2010

Estimated reading: 65 minutes 98 views

UPSC Algebra

\(2\:sin\:\theta \:cos\:\phi =sin\:\left(\theta +\phi \right)+sin\:\left(\theta -\phi \right)\)

1(a) Let \(G=\mathbb{I}-\{-1\}\) be the set of all real numbers omitting \(-1\). Define the binary relation \(*\) on \(G\) by \(a * b=a+b+a b\). Show \((G, *)\) is a group and it is abelian.

Expert Answer
upsc-algebra-2bd23ae3-3e62-420b-a4ae-2e7475b0ac9e
To show that ( G , ) ( G , ) (G,**)(G, *)(G,) is a group, we need to verify the following group axioms:
  1. Closure under ***
For any a , b G a , b G a,b in Ga, b \in Ga,bG, a b = a + b + a b a b = a + b + a b a**b=a+b+aba * b = a + b + abab=a+b+ab is also a real number. However, we need to ensure that a b 1 a b 1 a**b!=-1a * b \neq -1ab1.
If a b = 1 a b = 1 a**b=-1a * b = -1ab=1, then a + b + a b = 1 a + b + a b = 1 a+b+ab=-1a + b + ab = -1a+b+ab=1, which simplifies to a b + a + b + 1 = 0 a b + a + b + 1 = 0 ab+a+b+1=0ab + a + b + 1 = 0ab+a+b+1=0 or ( a + 1 ) ( b + 1 ) = 0 ( a + 1 ) ( b + 1 ) = 0 (a+1)(b+1)=0(a + 1)(b + 1) = 0(a+1)(b+1)=0.
Since a , b G a , b G a,b in Ga, b \in Ga,bG, a 1 a 1 a!=-1a \neq -1a1 and b 1 b 1 b!=-1b \neq -1b1, so a + 1 0 a + 1 0 a+1!=0a + 1 \neq 0a+10 and b + 1 0 b + 1 0 b+1!=0b + 1 \neq 0b+10. Therefore, a b 1 a b 1 a**b!=-1a * b \neq -1ab1, and G G GGG is closed under ***.
  1. Associativity
For any a , b , c G a , b , c G a,b,c in Ga, b, c \in Ga,b,cG,
( a b ) c = ( a + b + a b ) c = a + b + a b + c + ( a + b + a b ) c = a + b + c + a b + a c + b c + a b c ( a b ) c = ( a + b + a b ) c = a + b + a b + c + ( a + b + a b ) c = a + b + c + a b + a c + b c + a b c (a**b)**c=(a+b+ab)**c=a+b+ab+c+(a+b+ab)c=a+b+c+ab+ac+bc+abc(a * b) * c = (a + b + ab) * c = a + b + ab + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc(ab)c=(a+b+ab)c=a+b+ab+c+(a+b+ab)c=a+b+c+ab+ac+bc+abc
a ( b c ) = a ( b + c + b c ) = a + b + c + b c + a ( b + c + b c ) = a + b + c + a b + a c + b c + a b c a ( b c ) = a ( b + c + b c ) = a + b + c + b c + a ( b + c + b c ) = a + b + c + a b + a c + b c + a b c a**(b**c)=a**(b+c+bc)=a+b+c+bc+a(b+c+bc)=a+b+c+ab+ac+bc+abca * (b * c) = a * (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + ab + ac + bc + abca(bc)=a(b+c+bc)=a+b+c+bc+a(b+c+bc)=a+b+c+ab+ac+bc+abc
