(a) मान लीजिए कि m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_k धनात्मक पूर्णांक हैं तथा d > 0,m_(1),m_(2),cdots,m_(k)d>0, m_1, m_2, \cdots, m_k का महत्तम समापवर्तक है। दर्शाइए कि ऐसे पूर्णांक x_(1),x_(2),cdots,x_(k)x_1, x_2, \cdots, x_k अस्तित्व में हैं ताकि
Let m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_k be positive integers and d > 0d>0 the greatest common divisor of m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_k. Show that there exist integers x_(1),x_(2),cdots,x_(k)x_1, x_2, \cdots, x_k such that
Let s={au+bv|u,vs=\{a u+b v \,|\, u, v are integers and au+bv > 0}a u+b v>0\}
Step 2: Investigating Cases for aa and bb
If a > 0a>0, then a=a1+b(0) > 0a=a 1+b(0)>0, which implies that a > 0a>0.
If a < 0a<0, then -a=a(-1)+b(0) > 0-a=a(-1)+b(0)>0, which implies that -a in S-a \in S.
Similarly, if b > 0b>0, then b in Sb \in S.
If b < 0b<0, then -b in S-b \in S.
Therefore, S!=phiS \neq \phi and SS contains positive integers.
By the well-ordering principle, SS has a least element, say dd.
Step 3: Proving that dd is the GCD of aa and bb
Now we have d in Sd \in S such that d=ax+by—-(1)d=a x+b y—-(1) for some integers x,yx, y.
Also, d > 0d>0.
To prove that dd is the greatest common divisor (GCD) of aa and bb, consider the following:
Let a=dq+r—-(2)a=\mathbf{d} q+r—-(2) (where 0 <= r < d0 \leqslant r < d) be a division of aa by dd.
If r!=0r \neq 0, then r=a-dqr=a-\mathbf{d} q.
{:[=a-(ax+by)q quad(as d=ax+by”)”],[=a(1-lambda q)+b(-yz) > 0quad(since 1-lambda q”,”-yq” are integers”)],[r > 0″,”r in S” if “r < d” and “r in S]:}\begin{aligned}
&=a-(a x+b y) q \quad \text{(as } d=a x+b y\text{)} \\
&=a(1-\lambda q)+b(-y z)>0 \quad \text{(since } 1-\lambda q, -yq\text{ are integers}) \\
&r>0, r \in S \text{ if } r<d \text{ and } r \in S
\end{aligned}
This leads to a contradiction since dd is the least element of SS.
Therefore, r=0r=0, and we have a=dqa=\mathbf{d} q.
This implies that (a)/(d)=q\frac{a}{d}=q and (d)/(a)\frac{d}{a} are integers.
Similarly, (d)/(b)\frac{d}{b} is also an integer.
Step 4: Proving Uniqueness of GCD
Suppose (C)/(c),(c)/(b)=>(c)/(ax+by)=>(c)/(d)\frac{C}{c}, \frac{c}{b} \Rightarrow \frac{c}{a x+b y} \Rightarrow \frac{c}{d}
Therefore (d)/(a),(d)/(b)\frac{\mathbf{d}}{a}, \frac{d}{b} also if (c)/(a),(c)/(b)=>(c)/(d)\frac{c}{a}, \frac{c}{b} \Rightarrow \frac{c}{d}
dd is gcd of aa and bb
If possible d^(‘)d’ is also gcd of aa and bb
Then (d^(‘))/(a),(d^(‘))/(b)=>(d)/(d^(‘))rarr\frac{d^{\prime}}{a}, \frac{d^{\prime}}{b} \Rightarrow \frac{d}{d^{\prime}} \rightarrow (3)
Similarly, (d)/(c),(d)/(b)=>(d^(‘))/(d)rarr\frac{\mathbf{d}}{c}, \frac{d}{b} \Rightarrow \frac{d^{\prime}}{d} \rightarrow (4)
This implies (d)/(d^(‘))\frac{d}{d^{\prime}} (from the divisibility relation) which, in turn, implies d=d^(‘)d=d^{\prime} (from the uniqueness of GCD).
Step 5: Extending the Argument
The above argument can be extended to more than two integers.
If d=gcd(m_(1),m_(2),dots,m_(k))d=\operatorname{gcd}\left(m_1, m_2, \ldots, m_k\right), there exist integers lambda_(1),lambda_(2),dots,lambda _(k)\lambda_1, \lambda_2, \ldots, \lambda_k such that
A series sum_(n=0)^(oo)f_(n)(x)\sum_{n=0}^{\infty} f_n(x) is said to be uniformly convergent on a set SS if for every epsilon > 0\epsilon > 0, there exists an N inNN \in \mathbb{N} such that for all m > Nm > N and for all x in Sx \in S,
Step 1: Recognize the Series as a Geometric Series
Explanation
For each fixed xx, the series is a geometric series. A geometric series is a series of the form sum_(n=0)^(oo)a*r^(n)\sum_{n=0}^{\infty} a \cdot r^n, where aa is the first term and rr is the common ratio.
Application to Our Series
In our case, the first term a=x^(4)a = x^4 and the common ratio r=(1)/(1+x^(4))r = \frac{1}{1+x^4}.
Step 2: Find the n^(th)n^{th} Partial Sum s_(n)(x)s_n(x)
Explanation
The n^(th)n^{th} partial sum of a geometric series is given by:
A uniformly convergent series of continuous functions must converge to a continuous limit function.
Application to Our Series
The limit function S(x)S(x) is discontinuous at x=0x = 0. This implies that the original series cannot be uniformly convergent, as a uniformly convergent series of continuous functions would converge to a continuous function.
Conclusion
By the definition of uniform convergence and the properties of geometric series, we conclude that the series sum_(n=0)^(oo)(x^(4))/((1+x^(4))^(n))\sum_{n=0}^{\infty} \frac{x^4}{(1+x^4)^n} is not uniformly convergent on the interval [0,1][0,1] because its limit function S(x)S(x) is discontinuous at x=0x = 0.
(c) यदि एक फलन ff, अन्तराल [a,b][a, b] में एकदिष्ट है, तब सिद्ध कीजिए कि f,[a,b]f,[a, b] में रीमान समाकलनीय है।
If a function ff is monotonic in the interval [a,b][a, b], then prove that ff is Riemann integrable in [a,b][a, b].
Answer:
To prove that a monotonic function ff is Riemann integrable on the interval [a,b][a, b], we need to show that for any given epsilon > 0\epsilon > 0, there exists a partition PP of [a,b][a, b] such that the upper sum U(f,P)U(f, P) and the lower sum L(f,P)L(f, P) satisfy:
where m_(i)=i n f{f(x):x in[x_(i-1),x_(i)]}m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \} and Deltax_(i)=x_(i)-x_(i-1)\Delta x_i = x_i – x_{i-1}.
Proof:
Choose epsilon > 0\epsilon > 0: Let epsilon > 0\epsilon > 0 be given.
Partition Size: Since ff is monotonic, it is bounded on [a,b][a, b]. Let MM and mm be the upper and lower bounds of ff on [a,b][a, b], respectively. Choose a partition size Delta x\Delta x such that:
Delta x < (epsilon)/(M-m).\Delta x < \frac{\epsilon}{M – m}.
Construct the Partition PP: Divide the interval [a,b][a, b] into subintervals of length Delta x\Delta x (the last interval may be smaller if [b-a][b-a] is not a multiple of Delta x\Delta x).
Upper and Lower Sums: For each subinterval [x_(i-1),x_(i)][x_{i-1}, x_i], the function ff will attain its maximum and minimum at the endpoints x_(i-1)x_{i-1} and x_(i)x_i (or vice versa) because ff is monotonic. Therefore, M_(i)-m_(i)=f(x_(i))-f(x_(i-1))M_i – m_i = f(x_i) – f(x_{i-1}).
