Free UPSC Mathematics Optional Paper-2 2019 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड ‘A’ SECTION ‘ A A AAA
1.(a) मान लीजिए कि G G GGG एक परिमित समूह है और H H HHH तथा K , G K , G K,GK, GK,G के उप-समूह हैं, ऐसा कि K H K H K sub HK \subset HKH । दर्शाइए ( G : K ) = ( G : H ) ( H : K ) ( G : K ) = ( G : H ) ( H : K ) (G:K)=(G:H)(H:K)(G: K)=(G: H)(H: K)(G:K)=(G:H)(H:K)
Let G G GGG be a finite group, H H HHH and K K KKK subgroups of G G GGG such that K H K H K sub HK \subset HKH. Show that ( G : K ) = ( G : H ) ( H : K ) ( G : K ) = ( G : H ) ( H : K ) (G:K)=(G:H)(H:K)(G: K)=(G: H)(H: K)(G:K)=(G:H)(H:K).
Answer:

Introduction:

We are given a finite group G G GGG and two subgroups H H HHH and K K KKK such that K H K H K sub HK \subset HKH. We are asked to prove that ( G : K ) = ( G : H ) ( H : K ) ( G : K ) = ( G : H ) ( H : K ) (G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K)(G:K)=(G:H)(H:K), where ( G : K ) ( G : K ) (G:K)(G: K)(G:K), ( G : H ) ( G : H ) (G:H)(G: H)(G:H), and ( H : K ) ( H : K ) (H:K)(H: K)(H:K) are the indices of the subgroups K K KKK, H H HHH, and K K KKK in G G GGG, G G GGG, and H H HHH respectively.

Work/Calculations:

Definition of Index:

The index ( A : B ) ( A : B ) (A:B)(A: B)(A:B) of a subgroup B B BBB in a group A A AAA is defined as the number of distinct left cosets of B B BBB in A A AAA. Mathematically, ( A : B ) = | A / B | ( A : B ) = | A / B | (A:B)=|A//B|(A: B) = |A/B|(A:B)=|A/B|, where | A / B | | A / B | |A//B||A/B||A/B| is the number of distinct left cosets.

Step 1: Express ( G : K ) ( G : K ) (G:K)(G: K)(G:K) in terms of cosets

The index ( G : K ) ( G : K ) (G:K)(G: K)(G:K) is the number of distinct left cosets of K K KKK in G G GGG. Let’s denote this set of cosets as G / K G / K G//KG/KG/K.

Step 2: Express ( G : H ) ( G : H ) (G:H)(G: H)(G:H) and ( H : K ) ( H : K ) (H:K)(H: K)(H:K) in terms of cosets

Similarly, ( G : H ) ( G : H ) (G:H)(G: H)(G:H) is the number of distinct left cosets of H H HHH in G G GGG, denoted as G / H G / H G//HG/HG/H, and ( H : K ) ( H : K ) (H:K)(H: K)(H:K) is the number of distinct left cosets of K K KKK in H H HHH, denoted as H / K H / K H//KH/KH/K.

Step 3: Relate G / K G / K G//KG/KG/K with G / H G / H G//HG/HG/H and H / K H / K H//KH/KH/K

Each coset g K g K gKgKgK in G / K G / K G//KG/KG/K can be uniquely expressed as h K h K hKhKhK where h h hhh is in some coset g H g H gHgHgH in G / H G / H G//HG/HG/H. Furthermore, each coset g H g H gHgHgH in G / H G / H G//HG/HG/H contains exactly ( H : K ) ( H : K ) (H:K)(H: K)(H:K) distinct cosets of the form h K h K hKhKhK in H / K H / K H//KH/KH/K.
Therefore, the total number of distinct cosets g K g K gKgKgK in G / K G / K G//KG/KG/K can be obtained by multiplying the number of distinct cosets g H g H gHgHgH in G / H G / H G//HG/HG/H by the number of distinct cosets h K h K hKhKhK in H / K H / K H//KH/KH/K.

Step 4: Mathematical Expression

This relationship can be mathematically expressed as:
( G : K ) = ( G : H ) ( H : K ) ( G : K ) = ( G : H ) ( H : K ) (G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K)(G:K)=(G:H)(H:K)

Conclusion:

We have successfully proven that ( G : K ) = ( G : H ) ( H : K ) ( G : K ) = ( G : H ) ( H : K ) (G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K)(G:K)=(G:H)(H:K) by relating the number of distinct left cosets of K K KKK in G G GGG with the number of distinct left cosets of H H HHH in G G GGG and K K KKK in H H HHH. This proves the statement for finite groups G G GGG and subgroups H H HHH and K K KKK such that K H K H K sub HK \subset HKH.
1.(b) दर्शाईए कि फलन
f ( x , y ) = { x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f ( x , y ) = x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f(x,y)={[(x^(2)-y^(2))/(x-y)”,”,(x”,”y)!=(1″,”-1)”,”(1″,”1)],[0″,”,(x”,”y)=(1″,”1)”,”(1″,”-1)]:}f(x, y)=\left\{\begin{array}{cl} \frac{x^2-y^2}{x-y}, & (x, y) \neq(1,-1),(1,1) \\ 0, & (x, y)=(1,1),(1,-1) \end{array}\right.f(x,y)={x2y2xy,(x,y)(1,1),(1,1)0,(x,y)=(1,1),(1,1)
संतत और बिन्दु ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1,-1)(1,1) पर अवकलनीय है ।
Show that the function
f ( x , y ) = { x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f ( x , y ) = x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f(x,y)={[(x^(2)-y^(2))/(x-y)”,”,(x”,”y)!=(1″,”-1)”,”(1″,”1)],[0″,”,(x”,”y)=(1″,”1)”,”(1″,”-1)]:}f(x, y)=\left\{\begin{array}{cc} \frac{x^2-y^2}{x-y}, & (x, y) \neq(1,-1),(1,1) \\ 0, & (x, y)=(1,1),(1,-1) \end{array}\right.f(x,y)={x2y2xy,(x,y)(1,1),(1,1)0,(x,y)=(1,1),(1,1)
is continuous and differentiable at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1,-1)(1,1).
Answer:

Introduction:

We are given a function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) defined as follows:
f ( x , y ) = { x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f ( x , y ) = x 2 y 2 x y , ( x , y ) ( 1 , 1 ) , ( 1 , 1 ) 0 , ( x , y ) = ( 1 , 1 ) , ( 1 , 1 ) f(x,y)={[(x^(2)-y^(2))/(x-y)”,”,(x”,”y)!=(1″,”-1)”,”(1″,”1)],[0″,”,(x”,”y)=(1″,”1)”,”(1″,”-1)]:}f(x, y)=\left\{\begin{array}{cc} \frac{x^2-y^2}{x-y}, & (x, y) \neq(1,-1),(1,1) \\ 0, & (x, y)=(1,1),(1,-1) \end{array}\right.f(x,y)={x2y2xy,(x,y)(1,1),(1,1)0,(x,y)=(1,1),(1,1)
We are asked to show that this function is continuous and differentiable at the point ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1).

Work/Calculations:

Step 1: Checking Continuity at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1)

To check for continuity, we need to show that:
lim ( x , y ) ( 1 , 1 ) f ( x , y ) = f ( 1 , 1 ) lim ( x , y ) ( 1 , 1 ) f ( x , y ) = f ( 1 , 1 ) lim_((x,y)rarr(1,-1))f(x,y)=f(1,-1)\lim_{{(x, y) \to (1, -1)}} f(x, y) = f(1, -1)lim(x,y)(1,1)f(x,y)=f(1,1)
First, let’s find f ( 1 , 1 ) f ( 1 , 1 ) f(1,-1)f(1, -1)f(1,1):
f ( 1 , 1 ) = 0 f ( 1 , 1 ) = 0 f(1,-1)=0f(1, -1) = 0f(1,1)=0
Now, let’s find the limit as ( x , y ) ( x , y ) (x,y)(x, y)(x,y) approaches ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1):
lim ( x , y ) ( 1 , 1 ) x 2 y 2 x y lim ( x , y ) ( 1 , 1 ) x 2 y 2 x y lim_((x,y)rarr(1,-1))(x^(2)-y^(2))/(x-y)\lim_{{(x, y) \to (1, -1)}} \frac{x^2 – y^2}{x – y}lim(x,y)(1,1)x2y2xy
We can simplify the expression x 2 y 2 x y x 2 y 2 x y (x^(2)-y^(2))/(x-y)\frac{x^2 – y^2}{x – y}x2y2xy as x + y x + y x+yx + yx+y when x y x y x!=yx \neq yxy. Now, the limit becomes:
lim ( x , y ) ( 1 , 1 ) ( x + y ) = 1 + ( 1 ) = 0 lim ( x , y ) ( 1 , 1 ) ( x + y ) = 1 + ( 1 ) = 0 lim_((x,y)rarr(1,-1))(x+y)=1+(-1)=0\lim_{{(x, y) \to (1, -1)}} (x + y) = 1 + (-1) = 0lim(x,y)(1,1)(x+y)=1+(1)=0
Since lim ( x , y ) ( 1 , 1 ) f ( x , y ) = f ( 1 , 1 ) = 0 lim ( x , y ) ( 1 , 1 ) f ( x , y ) = f ( 1 , 1 ) = 0 lim_((x,y)rarr(1,-1))f(x,y)=f(1,-1)=0\lim_{{(x, y) \to (1, -1)}} f(x, y) = f(1, -1) = 0lim(x,y)(1,1)f(x,y)=f(1,1)=0, the function is continuous at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1).

Step 2: Checking Differentiability at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1)

To check for differentiability, we need to find the partial derivatives f x f x (del f)/(del x)\frac{\partial f}{\partial x}fx and f y f y (del f)/(del y)\frac{\partial f}{\partial y}fy and check if they are continuous at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1).
The partial derivatives are:
f x = 1 + y , f y = ( 1 + x ) f x = 1 + y , f y = ( 1 + x ) (del f)/(del x)=1+y,quad(del f)/(del y)=-(1+x)\frac{\partial f}{\partial x} = 1 + y, \quad \frac{\partial f}{\partial y} = -(1 + x)fx=1+y,fy=(1+x)
Now, let’s check their continuity at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1):
lim ( x , y ) ( 1 , 1 ) f x = 1 + ( 1 ) = 0 lim ( x , y ) ( 1 , 1 ) f x = 1 + ( 1 ) = 0 lim_((x,y)rarr(1,-1))(del f)/(del x)=1+(-1)=0\lim_{{(x, y) \to (1, -1)}} \frac{\partial f}{\partial x} = 1 + (-1) = 0lim(x,y)(1,1)fx=1+(1)=0
lim ( x , y ) ( 1 , 1 ) f y = ( 1 + 1 ) = 2 lim ( x , y ) ( 1 , 1 ) f y = ( 1 + 1 ) = 2 lim_((x,y)rarr(1,-1))(del f)/(del y)=-(1+1)=-2\lim_{{(x, y) \to (1, -1)}} \frac{\partial f}{\partial y} = -(1 + 1) = -2lim(x,y)(1,1)fy=(1+1)=2
Since both partial derivatives are continuous at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1), the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is differentiable at ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1).

