Free UPSC Mathematics Optional Paper-1 2018 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड-A / SECTION-A
  1. (a) मान लीजिये कि A A AAA एक 3 × 2 3 × 2 3xx23 \times 23×2 आव्यूह है और B B BBB एक 2 × 3 2 × 3 2xx32 \times 32×3 आव्यूह है। दर्शाइये कि C = A B C = A B C=A*BC=A \cdot BC=AB एक अव्युत्क्रमणणीय आव्यूह है।
Let A A AAA be a 3 × 2 3 × 2 3xx23 \times 23×2 matrix and B B BBB a 2 × 3 2 × 3 2xx32 \times 32×3 matrix. Show that C = A B C = A B C=A*BC=A \cdot BC=AB is a singular matrix.
Answer:

Introduction

The problem asks us to show that the product C = A B C = A B C=A*BC = A \cdot BC=AB is a singular matrix, given that A A AAA is a 3 × 2 3 × 2 3xx23 \times 23×2 matrix and B B BBB is a 2 × 3 2 × 3 2xx32 \times 32×3 matrix. A singular matrix is one that does not have an inverse, which means its determinant is zero.

Work/Calculations

Step 1: Dimensions of C C CCC

First, let’s find the dimensions of the resulting matrix C C CCC when A A AAA and B B BBB are multiplied.
The dimensions of C C CCC can be determined by the outer dimensions of A A AAA and B B BBB. In this case, A A AAA is 3 × 2 3 × 2 3xx23 \times 23×2 and B B BBB is 2 × 3 2 × 3 2xx32 \times 32×3, so C C CCC will be 3 × 3 3 × 3 3xx33 \times 33×3.

Step 2: Rank of C C CCC

The rank of C C CCC is limited by the smaller of the two ranks of A A AAA and B B BBB. Since A A AAA is 3 × 2 3 × 2 3xx23 \times 23×2, its rank can be at most 2. Similarly, B B BBB is 2 × 3 2 × 3 2xx32 \times 32×3, so its rank can also be at most 2.
Therefore, the rank of C C CCC can be at most 2.
Rank ( C ) min ( Rank ( A ) , Rank ( B ) ) 2 Rank ( C ) min ( Rank ( A ) , Rank ( B ) ) 2 “Rank”(C) <= min(“Rank”(A),”Rank”(B)) <= 2\text{Rank}(C) \leq \min(\text{Rank}(A), \text{Rank}(B)) \leq 2Rank(C)min(Rank(A),Rank(B))2

Step 3: Determinant of C C CCC

For a 3 × 3 3 × 3 3xx33 \times 33×3 matrix to be invertible (non-singular), its rank must be 3. However, we’ve established that the rank of C C CCC can be at most 2. Therefore, C C CCC must be singular.
To confirm, the determinant of a singular matrix is zero:
Det ( C ) = 0 Det ( C ) = 0 “Det”(C)=0\text{Det}(C) = 0Det(C)=0

Conclusion

We have shown that the matrix C = A B C = A B C=A*BC = A \cdot BC=AB will be a 3 × 3 3 × 3 3xx33 \times 33×3 matrix with a rank of at most 2. Since the rank is less than 3, C C CCC is a singular matrix, and its determinant is zero. Therefore, C = A B C = A B C=A*BC = A \cdot BC=AB is indeed a singular matrix.
(b) आधार सदिशों e 1 = ( 1 , 0 ) e 1 = ( 1 , 0 ) e_(1)=(1,0)e_1=(1,0)e1=(1,0) और e 2 = ( 0 , 1 ) e 2 = ( 0 , 1 ) e_(2)=(0,1)e_2=(0,1)e2=(0,1) को α 1 = ( 2 , 1 ) α 1 = ( 2 , 1 ) alpha_(1)=(2,-1)\alpha_1=(2,-1)α1=(2,1) एवं α 2 = ( 1 , 3 ) α 2 = ( 1 , 3 ) alpha_(2)=(1,3)\alpha_2=(1,3)α2=(1,3) के रैखिक संयोग के रूप में ब्यक्त कीजिये।
Express basis vectors e 1 = ( 1 , 0 ) e 1 = ( 1 , 0 ) e_(1)=(1,0)e_1=(1,0)e1=(1,0) and e 2 = ( 0 , 1 ) e 2 = ( 0 , 1 ) e_(2)=(0,1)e_2=(0,1)e2=(0,1) as linear combinations of α 1 = ( 2 , 1 ) α 1 = ( 2 , 1 ) alpha_(1)=(2,-1)\alpha_1=(2,-1)α1=(2,1) and α 2 = ( 1 , 3 ) α 2 = ( 1 , 3 ) alpha_(2)=(1,3)\alpha_2=(1,3)α2=(1,3).
Answer:

Introduction

The problem asks us to express the basis vectors e 1 = ( 1 , 0 ) e 1 = ( 1 , 0 ) e_(1)=(1,0)e_1 = (1, 0)e1=(1,0) and e 2 = ( 0 , 1 ) e 2 = ( 0 , 1 ) e_(2)=(0,1)e_2 = (0, 1)e2=(0,1) as linear combinations of the vectors α 1 = ( 2 , 1 ) α 1 = ( 2 , 1 ) alpha_(1)=(2,-1)\alpha_1 = (2, -1)α1=(2,1) and α 2 = ( 1 , 3 ) α 2 = ( 1 , 3 ) alpha_(2)=(1,3)\alpha_2 = (1, 3)α2=(1,3). In other words, we want to find constants c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2 such that:
e 1 = c 1 α 1 + c 2 α 2 e 1 = c 1 α 1 + c 2 α 2 e_(1)=c_(1)alpha_(1)+c_(2)alpha_(2)e_1 = c_1 \alpha_1 + c_2 \alpha_2e1=c1α1+c2α2
e 2 = d 1 α 1 + d 2 α 2 e 2 = d 1 α 1 + d 2 α 2 e_(2)=d_(1)alpha_(1)+d_(2)alpha_(2)e_2 = d_1 \alpha_1 + d_2 \alpha_2e2=d1α1+d2α2

Work/Calculations

Step 1: Setting up the Equations for e 1 e 1 e_(1)e_1e1

The equation for e 1 e 1 e_(1)e_1e1 can be written as:
( 1 , 0 ) = c 1 ( 2 , 1 ) + c 2 ( 1 , 3 ) ( 1 , 0 ) = c 1 ( 2 , 1 ) + c 2 ( 1 , 3 ) (1,0)=c_(1)(2,-1)+c_(2)(1,3)(1, 0) = c_1 (2, -1) + c_2 (1, 3)(1,0)=c1(2,1)+c2(1,3)
Breaking it down into components, we get:
1 = 2 c 1 + c 2 1 = 2 c 1 + c 2 1=2c_(1)+c_(2)1 = 2c_1 + c_21=2c1+c2
0 = c 1 + 3 c 2 0 = c 1 + 3 c 2 0=-c_(1)+3c_(2)0 = -c_1 + 3c_20=c1+3c2

Step 2: Solving for c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2

After Calculating, we get:
c 1 = 3 7 , c 2 = 1 7 c 1 = 3 7 , c 2 = 1 7 c_(1)=(3)/(7),quadc_(2)=(1)/(7)c_1 = \frac{3}{7}, \quad c_2 = \frac{1}{7}c1=37,c2=17

Step 3: Setting up the Equations for e 2 e 2 e_(2)e_2e2

The equation for e 2 e 2 e_(2)e_2e2 can be written as:
( 0 , 1 ) = d 1 ( 2 , 1 ) + d 2 ( 1 , 3 ) ( 0 , 1 ) = d 1 ( 2 , 1 ) + d 2 ( 1 , 3 ) (0,1)=d_(1)(2,-1)+d_(2)(1,3)(0, 1) = d_1 (2, -1) + d_2 (1, 3)(0,1)=d1(2,1)+d2(1,3)
Breaking it down into components, we get:
0 = 2 d 1 + d 2 0 = 2 d 1 + d 2 0=2d_(1)+d_(2)0 = 2d_1 + d_20=2d1+d2
1 = d 1 + 3 d 2 1 = d 1 + 3 d 2 1=-d_(1)+3d_(2)1 = -d_1 + 3d_21=d1+3d2

Step 4: Solving for d 1 d 1 d_(1)d_1d1 and d 2 d 2 d_(2)d_2d2

After Calculating, we get:
d 1 = 1 7 , d 2 = 2 7 d 1 = 1 7 , d 2 = 2 7 d_(1)=-(1)/(7),quadd_(2)=(2)/(7)d_1 = -\frac{1}{7}, \quad d_2 = \frac{2}{7}d1=17,d2=27

Conclusion

The basis vector e 1 = ( 1 , 0 ) e 1 = ( 1 , 0 ) e_(1)=(1,0)e_1 = (1, 0)e1=(1,0) can be expressed as a linear combination of α 1 α 1 alpha_(1)\alpha_1α1 and α 2 α 2 alpha_(2)\alpha_2α2 as follows:
e 1 = 3 7 α 1 + 1 7 α 2 e 1 = 3 7 α 1 + 1 7 α 2 e_(1)=(3)/(7)alpha_(1)+(1)/(7)alpha_(2)e_1 = \frac{3}{7} \alpha_1 + \frac{1}{7} \alpha_2e1=37α1+17α2
Similarly, the basis vector e 2 = ( 0 , 1 ) e 2 = ( 0 , 1 ) e_(2)=(0,1)e_2 = (0, 1)e2=(0,1) can be expressed as:
e 2 = 1 7 α 1 + 2 7 α 2 e 2 = 1 7 α 1 + 2 7 α 2 e_(2)=-(1)/(7)alpha_(1)+(2)/(7)alpha_(2)e_2 = -\frac{1}{7} \alpha_1 + \frac{2}{7} \alpha_2e2=17α1+27α2
Thus, both e 1 e 1 e_(1)e_1e1 and e 2 e 2 e_(2)e_2e2 can be represented as linear combinations of α 1 α 1 alpha_(1)\alpha_1α1 and α 2 α 2 alpha_(2)\alpha_2α2.
(c) निर्धारित कीजिये कि lim z 1 ( 1 z ) tan π z 2 lim z 1 ( 1 z ) tan π z 2 lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2}limz1(1z)tanπz2 का अस्तित्व है या कि नहीं। अगर यह सीमा विघ्यमान है, तो इसका मान ज्ञात कीजिये।
Determine if lim z 1 ( 1 z ) tan π z 2 lim z 1 ( 1 z ) tan π z 2 lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2}limz1(1z)tanπz2 exists or not. If the limit exists, then find its value.
Answer:
Let t = 1 z t = 1 z t=1-zt=1-zt=1z:
z = 1 t z 1 t = 0 z = 1 t z 1 t = 0 {:[=>z=1-t],[z rarr1],[=>t=0]:}\begin{aligned} & \Rightarrow z=1-t \\ & z \rightarrow 1 \\ & \Rightarrow t=0 \end{aligned}z=1tz1t=0
Now, we have:
lim t 0 t tan ( π 2 ( 1 t ) ) = lim t 0 t tan ( π 2 π 2 t ) = lim t 0 t cot ( π 2 t ) = lim t 0 t tan π 2 t lim t 0 t tan π 2 ( 1 t ) = lim t 0 t tan π 2 π 2 t = lim t 0 t cot π 2 t = lim t 0 t tan π 2 t {:[lim_(t rarr0)t tan((pi)/(2)(1-t))],[=lim_(t rarr0)t tan((pi)/(2)-(pi)/(2)t)],[=lim_(t rarr0)t cot((pi)/(2)t)],[=lim_(t rarr0)(t)/(tan((pi)/(2)t))]:}\begin{aligned} & \lim _{t \rightarrow 0} t \tan \left(\frac{\pi}{2}(1-t)\right) \\ & = \lim _{t \rightarrow 0} t \tan \left(\frac{\pi}{2}-\frac{\pi}{2} t\right) \\ & = \lim _{t \rightarrow 0} t \cot \left(\frac{\pi}{2}t\right) \\ & = \lim _{t \rightarrow 0} \frac{t}{\tan \frac{\pi}{2} t} \end{aligned}limt0ttan(π2(1t))=limt0ttan(π2π2t)=limt0tcot(π2t)=limt0ttanπ2t
Now, multiply both the numerator and denominator by 2 π 2 π (2)/(pi)\frac{2}{\pi}2π:
= lim t 0 2 π ( π 2 t tan π 2 t ) = 2 π = lim t 0 2 π π 2 t tan π 2 t = 2 π =lim_(t rarr0)(2)/(pi)(((pi)/(2)t)/(tan((pi)/(2)t)))=(2)/(pi)= \lim _{t \rightarrow 0} \frac{2}{\pi}\left(\frac{\frac{\pi}{2} t}{\tan \frac{\pi}{2} t}\right) = \frac{2}{\pi}=limt02π(π2ttanπ2t)=2π
So, the limit lim z 1 ( 1 z ) tan π z 2 lim z 1 ( 1 z ) tan π z 2 lim_(z rarr1)(1-z)tan((pi z)/(2))\lim _{z \rightarrow 1}(1-z) \tan \frac{\pi z}{2}limz1(1z)tanπz2 exists, and its value is 2 π 2 π (2)/(pi)\frac{2}{\pi}2π.
(d) सीमा lim n 1 n 2 r = 0 n 1 n 2 r 2 lim n 1 n 2 r = 0 n 1 n 2 r 2 lim_(n rarr oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow \infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}limn1n2r=0n1n2r2 का मान ज्ञात कीजिये।
Find the limit lim n 1 n 2 r = 0 n 1 n 2 r 2 lim n 1 n 2 r = 0 n 1 n 2 r 2 lim_(n rarr-oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}limn1n2r=0n1n2r2.
Answer:
We start by rewriting the given limit as follows:
lim n 1 n 2 a = 0 n 1 n 2 r 2 lim n 1 n 2 a = 0 n 1 n 2 r 2 lim_(n rarr oo)(1)/(n^(2))sum_(a=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow \infty} \frac{1}{n^2} \sum_{a=0}^{n-1} \sqrt{n^2-r^2}limn1n2a=0n1n2r2
Next, we’ll express n 2 r 2 n 2 n 2 r 2 n 2 (sqrt(n^(2)-r^(2)))/(n^(2))\frac{\sqrt{n^2-r^2}}{n^2}n2r2n2 as:
1 n [ 1 ( r n ) 2 ] 1 n 1 r n 2 (1)/(n)[sqrt(1-((r)/(n))^(2))]\frac{1}{n}\left[\sqrt{1-\left(\frac{r}{n}\right)^2}\right]1n[1(rn)2]
Now, we rewrite the limit as a sum:
lim n r = 0 n 1 1 n [ 1 ( r n ) 2 ] = lim n r = 1 n 1 n 1 ( r n ) 2 = 0 1 1 x 2 d x = [ x 1 x 2 2 + 1 2 sin 1 x ] 0 1 = 1 2 sin 1 ( 1 ) lim n r = 0 n 1 1 n 1 r n 2 = lim n r = 1 n 1 n 1 r n 2 = 0 1 1 x 2 d x = x 1 x 2 2 + 1 2 sin 1 x 0 1 = 1 2 sin 1 ( 1 ) {:[lim_(n rarr oo)sum_(r=0)^(n-1)(1)/(n)[sqrt(1-((r)/(n))^(2))]=lim_(n rarr oo)sum_(r=1)^(n)(1)/(n)sqrt(1-((r)/(n))^(2))],[=int_(0)^(1)sqrt(1-x^(2))dx],[=[(xsqrt(1-x^(2)))/(2)+(1)/(2)sin^(-1)x]_(0)^(1)],[=(1)/(2)sin^(-1)(1)]:}\begin{aligned} \lim _{n \rightarrow \infty} \sum_{r=0}^{n-1}\frac{1}{n}\left[\sqrt{1-\left(\frac{r}{n}\right)^2}\right] &= \lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{1}{n} \sqrt{1-\left(\frac{r}{n}\right)^2} \\ & = \int_0^1 \sqrt{1-x^2} dx \\ & = \left[\frac{x \sqrt{1-x^2}}{2}+\frac{1}{2} \sin ^{-1} x\right]_0^1 \\ & = \frac{1}{2} \sin ^{-1}(1) \end{aligned}limnr=0n11n[1(rn)2]=limnr=1n1n1(rn)2=011x2dx=[x1x22+12sin1x]01=12sin1(1)
Now, we calculate sin 1 ( 1 ) sin 1 ( 1 ) sin^(-1)(1)\sin^{-1}(1)sin1(1):
1 2 sin 1 ( 1 ) = 1 2 × π 2 = π 4 1 2 sin 1 ( 1 ) = 1 2 × π 2 = π 4 (1)/(2)sin^(-1)(1)=(1)/(2)xx(pi)/(2)=(pi)/(4)\frac{1}{2} \sin ^{-1}(1) = \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4}12sin1(1)=12×π2=π4
Hence, the limit lim n 1 n 2 r = 0 n 1 n 2 r 2 lim n 1 n 2 r = 0 n 1 n 2 r 2 lim_(n rarr-oo)(1)/(n^(2))sum_(r=0)^(n-1)sqrt(n^(2)-r^(2))\lim _{n \rightarrow-\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2-r^2}limn1n2r=0n1n2r2 is π 4 π 4 (pi)/(4)\frac{\pi}{4}π4.
(e) सरल रेखा x 1 2 = y 1 3 = z + 1 1 x 1 2 = y 1 3 = z + 1 1 (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1}x12=y13=z+11 का समतल x + y + 2 z = 6 x + y + 2 z = 6 x+y+2z=6x+y+2 z=6x+y+2z=6 पर प्रक्षेपण ज्ञात कीजिये।
Find the projection of the straight line x 1 2 = y 1 3 = z + 1 1 x 1 2 = y 1 3 = z + 1 1 (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1}x12=y13=z+11 on the plane x + y + 2 z = 6 x + y + 2 z = 6 x+y+2z=6x+y+2 z=6x+y+2z=6.
Answer:

Introduction

The problem asks us to find the projection of the straight line x 1 2 = y 1 3 = z + 1 1 x 1 2 = y 1 3 = z + 1 1 (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1}x12=y13=z+11 onto the plane x + y + 2 z = 6 x + y + 2 z = 6 x+y+2z=6x+y+2z=6x+y+2z=6.

Work/Calculations

Step 1: Find the Direction Vector of the Line

The direction vector of the line is given by [ 2 , 3 , 1 ] [ 2 , 3 , 1 ] [2,3,-1][2, 3, -1][2,3,1].

Step 2: Find the Normal Vector of the Plane

The normal vector of the plane x + y + 2 z = 6 x + y + 2 z = 6 x+y+2z=6x+y+2z=6x+y+2z=6 is [ 1 , 1 , 2 ] [ 1 , 1 , 2 ] [1,1,2][1, 1, 2][1,1,2].

Step 3: Find the Projection Vector

The projection of the direction vector of the line onto the plane is given by Projection = Direction Vector ( Direction Vector Normal Vector Normal Vector Normal Vector ) × Normal Vector Projection = Direction Vector Direction Vector Normal Vector Normal Vector Normal Vector × Normal Vector “Projection”=”Direction Vector”-((“Direction Vector”*”Normal Vector”)/(“Normal Vector”*”Normal Vector”))xx”Normal Vector”\text{Projection} = \text{Direction Vector} – \left( \frac{\text{Direction Vector} \cdot \text{Normal Vector}}{\text{Normal Vector} \cdot \text{Normal Vector}} \right) \times \text{Normal Vector}Projection=Direction Vector(Direction VectorNormal VectorNormal VectorNormal Vector)×Normal Vector
After substituting the values, we get:
Projection = [ 2 , 3 , 1 ] ( [ 2 , 3 , 1 ] [ 1 , 1 , 2 ] [ 1 , 1 , 2 ] [ 1 , 1 , 2 ] ) × [ 1 , 1 , 2 ] Projection = [ 2 , 3 , 1 ] [ 2 , 3 , 1 ] [ 1 , 1 , 2 ] [ 1 , 1 , 2 ] [ 1 , 1 , 2 ] × [ 1 , 1 , 2 ] “Projection”=[2,3,-1]-(([2,3,-1]*[1,1,2])/([1,1,2]*[1,1,2]))xx[1,1,2]\text{Projection} = [2, 3, -1] – \left( \frac{[2, 3, -1] \cdot [1, 1, 2]}{[1, 1, 2] \cdot [1, 1, 2]} \right) \times [1, 1, 2]Projection=[2,3,1]([2,3,1][1,1,2][1,1,2][1,1,2])×[1,1,2]
After Calculating, we get:
Projection = [ 2 , 3 , 1 ] 2 + 3 2 1 + 1 + 4 × [ 1 , 1 , 2 ] = [ 2 , 3 , 1 ] 3 6 × [ 1 , 1 , 2 ] Projection = [ 2 , 3 , 1 ] 2 + 3 2 1 + 1 + 4 × [ 1 , 1 , 2 ] = [ 2 , 3 , 1 ] 3 6 × [ 1 , 1 , 2 ] “Projection”=[2,3,-1]-(2+3-2)/(1+1+4)xx[1,1,2]=[2,3,-1]-(3)/(6)xx[1,1,2]\text{Projection} = [2, 3, -1] – \frac{2 + 3 – 2}{1 + 1 + 4} \times [1, 1, 2] = [2, 3, -1] – \frac{3}{6} \times [1, 1, 2]Projection=[2,3,1]2+321+1+4×[1,1,2]=[2,3,1]36×[1,1,2]
Projection = [ 2 , 3 , 1 ] [ 0.5 , 0.5 , 1 ] = [ 1.5 , 2.5 , 2 ] Projection = [ 2 , 3 , 1 ] [ 0.5 , 0.5 , 1 ] = [ 1.5 , 2.5 , 2 ] “Projection”=[2,3,-1]-[0.5,0.5,1]=[1.5,2.5,-2]\text{Projection} = [2, 3, -1] – [0.5, 0.5, 1] = [1.5, 2.5, -2]Projection=[2,3,1][0.5,0.5,1]=[1.5,2.5,2]

Step 4: Find the Equation of the Projected Line

The projected line will pass through a point on the original line and will have the direction vector as the projection vector. Taking the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,-1)(1, 1, -1)(1,1,1) on the original line, the equation of the projected line is:
x 1 1.5 = y 1 2.5 = z + 1 2 x 1 1.5 = y 1 2.5 = z + 1 2 (x-1)/(1.5)=(y-1)/(2.5)=(z+1)/(-2)\frac{x-1}{1.5} = \frac{y-1}{2.5} = \frac{z+1}{-2}x11.5=y12.5=z+12

Conclusion

The projection of the given straight line x 1 2 = y 1 3 = z + 1 1 x 1 2 = y 1 3 = z + 1 1 (x-1)/(2)=(y-1)/(3)=(z+1)/(-1)\frac{x-1}{2}=\frac{y-1}{3}=\frac{z+1}{-1}x12=y13=z+11 onto the plane x + y + 2 z = 6 x + y + 2 z = 6 x+y+2z=6x+y+2z=6x+y+2z=6 is the line x 1 1.5 = y 1 2.5 = z + 1 2 . x 1 1.5 = y 1 2.5 = z + 1 2 . (x-1)/(1.5)=(y-1)/(2.5)=(z+1)/(-2).\frac{x-1}{1.5} = \frac{y-1}{2.5} = \frac{z+1}{-2}.x11.5=y12.5=z+12.
  1. (a) अगर A A AAA और B B BBB समरूप n × n n × n n xx nn \times nn×n आव्यूह हैं, तो दर्शाइये कि उनके आइगेन मान एक ही हैं।
Show that if A A AAA and B B BBB are similar n × n n × n n xx nn \times nn×n matrices, then they have the same eigenvalues.
Answer:

Introduction

The problem asks us to prove that if A A AAA and B B BBB are similar n × n n × n n xx nn \times nn×n matrices, then they have the same eigenvalues.

Work/Calculations

Definition of Similar Matrices

Two matrices A A AAA and B B BBB are said to be similar if there exists an invertible matrix P P PPP such that B = P 1 A P B = P 1 A P B=P^(-1)APB = P^{-1} A PB=P1AP.

Definition of Eigenvalues

A scalar λ λ lambda\lambdaλ is an eigenvalue of a matrix A A AAA if there exists a non-zero vector x x xxx such that A x = λ x A x = λ x Ax=lambda xAx = \lambda xAx=λx.

Step 1: Assume A A AAA has an Eigenvalue λ λ lambda\lambdaλ

Let’s assume that λ λ lambda\lambdaλ is an eigenvalue of A A AAA, and x x xxx is the corresponding eigenvector, i.e., A x = λ x A x = λ x Ax=lambda xAx = \lambda xAx=λx.