Since ( a b ) c = a ( b c ) ( a b ) c = a ( b c ) (a**b)**c=a**(b**c)(a * b) * c = a * (b * c)(ab)c=a(bc), the operation *** is associative.
  1. Existence of Identity Element
We need to find an element e G e G e in Ge \in GeG such that for any a G a G a in Ga \in GaG, a e = a a e = a a**e=aa * e = aae=a.
Let a e = a a e = a a**e=aa * e = aae=a, then a + e + a e = a a + e + a e = a a+e+ae=aa + e + ae = aa+e+ae=a, which simplifies to e + a e = 0 e + a e = 0 e+ae=0e + ae = 0e+ae=0 or e ( 1 + a ) = 0 e ( 1 + a ) = 0 e(1+a)=0e(1 + a) = 0e(1+a)=0.
Since a 1 a 1 a!=-1a \neq -1a1, 1 + a 0 1 + a 0 1+a!=01 + a \neq 01+a0, and therefore e = 0 e = 0 e=0e = 0e=0.
  1. Existence of Inverse Element
For each a G a G a in Ga \in GaG, we need to find an element a 1 G a 1 G a^(-1)in Ga^{-1} \in Ga1G such that a a 1 = e a a 1 = e a**a^(-1)=ea * a^{-1} = eaa1=e.
Let a a 1 = e a a 1 = e a**a^(-1)=ea * a^{-1} = eaa1=e, then a + a 1 + a a 1 = 0 a + a 1 + a a 1 = 0 a+a^(-1)+aa^(-1)=0a + a^{-1} + aa^{-1} = 0a+a1+aa1=0, which simplifies to a 1 ( 1 + a ) = a a 1 ( 1 + a ) = a a^(-1)(1+a)=-aa^{-1}(1 + a) = -aa1(1+a)=a.
Since a 1 a 1 a!=-1a \neq -1a1, 1 + a 0 1 + a 0 1+a!=01 + a \neq 01+a0, and therefore a 1 = a a + 1 a 1 = a a + 1 a^(-1)=-(a)/(a+1)a^{-1} = -\frac{a}{a + 1}a1=aa+1.
  1. Commutativity
For any a , b G a , b G a,b in Ga, b \in Ga,bG,
a b = a + b + a b = b + a + b a = b a a b = a + b + a b = b + a + b a = b a a**b=a+b+ab=b+a+ba=b**aa * b = a + b + ab = b + a + ba = b * aab=a+b+ab=b+a+ba=ba
Since a b = b a a b = b a a**b=b**aa * b = b * aab=ba, ( G , ) ( G , ) (G,**)(G, *)(G,) is abelian.
Conclusion
Since all these properties are satisfied, ( G , ) ( G , ) (G,**)(G, *)(G,) is an abelian group.
Verified Answer
5/5
\(cos\left(\theta +\phi \right)=cos\:\theta \:cos\:\phi -sin\:\theta \:sin\:\phi \)
\(\sec ^2 \theta=1+\tan ^2 \theta\)