Since we can find a partition PP such that U(f,P)-L(f,P) < epsilonU(f, P) – L(f, P) < \epsilon for any given epsilon > 0\epsilon > 0, the function ff is Riemann integrable on [a,b][a, b].
This completes the proof.
(d) मान लीजिए कि c:[0,1]rarrC,c(t)=e^(4pi it),0 <= t <= 1c:[0,1] \rightarrow \mathbb{C}, c(t)=e^{4 \pi i t}, 0 \leq t \leq 1 के द्वारा परिभाषित एक वक्र है। कन्दूर समाकल int _(c)(dz)/(2z^(2)-5z+2)\int_c \frac{d z}{2 z^2-5 z+2} का मान निकालिए।
Let c:[0,1]rarrCc:[0,1] \rightarrow \mathbb{C} be the curve, where c(t)=e^(4pi it),0 <= t <= 1c(t)=e^{4 \pi i t}, 0 \leq t \leq 1. Evaluate the contour integral int _(c)(dz)/(2z^(2)-5z+2)\int_c \frac{d z}{2 z^2-5 z+2}.
Answer:
Given Function and Circle
Let z(t)=e^(4pi it),0 <= t <= 1z(t)=e^{4\pi it}, 0 \leqslant t \leqslant 1. Then, |Z(t)|=1|Z(t)| = 1. Therefore, the curve CC can be defined as the circle with the equation |z-0|=1|z – 0| = 1. This means that CC is a circle of unit radius with its center at the origin (0,0)(0,0) denoted as OO.
Since C(t)=e^(4pi t),0 <= t <= 1C(t) = e^{4\pi t}, 0 \leqslant t \leqslant 1, it is clear that curve CC winds up two times about the origin with unit radius.
Therefore, the final result is:
int _(C)f(z)dz=-(4pi i)/(3)\int_C f(z) \, dz = -\frac{4\pi i}{3}
(e) एक कम्पनी के एक विभाग के पाँच कर्मचारियों को पाँच कार्य सम्पन्न करने हैं। जितना समय (घंटों में) एक व्यक्ति एक कार्य को सम्पन्न करने के लिए लेता है, वह प्रभाविता आव्यूह में दिया गया है। इन पाँच कर्मचारियों को इन सभी कार्यों को इस तरह निर्धारित कीजिए जिससे कि समस्त कार्य सम्पन्न करने का समय न्यूनतम हो :
A department of a company has five employees with five jobs to be performed. The time (in hours) that each man takes to perform each job is given in the effectiveness matrix. Assign all the jobs to these five employees to minimize the total processing time :
The number of lines is smaller than 5, and the smallest uncovered number is 2. Subtract this number from all uncovered elements and add it to all elements that are covered twice:
In this optimization problem, we aimed to assign five jobs to five employees in a department of a company in a way that minimizes the total processing time. We began with an original cost matrix representing the time each employee takes to perform each job. Through a series of steps involving the subtraction of row minima, column minima, and the creation of additional zeros, we arrived at an optimal assignment.
The optimal assignment, shown in the original cost matrix, assigns each job to an employee in such a way that the total processing time is minimized. The optimal value for this assignment is 23 hours.
This optimized job assignment can help the department efficiently utilize its workforce and minimize the time required to complete the tasks, ultimately leading to increased productivity and cost savings.
(a) f(x)=x^(3)-9x^(2)+26 x-24f(x)=x^3-9 x^2+26 x-24 का, 0 <= x <= 10 \leq x \leq 1 के लिए, अधिकतम तथा न्यूनतम मान निकालिए।
Find the maximum and minimum values of f(x)=x^(3)-9x^(2)+26 x-24f(x)=x^3-9 x^2+26 x-24 for 0 <= x <= 10 \leq x \leq 1
Answer:
Step 1: Objective Function
Given the function f(x)=x^(3)-9x^(2)+26 x-24f(x) = x^3 – 9x^2 + 26x – 24 for 0 <= x <= 10 \leq x \leq 1:
f(x)=x^(3)-9x^(2)+26 x-24quad”for”quad AA x in[0,1]quad(1)f(x) = x^3 – 9x^2 + 26x – 24 \quad \text{for} \quad \forall x \in [0, 1] \quad \text{(1)}
In the given interval [0,1][0, 1], the function f(x)=x^(3)-9x^(2)+26 x-24f(x) = x^3 – 9x^2 + 26x – 24 reaches its maximum value of -6 at x=1x = 1 and its minimum value of -24 at x=0x = 0.
(b) मान लीजिए कि FF एक क्षेत्र है तथा f(x)in F[x]f(x) \in F[x], क्षेत्र FF के ऊपर घात > 0>0 का एक बहुपद है। दर्शाइए कि एक क्षेत्र F^(‘)F^{\prime} तथा एक अंतःस्थापन q:F rarrF^(‘)q: F \rightarrow F^{\prime} इस प्रकार से अस्तित्व में हैं कि बहुपद f^(q)inF^(‘)[x]f^q \in F^{\prime}[x] का एक मूल F^(‘)F^{\prime} में है, जहाँ f^(q),ff^q, f के प्रत्येक गुणांक aa को q(a)q(a) द्वारा प्रतिस्थापित करने से प्राप्त होता है।
Let FF be a field and f(x)in F[x]f(x) \in F[x] a polynomial of degree > 0>0 over FF. Show that there is a field F^(‘)F^{\prime} and an imbedding q:F rarrF^(‘)q: F \rightarrow F^{\prime} s.t. the polynomial f^(q)inF^(‘)[x]f^q \in F^{\prime}[x] has a root in F^(‘)F^{\prime}, where f^(q)f^q is obtained by replacing each coefficient aa of ff by q(a)q(a).
Answer:
Step 1: Problem Statement
We are given a field FF and a polynomial f(x)in F[x]f(x) \in F[x] of degree greater than 0. The goal is to show the existence of a field F^(‘)F^{\prime} and an embedding q:F rarrF^(‘)q: F \rightarrow F^{\prime} such that the polynomial f^(q)inF^(‘)[x]f^q \in F^{\prime}[x] has a root in F^(‘)F^{\prime}. Here, f^(q)f^q is obtained by replacing each coefficient aa of ff by q(a)q(a).
Step 2: Maximal Ideal and Field Extension
Suppose f(x)in F[x]f(x) \in F[x] is a polynomial of degree greater than 0 over a field FF. We consider the ideal M=(:f(x):)M = \langle f(x) \rangle in F[x]F[x]. Since f(x)f(x) is irreducible, MM is a maximal ideal in F[x]F[x].
Step 3: Field Extension
We create a field extension by taking FF modulo this maximal ideal, denoted as (F[x])/(M)\frac{F[x]}{M}, which is itself a field.
Step 4: Define Embedding qq
Define the embedding q:F rarr(F[x])/(M)q: F \rightarrow \frac{F[x]}{M} as q(a)=a+Mq(a) = a + M. This embedding qq is a homomorphism.
Step 5: Ker qq and Injectiveness
We consider the kernel of qq, i.e., elements a in Fa \in F such that q(a)=0+Mq(a) = 0 + M. This implies a+M=Ma + M = M, which further implies a in M=(:f(x):)a \in M = \langle f(x) \rangle. Therefore, a=f(x)q(x)a = f(x)q(x) for some q(x)in F[x]q(x) \in F[x]. Since f(x)f(x) is irreducible and aa is a polynomial of degree greater than 0, this relation holds only when a=0a = 0. Consequently, “ker “q={0}\text{ker } q = \{0\} or qq is injective.
Step 6: Isomorphism and Subfield
Hence, FF is isomorphic to q(F)q(F). We can view F^(‘)F^{\prime} as containing FF by identifying a in Fa \in F with q(a)q(a) and vice versa.
Step 7: Construct Psi\Psi
Define Psi:F[x]rarr(F[x])/(M)\Psi: F[x] \rightarrow \frac{F[x]}{M} such that Psi(f(x))=f(x)+M\Psi(f(x)) = f(x) + M. Psi\Psi is a natural homomorphism.