Conclusion:

We have shown that the function f ( x , y ) f ( x , y ) f(x,y)f(x, y)f(x,y) is continuous and differentiable at the point ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1) by proving that the limit of the function as ( x , y ) ( x , y ) (x,y)(x, y)(x,y) approaches ( 1 , 1 ) ( 1 , 1 ) (1,-1)(1, -1)(1,1) is equal to f ( 1 , 1 ) f ( 1 , 1 ) f(1,-1)f(1, -1)f(1,1) and that the partial derivatives are continuous at that point.
1.(c) मूल्यांकन कीजिए :
0 tan 1 ( a x ) x ( 1 + x 2 ) d x , a > 0 , a 1 . 0 tan 1 ( a x ) x 1 + x 2 d x , a > 0 , a 1 . int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,a > 0,a!=1.\int_0^{\infty} \frac{\tan ^{-1}(a x)}{x\left(1+x^2\right)} d x, a>0, a \neq 1 .0tan1(ax)x(1+x2)dx,a>0,a1.
Evaluate
0 tan 1 ( a x ) x ( 1 + x 2 ) d x , a > 0 , a 1 . 0 tan 1 ( a x ) x 1 + x 2 d x , a > 0 , a 1 . int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,a > 0,a!=1.\int_0^{\infty} \frac{\tan ^{-1}(a x)}{x\left(1+x^2\right)} d x, a>0, a \neq 1 .0tan1(ax)x(1+x2)dx,a>0,a1.
Answer:

Introduction

The problem at hand is to evaluate the integral
0 tan 1 ( a x ) x ( 1 + x 2 ) d x , a > 0 , a 1 0 tan 1 ( a x ) x ( 1 + x 2 ) d x , a > 0 , a 1 int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,quad a > 0,quad a!=1\int_0^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx, \quad a > 0, \quad a \neq 10tan1(ax)x(1+x2)dx,a>0,a1
We will use the method of residues to solve this integral. We will consider a contour integral in the complex plane and then apply the residue theorem to find the value of the integral.

Work/Calculations

Step 1: Define the Contour Integral

Let’s consider a contour C C CCC consisting of a line segment from ϵ ϵ epsilon\epsilonϵ to R R RRR along the real axis and closed by a semi-circle C R C R C_(R)C_RCR in the upper half-plane. Here, ϵ ϵ epsilon\epsilonϵ is a small positive number approaching zero, and R R RRR is a large positive number approaching infinity.
We define the function f ( z ) f ( z ) f(z)f(z)f(z) as:
f ( z ) = tan 1 ( a z ) z ( 1 + z 2 ) f ( z ) = tan 1 ( a z ) z ( 1 + z 2 ) f(z)=(tan^(-1)(az))/(z(1+z^(2)))f(z) = \frac{\tan^{-1}(az)}{z(1+z^2)}f(z)=tan1(az)z(1+z2)
The contour integral is then:
C tan 1 ( a z ) z ( 1 + z 2 ) d z = ϵ R tan 1 ( a x ) x ( 1 + x 2 ) d x + C R tan 1 ( a z ) z ( 1 + z 2 ) d z C tan 1 ( a z ) z ( 1 + z 2 ) d z = ϵ R tan 1 ( a x ) x ( 1 + x 2 ) d x + C R tan 1 ( a z ) z ( 1 + z 2 ) d z oint_(C)(tan^(-1)(az))/(z(1+z^(2)))dz=int_(epsilon)^(R)(tan^(-1)(ax))/(x(1+x^(2)))dx+int_(C_(R))(tan^(-1)(az))/(z(1+z^(2)))dz\oint_C \frac{\tan^{-1}(az)}{z(1+z^2)} dz = \int_{\epsilon}^{R} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx + \int_{C_R} \frac{\tan^{-1}(az)}{z(1+z^2)} dzCtan1(az)z(1+z2)dz=ϵRtan1(ax)x(1+x2)dx+CRtan1(az)z(1+z2)dz

Step 2: Evaluate the Integral along C R C R C_(R)C_RCR

We can show that the integral along C R C R C_(R)C_RCR vanishes as R R R rarr ooR \rightarrow \inftyR using Jordan’s lemma. For the sake of completeness, we assume this lemma holds true for this integral.

Step 3: Find the Residues

The singularities of f ( z ) f ( z ) f(z)f(z)f(z) are at z = 0 z = 0 z=0z = 0z=0 and z = ± i z = ± i z=+-iz = \pm iz=±i. Only the singularity at z = i z = i z=iz = iz=i is enclosed by C C CCC. The singularity at z = 0 z = 0 z=0z = 0z=0 is not enclosed because the integral starts from ϵ ϵ epsilon\epsilonϵ, a small positive number.
The residue at z = i z = i z=iz = iz=i is given by:
Residue at z = i = lim z i ( z i ) tan 1 ( a z ) z ( 1 + z 2 ) = lim z i ( z i ) tan 1 ( a z ) z ( z + i ) ( z i ) Residue at  z = i = lim z i ( z i ) tan 1 ( a z ) z ( 1 + z 2 ) = lim z i ( z i ) tan 1 ( a z ) z ( z + i ) ( z i ) “Residue at “z=i=lim_(z rarr i)(z-i)(tan^(-1)(az))/(z(1+z^(2)))=lim_(z rarr i)(z-i)(tan^(-1)(az))/(z(z+i)(z-i))\text{Residue at } z=i = \lim_{z \to i} (z-i) \frac{\tan^{-1}(az)}{z(1+z^2)}=\lim_{z \to i} (z-i) \frac{\tan^{-1}(az)}{z(z+i)(z-i)}Residue at z=i=limzi(zi)tan1(az)z(1+z2)=limzi(zi)tan1(az)z(z+i)(zi)
Residue at z = i = tan 1 ( a i ) 2 i 2 Residue at  z = i = tan 1 ( a i ) 2 i 2 “Residue at “z=i=(tan^(-1)(ai))/(2i^(2))\text{Residue at } z=i = \frac{\tan^{-1}(ai)}{2i^2}Residue at z=i=tan1(ai)2i2
Residue at z = i = tan 1 ( a i ) 2 Residue at  z = i = tan 1 ( a i ) 2 “Residue at “z=i=-(tan^(-1)(ai))/(2)\text{Residue at } z=i = -\frac{\tan^{-1}(ai)}{2}Residue at z=i=tan1(ai)2

Step 4: Apply the Residue Theorem

By the residue theorem, the contour integral is:
C tan 1 ( a z ) z ( 1 + z 2 ) d z = 2 π i × ( tan 1 ( a i ) 2 ) = π i tan 1 ( a i ) C tan 1 ( a z ) z ( 1 + z 2 ) d z = 2 π i × tan 1 ( a i ) 2 = π i tan 1 ( a i ) oint_(C)(tan^(-1)(az))/(z(1+z^(2)))dz=2pi i xx(-(tan^(-1)(ai))/(2))=-pi itan^(-1)(ai)\oint_C \frac{\tan^{-1}(az)}{z(1+z^2)} dz = 2\pi i \times \left(-\frac{\tan^{-1}(ai)}{2}\right) = -\pi i \tan^{-1}(ai)Ctan1(az)z(1+z2)dz=2πi×(tan1(ai)2)=πitan1(ai)

Step 5: Evaluate the Original Integral

Combining Steps 2 and 4, we obtain:
ϵ R tan 1 ( a x ) x ( 1 + x 2 ) d x = π i tan 1 ( a i ) 2 ϵ R tan 1 ( a x ) x ( 1 + x 2 ) d x = π i tan 1 ( a i ) 2 int_(epsilon)^(R)(tan^(-1)(ax))/(x(1+x^(2)))dx=-(pi itan^(-1)(ai))/(2)\int_{\epsilon}^{R} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx = -\frac{\pi i \tan^{-1}(ai)}{2}ϵRtan1(ax)x(1+x2)dx=πitan1(ai)2
As ϵ 0 ϵ 0 epsilon rarr0\epsilon \rightarrow 0ϵ0 and R R R rarr ooR \rightarrow \inftyR, we get:
0 tan 1 ( a x ) x ( 1 + x 2 ) d x = π i tan 1 ( a i ) 2 0 tan 1 ( a x ) x ( 1 + x 2 ) d x = π i tan 1 ( a i ) 2 int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx=-(pi itan^(-1)(ai))/(2)\int_0^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx = -\frac{\pi i \tan^{-1}(ai)}{2}0tan1(ax)x(1+x2)dx=πitan1(ai)2

Conclusion

The integral
0 tan 1 ( a x ) x ( 1 + x 2 ) d x 0 tan 1 ( a x ) x ( 1 + x 2 ) d x int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx\int_0^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx0tan1(ax)x(1+x2)dx
is equal to π i tan 1 ( a i ) 2 π i tan 1 ( a i ) 2 -(pi itan^(-1)(ai))/(2)-\frac{\pi i \tan^{-1}(ai)}{2}πitan1(ai)2 when a > 0 a > 0 a > 0a > 0a>0 and a 1 a 1 a!=1a \neq 1a1. We used the method of residues to evaluate this integral, considering a contour in the complex plane and applying the residue theorem. The i i iii in the result represents the imaginary unit.
  1. (d) मान लीजिये C C C\mathbb{C}C में D D DDD प्रक्षेत्र पर f ( z ) f ( z ) f(z)f(z)f(z) एक विश्लेषिक फलन है और समीकरण Im f ( z ) = ( Re f ( z ) ) 2 , Z D Im f ( z ) = ( Re f ( z ) ) 2 , Z D Im f(z)=(Re f(z))^(2),Z in D\operatorname{Im} f(z)=(\operatorname{Re} f(z))^2, Z \in DImf(z)=(Ref(z))2,ZD को संतुष्ट करता है । दर्शाइए कि D D DDD में f ( z ) f ( z ) f(z)f(z)f(z) अचर है ।
Suppose f ( z ) f ( z ) f(z)f(z)f(z) is analytic function on a domain D D DDD in and satisfies the equation Im f ( z ) = ( Re f ( z ) ) 2 , Z D f ( z ) = ( Re f ( z ) ) 2 , Z D f(z)=(Re f(z))^(2),Z in Df(z)=(\operatorname{Re} f(z))^2, Z \in Df(z)=(Ref(z))2,ZD. Show that f ( z ) f ( z ) f(z)f(z)f(z) is constant in D D DDD.
Answer:

Introduction

We are given that f ( z ) f ( z ) f(z)f(z)f(z) is an analytic function on a domain D D DDD in the complex plane C C C\mathbb{C}C. The function satisfies the equation Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2Im(f(z))=(Re(f(z)))2 for all z D z D z in Dz \in DzD. Our goal is to show that f ( z ) f ( z ) f(z)f(z)f(z) must be a constant function in D D DDD.