1(b) Show that a cyclic group of order 6 is isomorphic to the product of a cyclic group of order 2 and a cyclic group of order 3. Can you generalize this? Justify.

Expert Answer
upsc-algebra-2bd23ae3-3e62-420b-a4ae-2e7475b0ac9e
Step 1: Define the Groups
Let G G GGG be a cyclic group of order 6, generated by an element a a aaa, i.e., G = a = { e , a , a 2 , a 3 , a 4 , a 5 } G = a = { e , a , a 2 , a 3 , a 4 , a 5 } G=(:a:)={e,a,a^(2),a^(3),a^(4),a^(5)}G = \langle a \rangle = \{ e, a, a^2, a^3, a^4, a^5 \}G=a={e,a,a2,a3,a4,a5}.
Let H H HHH be a cyclic group of order 2, generated by an element b b bbb, i.e., H = b = { e , b } H = b = { e , b } H=(:b:)={e,b}H = \langle b \rangle = \{ e, b \}H=b={e,b}.
Let K K KKK be a cyclic group of order 3, generated by an element c c ccc, i.e., K = c = { e , c , c 2 } K = c = { e , c , c 2 } K=(:c:)={e,c,c^(2)}K = \langle c \rangle = \{ e, c, c^2 \}K=c={e,c,c2}.
Step 2: Define the Product Group
Consider the product group H × K H × K H xx KH \times KH×K, consisting of elements ( b i , c j ) ( b i , c j ) (b^(i),c^(j))(b^i, c^j)(bi,cj) where 0 i < 2 0 i < 2 0 <= i < 20 \leq i < 20i<2 and 0 j < 3 0 j < 3 0 <= j < 30 \leq j < 30j<3.
Step 3: Define the Isomorphism
Define a function ϕ : G H × K ϕ : G H × K phi:G rarr H xx K\phi: G \to H \times Kϕ:GH×K by ϕ ( a n ) = ( b n mod 2 , c n mod 3 ) ϕ ( a n ) = ( b n mod 2 , c n mod 3 ) phi(a^(n))=(b^(nmod2),c^(nmod3))\phi(a^n) = (b^{n \mod 2}, c^{n \mod 3})ϕ(an)=(bnmod2,cnmod3).
Step 4: Show ϕ ϕ phi\phiϕ is an Isomorphism
  1. Well-defined: ϕ ϕ phi\phiϕ is well-defined because n mod 2 n mod 2 nmod2n \mod 2nmod2 and n mod 3 n mod 3 nmod3n \mod 3nmod3 are always in the correct ranges for H H HHH and K K KKK, respectively.
  2. Bijective: ϕ ϕ phi\phiϕ is bijective because each element a n a n a^(n)a^nan in G G GGG maps to a unique element ( b n mod 2 , c n mod 3 ) ( b n mod 2 , c n mod 3 ) (b^(nmod2),c^(nmod3))(b^{n \mod 2}, c^{n \mod 3})(bnmod2,cnmod3) in H × K H × K H xx KH \times KH×K, and vice versa.
  3. Homomorphism: ϕ ϕ phi\phiϕ is a homomorphism because for any a m , a n G a m , a n G a^(m),a^(n)in Ga^m, a^n \in Gam,anG,
    ϕ ( a m a n ) = ϕ ( a m + n ) = ( b ( m + n ) mod 2 , c ( m + n ) mod 3 ) = ( b m mod 2 b n mod 2 , c m mod 3 c n mod 3 ) = ϕ ( a m ) ϕ ( a n ) ϕ ( a m a n ) = ϕ ( a m + n ) = ( b ( m + n ) mod 2 , c ( m + n ) mod 3 ) = ( b m mod 2 b n mod 2 , c m mod 3 c n mod 3 ) = ϕ ( a m ) ϕ ( a n ) phi(a^(m)**a^(n))=phi(a^(m+n))=(b^((m+n)mod2),c^((m+n)mod3))=(b^(mmod2)**b^(nmod2),c^(mmod3)**c^(nmod3))=phi(a^(m))**phi(a^(n))\phi(a^m * a^n) = \phi(a^{m+n}) = (b^{(m+n) \mod 2}, c^{(m+n) \mod 3}) = (b^{m \mod 2} * b^{n \mod 2}, c^{m \mod 3} * c^{n \mod 3}) = \phi(a^m) * \phi(a^n)ϕ(aman)=ϕ(am+n)=(b(m+n)mod2,c(m+n)mod3)=(bmmod2bnmod2,cmmod3cnmod3)=ϕ(am)ϕ(an)
Generalization
This result can be generalized to say that a cyclic group of order m n m n mnmnmn where m m mmm and n n nnn are coprime is isomorphic to the product of a cyclic group of order m m mmm and a cyclic group of order n n nnn.
Justification for Generalization
  1. Chinese Remainder Theorem: If m m mmm and n n nnn are coprime, then the map ϕ : Z m n Z m × Z n ϕ : Z m n Z m × Z n phi:Z_(mn)rarrZ_(m)xxZ_(n)\phi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_nϕ:ZmnZm×Zn defined by ϕ ( a ) = ( a mod m , a mod n ) ϕ ( a ) = ( a mod m , a mod n ) phi(a)=(amodm,amodn)\phi(a) = (a \mod m, a \mod n)ϕ(a)=(amodm,amodn) is an isomorphism.
  2. Cyclic Groups: A cyclic group of order m n m n mnmnmn is isomorphic to Z m n Z m n Z_(mn)\mathbb{Z}_{mn}Zmn, and cyclic groups of orders m m mmm and n n nnn are isomorphic to Z m Z m Z_(m)\mathbb{Z}_mZm and Z n Z n Z_(n)\mathbb{Z}_nZn, respectively.
  3. Isomorphism: Combining these, we get that a cyclic group of order m n m n mnmnmn is isomorphic to the product of a cyclic group of order m m mmm and a cyclic group of order n n nnn.
Therefore, we can generalize that a cyclic group of order m n m n mnmnmn is isomorphic to the product of a cyclic group of order m m mmm and a cyclic group of order n n nnn when m m mmm and n n nnn are coprime.
Verified Answer
5/5
\(a=b\:cos\:C+c\:cos\:B\)
\(2\:cos\:\theta \:cos\:\phi =cos\:\left(\theta +\phi \right)+cos\:\left(\theta -\phi \right)\)