Step 8: Show alpha\alpha as a Root
Let alpha=Psi(x)=x+M\alpha = \Psi(x) = x + M. We claim that alpha\alpha is a root of f^(q)f^q in FF.
Since F~=q(F)F \cong q(F), the zero is also a_(0)+a_(1)alpha+a_(2)alpha^(2)+dots+a_(n)alpha ^(n)a_0 + a_1\alpha + a_2\alpha^2 + \ldots + a_n\alpha^n, which is equal to f(a)=f^(q)f(a) = f^q.
Step 13: Conclusion
Hence, aa is a root of f(a)f(a) in FF. By replacing each coefficient aa of ff by q(a)q(a), we obtain f^(q)f^q.
Therefore, there exists a field F^(‘)F^{\prime} and an embedding q:F rarrF^(‘)q: F \rightarrow F^{\prime} such that the polynomial f^(q)inF^(‘)[x]f^q \in F^{\prime}[x] has a root in F^(‘)F^{\prime}, where f^(q)f^q is obtained by replacing each coefficient aa of ff by q(a)q(a).
(c) क्षेत्र |z+1| > 3|z+1|>3 में f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)} का लौराँ श्रेणी प्रसार, (z+1)(z+1) की घातों में ज्ञात कीजिए।
Find the Laurent series expansion of f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)} in the powers of (z+1)(z+1) in the region |z+1| > 3|z+1|>3
Answer:
Step 1: Problem Statement
Find the Laurent series expansion of f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)} in the powers of (z+1)(z+1) in the region |z+1| > 3|z+1|>3.
Step 2: Rewrite f(z)f(z) in terms of uu
Let f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)}. Now, let z+1=uz+1=u, which implies z=u-1z=u-1.
Therefore, f(z)=(1)/(z+1)+(3)/((z+1)^(2))+(11)/((z+1)^(3))+dotsf(z)=\frac{1}{z+1}+\frac{3}{(z+1)^2}+\frac{11}{(z+1)^3}+\ldots is valid for |z+1| > 3|z+1|>3.
(a) मान लीजिए कि ff एक सर्वत्र वैश्लेषिक फलन है जिसके केन्द्र z=0z=0 पर टेलर श्रेणी प्रसार में अपरिमित रूप से अनेक पद हैं। दर्शाइए कि f((1)/(z))f\left(\frac{1}{z}\right) की z=0z=0 एक अनिवार्य विचित्रता है।
Let ff be an entire function whose Taylor series expansion with centre z=0z=0 has infinitely many terms. Show that z=0z=0 is an essential singularity of (f((1)/(z)))f\left(\frac{1}{z}\right)) .
Answer:
Step 1: Problem Statement
Show that z=0z=0 is an essential singularity of (f((1)/(z)))\left(f\left(\frac{1}{z}\right)\right), where ff is an entire function with a Taylor series expansion centered at z=0z=0 containing infinitely many terms.
Step 2: Introduction
Let f(z)f(z) be an entire function with a Taylor series expansion centered at z=0z=0 that contains infinitely many terms.
Step 3: Example Function
Consider the example function f(z)=e^(z)f(z) = e^z, which is an entire function. Its Taylor series expansion centered at z=0z=0 is given by:
Notice that the Laurent series of f((1)/(z))f\left(\frac{1}{z}\right) contains infinitely many terms in the principal part.
Step 6: Conclusion
Since the Laurent series expansion of f((1)/(z))f\left(\frac{1}{z}\right) contains infinitely many terms in the principal part, it implies that z=0z=0 is an essential singular point for f((1)/(z))f\left(\frac{1}{z}\right).
Therefore, z=0z=0 is indeed an essential singularity of (f((1)/(z)))\left(f\left(\frac{1}{z}\right)\right).
(b) शर्तों ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1 तथा lx+my+nz=0l x+m y+n z=0 से प्रतिबन्धित x^(2)+y^(2)+z^(2)x^2+y^2+z^2 के स्तब्ध (अचर) मान निकालिए। परिणाम की ज्यामितीय व्याख्या कीजिए।
Find the stationary values of x^(2)+y^(2)+z^(2)x^2+y^2+z^2 subject to the conditions ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1 and lx+my+nz=0l x+m y+n z=0. Interpret the result.
This function represents the problem statement and incorporates Lagrange multipliers lambda_(1)\lambda_1 and lambda_(2)\lambda_2 for the given constraints.
Step 2: Deriving Stationary Conditions
For the maxima and minima of F\mathrm{F}, we need to find the stationary points. We calculate the partial derivatives with respect to xx, yy, and zz and set them to zero:
{:[(delF)/(del x)=2x+2axlambda_(1)+llambda_(2)=0—-(2)],[(delF)/(del y)=2y+2bylambda_(1)+mlambda_(2)=0—-(3)],[(delF)/(del z)=2z+2czlambda_(1)+nlambda_(2)=0—-(4)]:}\begin{aligned}
& \frac{\partial \mathrm{F}}{\partial x}=2 x+2 a x \lambda_1+l \lambda_2=0—-(2) \\
& \frac{\partial \mathrm{F}}{\partial y}=2 y+2 b y \lambda_1+m \lambda_2=0—-(3) \\
& \frac{\partial \mathrm{F}}{\partial z}=2 z+2 c z \lambda_1+n \lambda_2=0—-(4)
\end{aligned}
Step 3: Combining Equations
Multiply equations (2), (3), and (4) by xx, yy, and zz respectively and then add them together:
The stationary values of uu are the solutions to the above equation. These values represent the square of the distance from the origin to the points on the conicoid ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1 that also lie on the plane lx+my+nz=0l x+m y+n z=0.
Geometrical Interpretation
x^(2)+y^(2)+z^(2)x^2+y^2+z^2 is the square of the distance of any point (x,y,z)(x, y, z) from the origin (0,0,0)(0,0,0). Hence in this problem, we have found the maximum and minimum values of the square of distance of the origin from the point of intersection of the central conicoid ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1 by the central plane lx+my+nz=0l x+m y+n z=0.
(c) निम्न रैखिक प्रोग्रामन समस्या को द्वैती रैखिक प्रोग्रामन सम न्यूनतमीकरण कीजिए Z=x_(1)-3x_(2)-2x_(3)Z=x_1-3 x_2-2 x_3
बशर्ते कि
where x_(1),x_(2) >= 0x_1, x_2 \geq 0 and x_(3)x_3 is unrestricted in sign.
Answer:
Step 1: Formulating the Primal Linear Programming Problem (LPP)
The primal LPP is defined as follows: MinimizeZ_(x)=x_(1)-3x_(2)-2x_(3)Z_x = x_1 – 3x_2 – 2x_3 Subject to:
3x_(1)-x_(2)+2x_(3) <= 73x_1 – x_2 + 2x_3 \leq 7
2x_(1)-4x_(2) >= 122x_1 – 4x_2 \geq 12
-4x_(1)+3x_(2)+8x_(3)=10-4x_1 + 3x_2 + 8x_3 = 10
x_(1),x_(2) >= 0x_1, x_2 \geq 0
x_(3)x_3 is unrestricted in sign.
Step 2: Converting Primal Constraints
In this step, the answer converts the primal constraints from <=\leq type to >=\geq type because the primal objective function is minimizing. This leads to the following primal LPP:
MinimizeZ_(x)=x_(1)-3x_(2)-2x_(3)Z_x = x_1 – 3x_2 – 2x_3 Subject to:
Here, the answer identifies the characteristics of the dual problem based on the properties of the primal problem:
There must be 3 constraints and 3 variables in the dual problem.
The coefficients of the objective function in the primal (c_(1)=1,c_(2)=-3,c_(3)=-2c_1 = 1, c_2 = -3, c_3 = -2) become the right-hand side constants in the dual.
The right-hand side constants in the primal (b_(1)=-7,b_(2)=12,b_(3)=10b_1 = -7, b_2 = 12, b_3 = 10) become the coefficients of the objective function in the dual.