Step 2: Multiply Both Sides by P 1 P 1 P^(-1)P^{-1}P1

Multiply both sides of A x = λ x A x = λ x Ax=lambda xAx = \lambda xAx=λx by P 1 P 1 P^(-1)P^{-1}P1:
P 1 A x = P 1 λ x P 1 A x = P 1 λ x P^(-1)Ax=P^(-1)lambda xP^{-1} A x = P^{-1} \lambda xP1Ax=P1λx

Step 3: Use the Similarity Relation B = P 1 A P B = P 1 A P B=P^(-1)APB = P^{-1} A PB=P1AP

Substitute B = P 1 A P B = P 1 A P B=P^(-1)APB = P^{-1} A PB=P1AP into the equation:
P 1 A x = B ( P 1 x ) P 1 A x = B ( P 1 x ) P^(-1)Ax=B(P^(-1)x)P^{-1} A x = B (P^{-1} x)P1Ax=B(P1x)

Step 4: Show that λ λ lambda\lambdaλ is an Eigenvalue of B B BBB

From the equation P 1 A x = B ( P 1 x ) P 1 A x = B ( P 1 x ) P^(-1)Ax=B(P^(-1)x)P^{-1} A x = B (P^{-1} x)P1Ax=B(P1x), we can see that B ( P 1 x ) = λ ( P 1 x ) B ( P 1 x ) = λ ( P 1 x ) B(P^(-1)x)=lambda(P^(-1)x)B (P^{-1} x) = \lambda (P^{-1} x)B(P1x)=λ(P1x).
This shows that λ λ lambda\lambdaλ is also an eigenvalue of B B BBB with the corresponding eigenvector P 1 x P 1 x P^(-1)xP^{-1} xP1x.

Step 5: Reverse the Argument

Similarly, we can reverse the argument to show that if λ λ lambda\lambdaλ is an eigenvalue of B B BBB, then it must also be an eigenvalue of A A AAA.

Conclusion

We have shown that if A A AAA and B B BBB are similar n × n n × n n xx nn \times nn×n matrices, then they have the same eigenvalues. This completes the proof.
(b) बिन्दु ( 1 , 0 ) ( 1 , 0 ) (1,0)(1,0)(1,0) से परबलय y 2 = 4 x y 2 = 4 x y^(2)=4xy^2=4 xy2=4x तक की न्यूनतम दूरी ज्ञात कीजिये।
Find the shortest distance from the point ( 1 , 0 ) ( 1 , 0 ) (1,0)(1,0)(1,0) to the parabola y 2 = 4 x y 2 = 4 x y^(2)=4xy^2=4 xy2=4x.
Answer:

Introduction

The problem asks us to find the shortest distance from the point ( 1 , 0 ) ( 1 , 0 ) (1,0)(1,0)(1,0) to the parabola y 2 = 4 x y 2 = 4 x y^(2)=4xy^2 = 4xy2=4x.

Work/Calculations

Step 1: Parametric Equation of the Parabola

The parabola y 2 = 4 x y 2 = 4 x y^(2)=4xy^2 = 4xy2=4x can be parameterized as follows:
x = t 2 , y = 2 t x = t 2 , y = 2 t x=t^(2),quad y=2tx = t^2, \quad y = 2tx=t2,y=2t
where t t ttt is a parameter.

Step 2: Distance Formula

The distance d d ddd between the point ( 1 , 0 ) ( 1 , 0 ) (1,0)(1,0)(1,0) and a point ( x , y ) ( x , y ) (x,y)(x,y)(x,y) on the parabola is given by:
d = ( x 1 ) 2 + ( y 0 ) 2 d = ( x 1 ) 2 + ( y 0 ) 2 d=sqrt((x-1)^(2)+(y-0)^(2))d = \sqrt{(x-1)^2 + (y-0)^2}d=(x1)2+(y0)2
Substituting the parametric equations x = t 2 x = t 2 x=t^(2)x = t^2x=t2 and y = 2 t y = 2 t y=2ty = 2ty=2t, we get:
d = ( t 2 1 ) 2 + ( 2 t ) 2 d = ( t 2 1 ) 2 + ( 2 t ) 2 d=sqrt((t^(2)-1)^(2)+(2t)^(2))d = \sqrt{(t^2 – 1)^2 + (2t)^2}d=(t21)2+(2t)2
d = t 4 2 t 2 + 1 + 4 t 2 d = t 4 2 t 2 + 1 + 4 t 2 d=sqrt(t^(4)-2t^(2)+1+4t^(2))d = \sqrt{t^4 – 2t^2 + 1 + 4t^2}d=t42t2+1+4t2
d = t 4 + 2 t 2 + 1 d = t 4 + 2 t 2 + 1 d=sqrt(t^(4)+2t^(2)+1)d = \sqrt{t^4 + 2t^2 + 1}d=t4+2t2+1
d = ( t 2 + 1 ) 2 d = ( t 2 + 1 ) 2 d=sqrt((t^(2)+1)^(2))d = \sqrt{(t^2 + 1)^2}d=(t2+1)2
d = t 2 + 1 d = t 2 + 1 d=t^(2)+1d = t^2 + 1d=t2+1

Step 3: Minimize the Distance

To find the minimum distance, we need to minimize d = t 2 + 1 d = t 2 + 1 d=t^(2)+1d = t^2 + 1d=t2+1. The function d d ddd is a parabola that opens upwards, and its minimum value occurs at the vertex.
The minimum value of d d ddd is d min = 1 d min = 1 d_(“min”)=1d_{\text{min}} = 1dmin=1.

Conclusion

The shortest distance from the point ( 1 , 0 ) ( 1 , 0 ) (1,0)(1,0)(1,0) to the parabola y 2 = 4 x y 2 = 4 x y^(2)=4xy^2 = 4xy2=4x is 1 1 111.
(c) दीर्घवृत्त x 2 a 2 + y 2 b 2 = 1 x x 2 a 2 + y 2 b 2 = 1 x (x^(2))/(a^(2))+(y^(2))/(b^(2))=1x\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 xx2a2+y2b2=1x-अक्ष के चारों तरफ परिभ्रमण कर रहा है। परिक्रमित घन का आयतन ज्ञात कीजिये।
The ellipse x 2 a 2 + y 2 b 2 = 1 x 2 a 2 + y 2 b 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1x2a2+y2b2=1 revolves about the x x xxx-axis. Find the volume of the solid of revolution.
Answer:

Introduction

The problem asks us to find the volume of the solid generated when the ellipse x 2 a 2 + y 2 b 2 = 1 x 2 a 2 + y 2 b 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1x2a2+y2b2=1 revolves about the x x xxx-axis.

Work/Calculations

Step 1: Solve for y y yyy in terms of x x xxx

We can rewrite the equation of the ellipse as y 2 = b 2 ( 1 x 2 a 2 ) y 2 = b 2 1 x 2 a 2 y^(2)=b^(2)(1-(x^(2))/(a^(2)))y^2 = b^2 \left(1 – \frac{x^2}{a^2}\right)y2=b2(1x2a2) or
y = ± b 1 x 2 a 2 y = ± b 1 x 2 a 2 y=+-bsqrt(1-(x^(2))/(a^(2)))y = \pm b \sqrt{1 – \frac{x^2}{a^2}}y=±b1x2a2

Step 2: Volume of Solid of Revolution

The volume V V VVV of the solid generated by revolving the curve y = f ( x ) y = f ( x ) y=f(x)y = f(x)y=f(x) about the x x xxx-axis from x = a x = a x=ax = ax=a to x = b x = b x=bx = bx=b is given by V = π a b [ f ( x ) ] 2 d x V = π a b [ f ( x ) ] 2 d x V=piint_(a)^(b)[f(x)]^(2)dxV = \pi \int_{a}^{b} [f(x)]^2 \, dxV=πab[f(x)]2dx
For our ellipse, we have f ( x ) = b 1 x 2 a 2 f ( x ) = b 1 x 2 a 2 f(x)=bsqrt(1-(x^(2))/(a^(2)))f(x) = b \sqrt{1 – \frac{x^2}{a^2}}f(x)=b1x2a2

Step 3: Set up the Integral

The ellipse extends from x = a x = a x=-ax = -ax=a to x = a x = a x=ax = ax=a. Therefore, the volume V V VVV is V = π a a ( b 1 x 2 a 2 ) 2 d x V = π a a b 1 x 2 a 2 2 d x V=piint_(-a)^(a)(bsqrt(1-(x^(2))/(a^(2))))^(2)dxV = \pi \int_{-a}^{a} \left(b \sqrt{1 – \frac{x^2}{a^2}}\right)^2 \, dxV=πaa(b1x2a2)2dx
Simplifying, we get V = π a a b 2 ( 1 x 2 a 2 ) d x V = π a a b 2 1 x 2 a 2 d x V=piint_(-a)^(a)b^(2)(1-(x^(2))/(a^(2)))dxV = \pi \int_{-a}^{a} b^2 \left(1 – \frac{x^2}{a^2}\right) \, dxV=πaab2(1x2a2)dx

Step 4: Evaluate the Integral

After Calculating, we get V = π b 2 [ x x 3 3 a 2 ] a a V = π b 2 x x 3 3 a 2 a a V=pib^(2)[x-(x^(3))/(3a^(2))]_(-a)^(a)V = \pi b^2 \left[x – \frac{x^3}{3a^2}\right]_{-a}^{a}V=πb2[xx33a2]aa
V = π b 2 [ 2 a 2 a 3 3 a 2 ] V = π b 2 2 a 2 a 3 3 a 2 V=pib^(2)[2a-(2a^(3))/(3a^(2))]V = \pi b^2 \left[2a – \frac{2a^3}{3a^2}\right]V=πb2[2a2a33a2]
V = π b 2 [ 2 a 2 a 3 ] V = π b 2 2 a 2 a 3 V=pib^(2)[2a-(2a)/(3)]V = \pi b^2 \left[2a – \frac{2a}{3}\right]V=πb2[2a2a3]
V = 4 π a b 2 3 V = 4 π a b 2 3 V=(4pi ab^(2))/(3)V = \frac{4\pi a b^2}{3}V=4πab23

Conclusion

The volume of the solid generated when the ellipse x 2 a 2 + y 2 b 2 = 1 x 2 a 2 + y 2 b 2 = 1 (x^(2))/(a^(2))+(y^(2))/(b^(2))=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1x2a2+y2b2=1 revolves about the x x xxx-axis is 4 π a b 2 3 4 π a b 2 3 (4pi ab^(2))/(3)\frac{4\pi a b^2}{3}4πab23.
(d) रेखाओं
a 1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0 a 1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0 {:[a_(1)x+b_(1)y+c_(1)z+d_(1)=0],[a_(2)x+b_(2)y+c_(2)z+d_(2)=0]:}\begin{array}{r} a_1 x+b_1 y+c_1 z+d_1=0 \\ a_2 x+b_2 y+c_2 z+d_2=0 \end{array}a1x+b1y+c1z+d1=0a2x+b2y+c2z+d2=0
और z z zzz-अक्ष के बीच की न्यूनतम दूरी ज्ञात कीजिये।
Find the shortest distance between the lines
a 1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0 a 1 x + b 1 y + c 1 z + d 1 = 0 a 2 x + b 2 y + c 2 z + d 2 = 0 {:[a_(1)x+b_(1)y+c_(1)z+d_(1)=0],[a_(2)x+b_(2)y+c_(2)z+d_(2)=0]:}\begin{array}{r} a_1 x+b_1 y+c_1 z+d_1=0 \\ a_2 x+b_2 y+c_2 z+d_2=0 \end{array}a1x+b1y+c1z+d1=0a2x+b2y+c2z+d2=0
and the z-axis.
Answer:
Any plane through the line
a 1 x + b 1 y + c 1 z + d 1 = 0 = a 2 x + b 2 y + c 2 z + d 2 = 0 a 1 x + b 1 y + c 1 z + d 1 = 0 = a 2 x + b 2 y + c 2 z + d 2 = 0 a_(1)x+b_(1)y+c_(1)z+d_(1)=0=a_(2)x+b_(2)y+c_(2)z+d_(2)=0a_1 x+b_1 y+c_1 z+d_1=0=a_2 x+b_2 y+c_2 z+d_2=0a1x+b1y+c1z+d1=0=a2x+b2y+c2z+d2=0
is given by a 1 x + b 1 y + c 1 z + d 1 + λ ( a 2 x + b 2 y + c 2 z + d 2 ) = 0 a 1 x + b 1 y + c 1 z + d 1 + λ ( a 2 x + b 2 y + c 2 z + d 2 ) = 0 a_(1)x+b_(1)y+c_(1)z+d_(1)+lambda(a_(2)x+b_(2)y+c_(2)z+d_(2))=0a_1 x+b_1 y+c_1 z+d_1+\lambda(a_2 x+b_2 y+c_2 z+d_2)=0a1x+b1y+c1z+d1+λ(a2x+b2y+c2z+d2)=0.
If this plane is parallel to the z z zzz-axis, i.e., x 0 = y 0 = z 1 x 0 = y 0 = z 1 (x)/(0)=(y)/(0)=(z)/(1)\frac{x}{0}=\frac{y}{0}=\frac{z}{1}x0=y0=z1, we have:
( a 1 + λ a 2 ) 0 + ( b 1 + λ b 2 ) 0 + ( c 1 + λ c 2 ) 1 = 0 λ = c 1 c 2 a 1 + λ a 2 0 + b 1 + λ b 2 0 + c 1 + λ c 2 1 = 0 λ = c 1 c 2 {:[(a_(1)+lambdaa_(2))*0+(b_(1)+lambdab_(2))*0+(c_(1)+lambdac_(2))*1=0],[:.quad lambda=-(c_(1))/(c_(2))]:}\begin{aligned} & \left(a_1+\lambda a_2\right) \cdot 0+\left(b_1+\lambda b_2\right) \cdot 0+\left(c_1+\lambda c_2\right) \cdot 1=0 \\ & \therefore \quad \lambda=-\frac{c_1}{c_2} \end{aligned}(a1+λa2)0+(b1+λb2)0+(c1+λc2)1=0λ=c1c2
Therefore, the equation of the plane containing the given line and parallel to the z z zzz-axis is:
( c 2 a 1 c 1 a 2 ) x + ( b 2 c 1 c 2 b 1 ) y + d 2 c 1 c 2 d 1 = 0 c 2 a 1 c 1 a 2 x + b 2 c 1 c 2 b 1 y + d 2 c 1 c 2 d 1 = 0 (c_(2)a_(1)-c_(1)a_(2))x+(b_(2)c_(1)-c_(2)b_(1))y+d_(2)c_(1)-c_(2)d_(1)=0\left(c_2 a_1-c_1 a_2\right) x+\left(b_2 c_1-c_2 b_1\right) y+d_2 c_1-c_2 d_1=0(c2a1c1a2)x+(b2c1c2b1)y+d2c1c2d1=0
So, the shortest distance ( S . D . S . D . S.D.S.D.S.D.) is the perpendicular distance from any point on the z z zzz-axis, say ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0), to this plane:
= c 2 d 1 d 2 c 1 ( c 2 a 1 c 1 a 2 ) 2 + ( b 2 c 1 c 2 b 1 ) 2 = c 2 d 1 d 2 c 1 [ ( c 2 a 1 c 1 a 2 ) 2 + ( b 2 c 1 c 2 b 1 ) 2 ] = c 2 d 1 d 2 c 1 c 2 a 1 c 1 a 2 2 + b 2 c 1 c 2 b 1 2 = c 2 d 1 d 2 c 1 c 2 a 1 c 1 a 2 2 + b 2 c 1 c 2 b 1 2 {:[=(c_(2)d_(1)-d_(2)c_(1))/(sqrt((c_(2)a_(1)-c_(1)a_(2))^(2)+(b_(2)c_(1)-c_(2)b_(1))^(2)))],[=(c_(2)d_(1)-d_(2)c_(1))/(sqrt([(c_(2)a_(1)-c_(1)a_(2))^(2)+(b_(2)c_(1)-c_(2)b_(1))^(2)]))]:}\begin{aligned} & =\frac{c_2 d_1-d_2 c_1}{\sqrt{\left(c_2 a_1-c_1 a_2\right)^2+\left(b_2 c_1-c_2 b_1\right)^2}} \\ & =\frac{c_2 d_1-d_2 c_1}{\sqrt{\left[\left(c_2 a_1-c_1 a_2\right)^2+\left(b_2 c_1-c_2 b_1\right)^2\right]}} \end{aligned}=c2d1d2c1(c2a1c1a2)2+(b2c1c2b1)2=c2d1d2c1[(c2a1c1a2)2+(b2c1c2b1)2]
Hence, the shortest distance between the given lines and the z z zzz-axis is represented as S . D . S . D . S.D.S.D.S.D..
  1. (a) रेखिक समीकरण निकाय
x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 {:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned} x+3 y-2 z &=-1 \\ 5 y+3 z &=-8 \\ x-2 y-5 z &=7 \end{aligned}x+3y2z=15y+3z=8x2y5z=7
के लिये निर्धारित कीजिये कि निम्नलिखित कथर्नों में से कौन-से सही हैं और कौन-से गलत :
(i) समीकरण निकाय का कोई भी हल नही है।
(ii) समीकरण निकाय का सिर्फ एक ही हल है।
(iii) समीकरण निकाय के असीम मात्रा में अनेक हल है।
For the system of linear equations
x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 {:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned} x+3 y-2 z &=-1 \\ 5 y+3 z &=-8 \\ x-2 y-5 z &=7 \end{aligned}x+3y2z=15y+3z=8x2y5z=7
Determine which of the following statements are true and which are false :
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.
Answer:

Introduction

The problem asks us to determine the nature of the solutions for the given system of linear equations:
x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 x + 3 y 2 z = 1 5 y + 3 z = 8 x 2 y 5 z = 7 {:[x+3y-2z=-1],[5y+3z=-8],[x-2y-5z=7]:}\begin{aligned} x+3 y-2 z &= -1 \\ 5 y+3 z &= -8 \\ x-2 y-5 z &= 7 \end{aligned}x+3y2z=15y+3z=8x2y5z=7
We have three statements to verify:
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.

Work/Calculations

Step 1: Form the Augmented Matrix

The augmented matrix for the system of equations is:
[ 1 3 2 1 0 5 3 8 1 2 5 7 ] 1 3 2 1 0 5 3 8 1 2 5 7 [[1,3,-2,-1],[0,5,3,-8],[1,-2,-5,7]]\left[\begin{array}{cccc} 1 & 3 & -2 & -1 \\ 0 & 5 & 3 & -8 \\ 1 & -2 & -5 & 7 \end{array}\right][132105381257]

Step 2: Row Reduce the Matrix

Now, reduce this matrix
R 3 R 3 R 1 = [ 1 3 2 1 0 5 3 8 0 5 3 8 ] R 3 R 3 R 1 = 1 3 2 1 0 5 3 8 0 5 3 8 {:[R_(3)larrR_(3)-R_(1)],[=[[1,3,-2,-1],[0,5,3,-8],[0,-5,-3,8]]]:}\begin{aligned} & R_3 \leftarrow R_3-R_1 \\ & =\left[\begin{array}{cccc} 1 & 3 & -2 & -1 \\ 0 & 5 & 3 & -8 \\ 0 & -5 & -3 & 8 \end{array}\right] \end{aligned}R3R3R1=[132105380538]
R 2 R 2 ÷ 5 = [ 1 3 2 1 0 1 0.6 1.6 0 5 3 8 ] R 2 R 2 ÷ 5 = 1 3 2 1 0 1 0.6 1.6 0 5 3 8 {:[R_(2)larrR_(2)-:5],[=[[1,3,-2,-1],[0,1,0.6,-1.6],[0,-5,-3,8]]]:}\begin{aligned} & R_2 \leftarrow R_2 \div 5 \\ & =\left[\begin{array}{cccc} 1 & 3 & -2 & -1 \\ 0 & 1 & 0.6 & -1.6 \\ 0 & -5 & -3 & 8 \end{array}\right] \end{aligned}R2R2÷5=[1321010.61.60538]
R 3 R 3 + 5 × R 2 R 3 R 3 + 5 × R 2 R_(3)larrR_(3)+5xxR_(2)R_3 \leftarrow R_3+5 \times R_2R3R3+5×R2
After row reducing, we get:
[ 1 3 2 1 0 1 0.6 1.6 0 0 0 0 ] 1 3 2 1 0 1 0.6 1.6 0 0 0 0 [[1,3,-2,-1],[0,1,0.6,-1.6],[0,0,0,0]]\left[\begin{array}{cccc} 1 & 3 & -2 & -1 \\ 0 & 1 & 0.6 & -1.6 \\ 0 & 0 & 0 & 0 \end{array}\right][1321010.61.60000]

Step 3: Determine the Rank

After Calculating, the rank of the matrix is 2 2 222.

Step 4: Analyze the Solution

The rank of the coefficient matrix and the augmented matrix is the same, and it is less than the number of unknowns ( 3 3 333). According to the Rouché–Capelli theorem, this means the system has infinitely many solutions.

Conclusion

Based on the row-reduced form and the rank of the matrix, we can conclude the following:
(i) The system has no solution. – False
(ii) The system has a unique solution. – False
(iii) The system has infinitely many solutions. – True
The system of equations has infinitely many solutions, as confirmed by the rank of the matrix.
(b) मान लीजिये कि
f ( x , y ) = x y 2 , यदि y > 0 = x y 2 , यदि y 0 f ( x , y ) = x y 2 , यदि y > 0 = x y 2 , यदि y 0 {:[f(x”,”y)=xy^(2)”,”” यदि “y > 0],[=-xy^(2)”,”” यदि “y <= 0]:}\begin{aligned} f(x, y) &=x y^2, & \text { यदि } y>0 \\ &=-x y^2, & \text { यदि } y \leq 0 \end{aligned}f(x,y)=xy2, यदि y>0=xy2, यदि y0
निर्धारित कीजिये कि f x ( 0 , 1 ) f x ( 0 , 1 ) (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1)fx(0,1) और f y ( 0 , 1 ) f y ( 0 , 1 ) (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1)fy(0,1) में से किसका अस्तित्व है और किसका अस्तित्व नहीं है।
Let
f ( x , y ) = x y 2 , if y > 0 = x y 2 , if y 0 f ( x , y ) = x y 2 , if y > 0 = x y 2 , if y 0 {:[f(x”,”y)=xy^(2)”,”” if “y > 0],[=-xy^(2)”,”” if “y <= 0]:}\begin{aligned} f(x, y) &=x y^2, & \text { if } & y>0 \\ &=-x y^2, & \text { if } & y \leq 0 \end{aligned}f(x,y)=xy2, if y>0=xy2, if y0
Determine which of f x ( 0 , 1 ) f x ( 0 , 1 ) (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1)fx(0,1) and f y ( 0 , 1 ) f y ( 0 , 1 ) (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1)fy(0,1) exists and which does not exist.
Answer:

Introduction

The function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is defined as follows:
f ( x , y ) = x y 2 , if y > 0 = x y 2 , if y 0 f ( x , y ) = x y 2 , if y > 0 = x y 2 , if y 0 {:[f(x”,”y)=xy^(2)”,”” if “y > 0],[=-xy^(2)”,”” if “y <= 0]:}\begin{aligned} f(x, y) &= x y^2, & \text{ if } & y > 0 \\ &= -x y^2, & \text{ if } & y \leq 0 \end{aligned}f(x,y)=xy2, if y>0=xy2, if y0
We are asked to determine which of f x ( 0 , 1 ) f x ( 0 , 1 ) (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1)fx(0,1) and f y ( 0 , 1 ) f y ( 0 , 1 ) (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1)fy(0,1) exists and which does not.

Work/Calculations

Step 1: Partial Derivative with respect to x x xxx at ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)

The formula for the partial derivative with respect to x x xxx is:
f x = lim h 0 f ( 0 + h , 1 ) f ( 0 , 1 ) h f x = lim h 0 f ( 0 + h , 1 ) f ( 0 , 1 ) h (del f)/(del x)=lim_(h rarr0)(f(0+h,1)-f(0,1))/(h)\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(0 + h, 1) – f(0, 1)}{h}fx=limh0f(0+h,1)f(0,1)h
Let’s substitute the values into the formula:
For y > 0 y > 0 y > 0y > 0y>0, f ( x , y ) = x y 2 f ( x , y ) = x y 2 f(x,y)=xy^(2)f(x, y) = x y^2f(x,y)=xy2:
f x = lim h 0 h 1 2 0 h f x = lim h 0 h 1 2 0 h (del f)/(del x)=lim_(h rarr0)(h*1^(2)-0)/(h)\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{h \cdot 1^2 – 0}{h}fx=limh0h120h
After Calculating, we get f x = 1 f x = 1 (del f)/(del x)=1\frac{\partial f}{\partial x} = 1fx=1.
For y 0 y 0 y <= 0y \leq 0y0, f ( x , y ) = x y 2 f ( x , y ) = x y 2 f(x,y)=-xy^(2)f(x, y) = -x y^2f(x,y)=xy2:
f x = lim h 0 0 0 h f x = lim h 0 0 0 h (del f)/(del x)=lim_(h rarr0)(0-0)/(h)\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{0 – 0}{h}fx=limh000h
After Calculating, we get f x = 0 f x = 0 (del f)/(del x)=0\frac{\partial f}{\partial x} = 0fx=0.
Since the values are different, f x ( 0 , 1 ) f x ( 0 , 1 ) (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1)fx(0,1) does not exist.

