frac{\mathbf{d} p}{\mathbf{d} t}\right)=0 so that x-p=C_(1)rarrx-p=C_1 \rightarrow (14)
Where C_(1)C_1 is an arbitrary constant. Using initial conditions (7), (14) gives
=>(d(p+q-x))/(dt)=p+q-x=>(d(p+q-x))/(p+q-x)dt\Rightarrow \frac{\mathbf{d}(p+q-x)}{\mathbf{d} t}=p+q-x \Rightarrow \frac{\mathbf{d}(p+q-x)}{p+q-x} \mathbf{d} t
Integrating, log(p+q-x)-log C_(3)=t(\log (p+q-x)-\log C_3=t( or )p+q-x=c_(3)e^(t)rarr(18)) p+q-x=c_3 e^t \rightarrow(18)
Where c_(3)c_3 is an arbitrary constant. Using initial conditions (7),(18)(7),(18) gives
Hence (20) reduces to p+q-y=2lambdae^(t)rarrp+q-y=2 \lambda e^t \rightarrow (21)
From (9) and (21)
(dx)/(dt)=2lambdae^(t)” so that “x=2lambdae^(t)+c_(5)rarr(22)\frac{\mathbf{d} x}{\mathbf{d} t}=2 \lambda e^t \text { so that } x=2 \lambda e^t+c_5 \rightarrow(22)
Where c_(5)c_5 is an arbitrary constant. Using initial conditions (7),(22)(7),(22) gives
(dy)/(dt)=lambdae^(t)” so that “y=lambdae^(t)+c_(6)rarr(24)\frac{\mathbf{d} y}{\mathbf{d} t}=\lambda e^t \text { so that } y=\lambda e^t+c_6 \rightarrow(24)
Where c_(6)c_6 is an arbitrary constant. Using initial conditions (7), (24) gives
Hence (32) reduces to z=(5)/(2)lambda^(2)(e^(2t)-1)-3lambda^(2)(e^(t)-1)rarr(33)z=\frac{5}{2} \lambda^2\left(e^{2 t}-1\right)-3 \lambda^2\left(e^t-1\right) \rightarrow(33)
Solving (23) and (25) for lambda\lambda and e^(t)=(x-y)/(x-2y)rarre^t=\frac{x-y}{x-2 y} \rightarrow (34)
Eliminating lambda\lambda and e^(t)e^t from (33) and (34), we have
Conclusion:
The solution to the given partial differential equation is:
z=(1)/(2)y(4x-3y)z = \frac{1}{2}y(4x – 3y)
This represents the integral surface of the equation that passes through the xx-axis.
7.(b) क्षेत्रकलन के लिए int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))=alpha_(1)f(0)+alpha_(2)f((1)/(2))+alpha_(3)f(1)\int_0^1 f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_1 f(0)+\alpha_2 f\left(\frac{1}{2}\right)+\alpha_3 f(1) द्वारा उस सूत्र को ज्ञात कीजिए जो अधिकतम सम्भव घात के बहुपद के लिए यथातथ (बिल्कुल ठीक) हो । सूत्र का उपयोग int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{d x}{\sqrt{x-x^3}} का (दशमलव के तीन स्थानों तक सही) मूल्यांकन के लिए कीजिए ।
Find a quadrature formula int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))=alpha_(1)f(0)+alpha_(2)f((1)/(2))+alpha_(3)f(1)\int_0^1 f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_1 f(0)+\alpha_2 f\left(\frac{1}{2}\right)+\alpha_3 f(1)
which is exact for polynomials of highest possible degree. Then use the formula to evaluate int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{d x}{\sqrt{x-x^3}} (correct up to three decimal places).
Answer:
Introduction:
The problem involves finding a quadrature formula to approximate the integral int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))\int_0^1 f(x) \frac{dx}{\sqrt{x(1-x)}}, such that it is exact for polynomials of the highest possible degree. Additionally, we will use this formula to evaluate int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{dx}{\sqrt{x-x^3}} up to three decimal places.