Since the primal is a minimization problem, the dual must be a maximization problem.
The presence of an unrestricted variable (x_(3)x_3) in the primal results in an equality constraint in the dual, and the corresponding dual variable (y_(3)y_3) is unrestricted.
Step 4: Formulating the Dual Linear Programming Problem (LPP)
Based on the characteristics identified in Step 3, the dual LPP is formulated as follows:
MaximizeZ_(y)=-7y_(1)+12y_(2)+10y_(3)Z_y = -7y_1 + 12y_2 + 10y_3 Subject to:
(a) दर्शाइए कि परिमेय संख्याओं के योज्य समूह Q\mathbb{Q} के अपरिमित रूप से अनेक उपसमूह हैं।
Show that there are infinitely many subgroups of the additive group Q\mathbb{Q} of rational numbers.
Answer:
The additive group of rational numbers, denoted by Q\mathbb{Q}, consists of all rational numbers under the operation of addition. To show that there are infinitely many subgroups of Q\mathbb{Q}, we can construct an infinite family of subgroups.
Construction of Subgroups:
Consider the set nQn\mathbb{Q}, where nn is any positive integer. This set consists of all rational numbers that can be written in the form nqnq, where qq is any rational number. Formally, nQ={nq∣q inQ}n\mathbb{Q} = \{nq \mid q \in \mathbb{Q}\}.
Properties:
Identity Element: 00 is in nQn\mathbb{Q} because 0=n xx00 = n \times 0.
Closure under Addition: If a,b in nQa, b \in n\mathbb{Q}, then a+b=nq_(1)+nq_(2)=n(q_(1)+q_(2))a + b = nq_1 + nq_2 = n(q_1 + q_2) is also in nQn\mathbb{Q}.
Closure under Inverse: If a in nQa \in n\mathbb{Q}, then -a=-nq=n(-q)-a = -nq = n(-q) is also in nQn\mathbb{Q}.
Therefore, nQn\mathbb{Q} is a subgroup of Q\mathbb{Q} for each positive integer nn.
Infinitude of Subgroups:
Since nn can be any positive integer, and there are infinitely many positive integers, we have constructed an infinite family of subgroups nQn\mathbb{Q} of Q\mathbb{Q}.
Conclusion:
Hence, we have shown that there are infinitely many subgroups of the additive group Q\mathbb{Q} of rational numbers.
(b) कन्टूर समाकलन का उपयोग कर समाकल int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2))),a > 0\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^2+a^2\right)}, a>0 का मान ज्ञात कीजिए।
Using contour integration, evaluate the integral int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2))),a > 0\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^2+a^2\right)}, a>0
Answer:
Introduction:
We aim to evaluate the integral
int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2)))\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2+a^2)}
using contour integration techniques. Here, aa is a positive constant.
taken around a contour CC consisting of the following segments:
i. The real axis from point PP to RR.
ii. A large semi-circle TT in the upper half plane defined by |z|=R|z|=R.
iii. The real axis from -R-R to -P-P.
iv. A small semi-circle gamma\gamma defined by |z|=P|z|=P.
Now, the function f(z)f(z) has simple poles at z=0,+-aiz=0, \pm ai, but only z=aiz=ai lies within the contour CC.
Equating the imaginary parts, we obtain the final result:
int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2)))=(pi)/(a^(2))(1-e^(-a))\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2+a^2)} = \frac{\pi}{a^2} (1 – e^{-a})
This is the value of the given integral using contour integration.
(c) बड़ा MM (बिग MM ) विधि का उपयोग करके निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :
अधिकतमीकरण कीजिए Z=4x_(1)+5x_(2)+2x_(3)Z=4 x_1+5 x_2+2 x_3
बशर्ते कि
Positive maximum C_(j)-Z_(j)C_j-Z_j is 3M+43 M+4 and its column index is 1 . So, the entering variable is x_(1)x_1.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is A_(1)A_1. :.\therefore The pivot element is 2 .
Entering =x_(1)=x_1, Departing =A_(1)=A_1, Key Element =2=2
{:[R_(1)(” new “)=R_(1)(” old “)-:2],[{:R_(2)(” new “)=R_(2)” (old “)-R_(1)(” new “)],[{:R_(3)(” new “)=R_(3)” (old “)-R_(1)(” new “)]:}\begin{aligned}
& R_1(\text { new })=R_1(\text { old }) \div 2 \\
& \left.R_2(\text { new })=R_2 \text { (old }\right)-R_1(\text { new }) \\
& \left.R_3(\text { new })=R_3 \text { (old }\right)-R_1(\text { new })
\end{aligned}
Positive maximum C_(j)-Z_(j)C_j-Z_j is 0.5 M+30.5 M+3 and its column index is 2 . So, the entering variable is x_(2)x_2.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is A_(2)A_2. :.\therefore The pivot element is 0.5 .
Entering =x_(2)=x_2, Departing =A_(2)=A_2, Key Element =0.5=0.5 R_(3)(R_3( new )=R_(3))=R_3 (old) -:0.5\div 0.5 R_(1)(R_1( new )=R_(1)()=R_1( old )-0.5R_(3))-0.5 R_3 (new) R_(2)(R_2( new )=R_(2)()=R_2( old )-2.5R_(3)()-2.5 R_3( new ))
Since all C_(j)-Z_(j) <= 0C_j-Z_j \leq 0
Hence, optimal solution is arrived with value of variables as :
x_(1)=4,x_(2)=2,x_(3)=0x_1=4, x_2=2, x_3=0
Max Z=26\operatorname{Max} Z=26
खण्ड-B / SECTION-B
(a) समीकरण f(x+y+z,x^(2)+y^(2)+z^(2))=0f\left(x+y+z, x^2+y^2+z^2\right)=0 से स्वैच्छिक फलन ff का विलोपन कर आंशिक अवकल समीकरण को प्राप्त कीजिए।
Obtain the partial differential equation by eliminating arbitrary function ff from the equation f(x+y+z,x^(2)+y^(2)+z^(2))=0f\left(x+y+z, x^2+y^2+z^2\right)=0.
Answer:
Introduction:
The objective is to obtain a partial differential equation (PDE) by eliminating the arbitrary function ff from the given equation:
This final expression represents the desired partial differential equation (PDE) of the first order.
Conclusion:
The elimination of the arbitrary function ff from the given equation results in the first-order PDE:
(y-z)p+(z-x)q=x-y(y-z)p+(z-x)q=x-y
This is the partial differential equation obtained by eliminating ff from the initial equation.
(b) प्रारंभिक मानों 0,(pi)/(2)0, \frac{\pi}{2} का उपयोग करके एक संख्यात्मक तकनीक के द्वारा समीकरण 3x=1+cos x3 x=1+\cos x का एक धनात्मक मूल ज्ञात कीजिए, तथा न्यूटन-राफ्सन विधि के द्वारा परिणाम को 8 सार्थक अंकों तक और शुद्ध मान के निकट लाइए।
Find a positive root of the equation 3x=1+cos x3 x=1+\cos x by a numerical technique using initial values 0,(pi)/(2)0, \frac{\pi}{2}; and further improve the result using Newton-Raphson method correct to 8 significant figures.
Answer:
Introduction:
The goal is to find a positive root of the equation 3x=1+cos(x)3x = 1 + \cos(x) using a numerical technique. Initially, we use the interval [0,(pi)/(2)][0, \frac{\pi}{2}] as our guess range, and then we further improve the result using the Newton-Raphson method with an accuracy of 8 significant figures.
Finding Initial Interval:
Given the equation 3x=1+cos(x)3x = 1 + \cos(x), we can rearrange it as:
3x-cos(x)-1=03x – \cos(x) – 1 = 0
Now, let f(x)=3x-cos(x)-1f(x) = 3x – \cos(x) – 1.