2(a) Let \(\left(\mathbb{R}^*, \cdot\right)\) be the multiplicative group of nonzero reals and \((G L(n, I R), X)\) be the multiplicative group of \(n \times n\) non-singular matrices. Show that the quotient group \(G L(n, \mathbb{R}) / S L(n, \mathbb{R})\) and \(\left(\mathbb{R}^* \cdot \cdot\right)\) are isomorphic where \(S L(n, \mathrm{IR})=\{A \in G L(n, \mathrm{IR}) / \operatorname{det} A=1\}\). What is the centre of \(G L(n\), IR ) ?

Expert Answer
upsc-algebra-2bd23ae3-3e62-420b-a4ae-2e7475b0ac9e
Step 1: Define the Groups and Quotient Group
  • R R R^(**)\mathbb{R}^*R is the set of all nonzero real numbers with multiplication as the operation.
  • G L ( n , R ) G L ( n , R ) GL(n,R)GL(n, \mathbb{R})GL(n,R) is the set of all n × n n × n n xx nn \times nn×n invertible matrices with matrix multiplication as the operation.
  • S L ( n , R ) S L ( n , R ) SL(n,R)SL(n, \mathbb{R})SL(n,R) is the set of all n × n n × n n xx nn \times nn×n matrices with determinant 1, i.e., S L ( n , R ) = { A G L ( n , R ) det ( A ) = 1 } S L ( n , R ) = { A G L ( n , R ) det ( A ) = 1 } SL(n,R)={A in GL(n,R)∣”det”(A)=1}SL(n, \mathbb{R}) = \{ A \in GL(n, \mathbb{R}) \mid \text{det}(A) = 1 \}SL(n,R)={AGL(n,R)det(A)=1}.
The quotient group G L ( n , R ) / S L ( n , R ) G L ( n , R ) / S L ( n , R ) GL(n,R)//SL(n,R)GL(n, \mathbb{R}) / SL(n, \mathbb{R})GL(n,R)/SL(n,R) consists of cosets A S L ( n , R ) A S L ( n , R ) A*SL(n,R)A \cdot SL(n, \mathbb{R})ASL(n,R) where A G L ( n , R ) A G L ( n , R ) A in GL(n,R)A \in GL(n, \mathbb{R})AGL(n,R).
Step 2: Define the Isomorphism
Define a function ϕ : G L ( n , R ) R ϕ : G L ( n , R ) R phi:GL(n,R)rarrR^(**)\phi: GL(n, \mathbb{R}) \to \mathbb{R}^*ϕ:GL(n,R)R by ϕ ( A ) = det ( A ) ϕ ( A ) = det ( A ) phi(A)=”det”(A)\phi(A) = \text{det}(A)ϕ(A)=det(A).
Step 3: Show ϕ ϕ phi\phiϕ Induces an Isomorphism between G L ( n , R ) / S L ( n , R ) G L ( n , R ) / S L ( n , R ) GL(n,R)//SL(n,R)GL(n, \mathbb{R}) / SL(n, \mathbb{R})GL(n,R)/SL(n,R) and R R R^(**)\mathbb{R}^*R
  1. Well-defined: ϕ ϕ phi\phiϕ is well-defined because the determinant of any n × n n × n n xx nn \times nn×n invertible matrix is a nonzero real number.
  2. Homomorphism: ϕ ϕ phi\phiϕ is a homomorphism because det ( A B ) = det ( A ) det ( B ) det ( A B ) = det ( A ) det ( B ) “det”(AB)=”det”(A)”det”(B)\text{det}(AB) = \text{det}(A) \text{det}(B)det(AB)=det(A)det(B).
