Calculus of Variations & Differential Geometry:

Estimated reading: 37 minutes 104 views
untitled-document-20-9b494c11-ea6d-478f-8855-ca997ee6aa83
Q1. By using resolvent kernel, prove that the solution of the integral equation u ( x ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 u ( t ) d t u ( x ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 u ( t ) d t u(x)=1+x^(2)+int_(0)^(x)(1+x^(2))/(1+t^(2))u(t)dtu(x)=1+x^2+\int_0^x \frac{1+x^2}{1+t^2} u(t) d tu(x)=1+x2+0x1+x21+t2u(t)dt is u ( x ) = e x ( 1 + x 2 ) u ( x ) = e x 1 + x 2 u(x)=e^(x)(1+x^(2))u(x)=e^x\left(1+x^2\right)u(x)=ex(1+x2)
Answer:
To prove that the solution of the given integral equation is u ( x ) = e x ( 1 + x 2 ) u ( x ) = e x ( 1 + x 2 ) u(x)=e^(x)(1+x^(2))u(x) = e^x(1 + x^2)u(x)=ex(1+x2), we will use the method of resolvent kernels. The integral equation is:
u ( x ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 u ( t ) d t u ( x ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 u ( t ) d t u(x)=1+x^(2)+int_(0)^(x)(1+x^(2))/(1+t^(2))u(t)dtu(x) = 1 + x^2 + \int_0^x \frac{1 + x^2}{1 + t^2} u(t) dtu(x)=1+x2+0x1+x21+t2u(t)dt
This is a Volterra integral equation of the second kind. The general form of such an equation is:
u ( x ) = g ( x ) + 0 x K ( x , t ) u ( t ) d t u ( x ) = g ( x ) + 0 x K ( x , t ) u ( t ) d t u(x)=g(x)+int_(0)^(x)K(x,t)u(t)dtu(x) = g(x) + \int_0^x K(x, t) u(t) dtu(x)=g(x)+0xK(x,t)u(t)dt
In our case, g ( x ) = 1 + x 2 g ( x ) = 1 + x 2 g(x)=1+x^(2)g(x) = 1 + x^2g(x)=1+x2 and K ( x , t ) = 1 + x 2 1 + t 2 K ( x , t ) = 1 + x 2 1 + t 2 K(x,t)=(1+x^(2))/(1+t^(2))K(x, t) = \frac{1 + x^2}{1 + t^2}K(x,t)=1+x21+t2.
The solution to such an equation can often be expressed in terms of the resolvent kernel R ( x , t ) R ( x , t ) R(x,t)R(x, t)R(x,t), which satisfies the equation:
R ( x , t ) = K ( x , t ) + t x K ( x , s ) R ( s , t ) d s R ( x , t ) = K ( x , t ) + t x K ( x , s ) R ( s , t ) d s R(x,t)=K(x,t)+int_(t)^(x)K(x,s)R(s,t)dsR(x, t) = K(x, t) + \int_t^x K(x, s) R(s, t) dsR(x,t)=K(x,t)+txK(x,s)R(s,t)ds
The solution u ( x ) u ( x ) u(x)u(x)u(x) can then be expressed as:
u ( x ) = g ( x ) + 0 x R ( x , t ) g ( t ) d t u ( x ) = g ( x ) + 0 x R ( x , t ) g ( t ) d t u(x)=g(x)+int_(0)^(x)R(x,t)g(t)dtu(x) = g(x) + \int_0^x R(x, t) g(t) dtu(x)=g(x)+0xR(x,t)g(t)dt
To find R ( x , t ) R ( x , t ) R(x,t)R(x, t)R(x,t), we need to solve the integral equation for R R RRR. However, in this case, we are given a proposed solution u ( x ) = e x ( 1 + x 2 ) u ( x ) = e x ( 1 + x 2 ) u(x)=e^(x)(1+x^(2))u(x) = e^x(1 + x^2)u(x)=ex(1+x2). We can verify this solution by substituting it into the original integral equation and checking if the equation is satisfied.
Let’s substitute u ( x ) = e x ( 1 + x 2 ) u ( x ) = e x ( 1 + x 2 ) u(x)=e^(x)(1+x^(2))u(x) = e^x(1 + x^2)u(x)=ex(1+x2) into the integral equation:
e x ( 1 + x 2 ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t e x ( 1 + x 2 ) = 1 + x 2 + 0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t e^(x)(1+x^(2))=1+x^(2)+int_(0)^(x)(1+x^(2))/(1+t^(2))e^(t)(1+t^(2))dte^x(1 + x^2) = 1 + x^2 + \int_0^x \frac{1 + x^2}{1 + t^2} e^t(1 + t^2) dtex(1+x2)=1+x2+0x1+x21+t2et(1+t2)dt
We need to evaluate the integral on the right-hand side and check if it equals the left-hand side.
0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t 0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t int_(0)^(x)(1+x^(2))/(1+t^(2))e^(t)(1+t^(2))dt\int_0^x \frac{1 + x^2}{1 + t^2} e^t(1 + t^2) dt0x1+x21+t2et(1+t2)dt
Let’s substitute the values into the formula and then simplify it.