Work/Calculations

Step 1: Write f ( z ) f ( z ) f(z)f(z)f(z) in terms of its real and imaginary parts

Let f ( z ) = u ( x , y ) + i v ( x , y ) f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y)f(z) = u(x, y) + iv(x, y)f(z)=u(x,y)+iv(x,y), where u ( x , y ) u ( x , y ) u(x,y)u(x, y)u(x,y) and v ( x , y ) v ( x , y ) v(x,y)v(x, y)v(x,y) are the real and imaginary parts of f ( z ) f ( z ) f(z)f(z)f(z), respectively. Here, z = x + i y z = x + i y z=x+iyz = x + iyz=x+iy.

Step 2: Use the given condition

We are given that Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2Im(f(z))=(Re(f(z)))2, which translates to v ( x , y ) = u ( x , y ) 2 v ( x , y ) = u ( x , y ) 2 v(x,y)=u(x,y)^(2)v(x, y) = u(x, y)^2v(x,y)=u(x,y)2.

Step 3: Use the Cauchy-Riemann equations

Since f ( z ) f ( z ) f(z)f(z)f(z) is analytic, it satisfies the Cauchy-Riemann equations:
u x = v y and u y = v x u x = v y and u y = v x (del u)/(del x)=(del v)/(del y)quad”and”quad(del u)/(del y)=-(del v)/(del x)\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}ux=vyanduy=vx
Substitute v ( x , y ) = u ( x , y ) 2 v ( x , y ) = u ( x , y ) 2 v(x,y)=u(x,y)^(2)v(x, y) = u(x, y)^2v(x,y)=u(x,y)2 into these equations:
  1. u x = 2 u u y u x = 2 u u y (del u)/(del x)=2u(del u)/(del y)\frac{\partial u}{\partial x} = 2u \frac{\partial u}{\partial y}ux=2uuy
  2. u y = 2 u u x u y = 2 u u x (del u)/(del y)=-2u(del u)/(del x)\frac{\partial u}{\partial y} = -2u \frac{\partial u}{\partial x}uy=2uux

Step 4: Analyze the equations

From equation 1, we get:
u x 2 u u y = 0 (Equation A) u x 2 u u y = 0 (Equation A) (del u)/(del x)-2u(del u)/(del y)=0quad(Equation A)\frac{\partial u}{\partial x} – 2u \frac{\partial u}{\partial y} = 0 \quad \text{(Equation A)}ux2uuy=0(Equation A)
From equation 2, we get:
u y + 2 u u x = 0 (Equation B) u y + 2 u u x = 0 (Equation B) (del u)/(del y)+2u(del u)/(del x)=0quad(Equation B)\frac{\partial u}{\partial y} + 2u \frac{\partial u}{\partial x} = 0 \quad \text{(Equation B)}uy+2uux=0(Equation B)
Adding Equation A and Equation B, we get:
u x + u y = 0 u x + u y = 0 (del u)/(del x)+(del u)/(del y)=0\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0ux+uy=0
This implies that u ( x , y ) u ( x , y ) u(x,y)u(x, y)u(x,y) is a constant, say c c ccc.

Step 5: Conclude that f ( z ) f ( z ) f(z)f(z)f(z) is constant

Since u ( x , y ) = c u ( x , y ) = c u(x,y)=cu(x, y) = cu(x,y)=c, it follows that v ( x , y ) = c 2 v ( x , y ) = c 2 v(x,y)=c^(2)v(x, y) = c^2v(x,y)=c2. Therefore, f ( z ) = c + i c 2 f ( z ) = c + i c 2 f(z)=c+ic^(2)f(z) = c + ic^2f(z)=c+ic2, which is a constant.

Conclusion

We have shown that if f ( z ) f ( z ) f(z)f(z)f(z) is an analytic function satisfying Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 Im ( f ( z ) ) = ( Re ( f ( z ) ) ) 2 “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2Im(f(z))=(Re(f(z)))2 for all z D z D z in Dz \in DzD, then f ( z ) f ( z ) f(z)f(z)f(z) must be a constant function in D D DDD.
1.(e) ग्राफी विधि के इस्तेमाल के द्वारा रैखिक प्रोग्रामन समस्या को हल कीजिए । अधिकतमीकरण कीजिए Z = 3 x 1 + 2 x 2 Z = 3 x 1 + 2 x 2 Z=3x_(1)+2x_(2)Z=3 x_1+2 x_2Z=3x1+2x2 बशर्ते कि
x 1 x 2 1 x 1 x 2 1 x_(1)-x_(2) >= 1x_1-x_2 \geqslant 1x1x21,
x 1 + x 3 3 x 1 + x 3 3 x_(1)+x_(3) >= 3x_1+x_3 \geqslant 3x1+x33
और x 1 , x 2 , x 3 0 x 1 , x 2 , x 3 0 x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geq 0x1,x2,x30
Use graphical method to solve the linear programming problem.
Maximize Z = 3 x 1 + 2 x 2 Z = 3 x 1 + 2 x 2 Z=3x_(1)+2x_(2)Z=3 x_1+2 x_2Z=3x1+2x2
subject to
x 1 x 2 1 , x 1 + x 3 3 and x 1 , x 2 , x 3 0      x 1 x 2 1 ,      x 1 + x 3 3  and       x 1 , x 2 , x 3 0 {:[,x_(1)-x_(2) >= 1″,”],[,x_(1)+x_(3) >= 3],[” and “,x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{array}{ll} & x_1-x_2 \geqslant 1, \\ & x_1+x_3 \geqslant 3 \\ \text { and } & x_1, x_2, x_3 \geqslant 0 \end{array}x1x21,x1+x33 and x1,x2,x30
Answer:
Introduction:
In this linear programming problem, we aim to maximize the objective function Z = 3 x 1 + 2 x 2 Z = 3 x 1 + 2 x 2 Z=3x_(1)+2x_(2)Z = 3x_1 + 2x_2Z=3x1+2x2 subject to the following constraints:
  1. x 1 x 2 1 x 1 x 2 1 x_(1)-x_(2) >= 1x_1 – x_2 \geq 1x1x21
  2. x 1 + x 3 3 x 1 + x 3 3 x_(1)+x_(3) >= 3x_1 + x_3 \geq 3x1+x33
  3. x 1 , x 2 , x 3 0 x 1 , x 2 , x 3 0 x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geq 0x1,x2,x30
We will use the graphical method to solve this problem in a 3D space.
Step 1: Constraints Visualization
First, let’s visualize the constraints in a 3D space. The feasible region is the intersection of the half-spaces defined by the inequalities.
original image
Step 2: Identifying the Feasible Region
From the graph, it’s clear that the feasible region is unbounded. This means that the objective function can take on infinitely large values, and there is no maximum value for Z Z ZZZ.
Conclusion:
The feasible region for this linear programming problem is unbounded, which means that the objective function Z = 3 x 1 + 2 x 2 Z = 3 x 1 + 2 x 2 Z=3x_(1)+2x_(2)Z = 3x_1 + 2x_2Z=3x1+2x2 can take on infinitely large values. Therefore, the problem does not have a maximum value for Z Z ZZZ under the given constraints.
  1. (a) यदि G G GGG और H H HHH परिमित समूह हैं जिनकी कोटियां सापेक्षतः अभाज्य हैं, तो सिद्ध करें कि G G GGG से H H HHH तक केवल एक ही समाकारिता होमोमोर्फिज्म है जो कि तुच्छ है।
If G G GGG and H H HHH are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from G G GGG to H H HHH, the trivial one.
Answer:

Introduction:

We are given two finite groups G G GGG and H H HHH whose orders are relatively prime. We are asked to prove that there is only one homomorphism from G G GGG to H H HHH, which is the trivial homomorphism.

Work/Calculations:

Step 1: Definitions and Assumptions

Let | G | = n | G | = n |G|=n|G| = n|G|=n and | H | = m | H | = m |H|=m|H| = m|H|=m. Since G G GGG and H H HHH are finite groups with relatively prime orders, gcd ( n , m ) = 1 gcd ( n , m ) = 1 gcd(n,m)=1\gcd(n, m) = 1gcd(n,m)=1.
Let ϕ : G H ϕ : G H phi:G rarr H\phi: G \to Hϕ:GH be a homomorphism.

Step 2: Properties of Homomorphism

We know that the order of ϕ ( g ) ϕ ( g ) phi(g)\phi(g)ϕ(g) must divide the order of g g ggg for any g G g G g in Gg \in GgG. This is because if g k = e G g k = e G g^(k)=e_(G)g^k = e_Ggk=eG in G G GGG, then ϕ ( g ) k = ϕ ( e G ) = e H ϕ ( g ) k = ϕ ( e G ) = e H phi(g)^(k)=phi(e_(G))=e_(H)\phi(g)^k = \phi(e_G) = e_Hϕ(g)k=ϕ(eG)=eH in H H HHH.

Step 3: Relatively Prime Orders

Since gcd ( n , m ) = 1 gcd ( n , m ) = 1 gcd(n,m)=1\gcd(n, m) = 1gcd(n,m)=1, the only possible order for ϕ ( g ) ϕ ( g ) phi(g)\phi(g)ϕ(g) that divides both n n nnn and m m mmm is 1. This means that ϕ ( g ) ϕ ( g ) phi(g)\phi(g)ϕ(g) must be the identity element in H H HHH for all g G g G g in Gg \in GgG.