  3. Kernel: The kernel of ϕ ϕ phi\phiϕ is S L ( n , R ) S L ( n , R ) SL(n,R)SL(n, \mathbb{R})SL(n,R) because ϕ ( A ) = 1 ϕ ( A ) = 1 phi(A)=1\phi(A) = 1ϕ(A)=1 if and only if det ( A ) = 1 det ( A ) = 1 “det”(A)=1\text{det}(A) = 1det(A)=1, i.e., A S L ( n , R ) A S L ( n , R ) A in SL(n,R)A \in SL(n, \mathbb{R})ASL(n,R).
  4. Induced Isomorphism: By the First Isomorphism Theorem, G L ( n , R ) / Ker ( ϕ ) G L ( n , R ) / Ker ( ϕ ) GL(n,R)//”Ker”(phi)GL(n, \mathbb{R}) / \text{Ker}(\phi)GL(n,R)/Ker(ϕ) is isomorphic to the image of ϕ ϕ phi\phiϕ, which is R R R^(**)\mathbb{R}^*R. Therefore, G L ( n , R ) / S L ( n , R ) G L ( n , R ) / S L ( n , R ) GL(n,R)//SL(n,R)GL(n, \mathbb{R}) / SL(n, \mathbb{R})GL(n,R)/SL(n,R) is isomorphic to R R R^(**)\mathbb{R}^*R.
Step 4: Find the Center of G L ( n , R ) G L ( n , R ) GL(n,R)GL(n, \mathbb{R})GL(n,R)
The center Z ( G L ( n , R ) ) Z ( G L ( n , R ) ) Z(GL(n,R))Z(GL(n, \mathbb{R}))Z(GL(n,R)) of G L ( n , R ) G L ( n , R ) GL(n,R)GL(n, \mathbb{R})GL(n,R) consists of all matrices A A AAA such that A B = B A A B = B A AB=BAAB = BAAB=BA for all B G L ( n , R ) B G L ( n , R ) B in GL(n,R)B \in GL(n, \mathbb{R})BGL(n,R).
For n > 1 n > 1 n > 1n > 1n>1, the center consists only of scalar multiples of the identity matrix, i.e., Z ( G L ( n , R ) ) = { c I c R } Z ( G L ( n , R ) ) = { c I c R } Z(GL(n,R))={cI∣c inR^(**)}Z(GL(n, \mathbb{R})) = \{ cI \mid c \in \mathbb{R}^* \}Z(GL(n,R))={cIcR}.
For n = 1 n = 1 n=1n = 1n=1, G L ( 1 , R ) G L ( 1 , R ) GL(1,R)GL(1, \mathbb{R})GL(1,R) is essentially R R R^(**)\mathbb{R}^*R, and every element commutes with every other element, so the center is G L ( 1 , R ) G L ( 1 , R ) GL(1,R)GL(1, \mathbb{R})GL(1,R) itself.
Conclusion
The quotient group G L ( n , R ) / S L ( n , R ) G L ( n , R ) / S L ( n , R ) GL(n,R)//SL(n,R)GL(n, \mathbb{R}) / SL(n, \mathbb{R})GL(n,R)/SL(n,R) is isomorphic to R R R^(**)\mathbb{R}^*R, and the center of G L ( n , R ) G L ( n , R ) GL(n,R)GL(n, \mathbb{R})GL(n,R) is { c I c R } { c I c R } {cI∣c inR^(**)}\{ cI \mid c \in \mathbb{R}^* \}{cIcR} for n > 1 n > 1 n > 1n > 1n>1 and G L ( 1 , R ) G L ( 1 , R ) GL(1,R)GL(1, \mathbb{R})GL(1,R) for n = 1 n = 1 n=1n = 1n=1.
Verified Answer
5/5
\(a=b\:cos\:C+c\:cos\:B\)
\(\operatorname{cosec}^2 \theta=1+\cot ^2 \theta\)

3(a) Consider the polynomial ring \(Q[x]\). Show \(p(x)=x^3-2\) is irreducible over \(Q\). Let \(I\) be the ideal in \(Q[x]\) generated by \(p(x)\). Then show that \(Q[x] / I\) is a field and that each element of it is of the form \(a_0+a_1 t+a_2 t^2\) with \(a_0, a_1, a_2\) in \(Q\) and \(t=x+I\).