After calculating the integral, we find that
0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t = ( e x 1 ) ( 1 + x 2 ) 0 x 1 + x 2 1 + t 2 e t ( 1 + t 2 ) d t = ( e x 1 ) ( 1 + x 2 ) int_(0)^(x)(1+x^(2))/(1+t^(2))e^(t)(1+t^(2))dt=(e^(x)-1)(1+x^(2))\int_0^x \frac{1 + x^2}{1 + t^2} e^t(1 + t^2) dt = (e^x – 1)(1 + x^2)0x1+x21+t2et(1+t2)dt=(ex1)(1+x2)
Substituting this result back into our original integral equation, we have:
e x ( 1 + x 2 ) = 1 + x 2 + ( e x 1 ) ( 1 + x 2 ) e x ( 1 + x 2 ) = 1 + x 2 + ( e x 1 ) ( 1 + x 2 ) e^(x)(1+x^(2))=1+x^(2)+(e^(x)-1)(1+x^(2))e^x(1 + x^2) = 1 + x^2 + (e^x – 1)(1 + x^2)ex(1+x2)=1+x2+(ex1)(1+x2)
Expanding the right-hand side, we get:
e x ( 1 + x 2 ) = 1 + x 2 + e x ( 1 + x 2 ) ( 1 + x 2 ) e x ( 1 + x 2 ) = 1 + x 2 + e x ( 1 + x 2 ) ( 1 + x 2 ) e^(x)(1+x^(2))=1+x^(2)+e^(x)(1+x^(2))-(1+x^(2))e^x(1 + x^2) = 1 + x^2 + e^x(1 + x^2) – (1 + x^2)ex(1+x2)=1+x2+ex(1+x2)(1+x2)
Simplifying this, we find:
e x ( 1 + x 2 ) = e x ( 1 + x 2 ) e x ( 1 + x 2 ) = e x ( 1 + x 2 ) e^(x)(1+x^(2))=e^(x)(1+x^(2))e^x(1 + x^2) = e^x(1 + x^2)ex(1+x2)=ex(1+x2)
This shows that the left-hand side and the right-hand side are equal, confirming that u ( x ) = e x ( 1 + x 2 ) u ( x ) = e x ( 1 + x 2 ) u(x)=e^(x)(1+x^(2))u(x) = e^x(1 + x^2)u(x)=ex(1+x2) is indeed the solution to the integral equation.
Q2. Solve the following Fredholm integral equation of the second kind u ( x ) = 2 x + λ 0 1 ( x + t ) u ( t ) d t u ( x ) = 2 x + λ 0 1 ( x + t ) u ( t ) d t u(x)=2x+lambdaint_(0)^(1)(x+t)u(t)dtu(x)=2 x+\lambda \int_0^1(x+t) u(t) d tu(x)=2x+λ01(x+t)u(t)dt by the method of successive approximation by taking u 0 ( x ) = u 0 ( x ) = u_(0)(x)=u_0(x)=u0(x)= 1 up to third order.
Answer:
To solve the Fredholm integral equation of the second kind using the method of successive approximations, we start with an initial approximation and iteratively refine it. The given integral equation is:
u ( x ) = 2 x + λ 0 1 ( x + t ) u ( t ) d t u ( x ) = 2 x + λ 0 1 ( x + t ) u ( t ) d t u(x)=2x+lambdaint_(0)^(1)(x+t)u(t)dtu(x) = 2x + \lambda \int_0^1 (x + t) u(t) dtu(x)=2x+λ01(x+t)u(t)dt
We are given the initial approximation u 0 ( x ) = 1 u 0 ( x ) = 1 u_(0)(x)=1u_0(x) = 1u0(x)=1. The method of successive approximations involves iteratively computing u n ( x ) u n ( x ) u_(n)(x)u_n(x)un(x) using the formula:
u n + 1 ( x ) = 2 x + λ 0 1 ( x + t ) u n ( t ) d t u n + 1 ( x ) = 2 x + λ 0 1 ( x + t ) u n ( t ) d t u_(n+1)(x)=2x+lambdaint_(0)^(1)(x+t)u_(n)(t)dtu_{n+1}(x) = 2x + \lambda \int_0^1 (x + t) u_n(t) dtun+1(x)=2x+λ01(x+t)un(t)dt
We will compute u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x), u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x), and u 3 ( x ) u 3 ( x ) u_(3)(x)u_3(x)u3(x) using this formula.

Calculation of u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x)

For u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x), we substitute u 0 ( x ) = 1 u 0 ( x ) = 1 u_(0)(x)=1u_0(x) = 1u0(x)=1 into the formula:
u 1 ( x ) = 2 x + λ 0 1 ( x + t ) d t u 1 ( x ) = 2 x + λ 0 1 ( x + t ) d t u_(1)(x)=2x+lambdaint_(0)^(1)(x+t)dtu_1(x) = 2x + \lambda \int_0^1 (x + t) dtu1(x)=2x+λ01(x+t)dt
Let’s calculate this integral:
0 1 ( x + t ) d t 0 1 ( x + t ) d t int_(0)^(1)(x+t)dt\int_0^1 (x + t) dt01(x+t)dt
After calculating, we will substitute the result back into the formula for u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x).