Step 2: Partial Derivative with respect to y y yyy at ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1)

The formula for the partial derivative with respect to y y yyy is:
f y = lim k 0 f ( 0 , 1 + k ) f ( 0 , 1 ) k f y = lim k 0 f ( 0 , 1 + k ) f ( 0 , 1 ) k (del f)/(del y)=lim_(k rarr0)(f(0,1+k)-f(0,1))/(k)\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{f(0, 1 + k) – f(0, 1)}{k}fy=limk0f(0,1+k)f(0,1)k
Let’s substitute the values into the formula:
For y > 0 y > 0 y > 0y > 0y>0, f ( x , y ) = x y 2 f ( x , y ) = x y 2 f(x,y)=xy^(2)f(x, y) = x y^2f(x,y)=xy2:
f y = lim k 0 0 ( 1 + k ) 2 0 1 2 k f y = lim k 0 0 ( 1 + k ) 2 0 1 2 k (del f)/(del y)=lim_(k rarr0)(0*(1+k)^(2)-0*1^(2))/(k)\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{0 \cdot (1 + k)^2 – 0 \cdot 1^2}{k}fy=limk00(1+k)2012k
After Calculating, we get f y = 0 f y = 0 (del f)/(del y)=0\frac{\partial f}{\partial y} = 0fy=0.
For y 0 y 0 y <= 0y \leq 0y0, f ( x , y ) = x y 2 f ( x , y ) = x y 2 f(x,y)=-xy^(2)f(x, y) = -x y^2f(x,y)=xy2:
f y = lim k 0 0 ( 1 + k ) 2 0 1 2 k f y = lim k 0 0 ( 1 + k ) 2 0 1 2 k (del f)/(del y)=lim_(k rarr0)(0*(1+k)^(2)-0*1^(2))/(k)\frac{\partial f}{\partial y} = \lim_{k \to 0} \frac{0 \cdot (1 + k)^2 – 0 \cdot 1^2}{k}fy=limk00(1+k)2012k
After Calculating, we get f y = 0 f y = 0 (del f)/(del y)=0\frac{\partial f}{\partial y} = 0fy=0.
Since the values are the same, f y ( 0 , 1 ) f y ( 0 , 1 ) (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1)fy(0,1) exists and is 0 0 000.

Conclusion

  • f x ( 0 , 1 ) f x ( 0 , 1 ) (del f)/(del x)(0,1)\frac{\partial f}{\partial x}(0,1)fx(0,1) does not exist.
  • f y ( 0 , 1 ) f y ( 0 , 1 ) (del f)/(del y)(0,1)\frac{\partial f}{\partial y}(0,1)fy(0,1) exists and is 0 0 000.
(c) परबलयज ( x + y + z ) ( 2 x + y z ) = 6 z ( x + y + z ) ( 2 x + y z ) = 6 z (x+y+z)(2x+y-z)=6z(x+y+z)(2 x+y-z)=6 z(x+y+z)(2x+yz)=6z की उन जनक रेखाओं के समीकरणों को ज्ञात कीजिये, जो बिन्दु ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) में से गुज्जरती है।
Find the equations to the generating lines of the paraboloid ( x + y + z ) ( 2 x + y z ) = 6 z ( x + y + z ) ( 2 x + y z ) = 6 z (x+y+z)(2x+y-z)=6z(x+y+z)(2 x+y-z)=6 z(x+y+z)(2x+yz)=6z which pass through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1).
Answer:

Introduction

The problem asks us to find the equations of the generating lines of the paraboloid ( x + y + z ) ( 2 x + y z ) = 6 z ( x + y + z ) ( 2 x + y z ) = 6 z (x+y+z)(2x+y-z)=6z(x+y+z)(2x+y-z)=6z(x+y+z)(2x+yz)=6z that pass through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1).

Work/Calculations

Step 1: Generators of the Surface

The two generators of the given surface belonging to the λ λ lambda\lambdaλ– and μ μ mu\muμ-systems are given by:
x + y + z = λ z , 2 x + y z = 6 λ x + y + z = λ z , 2 x + y z = 6 λ x+y+z=lambda z,quad2x+y-z=(6)/(lambda)x+y+z = \lambda z, \quad 2x+y-z = \frac{6}{\lambda}x+y+z=λz,2x+yz=6λ
and
x + y + z = 6 μ , 2 x + y 3 z = μ z x + y + z = 6 μ , 2 x + y 3 z = μ z x+y+z=(6)/(mu),quad2x+y-3z=mu zx+y+z = \frac{6}{\mu}, \quad 2x+y-3z = \mu zx+y+z=6μ,2x+y3z=μz

Step 2: Substituting the Point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1)

If these lines pass through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1), we can substitute these values into the equations to find λ λ lambda\lambdaλ and μ μ mu\muμ:
For λ λ lambda\lambdaλ-system:
1 + 1 + 1 = λ × 1 λ = 3 1 + 1 + 1 = λ × 1 λ = 3 1+1+1=lambda xx1Longrightarrowlambda=31+1+1 = \lambda \times 1 \implies \lambda = 31+1+1=λ×1λ=3
For μ μ mu\muμ-system:
1 + 1 + 1 = 6 μ μ = 2 1 + 1 + 1 = 6 μ μ = 2 1+1+1=(6)/(mu)Longrightarrowmu=21+1+1 = \frac{6}{\mu} \implies \mu = 21+1+1=6μμ=2

Step 3: Generators with Specific λ λ lambda\lambdaλ and μ μ mu\muμ

Hence, the two generators of the opposite systems are:
For λ = 3 λ = 3 lambda=3\lambda = 3λ=3:
x + y 2 z = 0 , 2 x + y z = 2 x + y 2 z = 0 , 2 x + y z = 2 x+y-2z=0,quad2x+y-z=2x+y-2z = 0, \quad 2x+y-z = 2x+y2z=0,2x+yz=2
For μ = 2 μ = 2 mu=2\mu = 2μ=2:
x + y + 2 z = 3 , 2 x + y 3 z = 0 x + y + 2 z = 3 , 2 x + y 3 z = 0 x+y+2z=3,quad2x+y-3z=0x+y+2z = 3, \quad 2x+y-3z = 0x+y+2z=3,2x+y3z=0

Step 4: Direction Ratios and Equations of the Lines

The direction ratios of these lines are respectively given by 1 , 3 , 1 1 , 3 , 1 -1,3,1-1, 3, 11,3,1 and 4 , 5 , 1 4 , 5 , 1 -4,5,1-4, 5, 14,5,1.
Since the lines pass through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1), their equations in symmetrical form are:
For λ = 3 λ = 3 lambda=3\lambda = 3λ=3:
x 1 1 = y 1 3 = z 1 1 x 1 1 = y 1 3 = z 1 1 (x-1)/(-1)=(y-1)/(3)=(z-1)/(1)\frac{x-1}{-1} = \frac{y-1}{3} = \frac{z-1}{1}x11=y13=z11
For μ = 2 μ = 2 mu=2\mu = 2μ=2:
x 1 4 = y 1 5 = z 1 1 x 1 4 = y 1 5 = z 1 1 (x-1)/(-4)=(y-1)/(5)=(z-1)/(1)\frac{x-1}{-4} = \frac{y-1}{5} = \frac{z-1}{1}x14=y15=z11

Conclusion

The equations of the generating lines of the paraboloid ( x + y + z ) ( 2 x + y z ) = 6 z ( x + y + z ) ( 2 x + y z ) = 6 z (x+y+z)(2x+y-z)=6z(x+y+z)(2x+y-z)=6z(x+y+z)(2x+yz)=6z that pass through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) are:
For λ = 3 λ = 3 lambda=3\lambda = 3λ=3:
x 1 1 = y 1 3 = z 1 1 x 1 1 = y 1 3 = z 1 1 (x-1)/(-1)=(y-1)/(3)=(z-1)/(1)\frac{x-1}{-1} = \frac{y-1}{3} = \frac{z-1}{1}x11=y13=z11
For μ = 2 μ = 2 mu=2\mu = 2μ=2:
x 1 4 = y 1 5 = z 1 1 x 1 4 = y 1 5 = z 1 1 (x-1)/(-4)=(y-1)/(5)=(z-1)/(1)\frac{x-1}{-4} = \frac{y-1}{5} = \frac{z-1}{1}x14=y15=z11
These lines describe the shape of the paraboloid and pass through the specified point.
(d) xyz-समतल में स्थित, बिन्दुओं ( 0 , 0 , 0 ) , ( 0 , 1 , 1 ) , ( 1 , 2 , 0 ) ( 0 , 0 , 0 ) , ( 0 , 1 , 1 ) , ( 1 , 2 , 0 ) (0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,1),(1,2,0) और ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) (1,2,3)(1,2,3)(1,2,3) में से गुज़रते हुये गोले का समीकरण ज्ञात कीजिये।
Find the equation of the sphere in xyz-plane passing through the points ( 0 , 0 , 0 ) , ( 0 , 1 , 1 ) , ( 1 , 2 , 0 ) ( 0 , 0 , 0 ) , ( 0 , 1 , 1 ) , ( 1 , 2 , 0 ) (0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,-1),(-1,2,0)(0,0,0),(0,1,1),(1,2,0) and ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) (1,2,3)(1,2,3)(1,2,3).
Answer:

Introduction

The problem asks us to find the equation of the sphere in the x y z x y z xyzxyzxyz-plane that passes through the points ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0), ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,-1)(0,1,-1)(0,1,1), ( 1 , 2 , 0 ) ( 1 , 2 , 0 ) (-1,2,0)(-1,2,0)(1,2,0), and ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) (1,2,3)(1,2,3)(1,2,3).

Work/Calculations

Step 1: General Equation of a Sphere

The general equation of a sphere in Cartesian coordinates is:
( x h ) 2 + ( y k ) 2 + ( z l ) 2 = r 2 ( x h ) 2 + ( y k ) 2 + ( z l ) 2 = r 2 (x-h)^(2)+(y-k)^(2)+(z-l)^(2)=r^(2)(x – h)^2 + (y – k)^2 + (z – l)^2 = r^2(xh)2+(yk)2+(zl)2=r2
where ( h , k , l ) ( h , k , l ) (h,k,l)(h, k, l)(h,k,l) is the center of the sphere and r r rrr is the radius.

Step 2: Substitute the Points into the Equation

We can substitute each of the four points into the equation of the sphere to get four equations:
  1. For ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0):
h 2 + k 2 + l 2 = r 2 (Equation 1) h 2 + k 2 + l 2 = r 2 (Equation 1) h^(2)+k^(2)+l^(2)=r^(2)quad(Equation 1)h^2 + k^2 + l^2 = r^2 \quad \text{(Equation 1)}h2+k2+l2=r2(Equation 1)
  1. For ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,-1)(0,1,-1)(0,1,1):
h 2 + ( k 1 ) 2 + ( l + 1 ) 2 = r 2 (Equation 2) h 2 + ( k 1 ) 2 + ( l + 1 ) 2 = r 2 (Equation 2) h^(2)+(k-1)^(2)+(l+1)^(2)=r^(2)quad(Equation 2)h^2 + (k-1)^2 + (l+1)^2 = r^2 \quad \text{(Equation 2)}h2+(k1)2+(l+1)2=r2(Equation 2)
  1. For ( 1 , 2 , 0 ) ( 1 , 2 , 0 ) (-1,2,0)(-1,2,0)(1,2,0):
( h + 1 ) 2 + ( k 2 ) 2 + l 2 = r 2 (Equation 3) ( h + 1 ) 2 + ( k 2 ) 2 + l 2 = r 2 (Equation 3) (h+1)^(2)+(k-2)^(2)+l^(2)=r^(2)quad(Equation 3)(h+1)^2 + (k-2)^2 + l^2 = r^2 \quad \text{(Equation 3)}(h+1)2+(k2)2+l2=r2(Equation 3)
  1. For ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) (1,2,3)(1,2,3)(1,2,3):
( h 1 ) 2 + ( k 2 ) 2 + ( l 3 ) 2 = r 2 (Equation 4) ( h 1 ) 2 + ( k 2 ) 2 + ( l 3 ) 2 = r 2 (Equation 4) (h-1)^(2)+(k-2)^(2)+(l-3)^(2)=r^(2)quad(Equation 4)(h-1)^2 + (k-2)^2 + (l-3)^2 = r^2 \quad \text{(Equation 4)}(h1)2+(k2)2+(l3)2=r2(Equation 4)

Step 3: Solve for the Center and Radius

We can solve these equations to find the values of h h hhh, k k kkk, l l lll, and r r rrr.
Solving these equations, we find:
h = 15 14 , k = 25 14 , l = 11 14 , r 2 = 971 196 h = 15 14 , k = 25 14 , l = 11 14 , r 2 = 971 196 h=(15)/(14),quad k=(25)/(14),quad l=(11)/(14),quadr^(2)=(971)/(196)h = \frac{15}{14}, \quad k = \frac{25}{14}, \quad l = \frac{11}{14}, \quad r^2 = \frac{971}{196}h=1514,k=2514,l=1114,r2=971196

Step 4: Equation of the Sphere

Substituting these values back into the general equation of the sphere, we get:
( x 15 14 ) 2 + ( y 25 14 ) 2 + ( z 11 14 ) 2 = 971 196 ( x 15 14 ) 2 + ( y 25 14 ) 2 + ( z 11 14 ) 2 = 971 196 (x-(15)/(14))^(2)+(y-(25)/(14))^(2)+(z-(11)/(14))^(2)=(971)/(196)(x – \frac{15}{14})^2 + (y – \frac{25}{14})^2 + (z – \frac{11}{14})^2 = \frac{971}{196}(x1514)2+(y2514)2+(z1114)2=971196

Conclusion

The equation of the sphere in the x y z x y z xyzxyzxyz-plane passing through the points ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0), ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,-1)(0,1,-1)(0,1,1), ( 1 , 2 , 0 ) ( 1 , 2 , 0 ) (-1,2,0)(-1,2,0)(1,2,0), and ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) (1,2,3)(1,2,3)(1,2,3) is:
( x 15 14 ) 2 + ( y 25 14 ) 2 + ( z 11 14 ) 2 = 971 196 ( x 15 14 ) 2 + ( y 25 14 ) 2 + ( z 11 14 ) 2 = 971 196 (x-(15)/(14))^(2)+(y-(25)/(14))^(2)+(z-(11)/(14))^(2)=(971)/(196)(x – \frac{15}{14})^2 + (y – \frac{25}{14})^2 + (z – \frac{11}{14})^2 = \frac{971}{196}(x1514)2+(y2514)2+(z1114)2=971196
4.(a) अन्तराल [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3][2,3] पर x 4 5 x 2 + 4 x 4 5 x 2 + 4 x^(4)-5x^(2)+4x^4-5 x^2+4x45x2+4 के अधिकतम और न्यूनतम मान ज्ञात कीजिये।
Find the maximum and the minimum values of x 4 5 x 2 + 4 x 4 5 x 2 + 4 x^(4)-5x^(2)+4x^4-5 x^2+4x45x2+4 on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2,3][2,3].
Answer:

Introduction

The problem asks us to find the maximum and minimum values of the function f ( x ) = x 4 5 x 2 + 4 f ( x ) = x 4 5 x 2 + 4 f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4f(x)=x45x2+4 on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3].

Work/Calculations

Step 1: Identify the Function and Interval

The function is f ( x ) = x 4 5 x 2 + 4 f ( x ) = x 4 5 x 2 + 4 f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4f(x)=x45x2+4, and the interval is [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3].

Step 2: Find the Critical Points

To find the critical points, we need to take the derivative of f ( x ) f ( x ) f(x)f(x)f(x) and set it equal to zero:
f ( x ) = 4 x 3 10 x f ( x ) = 4 x 3 10 x f^(‘)(x)=4x^(3)-10 xf'(x) = 4x^3 – 10xf(x)=4x310x
4 x 3 10 x = 0 4 x 3 10 x = 0 4x^(3)-10 x=04x^3 – 10x = 04x310x=0
After Calculating, the critical points are x = 0 x = 0 x=0x = 0x=0, x = 5 2 x = 5 2 x=-sqrt((5)/(2))x = -\sqrt{\frac{5}{2}}x=52, and x = 5 2 x = 5 2 x=sqrt((5)/(2))x = \sqrt{\frac{5}{2}}x=52.
However, none of these critical points lie within the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3]. Therefore, we only need to evaluate the function at the endpoints of the interval.

Step 3: Evaluate the Function at the Endpoints

Let’s substitute the values x = 2 x = 2 x=2x = 2x=2 and x = 3 x = 3 x=3x = 3x=3 into the function f ( x ) f ( x ) f(x)f(x)f(x):
  1. f ( 2 ) = 2 4 5 × 2 2 + 4 f ( 2 ) = 2 4 5 × 2 2 + 4 f(2)=2^(4)-5xx2^(2)+4f(2) = 2^4 – 5 \times 2^2 + 4f(2)=245×22+4
    After Calculating, f ( 2 ) = 0 f ( 2 ) = 0 f(2)=0f(2) = 0f(2)=0
  2. f ( 3 ) = 3 4 5 × 3 2 + 4 f ( 3 ) = 3 4 5 × 3 2 + 4 f(3)=3^(4)-5xx3^(2)+4f(3) = 3^4 – 5 \times 3^2 + 4f(3)=345×32+4
    After Calculating, f ( 3 ) = 40 f ( 3 ) = 40 f(3)=40f(3) = 40f(3)=40

Step 4: Identify the Maximum and Minimum Values

The maximum value of f ( x ) f ( x ) f(x)f(x)f(x) on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3] is 40 40 404040 at x = 3 x = 3 x=3x = 3x=3.
The minimum value of f ( x ) f ( x ) f(x)f(x)f(x) on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3] is 0 0 000 at x = 2 x = 2 x=2x = 2x=2.

Conclusion

The maximum value of f ( x ) = x 4 5 x 2 + 4 f ( x ) = x 4 5 x 2 + 4 f(x)=x^(4)-5x^(2)+4f(x) = x^4 – 5x^2 + 4f(x)=x45x2+4 on the interval [ 2 , 3 ] [ 2 , 3 ] [2,3][2, 3][2,3] is 40 40 404040 at x = 3 x = 3 x=3x = 3x=3, and the minimum value is 0 0 000 at x = 2 x = 2 x=2x = 2x=2.
(b) समाकल 0 a x / a x x d y d x x 2 + y 2 0 a x / a x x d y d x x 2 + y 2 int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x d y d x}{x^2+y^2}0ax/axxdydxx2+y2 का मान निकालिये।
Evaluate the integral 0 a x / a x x d y d x x 2 + y 2 0 a x / a x x d y d x x 2 + y 2 int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x d y d x}{x^2+y^2}0ax/axxdydxx2+y2.
Answer:

Introduction

The problem asks us to evaluate the integral 0 a x / a x x d y d x x 2 + y 2 0 a x / a x x d y d x x 2 + y 2 int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x \, dy \, dx}{x^2+y^2}0ax/axxdydxx2+y2. We’ll attempt to change the order of integration to make the integral easier to evaluate.

Work/Calculations

Step 1: Identify the Region of Integration

The original region R R RRR in the x y x y xyxyxy-plane is defined by:
  • 0 x a 0 x a 0 <= x <= a0 \leq x \leq a0xa
  • x / a y x x / a y x x//a <= y <= xx/a \leq y \leq xx/ayx

Step 2: Change the Order of Integration

To change the order of integration, we need to describe the same region R R RRR in terms of y y yyy first and then x x xxx. Observing the original inequalities, we find:
  • 0 y a 0 y a 0 <= y <= a0 \leq y \leq a0ya (since x x xxx can go up to a a aaa)
  • a y x y a y x y ay <= x <= yay \leq x \leq yayxy (multiplying x / a y x / a y x//a <= yx/a \leq yx/ay by a a aaa and rearranging)

Step 3: Write the New Integral

The integral with the changed order of integration becomes:
0 a a y y x d x d y x 2 + y 2 0 a a y y x d x d y x 2 + y 2 int_(0)^(a)int_(ay)^(y)(xdxdy)/(x^(2)+y^(2))\int_0^a \int_{ay}^y \frac{x \, dx \, dy}{x^2+y^2}0aayyxdxdyx2+y2

Step 4: Evaluate the Integral

To evaluate this integral, we’ll first integrate with respect to x x xxx and then with respect to y y yyy.
  1. Inner Integral:
a y y x d x x 2 + y 2 a y y x d x x 2 + y 2 int_(ay)^(y)(xdx)/(x^(2)+y^(2))\int_{ay}^y \frac{x \, dx}{x^2+y^2}ayyxdxx2+y2
Let’s substitute u = x 2 + y 2 u = x 2 + y 2 u=x^(2)+y^(2)u = x^2 + y^2u=x2+y2, d u = 2 x d x d u = 2 x d x du=2xdxdu = 2x \, dxdu=2xdx, x d x = d u 2 x d x = d u 2 xdx=(du)/(2)x \, dx = \frac{du}{2}xdx=du2:
1 2 d u u = 1 2 ln | u | + C 1 2 d u u = 1 2 ln | u | + C (1)/(2)int(du)/(u)=(1)/(2)ln |u|+C\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C12duu=12ln|u|+C
Substituting back, we get:
1 2 ln | x 2 + y 2 | | a y y = 1 2 ln ( y 2 + y 2 ) 1 2 ln ( a 2 y 2 + y 2 ) 1 2 ln | x 2 + y 2 | | a y y = 1 2 ln ( y 2 + y 2 ) 1 2 ln ( a 2 y 2 + y 2 ) (1)/(2)ln |x^(2)+y^(2)||_(ay)^(y)=(1)/(2)ln(y^(2)+y^(2))-(1)/(2)ln(a^(2)y^(2)+y^(2))\frac{1}{2} \ln|x^2+y^2| \Bigg|_{ay}^y = \frac{1}{2} \ln(y^2+y^2) – \frac{1}{2} \ln(a^2y^2+y^2)12ln|x2+y2||ayy=12ln(y2+y2)12ln(a2y2+y2)
= 1 2 ln ( 2 y 2 ) 1 2 ln ( ( a 2 + 1 ) y 2 ) = 1 2 ln ( 2 y 2 ( a 2 + 1 ) y 2 ) = 1 2 ln ( 2 y 2 ) 1 2 ln ( ( a 2 + 1 ) y 2 ) = 1 2 ln 2 y 2 ( a 2 + 1 ) y 2 =(1)/(2)ln(2y^(2))-(1)/(2)ln((a^(2)+1)y^(2))=(1)/(2)ln((2y^(2))/((a^(2)+1)y^(2)))= \frac{1}{2} \ln(2y^2) – \frac{1}{2} \ln((a^2+1)y^2) = \frac{1}{2} \ln\left(\frac{2y^2}{(a^2+1)y^2}\right)=12ln(2y2)12ln((a2+1)y2)=12ln(2y2(a2+1)y2)
= 1 2 ln ( 2 a 2 + 1 ) = 1 2 ln 2 a 2 + 1 =(1)/(2)ln((2)/(a^(2)+1))= \frac{1}{2} \ln\left(\frac{2}{a^2+1}\right)=12ln(2a2+1)
  1. Outer Integral:
0 a 1 2 ln ( 2 a 2 + 1 ) d y = a 2 ln ( 2 a 2 + 1 ) 0 a 1 2 ln 2 a 2 + 1 d y = a 2 ln 2 a 2 + 1 int_(0)^(a)(1)/(2)ln((2)/(a^(2)+1))dy=(a)/(2)ln((2)/(a^(2)+1))\int_0^a \frac{1}{2} \ln\left(\frac{2}{a^2+1}\right) \, dy = \frac{a}{2} \ln\left(\frac{2}{a^2+1}\right)0a12ln(2a2+1)dy=a2ln(2a2+1)