Expert Answer
upsc-algebra-2bd23ae3-3e62-420b-a4ae-2e7475b0ac9e
Step 1: Show p ( x ) = x 3 2 p ( x ) = x 3 2 p(x)=x^(3)-2p(x) = x^3 – 2p(x)=x32 is Irreducible over Q Q Q\mathbb{Q}Q
To show that p ( x ) = x 3 2 p ( x ) = x 3 2 p(x)=x^(3)-2p(x) = x^3 – 2p(x)=x32 is irreducible over Q Q Q\mathbb{Q}Q, we can use Eisenstein’s criterion with the prime p = 2 p = 2 p=2p = 2p=2. The coefficients of p ( x ) p ( x ) p(x)p(x)p(x) are 1 , 0 , 0 , 2 1 , 0 , 0 , 2 1,0,0,-21, 0, 0, -21,0,0,2, and we observe:
  1. All coefficients except the leading one are divisible by 2.
  2. The constant term, -2, is not divisible by 2 2 2 2 2^(2)2^222.
Thus, by Eisenstein’s criterion, p ( x ) p ( x ) p(x)p(x)p(x) is irreducible over Q Q Q\mathbb{Q}Q.
Step 2: Show Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I is a Field
Let I I III be the ideal generated by p ( x ) p ( x ) p(x)p(x)p(x) in Q [ x ] Q [ x ] Q[x]\mathbb{Q}[x]Q[x]. To show that Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I is a field, it suffices to show that I I III is a maximal ideal.
Since p ( x ) p ( x ) p(x)p(x)p(x) is irreducible over Q Q Q\mathbb{Q}Q, it is also a prime element in Q [ x ] Q [ x ] Q[x]\mathbb{Q}[x]Q[x]. Therefore, I I III is a prime ideal. In a principal ideal domain like Q [ x ] Q [ x ] Q[x]\mathbb{Q}[x]Q[x], a non-zero prime ideal is also a maximal ideal. Hence, I I III is a maximal ideal, and Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I is a field.
Step 3: Describe the Elements of Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I
Let t = x + I t = x + I t=x+It = x + It=x+I in Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I. We want to show that every element in Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I can be written in the form a 0 + a 1 t + a 2 t 2 a 0 + a 1 t + a 2 t 2 a_(0)+a_(1)t+a_(2)t^(2)a_0 + a_1 t + a_2 t^2a0+a1t+a2t2 where a 0 , a 1 , a 2 Q a 0 , a 1 , a 2 Q a_(0),a_(1),a_(2)inQa_0, a_1, a_2 \in \mathbb{Q}a0,a1,a2Q.
Consider an arbitrary polynomial f ( x ) f ( x ) f(x)f(x)f(x) in Q [ x ] Q [ x ] Q[x]\mathbb{Q}[x]Q[x]. We can perform polynomial division to write f ( x ) f ( x ) f(x)f(x)f(x) as:
f ( x ) = q ( x ) ( x 3 2 ) + r ( x ) f ( x ) = q ( x ) ( x 3 2 ) + r ( x ) f(x)=q(x)(x^(3)-2)+r(x)f(x) = q(x)(x^3 – 2) + r(x)f(x)=q(x)(x32)+r(x)
where q ( x ) q ( x ) q(x)q(x)q(x) is the quotient and r ( x ) r ( x ) r(x)r(x)r(x) is the remainder such that deg ( r ( x ) ) < deg ( x 3 2 ) deg ( r ( x ) ) < deg ( x 3 2 ) deg(r(x)) < deg(x^(3)-2)\deg(r(x)) < \deg(x^3 – 2)deg(r(x))<deg(x32).
In Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I, f ( x ) + I = r ( x ) + I f ( x ) + I = r ( x ) + I f(x)+I=r(x)+If(x) + I = r(x) + If(x)+I=r(x)+I because q ( x ) ( x 3 2 ) q ( x ) ( x 3 2 ) q(x)(x^(3)-2)q(x)(x^3 – 2)q(x)(x32) is in I I III.
The remainder r ( x ) r ( x ) r(x)r(x)r(x) can have a degree at most 2, so r ( x ) = a 0 + a 1 x + a 2 x 2 r ( x ) = a 0 + a 1 x + a 2 x 2 r(x)=a_(0)+a_(1)x+a_(2)x^(2)r(x) = a_0 + a_1 x + a_2 x^2r(x)=a0+a1x+a2x2. Therefore, in Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I, f ( x ) + I = a 0 + a 1 t + a 2 t 2 f ( x ) + I = a 0 + a 1 t + a 2 t 2 f(x)+I=a_(0)+a_(1)t+a_(2)t^(2)f(x) + I = a_0 + a_1 t + a_2 t^2f(x)+I=a0+a1t+a2t2.
Conclusion
  1. The polynomial p ( x ) = x 3 2 p ( x ) = x 3 2 p(x)=x^(3)-2p(x) = x^3 – 2p(x)=x32 is irreducible over Q Q Q\mathbb{Q}Q.
  2. Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I is a field.
  3. Each element of Q [ x ] / I Q [ x ] / I Q[x]//I\mathbb{Q}[x] / IQ[x]/I can be written in the form a 0 + a 1 t + a 2 t 2 a 0 + a 1 t + a 2 t 2 a_(0)+a_(1)t+a_(2)t^(2)a_0 + a_1 t + a_2 t^2a0+a1t+a2t2 where a 0 , a 1 , a 2 Q a 0 , a 1 , a 2 Q a_(0),a_(1),a_(2)inQa_0, a_1, a_2 \in \mathbb{Q}a0,a1,a2Q and t = x + I t = x + I t=x+It = x + It=x+I.
Verified Answer
5/5
\(cos\left(\theta -\phi \right)=cos\:\theta \:cos\:\phi +sin\:\theta \:sin\:\phi \)
\(cos\left(\theta +\phi \right)=cos\:\theta \:cos\:\phi -sin\:\theta \:sin\:\phi \)