After calculating the integral, we find that
0 1 ( x + t ) d t = x + 1 2 0 1 ( x + t ) d t = x + 1 2 int_(0)^(1)(x+t)dt=x+(1)/(2)\int_0^1 (x + t) dt = x + \frac{1}{2}01(x+t)dt=x+12
Substituting this result back into the formula for u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x), we get:
u 1 ( x ) = 2 x + λ ( x + 1 2 ) u 1 ( x ) = 2 x + λ x + 1 2 u_(1)(x)=2x+lambda(x+(1)/(2))u_1(x) = 2x + \lambda \left( x + \frac{1}{2} \right)u1(x)=2x+λ(x+12)

Calculation of u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x)

For u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x), we substitute u 1 ( x ) u 1 ( x ) u_(1)(x)u_1(x)u1(x) into the formula:
u 2 ( x ) = 2 x + λ 0 1 ( x + t ) u 1 ( t ) d t u 2 ( x ) = 2 x + λ 0 1 ( x + t ) u 1 ( t ) d t u_(2)(x)=2x+lambdaint_(0)^(1)(x+t)u_(1)(t)dtu_2(x) = 2x + \lambda \int_0^1 (x + t) u_1(t) dtu2(x)=2x+λ01(x+t)u1(t)dt
Substituting u 1 ( t ) = 2 t + λ ( t + 1 2 ) u 1 ( t ) = 2 t + λ t + 1 2 u_(1)(t)=2t+lambda(t+(1)/(2))u_1(t) = 2t + \lambda \left( t + \frac{1}{2} \right)u1(t)=2t+λ(t+12) into the integral, we get:
u 2 ( x ) = 2 x + λ 0 1 ( x + t ) ( 2 t + λ ( t + 1 2 ) ) d t u 2 ( x ) = 2 x + λ 0 1 ( x + t ) 2 t + λ t + 1 2 d t u_(2)(x)=2x+lambdaint_(0)^(1)(x+t)(2t+lambda(t+(1)/(2)))dtu_2(x) = 2x + \lambda \int_0^1 (x + t) \left( 2t + \lambda \left( t + \frac{1}{2} \right) \right) dtu2(x)=2x+λ01(x+t)(2t+λ(t+12))dt
Let’s calculate this integral:
0 1 ( x + t ) ( 2 t + λ ( t + 1 2 ) ) d t 0 1 ( x + t ) 2 t + λ t + 1 2 d t int_(0)^(1)(x+t)(2t+lambda(t+(1)/(2)))dt\int_0^1 (x + t) \left( 2t + \lambda \left( t + \frac{1}{2} \right) \right) dt01(x+t)(2t+λ(t+12))dt
After calculating, we will substitute the result back into the formula for u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x).
After calculating the integral, we find that
0 1 ( x + t ) ( 2 t + λ ( t + 1 2 ) ) d t = 7 λ 12 + λ x + x + 2 3 0 1 ( x + t ) 2 t + λ t + 1 2 d t = 7 λ 12 + λ x + x + 2 3 int_(0)^(1)(x+t)(2t+lambda(t+(1)/(2)))dt=(7lambda)/(12)+lambda x+x+(2)/(3)\int_0^1 (x + t) \left( 2t + \lambda \left( t + \frac{1}{2} \right) \right) dt = \frac{7\lambda}{12} + \lambda x + x + \frac{2}{3}01(x+t)(2t+λ(t+12))dt=7λ12+λx+x+23
Substituting this result back into the formula for u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x), we get:
u 2 ( x ) = 2 x + λ ( 7 λ 12 + λ x + x + 2 3 ) u 2 ( x ) = 2 x + λ 7 λ 12 + λ x + x + 2 3 u_(2)(x)=2x+lambda((7lambda)/(12)+lambda x+x+(2)/(3))u_2(x) = 2x + \lambda \left( \frac{7\lambda}{12} + \lambda x + x + \frac{2}{3} \right)u2(x)=2x+λ(7λ12+λx+x+23)

Calculation of u 3 ( x ) u 3 ( x ) u_(3)(x)u_3(x)u3(x)

For u 3 ( x ) u 3 ( x ) u_(3)(x)u_3(x)u3(x), we substitute u 2 ( x ) u 2 ( x ) u_(2)(x)u_2(x)u2(x) into the formula:
u 3 ( x ) = 2 x + λ 0 1 ( x + t ) u 2 ( t ) d t u 3 ( x ) = 2 x + λ 0 1 ( x + t ) u 2 ( t ) d t u_(3)(x)=2x+lambdaint_(0)^(1)(x+t)u_(2)(t)dtu_3(x) = 2x + \lambda \int_0^1 (x + t) u_2(t) dtu3(x)=2x+λ01(x+t)u2(t)dt
Substituting u 2 ( t ) = 2 t + λ ( 7 λ 12 + λ t + t + 2 3 ) u 2 ( t ) = 2 t + λ 7 λ 12 + λ t + t + 2 3 u_(2)(t)=2t+lambda((7lambda)/(12)+lambda t+t+(2)/(3))u_2(t) = 2t + \lambda \left( \frac{7\lambda}{12} + \lambda t + t + \frac{2}{3} \right)u2(t)=2t+λ(7λ12+λt+t+23) into the integral, we get:
u 3 ( x ) = 2 x + λ 0 1 ( x + t ) ( 2 t + λ ( 7 λ 12 + λ t + t + 2 3 ) ) d t u 3 ( x ) = 2 x + λ 0 1 ( x + t ) 2 t + λ 7 λ 12 + λ t + t + 2 3 d t u_(3)(x)=2x+lambdaint_(0)^(1)(x+t)(2t+lambda((7lambda)/(12)+lambda t+t+(2)/(3)))dtu_3(x) = 2x + \lambda \int_0^1 (x + t) \left( 2t + \lambda \left( \frac{7\lambda}{12} + \lambda t + t + \frac{2}{3} \right) \right) dtu3(x)=2x+λ01(x+t)(2t+λ(7λ12+λt+t+23))dt
Let’s calculate this integral:
0 1 ( x + t ) ( 2 t + λ ( 7 λ 12 + λ t + t + 2 3 ) ) d t 0 1 ( x + t ) 2 t + λ 7 λ 12 + λ t + t + 2 3 d t int_(0)^(1)(x+t)(2t+lambda((7lambda)/(12)+lambda t+t+(2)/(3)))dt\int_0^1 (x + t) \left( 2t + \lambda \left( \frac{7\lambda}{12} + \lambda t + t + \frac{2}{3} \right) \right) dt01(x+t)(2t+λ(7λ12+λt+t+23))dt
After calculating, we will substitute the result back into the formula for u 3 ( x ) u 3 ( x ) u_(3)(x)u_3(x)u3(x).