We also find the derivative of f(x)f(x):
f^(‘)(x)=3+sin(x)f'(x) = 3 + \sin(x)
Now, we evaluate f(x)f(x) and f^(‘)(x)f'(x) at two points: x=0x = 0 and x=1x = 1.
The approximate root of the equation 3x-cos(x)-1=03x – \cos(x) – 1 = 0 obtained using the Newton-Raphson method after 4 iterations is x~~0.60710165x \approx 0.60710165 (correct to 8 significant figures).
(c) (i) (3798*3875)_(10)(3798 \cdot 3875)_{10} को अष्टधारी तथा षोडशाधारी तुल्यमानों में बदलिए।
(ii) (\rceil P rarr R)^^(Q⇄P)P \rightarrow R) \wedge(Q \rightleftarrows P) का मुख्य संयोजक सामान्य रूप (प्रिंसिपल कंजंक्टिव नॉर्मल फॉर्म) प्राप्त कीजिए।
(i) Convert (3798*3875)_(10)(3798 \cdot 3875)_{10} into octal and hexadecimal equivalents.
Answer:
Introduction:
We are tasked with converting the decimal number (3798*3875)_(10)(3798 \cdot 3875)_{10} into its octal and hexadecimal equivalents.
Conversion to Octal:
To convert (3798)_(10)(3798)_{10} into octal, we perform successive divisions by 8, recording remainders at each step until the quotient becomes zero.
Divide 3798 by 8: Quotient = 474, Remainder = 6.
Divide 474 by 8: Quotient = 59, Remainder = 2.
Divide 59 by 8: Quotient = 7, Remainder = 3.
Divide 7 by 8: Quotient = 0, Remainder = 7.
The remainders, when read from bottom to top, give us the octal equivalent: (3798)_(10)=(7326 _)_(8)(3798)_{10} = (\underline{7326})_8.
Conversion of Decimal Fraction to Octal Fraction:
To convert the decimal fraction (0.3875)_(10)(0.3875)_{10} into its octal equivalent, we can multiply it by 8 successively, noting the integer parts.
0.3875 xx8=3.10000.3875 \times 8 = 3.1000 (integer part = 3).
0.1000 xx8=0.80000.1000 \times 8 = 0.8000 (integer part = 0).
0.8000 xx8=6.40000.8000 \times 8 = 6.4000 (integer part = 6).
0.4000 xx8=3.20000.4000 \times 8 = 3.2000 (integer part = 3).
0.2000 xx8=1.60000.2000 \times 8 = 1.6000 (integer part = 1).
0.6000 xx8=4.80000.6000 \times 8 = 4.8000 (integer part = 4).
Putting the integer parts together, we get the octal fraction: (0.3875)_(10)=(.306314 _)_(8)(0.3875)_{10} = (.\underline{306314})_8.
To convert (3798)_(10)(3798)_{10} into hexadecimal, we perform successive divisions by 16, recording remainders at each step until the quotient becomes zero.
Divide 3798 by 16: Quotient = 237, Remainder = 6.
Divide 237 by 16: Quotient = 14, Remainder = D (in hexadecimal).
Divide 14 by 16: Quotient = 0, Remainder = E (in hexadecimal).
The remainders, when read from bottom to top, give us the hexadecimal equivalent: (3798)_(10)=(ED6_)_(16)(3798)_{10} = (\underline{ED6})_{16}.
Conversion of Decimal Fraction to Hexadecimal Fraction:
To convert the decimal fraction (0.3875)_(10)(0.3875)_{10} into its hexadecimal equivalent, we can multiply it by 16 successively, noting the integer parts.
0.3875 xx16=6.20000.3875 \times 16 = 6.2000 (integer part = 6).
0.2000 xx16=3.20000.2000 \times 16 = 3.2000 (integer part = 3).
0.2000 xx16=3.20000.2000 \times 16 = 3.2000 (integer part = 3).
0.2000 xx16=3.20000.2000 \times 16 = 3.2000 (integer part = 3).
0.2000 xx16=3.20000.2000 \times 16 = 3.2000 (integer part = 3).
0.2000 xx16=3.20000.2000 \times 16 = 3.2000 (integer part = 3).
Putting the integer parts together, we get the hexadecimal fraction: (0.3875)_(10)=(.633333 _)_(16)(0.3875)_{10} = (.\underline{633333})_{16}.
The octal equivalent of (3798*3875)_(10)(3798 \cdot 3875)_{10} is (7326.306314)_(8)(7326.306314)_8, and the hexadecimal equivalent is (ED 6.633333)_(16)(ED6.633333)_{16}.
(ii) Obtain the principal conjunctive normal form of
(דP rarr R)^^(Q⇋P=X^(Y))(ד P \rightarrow R) \wedge\left(Q \leftrightharpoons P=X^Y\right)ד
Answer:
Introduction:
We are tasked with obtaining the principal conjunctive normal form (PCNF) of the given logical expression:
(not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y)
Conversion Steps:
Transform the Expression:
Consider the expression (not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y) and convert it to its equivalent form with negations and biconditionals expanded.
Create the Truth Table:
Build a truth table for the given expression with all relevant variables (P, Q, R, X, Y) and their respective negations.
Calculate Intermediate Results:
Calculate intermediate results for the implications and biconditionals in the truth table.
Identify False Rows:
Identify the rows in the truth table where the final result is false. These rows represent cases where the original expression is false.
Apply PCNF:
Use the rows identified in step 4 to construct the PCNF by combining the variables and their negations using disjunction (OR) to ensure that each row with a false result is included.
Truth Table:
Here’s the truth table for the given expression:
P\mathrm{P}
Q\mathrm{Q}
R\mathrm{R}
∼P\sim \mathrm{P}
∼Prarr R\sim \mathrm{P} \rightarrow R
Q⇋P\mathrm{Q} \leftrightharpoons P
X^^YX \wedge Y
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
F\mathrm{F}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
T\mathrm{T}
F\mathrm{F}
F\mathrm{F}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
T\mathrm{T}
F\mathrm{F}
P Q R ∼P ∼Prarr R Q⇋P X^^Y
T T T F T T T
T T F F T T T
T F T F T F F
T F F F T F F
F T T T T F F
F T F T F F F
F F T T T T T
F F F T F T F| $\mathrm{P}$ | $\mathrm{Q}$ | $\mathrm{R}$ | $\sim \mathrm{P}$ | $\sim \mathrm{P} \rightarrow R$ | $\mathrm{Q} \leftrightharpoons P$ | $X \wedge Y$ |
| :— | :— | :— | :— | :— | :— | :— |
| $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ |
| $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ |
| $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ |
| $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ |
| $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ |
| $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ |
| $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ |
| $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ |
Identify False Rows:
The rows with a false result are:
Row 6
Row 8
Apply PCNF:
Using the false rows identified above, we construct the PCNF by combining the variables and their negations using disjunction (OR):
The principal conjunctive normal form (PCNF) of the given expression (not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y) is:
(d) ऊर्ध्वर्धर xyx y-तल में स्थित एक वृत्त के अनुदिश एक कण गति के लिए व्यवरुद्ध है। डी’एलम्बर्ट के नियम की सहायता से दर्शाइए कि इसकी गति का समीकरण x^(¨)y-y^(¨)x-gx=0\ddot{x} y-\ddot{y} x-g x=0 है, जहाँ gg गुरुत्वीय त्वरण है।
A particle is constrained to move along a circle lying in the vertical xyx y-plane. With the help of the D’Alembert’s principle, show that its equation of motion is x^(¨)y-y^(¨)x-gx=0\ddot{x} y-\ddot{y} x-g x=0, where gg is the acceleration due to gravity.
Answer:
Introduction:
In this problem, we are considering a particle constrained to move along a circle lying in the vertical XY-plane. We need to show, with the help of D’Alembert’s principle, that its equation of motion is x^(¨)y-y^(¨)x-gx=0\ddot{x}y – \ddot{y}x – gx = 0, where gg is the acceleration due to gravity.