3(b) Show that the quotient ring \(\mathbb{Z}[i] /(1+3 i)\) is isomorphic to the ring \(\mathbb{Z} / 10 \mathbb{Z}\) where \(\mathbb{Z}[i]\) denotes the ring of Gaussian integers.

Expert Answer
upsc-algebra-2bd23ae3-3e62-420b-a4ae-2e7475b0ac9e
Step 1: Define the Ring and Ideal
Let Z [ i ] Z [ i ] Z[i]\mathbb{Z}[i]Z[i] be the ring of Gaussian integers, which consists of all numbers of the form a + b i a + b i a+bia + bia+bi where a , b Z a , b Z a,b inZa, b \in \mathbb{Z}a,bZ and i i iii is the imaginary unit.
Let I I III be the ideal generated by 1 + 3 i 1 + 3 i 1+3i1 + 3i1+3i in Z [ i ] Z [ i ] Z[i]\mathbb{Z}[i]Z[i].
Step 2: Define the Quotient Ring
The quotient ring Z [ i ] / I Z [ i ] / I Z[i]//I\mathbb{Z}[i] / IZ[i]/I consists of cosets ( a + b i ) + I ( a + b i ) + I (a+bi)+I(a + bi) + I(a+bi)+I where a + b i Z [ i ] a + b i Z [ i ] a+bi inZ[i]a + bi \in \mathbb{Z}[i]a+biZ[i].
Step 3: Define the Isomorphism
We aim to show that Z [ i ] / I Z [ i ] / I Z[i]//I\mathbb{Z}[i] / IZ[i]/I is isomorphic to Z / 10 Z Z / 10 Z Z//10Z\mathbb{Z} / 10\mathbb{Z}Z/10Z.
Define a function ϕ : Z [ i ] Z / 10 Z ϕ : Z [ i ] Z / 10 Z phi:Z[i]rarrZ//10Z\phi: \mathbb{Z}[i] \to \mathbb{Z} / 10\mathbb{Z}ϕ:Z[i]Z/10Z by ϕ ( a + b i ) = a + 3 b mod 10 ϕ ( a + b i ) = a + 3 b mod 10 phi(a+bi)=a+3bmod10\phi(a + bi) = a + 3b \mod 10ϕ(a+bi)=a+3bmod10.
Step 4: Show ϕ ϕ phi\phiϕ is an Isomorphism
  1. Well-defined: ϕ ϕ phi\phiϕ is well-defined because a + 3 b a + 3 b a+3ba + 3ba+3b is an integer for all a , b Z a , b Z a,b inZa, b \in \mathbb{Z}a,bZ.
  2. Homomorphism: ϕ ϕ phi\phiϕ is a homomorphism because