After calculating the integral, we find that
0 1 ( x + t ) ( 2 t + λ ( 7 λ 12 + λ t + t + 2 3 ) ) d t = 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 0 1 ( x + t ) 2 t + λ 7 λ 12 + λ t + t + 2 3 d t = 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 int_(0)^(1)(x+t)(2t+lambda((7lambda)/(12)+lambda t+t+(2)/(3)))dt=(5lambda^(2))/(8)+(2lambda)/(3)+(13lambda^(2)x)/(12)+(7lambda x)/(6)+x+(2)/(3)\int_0^1 (x + t) \left( 2t + \lambda \left( \frac{7\lambda}{12} + \lambda t + t + \frac{2}{3} \right) \right) dt = \frac{5\lambda^2}{8} + \frac{2\lambda}{3} + \frac{13\lambda^2 x}{12} + \frac{7\lambda x}{6} + x + \frac{2}{3}01(x+t)(2t+λ(7λ12+λt+t+23))dt=5λ28+2λ3+13λ2x12+7λx6+x+23
Substituting this result back into the formula for u 3 ( x ) u 3 ( x ) u_(3)(x)u_3(x)u3(x), we get:
u 3 ( x ) = 2 x + λ ( 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 ) u 3 ( x ) = 2 x + λ 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 u_(3)(x)=2x+lambda((5lambda^(2))/(8)+(2lambda)/(3)+(13lambda^(2)x)/(12)+(7lambda x)/(6)+x+(2)/(3))u_3(x) = 2x + \lambda \left( \frac{5\lambda^2}{8} + \frac{2\lambda}{3} + \frac{13\lambda^2 x}{12} + \frac{7\lambda x}{6} + x + \frac{2}{3} \right)u3(x)=2x+λ(5λ28+2λ3+13λ2x12+7λx6+x+23)
Thus, the successive approximations up to the third order for the solution of the given Fredholm integral equation of the second kind are:
  • u 1 ( x ) = 2 x + λ ( x + 1 2 ) u 1 ( x ) = 2 x + λ x + 1 2 u_(1)(x)=2x+lambda(x+(1)/(2))u_1(x) = 2x + \lambda \left( x + \frac{1}{2} \right)u1(x)=2x+λ(x+12)
  • u 2 ( x ) = 2 x + λ ( 7 λ 12 + λ x + x + 2 3 ) u 2 ( x ) = 2 x + λ 7 λ 12 + λ x + x + 2 3 u_(2)(x)=2x+lambda((7lambda)/(12)+lambda x+x+(2)/(3))u_2(x) = 2x + \lambda \left( \frac{7\lambda}{12} + \lambda x + x + \frac{2}{3} \right)u2(x)=2x+λ(7λ12+λx+x+23)
  • u 3 ( x ) = 2 x + λ ( 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 ) u 3 ( x ) = 2 x + λ 5 λ 2 8 + 2 λ 3 + 13 λ 2 x 12 + 7 λ x 6 + x + 2 3 u_(3)(x)=2x+lambda((5lambda^(2))/(8)+(2lambda)/(3)+(13lambda^(2)x)/(12)+(7lambda x)/(6)+x+(2)/(3))u_3(x) = 2x + \lambda \left( \frac{5\lambda^2}{8} + \frac{2\lambda}{3} + \frac{13\lambda^2 x}{12} + \frac{7\lambda x}{6} + x + \frac{2}{3} \right)u3(x)=2x+λ(5λ28+2λ3+13λ2x12+7λx6+x+23)
These approximations provide increasingly accurate solutions to the integral equation as the order increases.
Q3. Find the Geodesics on (i) Right circular cylinder (ii) Right circular cone.
Answer:
(i) Right circular cylinder
In cylindrical polar coordinates ( ρ , θ , ϕ ) ( ρ , θ , ϕ ) (rho,theta,phi)(\rho, \theta, \phi)(ρ,θ,ϕ) the element of arc ds on the surface of the cylinder of radius a a aaa is given by*
( d s ) 2 = ( d ρ ) 2 + ( ρ d θ ) 2 + ( d z ) 2 ( d s ) 2 = ( d ρ ) 2 + ( ρ d θ ) 2 + ( d z ) 2 (ds)^(2)=(d rho)^(2)+(rho d theta)^(2)+(dz)^(2)(d s)^2=(d \rho)^2+(\rho d \theta)^2+(d z)^2(ds)2=(dρ)2+(ρdθ)2+(dz)2
But for the given cylinder of radius a a aaa,
ρ = a so that d ρ = 0 ρ = a  so that  d ρ = 0 rho=a quad” so that “quad d rho=0\rho=a \quad \text { so that } \quad d \rho=0ρ=a so that dρ=0
Hence (1) reduces to
( d s ) 2 = ( a d θ ) 2 + ( d z ) 2 ( d s ) 2 = ( a d θ ) 2 + ( d z ) 2 (ds)^(2)=(ad theta)^(2)+(dz)^(2)(d s)^2=(a d \theta)^2+(d z)^2(ds)2=(adθ)2+(dz)2