Conclusion

After changing the order of integration, we find that the integral 0 a x / a x x d y d x x 2 + y 2 0 a x / a x x d y d x x 2 + y 2 int_(0)^(a)int_(x//a)^(x)(xdydx)/(x^(2)+y^(2))\int_0^a \int_{x / a}^x \frac{x \, dy \, dx}{x^2+y^2}0ax/axxdydxx2+y2 evaluates to a 2 ln ( 2 a 2 + 1 ) a 2 ln 2 a 2 + 1 (a)/(2)ln((2)/(a^(2)+1))\frac{a}{2} \ln\left(\frac{2}{a^2+1}\right)a2ln(2a2+1).
(c) उस शंकु, जिसका शीर्ष ( 0 , 0 , 1 ) ( 0 , 0 , 1 ) (0,0,1)(0,0,1)(0,0,1) है और जिसका निर्देशक वक्र 2 x 2 y 2 = 4 , z = 0 2 x 2 y 2 = 4 , z = 0 2x^(2)-y^(2)=4,z=02 x^2-y^2=4, z=02x2y2=4,z=0 है, का समीकरण ज्ञात कीजिये।
Find the equation of the cone with ( 0 , 0 , 1 ) ( 0 , 0 , 1 ) (0,0,1)(0,0,1)(0,0,1) as the vertex and 2 x 2 y 2 = 4 , z = 0 2 x 2 y 2 = 4 , z = 0 2x^(2)-y^(2)=4,z=02 x^2-y^2=4, z=02x2y2=4,z=0 as the guiding curve.
Answer:
Let a line through the vertex ( 0 , 0 , 1 ) ( 0 , 0 , 1 ) (0,0,1)(0,0,1)(0,0,1) be given by:
x 0 l = y 0 m = z 1 n (1) x 0 l = y 0 m = z 1 n (1) (x-0)/(l)=(y-0)/(m)=(z-1)/(n)rarr” (1) “\frac{x-0}{l}=\frac{y-0}{m}=\frac{z-1}{n} \rightarrow \text{ (1) }x0l=y0m=z1n (1)
It meets the plane z = 0 z = 0 z=0z=0z=0 at the point which is given by:
x l = y m = 1 n x l = y m = 1 n (x)/(l)=(y)/(m)=(-1)/(n)\frac{x}{l}=\frac{y}{m}=\frac{-1}{n}xl=ym=1n
This gives us:
x = l n , y = m n x = l n , y = m n x=(-l)/(n),quad y=-(m)/(n)x=\frac{-l}{n}, \quad y=-\frac{m}{n}x=ln,y=mn
If this point ( l n , m n , 0 ) l n , m n , 0 (-(l)/(n),-(m)/(n),0)\left(-\frac{l}{n},-\frac{m}{n}, 0\right)(ln,mn,0) lies on the base 2 x 2 y 2 = 4 , z = 0 2 x 2 y 2 = 4 , z = 0 2x^(2)-y^(2)=4,z=02 x^2-y^2=4, z=02x2y2=4,z=0, then:
2 l 2 n 2 m 2 n 2 = 4 ( 2 ) 2 l 2 n 2 m 2 n 2 = 4 ( 2 ) (2l^(2))/(n^(2))-(m^(2))/(n^(2))=4rarr(2)\frac{2 l^2}{n^2}-\frac{m^2}{n^2}=4 \rightarrow(2)2l2n2m2n2=4(2)
Eliminating l l lll, m m mmm, n n nnn using equations (1) and (2):
2 ( x z 1 ) 2 ( y z 1 ) 2 = 4 2 x 2 y 2 = 4 ( z 1 ) 2 2 x 2 y 2 = 4 ( z 2 + 1 2 z ) 2 x 2 y 2 = 4 z 2 + 4 8 z 2 x 2 y 2 4 z 2 + 8 z 4 = 0 2 x z 1 2 y z 1 2 = 4 2 x 2 y 2 = 4 ( z 1 ) 2 2 x 2 y 2 = 4 z 2 + 1 2 z 2 x 2 y 2 = 4 z 2 + 4 8 z 2 x 2 y 2 4 z 2 + 8 z 4 = 0 {:[2((x)/(z-1))^(2)-((y)/(z-1))^(2)=4],[2x^(2)-y^(2)=4(z-1)^(2)],[2x^(2)-y^(2)=4(z^(2)+1-2z)],[2x^(2)-y^(2)=4z^(2)+4-8z],[2x^(2)-y^(2)-4z^(2)+8z-4=0]:}\begin{gathered} 2\left(\frac{x}{z-1}\right)^2-\left(\frac{y}{z-1}\right)^2=4 \\ 2 x^2-y^2=4(z-1)^2 \\ 2 x^2-y^2=4\left(z^2+1-2 z\right) \\ 2 x^2-y^2=4 z^2+4-8 z \\ 2 x^2-y^2-4 z^2+8 z-4=0 \end{gathered}2(xz1)2(yz1)2=42x2y2=4(z1)22x2y2=4(z2+12z)2x2y2=4z2+48z2x2y24z2+8z4=0
So, the equation of the cone is:
2 x 2 y 2 4 z 2 + 8 z 4 = 0 2 x 2 y 2 4 z 2 + 8 z 4 = 0 2x^(2)-y^(2)-4z^(2)+8z-4=02 x^2-y^2-4 z^2+8 z-4=02x2y24z2+8z4=0
(d) 3 x y + 3 z = 8 3 x y + 3 z = 8 3x-y+3z=83 x-y+3 z=83xy+3z=8 के समांतर और बिन्दु ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1) में से गुजरते हुये समतल का समीकरण ज्ञात कीजिये।
Find the equation of the plane parallel to 3 x y + 3 z = 8 3 x y + 3 z = 8 3x-y+3z=83 x-y+3 z=83xy+3z=8 and passing through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1,1,1)(1,1,1).
Answer:

Introduction

The problem asks us to find the equation of a plane that is parallel to 3 x y + 3 z = 8 3 x y + 3 z = 8 3x-y+3z=83x – y + 3z = 83xy+3z=8 and passes through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1, 1, 1)(1,1,1).

Work/Calculations

Step 1: Equation of a Parallel Plane

We know that the equation of any plane parallel to 3 x y + 3 z 8 = 0 3 x y + 3 z 8 = 0 3x-y+3z-8=03x – y + 3z – 8 = 03xy+3z8=0 can be written as:
3 x y + 3 z + k = 0 3 x y + 3 z + k = 0 3x-y+3z+k=03x – y + 3z + k = 03xy+3z+k=0

Step 2: Substituting the Point

Since the plane passes through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1, 1, 1)(1,1,1), we can substitute these coordinates into the equation to find the value of k k kkk.
Let’s substitute the values into the formula:
3 1 1 + 3 1 + k = 0 3 1 1 + 3 1 + k = 0 3*1-1+3*1+k=03 \cdot 1 – 1 + 3 \cdot 1 + k = 0311+31+k=0
After Calculating, we get:
k = 5 k = 5 k=-5k = -5k=5

Step 3: Equation of the Required Plane

Substituting the value of k k kkk back into the equation, we get:
3 x y + 3 z 5 = 0 3 x y + 3 z 5 = 0 3x-y+3z-5=03x – y + 3z – 5 = 03xy+3z5=0

Conclusion

The equation of the plane that is parallel to 3 x y + 3 z = 8 3 x y + 3 z = 8 3x-y+3z=83x – y + 3z = 83xy+3z=8 and passes through the point ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1, 1, 1)(1,1,1) is 3 x y + 3 z 5 = 0 3 x y + 3 z 5 = 0 3x-y+3z-5=03x – y + 3z – 5 = 03xy+3z5=0.
खण्ड-B / SECTION-B
  1. ( a ) ( a ) (a)(a)(a) हल कीजिये/Solve :
y y = x 2 e 2 x y y = x 2 e 2 x y^(”)-y=x^(2)e^(2x)y^{\prime \prime}-y=x^2 e^{2 x}yy=x2e2x
Answer:
Rewrite the equation as:
( D 2 1 ) y = x 2 e 2 x ( D 2 1 ) y = x 2 e 2 x (D^(2)-1)y=x^(2)e^(2x)(D^2-1) y=x^2 e^{2 x}(D21)y=x2e2x
Auxiliary equation: m 2 1 = 0 m 2 1 = 0 m^(2)-1=0m^2-1=0m21=0
( m + 1 ) ( m 1 ) = 0 ( m + 1 ) ( m 1 ) = 0 (m+1)(m-1)=0(m+1)(m-1)=0(m+1)(m1)=0
This gives us two roots: m = 1 m = 1 m=-1m=-1m=1 and m = 1 m = 1 m=1m=1m=1.
The Complementary Function is:
c 1 e x + c 2 e x c 1 e x + c 2 e x c_(1)e^(-x)+c_(2)e^(x)c_1 e^{-x}+c_2 e^xc1ex+c2ex
Now, let’s find the Particular Integral:
Particular Integral = 1 D 2 1 x 2 e 2 x = e 2 x 1 ( D + 2 ) 2 1 x 2 = e 2 x 1 D 2 + 4 + 4 D 1 x 2 = e 2 x 1 D 2 + 4 D + 3 x 2 Particular Integral = 1 D 2 1 x 2 e 2 x = e 2 x 1 ( D + 2 ) 2 1 x 2 = e 2 x 1 D 2 + 4 + 4 D 1 x 2 = e 2 x 1 D 2 + 4 D + 3 x 2 {:[” Particular Integral “=(1)/(D^(2)-1)*x^(2)e^(2x)],[=e^(2x)*(1)/((D+2)^(2)-1)x^(2)],[=e^(2x)*(1)/(D^(2)+4+4D-1)x^(2)],[=e^(2x)*(1)/(D^(2)+4D+3)x^(2)]:}\begin{aligned} \text { Particular Integral } & =\frac{1}{D^2-1} \cdot x^2 e^{2 x} \\ & =e^{2 x} \cdot \frac{1}{(D+2)^2-1} x^2 \\ & =e^{2 x} \cdot \frac{1}{D^2+4+4 D-1} x^2 \\ & =e^{2 x} \cdot \frac{1}{D^2+4 D+3} x^2 \end{aligned} Particular Integral =1D21x2e2x=e2x1(D+2)21x2=e2x1D2+4+4D1x2=e2x1D2+4D+3x2
Simplify further:
P.I. = e 2 x 1 3 [ 1 + D 2 + 4 D 3 ] x 2 = e 2 x 3 [ 1 + D 2 + 4 D 3 ] 1 x 2 = e 2 x 3 [ 1 ( D 2 + 4 D 3 ) + ( D 2 + 4 D 3 ) 2 ] x 2 = e 2 x 3 [ x 2 1 3 { 2 + 8 x } + 1 9 { D 4 + 16 D 2 + 8 D 3 } x 2 ] P.I. = e 2 x 1 3 1 + D 2 + 4 D 3 x 2 = e 2 x 3 1 + D 2 + 4 D 3 1 x 2 = e 2 x 3 1 D 2 + 4 D 3 + D 2 + 4 D 3 2 x 2 = e 2 x 3 x 2 1 3 { 2 + 8 x } + 1 9 D 4 + 16 D 2 + 8 D 3 x 2 {:[” P.I. “=e^(2x)*(1)/(3[1+(D^(2)+4D)/(3)](x^(2)))],[=(e^(2x))/(3)*[1+(D^(2)+4D)/(3)]^(-1)x^(2)],[=(e^(2x))/(3)*[1-((D^(2)+4D)/(3))+((D^(2)+4D)/(3))^(2)-cdots]x^(2)],[=(e^(2x))/(3)*[x^(2)-(1)/(3){2+8x}+(1)/(9){D^(4)+16D^(2)+8D^(3)}x^(2)]]:}\begin{aligned} \text { P.I. } & =e^{2 x} \cdot \frac{1}{3\left[1+\frac{D^2+4 D}{3}\right]{x^2}} \\ & =\frac{e^{2 x}}{3} \cdot\left[1+\frac{D^2+4 D}{3}\right]^{-1} x^2 \\ & =\frac{e^{2 x}}{3} \cdot\left[1-\left(\frac{D^2+4 D}{3}\right)+\left(\frac{D^2+4 D}{3}\right)^2-\cdots\right] x^2 \\ & =\frac{e^{2 x}}{3} \cdot\left[x^2-\frac{1}{3}\{2+8 x\}+\frac{1}{9}\left\{D^4+16 D^2+8 D^3\right\} x^2\right] \end{aligned} P.I. =e2x13[1+D2+4D3]x2=e2x3[1+D2+4D3]1x2=e2x3[1(D2+4D3)+(D2+4D3)2]x2=e2x3[x213{2+8x}+19{D4+16D2+8D3}x2]
Higher terms will be zero.
= e 2 x 3 [ x 2 ( 8 x + 2 ) 3 + 1 9 [ 0 + 32 + 0 ] = x 2 e 2 x 3 ( 8 x + 2 ) e 2 x 9 + 32 27 e 2 x = e 2 x 3 x 2 ( 8 x + 2 ) 3 + 1 9 [ 0 + 32 + 0 ] = x 2 e 2 x 3 ( 8 x + 2 ) e 2 x 9 + 32 27 e 2 x {:[=(e^(2x))/(3)[x^(2)-((8x+2))/(3)+(1)/(9)[0+32+0]:}],[=(x^(2)e^(2x))/(3)-((8x+2)e^(2x))/(9)+(32)/(27)e^(2x)]:}\begin{aligned} & =\frac{e^{2 x}}{3}\left[x^2-\frac{(8 x+2)}{3}+\frac{1}{9}[0+32 +0]\right. \\ & =\frac{x^2 e^{2 x}}{3}-\frac{(8 x+2) e^{2 x}}{9}+\frac{32 }{27}e^{2 x} \end{aligned}=e2x3[x2(8x+2)3+19[0+32+0]=x2e2x3(8x+2)e2x9+3227e2x
So, the solution to the differential equation is:
y = c 1 e x + c 2 e x + x 2 e 2 x 3 ( 8 x + 2 ) e 2 x 9 + 32 27 e 2 x y = c 1 e x + c 2 e x + x 2 e 2 x 3 ( 8 x + 2 ) e 2 x 9 + 32 27 e 2 x y=c_(1)e^(-x)+c_(2)e^(x)+(x^(2)e^(2x))/(3)-((8x+2)e^(2x))/(9)+(32)/(27)e^(2x)y=c_1 e^{-x}+c_2 e^x+\frac{x^2 e^{2 x}}{3}-\frac{(8 x+2) e^{2 x}}{9}+\frac{32 }{27}e^{2 x}y=c1ex+c2ex+x2e2x3(8x+2)e2x9+3227e2x
(b) x = 3 t , y = 3 t 2 , z = 3 t 3 x = 3 t , y = 3 t 2 , z = 3 t 3 x=3t,y=3t^(2),z=3t^(3)x=3 t, y=3 t^2, z=3 t^3x=3t,y=3t2,z=3t3 समीकरणों वाले बक्र के एक आय बिन्दु पर स्पर्शं-रेखा और रेखा y = z x = 0 y = z x = 0 y=z-x=0y=z-x=0y=zx=0 के बीच का कोण ज्ञात कीजिये।
Find the angle between the tangent at a general point of the curve whose equations are x = 3 t , y = 3 t 2 , z = 3 t 3 x = 3 t , y = 3 t 2 , z = 3 t 3 x=3t,y=3t^(2),z=3t^(3)x=3 t, y=3 t^2, z=3 t^3x=3t,y=3t2,z=3t3 and the line y = z x = 0 y = z x = 0 y=z-x=0y=z-x=0y=zx=0.
Answer:

Introduction

The problem asks us to find the angle θ θ theta\thetaθ between the tangent at a general point of the curve r 1 = 3 t i ^ + 3 t 2 j ^ + 3 t 3 k ^ r 1 = 3 t i ^ + 3 t 2 j ^ + 3 t 3 k ^ vec(r)_(1)=3t hat(i)+3t^(2) hat(j)+3t^(3) hat(k)\vec{r}_1 = 3t\hat{i} + 3t^2\hat{j} + 3t^3\hat{k}r1=3ti^+3t2j^+3t3k^ and the line y = z x = 0 y = z x = 0 y=z-x=0y = z – x = 0y=zx=0.

Work/Calculations

Step 1: Derivative of the Curve

The first step is to find the derivative of r 1 r 1 vec(r)_(1)\vec{r}_1r1 with respect to t t ttt:
d r 1 d t = 3 i ^ + 6 t j ^ + 9 t 2 k ^ d r 1 d t = 3 i ^ + 6 t j ^ + 9 t 2 k ^ (d vec(r)_(1))/(dt)=3 hat(i)+6t hat(j)+9t^(2) hat(k)\frac{d\vec{r}_1}{dt} = 3\hat{i} + 6t\hat{j} + 9t^2\hat{k}dr1dt=3i^+6tj^+9t2k^

Step 2: Equation of the Line

The equation of the line y = z x = 0 y = z x = 0 y=z-x=0y = z – x = 0y=zx=0 can be rewritten as:
y = 0 , x = z y = 0 , x = z y=0,quad x=zy = 0, \quad x = zy=0,x=z
This gives us the direction ratios [ 1 , 0 , 1 ] [ 1 , 0 , 1 ] [1,0,1][1, 0, 1][1,0,1] for the line, and we can write its vector equation as r 2 = i ^ + k ^ r 2 = i ^ + k ^ vec(r)_(2)= hat(i)+ hat(k)\vec{r}_2 = \hat{i} + \hat{k}r2=i^+k^.
The magnitude of r 2 r 2 vec(r)_(2)\vec{r}_2r2 is:
| r 2 | = 1 1 + 1 = 1 2 | r 2 | = 1 1 + 1 = 1 2 | vec(r)_(2)|=(1)/(sqrt(1+1))=(1)/(sqrt2)|\vec{r}_2| = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}}|r2|=11+1=12
So, r 2 = 1 2 ( i ^ + k ^ ) r 2 = 1 2 ( i ^ + k ^ ) vec(r)_(2)=(1)/(sqrt2)( hat(i)+ hat(k))\vec{r}_2 = \frac{1}{\sqrt{2}} (\hat{i} + \hat{k})r2=12(i^+k^).

Step 3: Angle Between the Tangent and the Line

The angle θ θ theta\thetaθ between r 1 r 1 vec(r)_(1)\vec{r}_1r1 and r 2 r 2 vec(r)_(2)\vec{r}_2r2 can be found using the formula:
cos θ = r 1 r 2 | r 1 | | r 2 | cos θ = r 1 r 2 | r 1 | | r 2 | cos theta=( vec(r)_(1)* vec(r)_(2))/(| vec(r)_(1)|*| vec(r)_(2)|)\cos \theta = \frac{\vec{r}_1 \cdot \vec{r}_2}{|\vec{r}_1| \cdot |\vec{r}_2|}cosθ=r1r2|r1||r2|
Let’s substitute the values into the formula:
cos θ = ( 3 1 ) + ( 6 t 0 ) + ( 9 t 2 1 ) 9 + 36 t 2 + 81 t 4 2 cos θ = ( 3 1 ) + ( 6 t 0 ) + ( 9 t 2 1 ) 9 + 36 t 2 + 81 t 4 2 cos theta=((3*1)+(6t*0)+(9t^(2)*1))/(sqrt(9+36t^(2)+81t^(4))*sqrt2)\cos \theta = \frac{(3 \cdot 1) + (6t \cdot 0) + (9t^2 \cdot 1)}{\sqrt{9 + 36t^2 + 81t^4} \cdot \sqrt{2}}cosθ=(31)+(6t0)+(9t21)9+36t2+81t42
After simplifying, we get:
cos θ = 3 + 9 t 2 9 + 36 t 2 + 81 t 4 2 cos θ = 3 + 9 t 2 9 + 36 t 2 + 81 t 4 2 cos theta=(3+9t^(2))/(sqrt(9+36t^(2)+81t^(4))*sqrt2)\cos \theta = \frac{3 + 9t^2}{\sqrt{9 + 36t^2 + 81t^4} \cdot \sqrt{2}}cosθ=3+9t29+36t2+81t42
Further simplifying, we find:
cos θ = 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 cos θ = 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 cos theta=(1+3t^(2))/(sqrt2*sqrt(1+4t^(2)+9t^(4)))\cos \theta = \frac{1 + 3t^2}{\sqrt{2} \cdot \sqrt{1 + 4t^2 + 9t^4}}cosθ=1+3t221+4t2+9t4
Finally, the angle θ θ theta\thetaθ is:
θ = cos 1 [ 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 ] θ = cos 1 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 theta=cos^(-1)[(1+3t^(2))/(sqrt2*sqrt(1+4t^(2)+9t^(4)))]\theta = \cos^{-1}\left[\frac{1 + 3t^2}{\sqrt{2} \cdot \sqrt{1 + 4t^2 + 9t^4}}\right]θ=cos1[1+3t221+4t2+9t4]

Conclusion

The angle θ θ theta\thetaθ between the tangent at a general point of the curve r 1 = 3 t i ^ + 3 t 2 j ^ + 3 t 3 k ^ r 1 = 3 t i ^ + 3 t 2 j ^ + 3 t 3 k ^ vec(r)_(1)=3t hat(i)+3t^(2) hat(j)+3t^(3) hat(k)\vec{r}_1 = 3t\hat{i} + 3t^2\hat{j} + 3t^3\hat{k}r1=3ti^+3t2j^+3t3k^ and the line y = z x = 0 y = z x = 0 y=z-x=0y = z – x = 0y=zx=0 is:
θ = cos 1 [ 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 ] θ = cos 1 1 + 3 t 2 2 1 + 4 t 2 + 9 t 4 theta=cos^(-1)[(1+3t^(2))/(sqrt2*sqrt(1+4t^(2)+9t^(4)))]\theta = \cos^{-1}\left[\frac{1 + 3t^2}{\sqrt{2} \cdot \sqrt{1 + 4t^2 + 9t^4}}\right]θ=cos1[1+3t221+4t2+9t4]
This formula gives us the angle θ θ theta\thetaθ in terms of t t ttt.
(c) हल कीजिये/Solve:
y 6 y + 12 y 8 y = 12 e 2 x + 27 e x y 6 y + 12 y 8 y = 12 e 2 x + 27 e x y^(”’)-6y^(”)+12y^(‘)-8y=12e^(2x)+27e^(-x)y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=12 e^{2 x}+27 e^{-x}y6y+12y8y=12e2x+27ex
Answer:
Rewrite the equation as:
( D 3 6 D 2 + 12 D 8 ) y = 12 e 2 x + 27 e x D 3 6 D 2 + 12 D 8 y = 12 e 2 x + 27 e x (D^(3)-6D^(2)+12 D-8)y=12e^(2x)+27e^(-x)\left(D^3-6 D^2+12 D-8\right) y=12 e^{2 x}+27 e^{-x}(D36D2+12D8)y=12e2x+27ex
Auxiliary equation: m 3 6 m 2 + 12 m 8 = 0 m 3 6 m 2 + 12 m 8 = 0 m^(3)-6m^(2)+12 m-8=0m^3-6 m^2+12 m-8=0m36m2+12m8=0
( m 2 ) 3 = 0 m = 2 , 2 , 2 ( m 2 ) 3 = 0 m = 2 , 2 , 2 {:[(m-2)^(3)=0],[m=2″,”2″,”2]:}\begin{aligned} & (m-2)^3=0 \\ & m=2,2,2 \end{aligned}(m2)3=0m=2,2,2
The Complementary Function is:
( c 1 + c 2 x + c 3 x 2 ) e 2 x c 1 + c 2 x + c 3 x 2 e 2 x (c_(1)+c_(2)x+c_(3)x^(2))e^(2x)\left(c_1+c_2 x+c_3 x^2\right) e^{2 x}(c1+c2x+c3x2)e2x
Now, let’s find the Particular Integral:
Particular Integral = 1 D 3 60 2 + 12 D 8 [ 12 e 2 x + 27 e x ] = 12 ( D 2 ) 3 e 2 x + 27 1 ( D 2 ) 3 e x Particular Integral = 1 D 3 60 2 + 12 D 8 12 e 2 x + 27 e x = 12 ( D 2 ) 3 e 2 x + 27 1 ( D 2 ) 3 e x {:[” Particular Integral “=(1)/(D^(3)-60^(2)+12 D-8)[12e^(2x)+27e^(-x)]],[=(12)/((D-2)^(3))*e^(2x)+27(1)/((D-2)^(3))e^(-x)]:}\begin{aligned} & \text { Particular Integral }=\frac{1}{D^3-60^2+12 D-8}\left[12 e^{2 x}+27 e^{-x}\right] \\ & =\frac{12}{(D-2)^3} \cdot e^{2 x}+27 \frac{1}{(D-2)^3} e^{-x} \end{aligned} Particular Integral =1D3602+12D8[12e2x+27ex]=12(D2)3e2x+271(D2)3ex
Simplify further:
= 12 x 3 3 e 2 x + 27 1 ( 1 2 ) 3 e x = 2 x 3 e 2 x e x = 12 x 3 3 e 2 x + 27 1 ( 1 2 ) 3 e x = 2 x 3 e 2 x e x {:[=12*(x^(3))/(3)e^(2x)+27*(1)/((-1-2)^(3))e^(-x)],[=2x^(3)e^(2x)-e^(-x)]:}\begin{aligned} & =12 \cdot \frac{x^3}{3} e^{2 x}+27 \cdot \frac{1}{(-1-2)^3} e^{-x} \\ & =2 x^3 e^{2 x}-e^{-x} \end{aligned}=12x33e2x+271(12)3ex=2x3e2xex
So, the solution to the differential equation is:
y = ( c 1 + c 2 x + c 3 x 2 ) e 2 x + 2 x 3 e 2 x e x y = c 1 + c 2 x + c 3 x 2 e 2 x + 2 x 3 e 2 x e x y=(c_(1)+c_(2)x+c_(3)x^(2))e^(2x)+2x^(3)e^(2x)-e^(-x)y=\left(c_1+c_2 x+c_3 x^2\right) e^{2 x}+2 x^3 e^{2 x}-e^{-x}y=(c1+c2x+c3x2)e2x+2x3e2xex
(d) (i) f ( t ) = 1 t f ( t ) = 1 t f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}}f(t)=1t का लाप्लास रूपान्तर ज्ञात कीजिये। Find the Laplace transform of f ( t ) = 1 t f ( t ) = 1 t f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}}f(t)=1t.
Answer:
We know that L ( t n ) = n + 1 s n + 1 L t n = n + 1 s n + 1 L(t^(n))=(sqrt(n+1))/(s^(n+1))\mathrm{L}\left(t^n\right)=\frac{\sqrt{n+1}}{s^{n+1}}L(tn)=n+1sn+1.
Put n = 1 2 n = 1 2 n=-(1)/(2)n=-\frac{1}{2}n=12:
L ( t 1 / 2 ) = 1 2 + 1 s 1 2 + 1 = 1 2 s = π s L t 1 / 2 = 1 2 + 1 s 1 2 + 1 = 1 2 s = π s L(t^(-1//2))=(sqrt(-(1)/(2)+1))/(s^(-(1)/(2)+1))=(sqrt((1)/(2)))/(sqrts)=(sqrtpi)/(sqrts)L\left(t^{-1/2}\right)=\frac{\sqrt{-\frac{1}{2}+1}}{s^{-\frac{1}{2}+1}}=\frac{\sqrt{\frac{1}{2}}}{\sqrt{s}}=\frac{\sqrt{\pi}}{\sqrt{s}}L(t1/2)=12+1s12+1=12s=πs
Here, 1 2 = π 1 2 = π sqrt((1)/(2))=sqrtpi\sqrt{\frac{1}{2}}=\sqrt{\pi}12=π.
So, the Laplace transform of f ( t ) = 1 t f ( t ) = 1 t f(t)=(1)/(sqrtt)f(t)=\frac{1}{\sqrt{t}}f(t)=1t is π s π s (sqrtpi)/(sqrts)\frac{\sqrt{\pi}}{\sqrt{s}}πs.
(ii) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}5s2+3s16(s1)(s2)(s+3) का विलोम लाप्लास रुपान्तर ज्ञात कीजिये। Find the inverse Laplace transform of 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}5s2+3s16(s1)(s2)(s+3).
Answer:

Introduction

The problem asks us to find the inverse Laplace transform of 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}5s2+3s16(s1)(s2)(s+3). To find the inverse Laplace transform, we’ll:
  1. Perform partial fraction decomposition on the given expression.
  2. Use the inverse Laplace transform formulas for each term.