Step 1: Exactness for Polynomials
To make the method exact for polynomials of degree up to 2, we derive the following expressions for different functions f(x)f(x):
The quadrature formula is successfully used to approximate the integral, yielding an approximate value of 2.623312.62331 (correct up to three decimal places).
(c) एक द्विविमीय द्रव्य-प्रवाह का वेग विभव phi(x,y)=xy+x^(2)-y^(˙)^(2)\phi(x, y)=x y+x^2-\dot{y}^2 द्वारा दिया गया है । इस प्रवाह का धारा-फलन ज्ञात कीजिए ।
A velocity potential in a two-dimensional fluid flow is given by phi(x,y)=xy+x^(2)-y^(2)\phi(x, y)=x y+x^2-y^2. Find the stream function for this flow.
Answer:
Introduction:
A velocity potential in a two-dimensional fluid flow is given by phi(x,y)=xy+x^(2)-y^(2)\phi(x, y)=x y+x^2-y^2. In this problem, we are tasked with finding the stream function for this flow.
Step 1: Velocity Components
As given, the velocity components are obtained from the negative gradient of the velocity potential phi\phi:
Step 2: Complex Potential and Cauchy-Riemann Equations
Now, we consider the complex potential w=phi+Psiw=\phi+\Psi and recognize that both phi\phi and Psi\Psi must satisfy the Cauchy-Riemann equations:
8.(a) लम्बाई ll की कसकर खींची गई लचीली-पतली डोरी का एक सिरा मूल बिन्दु पर तथा दूसरा x=lx=l पर बंधा है। आरंभिक अवस्था में इसे x=(l)/(3)x=\frac{l}{3} बिन्दु से ऐसे खींचकर छोड़ा जाता है ताकि यह x-yx-y तल में hh ऊँचाई के त्रिभुज का आकार लेता है। किसी भी दूरी xx तथा समय tt, डोरी को विरामावस्था से छोड़ने के बाद, पर विस्थापन yy को ज्ञात कीजिए ।
डोरी में (” क्षैतिज तनाव “)/(” डोरी की इकाई लम्बाई की संहति “)=c^(2)\frac{\text { क्षैतिज तनाव }}{\text { डोरी की इकाई लम्बाई की संहति }}=c^2क्षैतिजतनावडोरीकीइकाईलम्बाईकीसंहति लीजिए ।
One end of a tightly stretched flexible thin string of length ll is fixed at the origin and the other at x=lx=l. It is plucked at x=(l)/(3)x=\frac{l}{3} so that it assumes initially the shape of a triangle of height hh in the x-yx-y plane. Find the displacement yy at any distance xx and at any time tt after the string is released from rest. Take, (” horizontal tension “)/(” mass per unit length “)=c^(2)\frac{\text { horizontal tension }}{\text { mass per unit length }}=c^2.
Answer:
Introduction:
One end of a tightly stretched flexible thin string of length ll is fixed at the origin and the other at x=lx=l. It is plucked at x=(l)/(3)x=\frac{l}{3} so that it assumes initially the shape of a triangle of height hh in the x-yx-y plane. Find the displacement yy at any distance xx and at any time tt after the string is released from rest. Take, (” horizontal tension “)/(” mass per unit length “)=c^(2)\frac{\text { horizontal tension }}{\text { mass per unit length }}=c^2.