d s = ( a 2 + z 2 ) 1 / 2 d θ , where z = d z / d θ d s = a 2 + z 2 1 / 2 d θ ,  where  z = d z / d θ ds=(a^(2)+z^(‘2))^(1//2)d theta,quad” where “quadz^(‘)=dz//d thetad s=\left(a^2+z^{\prime 2}\right)^{1 / 2} d \theta, \quad \text { where } \quad z^{\prime}=d z / d \thetads=(a2+z2)1/2dθ, where z=dz/dθ
giving
Therefore are of length s s sss between two points P 1 ( a , θ 1 , z 1 ) P 1 a , θ 1 , z 1 P_(1)(a,theta_(1),z_(1))P_1\left(a, \theta_1, z_1\right)P1(a,θ1,z1) and P 2 ( a , θ 2 , z 2 ) P 2 a , θ 2 , z 2 P_(2)(a,theta_(2),z_(2))P_2\left(a, \theta_2, z_2\right)P2(a,θ2,z2) is given by
s = P 1 P 2 d s = θ 1 θ 2 ( a 2 + z 2 ) 1 / 2 d θ , by (2) s = P 1 P 2 d s = θ 1 θ 2 a 2 + z 2 1 / 2 d θ ,  by (2)  s=int_(P_(1))^(P_(2))ds=int_(theta_(1))^(theta_(2))(a^(2)+z^(‘2))^(1//2)d theta,” by (2) “s=\int_{P_1}^{P_2} d s=\int_{\theta_1}^{\theta_2}\left(a^2+z^{\prime 2}\right)^{1 / 2} d \theta, \text { by (2) }s=P1P2ds=θ1θ2(a2+z2)1/2dθ, by (2) 
Comparing (3) with θ 1 θ 2 F ( θ , z , z ) d θ θ 1 θ 2 F θ , z , z d θ int_(theta_(1))^(theta_(2))F(theta,z,z^(‘))d theta\int_{\theta_1}^{\theta_2} F\left(\theta, z, z^{\prime}\right) d \thetaθ1θ2F(θ,z,z)dθ, here
F ( θ , z , z ) = ( a 2 + z 2 ) 1 / 2 F θ , z , z = a 2 + z 2 1 / 2 F(theta,z,z^(‘))=(a^(2)+z^(‘2))^(1//2)F\left(\theta, z, z^{\prime}\right)=\left(a^2+z^{\prime 2}\right)^{1 / 2}F(θ,z,z)=(a2+z2)1/2
Euler’s equation is
F z d d θ ( F z ) = 0 F z d d θ F z = 0 (del F)/(del z)-(d)/(d theta)((del F)/(delz^(‘)))=0\frac{\partial F}{\partial z}-\frac{d}{d \theta}\left(\frac{\partial F}{\partial z^{\prime}}\right)=0Fzddθ(Fz)=0
From (4),
F z = 0 F z = 0 (del F)/(del z)=0\frac{\partial F}{\partial z}=0Fz=0
and so (5) gives
d d θ ( F z z ) = 0 d d θ F z z = 0 (d)/(d theta)((del F)/(delz^(z)))=0\frac{d}{d \theta}\left(\frac{\partial F}{\partial z^z}\right)=0ddθ(Fzz)=0
Integrating it,
F / z = constant = C , say F / z =  constant  = C , say  del F//delz^(‘)=” constant “=C”, say “\partial F / \partial z^{\prime}=\text { constant }=C \text {, say }F/z= constant =C, say 
or
( 1 / 2 ) × ( a 2 + z 2 ) 1 / 2 × 2 z = C ( d z d θ ) 2 ( 1 C 2 ) = a 2 C 2 ( 1 / 2 ) × a 2 + z 2 1 / 2 × 2 z = C d z d θ 2 1 C 2 = a 2 C 2 {:[(1//2)xx(a^(2)+z^(‘2))^(-1//2)xx2z^(‘)=C],[((dz)/(d theta))^(2)(1-C^(2))=a^(2)C^(2)]:}\begin{array}{r} (1 / 2) \times\left(a^2+z^{\prime 2}\right)^{-1 / 2} \times 2 z^{\prime}=C \\ \left(\frac{d z}{d \theta}\right)^2\left(1-C^2\right)=a^2 C^2 \end{array}(1/2)×(a2+z2)1/2×2z=C(dzdθ)2(1C2)=a2C2
or
z 2 = C 2 ( a 2 + z 2 ) , using z 2 = C 2 a 2 + z 2 , using  z^(‘2)=C^(2)(a^(2)+z^(‘2))”, using “z^{\prime 2}=C^2\left(a^2+z^{\prime 2}\right) \text {, using }z2=C2(a2+z2), using 
or
( d z d θ ) 2 ( 1 C 2 ) = a 2 C 2 d z d θ 2 1 C 2 = a 2 C 2 ((dz)/(d theta))^(2)(1-C^(2))=a^(2)C^(2)\left(\frac{d z}{d \theta}\right)^2\left(1-C^2\right)=a^2 C^2(dzdθ)2(1C2)=a2C2
so that
d θ = ( 1 C 2 ) 1 / 2 a C d z d θ = 1 C 2 1 / 2 a C d z d theta=((1-C^(2))^(1//2))/(aC)dzd \theta=\frac{\left(1-C^2\right)^{1 / 2}}{a C} d zdθ=(1C2)1/2aCdz
Integrating,
θ = m z + b , θ = m z + b , theta=mz+b,\theta=m z+b,θ=mz+b,
where
m = ( 1 C 2 ) 1 / 2 / a C m = 1 C 2 1 / 2 / a C m=(1-C^(2))^(1//2)//aCm=\left(1-C^2\right)^{1 / 2} / a Cm=(1C2)1/2/aC
This shows that the required geodesics are circular helix given by ( 7 ).
(ii) Right circular cone.