Solution Steps:
Particle on a Circular Path:
Consider a particle of mass mm moving along a circle of radius rr in the XY-plane. Let (x,y)(x, y) represent the position of the particle at any instant tt with respect to the fixed point OO. The constraint on the motion of the particle is that its position coordinates always lie on the circle. Hence, the equation of the constraint is given by:
From equation (2), we derive the relation delta x=-(y)/(x)delta y\delta x = -\frac{y}{x}\delta y, where delta x\delta x and delta y\delta y are displacements in xx and yy respectively.
D’Alembert’s Principle:
Using D’Alembert’s principle, we have:
(F-mr^(¨))delta r=0(F – m\ddot{r})\delta r = 0
In component form, this equation is:
(F_(x)-mx^(¨))delta x+(F_(y)-my^(¨))delta y=0quad(3)(F_x – m\ddot{x})\delta x + (F_y – m\ddot{y})\delta y = 0 \quad \text{(3)}
Force Analysis:
The only force acting on the particle at any instant tt is its weight mg\mathrm{mg} in the downward direction. We can resolve this force into horizontal and vertical components:
F_(x)=0F_x = 0 (horizontal component)
F_(y)=-mgF_y = -mg (vertical component)
Substitute Forces into Equation (3):
Substituting the expressions for F_(x)F_x and F_(y)F_y into equation (3), we get:
-mx^(¨)delta x-(mg+my^(¨))delta y=0-m\ddot{x}\delta x – (mg + m\ddot{y})\delta y = 0
Substitute Displacement Relation (2):
Substituting the displacement relation delta x=-(y)/(x)delta y\delta x = -\frac{y}{x}\delta y from step 2 into the equation, we have:
m(-x^(¨)y+y^(¨)x+gx)delta x=0m(-\ddot{x}y + \ddot{y}x + gx)\delta x = 0
Final Equation of Motion:
For delta x!=0\delta x \neq 0 and m!=0m \neq 0, the equation simplifies to:
The equation of motion for the particle constrained to move along a circular path in the vertical XY-plane is x^(¨)y-y^(¨)x-gx=0\ddot{x}y – \ddot{y}x – gx = 0, where gg represents the acceleration due to gravity.
(e) उद्गमों (स्रोतों) व अभिगमों (सिंकों) के किस विन्यास से वेग विभव w=log _(e)(z-(a^(2))/(z))w=\log _e\left(z-\frac{a^2}{z}\right) हो सकता है? संगत धारा-रेखाओं का ख़ाका खींचिए और सिद्ध कीजिए कि उनमें से दो, वृत्त r=ar=a तथा yy-अक्ष में प्रविभाजित होती हैं।
What arrangements of sources and sinks can have the velocity potential w=log _(e)(z-(a^(2))/(z))w=\log _e\left(z-\frac{a^2}{z}\right) ? Draw the corresponding sketch of the streamlines and prove that two of them subdivide into the circle r=ar=a and the axis of yy.
Answer:
Introduction
The problem asks us to determine the arrangements of sources and sinks that can produce the given velocity potential function w=log _(e)(z-(a^(2))/(z))w = \log_e\left(z – \frac{a^2}{z}\right). Additionally, we are tasked with drawing the corresponding streamlines and proving that two of these streamlines subdivide into a circle with radius r=ar=a and the yy-axis.
This decomposition reveals that there are two sinks of unit strength located at distances z=az=a and z=-az=-a, and a source of unit strength at the origin.
Complex Potential in Terms of Real and Imaginary Parts
We can express equation (1) in terms of the real and imaginary parts phi\phi and Psi\Psi as follows:
x(x^(2)+y^(2)-a^(2))=0=>x=0″ and “x^(2)+y^(2)=a^(2)x(x^2+y^2-a^2) = 0 \Rightarrow x=0 \text{ and } x^2+y^2=a^2
Hence, x=0x=0 shows that the yy-axis is a streamline, and the equation x^(2)+y^(2)=a^(2)x^2+y^2=a^2 represents a circle with radius r=ar=a centered at the origin.
Case 2: When kk is zero
If the constant kk is zero, then y=0y=0, which implies that the axis of xx is a streamline.
Therefore, the rough sketch of the lines consists of a source of unit strength at the origin O(0,0)O(0,0) and two sinks of unit strength at A(a,0)A(a, 0) and B(-a,0B(-a, 0).
Sketch
In the sketch, we would draw:
A source at z=az=a and a sink at z=-az=-a.
A circle of radius aa centered at the origin, representing the streamline r=ar=a.
The yy-axis, representing another streamline.
The fluid would flow from the source to the sink, and the circle r=ar=a and the yy-axis would act as barriers that the fluid cannot cross.
Conclusion
In conclusion, we have determined the arrangements of sources and sinks that produce the given velocity potential function and shown that two of the resulting streamlines form a circle with radius r=ar=a and the yy-axis. This analysis provides insight into the fluid flow behavior in this configuration.
(a) तरंग समीकरण
a^(2)(del^(2)u)/(delx^(2))=(del^(2)u)/(delt^(2)),quad0 < x < L,quad t > 0a^2 \frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial t^2}, \quad 0<x<L, \quad t>0
For this equation to hold for all tt, we must have C_(2)=0C_2 = 0 or sinh(alpha L)=0\sinh(\alpha L) = 0. Since sinh(alpha L)=0\sinh(\alpha L) = 0 implies alpha=n pi//L\alpha = n \pi / L for nn being a positive integer, we have:
alpha=(n pi)/(L)\alpha = \frac{n \pi}{L}
Step 6: Apply Superposition Principle
The solution can now be written as a sum of solutions for different values of nn using the superposition principle:
Obtain the Boolean function F(x,y,z)F(x, y, z) based on the table given below. Then simplify F(x,y,z)F(x, y, z) and draw the corresponding GATE network :
The problem involves obtaining a Boolean function F(x,y,z)F(x, y, z) based on the provided truth table and then simplifying this Boolean function. Additionally, the task includes drawing the corresponding GATE network based on the simplified Boolean function.
Step 1: Identify the Rows Where F(x,y,z)=1F(x, y, z) = 1
(x,y,z)=(1,1,1)(x, y, z) = (1, 1, 1)
(x,y,z)=(1,1,0)(x, y, z) = (1, 1, 0)
(x,y,z)=(1,0,1)(x, y, z) = (1, 0, 1)
(x,y,z)=(0,1,1)(x, y, z) = (0, 1, 1)
Step 2: Write the Minterms
For (1,1,1)(1, 1, 1), the minterm is x^^y^^zx \land y \land z
For (1,1,0)(1, 1, 0), the minterm is x^^y^^not zx \land y \land \lnot z
For (1,0,1)(1, 0, 1), the minterm is x^^not y^^zx \land \lnot y \land z
For (0,1,1)(0, 1, 1), the minterm is not x^^y^^z\lnot x \land y \land z
Step 3: Combine the Minterms
Combine all these minterms using the OR operation (vv\lor) to get the complete Boolean function:
F(x,y,z)=(x^^y^^z)vv(x^^y^^not z)vv(x^^not y^^z)vv(not x^^y^^z)F(x, y, z) = (x \land y \land z) \lor (x \land y \land \lnot z) \lor (x \land \lnot y \land z) \lor (\lnot x \land y \land z)
So F(x,y,z)=xyz+xyz^(‘)+xy^(‘)z+x^(‘)yzF(x, y, z) = x y z + x y z’ + x y’ z + x’ y z
Step 4: Simplification
Now, simplify the obtained Boolean expression:
{:[F(x”,”y”,”z)=xyz+xyz^(‘)+xy^(‘)z+x^(‘)yz],[=xy(z+z^(‘))+xy^(‘)z+x^(‘)yz],[=xy(1)+xy+xy^(‘)z],[=x^(‘)yz+xy+xy^(‘)z],[=x^(‘)yz+x(y+y^(‘)z)],[=x^(‘)yz+x[(y+y^(‘))(y+z)]],[=x^(‘)yz+x[1(y+z)]],[=x^(‘)yz+xy+xz],[=y(x^(‘)z+x)+xz],[=y[(x^(‘)+x)(z+x)]+xz],[=y[1{x+z}]+xz],[=xy+yz+xz]:}\begin{aligned}
& F(x, y, z)=x y z+x y z^{\prime}+x y^{\prime} z+x^{\prime} y z \\
& =x y\left(z+z^{\prime}\right)+x y^{\prime} z+x^{\prime} y z \\
& =x y(1)+x y+x y^{\prime} z \\
& =x^{\prime} y z+x y+x y^{\prime} z \\
& =x^{\prime} y z+x\left(y+y^{\prime} z\right) \\
& =x^{\prime} y z+x\left[\left(y+y^{\prime}\right)(y+z)\right] \\
& =x^{\prime} y z+x[1(y+z)] \\
& =x^{\prime} y z+x y+x z \\
& =y\left(x^{\prime} z+x\right)+x z \\
& =y\left[\left(x^{\prime}+x\right)(z+x)\right]+x z \\
& =y[1\{x+z\}]+x z \\
& =x y+y z+x z
\end{aligned}
The simplified Boolean function is F(x,y,z)=xy+yz+xzF(x, y, z) = x y+y z+x z.