Step 1: The displacement function y(x,t)y(x, t) is the solution of the wave equation
y(0,t)=y(l,t)=0AA t >= 0rarr(2)y(0, t)=y(l, t)=0 \forall t \geqslant 0 \rightarrow(2)
Step 2: Initial position of the string at t=0t=0 is made up of two straight line segments OB and BA as shown in the figure and the string is released from rest. The equation of OB\mathrm{OB} is given by
y-0=(h-0)/((l)/(3)-0)(x-0)=>y=(3hx)/(l),0 <= x <= (l)/(3)y-0=\frac{h-0}{\frac{l}{3}-0}(x-0) \Rightarrow y=\frac{3 h x}{l}, 0 \leqslant x \leqslant \frac{l}{3}
The equation of BA is given by
y-0=(h-0)/((l)/(3)-l)(x-l)=>y=(3h(l-x))/(2l),(l)/(3) <= x <= ly-0=\frac{h-0}{\frac{l}{3}-l}(x-l) \Rightarrow y=\frac{3 h(l-x)}{2 l}, \frac{l}{3} \leqslant x \leqslant l
Hence the initial displacement is given by
{:[u(x”,”0)=f(x)={[(3hx)/(l)”,”0 <= x <= (l)/(3)],[(3h(l-x))/(2l)”,”(l)/(3) <= x <= l]rarr(3):}],[” And the initial velocity “=(del u)/(del t)I_(t=0)=0rarr” (4) “]:}\begin{aligned}
& u(x, 0)=f(x)=\left\{\begin{array}{c}
\frac{3 h x}{l}, 0 \leqslant x \leqslant \frac{l}{3} \\
\frac{3 h(l-x)}{2 l}, \frac{l}{3} \leqslant x \leqslant l
\end{array} \rightarrow(3)\right. \\
& \text { And the initial velocity }=\frac{\partial u}{\partial t} \mathrm{I}_{t=0}=0 \rightarrow \text { (4) }
\end{aligned}
Step 3: Let Y(x,t)=X(x)T(t)rarr(5)Y(x, t)=X(x) T(t) \rightarrow(5) is the solution of (1). From (1), we have
{:[XT=(1)/(c^(2))xxT^(”)=>(X^(n))/(X)=(1)/(c^(2))(T^(4))/(T)=P(” say “)],[=>X-PX=0” and “T-Pc^(2)=0rarr(7)]:}\begin{aligned}
& X T=\frac{1}{c^2} \times T^{\prime \prime} \Rightarrow \frac{X^n}{X}=\frac{1}{c^2} \frac{T^4}{T}=P(\text { say }) \\
& \Rightarrow \mathrm{X}-\mathrm{PX}=0 \text { and } T-P c^2=0 \rightarrow(7)
\end{aligned}
Using (2), (5) gives
X(0)T(t)=0X(0) T(t)=0 and X(l)T(t)=0(X(l) T(t)=0( because T(t)=0T(t)=0 leads T=0AA t)T=0 \forall t)
X(0)=0″ and “X(l)=0rarr(8)X(0)=0 \text { and } X(l)=0 \rightarrow(8)
Which are boundary condition. We now solve (6) under boundary conditions (8). Three cases arise:
Case (i): Let P=0P=0
The solution of (6) is X(n)=An+BX(n)=A n+B
Using boundary condition, we get A=0,B=0A=0, B=0
=>X(x)=0\Rightarrow X(x)=0 which leads to T=0T=0 which does not satisfy I.CI . C so reject P=0P=0
Case (ii): Let P=lambda^(2),lambda!=0P=\lambda^2, \lambda \neq 0
The solution of (6) is X(x)=Ae^(lambda x)+Be^(-lambda x)X(x)=A e^{\lambda x}+B e^{-\lambda x}
Using boundary condition (8) we get A=0,B=0A=0, B=0 =>X(x)=0\Rightarrow X(x)=0, which leads to Y=0Y=0 which does not satisfy (3) and (4)