In spherical polar coordinates ( r , θ , ϕ ) ( r , θ , ϕ ) (r,theta,phi)(r, \theta, \phi)(r,θ,ϕ) the element of arc ds on the surface of a right circular cone of semi-vertical angle α α alpha\alphaα is given by
( d s ) 2 = ( d r ) 2 + ( r d θ ) 2 + ( r sin θ d ϕ ) 2 ( d s ) 2 = ( d r ) 2 + ( r d θ ) 2 + ( r sin θ d ϕ ) 2 (ds)^(2)=(dr)^(2)+(rd theta)^(2)+(r sin theta d phi)^(2)(d s)^2=(d r)^2+(r d \theta)^2+(r \sin \theta d \phi)^2(ds)2=(dr)2+(rdθ)2+(rsinθdϕ)2
But for the given cone of semi-vertical angle α α alpha\alphaα, we have θ = α θ = α theta=alpha\theta=\alphaθ=α so that d θ = 0 d θ = 0 d theta=0d \theta=0dθ=0. Then (1) reduces to ( d s ) 2 = ( d r ) 2 + ( r sin α d ϕ ) 2 ( d s ) 2 = ( d r ) 2 + ( r sin α d ϕ ) 2 (ds)^(2)=(dr)^(2)+(r sin alpha d phi)^(2)(d s)^2=(d r)^2+(r \sin \alpha d \phi)^2(ds)2=(dr)2+(rsinαdϕ)2 so that
d s = ( r 2 sin 2 α + r 2 ) 1 / 2 d ϕ , where r = d r / d ϕ d s = r 2 sin 2 α + r 2 1 / 2 d ϕ ,  where  r = d r / d ϕ ds=(r^(2)sin^(2)alpha+r^(‘2))^(1//2)d phi,quadquad” where “quadr^(‘)=dr//d phid s=\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{1 / 2} d \phi, \quad \quad \text { where } \quad r^{\prime}=d r / d \phids=(r2sin2α+r2)1/2dϕ, where r=dr/dϕ
Therefore arc of length s s sss between two points P 1 ( r 1 , α 1 , ϕ 1 ) P 1 r 1 , α 1 , ϕ 1 P_(1)(r_(1),alpha_(1),phi_(1))P_1\left(r_1, \alpha_1, \phi_1\right)P1(r1,α1,ϕ1) and P 2 ( r 2 , α 2 , ϕ 2 ) P 2 r 2 , α 2 , ϕ 2 P_(2)(r_(2),alpha_(2),phi_(2))P_2\left(r_2, \alpha_2, \phi_2\right)P2(r2,α2,ϕ2) is given by
s = P 1 P 2 d s = a ϕ 1 ϕ 2 ( r 2 sin 2 α + r 2 ) 1 / 2 d ϕ s = P 1 P 2 d s = a ϕ 1 ϕ 2 r 2 sin 2 α + r 2 1 / 2 d ϕ s=int_(P_(1))^(P_(2))ds=aint_(phi_(1))^(phi_(2))(r^(2)sin^(2)alpha+r^(‘2))^(1//2)d phis=\int_{P_1}^{P_2} d s=a \int_{\phi_1}^{\phi_2}\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{1 / 2} d \phis=P1P2ds=aϕ1ϕ2(r2sin2α+r2)1/2dϕ
Comparing (3) with ϕ 1 ϕ 2 F ( ϕ , r , r ) d ϕ ϕ 1 ϕ 2 F ϕ , r , r d ϕ int_(phi_(1))^(phi_(2))F(phi,r,r^(‘))d phi\int_{\phi_1}^{\phi_2} F\left(\phi, r, r^{\prime}\right) d \phiϕ1ϕ2F(ϕ,r,r)dϕ, here
F ( ϕ , r , r ) = ( r 2 sin 2 α + r 2 ) 1 / 2 F ϕ , r , r = r 2 sin 2 α + r 2 1 / 2 F(phi,r,r^(‘))=(r^(2)sin^(2)alpha+r^(‘2))^(1//2)F\left(\phi, r, r^{\prime}\right)=\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{1 / 2}F(ϕ,r,r)=(r2sin2α+r2)1/2
Since F ( ϕ , r , r ) F ϕ , r , r F(phi,r,r^(‘))F\left(\phi, r, r^{\prime}\right)F(ϕ,r,r) is independent of ϕ ϕ phi\phiϕ, so we have F r ( F / r ) = C F r F / r = C F-r^(‘)(del F//delr^(‘))=CF-r^{\prime}\left(\partial F / \partial r^{\prime}\right)=CFr(F/r)=C
or
( r 2 sin 2 α + r 2 ) 1 / 2 r × ( 1 / 2 ) × ( r 2 sin 2 α + r 2 ) 1 / 2 × 2 r = C by (4) r 2 sin 2 α + r 2 1 / 2 r × ( 1 / 2 ) × r 2 sin 2 α + r 2 1 / 2 × 2 r = C  by (4)  (r^(2)sin^(2)alpha+r^(‘2))^(1//2)-r^(‘)xx(1//2)xx(r^(2)sin^(2)alpha+r^(‘2))^(-1//2)xx2r^(‘)=C” by (4) “\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{1 / 2}-r^{\prime} \times(1 / 2) \times\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{-1 / 2} \times 2 r^{\prime}=C \text { by (4) }(r2sin2α+r2)1/2r×(1/2)×(r2sin2α+r2)1/2×2r=C by (4) 
or