Step 5: Draw the Corresponding GATE Network
The gate network for the simplified Boolean function F(x,y,z)=xy+yz+xzF(x, y, z) =x y+y z+x z consists of two gates:
OR gate with inputs xx and yy.
AND gate with inputs from the OR gate and zz.
Here is the corresponding gate network:
Conclusion
The Boolean function F(x,y,z)F(x, y, z) based on the provided truth table is F(x,y,z)=xy+yz+xzF(x, y, z) = x y+y z+x z, and the corresponding gate network has been successfully drawn.
(c) एक छोटी चिकनी घिरनी के ऊपर से गुजरने वाली एक अवितान्य डोरी के सिरों से बंधे असमान संहति वाले दो कणों के निकाय की गति के लिए लग्रांजी समीकरण ज्ञात कीजिए।
Obtain the Lagrangian equation for the motion of a system of two particles of unequal masses connected by an inextensible string passing over a small smooth pulley.
Answer:
Introduction
The problem involves obtaining the Lagrangian equation for the motion of a system consisting of two particles with unequal masses (m_(1)m_1 and m_(2)m_2) connected by an inextensible string passing over a small, smooth pulley with a radius of RR. The system is subject to gravitational forces, and the goal is to derive the equation of motion for the system.
Step 1: System Configuration and Generalized Coordinate
The system consists of two particles with masses m_(1)m_1 and m_(2)m_2 connected by an inextensible string.
The string passes over a small, smooth pulley with radius RR, and both ends of the string are attached to the masses m_(1)m_1 and m_(2)m_2 respectively.
Let the length of the string between m_(1)m_1 and m_(2)m_2 be ll.
Step 2: Generalized Coordinate and Degrees of Freedom
The system has only one degree of freedom, and xx is chosen as the generalized coordinate.
The instantaneous configuration of the system is specified by q=xq = x.
Step 3: Kinetic Energy
Assuming that the cord does not slip, the angular velocity of the pulley is (x)/(R)\frac{x}{R}.
The kinetic energy of the system is given by:
T=(1)/(2)m_(1)x^(˙)^(2)+(1)/(2)I(x^(2))/(R^(2))T = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} I \frac{x^2}{R^2}
Step 4: Potential Energy
The potential energy of the system is given by:
V=-m_(1)gx-m_(2)g(l-x)V = -m_1 g x – m_2 g (l – x)
Step 5: Lagrangian
The Lagrangian (LL) is the difference between the kinetic energy (TT) and potential energy (VV):
L=T-V=(1)/(2)(m_(1)+m_(2)+(I)/(R^(2)))x^(˙)^(2)+(m_(1)-m_(2))gx+m_(2)glL = T – V = \frac{1}{2} \left(m_1 + m_2 + \frac{I}{R^2}\right) \dot{x}^2 + (m_1 – m_2) g x + m_2 g l
Step 6: Partial Derivatives of Lagrangian
Calculate the partial derivatives of the Lagrangian with respect to the generalized coordinate x^(˙)\dot{x} and xx:
The Lagrangian equation of motion for the system of two particles of unequal masses connected by an inextensible string passing over a small, smooth pulley is given by:
का व्यापक हल ज्ञात कीजिए, जहाँ D-=(del)/(del x)D \equiv \frac{\partial}{\partial x} तथा D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y} हैं।
Find the general solution of the partial differential equation
Here, phi_(1)\phi_1 and phi_(2)\phi_2 are arbitrary functions representing the particular integral (P.I.) corresponding to xyxy.
Step 2: Calculate the Coefficients for xyxy Term
{:[=(1)/((D-D^(‘))(D+D^(‘)-3))xy],[=-(1)/(3D)(1-(D^(‘))/(D))^(-1)(1-(D+D^(‘))/(3))^(-1)xy],[=-(1)/(3D)(1+(D^(‘))/(D)+dots)[1+(D+D^(‘))/(3)+((D+D^(‘))/(3))^(2)+dots]xy],[=-(1)/(3D)(1+(D^(‘))/(D)+dots)(1+(D+D^(‘))/(3)+(2DD^(‘))/(9)+dots)xy],[=-(1)/(3D)(xy+(y)/(3)+(2x)/(3)+(1)/(D)x+(2)/(9))],[=-(1)/(3)((x^(2)y)/(2)+(xy)/(2)+(x^(2))/(3)+(x^(3))/(6)+(2x)/(9))]:}\begin{aligned}
& =\frac{1}{\left(D-D^{\prime}\right)\left(D+D^{\prime}-3\right)} x y \\
& =-\frac{1}{3 D}\left(1-\frac{D^{\prime}}{D}\right)^{-1}\left(1-\frac{D+D^{\prime}}{3}\right)^{-1} x y \\
& =-\frac{1}{3 D}\left(1+\frac{D^{\prime}}{D}+\ldots\right)\left[1+\frac{D+D^{\prime}}{3}+\left(\frac{D+D^{\prime}}{3}\right)^2+\ldots\right] x y \\
& =-\frac{1}{3 D}\left(1+\frac{D^{\prime}}{D}+\ldots\right)\left(1+\frac{D+D^{\prime}}{3}+\frac{2 D D^{\prime}}{9}+\ldots\right) x y \\
& =-\frac{1}{3 D}\left(x y+\frac{y}{3}+\frac{2 x}{3}+\frac{1}{D} x+\frac{2}{9}\right) \\
& =-\frac{1}{3}\left(\frac{x^2 y}{2}+\frac{x y}{2}+\frac{x^2}{3}+\frac{x^3}{6}+\frac{2 x}{9}\right)
\end{aligned}
Step 3: Calculate the Coefficients for e^(x+2y)e^{x+2y} Term
का गाउस-सीडल विधि द्वारा 4 सार्थक अंकों तक सही हल ज्ञात कीजिए, यह सत्यापन करने के बाद कि क्या यह विधि आपके द्वारा निकाय के रूपांतरित रूप में अनुप्रयोज्य है।
correct up to 4 significant figures by using Gauss-Seidel method after verifying whether the method is applicable in your transformed form of the system.
Answer:
We have changed the variables, to a,b,c,dotsa, b, c, \ldots for calculations.
So new equations are 3a+9b-2c=11,4a+2b+13 c=24,4a-2b+c=-83 a+9 b-2 c=11,4 a+2 b+13 c=24,4 a-2 b+c=-8
Total Equations are 3
(c) दर्शाइए कि vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2)),(lambda=\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2},(\lambda= स्थिरांक) एक संभाव्य असंपीड्य तरल गति है। धारा-रेखाएँ निकालिए। क्या गति का प्रकार विभव है? यदि हाँ, तो वेग विभव निकालिए।
Show that vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2)),(lambda=\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2},(\lambda= constant )) is a possible incompressible fluid motion. Determine the streamlines. Is the kind of the motion potential? If yes, then find the velocity potential.