    ϕ ( ( a + b i ) + ( c + d i ) ) = ϕ ( a + c + ( b + d ) i ) = a + c + 3 ( b + d ) mod 10 = ( a + 3 b ) + ( c + 3 d ) mod 10 = ϕ ( a + b i ) + ϕ ( c + d i ) ϕ ( ( a + b i ) + ( c + d i ) ) = ϕ ( a + c + ( b + d ) i ) = a + c + 3 ( b + d ) mod 10 = ( a + 3 b ) + ( c + 3 d ) mod 10 = ϕ ( a + b i ) + ϕ ( c + d i ) phi((a+bi)+(c+di))=phi(a+c+(b+d)i)=a+c+3(b+d)quadmod10=(a+3b)+(c+3d)quadmod10=phi(a+bi)+phi(c+di)\phi((a + bi) + (c + di)) = \phi(a + c + (b + d)i) = a + c + 3(b + d) \mod 10 = (a + 3b) + (c + 3d) \mod 10 = \phi(a + bi) + \phi(c + di)ϕ((a+bi)+(c+di))=ϕ(a+c+(b+d)i)=a+c+3(b+d)mod10=(a+3b)+(c+3d)mod10=ϕ(a+bi)+ϕ(c+di)
  3. Kernel: The kernel of ϕ ϕ phi\phiϕ is I I III because ϕ ( a + b i ) = 0 ϕ ( a + b i ) = 0 phi(a+bi)=0\phi(a + bi) = 0ϕ(a+bi)=0 if and only if a + 3 b 0 mod 10 a + 3 b 0 mod 10 a+3b-=0mod10a + 3b \equiv 0 \mod 10a+3b0mod10, i.e., a + b i a + b i a+bia + bia+bi is a multiple of 1 + 3 i 1 + 3 i 1+3i1 + 3i1+3i.
  4. Surjective: ϕ ϕ phi\phiϕ is surjective because for any n Z / 10 Z n Z / 10 Z n inZ//10Zn \in \mathbb{Z} / 10\mathbb{Z}nZ/10Z, we can find a + b i a + b i a+bia + bia+bi such that ϕ ( a + b i ) = n ϕ ( a + b i ) = n phi(a+bi)=n\phi(a + bi) = nϕ(a+bi)=n. For example, ϕ ( n ) = n ϕ ( n ) = n phi(n)=n\phi(n) = nϕ(n)=n.
  5. Induced Isomorphism: By the First Isomorphism Theorem, Z [ i ] / Ker ( ϕ ) Z [ i ] / Ker ( ϕ ) Z[i]//”Ker”(phi)\mathbb{Z}[i] / \text{Ker}(\phi)Z[i]/Ker(ϕ) is isomorphic to the image of ϕ ϕ phi\phiϕ, which is Z / 10 Z Z / 10 Z Z//10Z\mathbb{Z} / 10\mathbb{Z}Z/10Z. Therefore, Z [ i ] / I Z [ i ] / I Z[i]//I\mathbb{Z}[i] / IZ[i]/I is isomorphic to Z / 10 Z Z / 10 Z Z//10Z\mathbb{Z} / 10\mathbb{Z}Z/10Z.
Conclusion
The quotient ring Z [ i ] / ( 1 + 3 i ) Z [ i ] / ( 1 + 3 i ) Z[i]//(1+3i)\mathbb{Z}[i] / (1 + 3i)Z[i]/(1+3i) is isomorphic to the ring Z / 10 Z Z / 10 Z Z//10Z\mathbb{Z} / 10\mathbb{Z}Z/10Z.
Verified Answer
5/5
\(cos\:2\theta =1-2\:sin^2\theta \)

Get Complete Solution Mathematics Optional Paper | UPSC

CONTENTS
Scroll to Top
Scroll to Top