So reject P=lambda^(2)P=\lambda^2
Case (iii): Let P=-lambda^(2),lambda!=0P=-\lambda^2, \lambda \neq 0
The solution of (6) is X(x)=A cos lambda x+B sin lambda xX(x)=A \cos \lambda x+B \sin \lambda x
Using boundary condition (8), we get
Hence non-zero solutions of X_(n)(x)X_n(x) of (6) are given by X_(n)(x)=B_(n)sin((n pi x)/(l))rarrX_n(x)=B_n \sin \frac{n \pi x}{l} \rightarrow (9) From (7),
{:[T_(n)(t)=C_(n)cos((n pi ct)/(l))+D_(n)sin((n pi ct)/(l))],[y_(n)(x”,”t)=X_(n)(x)T_(n)(t)],[=B_(n)sin((n pi x)/(l))[c_(n)cos((n pi ct)/(l))+D_(n)sin((n pi ct)/(l))]],[=[E_(n)cos((n pi ct)/(l))+F_(n)sin((n pi ct)/(l))]sin((n pi x)/(l))]:}\begin{aligned}
& T_n(t)=C_n \cos \left(\frac{n \pi c t}{l}\right)+D_n \sin \left(\frac{n \pi c t}{l}\right) \\
& y_n(x, t)=X_n(x) T_n(t) \\
& =B_n \sin \left(\frac{n \pi x}{l}\right)\left[c_n \cos \frac{n \pi c t}{l}+D_n \sin \frac{n \pi c t}{l}\right] \\
& =\left[E_n \cos \frac{n \pi c t}{l}+F_n \sin \frac{n \pi c t}{l}\right] \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
Are solutions of (1) satisfying (2)
Where E_(n)=B_(n)C_(n)E_n=B_n C_n and F_(n)=B_(n)D_(n)F_n=B_n D_n
In order to obtain a solution also satisfying (3) and (4)
We consider more general solution.
{:[y(x”,”t)=sum_(n=1)^(oo)y_(n)(x”,”t)],[y(x”,”t)=sum_(n=1)^(oo)[E_(n)cos((n pi ct)/(l))+F_(n)sin((n pi ct)/(l))]sin((n pi x)/(l))rarr(10)],[(del y)/(del t)=sum_(n=1)^(oo)[E_(n)(sin((pi ct)/(l)))(n pi c)/(l)+(n pi c)/(l)F_(n)cos((n pi ct)/(l))]sin((n pi r)/(l))rarr(11)],[=sum_(n=1)^(oo)(n pi c)/(l)F_(n)sin((n pi x)/(l)by)(4)]:}\begin{aligned}
& y(x, t)=\sum_{n=1}^{\infty} y_n(x, t) \\
& y(x, t)=\sum_{n=1}^{\infty}\left[E_n \cos \frac{n \pi c t}{l}+F_n \sin \frac{n \pi c t}{l}\right] \sin \left(\frac{n \pi x}{l}\right) \rightarrow(10) \\
& \frac{\partial y}{\partial t}=\sum_{n=1}^{\infty}\left[E_n\left(\sin \frac{\pi c t}{l}\right) \frac{n \pi c}{l}+\frac{n \pi c}{l} F_n \cos \frac{n \pi c t}{l}\right] \sin \frac{n \pi r}{l} \rightarrow(11) \\
& =\sum_{n=1}^{\infty} \frac{n \pi c}{l} F_n \sin \frac{n \pi x}{l} b y(4)
\end{aligned}
Where F_(n)=__|_(0)0=0\left.F_n=\right\rfloor_0 0=0
By putting t=0t=0 in (10), f(x)=sum_(n=1)^(oo)quadE_(n)sin((n pi x)/(l))f(x)=\sum_{n=1}^{\infty} \quad E_n \sin \frac{n \pi x}{l}
Where E_(n)=(2)/(l)int_(0)f(x)sin((n pi x)/(l))dxE_n=\frac{2}{l} \int_0 f(x) \sin \frac{n \pi x}{l} \mathbf{d} x