Work/Calculations

Step 1: Partial Fraction Decomposition

The given expression is 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}5s2+3s16(s1)(s2)(s+3).
After Calculating, we get:
5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) = 2 s 1 + 2 s 2 + 1 s + 3 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) = 2 s 1 + 2 s 2 + 1 s + 3 (5s^(2)+3s-16)/((s-1)(s-2)(s+3))=(2)/(s-1)+(2)/(s-2)+(1)/(s+3)\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)} = \frac{2}{s-1} + \frac{2}{s-2} + \frac{1}{s+3}5s2+3s16(s1)(s2)(s+3)=2s1+2s2+1s+3

Step 2: Inverse Laplace Transform

Now, we’ll find the inverse Laplace transform of each term separately.
  1. L 1 { 2 s 1 } = 2 e t L 1 2 s 1 = 2 e t L^(-1){(2)/(s-1)}=2e^(t)\mathcal{L}^{-1}\left\{\frac{2}{s-1}\right\} = 2e^{t}L1{2s1}=2et
  2. L 1 { 2 s 2 } = 2 e 2 t L 1 2 s 2 = 2 e 2 t L^(-1){(2)/(s-2)}=2e^(2t)\mathcal{L}^{-1}\left\{\frac{2}{s-2}\right\} = 2e^{2t}L1{2s2}=2e2t
  3. L 1 { 1 s + 3 } = e 3 t L 1 1 s + 3 = e 3 t L^(-1){(1)/(s+3)}=e^(-3t)\mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\} = e^{-3t}L1{1s+3}=e3t
Combining all these terms, we get:
L 1 { 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) } = 2 e t + 2 e 2 t + e 3 t L 1 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) = 2 e t + 2 e 2 t + e 3 t L^(-1){(5s^(2)+3s-16)/((s-1)(s-2)(s+3))}=2e^(t)+2e^(2t)+e^(-3t)\mathcal{L}^{-1}\left\{\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}\right\} = 2e^{t} + 2e^{2t} + e^{-3t}L1{5s2+3s16(s1)(s2)(s+3)}=2et+2e2t+e3t

Conclusion

The inverse Laplace transform of 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) 5 s 2 + 3 s 16 ( s 1 ) ( s 2 ) ( s + 3 ) (5s^(2)+3s-16)/((s-1)(s-2)(s+3))\frac{5 s^2+3 s-16}{(s-1)(s-2)(s+3)}5s2+3s16(s1)(s2)(s+3) is 2 e t + 2 e 2 t + e 3 t 2 e t + 2 e 2 t + e 3 t 2e^(t)+2e^(2t)+e^(-3t)2e^{t} + 2e^{2t} + e^{-3t}2et+2e2t+e3t.
(e) एक कण को धरती के एक बिन्दु से प्रक्षेपित करने पर वह एक दीवार, जो प्रक्षेपण बिन्दु से d d ddd दूरी पर है और जिसकी ऊँचाई h h hhh है, को छूते हुये पार करता है। अगर यह कण ऊर्ध्वाधर तल पर गतिमान है और इसकी क्षैतिज पहुँच R R RRR है, तो प्रक्षेपण की उच्चता ज्ञात कीजिये।
A particle projected from a given point on the ground just clears a wall of height h h hhh at a distance d d ddd from the point of projection. If the particle moves in a vertical plane and if the horizontal range is R R RRR, find the elevation of the projection.
Answer:

Introduction

The problem deals with finding the angle of elevation θ θ theta\thetaθ of a particle projected from a point on the ground such that it just clears a wall of height h h hhh at a distance d d ddd. The particle moves in a vertical plane and has a horizontal range of R R RRR.

Work/Calculations

Step 1: Initial Conditions and Equations of Motion

Let the initial velocity of the particle be u u uuu and the angle of elevation be θ θ theta\thetaθ. The equations of motion are:
x = u cos θ t ( 1 ) y = u sin θ t 1 2 g t 2 ( 2 ) x = u cos θ t ( 1 ) y = u sin θ t 1 2 g t 2 ( 2 ) {:[x=u cos theta t quad(1)],[y=u sin theta t-(1)/(2)gt^(2)quad(2)]:}\begin{aligned} x &= u \cos \theta t \quad &(1) \\ y &= u \sin \theta t – \frac{1}{2} g t^2 \quad &(2) \end{aligned}x=ucosθt(1)y=usinθt12gt2(2)
original image

Step 2: Equation of the Trajectory

The equation of the trajectory can be derived from equations (1) and (2) as:
y = x tan θ 1 2 g x 2 u 2 cos 2 θ ( 3 ) y = x tan θ 1 2 g x 2 u 2 cos 2 θ ( 3 ) y=x tan theta-(1)/(2)(gx^(2))/(u^(2)cos^(2)theta)quad(3)y = x \tan \theta – \frac{1}{2} \frac{g x^2}{u^2 \cos^2 \theta} \quad (3)y=xtanθ12gx2u2cos2θ(3)
This equation can also be written as:
h = x tan θ [ 1 x R ] ( 4 ) h = x tan θ 1 x R ( 4 ) h=x tan theta[1-(x)/(R)]quad(4)h = x \tan \theta \left[1-\frac{x}{R}\right] \quad (4)h=xtanθ[1xR](4)

Step 3: Conditions for the Wall and the Ground

When the particle clears the wall, y = h y = h y=hy=hy=h and x = d x = d x=dx=dx=d. Thus:
h = d tan θ 1 2 g d 2 u 2 cos 2 θ ( 5 ) h = d tan θ 1 2 g d 2 u 2 cos 2 θ ( 5 ) h=d tan theta-(1)/(2)g((d^(2))/(u^(2)cos^(2)theta))quad(5)h = d \tan \theta – \frac{1}{2} g \frac{d^2}{u^2 \cos^2 \theta} \quad (5)h=dtanθ12gd2u2cos2θ(5)
When the particle strikes the ground, y = 0 y = 0 y=0y=0y=0 and x = R x = R x=Rx=Rx=R. Thus:
0 = R tan θ 1 2 g R 2 u 2 cos 2 θ ( 6 ) 0 = R tan θ 1 2 g R 2 u 2 cos 2 θ ( 6 ) 0=R tan theta-(1)/(2)g((R^(2))/(u^(2)cos^(2)theta))quad(6)0 = R \tan \theta – \frac{1}{2} g \frac{R^2}{u^2 \cos^2 \theta} \quad (6)0=Rtanθ12gR2u2cos2θ(6)

Step 4: Correcting the Formula for θ θ theta\thetaθ

To eliminate u 2 u 2 u^(2)u^2u2, we multiply equation (5) by R 2 R 2 R^(2)R^2R2 and equation (6) by d 2 d 2 d^(2)d^2d2 and subtract the two:
h R 2 = d R 2 tan θ d 2 R tan θ h R 2 = d R 2 tan θ d 2 R tan θ hR^(2)=dR^(2)tan theta-d^(2)R tan thetahR^2 = dR^2 \tan \theta – d^2 R \tan \thetahR2=dR2tanθd2Rtanθ
Let’s simplify this to isolate tan θ tan θ tan theta\tan \thetatanθ:
h R 2 = d R 2 tan θ d 2 R tan θ h R 2 = tan θ ( d R 2 d 2 R ) tan θ = h R 2 d R 2 d 2 R tan θ = h R d ( R d ) h R 2 = d R 2 tan θ d 2 R tan θ h R 2 = tan θ ( d R 2 d 2 R ) tan θ = h R 2 d R 2 d 2 R tan θ = h R d ( R d ) {:[hR^(2)=dR^(2)tan theta-d^(2)R tan theta],[hR^(2)=tan theta(dR^(2)-d^(2)R)],[tan theta=(hR^(2))/(dR^(2)-d^(2)R)],[tan theta=(hR)/(d(R-d))]:}\begin{aligned} hR^2 &= dR^2 \tan \theta – d^2 R \tan \theta \\ hR^2 &= \tan \theta (dR^2 – d^2 R) \\ \tan \theta &= \frac{hR^2}{dR^2 – d^2 R} \\ \tan \theta &= \frac{hR}{d(R-d)} \end{aligned}hR2=dR2tanθd2RtanθhR2=tanθ(dR2d2R)tanθ=hR2dR2d2Rtanθ=hRd(Rd)
Now we can find the angle θ θ theta\thetaθ:
θ = tan 1 [ h R d ( R d ) ] θ = tan 1 h R d ( R d ) theta=tan^(-1)[(hR)/(d(R-d))]\theta = \tan^{-1}\left[\frac{hR}{d(R-d)}\right]θ=tan1[hRd(Rd)]

Conclusion

The angle of elevation θ θ theta\thetaθ for the particle to just clear a wall of height h h hhh at a distance d d ddd and to have a horizontal range R R RRR is given by:
θ = tan 1 [ h R d ( R d ) ] θ = tan 1 h R d ( R d ) theta=tan^(-1)[(hR)/(d(R-d))]\theta = \tan^{-1}\left[\frac{hR}{d(R-d)}\right]θ=tan1[hRd(Rd)]
  1. (a) हल कीजिये /Solve :
( d y d x ) 2 y + 2 d y d x x y = 0 d y d x 2 y + 2 d y d x x y = 0 ((dy)/(dx))^(2)y+2(dy)/(dx)x-y=0\left(\frac{d y}{d x}\right)^2 y+2 \frac{d y}{d x} x-y=0(dydx)2y+2dydxxy=0
Answer:

Introduction

The given differential equation is:
( d y d x ) 2 y + 2 d y d x x y = 0 d y d x 2 y + 2 d y d x x y = 0 ((dy)/(dx))^(2)y+2(dy)/(dx)x-y=0\left(\frac{dy}{dx}\right)^2 y + 2 \frac{dy}{dx} x – y = 0(dydx)2y+2dydxxy=0
We are asked to find the solution to this differential equation. Let d y d x = p d y d x = p (dy)/(dx)=p\frac{dy}{dx} = pdydx=p.

Work/Calculations

Step 1: Rewrite the Differential Equation in Terms of p p ppp

The given differential equation can be rewritten in terms of p p ppp:
y p 2 + 2 p x y = 0 (Equation 1) y p 2 + 2 p x y = 0 (Equation 1) yp^(2)+2px-y=0quad(Equation 1)y p^2 + 2 p x – y = 0 \quad \text{(Equation 1)}yp2+2pxy=0(Equation 1)
After solving for x x xxx, we get:
x = 1 2 ( y p ) 1 2 ( y p ) (Equation 2) x = 1 2 y p 1 2 ( y p ) (Equation 2) x=(1)/(2)((y)/(p))-(1)/(2)(yp)quad(Equation 2)x = \frac{1}{2}\left(\frac{y}{p}\right) – \frac{1}{2}(y p) \quad \text{(Equation 2)}x=12(yp)12(yp)(Equation 2)

Step 2: Differentiate x x xxx with Respect to y y yyy

Differentiating Equation 2 with respect to y y yyy, we get:
d x d y = 1 2 [ p y d p d y p 2 ] 1 2 [ p + y d p d y ] d x d y = 1 2 p y d p d y p 2 1 2 p + y d p d y (dx)/(dy)=(1)/(2)[(p-y(dp)/(dy))/(p^(2))]-(1)/(2)[p+y(dp)/(dy)]\frac{dx}{dy} = \frac{1}{2}\left[\frac{p – y \frac{dp}{dy}}{p^2}\right] – \frac{1}{2}\left[p + y \frac{dp}{dy}\right]dxdy=12[pydpdyp2]12[p+ydpdy]

Step 3: Simplify the Equation

After simplification, we have:
2 p = 1 p ( y p 2 ) d p d y p y d p d y 2 p = 1 p y p 2 d p d y p y d p d y (2)/(p)=(1)/(p)-((y)/(p^(2)))(dp)/(dy)-p-y(dp)/(dy)\frac{2}{p} = \frac{1}{p} – \left(\frac{y}{p^2}\right)\frac{dp}{dy} – p – y \frac{dp}{dy}2p=1p(yp2)dpdypydpdy
Simplifying further, we get:
1 p + p = y d p d y ( 1 p 2 + 1 ) 1 p + p = y d p d y 1 p 2 + 1 (1)/(p)+p=-y(dp)/(dy)((1)/(p^(2))+1)\frac{1}{p} + p = -y \frac{dp}{dy} \left( \frac{1}{p^2} + 1 \right)1p+p=ydpdy(1p2+1)
p ( 1 p 2 + 1 ) = y d p d y ( 1 p 2 + 1 ) p 1 p 2 + 1 = y d p d y 1 p 2 + 1 p((1)/(p^(2))+1)=-y(dp)/(dy)((1)/(p^(2))+1)p \left( \frac{1}{p^2} + 1 \right)= -y \frac{dp}{dy} \left( \frac{1}{p^2} + 1 \right)p(1p2+1)=ydpdy(1p2+1)
d p d y = p y d p d y = p y (dp)/(dy)=-(p)/(y)\frac{dp}{dy} = -\frac{p}{y}dpdy=py
1 p d p = 1 y d y 1 p d p = 1 y d y (1)/(p)dp=-(1)/(y)dy\frac{1}{p} dp = -\frac{1}{y} dy1pdp=1ydy

Step 4: Integrate Both Sides

Integrating both sides, we get:
log p + log y = log c log p + log y = log c log p+log y=log c\log p + \log y = \log clogp+logy=logc
p y = c p y = c py=cpy = cpy=c
p = c y p = c y p=(c)/(y)p = \frac{c}{y}p=cy

Step 5: Substitute Back into Equation 2

Substituting this value of p p ppp back into Equation 2, we get:
x = 1 2 ( y × y c ) 1 2 ( y × c y ) x = 1 2 y × y c 1 2 y × c y x=(1)/(2)(y xx(y)/(c))-(1)/(2)(y xx(c)/(y))x = \frac{1}{2}\left(y \times \frac{y}{c}\right) – \frac{1}{2}\left(y \times \frac{c}{y}\right)x=12(y×yc)12(y×cy)
After simplification, we find:
x = y 2 2 c c 2 x = y 2 2 c c 2 x=(y^(2))/(2c)-(c)/(2)x = \frac{y^2}{2c} – \frac{c}{2}x=y22cc2

Conclusion

The solution to the given differential equation ( d y d x ) 2 y + 2 d y d x x y = 0 d y d x 2 y + 2 d y d x x y = 0 ((dy)/(dx))^(2)y+2(dy)/(dx)x-y=0\left(\frac{dy}{dx}\right)^2 y + 2 \frac{dy}{dx} x – y = 0(dydx)2y+2dydxxy=0 is:
x = y 2 2 c c 2 x = y 2 2 c c 2 x=(y^(2))/(2c)-(c)/(2)x = \frac{y^2}{2c} – \frac{c}{2}x=y22cc2
Where c c ccc is the constant of integration.
(b) एक कण, जो एक सरल रेखा में सरल आवर्त गति से चल रहा है, के पथ के केन्द्र से x 1 x 1 x_(1)x_1x1 और x 2 x 2 x_(2)x_2x2 की दूरी पर वेग क्रमशः v 1 v 1 v_(1)v_1v1 और v 2 v 2 v_(2)v_2v2 है। उसकी गति का आवर्तकाल ज्ञात कीजिये।
A particle moving with simple harmonic motion in a straight line has velocities v 1 v 1 v_(1)v_1v1 and v 2 v 2 v_(2)v_2v2 at distances x 1 x 1 x_(1)x_1x1 and x 2 x 2 x_(2)x_2x2 respectively from the centre of its path. Find the period of its motion.
Answer:

Introduction

The problem is related to a particle moving in Simple Harmonic Motion (SHM). We are given the velocities v 1 v 1 v_(1)v_1v1 and v 2 v 2 v_(2)v_2v2 at distances x 1 x 1 x_(1)x_1x1 and x 2 x 2 x_(2)x_2x2 from the center of the motion, respectively. The task is to find the period of this motion.

Work/Calculations

Step 1: General Equation for Velocity in SHM

The general equation for the velocity v v vvv of a particle at a distance x x xxx from the mean (or central) position in SHM is:
v 2 = μ 2 ( a 2 x 2 ) v 2 = μ 2 ( a 2 x 2 ) v^(2)=mu^(2)(a^(2)-x^(2))v^2 = \mu^2(a^2 – x^2)v2=μ2(a2x2)
where a a aaa is the amplitude and μ μ mu\muμ is the angular frequency.

Step 2: Plug in the Known Values

For v 1 v 1 v_(1)v_1v1 and x 1 x 1 x_(1)x_1x1, we get:
v 1 2 = μ 2 ( a 2 x 1 2 ) (Equation 1) v 1 2 = μ 2 ( a 2 x 1 2 ) (Equation 1) v_(1)^(2)=mu^(2)(a^(2)-x_(1)^(2))quad(Equation 1)v_1^2 = \mu^2(a^2 – x_1^2) \quad \text{(Equation 1)}v12=μ2(a2x12)(Equation 1)
For v 2 v 2 v_(2)v_2v2 and x 2 x 2 x_(2)x_2x2, we get:
v 2 2 = μ 2 ( a 2 x 2 2 ) (Equation 2) v 2 2 = μ 2 ( a 2 x 2 2 ) (Equation 2) v_(2)^(2)=mu^(2)(a^(2)-x_(2)^(2))quad(Equation 2)v_2^2 = \mu^2(a^2 – x_2^2) \quad \text{(Equation 2)}v22=μ2(a2x22)(Equation 2)

Step 3: Solve for μ 2 μ 2 mu^(2)\mu^2μ2

Subtracting Equation 1 from Equation 2, we get:
v 2 2 v 1 2 = μ 2 ( x 1 2 x 2 2 ) v 2 2 v 1 2 = μ 2 ( x 1 2 x 2 2 ) v_(2)^(2)-v_(1)^(2)=mu^(2)(x_(1)^(2)-x_(2)^(2))v_2^2 – v_1^2 = \mu^2(x_1^2 – x_2^2)v22v12=μ2(x12x22)
Solving for μ 2 μ 2 mu^(2)\mu^2μ2, we get:
μ 2 = v 2 2 v 1 2 x 1 2 x 2 2 (Equation 3) μ 2 = v 2 2 v 1 2 x 1 2 x 2 2 (Equation 3) mu^(2)=(v_(2)^(2)-v_(1)^(2))/(x_(1)^(2)-x_(2)^(2))quad(Equation 3)\mu^2 = \frac{v_2^2 – v_1^2}{x_1^2 – x_2^2} \quad \text{(Equation 3)}μ2=v22v12x12x22(Equation 3)

Step 4: Solve for the Periodic Time T T TTT

The periodic time T T TTT of a particle in SHM is given by:
T = 2 π μ (Equation 4) T = 2 π μ (Equation 4) T=(2pi)/(mu)quad(Equation 4)T = \frac{2\pi}{\mu} \quad \text{(Equation 4)}T=2πμ(Equation 4)
Substituting Equation 3 into Equation 4, we get:
T = 2 π x 1 2 x 2 2 v 2 2 v 1 2 T = 2 π x 1 2 x 2 2 v 2 2 v 1 2 T=2pisqrt((x_(1)^(2)-x_(2)^(2))/(v_(2)^(2)-v_(1)^(2)))T = 2\pi \sqrt{\frac{x_1^2 – x_2^2}{v_2^2 – v_1^2}}T=2πx12x22v22v12

Conclusion

The period T T TTT of a particle moving in simple harmonic motion, given velocities v 1 v 1 v_(1)v_1v1 and v 2 v 2 v_(2)v_2v2 at distances x 1 x 1 x_(1)x_1x1 and x 2 x 2 x_(2)x_2x2 respectively, is:
T = 2 π x 1 2 x 2 2 v 2 2 v 1 2 T = 2 π x 1 2 x 2 2 v 2 2 v 1 2 T=2pisqrt((x_(1)^(2)-x_(2)^(2))/(v_(2)^(2)-v_(1)^(2)))T = 2\pi \sqrt{\frac{x_1^2 – x_2^2}{v_2^2 – v_1^2}}T=2πx12x22v22v12
(c) हल कीजिये/Solve :
y + 16 y = 32 sec 2 x y + 16 y = 32 sec 2 x y^(”)+16 y=32 sec 2xy^{\prime \prime}+16 y=32 \sec 2 xy+16y=32sec2x
Answer:

Introduction

The problem involves solving a second-order non-homogeneous ordinary differential equation (ODE) of the form:
y + 16 y = 32 sec 2 x y + 16 y = 32 sec 2 x y^(”)+16 y=32 sec 2xy^{\prime \prime} + 16y = 32 \sec 2xy+16y=32sec2x
We need to find the general solution to this equation, which will be in the form of y = C.F. + P.I. y = C.F. + P.I. y=”C.F.”+”P.I.”y = \text{C.F.} + \text{P.I.}y=C.F.+P.I., where C.F. is the Complementary Function and P.I. is the Particular Integral.

Work/Calculations

Step 1: Find the Complementary Function (C.F.)

For the homogeneous equation y + 16 y = 0 y + 16 y = 0 y^(″)+16 y=0y” + 16y = 0y+16y=0, the auxiliary equation is:
A.E. D 2 + 16 = 0 D = ± 4 i A.E. D 2 + 16 = 0 D = ± 4 i “A.E.”quadD^(2)+16=0LongrightarrowD=+-4i\text{A.E.} \quad D^2 + 16 = 0 \implies D = \pm 4iA.E.D2+16=0D=±4i
Therefore, the complementary function (C.F.) is:
y CF = c 1 cos 4 x + c 2 sin 4 x y CF = c 1 cos 4 x + c 2 sin 4 x y_(“CF”)=c_(1)cos 4x+c_(2)sin 4xy_{\text{CF}} = c_1 \cos 4x + c_2 \sin 4xyCF=c1cos4x+c2sin4x

Step 2: Calculate Wronskian W W “W”\text{W}W

We have y 1 = cos 4 x y 1 = cos 4 x y_(1)=cos 4xy_1 = \cos 4xy1=cos4x, y 2 = sin 4 x y 2 = sin 4 x y_(2)=sin 4xy_2 = \sin 4xy2=sin4x, and X = 32 sec 2 x X = 32 sec 2 x X=32 sec 2xX = 32 \sec 2xX=32sec2x.
The Wronskian W W WWW is:
W = | cos 4 x sin 4 x 4 sin 4 x 4 cos 4 x | = 4 W = cos 4 x sin 4 x 4 sin 4 x 4 cos 4 x = 4 W=|[cos 4x,sin 4x],[-4sin 4x,4cos 4x]|=4W = \begin{vmatrix} \cos 4x & \sin 4x \\ -4 \sin 4x & 4 \cos 4x \end{vmatrix} = 4W=|cos4xsin4x4sin4x4cos4x|=4

Step 3: Calculate Particular Integral (P.I.)