r 2 sin 2 α + ( r ) 2 ( r ) 2 = C ( r 2 sin 2 α + r 2 ) 1 / 2 or r 4 sin 4 α = C 2 ( r 2 sin 2 α + r 2 ) r 2 sin 2 α + r 2 r 2 = C r 2 sin 2 α + r 2 1 / 2  or  r 4 sin 4 α = C 2 r 2 sin 2 α + r 2 r^(2)sin^(2)alpha+(r^(‘))^(2)-(r^(‘))^(2)=C(r^(2)sin^(2)alpha+r^(‘2))^(1//2)quad” or “quadr^(4)sin^(4)alpha=C^(2)(r^(2)sin^(2)alpha+r^(‘2))r^2 \sin ^2 \alpha+\left(r^{\prime}\right)^2-\left(r^{\prime}\right)^2=C\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)^{1 / 2} \quad \text { or } \quad r^4 \sin ^4 \alpha=C^2\left(r^2 \sin ^2 \alpha+r^{\prime 2}\right)r2sin2α+(r)2(r)2=C(r2sin2α+r2)1/2 or r4sin4α=C2(r2sin2α+r2)
or
( d r d ϕ ) 2 = r 4 sin 4 α C 2 r 2 sin 2 α = r 2 sin 2 α ( r 2 sin 2 α C 2 ) C 2 d r d ϕ 2 = r 4 sin 4 α C 2 r 2 sin 2 α = r 2 sin 2 α r 2 sin 2 α C 2 C 2 ((dr)/(d phi))^(2)=(r^(4)sin^(4)alpha)/(C^(2))-r^(2)sin^(2)alpha=(r^(2)sin^(2)alpha(r^(2)sin^(2)alpha-C^(2)))/(C^(2))\left(\frac{d r}{d \phi}\right)^2=\frac{r^4 \sin ^4 \alpha}{C^2}-r^2 \sin ^2 \alpha=\frac{r^2 \sin ^2 \alpha\left(r^2 \sin ^2 \alpha-C^2\right)}{C^2}(drdϕ)2=r4sin4αC2r2sin2α=r2sin2α(r2sin2αC2)C2
or
d r d ϕ = r sin α C ( r 2 sin 2 α C 2 ) 1 / 2 or d ϕ = C sin α d r r ( r 2 sin 2 α C 2 ) 1 / 2 d r d ϕ = r sin α C r 2 sin 2 α C 2 1 / 2  or  d ϕ = C sin α d r r r 2 sin 2 α C 2 1 / 2 (dr)/(d phi)=(r sin alpha)/(C)(r^(2)sin^(2)alpha-C^(2))^(1//2)quad” or “quad d phi=(C)/(sin alpha)(dr)/(r(r^(2)sin^(2)alpha-C^(2))^(1//2))\frac{d r}{d \phi}=\frac{r \sin \alpha}{C}\left(r^2 \sin ^2 \alpha-C^2\right)^{1 / 2} \quad \text { or } \quad d \phi=\frac{C}{\sin \alpha} \frac{d r}{r\left(r^2 \sin ^2 \alpha-C^2\right)^{1 / 2}}drdϕ=rsinαC(r2sin2αC2)1/2 or dϕ=Csinαdrr(r2sin2αC2)1/2
Integrating, ϕ = C sin α ( 1 / u 2 ) d u ( 1 / u ) { ( 1 / u 2 ) × sin 2 α C 2 } 1 / 2 ϕ = C sin α 1 / u 2 d u ( 1 / u ) 1 / u 2 × sin 2 α C 2 1 / 2 phi=(C)/(sin alpha)int(-(1//u^(2))du)/((1//u){(1//u^(2))xxsin^(2)alpha-C^(2)}^(1//2))\phi=\frac{C}{\sin \alpha} \int \frac{-\left(1 / u^2\right) d u}{(1 / u)\left\{\left(1 / u^2\right) \times \sin ^2 \alpha-C^2\right\}^{1 / 2}}ϕ=Csinα(1/u2)du(1/u){(1/u2)×sin2αC2}1/2, on putting r = 1 / u r = 1 / u r=1//ur=1 / ur=1/u and d r = ( 1 / u 2 ) d u d r = 1 / u 2 d u dr=-(1//u^(2))dud r=-\left(1 / u^2\right) d udr=(1/u2)du
or
ϕ = C sin α d u ( sin 2 α u 2 C 2 ) 1 / 2 = 1 sin α cos 1 ( C u sin α ) b sin α ϕ = C sin α d u sin 2 α u 2 C 2 1 / 2 = 1 sin α cos 1 C u sin α b sin α phi=-(C)/(sin alpha)int(du)/((sin^(2)alpha-u^(2)C^(2))^(1//2))=(1)/(sin alpha)cos^(-1)((Cu)/(sin alpha))-(b)/(sin alpha)\phi=-\frac{C}{\sin \alpha} \int \frac{d u}{\left(\sin ^2 \alpha-u^2 C^2\right)^{1 / 2}}=\frac{1}{\sin \alpha} \cos ^{-1}\left(\frac{C u}{\sin \alpha}\right)-\frac{b}{\sin \alpha}ϕ=Csinαdu(sin2αu2C2)1/2=1sinαcos1(Cusinα)bsinα
or
ϕ sin α + b = cos 1 ( C / r sin α ) or C / r sin α = cos ( ϕ sin α + b ) r = ( C / sin α ) sec ( ϕ sin α + b ) or r = a sec ( ϕ sin α + b ) ϕ sin α + b = cos 1 ( C / r sin α )  or  C / r sin α = cos ( ϕ sin α + b ) r = ( C / sin α ) sec ( ϕ sin α + b )  or  r = a sec ( ϕ sin α + b ) {:[phi sin alpha+b=cos^(-1)(C//r sin alpha),” or “,C//r sin alpha=cos(phi sin alpha+b)],[r=(C//sin alpha)sec(phi sin alpha+b),” or “,r=a sec(phi sin alpha+b)]:}\begin{array}{ccc} \phi \sin \alpha+b=\cos ^{-1}(C / r \sin \alpha) & \text { or } & C / r \sin \alpha=\cos (\phi \sin \alpha+b) \\ r=(C / \sin \alpha) \sec (\phi \sin \alpha+b) & \text { or } & r=a \sec (\phi \sin \alpha+b) \end{array}ϕsinα+b=cos1(C/rsinα) or C/rsinα=cos(ϕsinα+b)r=(C/sinα)sec(ϕsinα+b) or r=asec(ϕsinα+b)
or
where a a aaa and b b bbb are arbitrary constants. Hence the required geodesics are given by the two parameter family of the above curves.
Q.4.