{:[=>E_(n)=(2)/(l)[int_(0)^((l)/(3))f(x)sin((n pi x)/(l))dx+int_((l)/(3))^(l)f(x)sin((n pi x)/(l))dx]],[=(2)/(l)[int_(0)^((1)/(3))(3hx)/(l)sin((n pi x)/(l))dx+int_((1)/(3))^(l)(3h(-x))/(2l)sin((n pi x)/(l))dx]],[=(6h)/(l^(2))int_(0)^((1)/(3))x sin((n pi x)/(l))dx+(3h)/(2l^(2))int_((1)/(3))(l-x)sin((n pi x)/(l))dx]:}\begin{aligned}
& \Rightarrow E_n=\frac{2}{l}\left[\int_0^{\frac{l}{3}} f(x) \sin \frac{n \pi x}{l} \mathbf{d} x+\int_{\frac{l}{3}}^l f(x) \sin \frac{n \pi x}{l} \mathbf{d} x\right] \\
& =\frac{2}{l}\left[\int_0^{\frac{1}{3}} \frac{3 h x}{l} \sin \frac{n \pi x}{l} \mathbf{d} x+\int_{\frac{1}{3}}^l \frac{3 h(-x)}{2 l} \sin \frac{n \pi x}{l} \mathbf{d} x\right] \\
& =\frac{6 h}{l^2} \int_0^{\frac{1}{3}} x \sin \frac{n \pi x}{l} \mathbf{d} x+\frac{3 h}{2 l^2} \int_{\frac{1}{3}}(l-x) \sin \frac{n \pi x}{l} \mathbf{d} x
\end{aligned}
y(x,t)=sum_(n=1)^(oo)(9h)/(n^(2)pi^(2))sin((n pi)/(3))*sin((n pi x)/(l))cos((n pi ct)/(l))y(x, t)=\sum_{n=1}^{\infty} \frac{9 h}{n^2 \pi^2} \sin \frac{n \pi}{3} \cdot \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
Which is the required displacement function
8.(b) बिन्दुओं x_(0),x_(0)+epsix_0, x_0+\varepsilon तथा x_(1)x_1 के सापेक्ष तीन-बिन्दु लेगरान्ज-अन्तर्वेशन बहुपद को लिखिए । तदुपरान्त limit epsi rarr0\varepsilon \rightarrow 0 करने पर निम्नलिखित सम्बन्ध को स्थापित कीजिए :
जहाँ पर E(x)=(1)/(6)(x-x_(0))^(2)(x-x_(1))f^(”’)(xi)E(x)=\frac{1}{6}\left(x-x_0\right)^2\left(x-x_1\right) f^{\prime \prime \prime}(\xi) त्रुटि-फलन है और
न्यूनतम (x_(0),x_(0)+epsi,x_(1)) < xi <\left(x_0, x_0+\varepsilon, x_1\right)<\xi< उच्चतम (x_(0),x_(0)+epsi,x_(1))\left(x_0, x_0+\varepsilon, x_1\right)
Write the three point Lagrangian interpolating polynomial relative to the points x_(0),x_(0)+epsix_0, x_0+\varepsilon and x_(1)x_1. Then by taking the limit epsi rarr0\varepsilon \rightarrow 0, establish the relation
where E(x)=(1)/(6)(x-x_(0))^(2)(x-x_(1))f^(”’)(xi)E(x)=\frac{1}{6}\left(x-x_0\right)^2\left(x-x_1\right) f^{\prime \prime \prime}(\xi)
is the error function and min. (x_(0),x_(0)+epsi,x_(1)) < xi < max.(x_(0),x_(0)+epsi,x_(1))\left(x_0, x_0+\varepsilon, x_1\right)<\xi<\max .\left(x_0, x_0+\varepsilon, x_1\right)
Answer:
Introduction:
The problem involves writing the three-point Lagrangian interpolating polynomial relative to the points x_(0),x_(0)+epsix_0, x_0+\varepsilon and x_(1)x_1. Then, by taking the limit epsi rarr0\varepsilon \rightarrow 0, we establish the relation for f(x)f(x) as described in the provided equation.