Step 4: The Trivial Homomorphism

The only homomorphism ϕ : G H ϕ : G H phi:G rarr H\phi: G \to Hϕ:GH that satisfies these conditions is the trivial homomorphism, which maps every element of G G GGG to the identity element of H H HHH:
ϕ ( g ) = e H for all g G ϕ ( g ) = e H for all g G phi(g)=e_(H)quad”for all”quad g in G\phi(g) = e_H \quad \text{for all} \quad g \in Gϕ(g)=eHfor allgG

Conclusion:

We have shown that if G G GGG and H H HHH are finite groups with relatively prime orders, then the only homomorphism from G G GGG to H H HHH is the trivial one, which maps every element in G G GGG to the identity element in H H HHH.
2.(b) समूह Z 12 Z 12 Z_(12)Z_{12}Z12 के सभी विभाग समूह लिखिए ।
Write down all quotient groups of the group Z 12 Z 12 Z_(12)Z_{12}Z12.
Answer:

Introduction:

We are asked to find all the quotient groups of the group Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12, which is the group of integers modulo 12. The group Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12 consists of the elements { 0 , 1 , 2 , , 11 } { 0 , 1 , 2 , , 11 } {0,1,2,dots,11}\{0, 1, 2, \ldots, 11\}{0,1,2,,11} under addition modulo 12.

Work/Calculations:

Step 1: Identify Subgroups of Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12

First, let’s identify the subgroups of Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12. The subgroups are generated by the divisors of 12. The divisors of 12 are { 1 , 2 , 3 , 4 , 6 , 12 } { 1 , 2 , 3 , 4 , 6 , 12 } {1,2,3,4,6,12}\{1, 2, 3, 4, 6, 12\}{1,2,3,4,6,12}.
  • 1 = Z 12 1 = Z 12 (:1:)=Z_(12)\langle 1 \rangle = \mathbb{Z}_{12}1=Z12
  • 2 = { 0 , 2 , 4 , 6 , 8 , 10 } 2 = { 0 , 2 , 4 , 6 , 8 , 10 } (:2:)={0,2,4,6,8,10}\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}2={0,2,4,6,8,10}
  • 3 = { 0 , 3 , 6 , 9 } 3 = { 0 , 3 , 6 , 9 } (:3:)={0,3,6,9}\langle 3 \rangle = \{0, 3, 6, 9\}3={0,3,6,9}
  • 4 = { 0 , 4 , 8 } 4 = { 0 , 4 , 8 } (:4:)={0,4,8}\langle 4 \rangle = \{0, 4, 8\}4={0,4,8}
  • 6 = { 0 , 6 } 6 = { 0 , 6 } (:6:)={0,6}\langle 6 \rangle = \{0, 6\}6={0,6}

Step 2: Find Quotient Groups

To find the quotient groups Z 12 / H Z 12 / H Z_(12)//H\mathbb{Z}_{12} / HZ12/H, where H H HHH is a subgroup of Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12, we need to find the cosets of each subgroup H H HHH.
  1. Z 12 / 1 Z 12 / 1 Z_(12)//(:1:)\mathbb{Z}_{12} / \langle 1 \rangleZ12/1 has one coset, { 0 } { 0 } {0}\{0\}{0}, so it is isomorphic to Z 1 Z 1 Z_(1)\mathbb{Z}_1Z1.
  2. Z 12 / 2 Z 12 / 2 Z_(12)//(:2:)\mathbb{Z}_{12} / \langle 2 \rangleZ12/2 has two cosets, { 0 , 2 , 4 , 6 , 8 , 10 } { 0 , 2 , 4 , 6 , 8 , 10 } {0,2,4,6,8,10}\{0, 2, 4, 6, 8, 10\}{0,2,4,6,8,10} and { 1 , 3 , 5 , 7 , 9 , 11 } { 1 , 3 , 5 , 7 , 9 , 11 } {1,3,5,7,9,11}\{1, 3, 5, 7, 9, 11\}{1,3,5,7,9,11}, so it is isomorphic to Z 2 Z 2 Z_(2)\mathbb{Z}_2Z2.
  3. Z 12 / 3 Z 12 / 3 Z_(12)//(:3:)\mathbb{Z}_{12} / \langle 3 \rangleZ12/3 has three cosets, so it is isomorphic to Z 3 Z 3 Z_(3)\mathbb{Z}_3Z3.
  4. Z 12 / 4 Z 12 / 4 Z_(12)//(:4:)\mathbb{Z}_{12} / \langle 4 \rangleZ12/4 has four cosets, so it is isomorphic to Z 4 Z 4 Z_(4)\mathbb{Z}_4Z4.
  5. Z 12 / 6 Z 12 / 6 Z_(12)//(:6:)\mathbb{Z}_{12} / \langle 6 \rangleZ12/6 has six cosets, so it is isomorphic to Z 6 Z 6 Z_(6)\mathbb{Z}_6Z6.

Step 3: List All Quotient Groups

The quotient groups are Z 1 , Z 2 , Z 3 , Z 4 , Z 1 , Z 2 , Z 3 , Z 4 , Z_(1),Z_(2),Z_(3),Z_(4),\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4,Z1,Z2,Z3,Z4, and Z 6 Z 6 Z_(6)\mathbb{Z}_6Z6.

Conclusion:

The quotient groups of Z 12 Z 12 Z_(12)\mathbb{Z}_{12}Z12 are Z 1 , Z 2 , Z 3 , Z 4 , Z 1 , Z 2 , Z 3 , Z 4 , Z_(1),Z_(2),Z_(3),Z_(4),\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4,Z1,Z2,Z3,Z4, and Z 6 Z 6 Z_(6)\mathbb{Z}_6Z6.
2.(c) अवकलों का उपयोग करते हुए, f ( 4 1 , 4 9 ) f ( 4 1 , 4 9 ) f(4*1,4*9)f(4 \cdot 1,4 \cdot 9)f(41,49) का सन्निकट मान ज्ञात करें, जहाँ
f ( x , y ) = ( x 3 + x 2 y ) 1 2 है। f ( x , y ) = x 3 + x 2 y 1 2  है।  f(x,y)=(x^(3)+x^(2)y)^((1)/(2))” है। “f(x, y)=\left(x^3+x^2 y\right)^{\frac{1}{2}} \text { है। }f(x,y)=(x3+x2y)12 है। 
Using differentials, find an approximate value of f ( 4 1 , 4.9 ) f ( 4 1 , 4.9 ) f(4*1,4.9)f(4 \cdot 1,4.9)f(41,4.9) where f ( x , y ) = ( x 3 + x 2 y ) 1 2 f ( x , y ) = x 3 + x 2 y 1 2 f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y)=\left(x^3+x^2 y\right)^{\frac{1}{2}}f(x,y)=(x3+x2y)12.
Answer:
Introduction:
In this problem, we are tasked with finding an approximate value of f ( 4.1 , 4.9 ) f ( 4.1 , 4.9 ) f(4.1,4.9)f(4.1, 4.9)f(4.1,4.9) where f ( x , y ) = ( x 3 + x 2 y ) 1 2 f ( x , y ) = x 3 + x 2 y 1 2 f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y) = \left(x^3 + x^2 y\right)^{\frac{1}{2}}f(x,y)=(x3+x2y)12 using differentials.
Step 1: Given Function
Given the function f ( x , y ) = ( x 3 + x 2 y ) 1 2 f ( x , y ) = x 3 + x 2 y 1 2 f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y) = \left(x^3 + x^2 y\right)^{\frac{1}{2}}f(x,y)=(x3+x2y)12 (equation 1).
Step 2: Calculate f ( 4.1 , 4.9 ) f ( 4.1 , 4.9 ) f(4.1,4.9)f(4.1, 4.9)f(4.1,4.9)
We want to find f ( 4.1 , 4.9 ) f ( 4.1 , 4.9 ) f(4.1,4.9)f(4.1, 4.9)f(4.1,4.9) using equation (1):
f ( 4.1 , 4.9 ) = [ ( 4.1 ) 3 + ( 4.1 ) 2 × 4.9 ] 1 2 = 151.29 f ( 4.1 , 4.9 ) = ( 4.1 ) 3 + ( 4.1 ) 2 × 4.9 1 2 = 151.29 f(4.1,4.9)=[(4.1)^(3)+(4.1)^(2)xx4.9]^((1)/(2))=sqrt151.29f(4.1, 4.9) = \left[(4.1)^3 + (4.1)^2 \times 4.9\right]^{\frac{1}{2}} = \sqrt{151.29}f(4.1,4.9)=[(4.1)3+(4.1)2×4.9]12=151.29
Step 3: Let f ( 4.1 , 4.9 ) = f ( X ) = Y f ( 4.1 , 4.9 ) = f ( X ) = Y f(4.1,4.9)=f(X)=Yf(4.1, 4.9) = f(X) = Yf(4.1,4.9)=f(X)=Y
We introduce new variables X X XXX and Y Y YYY to represent f ( 4.1 , 4.9 ) f ( 4.1 , 4.9 ) f(4.1,4.9)f(4.1, 4.9)f(4.1,4.9):
Y = [ X ] 1 2 (equation 2) X = 151.29 Y = [ X ] 1 2 (equation 2) X = 151.29 {:[Y=[X]^((1)/(2))quad(equation 2)],[X=151.29]:}\begin{aligned} Y & = [X]^{\frac{1}{2}} \quad \text{(equation 2)} \\ X & = 151.29 \end{aligned}Y=[X]12(equation 2)X=151.29
Step 4: Find Differentials
We break X X XXX into two parts: X = 144 + 7.29 X = 144 + 7.29 X=144+7.29X = 144 + 7.29X=144+7.29. Now, we calculate the differential d Y d X d Y d X (dY)/(dX)\frac{\mathrm{d} Y}{\mathrm{d} X}dYdX:
d Y d X = 1 2 X (equation 3) d Y d X = 1 2 X (equation 3) (dY)/(dX)=(1)/(2sqrtX)quad(equation 3)\frac{\mathbf{d} Y}{\mathbf{d} X} = \frac{1}{2 \sqrt{X}} \quad \text{(equation 3)}dYdX=12X(equation 3)
Step 5: Calculate Δ Y Δ Y Delta Y\Delta YΔY
We calculate Δ Y Δ Y Delta Y\Delta YΔY using the differential:
Δ Y = d Y d X Δ X = 1 2 X Δ X = 1 2 144 × 7.29 = 1 24 × 7.29 = 0.30375 Δ Y = d Y d X Δ X = 1 2 X Δ X = 1 2 144 × 7.29 = 1 24 × 7.29 = 0.30375 {:[Delta Y=(dY)/(dX)Delta X],[=(1)/(2sqrtX)*Delta X],[=(1)/(2sqrt144)xx7.29],[=(1)/(24)xx7.29],[=0.30375]:}\begin{aligned} \Delta Y & = \frac{\mathrm{d} Y}{\mathrm{d} X} \Delta X \\ & = \frac{1}{2 \sqrt{X}} \cdot \Delta X \\ & = \frac{1}{2 \sqrt{144}} \times 7.29 \\ & = \frac{1}{24} \times 7.29 \\ & = 0.30375 \end{aligned}ΔY=dYdXΔX=12XΔX=12144×7.29=124×7.29=0.30375
Step 6: Calculate f ( X + Δ X ) f ( X + Δ X ) f(X+Delta X)f(X + \Delta X)f(X+ΔX)
Using Δ Y Δ Y Delta Y\Delta YΔY, we find f ( X + Δ X ) f ( X + Δ X ) f(X+Delta X)f(X + \Delta X)f(X+ΔX):
Δ Y = f ( X + Δ X ) f ( X ) 0.30375 = 151.29 144 f ( X + Δ X ) = 151.29 = 12 + 0.30375 f ( X + Δ X ) = 151.29 = 12.30375 Δ Y = f ( X + Δ X ) f ( X ) 0.30375 = 151.29 144 f ( X + Δ X ) = 151.29 = 12 + 0.30375 f ( X + Δ X ) = 151.29 = 12.30375 {:[Delta Y=f(X+Delta X)-f(X)],[0.30375=sqrt151.29-sqrt144],[f(X+Delta X)=sqrt151.29=12+0.30375],[f(X+Delta X)=sqrt151.29=12.30375]:}\begin{aligned} \Delta Y & = f(X + \Delta X) – f(X) \\ 0.30375 & = \sqrt{151.29} – \sqrt{144} \\ f(X + \Delta X) & = \sqrt{151.29} = 12 + 0.30375 \\ f(X + \Delta X) & = \sqrt{151.29} = 12.30375 \end{aligned}ΔY=f(X+ΔX)f(X)0.30375=151.29144f(X+ΔX)=151.29=12+0.30375f(X+ΔX)=151.29=12.30375
Conclusion:
Therefore, f ( x , y ) = f ( 4.1 , 4.9 ) = ( x 3 + x 2 y ) 1 2 = 12.30375 f ( x , y ) = f ( 4.1 , 4.9 ) = x 3 + x 2 y 1 2 = 12.30375 f(x,y)=f(4.1,4.9)=(x^(3)+x^(2)y)^((1)/(2))=12.30375f(x, y) = f(4.1, 4.9) = \left(x^3 + x^2 y\right)^{\frac{1}{2}} = 12.30375f(x,y)=f(4.1,4.9)=(x3+x2y)12=12.30375.
2.(d) दर्शाइए कि वियुक्त विचित्र बिन्दु z 0 z 0 z_(0)z_0z0, फलन f ( z ) f ( z ) f(z)f(z)f(z) का m m mmm कोटि का पोल होगा यदि और केवल यदि f ( z ) f ( z ) f(z)f(z)f(z) को f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) z z 0 m f(z)=(phi(z))/((z-z_(0))^(m))f(z)=\frac{\phi(z)}{\left(z-z_0\right)^m}f(z)=ϕ(z)(zz0)m के रूप में लिखा जा सके, जहाँ ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) विश्लेषिक है और z 0 z 0 z_(0)z_0z0 पर शून्येतर है । इसके अलावा Res z = z 0 f ( z ) = ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! Res z = z 0 f ( z ) = ϕ ( m 1 ) z 0 ( m 1 ) ! Res_(z=z_(0))f(z)=(phi^((m-1))(z_(0)))/((m-1)!)\underset{z=z_0}{\operatorname{Res}} f(z)=\frac{\phi^{(m-1)}\left(z_0\right)}{(m-1) !}Resz=z0f(z)=ϕ(m1)(z0)(m1)! यदि m 1 m 1 m >= 1m \geqslant 1m1
Show that an isolated singular point z 0 z 0 z_(0)z_0z0 of a function f ( z ) f ( z ) f(z)f(z)f(z) is a pole of order m m mmm if and only if f ( z ) f ( z ) f(z)f(z)f(z) can be written in the form f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) z z 0 m f(z)=(phi(z))/((z-z_(0))^(m))f(z)=\frac{\phi(z)}{\left(z-z_0\right)^m}f(z)=ϕ(z)(zz0)m where ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic and non zero at z 0 z 0 z_(0)z_0z0.
Moreover Res z = z 0 f ( z ) = ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! Res z = z 0 f ( z ) = ϕ ( m 1 ) z 0 ( m 1 ) ! Res_(z=z_(0))f(z)=(phi^((m-1))(z_(0)))/((m-1)!)\underset{z=z_0}{\operatorname{Res}} f(z)=\frac{\phi^{(m-1)}\left(z_0\right)}{(m-1) !}Resz=z0f(z)=ϕ(m1)(z0)(m1)! if m 1 m 1 m >= 1m \geqslant 1m1.
Answer:

Introduction

We are given a function f ( z ) f ( z ) f(z)f(z)f(z) with an isolated singular point at z 0 z 0 z_(0)z_0z0. We want to show that z 0 z 0 z_(0)z_0z0 is a pole of order m m mmm if and only if f ( z ) f ( z ) f(z)f(z)f(z) can be written as f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m, where ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic and non-zero at z 0 z 0 z_(0)z_0z0. Additionally, we want to find the residue of f ( z ) f ( z ) f(z)f(z)f(z) at z 0 z 0 z_(0)z_0z0 in terms of ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) and m m mmm.

Work/Calculations

Part 1: f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m implies z 0 z 0 z_(0)z_0z0 is a pole of order m m mmm

If f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m, where ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic and ϕ ( z 0 ) 0 ϕ ( z 0 ) 0 phi(z_(0))!=0\phi(z_0) \neq 0ϕ(z0)0, then f ( z ) f ( z ) f(z)f(z)f(z) has a pole of order m m mmm at z 0 z 0 z_(0)z_0z0 by definition.

Part 2: z 0 z 0 z_(0)z_0z0 is a pole of order m m mmm implies f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m

If z 0 z 0 z_(0)z_0z0 is a pole of order m m mmm for f ( z ) f ( z ) f(z)f(z)f(z), then we can write f ( z ) f ( z ) f(z)f(z)f(z) as a Laurent series around z 0 z 0 z_(0)z_0z0:
f ( z ) = n = m a n ( z z 0 ) n f ( z ) = n = m a n ( z z 0 ) n f(z)=sum_(n=-m)^(oo)a_(n)(z-z_(0))^(n)f(z) = \sum_{n=-m}^{\infty} a_n (z – z_0)^nf(z)=n=man(zz0)n
Here, a m 0 a m 0 a_(-m)!=0a_{-m} \neq 0am0 and a n = 0 a n = 0 a_(n)=0a_n = 0an=0 for n < m n < m n < -mn < -mn<m.
We can rewrite this as:
f ( z ) = 1 ( z z 0 ) m n = 0 a n m ( z z 0 ) n f ( z ) = 1 ( z z 0 ) m n = 0 a n m ( z z 0 ) n f(z)=(1)/((z-z_(0))^(m))sum_(n=0)^(oo)a_(n-m)(z-z_(0))^(n)f(z) = \frac{1}{(z – z_0)^m} \sum_{n=0}^{\infty} a_{n-m} (z – z_0)^{n}f(z)=1(zz0)mn=0anm(zz0)n
Let ϕ ( z ) = n = 0 a n m ( z z 0 ) n ϕ ( z ) = n = 0 a n m ( z z 0 ) n phi(z)=sum_(n=0)^(oo)a_(n-m)(z-z_(0))^(n)\phi(z) = \sum_{n=0}^{\infty} a_{n-m} (z – z_0)^{n}ϕ(z)=n=0anm(zz0)n. ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic at z 0 z 0 z_(0)z_0z0 and ϕ ( z 0 ) = a 0 0 ϕ ( z 0 ) = a 0 0 phi(z_(0))=a_(0)!=0\phi(z_0) = a_0 \neq 0ϕ(z0)=a00.
Thus, f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m.

Part 3: Residue of f ( z ) f ( z ) f(z)f(z)f(z) at z 0 z 0 z_(0)z_0z0

The residue of f ( z ) f ( z ) f(z)f(z)f(z) at z 0 z 0 z_(0)z_0z0 is given by:
Res z = z 0 f ( z ) = 1 ( m 1 ) ! lim z z 0 d m 1 d z m 1 [ ( z z 0 ) m f ( z ) ] Res z = z 0 f ( z ) = 1 ( m 1 ) ! lim z z 0 d m 1 d z m 1 ( z z 0 ) m f ( z ) “Res”_(z=z_(0))f(z)=(1)/((m-1)!)lim_(z rarrz_(0))(d^(m-1))/(dz^(m-1))[(z-z_(0))^(m)f(z)]\text{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \left[ (z – z_0)^m f(z) \right]Resz=z0f(z)=1(m1)!limzz0dm1dzm1[(zz0)mf(z)]
Using f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m, we get:
Res z = z 0 f ( z ) = 1 ( m 1 ) ! lim z z 0 d m 1 d z m 1 ϕ ( z ) Res z = z 0 f ( z ) = 1 ( m 1 ) ! lim z z 0 d m 1 d z m 1 ϕ ( z ) “Res”_(z=z_(0))f(z)=(1)/((m-1)!)lim_(z rarrz_(0))(d^(m-1))/(dz^(m-1))phi(z)\text{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \phi(z)Resz=z0f(z)=1(m1)!limzz0dm1dzm1ϕ(z)
Since ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic at z 0 z 0 z_(0)z_0z0, this limit is simply ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! (phi^((m-1))(z_(0)))/((m-1)!)\frac{\phi^{(m-1)}(z_0)}{(m-1)!}ϕ(m1)(z0)(m1)!.