Answer:
Introduction
In this problem, we are asked to show that the given velocity field vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2))\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2} with lambda\lambda as a constant represents possible incompressible fluid motion. We need to determine the streamlines and check if the motion is potential. If it is potential, we need to find the velocity potential.
Step 1: Check for Incompressibility
We know that for an incompressible fluid motion, grad* vec(q)=0\nabla \cdot \vec{q} = 0. Let’s verify this:
lambda{(2xy)/((x^(2)+y^(2))^(2))-(2xy)/((x^(2)+y^(2))^(2))}=0\lambda\left\{\frac{2 x y}{\left(x^2+y^2\right)^2}-\frac{2 x y}{\left(x^2+y^2\right)^2}\right\} = 0
Since grad* vec(q)=0\nabla \cdot \vec{q} = 0, the equation of continuity for an incompressible fluid is satisfied, indicating that it is a possible motion for an incompressible fluid.
The streamlines are circular with centers on the Z-axis, and their planes are perpendicular to the axis.
Step 3: Determine if the Motion is Potential
To check if the motion is potential, we calculate grad xx vec(q)\nabla \times \vec{q}. If grad xx vec(q)=0\nabla \times \vec{q} = 0, the motion is potential.
grad xx vec(q)=k lambda[(y^(2)-x^(2))/((x^(2)+y^(2))^(2))+(x^(2)-y^(2))/((x^(2)+y^(2))^(2))]=0\nabla \times \vec{q} = k \lambda\left[\frac{y^2-x^2}{\left(x^2+y^2\right)^2}+\frac{x^2-y^2}{\left(x^2+y^2\right)^2}\right] = 0
As grad xx vec(q)=0\nabla \times \vec{q} = 0, the flow is of a potential kind.
Step 4: Find the Velocity Potential
If the flow is potential, we can determine the velocity potential phi(x,y,z)\phi(x, y, z) such that:
Integrating f^(‘)(y)f^{\prime}(y), we obtain f(y)f(y) as a constant.
Therefore, the velocity potential phi(x,y)\phi(x, y) is given by:
phi(x,y)=lambdatan^(-1)((x)/(y))+C\phi(x, y) = \lambda \tan^{-1}\left(\frac{x}{y}\right) + C
Conclusion
The given velocity field represents possible incompressible fluid motion. The streamlines are circular with centers on the Z-axis, and the motion is of a potential kind. The velocity potential phi(x,y)\phi(x, y) is given by:
phi(x,y)=lambdatan^(-1)((x)/(y))+C\phi(x, y) = \lambda \tan^{-1}\left(\frac{x}{y}\right) + C
(a) चार्पिट विधि का उपयोग करके आंशिक अवकल समीकरण p=(z+qy)^(2)p=(z+q y)^2 का पूर्ण समाकल ज्ञात कीजिए।
Find a complete integral of the partial differential equation p=(z+qy)^(2)p=(z+q y)^2 by using Charpit’s method.
Answer:
Introduction
In this problem, we are tasked with finding a complete integral of the partial differential equation p=(z+qy)^(2)p=(z+qy)^2 using Charpit’s method.
Step 1: Formulate the Given Equation
The given equation is:
f(x,y,z,p,q)=(z+qy)^(2)-p quad(1)f(x, y, z, p, q) = (z+qy)^2 – p \quad \text{(1)}
Step 2: Charpit’s Auxiliary Equations
Charpit’s method involves deriving auxiliary equations. The auxiliary equations are:
Hence, the complete integral of the partial differential equation p=(z+qy)^(2)p=(z+qy)^2 is:
yz=ax+2sqrt(ay)+byz = ax + 2\sqrt{ay} + b
with aa and bb as arbitrary constants.
(b) न्यूटन के पश्चांतर अंतर्वेशन सूत्र की व्युत्पत्ति कीजिए तथा त्रुटि-विश्लेषण भी कीजिए।
Derive Newton’s backward difference interpolation formula and also do error analysis.
Answer:
Introduction
In this problem, we will derive Newton’s backward difference interpolation formula and conduct an error analysis.
Step 1: Formulate the Given Equation
Let y=f(x)y = f(x) be a function that takes values y_(0),y_(1),y_(2),dots,y_(n)y_0, y_1, y_2, \ldots, y_n corresponding to x_(0),x_(1),x_(2),dots,x_(n)x_0, x_1, x_2, \ldots, x_n with an interval of differencing hh.
Step 2: Define phi(x)\phi(x)
Define phi(x)\phi(x) as a polynomial of degree nn in xx that represents y=f(x)y = f(x) such that f(x_(r))=phi(x_(r))f(x_r) = \phi(x_r) for r=0,1,2,dots,nr = 0, 1, 2, \ldots, n.
Calculate the coefficients a_(0),a_(1),dots,a_(n)a_0, a_1, \ldots, a_n by matching the values of phi(x)\phi(x) and f(x)f(x) at the corresponding points:
This error term quantifies the difference between the interpolated polynomial and the actual function f(xf(x).
Conclusion
We have successfully derived Newton’s backward difference interpolation formula and conducted an error analysis to evaluate the interpolation error.
(c) दर्शाइए कि सम्मिश्र विभव tan^(-1)z\tan ^{-1} z के लिए धारा-रेखाएँ तथा समविभव वक्र, वृत्त हैं। किसी भी बिन्दु पर वेग निकालिए तथा z=+-iz=\pm i पर विचित्रता जाँचिए।
Show that for the complex potential tan^(-1)z\tan ^{-1} z, the streamlines and equipotential curves are circles. Find the velocity at any point and check the singularities at z=+-iz=\pm i.
Answer:
Introduction
In this problem, we will analyze the complex potential tan^(-1)z\tan^{-1}z and show that the streamlines and equipotential curves are circles. Additionally, we will find the velocity at any point and examine the singularities at z=+-iz = \pm i.
Step 1: Define the Complex Potential
The complex potential is given by:
w=phi+i Psi=tan^(-1)z quad(1)w = \phi + i \Psi = \tan^{-1} z \quad \text{(1)}
We will use this complex potential to derive various properties.
The equipotential curves phi=”constant”\phi = \text{constant} also represent circles, orthogonal to the streamlines Psi=”constant”\Psi = \text{constant}, forming a co-axial system. These circles have limit points at z=+-iz = \pm i, as described by equation (4).
Step 7: Find Velocity Components
The velocity components (u,v)(u, v) are calculated as:
The denominator of equation (5) vanishes at z=+-iz = \pm i, indicating singularities at these points.
Step 9: Analyze Singularities
Analyzing the singularity at z=+iz = +i:
Substitute z=i+z_(1)z = i + z_1, where |z_(1)|\left|z_1\right| is very small:
-u+iv=(dw)/(dz)=(dw)/(dz_(1))=(1)/(1+(-1+2iz_(1)))=(1)/(2iz_(1))-u+i v=\frac{\mathbf{d} w}{\mathbf{d} z}=\frac{\mathbf{d} w}{\mathbf{d} z_1}=\frac{1}{1+\left(-1+2 i z_1\right)}=\frac{1}{2 i z_1}
By integrating, we find:
w=-(1)/(2)i log z_(1)w = -\frac{1}{2}i \log z_1
This implies that the singularity at z=+iz = +i is a vortex of strength k=-(1)/(2)k = -\frac{1}{2} with circulation -pi k-\pi k.
Similarly, the singularity at z=-iz = -i is a vortex of strength k=(1)/(2)k = \frac{1}{2} with circulation pi k\pi k.
Conclusion
We have shown that for the complex potential tan^(-1)z\tan^{-1}z, the streamlines and equipotential curves are circles. We have also found the velocity at any point and examined the singularities at z=+-iz = \pm i.