Step 1: Lagrangian Three-Point Formula
We start with the Lagrangian three-point formula. Given the points x_(0),x_(0)+t,x_(1)x_0, x_0+t, x_1 and corresponding function values f(x_(0)),f(x_(0)+t),f(x_(1))f(x_0), f(x_0+t), f(x_1), the formula is as follows:
Where E=((x-x_(0))(x-x_(1)))/(6)f^(”’)(xi)E=\frac{\left(x-x_0\right)\left(x-x_1\right)}{6} f^{\prime \prime \prime}(\xi) with min(x_(0),x_(0)+epsi,x_(1)) < xi < max(x_(0),x_(0)+epsi,x_(1))\min\left(x_0, x_0+\varepsilon, x_1\right)<\xi<\max\left(x_0, x_0+\varepsilon, x_1\right).
Conclusion:
The desired relation for f(x)f(x) is established as described, and it includes the error function E(x)E(x).
(c) (m)/(2)\frac{m}{2} शक्ति वाले दो स्रोत, बिन्दुओं (+-a,0)(\pm a, 0) पर स्थित हैं। दर्शाइए कि वृत x^(2)+y^(2)=a^(2)x^2+y^2=a^2 के किसी भी बिन्दु पर वेग yy-अक्ष के समान्तर तथा yy के व्युत्क्रमानुपाती है।
Two sources of strength (m)/(2)\frac{m}{2} are placed at the points (+-a,0)(\pm a, 0). Show that at any point on the circle x^(2)+y^(2)=a^(2)x^2+y^2=a^2, the velocity is parallel to the yy-axis and is inversely proportional to yy.
Answer:
Introduction:
The problem involves two sources of strength (m)/(2)\frac{m}{2} placed at the points (+-a,0)(\pm a, 0). The goal is to demonstrate that at any point on the circle x^(2)+y^(2)=a^(2)x^2+y^2=a^2, the velocity is parallel to the yy-axis and inversely proportional to yy.
Step 1: Complex Potential Calculation
Given the strength of the source is (m)/(2)\frac{m}{2}, we can calculate the complex potential as follows:
We parameterize points on the circle x^(2)+y^(2)=a^(2)x^2+y^2=a^2 as follows:
z=x+”iy on circle “x^(2)+y^(2)=a^(2)=>x=a cos theta,y=a sin thetaz=x+\text{iy on circle } x^2+y^2=a^2 \Rightarrow x=a \cos \theta, y=a \sin \theta
Step 4: Express zz in Terms of theta\theta
Express zz in terms of theta\theta as follows:
z=a[cos theta+i sin theta]=ae^(i theta)z=a[\cos \theta+i \sin \theta]=a e^{i \theta}
Step 5: Substituting zz into Equation (1)
Substitute zz into Equation (1) as follows:
q=-(mae^(i theta))/(a^(2)e^(2i theta)-a^(2))=-(m)/(a[e^(i theta)-e^(-i theta)])=-(2m)/(a[e^(i theta)-e^(-i theta)])=-(2m)/(2a[e^(i theta)-e^(-i theta)])=-(m)/(2ai sin theta)(sin theta=(e^(i theta)-e^(i theta))/(2i))q=-\frac{m a e^{i \theta}}{a^2 e^{2 i \theta}-a^2}=-\frac{m}{a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{2 m}{a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{2 m}{2 a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{m}{2 a i \sin \theta}\left(\sin \theta=\frac{e^{i \theta}-e^{i \theta}}{2i}\right)
q=-(m)/(y)(q=-\frac{m}{ y}( because y=a sin theta)y=a \sin \theta)
Step 6: Final Conclusion
Conclude that q alpha(1)/(y)q \alpha \frac{1}{y}, indicating that the velocity is parallel to the yy-axis and inversely proportional to yy.
Conclusion:
The analysis demonstrates that at any point on the circle x^(2)+y^(2)=a^(2)x^2+y^2=a^2, the velocity is indeed parallel to the yy-axis and inversely proportional to yy.