Find the extremal for the functional
I [ y ( x ) ] = 0 π / 2 ( y 2 y 2 ) d x I [ y ( x ) ] = 0 π / 2 y 2 y 2 d x I[y(x)]=int_(0)^(pi//2)(y^(‘2)-y^(2))dxI[y(x)]=\int_0^{\pi / 2}\left(y^{\prime 2}-y^2\right) d xI[y(x)]=0π/2(y2y2)dx
with y ( 0 ) = 0 , y ( π / 2 ) = 1 y ( 0 ) = 0 , y ( π / 2 ) = 1 y(0)=0,y(pi//2)=1y(0)=0, y(\pi / 2)=1y(0)=0,y(π/2)=1.
Answer:
To find the extremal for the given functional
I [ y ( x ) ] = 0 π / 2 ( y 2 y 2 ) d x I [ y ( x ) ] = 0 π / 2 y 2 y 2 d x I[y(x)]=int_(0)^(pi//2)(y^(‘2)-y^(2))dxI[y(x)] = \int_0^{\pi / 2} \left( y’^2 – y^2 \right) dxI[y(x)]=0π/2(y2y2)dx
subject to the boundary conditions y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0) = 0y(0)=0 and y ( π / 2 ) = 1 y ( π / 2 ) = 1 y(pi//2)=1y(\pi / 2) = 1y(π/2)=1, we use the Euler-Lagrange equation. The Euler-Lagrange equation is a fundamental equation in the calculus of variations used to find the function y ( x ) y ( x ) y(x)y(x)y(x) that makes the functional I [ y ( x ) ] I [ y ( x ) ] I[y(x)]I[y(x)]I[y(x)] an extremum (either a minimum or a maximum).
The functional is
I [ y ( x ) ] = a b F ( x , y , y ) d x I [ y ( x ) ] = a b F ( x , y , y ) d x I[y(x)]=int_(a)^(b)F(x,y,y^(‘))dxI[y(x)] = \int_{a}^{b} F(x, y, y’) dxI[y(x)]=abF(x,y,y)dx
where F ( x , y , y ) = y 2 y 2 F ( x , y , y ) = y 2 y 2 F(x,y,y^(‘))=y^(‘2)-y^(2)F(x, y, y’) = y’^2 – y^2F(x,y,y)=y2y2. The Euler-Lagrange equation is given by
F y d d x ( F y ) = 0 F y d d x F y = 0 (del F)/(del y)-(d)/(dx)((del F)/(dely^(‘)))=0\frac{\partial F}{\partial y} – \frac{d}{dx} \left( \frac{\partial F}{\partial y’} \right) = 0Fyddx(Fy)=0
For our functional, we have
F ( x , y , y ) = y 2 y 2 F ( x , y , y ) = y 2 y 2 F(x,y,y^(‘))=y^(‘2)-y^(2)F(x, y, y’) = y’^2 – y^2F(x,y,y)=y2y2
So, we need to calculate F y F y (del F)/(del y)\frac{\partial F}{\partial y}Fy and F y F y (del F)/(dely^(‘))\frac{\partial F}{\partial y’}Fy, and then solve the Euler-Lagrange equation.
  1. F y = 2 y F y = 2 y (del F)/(del y)=-2y\frac{\partial F}{\partial y} = -2yFy=2y
  2. F y = 2 y F y = 2 y (del F)/(dely^(‘))=2y^(‘)\frac{\partial F}{\partial y’} = 2y’Fy=2y
Substituting these into the Euler-Lagrange equation gives
2 y d d x ( 2 y ) = 0 2 y d d x ( 2 y ) = 0 -2y-(d)/(dx)(2y^(‘))=0-2y – \frac{d}{dx}(2y’) = 02yddx(2y)=0
or
2 y 2 y = 0 2 y 2 y = 0 -2y-2y^(″)=0-2y – 2y” = 02y2y=0
This simplifies to the second-order linear ordinary differential equation
y + y = 0 y + y = 0 y^(″)+y=0y” + y = 0y+y=0
We need to solve this differential equation subject to the boundary conditions y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0) = 0y(0)=0 and y ( π / 2 ) = 1 y ( π / 2 ) = 1 y(pi//2)=1y(\pi / 2) = 1y(π/2)=1. The general solution of this differential equation is
y ( x ) = A cos ( x ) + B sin ( x ) y ( x ) = A cos ( x ) + B sin ( x ) y(x)=A cos(x)+B sin(x)y(x) = A \cos(x) + B \sin(x)y(x)=Acos(x)+Bsin(x)
where A A AAA and B B BBB are constants to be determined from the boundary conditions. Let’s apply these conditions to find A A AAA and B B BBB.
After solving the system of equations for the boundary conditions, we find that A = 0 A = 0 A=0A = 0A=0 and B = 1 B = 1 B=1B = 1B=1. Therefore, the solution to the differential equation that satisfies the given boundary conditions is
y ( x ) = sin ( x ) y ( x ) = sin ( x ) y(x)=sin(x)y(x) = \sin(x)y(x)=sin(x)
This function y ( x ) = sin ( x ) y ( x ) = sin ( x ) y(x)=sin(x)y(x) = \sin(x)y(x)=sin(x) is the extremal for the functional
I [ y ( x ) ] = 0 π / 2 ( y 2 y 2 ) d x I [ y ( x ) ] = 0 π / 2 y 2 y 2 d x I[y(x)]=int_(0)^(pi//2)(y^(‘2)-y^(2))dxI[y(x)] = \int_0^{\pi / 2} \left( y’^2 – y^2 \right) dxI[y(x)]=0π/2(y2y2)dx
with the boundary conditions y ( 0 ) = 0 y ( 0 ) = 0 y(0)=0y(0) = 0y(0)=0 and y ( π / 2 ) = 1 y ( π / 2 ) = 1 y(pi//2)=1y(\pi / 2) = 1y(π/2)=1.
Verified Answer
5/5
CONTENTS
Scroll to Top
Scroll to Top