The Particular Integral y PI y PI y_(“PI”)y_{\text{PI}}yPI is defined as:
y PI = u y 1 + v y 2 y PI = u y 1 + v y 2 y_(“PI”)=uy_(1)+vy_(2)y_{\text{PI}} = u y_1 + v y_2yPI=uy1+vy2
where
u = y 2 X W d x , v = y 1 X W d x u = y 2 X W d x , v = y 1 X W d x u=-int(y_(2)X)/(W)dx,quad v=int(y_(1)X)/(W)dxu = -\int \frac{y_2 X}{W} dx, \quad v = \int \frac{y_1 X}{W} dxu=y2XWdx,v=y1XWdx
Let’s substitute the values:
y PI = cos 4 x sin 4 x 32 sec 2 x 4 d x + sin 4 x cos 4 x 32 sec 2 x 4 d x = 8 cos 4 x sin 2 x cos 2 x d x + 8 sin 4 x ( 2 cos 2 2 x 1 ) d x = 16 cos 4 x sin 2 x d x + 8 sin 4 x [ sin 2 x 1 2 log | sec 2 x + tan 2 x | ] = 8 cos 4 x cos 2 x + 8 sin 4 x sin 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) = 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) y PI = cos 4 x sin 4 x 32 sec 2 x 4 d x + sin 4 x cos 4 x 32 sec 2 x 4 d x = 8 cos 4 x sin 2 x cos 2 x d x + 8 sin 4 x ( 2 cos 2 2 x 1 ) d x = 16 cos 4 x sin 2 x d x + 8 sin 4 x sin 2 x 1 2 log | sec 2 x + tan 2 x | = 8 cos 4 x cos 2 x + 8 sin 4 x sin 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) = 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) {:[y_(“PI”)=-cos 4x int(sin 4x*32 sec 2x)/(4)dx+sin 4x int(cos 4x*32 sec 2x)/(4)dx],[=-8cos 4x int sin 2x cos 2xdx+8sin 4x int(2cos^(2)2x-1)dx],[=-16 cos 4x int sin 2xdx+8sin 4x[sin 2x-(1)/(2)log |sec 2x+tan 2x|]],[=8cos 4x cos 2x+8sin 4x sin 2x-4sin 4x log(sec 2x+tan 2x)],[=8cos 2x-4sin 4x log(sec 2x+tan 2x)]:}\begin{aligned} y_{\text{PI}} &= -\cos 4x \int \frac{\sin 4x \cdot 32 \sec 2x}{4} dx + \sin 4x \int \frac{\cos 4x \cdot 32 \sec 2x}{4} dx \\ &= -8\cos 4x \int \sin 2x \cos 2x dx + 8\sin 4x \int (2 \cos^2 2x – 1) dx \\ &= -16\cos 4x \int \sin 2x dx + 8\sin 4x \left[ \sin 2x – \frac{1}{2} \log |\sec 2x + \tan 2x| \right] \\ &= 8\cos 4x \cos 2x + 8\sin 4x \sin 2x – 4\sin 4x \log (\sec 2x + \tan 2x) \\ &= 8\cos 2x – 4\sin 4x \log (\sec 2x + \tan 2x) \end{aligned}yPI=cos4xsin4x32sec2x4dx+sin4xcos4x32sec2x4dx=8cos4xsin2xcos2xdx+8sin4x(2cos22x1)dx=16cos4xsin2xdx+8sin4x[sin2x12log|sec2x+tan2x|]=8cos4xcos2x+8sin4xsin2x4sin4xlog(sec2x+tan2x)=8cos2x4sin4xlog(sec2x+tan2x)

Step 4: Write the Complete Solution (C.S.)

Finally, the complete solution is y = y CF + y PI y = y CF + y PI y=y_(“CF”)+y_(“PI”)y = y_{\text{CF}} + y_{\text{PI}}y=yCF+yPI:
y = c 1 cos 4 x + c 2 sin 4 x + 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) y = c 1 cos 4 x + c 2 sin 4 x + 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) y=c_(1)cos 4x+c_(2)sin 4x+8cos 2x-4sin 4x log(sec 2x+tan 2x)y = c_1 \cos 4x + c_2 \sin 4x + 8\cos 2x – 4\sin 4x \log (\sec 2x + \tan 2x)y=c1cos4x+c2sin4x+8cos2x4sin4xlog(sec2x+tan2x)

Conclusion

The general solution to the differential equation y + 16 y = 32 sec 2 x y + 16 y = 32 sec 2 x y^(”)+16 y=32 sec 2xy^{\prime \prime} + 16y = 32 \sec 2xy+16y=32sec2x is:
y = c 1 cos 4 x + c 2 sin 4 x + 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) y = c 1 cos 4 x + c 2 sin 4 x + 8 cos 2 x 4 sin 4 x log ( sec 2 x + tan 2 x ) y=c_(1)cos 4x+c_(2)sin 4x+8cos 2x-4sin 4x log(sec 2x+tan 2x)y = c_1 \cos 4x + c_2 \sin 4x + 8\cos 2x – 4\sin 4x \log (\sec 2x + \tan 2x)y=c1cos4x+c2sin4x+8cos2x4sin4xlog(sec2x+tan2x)
(d) अगर गोलक x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2+y^2+z^2=a^2x2+y2+z2=a2 का पृष्ठ S S SSS है, तो गाउस के अपसरण प्रमेय का इस्तेमाल करते हुये
S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] ∬_(S)[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]\iint_S[(x+z) d y d z+(y+z) d z d x+(x+y) d x d y]S[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]
का मान निकालिये।
If S S SSS is the surface of the sphere x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2+y^2+z^2=a^2x2+y2+z2=a2, then evaluate
S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] ∬_(S)[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]\iint_S[(x+z) d y d z+(y+z) d z d x+(x+y) d x d y]S[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]
using Gauss’ divergence theorem.
Answer:
Let S S SSS be the surface of the sphere given by
x 2 + y 2 + z 2 = a 2 x 2 + y 2 + z 2 = a 2 x^(2)+y^(2)+z^(2)=a^(2)x^2+y^2+z^2=a^2x2+y2+z2=a2
then we need to evaluate the integral
S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] S [ ( x + z ) d y d z + ( y + z ) d z d x + ( x + y ) d x d y ] ∬_(S)[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]\iint_S[(x+z) dy dz+(y+z) dz dx+(x+y) dx dy]S[(x+z)dydz+(y+z)dzdx+(x+y)dxdy]
Now, we define the vector field F F vec(F)\vec{F}F as follows:
F = ( x + z ) i ^ + ( y + z ) j ^ + ( x + y ) k ^ F = ( x + z ) i ^ + ( y + z ) j ^ + ( x + y ) k ^ vec(F)=(x+z) hat(i)+(y+z) hat(j)+(x+y) hat(k)\vec{F} = (x+z) \hat{i} + (y+z) \hat{j} + (x+y) \hat{k}F=(x+z)i^+(y+z)j^+(x+y)k^
According to Gauss’ Divergence Theorem:
F d V = S F d S F d V = S F d S ∭grad* vec(F)dV=∬_(S) vec(F)*d vec(S)\iiint \nabla \cdot \vec{F} dV = \iint_S \vec{F} \cdot d\vec{S}FdV=SFdS
where grad\nabla represents the volume enclosed by the surface S S SSS.
Now, let’s calculate the divergence of F F vec(F)\vec{F}F:
F = [ ( x + z ) i ^ + ( y + z ) j ^ + ( x + y ) k ^ ] = x ( x + z ) + y ( y + z ) + z ( x + y ) = 1 + 1 + 0 = 2 F = [ ( x + z ) i ^ + ( y + z ) j ^ + ( x + y ) k ^ ] = x ( x + z ) + y ( y + z ) + z ( x + y ) = 1 + 1 + 0 = 2 grad* vec(F)=grad*[(x+z) hat(i)+(y+z) hat(j)+(x+y) hat(k)]=(del)/(del x)(x+z)+(del)/(del y)(y+z)+(del)/(del z)(x+y)=1+1+0=2\nabla \cdot \vec{F} = \nabla \cdot [(x+z) \hat{i} + (y+z) \hat{j} + (x+y) \hat{k}] = \frac{\partial}{\partial x}(x+z) + \frac{\partial}{\partial y}(y+z) + \frac{\partial}{\partial z}(x+y) = 1 + 1 + 0 = 2F=[(x+z)i^+(y+z)j^+(x+y)k^]=x(x+z)+y(y+z)+z(x+y)=1+1+0=2
So, the divergence of F F vec(F)\vec{F}F is 2.
Now, we can apply Gauss’ Divergence Theorem:
F d V = 2 d V = 2 × 4 3 π a 3 = 8 3 π a 3 F d V = 2 d V = 2 × 4 3 π a 3 = 8 3 π a 3 ∭grad* vec(F)dV=2∭dV=2xx(4)/(3)pia^(3)=(8)/(3)pia^(3)\iiint \nabla \cdot \vec{F} dV =2 \iiint dV = 2 \times \frac{4}{3} \pi a^3 = \frac{8}{3} \pi a^3FdV=2dV=2×43πa3=83πa3
Substituting the divergence value, we have:
F d V = S F d S = 8 3 π a 3 F d V = S F d S = 8 3 π a 3 ∭grad* vec(F)dV=∬_(S) vec(F)*d vec(S)=(8)/(3)pia^(3)\iiint \nabla \cdot \vec{F} dV = \iint_S \vec{F} \cdot d\vec{S}=\frac{8}{3} \pi a^3FdV=SFdS=83πa3
Hence, the value of the given integral is 8 3 π a 3 8 3 π a 3 (8)/(3)pia^(3)\frac{8}{3} \pi a^383πa3.
  1. (a) हल कीजिये/Solve :
( 1 + x ) 2 y + ( 1 + x ) y + y = 4 cos ( log ( 1 + x ) ) ( 1 + x ) 2 y + ( 1 + x ) y + y = 4 cos ( log ( 1 + x ) ) (1+x)^(2)y^(”)+(1+x)y^(‘)+y=4cos(log(1+x))(1+x)^2 y^{\prime \prime}+(1+x) y^{\prime}+y=4 \cos (\log (1+x))(1+x)2y+(1+x)y+y=4cos(log(1+x))
Answer:

Introduction

The problem at hand is to solve the second-order non-homogeneous ordinary differential equation (ODE):
( 1 + x ) 2 y + ( 1 + x ) y + y = 4 cos ( log ( 1 + x ) ) ( 1 + x ) 2 y + ( 1 + x ) y + y = 4 cos ( log ( 1 + x ) ) (1+x)^(2)y^(”)+(1+x)y^(‘)+y=4cos(log(1+x))(1+x)^2 y^{\prime \prime} + (1+x) y^{\prime} + y = 4 \cos(\log(1+x))(1+x)2y+(1+x)y+y=4cos(log(1+x))
We aim to find the general solution, y y yyy, which will be a sum of the complementary function y c y c y_(c)y_cyc and the particular integral y p y p y_(p)y_pyp.

Work/Calculations

Step 1: Transform the Equation

Let log ( 1 + x ) = z log ( 1 + x ) = z log(1+x)=z\log(1+x) = zlog(1+x)=z, then 1 + x = e z 1 + x = e z 1+x=e^(z)1+x = e^z1+x=ez.
The given differential equation can be rewritten as:
( D ( D 1 ) y + D y + y ) = 4 cos z ( D ( D 1 ) y + D y + y ) = 4 cos z (D(D-1)y+Dy+y)=4cos z(D(D-1) y+D y+y)=4 \cos z(D(D1)y+Dy+y)=4cosz
( D 2 + D D + 1 ) y = 4 cos z ( D 2 + D D + 1 ) y = 4 cos z (D^(2)+D-D+1)y=4cos z(D^2 + D – D + 1)y = 4\cos z(D2+DD+1)y=4cosz
Upon simplifying, we have:
( D 2 + 1 ) y = 4 cos z ( D 2 + 1 ) y = 4 cos z (D^(2)+1)y=4cos z(D^2 + 1)y = 4\cos z(D2+1)y=4cosz

Step 2: Find the Complementary Function ( y c y c y_(c)y_cyc)

The auxiliary equation for the homogeneous part of the differential equation m 2 + 1 = 0 m 2 + 1 = 0 m^(2)+1=0m^2 + 1 = 0m2+1=0 is:
m = ± i m = ± i m=+-im = \pm im=±i
Thus, the complementary function y c y c y_(c)y_cyc in terms of z z zzz is:
y c = c 1 cos z + c 2 sin z y c = c 1 cos z + c 2 sin z y_(c)=c_(1)cos z+c_(2)sin zy_c = c_1 \cos z + c_2 \sin zyc=c1cosz+c2sinz
And back in terms of x x xxx, we have:
y c = c 1 cos ( log ( 1 + x ) ) + c 2 sin ( log ( 1 + x ) ) y c = c 1 cos ( log ( 1 + x ) ) + c 2 sin ( log ( 1 + x ) ) y_(c)=c_(1)cos(log(1+x))+c_(2)sin(log(1+x))y_c = c_1 \cos (\log(1+x)) + c_2 \sin (\log(1+x))yc=c1cos(log(1+x))+c2sin(log(1+x))

Step 3: Find the Particular Integral ( y p y p y_(p)y_pyp)

The particular integral y p y p y_(p)y_pyp is given as:
y p = 1 D 2 + 1 4 cos z y p = 1 D 2 + 1 4 cos z y_(p)=(1)/(D^(2)+1)*4cos zy_p = \frac{1}{D^2+1} \cdot 4 \cos zyp=1D2+14cosz
y p = 4 z 2 sin z d z y p = 4 z 2 sin z d z y_(p)=4*(z)/(2)sin zdzy_p = 4 \cdot \frac{z}{2} \sin z dzyp=4z2sinzdz
y p = 2 z sin z y p = 2 z sin z y_(p)=2z sin zy_p = 2z \sin zyp=2zsinz
After converting back to x x xxx, we get:
y p = 2 log ( 1 + x ) sin ( log ( 1 + x ) ) y p = 2 log ( 1 + x ) sin ( log ( 1 + x ) ) y_(p)=2log(1+x)sin(log(1+x))y_p = 2 \log(1+x) \sin (\log(1+x))yp=2log(1+x)sin(log(1+x))

Step 4: Write the General Solution ( y y yyy)

The general solution y y yyy will be y c + y p y c + y p y_(c)+y_(p)y_c + y_pyc+yp:
y = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + 2 log ( 1 + x ) sin ( log ( 1 + x ) ) = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + log ( 1 + x ) 2 sin ( log ( 1 + x ) ) y = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + 2 log ( 1 + x ) sin ( log ( 1 + x ) ) = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + log ( 1 + x ) 2 sin ( log ( 1 + x ) ) {:[y=c_(1)cos log(1+x)+c_(2)sin log(1+x)+2log(1+x)sin(log(1+x))],[=c_(1)cos log(1+x)+c_(2)sin log(1+x)+log(1+x)^(2)sin(log(1+x))]:}\begin{aligned} y &= c_1 \cos \log(1+x) + c_2 \sin \log(1+x) + 2 \log(1+x) \sin (\log(1+x)) \\ &= c_1 \cos \log(1+x) + c_2 \sin \log(1+x) + \log(1+x)^2 \sin (\log(1+x)) \end{aligned}y=c1coslog(1+x)+c2sinlog(1+x)+2log(1+x)sin(log(1+x))=c1coslog(1+x)+c2sinlog(1+x)+log(1+x)2sin(log(1+x))

Conclusion

The general solution to the given differential equation is:
y = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + log ( 1 + x ) 2 sin ( log ( 1 + x ) ) y = c 1 cos log ( 1 + x ) + c 2 sin log ( 1 + x ) + log ( 1 + x ) 2 sin ( log ( 1 + x ) ) y=c_(1)cos log(1+x)+c_(2)sin log(1+x)+log(1+x)^(2)sin(log(1+x))y = c_1 \cos \log(1+x) + c_2 \sin \log(1+x) + \log(1+x)^2 \sin (\log(1+x))y=c1coslog(1+x)+c2sinlog(1+x)+log(1+x)2sin(log(1+x))
And this is the required solution.
(b) बक्र
r = a ( u sin u ) i + a ( 1 cos u ) j + b u k r = a ( u sin u ) i + a ( 1 cos u ) j + b u k vec(r)=a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)\vec{r}=a(u-\sin u) \vec{i}+a(1-\cos u) \vec{j}+b u \vec{k}r=a(usinu)i+a(1cosu)j+buk
की वक्रता और विमोटन ज्ञात कीजिये।
Find the curvature and torsion of the curve
r = a ( u sin u ) i + a ( 1 cos u ) j + b u k r = a ( u sin u ) i + a ( 1 cos u ) j + b u k vec(r)=a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)\vec{r}=a(u-\sin u) \vec{i}+a(1-\cos u) \vec{j}+b u \vec{k}r=a(usinu)i+a(1cosu)j+buk
Answer:

Introduction

We are tasked with finding the curvature and torsion of the curve r = a ( u sin u ) i + a ( 1 cos u ) j + b u k r = a ( u sin u ) i + a ( 1 cos u ) j + b u k vec(r)=a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)\vec{r} = a(u – \sin u) \vec{i} + a(1 – \cos u) \vec{j} + b u \vec{k}r=a(usinu)i+a(1cosu)j+buk. Curvature gives us an understanding of how a curve bends in space, whereas torsion explains how the curve twists.

Work/Calculations

Step 1: First Derivative r ( u ) r ( u ) vec(r)^(‘)(u)\vec{r}'(u)r(u)

We need to find the first derivative of r ( u ) r ( u ) vec(r)(u)\vec{r}(u)r(u) with respect to u u uuu. The derivative is:
d r d u = d d u [ a ( u sin u ) i + a ( 1 cos u ) j + b u k ] = ( a a cos u ) i + a sin u j + b k d r d u = d d u [ a ( u sin u ) i + a ( 1 cos u ) j + b u k ] = ( a a cos u ) i + a sin u j + b k {:[(d( vec(r)))/(du)=(d)/(du)[a(u-sin u) vec(i)+a(1-cos u) vec(j)+bu vec(k)]],[=(a-a cos u) vec(i)+a sin u vec(j)+b vec(k)]:}\begin{aligned} \frac{d \vec{r}}{d u} &= \frac{d}{du}[ a(u – \sin u) \vec{i} + a(1 – \cos u) \vec{j} + b u \vec{k}] \\ &= (a – a \cos u) \vec{i} + a \sin u \vec{j} + b \vec{k} \end{aligned}drdu=ddu[a(usinu)i+a(1cosu)j+buk]=(aacosu)i+asinuj+bk

Step 2: Magnitude of r ( u ) r ( u ) vec(r)^(‘)(u)\vec{r}'(u)r(u)

Next, we find the magnitude of r ( u ) r ( u ) vec(r)^(‘)(u)\vec{r}'(u)r(u):
| d r d u | = ( a a cos u ) 2 + ( a sin u ) 2 + b 2 = a 2 2 a 2 cos u + a 2 cos 2 u + a 2 sin 2 u + b 2 = 2 a 2 ( 1 cos u ) + b 2 d r d u = ( a a cos u ) 2 + ( a sin u ) 2 + b 2 = a 2 2 a 2 cos u + a 2 cos 2 u + a 2 sin 2 u + b 2 = 2 a 2 ( 1 cos u ) + b 2 {:[|(d( vec(r)))/(du)|=sqrt((a-a cos u)^(2)+(a sin u)^(2)+b^(2))],[=sqrt(a^(2)-2a^(2)cos u+a^(2)cos^(2)u+a^(2)sin^(2)u+b^(2))],[=sqrt(2a^(2)(1-cos u)+b^(2))]:}\begin{aligned} \left|\frac{d \vec{r}}{d u}\right| &= \sqrt{(a – a \cos u)^2 + (a \sin u)^2 + b^2} \\ &= \sqrt{a^2 – 2a^2 \cos u + a^2 \cos^2 u + a^2 \sin^2 u + b^2} \\ &= \sqrt{2a^2(1-\cos u) + b^2} \end{aligned}|drdu|=(aacosu)2+(asinu)2+b2=a22a2cosu+a2cos2u+a2sin2u+b2=2a2(1cosu)+b2

Step 3: Second Derivative r ( u ) r ( u ) vec(r)^(″)(u)\vec{r}”(u)r(u)

The second derivative of r r vec(r)\vec{r}r is:
d 2 r d u 2 = d d u [ ( a a cos u ) i + a sin u j + b k ] = a sin u i + a cos u j d 2 r d u 2 = d d u [ ( a a cos u ) i + a sin u j + b k ] = a sin u i + a cos u j {:[(d^(2)( vec(r)))/(du^(2))=(d)/(du)[(a-a cos u) vec(i)+a sin u vec(j)+b vec(k)]],[=a sin u vec(i)+a cos u vec(j)]:}\begin{aligned} \frac{d^2 \vec{r}}{d u^2} &= \frac{d}{du}[ (a – a \cos u) \vec{i} + a \sin u \vec{j} + b \vec{k} ] \\ &= a \sin u \vec{i} + a \cos u \vec{j} \end{aligned}d2rdu2=ddu[(aacosu)i+asinuj+bk]=asinui+acosuj

Step 4: Third Derivative r ( u ) r ( u ) vec(r)^(‴)(u)\vec{r}”'(u)r(u)

The third derivative of r r vec(r)\vec{r}r is:
d 3 r d u 3 = d d u [ a sin u i + a cos u j ] = a cos u i a sin u j d 3 r d u 3 = d d u [ a sin u i + a cos u j ] = a cos u i a sin u j {:[(d^(3)( vec(r)))/(du^(3))=(d)/(du)[a sin u vec(i)+a cos u vec(j)]],[=a cos u vec(i)-a sin u vec(j)]:}\begin{aligned} \frac{d^3 \vec{r}}{d u^3} &= \frac{d}{du}[ a \sin u \vec{i} + a \cos u \vec{j} ] \\ &= a \cos u \vec{i} – a \sin u \vec{j} \end{aligned}d3rdu3=ddu[asinui+acosuj]=acosuiasinuj

Step 5: Torsion T T TTT

The formula for torsion T T TTT is:
T = r × r r r × r 2 T = r × r r r × r 2 T=( vec(r)^(‘)xx vec(r)^(″)* vec(r)^(‴))/(|| vec(r)^(‘)xx vec(r)^(″)||^(2))T = \frac{\vec{r}’ \times \vec{r}” \cdot \vec{r}”’}{\|\vec{r}’ \times \vec{r}”\|^2}T=r×rrr×r2

Step 6: Compute | r × r | | r × r | | vec(r)^(‘)xx vec(r)^(″)||\vec{r}’ \times \vec{r}”||r×r|

| r × r | = a 2 b 2 cos 2 u + a 2 b 2 sin 2 u + a 4 ( cos u 1 ) 2 = a 2 b 2 + a 4 ( cos u 1 ) 2 | r × r | = a 2 b 2 cos 2 u + a 2 b 2 sin 2 u + a 4 ( cos u 1 ) 2 = a 2 b 2 + a 4 ( cos u 1 ) 2 {:[| vec(r)^(‘)xx vec(r)^(″)|=sqrt(a^(2)b^(2)cos^(2)u+a^(2)b^(2)sin^(2)u+a^(4)(cos u-1)^(2))],[=sqrt(a^(2)b^(2)+a^(4)(cos u-1)^(2))]:}\begin{aligned} |\vec{r}’ \times \vec{r}”| &= \sqrt{a^2b^2\cos^2u + a^2b^2\sin^2u + a^4(\cos u – 1)^2} \\ &= \sqrt{a^2b^2 + a^4(\cos u – 1)^2} \end{aligned}|r×r|=a2b2cos2u+a2b2sin2u+a4(cosu1)2=a2b2+a4(cosu1)2

Step 7: Substitute into Torsion Formula

The torsion T T TTT becomes:
T = a 2 b a 2 b 2 + a 4 ( cos u 1 ) 2 T = a 2 b a 2 b 2 + a 4 ( cos u 1 ) 2 {:T=(a^(2)b)/(a^(2)b^(2)+a^(4)(cos u-1)^(2)):}\begin{aligned} T &= \frac{a^2b}{a^2b^2 + a^4(\cos u – 1)^2} \end{aligned}T=a2ba2b2+a4(cosu1)2

Conclusion

We found that the curvature is given by | d r d u | = 2 a 2 ( 1 cos u ) + b 2 d r d u = 2 a 2 ( 1 cos u ) + b 2 |(d( vec(r)))/(du)|=sqrt(2a^(2)(1-cos u)+b^(2))\left|\frac{d \vec{r}}{d u}\right| = \sqrt{2a^2(1-\cos u) + b^2}|drdu|=2a2(1cosu)+b2 and the torsion T T TTT is a 2 b a 2 b 2 + a 4 ( cos u 1 ) 2 a 2 b a 2 b 2 + a 4 ( cos u 1 ) 2 (a^(2)b)/(a^(2)b^(2)+a^(4)(cos u-1)^(2))\frac{a^2b}{a^2b^2 + a^4(\cos u – 1)^2}a2ba2b2+a4(cosu1)2.
(c) प्रारंभिक मान समस्या
y 5 y + 4 y = e 2 t y ( 0 ) = 19 12 , y ( 0 ) = 8 3 y 5 y + 4 y = e 2 t y ( 0 ) = 19 12 , y ( 0 ) = 8 3 {:[y^(”)-5y^(‘)+4y=e^(2t)],[y(0)=(19)/(12)”,”y^(‘)(0)=(8)/(3)]:}\begin{aligned} &y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 t} \\ &y(0)=\frac{19}{12}, y^{\prime}(0)=\frac{8}{3} \end{aligned}y5y+4y=e2ty(0)=1912,y(0)=83
को हल कीजिये।
Solve the initial value problem
y 5 y + 4 y = e 2 t y ( 0 ) = 19 12 , y ( 0 ) = 8 3 y 5 y + 4 y = e 2 t y ( 0 ) = 19 12 , y ( 0 ) = 8 3 {:[y^(”)-5y^(‘)+4y=e^(2t)],[y(0)=(19)/(12)”,”y^(‘)(0)=(8)/(3)]:}\begin{aligned} &y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 t} \\ &y(0)=\frac{19}{12}, y^{\prime}(0)=\frac{8}{3} \end{aligned}y5y+4y=e2ty(0)=1912,y(0)=83
Answer:

Introduction

We are given an initial value problem described by the second-order non-homogeneous differential equation y 5 y + 4 y = e 2 t y 5 y + 4 y = e 2 t y^(″)-5y^(‘)+4y=e^(2t)y” – 5y’ + 4y = e^{2t}y5y+4y=e2t along with the initial conditions y ( 0 ) = 19 12 y ( 0 ) = 19 12 y(0)=(19)/(12)y(0) = \frac{19}{12}y(0)=1912 and y ( 0 ) = 8 3 y ( 0 ) = 8 3 y^(‘)(0)=(8)/(3)y'(0) = \frac{8}{3}y(0)=83.