Conclusion

We have shown that z 0 z 0 z_(0)z_0z0 is a pole of order m m mmm for f ( z ) f ( z ) f(z)f(z)f(z) if and only if f ( z ) f ( z ) f(z)f(z)f(z) can be written in the form f ( z ) = ϕ ( z ) ( z z 0 ) m f ( z ) = ϕ ( z ) ( z z 0 ) m f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}f(z)=ϕ(z)(zz0)m, where ϕ ( z ) ϕ ( z ) phi(z)\phi(z)ϕ(z) is analytic and non-zero at z 0 z 0 z_(0)z_0z0. Moreover, the residue of f ( z ) f ( z ) f(z)f(z)f(z) at z 0 z 0 z_(0)z_0z0 is ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! ϕ ( m 1 ) ( z 0 ) ( m 1 ) ! (phi^((m-1))(z_(0)))/((m-1)!)\frac{\phi^{(m-1)}(z_0)}{(m-1)!}ϕ(m1)(z0)(m1)! if m 1 m 1 m >= 1m \geq 1m1.
3.(a) f n ( x ) = n x 1 + n 2 x 2 , x R ( , ) f n ( x ) = n x 1 + n 2 x 2 , x R ( , ) f_(n)(x)=(nx)/(1+n^(2)x^(2)),AA x inR(-oo,oo)f_n(x)=\frac{n x}{1+n^2 x^2}, \forall x \in \mathbb{R}(-\infty, \infty)fn(x)=nx1+n2x2,xR(,)
n = 1 , 2 , 3 , . n = 1 , 2 , 3 , . n=1,2,3,dots.n=1,2,3, \ldots .n=1,2,3,.
के एकसमान अभिसरण पर चर्चा कें ।
Discuss the uniform convergence of
f n ( x ) = n x 1 + n 2 x 2 , x R ( , ) f n ( x ) = n x 1 + n 2 x 2 , x R ( , ) f_(n)(x)=(nx)/(1+n^(2)x^(2)),AA x inR(-oo,oo)f_n(x)=\frac{n x}{1+n^2 x^2}, \forall x \in \mathbb{R}(-\infty, \infty)fn(x)=nx1+n2x2,xR(,)
n = 1 , 2 , 3 , n = 1 , 2 , 3 , n=1,2,3,dotsn=1,2,3, \ldotsn=1,2,3,
Answer:

Introduction

We are interested in investigating the uniform convergence of the sequence of functions f n ( x ) = n x 1 + n 2 x 2 f n ( x ) = n x 1 + n 2 x 2 f_(n)(x)=(nx)/(1+n^(2)x^(2))f_n(x) = \frac{nx}{1 + n^2 x^2}fn(x)=nx1+n2x2 for n = 1 , 2 , 3 , n = 1 , 2 , 3 , n=1,2,3,dotsn = 1, 2, 3, \ldotsn=1,2,3, and x R x R x inRx \in \mathbb{R}xR.

Work/Calculations

Step 1: Pointwise Convergence

First, let’s find the pointwise limit of f n ( x ) f n ( x ) f_(n)(x)f_n(x)fn(x) as n n n rarr oon \to \inftyn.
lim n f n ( x ) = lim n n x 1 + n 2 x 2 lim n f n ( x ) = lim n n x 1 + n 2 x 2 lim_(n rarr oo)f_(n)(x)=lim_(n rarr oo)(nx)/(1+n^(2)x^(2))\lim_{{n \to \infty}} f_n(x) = \lim_{{n \to \infty}} \frac{nx}{1 + n^2 x^2}limnfn(x)=limnnx1+n2x2
For x 0 x 0 x!=0x \neq 0x0, the limit is zero because the denominator grows faster than the numerator. For x = 0 x = 0 x=0x = 0x=0, the function is zero for all n n nnn. Therefore, the pointwise limit function f ( x ) f ( x ) f(x)f(x)f(x) is zero for all x x xxx.
f ( x ) = lim n f n ( x ) = 0 f ( x ) = lim n f n ( x ) = 0 f(x)=lim_(n rarr oo)f_(n)(x)=0f(x) = \lim_{{n \to \infty}} f_n(x) = 0f(x)=limnfn(x)=0

Step 2: Uniform Convergence

To check for uniform convergence, we need to see if the following condition is met for all x x xxx in the domain:
lim n sup | f n ( x ) f ( x ) | = 0 lim n sup | f n ( x ) f ( x ) | = 0 lim_(n rarr oo)s u p|f_(n)(x)-f(x)|=0\lim_{{n \to \infty}} \sup |f_n(x) – f(x)| = 0limnsup|fn(x)f(x)|=0
Since f ( x ) = 0 f ( x ) = 0 f(x)=0f(x) = 0f(x)=0, this simplifies to:
lim n sup | f n ( x ) | = 0 lim n sup | f n ( x ) | = 0 lim_(n rarr oo)s u p|f_(n)(x)|=0\lim_{{n \to \infty}} \sup |f_n(x)| = 0limnsup|fn(x)|=0
We need to find sup | f n ( x ) | sup | f n ( x ) | s u p|f_(n)(x)|\sup |f_n(x)|sup|fn(x)| for each n n nnn and see if it goes to zero as n n n rarr oon \to \inftyn.
To find the maximum value of | f n ( x ) | | f n ( x ) | |f_(n)(x)||f_n(x)||fn(x)|, we can take the derivative and set it equal to zero:
f n ( x ) = n ( 1 + n 2 x 2 ) 2 n 3 x 2 ( 1 + n 2 x 2 ) 2 = 0 f n ( x ) = n ( 1 + n 2 x 2 ) 2 n 3 x 2 ( 1 + n 2 x 2 ) 2 = 0 f_(n)^(‘)(x)=(n(1+n^(2)x^(2))-2n^(3)x^(2))/((1+n^(2)x^(2))^(2))=0f_n'(x) = \frac{n(1 + n^2 x^2) – 2n^3 x^2}{(1 + n^2 x^2)^2} = 0fn(x)=n(1+n2x2)2n3x2(1+n2x2)2=0
n 2 n 3 x 2 = 0 n 2 n 3 x 2 = 0 n-2n^(3)x^(2)=0n – 2n^3 x^2 = 0n2n3x2=0
x 2 = 1 2 n 2 x 2 = 1 2 n 2 x^(2)=(1)/(2n^(2))x^2 = \frac{1}{2n^2}x2=12n2
x = ± 1 2 n 2 x = ± 1 2 n 2 x=+-(1)/(sqrt(2n^(2)))x = \pm \frac{1}{\sqrt{2n^2}}x=±12n2
Substituting these critical points back into f n ( x ) f n ( x ) f_(n)(x)f_n(x)fn(x), we get:
f n ( ± 1 2 n 2 ) = n × 1 2 n 2 1 + n 2 × 1 2 n 2 = 1 2 ( 1 + 1 2 ) = 1 3 f n ± 1 2 n 2 = n × 1 2 n 2 1 + n 2 × 1 2 n 2 = 1 2 ( 1 + 1 2 ) = 1 3 f_(n)(+-(1)/(sqrt(2n^(2))))=(n xx(1)/(sqrt(2n^(2))))/(1+n^(2)xx(1)/(2n^(2)))=(1)/(sqrt2(1+(1)/(2)))=(1)/(sqrt3)f_n\left(\pm \frac{1}{\sqrt{2n^2}}\right) = \frac{n \times \frac{1}{\sqrt{2n^2}}}{1 + n^2 \times \frac{1}{2n^2}} = \frac{1}{\sqrt{2}(1 + \frac{1}{2})} = \frac{1}{\sqrt{3}}fn(±12n2)=n×12n21+n2×12n2=12(1+12)=13
The supremum of | f n ( x ) | | f n ( x ) | |f_(n)(x)||f_n(x)||fn(x)| is 1 3 1 3 (1)/(sqrt3)\frac{1}{\sqrt{3}}13 for all n n nnn, and it does not go to zero as n n n rarr oon \to \inftyn.