Work/Calculations

Step 1: Complementary Function ( y c y c y_(c)y_cyc)

For the homogeneous equation y 5 y + 4 y = 0 y 5 y + 4 y = 0 y^(″)-5y^(‘)+4y=0y” – 5y’ + 4y = 0y5y+4y=0, the auxiliary equation is:
m 2 5 m + 4 = 0 m 2 5 m + 4 = 0 m^(2)-5m+4=0m^2 – 5m + 4 = 0m25m+4=0
( m 4 ) ( m 1 ) = 0 ( m 4 ) ( m 1 ) = 0 (m-4)(m-1)=0(m – 4)(m – 1) = 0(m4)(m1)=0
m = 4 , 1 m = 4 , 1 m=4,1m = 4, 1m=4,1
The complementary function y c y c y_(c)y_cyc is:
y c = c 1 e t + c 2 e 4 t y c = c 1 e t + c 2 e 4 t y_(c)=c_(1)e^(t)+c_(2)e^(4t)y_c = c_1e^t + c_2e^{4t}yc=c1et+c2e4t

Step 2: Particular Integral ( y p y p y_(p)y_pyp)

y p = 1 ( D 1 ) ( D 4 ) e 2 t y p = 1 ( D 2 5 D + 4 ) e 2 t y p = e 2 t ( 2 ) 2 5 × 2 + 4 = e 2 t 4 10 + 4 y p = 1 2 e 2 t y p = 1 ( D 1 ) ( D 4 ) e 2 t y p = 1 D 2 5 D + 4 e 2 t y p = e 2 t ( 2 ) 2 5 × 2 + 4 = e 2 t 4 10 + 4 y p = 1 2 e 2 t {:[y_(p)=(1)/((D-1)(D-4))e^(2t)],[y_(p)=(1)/((D^(2)-5D+4))*e^(2t)],[y_(p)=(e^(2t))/((2)^(2)-5xx2+4)=(e^(2t))/(4-10+4)],[y_(p)=-(1)/(2)e^(2t)]:}\begin{aligned} & y_p= \frac{1}{(D-1)(D-4)} e^{2 t} \\ y_p= & \frac{1}{\left(D^2-5 D+4\right)} \cdot e^{2 t} \\ y_p= & \frac{e^{2 t}}{(2)^2-5 \times 2+4}=\frac{e^{2 t}}{4-10+4} \\ & y_p=-\frac{1}{2} e^{2 t} \end{aligned}yp=1(D1)(D4)e2typ=1(D25D+4)e2typ=e2t(2)25×2+4=e2t410+4yp=12e2t
The particular integral ( y p y p y_(p)y_pyp) for e 2 t e 2 t e^(2t)e^{2t}e2t is:
y p = 1 2 e 2 t y p = 1 2 e 2 t y_(p)=-(1)/(2)e^(2t)y_p = -\frac{1}{2}e^{2t}yp=12e2t

Step 3: General Solution y y yyy

The general solution y y yyy is:
y = y c + y p = c 1 e t + c 2 e 4 t 1 2 e 2 t y = y c + y p = c 1 e t + c 2 e 4 t 1 2 e 2 t y=y_(c)+y_(p)=c_(1)e^(t)+c_(2)e^(4t)-(1)/(2)e^(2t)y = y_c + y_p = c_1e^t + c_2e^{4t} – \frac{1}{2}e^{2t}y=yc+yp=c1et+c2e4t12e2t

Step 4: Applying Initial Conditions

Using the initial conditions y ( 0 ) = 19 12 y ( 0 ) = 19 12 y(0)=(19)/(12)y(0) = \frac{19}{12}y(0)=1912 and y ( 0 ) = 8 3 y ( 0 ) = 8 3 y^(‘)(0)=(8)/(3)y'(0) = \frac{8}{3}y(0)=83, we get:
c 1 + c 2 = 25 12 (Equation 1) c 1 + c 2 = 25 12 (Equation 1) c_(1)+c_(2)=(25)/(12)quad(Equation 1)c_1 + c_2 = \frac{25}{12} \quad \text{(Equation 1)}c1+c2=2512(Equation 1)
c 1 + 4 c 2 = 11 3 (Equation 2) c 1 + 4 c 2 = 11 3 (Equation 2) c_(1)+4c_(2)=(11)/(3)quad(Equation 2)c_1 + 4c_2 = \frac{11}{3} \quad \text{(Equation 2)}c1+4c2=113(Equation 2)

Step 5: Solve for c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2

Solve equations 1 and 2 to get:
c 1 = 14 9 , c 2 = 19 36 c 1 = 14 9 , c 2 = 19 36 c_(1)=(14)/(9),quadc_(2)=(19)/(36)c_1 = \frac{14}{9}, \quad c_2 = \frac{19}{36}c1=149,c2=1936

Step 6: Final Solution

Substituting c 1 c 1 c_(1)c_1c1 and c 2 c 2 c_(2)c_2c2 back into the general solution y y yyy, we get:
y = 14 9 e t + 19 36 e 4 t 1 2 e 2 t y = 14 9 e t + 19 36 e 4 t 1 2 e 2 t y=(14)/(9)e^(t)+(19)/(36)e^(4t)-(1)/(2)e^(2t)y = \frac{14}{9}e^t + \frac{19}{36}e^{4t} – \frac{1}{2}e^{2t}y=149et+1936e4t12e2t

Conclusion

The required solution to the initial value problem y 5 y + 4 y = e 2 t y 5 y + 4 y = e 2 t y^(″)-5y^(‘)+4y=e^(2t)y” – 5y’ + 4y = e^{2t}y5y+4y=e2t with the initial conditions y ( 0 ) = 19 12 y ( 0 ) = 19 12 y(0)=(19)/(12)y(0) = \frac{19}{12}y(0)=1912 and y ( 0 ) = 8 3 y ( 0 ) = 8 3 y^(‘)(0)=(8)/(3)y'(0) = \frac{8}{3}y(0)=83 is y = 14 9 e t + 19 36 e 4 t 1 2 e 2 t y = 14 9 e t + 19 36 e 4 t 1 2 e 2 t y=(14)/(9)e^(t)+(19)/(36)e^(4t)-(1)/(2)e^(2t)y = \frac{14}{9}e^t + \frac{19}{36}e^{4t} – \frac{1}{2}e^{2t}y=149et+1936e4t12e2t.
(d) α α alpha\alphaα और β β beta\betaβ को, जिसके लिये x α y β x α y β x^( alpha)y^( beta)x^\alpha y^\betaxαyβ समीकरण ( 4 y 2 + 3 x y ) d x ( 3 x y + 2 x 2 ) d y = 0 4 y 2 + 3 x y d x 3 x y + 2 x 2 d y = 0 (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0(4y2+3xy)dx(3xy+2x2)dy=0 का एक समाकलन गुण्पक है, ज्ञात कीजिये और समीकरण हल कीजिये।
Find α α alpha\alphaα and β β beta\betaβ such that x α y β x α y β x^( alpha)y^( beta)x^\alpha y^\betaxαyβ is an integrating factor of ( 4 y 2 + 3 x y ) d x ( 3 x y + 2 x 2 ) d y = 0 4 y 2 + 3 x y d x 3 x y + 2 x 2 d y = 0 (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0(4y2+3xy)dx(3xy+2x2)dy=0 and solve the equation.
Answer:
Find α α alpha\alphaα and β β beta\betaβ such that x α y β x α y β x^( alpha)y^( beta)x^\alpha y^\betaxαyβ is an integrating factor of ( 4 y 2 + 3 x y ) d x ( 3 x y + 2 x 2 ) d y = 0 4 y 2 + 3 x y d x 3 x y + 2 x 2 d y = 0 (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0(4y2+3xy)dx(3xy+2x2)dy=0 and solve the equation.
Answer:
Given that ( 4 y 2 + 3 x y ) d x ( 3 x y + 2 x 2 ) d y = 0 4 y 2 + 3 x y d x 3 x y + 2 x 2 d y = 0 (4y^(2)+3xy)dx-(3xy+2x^(2))dy=0\left(4 y^2+3 x y\right) d x-\left(3 x y+2 x^2\right) d y=0(4y2+3xy)dx(3xy+2x2)dy=0
Let x α y β x α y β x^( alpha)y^( beta)x^\alpha y^\betaxαyβ be an integrating factor of equation (1) then
x α y β ( 4 y 2 + 3 x y ) d x x α y β ( 3 x y + 2 x 2 ) d y = 0 ( 4 x α y β + 2 + 3 x α + 1 y β + 1 ) d x ( 3 x α + 1 y β + 1 + 2 x α + 2 y β ) d y = 0 ( ) x α y β 4 y 2 + 3 x y d x x α y β 3 x y + 2 x 2 d y = 0 4 x α y β + 2 + 3 x α + 1 y β + 1 d x 3 x α + 1 y β + 1 + 2 x α + 2 y β d y = 0 ( {:[x^( alpha)y^( beta)(4y^(2)+3xy)dx-x^( alpha)y^( beta)(3xy+2x^(2))dy=0],[{:(4x^( alpha)y^(beta+2)+3x^(alpha+1)y^(beta+1))dx-(3x^(alpha+1)y^(beta+1)+2x^(alpha+2)y^( beta))dy=0rarr” ( “)]:}\begin{aligned} & x^\alpha y^\beta\left(4 y^2+3 x y\right) d x-x^\alpha y^\beta\left(3 x y+2 x^2\right) d y=0 \\ & \left.\left(4 x^\alpha y^{\beta+2}+3 x^{\alpha+1} y^{\beta+1}\right) d x-\left(3 x^{\alpha+1} y^{\beta+1}+2 x^{\alpha+2} y^\beta\right) d y=0 \rightarrow \text { ( }\right) \end{aligned}xαyβ(4y2+3xy)dxxαyβ(3xy+2x2)dy=0(4xαyβ+2+3xα+1yβ+1)dx(3xα+1yβ+1+2xα+2yβ)dy=0 ( )
Compare with M d x + N d y = 0 M d x + N d y = 0 Mdx+Ndy=0M d x+N d y=0Mdx+Ndy=0
M = 4 x α y β + 2 + 3 x α + 1 y β + 1 M y = 4 ( β + 2 ) x α y β + 1 + 3 ( β + 1 ) x α + 1 y β N = 3 x α + 1 y β + 1 2 x α + 2 y β N x = 3 ( α + 1 ) x α y β + 1 2 ( α + 2 ) x α + 1 y β M = 4 x α y β + 2 + 3 x α + 1 y β + 1 M y = 4 ( β + 2 ) x α y β + 1 + 3 ( β + 1 ) x α + 1 y β N = 3 x α + 1 y β + 1 2 x α + 2 y β N x = 3 ( α + 1 ) x α y β + 1 2 ( α + 2 ) x α + 1 y β {:[M=4x^( alpha)y^(beta+2)+3x^(alpha+1)y^(beta+1)],[(del M)/(del y)=4(beta+2)x^( alpha)y^(beta+1)+3(beta+1)x^(alpha+1)y^( beta)],[N=-3x^(alpha+1)y^(beta+1)-2x^(alpha+2)y^( beta)],[(del N)/(del x)=-3(alpha+1)x^( alpha)y^(beta+1)-2(alpha+2)x^(alpha+1)y^( beta)]:}\begin{aligned} M & =4 x^\alpha y^{\beta+2}+3 x^{\alpha+1} y^{\beta+1} \\ \frac{\partial M}{\partial y} & =4(\beta+2) x^\alpha y^{\beta+1}+3(\beta+1) x^{\alpha+1} y^\beta \\ N & =-3 x^{\alpha+1} y^{\beta+1}-2 x^{\alpha+2} y^\beta \\ \frac{\partial N}{\partial x} & =-3(\alpha+1) x^\alpha y^{\beta+1}-2(\alpha+2) x^{\alpha+1} y^\beta \end{aligned}M=4xαyβ+2+3xα+1yβ+1My=4(β+2)xαyβ+1+3(β+1)xα+1yβN=3xα+1yβ+12xα+2yβNx=3(α+1)xαyβ+12(α+2)xα+1yβ
Now if this equation is exact then M y = N x M y = N x (del M)/(del y)=(del N)/(del x)\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}My=Nx
4 ( β + 2 ) x α y β + 1 + 3 ( β + 1 ) x α + 1 y β = 3 ( α + 1 ) x α y β + 1 2 ( α + 2 ) x α + 1 y β 4 ( β + 2 ) x α y β + 1 + 3 ( β + 1 ) x α + 1 y β = 3 ( α + 1 ) x α y β + 1 2 ( α + 2 ) x α + 1 y β 4(beta+2)x^( alpha)y^(beta+1)+3(beta+1)x^(alpha+1)y^( beta)=-3(alpha+1)x^( alpha)y^(beta+1)-2(alpha+2)x^(alpha+1)y^( beta)4(\beta+2) x^\alpha y^{\beta+1}+3(\beta+1) x^{\alpha+1} y^\beta=-3(\alpha+1) x^\alpha y^{\beta+1}-2(\alpha+2) x^{\alpha+1} y^\beta4(β+2)xαyβ+1+3(β+1)xα+1yβ=3(α+1)xαyβ+12(α+2)xα+1yβ
Compare the coefficients of x α y β + 1 x α y β + 1 x^( alpha)y^(beta+1)x^\alpha y^{\beta+1}xαyβ+1 and x α + 1 y β x α + 1 y β x^(alpha+1)y^( beta)x^{\alpha+1} y^\betaxα+1yβ
4 ( β + 2 ) = 3 ( α + 1 ) 3 ( β + 1 ) = 2 ( α + 2 ) 4 ( β + 2 ) = 3 ( α + 1 ) 3 ( β + 1 ) = 2 ( α + 2 ) {:[4(beta+2)=-3(alpha+1)],[3(beta+1)=-2(alpha+2)]:}\begin{aligned} & 4(\beta+2)=-3(\alpha+1) \\ & 3(\beta+1)=-2(\alpha+2) \end{aligned}4(β+2)=3(α+1)3(β+1)=2(α+2)
After solving equations (1) & (2)
α = 5 & β = 1 α = 5 & β = 1 alpha=-5quad&quad beta=1\alpha=-5 \quad \& \quad \beta=1α=5&β=1
Put these values in equation (A)
( 4 x 5 y 3 + 3 x 4 y 2 ) d x ( 3 x 4 y + 2 x 3 y ) d y = 0 4 x 5 y 3 + 3 x 4 y 2 d x 3 x 4 y + 2 x 3 y d y = 0 (4x^(-5)y^(3)+3x^(-4)y^(2))dx-(3x^(-4)y+2x^(-3)y)dy=0\left(4 x^{-5} y^3+3 x^{-4} y^2\right) d x-\left(3 x^{-4} y+2 x^{-3} y\right) d y=0(4x5y3+3x4y2)dx(3x4y+2x3y)dy=0
Again compare it with M 1 d x + N 1 d y = 0 M 1 d x + N 1 d y = 0 M_(1)dx+N_(1)dy=0M_1 d x+N_1 d y=0M1dx+N1dy=0
M 1 = 4 x 5 y 3 + 3 x 4 y 2 N 1 = ( 3 x 4 y + 2 x 3 y ) M 1 = 4 x 5 y 3 + 3 x 4 y 2 N 1 = 3 x 4 y + 2 x 3 y {:[M_(1)=4x^(-5)y^(3)+3x^(-4)y^(2)],[N_(1)=-(3x^(-4)y+2x^(-3)y)]:}\begin{aligned} & M_1=4 x^{-5} y^3+3 x^{-4} y^2 \\ & N_1=-\left(3 x^{-4} y+2 x^{-3} y\right) \end{aligned}M1=4x5y3+3x4y2N1=(3x4y+2x3y)
General Solution:
M 1 d x + ( N 1 x ) d y = 0 ( 4 x 5 y 3 + 3 x 4 y 2 ) d x + 0 d y = 0 M 1 d x + N 1 x d y = 0 4 x 5 y 3 + 3 x 4 y 2 d x + 0 d y = 0 {:[ intM_(1)dx+int(N_(1)∼x)dy=0],[ int(4x^(-5)y^(3)+3x^(-4)y^(2))dx+int0dy=0]:}\begin{aligned} & \int M_1 d x+\int\left(N_1 \sim x\right) d y=0 \\ & \int\left(4 x^{-5} y^3+3 x^{-4} y^2\right) d x+\int 0 d y=0 \end{aligned}M1dx+(N1x)dy=0(4x5y3+3x4y2)dx+0dy=0
4 x 4 4 y 3 3 x 3 3 y 3 + 0 = C y 3 x 4 y 3 x 3 = C y 3 x 3 + y 3 x 4 = C 4 x 4 4 y 3 3 x 3 3 y 3 + 0 = C y 3 x 4 y 3 x 3 = C y 3 x 3 + y 3 x 4 = C {:[(4x^(-4))/(-4)y^(3)-(3x^(-3))/(3)y^(3)+0=C],[(-y^(3))/(x^(4))-(y^(3))/(x^(3))=C],[(y^(3))/(x^(3))+(y^(3))/(x^(4))=-C]:}\begin{aligned} & \frac{4 x^{-4}}{-4} y^3-\frac{3 x^{-3}}{3} y^3+0=C \\ & \frac{-y^3}{x^4}-\frac{y^3}{x^3}=C \\ & \frac{y^3}{x^3}+\frac{y^3}{x^4}=-C \end{aligned}4x44y33x33y3+0=Cy3x4y3x3=Cy3x3+y3x4=C
y 3 x 3 + y 3 x 4 = k y 3 x 3 + y 3 x 4 = k (y^(3))/(x^(3))+(y^(3))/(x^(4))=k\frac{y^3}{x^3}+\frac{y^3}{x^4}=ky3x3+y3x4=k
where k = c k = c k=-ck=-ck=c
  1. (a) मान लीजिये कि v = v 1 i + v 2 j + v 3 k v = v 1 i + v 2 j + v 3 k vec(v)=v_(1) vec(i)+v_(2) vec(j)+v_(3) vec(k)\vec{v}=v_1 \vec{i}+v_2 \vec{j}+v_3 \vec{k}v=v1i+v2j+v3k है। दर्शाइये कि curl ( curl v ) = grad ( div v ) 2 v curl ( curl v ) = grad ( div v ) 2 v curl(curl vec(v))=grad(div vec(v))-grad^(2) vec(v)\operatorname{curl}(\operatorname{curl} \vec{v})=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^2 \vec{v}curl(curlv)=grad(divv)2v.
Let v = v 1 i + v 2 j + v 3 k v = v 1 i + v 2 j + v 3 k vec(v)=v_(1) vec(i)+v_(2) vec(j)+v_(3) vec(k)\vec{v}=v_1 \vec{i}+v_2 \vec{j}+v_3 \vec{k}v=v1i+v2j+v3k. Show that curl(curl v ) = grad ( div v ) 2 v v = grad ( div v ) 2 v {:( vec(v)))=grad(div vec(v))-grad^(2) vec(v)\left.\vec{v}\right)=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^2 \vec{v}v)=grad(divv)2v.
Answer:
Introduction:
We are given a vector field v = v 1 i ^ + v 2 j ^ + v 3 k ^ v = v 1 i ^ + v 2 j ^ + v 3 k ^ vec(v)=v_(1) hat(i)+v_(2) hat(j)+v_(3) hat(k)\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}v=v1i^+v2j^+v3k^, and we need to show that × ( × v ) = grad ( div v ) 2 v × ( × v ) = grad ( div v ) 2 v grad xx(grad xx vec(v))=grad(div vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \operatorname{grad}(\operatorname{div} \vec{v}) – \nabla^2 \vec{v}×(×v)=grad(divv)2v.
Work/Calculations:
First, we find the curl of v v vec(v)\vec{v}v using the determinant form:
× v = | i ^ j ^ k ^ x y z v 1 v 2 v 3 | × v = i ^ j ^ k ^ x y z v 1 v 2 v 3 {:grad xx vec(v)=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[v_(1),v_(2),v_(3)]|:}\begin{aligned} \nabla \times \vec{v} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix} \end{aligned}×v=|i^j^k^xyzv1v2v3|
Expanding the determinant, we get:
× v = ( v 3 y v 2 z ) i ^ + ( v 1 z v 3 x ) j ^ + ( v 2 x v 1 y ) k ^ × v = v 3 y v 2 z i ^ + v 1 z v 3 x j ^ + v 2 x v 1 y k ^ {:grad xx vec(v)=((delv_(3))/(del y)-(delv_(2))/(del z)) hat(i)+((delv_(1))/(del z)-(delv_(3))/(del x)) hat(j)+((delv_(2))/(del x)-(delv_(1))/(del y)) hat(k):}\begin{aligned} \nabla \times \vec{v} &= \left(\frac{\partial v_3}{\partial y} – \frac{\partial v_2}{\partial z}\right) \hat{i} + \left(\frac{\partial v_1}{\partial z} – \frac{\partial v_3}{\partial x}\right) \hat{j} + \left(\frac{\partial v_2}{\partial x} – \frac{\partial v_1}{\partial y}\right) \hat{k} \end{aligned}×v=(v3yv2z)i^+(v1zv3x)j^+(v2xv1y)k^
Now, we compute × ( × v ) × ( × v ) grad xx(grad xx vec(v))\nabla \times (\nabla \times \vec{v})×(×v) using the same determinant form:
× ( × v ) = | i ^ j ^ k ^ x y z v 3 y v 2 z v 1 z v 3 x v 2 x v 1 y | × ( × v ) = i ^ j ^ k ^ x y z v 3 y v 2 z v 1 z v 3 x v 2 x v 1 y {:grad xx(grad xx vec(v))=|[ hat(i), hat(j), hat(k)],[(del)/(del x),(del)/(del y),(del)/(del z)],[(delv_(3))/(del y)-(delv_(2))/(del z),(delv_(1))/(del z)-(delv_(3))/(del x),(delv_(2))/(del x)-(delv_(1))/(del y)]|:}\begin{aligned} \nabla \times (\nabla \times \vec{v}) &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial v_3}{\partial y} – \frac{\partial v_2}{\partial z} & \frac{\partial v_1}{\partial z} – \frac{\partial v_3}{\partial x} & \frac{\partial v_2}{\partial x} – \frac{\partial v_1}{\partial y} \end{vmatrix} \end{aligned}×(×v)=|i^j^k^xyzv3yv2zv1zv3xv2xv1y|
Expanding this determinant and simplifying, we get:
× ( × v ) = [ { y ( v 2 x v 1 y ) z ( v 1 z v 3 x ) } i ^ ] × ( × v ) = y v 2 x v 1 y z v 1 z v 3 x i ^ {:grad xx(grad xx vec(v))=sum[{(del)/(del y)((delv_(2))/(del x)-(delv_(1))/(del y))-(del)/(del z)((delv_(1))/(del z)-(delv_(3))/(del x))}( hat(i))]:}\begin{aligned} \nabla \times (\nabla \times \vec{v}) &= \sum\left[\left\{\frac{\partial}{\partial y}\left(\frac{\partial v_2}{\partial x} – \frac{\partial v_1}{\partial y}\right) – \frac{\partial}{\partial z}\left(\frac{\partial v_1}{\partial z} – \frac{\partial v_3}{\partial x}\right)\right\} \hat{i}\right] \end{aligned}×(×v)=[{y(v2xv1y)z(v1zv3x)}i^]
Continuing the simplification:
= [ { ( 2 V 2 y x + 2 V 3 z x ( 2 V 1 y 2 + 2 v 1 z 2 ) } i ] ] = [ { x ( v 2 y + v 3 z ) ( 2 v 1 y 2 + 2 v 1 z 2 ) } i ^ ] = 2 V 2 y x + 2 V 3 z x 2 V 1 y 2 + 2 v 1 z 2 i = x v 2 y + v 3 z 2 v 1 y 2 + 2 v 1 z 2 i ^ {:=sum[{((del^(2)V_(2))/(del y del x)+(del^(2)V_(3))/(del z del x)-((del^(2)V_(1))/(dely^(2))+(del^(2)v_(1))/(delz^(2)))}i]]=sum[{(del)/(del x)((delv_(2))/(del y)+(delv_(3))/(del z))-((del^(2)v_(1))/(dely^(2))+(del^(2)v_(1))/(delz^(2)))}( hat(i))]:}\begin{aligned} =\sum\left[\left\{\left(\frac{\partial^2 V_2}{\partial y \partial x}+\frac{\partial^2 V_3}{\partial z \partial x}-\left(\frac{\partial^2 V_1}{\partial y^2}+\frac{\partial^2 v_1}{\partial z^2}\right)\right\} i\right]\right]&= \sum\left[\left\{\frac{\partial}{\partial x}\left(\frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}\right) – \left(\frac{\partial^2 v_1}{\partial y^2} + \frac{\partial^2 v_1}{\partial z^2}\right)\right\} \hat{i}\right] \end{aligned}=[{(2V2yx+2V3zx(2V1y2+2v1z2)}i]]=[{x(v2y+v3z)(2v1y2+2v1z2)}i^]
Now, further simplifying:
= [ { x ( v 2 y + v 3 z ) ( 2 v 1 y 2 + 2 v 1 z 2 ) } i ^ ] = [ { x ( v ) 2 v 1 } i ^ ] = x v 2 y + v 3 z 2 v 1 y 2 + 2 v 1 z 2 i ^ = x ( v ) 2 v 1 i ^ {:[=sum[{(del)/(del x)((delv_(2))/(del y)+(delv_(3))/(del z))-((del^(2)v_(1))/(dely^(2))+(del^(2)v_(1))/(delz^(2)))}( hat(i))]],[=sum[{(del)/(del x)(grad*( vec(v)))-grad^(2)v_(1)}( hat(i))]]:}\begin{aligned} &= \sum\left[\left\{\frac{\partial}{\partial x}\left(\frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}\right) – \left(\frac{\partial^2 v_1}{\partial y^2} + \frac{\partial^2 v_1}{\partial z^2}\right)\right\} \hat{i}\right] \\ &= \sum\left[\left\{\frac{\partial}{\partial x}(\nabla \cdot \vec{v}) – \nabla^2 v_1\right\} \hat{i}\right] \end{aligned}=[{x(v2y+v3z)(2v1y2+2v1z2)}i^]=[{x(v)2v1}i^]
Using the sum notation, we get:
× ( × v ) = [ { x ( v ) 2 v 1 } i ^ ] × ( × v ) = x ( v ) 2 v 1 i ^ grad xx(grad xx vec(v))=sum[{(del)/(del x)(grad*( vec(v)))-grad^(2)v_(1)}( hat(i))]\nabla \times (\nabla \times \vec{v}) = \sum\left[\left\{\frac{\partial}{\partial x}(\nabla \cdot \vec{v}) – \nabla^2 v_1\right\} \hat{i}\right]×(×v)=[{x(v)2v1}i^]
Now, let’s write this in a more concise form:
× ( × v ) = ( v ) 2 v × ( × v ) = ( v ) 2 v grad xx(grad xx vec(v))=grad(grad* vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \nabla(\nabla \cdot \vec{v}) – \nabla^2 \vec{v}×(×v)=(v)2v
Conclusion:
Therefore, we have shown that × ( × v ) = ( v ) 2 v × ( × v ) = ( v ) 2 v grad xx(grad xx vec(v))=grad(grad* vec(v))-grad^(2) vec(v)\nabla \times (\nabla \times \vec{v}) = \nabla(\nabla \cdot \vec{v}) – \nabla^2 \vec{v}×(×v)=(v)2v, as required.
(b) स्टोकस प्रमेय का इस्तेमाल करते हुये रेखा समाकल C y 3 d x + x 3 d y + z 3 d z C y 3 d x + x 3 d y + z 3 d z int _(C)-y^(3)dx+x^(3)dy+z^(3)dz\int_C-y^3 d x+x^3 d y+z^3 d zCy3dx+x3dy+z3dz का मान निकालिये। यहाँ सिलिन्डर x 2 + y 2 = 1 x 2 + y 2 = 1 x^(2)+y^(2)=1x^2+y^2=1x2+y2=1 और समतल x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1 का प्रतिच्छेद C C CCC है। C C CCC पर अभिकिन्यास x y x y xyx yxy-समतल में वामावर्त गति के संगत है।
Evaluate the line integral C y 3 d x + x 3 d y + z 3 d z C y 3 d x + x 3 d y + z 3 d z int _(C)-y^(3)dx+x^(3)dy+z^(3)dz\int_C-y^3 d x+x^3 d y+z^3 d zCy3dx+x3dy+z3dz using Stokes’ theorem. Here C C CCC is the intersection of the cylinder x 2 + y 2 = 1 x 2 + y 2 = 1 x^(2)+y^(2)=1x^2+y^2=1x2+y2=1 and the plane x + y + z = 1 x + y + z = 1 x+y+z=1x+y+z=1x+y+z=1. The orientation on C C CCC corresponds to counterclockwise motion in the x y x y xyx yxy-plane.
Answer:
Introduction:
We are given the line integral C ( y 3 d x + x 3 d y + z 3 d z ) C ( y 3 d x + x 3 d y + z 3 d z ) int _(C)(-y^(3)dx+x^(3)dy+z^(3)dz)\int_C (-y^3 dx + x^3 dy + z^3 dz)C(y3dx+x3dy+z3dz), where C C CCC is the intersection of the cylinder x 2 + y 2 = 1 x 2 + y 2 = 1 x^(2)+y^(2)=1x^2 + y^2 = 1x2+y2=1 and the plane x + y + z = 1 x + y + z = 1 x+y+z=1x + y + z = 1x+y+z=1. We will evaluate this integral using Stokes’ theorem.
Work/Calculations:
Let’s start by finding the unit normal vector n ^ n ^ hat(n)\hat{n}n^ for the plane x + y + z = 1 x + y + z = 1 x+y+z=1x + y + z = 1x+y+z=1. The orientation on C C CCC corresponds to counterclockwise motion in the x y x y xyxyxy-plane. Therefore,
n ^ = i + j + k 1 2 + 1 2 + 1 2 = 1 3 i + 1 3 j + 1 3 k n ^ = i + j + k 1 2 + 1 2 + 1 2 = 1 3 i + 1 3 j + 1 3 k hat(n)=(i+j+k)/(sqrt(1^(2)+1^(2)+1^(2)))=(1)/(sqrt3)i+(1)/(sqrt3)j+(1)/(sqrt3)k\hat{n} = \frac{i + j + k}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}} i + \frac{1}{\sqrt{3}} j + \frac{1}{\sqrt{3}} kn^=i+j+k12+12+12=13i+13j+13k
We will apply Stokes’ theorem with P = y 3 P = y 3 P=-y^(3)P = -y^3P=y3, Q = x 3 Q = x 3 Q=x^(3)Q = x^3Q=x3, and R = z 3 R = z 3 R=z^(3)R = z^3R=z3. Calculate × F × F grad xx F\nabla \times F×F:
× F = | i j k x y z y 3 x 3 z 3 | = i [ 0 ] j [ 0 ] + k [ 3 x 2 + 3 y 2 ] = 3 ( x 2 + y 2 ) k × F = i j k x y z y 3 x 3 z 3 = i 0 j 0 + k 3 x 2 + 3 y 2 = 3 x 2 + y 2 k {:[grad xx F=|[i,j,k],[(del)/(del x),(del)/(del y),(del)/(del z)],[-y^(3),x^(3),z^(3)]|],[=i[0]-j[0]+k[3x^(2)+3y^(2)]],[=3(x^(2)+y^(2))k]:}\begin{aligned} \nabla \times F &= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^3 & x^3 & z^3 \end{vmatrix} \\ &= i \left[0\right] – j \left[0\right] + k \left[3x^2 + 3y^2\right] \\ &= 3\left(x^2 + y^2\right) k \end{aligned}×F=|ijkxyzy3x3z3|=i[0]j[0]+k[3x2+3y2]=3(x2+y2)k
Now, we will use Stokes’ theorem:
C ( y 3 d x + x 3 d y + z 3 d z ) = S ( × F ) d S C ( y 3 d x + x 3 d y + z 3 d z ) = S ( × F ) d S oint_(C)(-y^(3)dx+x^(3)dy+z^(3)dz)=∬_(S)(grad xx F)*dS\oint_C (-y^3 dx + x^3 dy + z^3 dz) = \iint_S (\nabla \times F) \cdot dSC(y3dx+x3dy+z3dz)=S(×F)dS
Here, S S SSS is the surface bounded by C C CCC.
The projection of the surface S S SSS onto the x y x y xyxyxy-plane is the circle x 2 + y 2 = 1 x 2 + y 2 = 1 x^(2)+y^(2)=1x^2 + y^2 = 1x2+y2=1 with a radius of 1. Representing the equation of the plane in the form z = 1 x y z = 1 x y z=1-x-yz = 1 – x – yz=1xy and using the formula for the surface integral:
S d S = R 1 + ( z x ) 2 + ( z y ) 2 d x d y = R 1 + ( 1 ) 2 + ( 1 ) 2 d x d y = 3 R d x d y = 3 π ( 1 2 ) = 3 π S d S = R 1 + z x 2 + z y 2 d x d y = R 1 + ( 1 ) 2 + ( 1 ) 2 d x d y = 3 R d x d y = 3 π ( 1 2 ) = 3 π {:[∬_(S)dS=∬_(R)sqrt(1+((del z)/(del x))^(2)+((del z)/(del y))^(2))dxdy],[=∬_(R)sqrt(1+(-1)^(2)+(-1)^(2))dxdy],[=sqrt3∬_(R)dxdy],[=sqrt3pi(1^(2))],[=sqrt3pi]:}\begin{aligned} \iint_S dS &= \iint_R \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy \\ &= \iint_R \sqrt{1 + (-1)^2 + (-1)^2} dx dy \\ &= \sqrt{3} \iint_R dx dy \\ &= \sqrt{3} \pi (1^2) \\ &= \sqrt{3} \pi \end{aligned}SdS=R1+(zx)2+(zy)2dxdy=R1+(1)2+(1)2dxdy=3Rdxdy=3π(12)=3π
Now, we can calculate the line integral using Stokes’ theorem:
C ( y 3 d x + x 3 d y + z 3 d z ) = S ( × F ) d S = 3 ( 3 π ) = 3 π C ( y 3 d x + x 3 d y + z 3 d z ) = S ( × F ) d S = 3 ( 3 π ) = 3 π {:[oint_(C)(-y^(3)dx+x^(3)dy+z^(3)dz)=∬_(S)(grad xx F)*dS],[=sqrt3(sqrt3pi)],[=3pi]:}\begin{aligned} \oint_C (-y^3 dx + x^3 dy + z^3 dz) &= \iint_S (\nabla \times F) \cdot dS \\ &= \sqrt{3} (\sqrt{3} \pi) \\ &= 3\pi \end{aligned}C(y3dx+x3dy+z3dz)=S(×F)dS=3(3π)=3π
Conclusion:
The line integral C ( y 3 d x + x 3 d y + z 3 d z ) C ( y 3 d x + x 3 d y + z 3 d z ) int _(C)(-y^(3)dx+x^(3)dy+z^(3)dz)\int_C (-y^3 dx + x^3 dy + z^3 dz)C(y3dx+x3dy+z3dz) over the curve C C CCC is equal to 3 π 3 π 3pi3\pi3π when evaluated using Stokes’ theorem.
(c) मान लीजिये कि F = x y 2 i + ( y + x ) j F = x y 2 i + ( y + x ) j vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j}F=xy2i+(y+x)j है। ग्रीन के प्रमेय का इस्तेमाल करते हुये प्रथम चतुर्थाश में वक्रों y = x 2 y = x 2 y=x^(2)y=x^2y=x2 और y = x y = x y=xy=xy=x द्वारा परिबद्ध क्षेत्र पर ( × F ) k ( × F ) k (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k}(×F)k का समाकलन कीजिये।
Let F = x y 2 i + ( y + x ) j F = x y 2 i + ( y + x ) j vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j}F=xy2i+(y+x)j. Integrate ( × F ) k ( × F ) k (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k}(×F)k over the region in the first quadrant bounded by the curves y = x 2 y = x 2 y=x^(2)y=x^2y=x2 and y = x y = x y=xy=xy=x using Green’s theorem.
Answer:

Introduction

The problem asks us to integrate ( × F ) k ( × F ) k (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k}(×F)k over the region in the first quadrant bounded by the curves y = x 2 y = x 2 y=x^(2)y=x^2y=x2 and y = x y = x y=xy=xy=x using Green’s theorem.
Green’s theorem states that for a vector field F = M i + N j F = M i + N j vec(F)=M vec(i)+N vec(j)\vec{F}=M \vec{i}+N \vec{j}F=Mi+Nj :
C ( M d x + N d y ) = R ( N x M y ) d A C ( M d x + N d y ) = R N x M y d A oint_(C)(Mdx+Ndy)=∬_(R)((del N)/(del x)-(del M)/(del y))dA\oint_C(M d x+N d y)=\iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d AC(Mdx+Ndy)=R(NxMy)dA
Here, C C CCC is the positively oriented boundary curve of the region R R RRR.
Given F = x y 2 i + ( y + x ) j F = x y 2 i + ( y + x ) j vec(F)=xy^(2) vec(i)+(y+x) vec(j)\vec{F}=x y^2 \vec{i}+(y+x) \vec{j}F=xy2i+(y+x)j, we have M = x y 2 M = x y 2 M=xy^(2)M=x y^2M=xy2 and N = y + x N = y + x N=y+xN=y+xN=y+x.

Work/Calculations

Step 1: Compute ( × F ) k ( × F ) k (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k}(×F)k

The curl of F F vec(F)\vec{F}F is given by:
× F = ( N x M y ) k × F = N x M y k grad xx vec(F)=((del N)/(del x)-(del M)/(del y)) vec(k)\nabla \times \vec{F}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \vec{k}×F=(NxMy)k
For M = x y 2 M = x y 2 M=xy^(2)M=x y^2M=xy2 and N = y + x N = y + x N=y+xN=y+xN=y+x, we have:
N x = 1 , M y = 2 x y N x = 1 , M y = 2 x y (del N)/(del x)=1,quad(del M)/(del y)=2xy\frac{\partial N}{\partial x}=1, \quad \frac{\partial M}{\partial y}=2 x yNx=1,My=2xy
Therefore, ( × F ) k = 1 2 x y ( × F ) k = 1 2 x y (grad xx vec(F))* vec(k)=1-2xy(\nabla \times \vec{F}) \cdot \vec{k}=1-2 x y(×F)k=12xy.
The curl of F F vec(F)\vec{F}F is given by:
( × F ) k = N x M y = 1 2 x y ( × F ) k = N x M y = 1 2 x y (grad xx vec(F))* vec(k)=(del N)/(del x)-(del M)/(del y)=1-2xy(\nabla \times \vec{F}) \cdot \vec{k} = \frac{\partial N}{\partial x} – \frac{\partial M}{\partial y} = 1 – 2xy(×F)k=NxMy=12xy

Step 2: Evaluate the Double Integral Using Green’s Theorem

The region R R RRR is bounded by y = x 2 y = x 2 y=x^(2)y = x^2y=x2 and y = x y = x y=xy = xy=x. These curves intersect at x = 0 x = 0 x=0x = 0x=0 and x = 1 x = 1 x=1x = 1x=1.
Using Green’s theorem, we have:
R ( 1 2 x y ) d A R ( 1 2 x y ) d A ∬_(R)(1-2xy)dA\iint_R (1 – 2xy) \, dAR(12xy)dA
To set up the integral, we note that x x xxx ranges from 0 to 1, and y y yyy ranges from x 2 x 2 x^(2)x^2x2 to x x xxx:
0 1 x 2 x ( 1 2 x y ) d y d x 0 1 x 2 x ( 1 2 x y ) d y d x int_(0)^(1)int_(x^(2))^(x)(1-2xy)dydx\int_{0}^{1} \int_{x^2}^{x} (1 – 2xy) \, dy \, dx01x2x(12xy)dydx
After calculating, we get:
0 1 [ y x y 2 ] x 2 x d x 0 1 [ y x y 2 ] x 2 x d x int_(0)^(1)[y-xy^(2)]_(x^(2))^(x)dx\int_{0}^{1} [y – xy^2]_{x^2}^{x} \, dx01[yxy2]x2xdx
Let’s substitute the values:
0 1 ( x x 3 x 2 + x 5 ) d x 0 1 ( x x 3 x 2 + x 5 ) d x int_(0)^(1)(x-x^(3)-x^(2)+x^(5))dx\int_{0}^{1} (x – x^3 – x^2 + x^5) \, dx01(xx3x2+x5)dx
After calculating , the result is 1 12 1 12 (1)/(12)\frac{1}{12}112.

Conclusion

The integral of ( × F ) k ( × F ) k (grad xx vec(F))* vec(k)(\nabla \times \vec{F}) \cdot \vec{k}(×F)k over the region in the first quadrant bounded by the curves y = x 2 y = x 2 y=x^(2)y = x^2y=x2 and y = x y = x y=xy = xy=x is 1 12 1 12 (1)/(12)\frac{1}{12}112.
(d) f ( y ) f ( y ) f(y)f(y)f(y), जिसके लिये समीकरण ( 2 x e y + 3 y 2 ) d y + ( 3 x 2 + f ( y ) ) d x = 0 2 x e y + 3 y 2 d y + 3 x 2 + f ( y ) d x = 0 (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0\left(2 x e^y+3 y^2\right) d y+\left(3 x^2+f(y)\right) d x=0(2xey+3y2)dy+(3x2+f(y))dx=0 सथातथ्य है, ज्ञात कीजिये और हाल निकालिये।
Find f ( y ) f ( y ) f(y)f(y)f(y) such that ( 2 x e y + 3 y 2 ) d y + ( 3 x 2 + f ( y ) ) d x = 0 2 x e y + 3 y 2 d y + 3 x 2 + f ( y ) d x = 0 (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0\left(2 x e^y+3 y^2\right) d y+\left(3 x^2+f(y)\right) d x=0(2xey+3y2)dy+(3x2+f(y))dx=0 is exact and hence solve.
Answer:
Introduction:
We are given the differential equation ( 2 x e y + 3 y 2 ) d y + ( 3 x 2 + f ( y ) ) d x = 0 ( 2 x e y + 3 y 2 ) d y + ( 3 x 2 + f ( y ) ) d x = 0 (2xe^(y)+3y^(2))dy+(3x^(2)+f(y))dx=0(2xe^y + 3y^2) dy + (3x^2 + f(y)) dx = 0(2xey+3y2)dy+(3x2+f(y))dx=0, and our objective is to determine the function f ( y ) f ( y ) f(y)f(y)f(y) such that this equation is exact. Once we find f ( y ) f ( y ) f(y)f(y)f(y), we can proceed to solve the equation.
Work/Calculations:
  1. To ensure that the equation is exact, we need to satisfy the condition M y = N x M y = N x (del M)/(del y)=(del N)/(del x)\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}My=Nx, where M M MMM and N N NNN are the coefficients of d x d x dxdxdx and d y d y dydydy terms, respectively.
  2. In the given equation, we have M = 3 x 2 + f ( y ) M = 3 x 2 + f ( y ) M=3x^(2)+f(y)M = 3x^2 + f(y)M=3x2+f(y) and N = 2 x e y + 3 y 2 N = 2 x e y + 3 y 2 N=2xe^(y)+3y^(2)N = 2xe^y + 3y^2N=2xey+3y2.
  3. Compute the partial derivatives M y M y (del M)/(del y)\frac{\partial M}{\partial y}My and N x N x (del N)/(del x)\frac{\partial N}{\partial x}Nx:
M y = d d y ( 3 x 2 + f ( y ) ) = f ( y ) M y = d d y ( 3 x 2 + f ( y ) ) = f ( y ) (del M)/(del y)=(d)/(dy)(3x^(2)+f(y))=f^(‘)(y)\frac{\partial M}{\partial y} = \frac{d}{dy}(3x^2 + f(y)) = f'(y)My=ddy(3x2+f(y))=f(y)
N x = d d x ( 2 x e y + 3 y 2 ) = 2 e y N x = d d x ( 2 x e y + 3 y 2 ) = 2 e y (del N)/(del x)=(d)/(dx)(2xe^(y)+3y^(2))=2e^(y)\frac{\partial N}{\partial x} = \frac{d}{dx}(2xe^y + 3y^2) = 2e^yNx=ddx(2xey+3y2)=2ey
  1. Equate these expressions since the equation is exact:
f ( y ) = 2 e y f ( y ) = 2 e y f^(‘)(y)=2e^(y)f'(y) = 2e^yf(y)=2ey
  1. Solve this first-order differential equation for f ( y ) f ( y ) f(y)f(y)f(y):
f ( y ) = 2 e y d f d y = 2 e y d f = 2 e y d y d f = 2 e y d y f ( y ) = 2 e y d y f ( y ) = 2 e y + C f ( y ) = 2 e y d f d y = 2 e y d f = 2 e y d y d f = 2 e y d y f ( y ) = 2 e y d y f ( y ) = 2 e y + C {:[f^(‘)(y)=2e^(y)],[(df)/(dy)=2e^(y)],[df=2e^(y)dy],[int df=int2e^(y)dy],[f(y)=2inte^(y)dy],[f(y)=2e^(y)+C]:}\begin{aligned} f'(y) &= 2e^y \\ \frac{df}{dy} &= 2e^y \\ df &= 2e^y dy \\ \int df &= \int 2e^y dy \\ f(y) &= 2\int e^y dy \\ f(y) &= 2e^y + C \end{aligned}f(y)=2eydfdy=2eydf=2eydydf=2eydyf(y)=2eydyf(y)=2ey+C
Here, C C CCC is the constant of integration.
We have found f ( y ) = 2 e y + C f ( y ) = 2 e y + C f(y)=2e^(y)+Cf(y) = 2e^y + Cf(y)=2ey+C such that the given differential equation is exact.
Now, we can rewrite the equation as:
( 3 x 2 + 2 e y ) d x + ( 2 x e y + 3 y 2 ) d y = 0 ( 3 x 2 + 2 e y ) d x + ( 2 x e y + 3 y 2 ) d y = 0 (3x^(2)+2e^(y))dx+(2xe^(y)+3y^(2))dy=0(3x^2 + 2e^y) dx + (2xe^y + 3y^2) dy = 0(3x2+2ey)dx+(2xey+3y2)dy=0
To solve this exact equation, we can use the method of exact differentials. We recognize that the equation can be derived from a potential function, so we can write:
( 3 x 2 + 2 e y ) d x + ( 2 x e y + 3 y 2 ) d y = 0 ( 3 x 2 + 2 e y ) d x + ( 2 x e y + 3 y 2 ) d y = 0 (3x^(2)+2e^(y))dx+(2xe^(y)+3y^(2))dy=0(3x^2 + 2e^y) dx + (2xe^y + 3y^2) dy=0(3x2+2ey)dx+(2xey+3y2)dy=0
General solution:
M d x + ( N x ) d y = 0 M d x + ( N x ) d y = 0 int Mdx+int(N∼x)dy=0\int M d x+\int(N \sim x) d y=0Mdx+(Nx)dy=0
( 3 x 2 + 2 e y ) d x + 3 y 2 d y = 0 x 3 + 2 x e y + y 3 = C 3 x 2 + 2 e y d x + 3 y 2 d y = 0 x 3 + 2 x e y + y 3 = C {:[ int(3x^(2)+2e^(y))dx+int3y^(2)dy=0],[x^(3)+2xe^(y)+y^(3)=C]:}\begin{aligned} & \int\left(3 x^2+2 e^y\right) d x+\int 3 y^2 d y=0 \\ & x^3+2 x e^y+y^3=C \end{aligned}(3x2+2ey)dx+3y2dy=0x3+2xey+y3=C
Now, we find F ( x , y ) F ( x , y ) F(x,y)F(x, y)F(x,y) and add the constant of integration C C CCC:
F ( x , y ) = x 3 + 2 x e y + y 3 + C F ( x , y ) = x 3 + 2 x e y + y 3 + C F(x,y)=x^(3)+2xe^(y)+y^(3)+CF(x, y) = x^3 + 2xe^y + y^3 + CF(x,y)=x3+2xey+y3+C
So, the solution to the differential equation is:
x 3 + 2 x e y + y 3 + C = 0 x 3 + 2 x e y + y 3 + C = 0 x^(3)+2xe^(y)+y^(3)+C=0x^3 + 2xe^y + y^3 + C = 0x3+2xey+y3+C=0
where C C CCC is the constant of integration.
This concludes the solution to the given differential equation with f ( y ) = 2 e y + C f ( y ) = 2 e y + C f(y)=2e^(y)+Cf(y) = 2e^y + Cf(y)=2ey+C.
Scroll to Top
Scroll to Top