Conclusion

The sequence of functions f n ( x ) = n x 1 + n 2 x 2 f n ( x ) = n x 1 + n 2 x 2 f_(n)(x)=(nx)/(1+n^(2)x^(2))f_n(x) = \frac{nx}{1 + n^2 x^2}fn(x)=nx1+n2x2 converges pointwise to the zero function f ( x ) = 0 f ( x ) = 0 f(x)=0f(x) = 0f(x)=0 for all x R x R x inRx \in \mathbb{R}xR. However, it does not converge uniformly to f ( x ) f ( x ) f(x)f(x)f(x) because sup | f n ( x ) | sup | f n ( x ) | s u p|f_(n)(x)|\sup |f_n(x)|sup|fn(x)| is not zero and does not go to zero as n n n rarr oon \to \inftyn.
3.(b) एकधा विधि का इस्तेमाल करते हुए रैखिक प्रोत्रामन समस्या को हल कीजिये :
न्यूनतमीकरण कीजिए Z = x 1 + 2 x 2 3 x 3 2 x 4 Z = x 1 + 2 x 2 3 x 3 2 x 4 Z=x_(1)+2x_(2)-3x_(3)-2x_(4)Z=x_1+2 x_2-3 x_3-2 x_4Z=x1+2x23x32x4
बशर्ते कि
x 1 + 2 x 2 3 x 3 + x 4 = 4 x 1 + 2 x 2 3 x 3 + x 4 = 4 x_(1)+2x_(2)-3x_(3)+x_(4)=4x_1+2 x_2-3 x_3+x_4=4x1+2x23x3+x4=4
x 1 + 2 x 2 + x 3 + 2 x 4 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 = 4 x_(1)+2x_(2)+x_(3)+2x_(4)=4x_1+2 x_2+x_3+2 x_4=4x1+2x2+x3+2x4=4
और x 1 , x 2 , x 3 , x 4 0 x 1 , x 2 , x 3 , x 4 0 x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0x1,x2,x3,x40
Solve the linear programming problem using Simplex method.
Minimize Z = x 1 + 2 x 2 3 x 3 2 x 4 Z = x 1 + 2 x 2 3 x 3 2 x 4 Z=x_(1)+2x_(2)-3x_(3)-2x_(4)Z=x_1+2 x_2-3 x_3-2 x_4Z=x1+2x23x32x4
subject to
x 1 + 2 x 2 3 x 3 + x 4 = 4 x 1 + 2 x 2 3 x 3 + x 4 = 4 x_(1)+2x_(2)-3x_(3)+x_(4)=4x_1+2 x_2-3 x_3+x_4=4x1+2x23x3+x4=4 x 1 + 2 x 2 + x 3 + 2 x 4 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 = 4 x_(1)+2x_(2)+x_(3)+2x_(4)=4x_1+2 x_2+x_3+2 x_4=4x1+2x2+x3+2x4=4 and x 1 , x 2 , x 3 , x 4 0 x 1 , x 2 , x 3 , x 4 0 x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0x1,x2,x3,x40
Answer:
Min Z = x 1 + 2 x 2 3 x 3 2 x 4 subject to x 1 + 2 x 2 3 x 3 + x 4 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 = 4 and x 1 , x 2 , x 3 , x 4 0  Min  Z = x 1 + 2 x 2 3 x 3 2 x 4  subject to  x 1 + 2 x 2 3 x 3 + x 4 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 = 4  and  x 1 , x 2 , x 3 , x 4 0 {:[” Min “Z=x_(1)+2x_(2)-3x_(3)-2x_(4)],[” subject to “],[x_(1)+2x_(2)-3x_(3)+x_(4)=4],[x_(1)+2x_(2)+x_(3)+2x_(4)=4],[” and “x_(1)”,”x_(2)”,”x_(3)”,”x_(4) >= 0]:}\begin{aligned} & \text { Min } Z=x_1+2 x_2-3 x_3-2 x_4 \\ & \text { subject to } \\ & x_1+2 x_2-3 x_3+x_4=4 \\ & x_1+2 x_2+x_3+2 x_4=4 \\ & \text { and } x_1, x_2, x_3, x_4 \geq 0 \end{aligned} Min Z=x1+2x23x32x4 subject to x1+2x23x3+x4=4x1+2x2+x3+2x4=4 and x1,x2,x3,x40
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
  1. As the constraint-1 is of type ‘ = ‘ we should add artificial variable A 1 A 1 A_(1)A_1A1
  2. As the constraint-2 is of type ‘ = ‘ we should add artificial variable A 2 A 2 A_(2)A_2A2
    After introducing artificial variables
Min Z = x 1 + 2 x 2 3 x 3 2 x 4 + M A 1 + M A 2 subject to x 1 + 2 x 2 3 x 3 + x 4 + A 1 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 + A 2 = 4 and x 1 , x 2 , x 3 , x 4 , A 1 , A 2 0 Min Z = x 1 + 2 x 2 3 x 3 2 x 4 + M A 1 + M A 2  subject to  x 1 + 2 x 2 3 x 3 + x 4 + A 1 = 4 x 1 + 2 x 2 + x 3 + 2 x 4 + A 2 = 4  and  x 1 , x 2 , x 3 , x 4 , A 1 , A 2 0 {:[Min Z=x_(1)+2x_(2)-3x_(3)-2x_(4)+MA_(1)+MA_(2)],[” subject to “],[{:[x_(1)+2x_(2)-3x_(3)+x_(4)+A_(1)=4],[x_(1)+2x_(2)+x_(3)+2x_(4)+A_(2)=4]:}],[” and “x_(1)”,”x_(2)”,”x_(3)”,”x_(4)”,”A_(1)”,”A_(2) >= 0]:}\begin{aligned} & \operatorname{Min} Z=x_1+2 x_2-3 x_3-2 x_4+M A_1+M A_2 \\ & \text { subject to } \\ & \begin{array}{l} x_1+2 x_2-3 x_3+x_4+A_1=4 \\ x_1+2 x_2+x_3+2 x_4+A_2=4 \end{array} \\ & \text { and } x_1, x_2, x_3, x_4, A_1, A_2 \geq 0 \end{aligned}MinZ=x1+2x23x32x4+MA1+MA2 subject to x1+2x23x3+x4+A1=4x1+2x2+x3+2x4+A2=4 and x1,x2,x3,x4,A1,A20
Iteration-1 C j C j C_(j)C_jCj 1 2 -3 -2 M M MMM M M MMM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 x 4 x 4 x_(4)x_4x4 A 1 A 1 A_(1)A_1A1 A 2 A 2 A_(2)A_2A2 MinRatio X B x 2  MinRatio  X B x 2 {:[” MinRatio “],[(X_(B))/(x_(2))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array} MinRatio XBx2
A 1 A 1 A_(1)A_1A1 M M MMM 4 1 (2) -3 1 1 0 4 2 = 2 4 2 = 2 (4)/(2)=2rarr\frac{4}{2}=2 \rightarrow42=2
A 2 A 2 A_(2)A_2A2 M M MMM 4 1 2 1 2 0 1 4 2 = 2 4 2 = 2 (4)/(2)=2\frac{4}{2}=242=2
Z = 8 M Z = 8 M Z=8MZ=\mathbf{8} MZ=8M Z j Z j Z_(j)Z_jZj 2 M 2 M 2M2 M2M 4 M 4 M 4M4 M4M 2 M 2 M -2M-2 M2M 3 M 3 M 3M3 M3M M M MMM M M MMM
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 2 M + 1 2 M + 1 -2M+1-2 M+12M+1 4 M + 2 4 M + 2 -4M+2uarr-4 M+2 \uparrow4M+2 2 M 3 2 M 3 2M-32 M-32M3 3 M 2 3 M 2 -3M-2-3 M-23M2 0 0
Iteration-1 C_(j) 1 2 -3 -2 M M B C_(B) X_(B) x_(1) x_(2) x_(3) x_(4) A_(1) A_(2) ” MinRatio (X_(B))/(x_(2))” A_(1) M 4 1 (2) -3 1 1 0 (4)/(2)=2rarr A_(2) M 4 1 2 1 2 0 1 (4)/(2)=2 Z=8M Z_(j) 2M 4M -2M 3M M M C_(j)-Z_(j) -2M+1 -4M+2uarr 2M-3 -3M-2 0 0 | Iteration-1 | | $C_j$ | 1 | 2 | -3 | -2 | $M$ | $M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $A_1$ | $A_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array}$ | | $A_1$ | $M$ | 4 | 1 | (2) | -3 | 1 | 1 | 0 | $\frac{4}{2}=2 \rightarrow$ | | $A_2$ | $M$ | 4 | 1 | 2 | 1 | 2 | 0 | 1 | $\frac{4}{2}=2$ | | $Z=\mathbf{8} M$ | | $Z_j$ | $2 M$ | $4 M$ | $-2 M$ | $3 M$ | $M$ | $M$ | | | | | $C_j-Z_j$ | $-2 M+1$ | $-4 M+2 \uparrow$ | $2 M-3$ | $-3 M-2$ | 0 | 0 | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 4 M + 2 4 M + 2 -4M+2-4 M+24M+2 and its column index is 2 . So, the entering variable is x 2 x 2 x_(2)x_2x2.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is A 1 A 1 A_(1)A_1A1.
:.\therefore The pivot element is 2 .
Entering = x 2 = x 2 =x_(2)=x_2=x2, Departing = A 1 = A 1 =A_(1)=A_1=A1, Key Element = 2 = 2 =2=2=2
R 1 ( R 1 ( R_(1)(R_1(R1( new ) = R 1 ( ) = R 1 ( )=R_(1)()=R_1()=R1( old ) ÷ 2 ) ÷ 2 )-:2) \div 2)÷2
R 2 ( R 2 ( R_(2)(R_2(R2( new ) = R 2 ) = R 2 )=R_(2))=R_2)=R2 (old ) 2 R 1 ( ) 2 R 1 ( )-2R_(1)()-2 R_1()2R1( new ) ) )))
Iteration-2 C j C j C_(j)C_jCj 1 2 -3 -2 M M MMM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 x 4 x 4 x_(4)x_4x4 A 2 A 2 A_(2)A_2A2 MinRatio X B x 3  MinRatio  X B x 3 {:[” MinRatio “],[(X_(B))/(x_(3))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array} MinRatio XBx3
x 2 x 2 x_(2)x_2x2 2 2 0.5 1 -1.5 0.5 0
A 2 A 2 A_(2)A_2A2 M M MMM 0 0 0 (4) 1 1 0 4 = 0 0 4 = 0 (0)/(4)=0rarr\frac{0}{4}=0 \rightarrow04=0
Z = 4 Z = 4 Z=4Z=4Z=4 Z j Z j Z_(j)Z_jZj 1 2 4 M 3 4 M 3 4M-34 M-34M3 M + 1 M + 1 M+1M+1M+1 M M MMM
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 4 M 4 M -4M uarr-4 M \uparrow4M M 3 M 3 -M-3-M-3M3 0
Iteration-2 C_(j) 1 2 -3 -2 M B C_(B) X_(B) x_(1) x_(2) x_(3) x_(4) A_(2) ” MinRatio (X_(B))/(x_(3))” x_(2) 2 2 0.5 1 -1.5 0.5 0 — A_(2) M 0 0 0 (4) 1 1 (0)/(4)=0rarr Z=4 Z_(j) 1 2 4M-3 M+1 M C_(j)-Z_(j) 0 0 -4M uarr -M-3 0 | Iteration-2 | | $C_j$ | 1 | 2 | -3 | -2 | $M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $A_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array}$ | | $x_2$ | 2 | 2 | 0.5 | 1 | -1.5 | 0.5 | 0 | — | | $A_2$ | $M$ | 0 | 0 | 0 | (4) | 1 | 1 | $\frac{0}{4}=0 \rightarrow$ | | $Z=4$ | | $Z_j$ | 1 | 2 | $4 M-3$ | $M+1$ | $M$ | | | | | $C_j-Z_j$ | 0 | 0 | $-4 M \uparrow$ | $-M-3$ | 0 | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 4 M 4 M -4M-4 M4M and its column index is 3 . So, the entering variable is x 3 x 3 x_(3)x_3x3.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is A 2 A 2 A_(2)A_2A2.
:.\therefore The pivot element is 4 .
Entering = x 3 = x 3 =x_(3)=x_3=x3, Departing = A 2 = A 2 =A_(2)=A_2=A2, Key Element = 4 = 4 =4=4=4
R 2 ( new ) = R 2 ( old ) ÷ 4 R 1 ( new ) = R 1 ( old ) + 1.5 R 2 ( new ) R 2 (  new  ) = R 2 (  old  ) ÷ 4 R 1 (  new  ) = R 1 (  old  ) + 1.5 R 2 (  new  ) {:[R_(2)(” new “)=R_(2)(” old “)-:4],[R_(1)(” new “)=R_(1)(” old “)+1.5R_(2)(” new “)]:}\begin{aligned} & R_2(\text { new })=R_2(\text { old }) \div 4 \\ & R_1(\text { new })=R_1(\text { old })+1.5 R_2(\text { new }) \end{aligned}R2( new )=R2( old )÷4R1( new )=R1( old )+1.5R2( new )
Iteration-3 C j C j C_(j)C_jCj 1 2 -3 -2
B C B C B C_(B)C_BCB X B X B X_(B)\boldsymbol{X}_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 x 4 x 4 x_(4)x_4x4 MinRatio X B x 4  MinRatio  X B x 4 {:[” MinRatio “],[(X_(B))/(x_(4))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_4}\end{array} MinRatio XBx4
x 2 x 2 x_(2)x_2x2 2 2 0.5 1 0 0.875 2 0.875 = 2.2857 2 0.875 = 2.2857 (2)/(0.875)=2.2857\frac{2}{0.875}=2.285720.875=2.2857
x 3 x 3 x_(3)x_3x3 -3 0 0 0 1 ( 0.25 ) ( 0.25 ) (0.25)(0.25)(0.25) 0 0.25 = 0 0 0.25 = 0 (0)/(0.25)=0rarr\frac{0}{0.25}=0 \rightarrow00.25=0
Z = 4 Z = 4 Z=4Z=4Z=4 Z j Z j Z_(j)Z_jZj 1 2 -3 1
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 0 3 3 -3uarr-3 \uparrow3
Iteration-3 C_(j) 1 2 -3 -2 B C_(B) X_(B) x_(1) x_(2) x_(3) x_(4) ” MinRatio (X_(B))/(x_(4))” x_(2) 2 2 0.5 1 0 0.875 (2)/(0.875)=2.2857 x_(3) -3 0 0 0 1 (0.25) (0)/(0.25)=0rarr Z=4 Z_(j) 1 2 -3 1 C_(j)-Z_(j) 0 0 0 -3uarr | Iteration-3 | | $C_j$ | 1 | 2 | -3 | -2 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | B | $C_B$ | $\boldsymbol{X}_B$ | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_4}\end{array}$ | | $x_2$ | 2 | 2 | 0.5 | 1 | 0 | 0.875 | $\frac{2}{0.875}=2.2857$ | | $x_3$ | -3 | 0 | 0 | 0 | 1 | $(0.25)$ | $\frac{0}{0.25}=0 \rightarrow$ | | $Z=4$ | | $Z_j$ | 1 | 2 | -3 | 1 | | | | | $C_j-Z_j$ | 0 | 0 | 0 | $-3 \uparrow$ | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is -3 and its column index is 4 . So, the entering variable is x 4 x 4 x_(4)x_4x4.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is x 3 x 3 x_(3)x_3x3.
:.\therefore The pivot element is 0.25 .
Entering = x 4 = x 4 =x_(4)=x_4=x4, Departing = x 3 = x 3 =x_(3)=x_3=x3, Key Element = 0.25 = 0.25 =0.25=0.25=0.25
R 2 ( new ) = R 2 ( old ) ÷ 0.25 R 1 ( new ) = R 1 ( old ) 0.875 R 2 ( new ) R 2 (  new  ) = R 2 (  old  ) ÷ 0.25 R 1 (  new  ) = R 1 (  old  ) 0.875 R 2 (  new  ) {:[R_(2)(” new “)=R_(2)(” old “)-:0.25],[R_(1)(” new “)=R_(1)(” old “)-0.875R_(2)(” new “)]:}\begin{aligned} & R_2(\text { new })=R_2(\text { old }) \div 0.25 \\ & R_1(\text { new })=R_1(\text { old })-0.875 R_2(\text { new }) \end{aligned}R2( new )=R2( old )÷0.25R1( new )=R1( old )0.875R2( new )
Iteration-4 C j C j C_(j)C_jCj 1 2 -3 -2
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 x 3 x 3 x_(3)\boldsymbol{x}_{\mathbf{3}}x3 x 4 x 4 x_(4)\boldsymbol{x}_{\mathbf{4}}x4 MinRatio
x 2 x 2 x_(2)x_2x2 2 2 0.5 1 -3.5 0
x 4 x 4 x_(4)x_4x4 -2 0 0 0 4 1
Z = 4 Z = 4 Z=4\boldsymbol{Z}=\mathbf{4}Z=4 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 1 1 1\mathbf{1}1 2 2 2\mathbf{2}2 1 5 1 5 -15\mathbf{- 1 5}15 2 2 -2\mathbf{- 2}2
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 12 0
Iteration-4 C_(j) 1 2 -3 -2 B C_(B) X_(B) x_(1) x_(2) x_(3) x_(4) MinRatio x_(2) 2 2 0.5 1 -3.5 0 x_(4) -2 0 0 0 4 1 Z=4 Z_(j) 1 2 -15 -2 C_(j)-Z_(j) 0 0 12 0 | Iteration-4 | | $C_j$ | 1 | 2 | -3 | -2 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{x}_{\mathbf{3}}$ | $\boldsymbol{x}_{\mathbf{4}}$ | MinRatio | | $x_2$ | 2 | 2 | 0.5 | 1 | -3.5 | 0 | | | $x_4$ | -2 | 0 | 0 | 0 | 4 | 1 | | | $\boldsymbol{Z}=\mathbf{4}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{- 1 5}$ | $\mathbf{- 2}$ | | | | | $C_j-Z_j$ | 0 | 0 | 12 | 0 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) >= 0C_j-Z_j \geq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 0 , x 2 = 2 , x 3 = 0 , x 4 = 0 Min Z = 4 x 1 = 0 , x 2 = 2 , x 3 = 0 , x 4 = 0  Min  Z = 4 {:[x_(1)=0″,”x_(2)=2″,”x_(3)=0″,”x_(4)=0],[” Min “Z=4]:}\begin{aligned} & x_1=0, x_2=2, x_3=0, x_4=0 \\ & \text { Min } Z=4 \end{aligned}x1=0,x2=2,x3=0,x4=0 Min Z=4
3.(c) समाकल c Re ( z 2 ) d z c Re z 2 d z int _(c)Re(z^(2))dz\int_c \operatorname{Re}\left(z^2\right) d zcRe(z2)dz का मूल्यांकन वक्र C C CCC के साथ-साथ 0 से 2 + 4 i 2 + 4 i 2+4i2+4 i2+4i तक कें, जहाँ C C CCC एक परवलय y = x 2 y = x 2 y=x^(2)y=x^2y=x2 है ।
Evaluate the integral c Re ( z 2 ) d z c Re z 2 d z int _(c)Re(z^(2))dz\int_c \operatorname{Re}\left(z^2\right) d zcRe(z2)dz from 0 to 2 + 4 i 2 + 4 i 2+4i2+4 i2+4i along the curve C C CCC where C C CCC is a parabola y = x 2 y = x 2 y=x^(2)y=x^2y=x2.
Answer:

Introduction

We are asked to evaluate the integral C Re ( z 2 ) d z C Re ( z 2 ) d z int _(C)Re(z^(2))dz\int_C \operatorname{Re}(z^2) \, dzCRe(z2)dz along the curve C C CCC, which is a parabola defined by y = x 2 y = x 2 y=x^(2)y = x^2y=x2. The integral is to be evaluated from 0 0 000 to 2 + 4 i 2 + 4 i 2+4i2 + 4i2+4i.

Work/Calculations

Step 1: Parametrization of the Curve C C CCC

The curve C C CCC is a parabola y = x 2 y = x 2 y=x^(2)y = x^2y=x2. We can parametrize this curve using x x xxx as the parameter:
z ( t ) = t + t 2 i , 0 t 2 z ( t ) = t + t 2 i , 0 t 2 z(t)=t+t^(2)i,quad0 <= t <= 2z(t) = t + t^2 i, \quad 0 \leq t \leq 2z(t)=t+t2i,0t2
Here, t t ttt ranges from 0 0 000 to 2 2 222, which ensures that z z zzz ranges from 0 0 000 to 2 + 4 i 2 + 4 i 2+4i2 + 4i2+4i.

Step 2: Compute d z d z dzdzdz

To find d z d z dzdzdz, we differentiate z ( t ) z ( t ) z(t)z(t)z(t) with respect to t t ttt:
d z d t = 1 + 2 t i d z d t = 1 + 2 t i (dz)/(dt)=1+2ti\frac{dz}{dt} = 1 + 2tidzdt=1+2ti

Step 3: Compute Re ( z 2 ) Re ( z 2 ) Re(z^(2))\operatorname{Re}(z^2)Re(z2)

The function z 2 z 2 z^(2)z^2z2 is given by:
z 2 = ( t + t 2 i ) 2 = t 2 + 2 t 3 i t 4 = t 2 t 4 + 2 t 3 i z 2 = ( t + t 2 i ) 2 = t 2 + 2 t 3 i t 4 = t 2 t 4 + 2 t 3 i z^(2)=(t+t^(2)i)^(2)=t^(2)+2t^(3)i-t^(4)=t^(2)-t^(4)+2t^(3)iz^2 = (t + t^2 i)^2 = t^2 + 2t^3 i – t^4 = t^2 – t^4 + 2t^3 iz2=(t+t2i)2=t2+2t3it4=t2t4+2t3i
The real part of z 2 z 2 z^(2)z^2z2 is Re ( z 2 ) = t 2 t 4 Re ( z 2 ) = t 2 t 4 Re(z^(2))=t^(2)-t^(4)\operatorname{Re}(z^2) = t^2 – t^4Re(z2)=t2t4.

Step 4: Evaluate the Integral

The integral becomes:
C Re ( z 2 ) d z = 0 2 ( t 2 t 4 ) ( 1 + 2 t i ) d t C Re ( z 2 ) d z = 0 2 ( t 2 t 4 ) ( 1 + 2 t i ) d t int _(C)Re(z^(2))dz=int_(0)^(2)(t^(2)-t^(4))(1+2ti)dt\int_C \operatorname{Re}(z^2) \, dz = \int_{0}^{2} (t^2 – t^4)(1 + 2ti) \, dtCRe(z2)dz=02(t2t4)(1+2ti)dt
Let’s substitute the values and calculate:
0 2 ( t 2 t 4 + 2 t 3 i 2 t 5 i ) d t 0 2 ( t 2 t 4 + 2 t 3 i 2 t 5 i ) d t int_(0)^(2)(t^(2)-t^(4)+2t^(3)i-2t^(5)i)dt\int_{0}^{2} (t^2 – t^4 + 2t^3 i – 2t^5 i) \, dt02(t2t4+2t3i2t5i)dt
After calculating, we get:
0 2 t 2 d t 0 2 t 4 d t + 2 i 0 2 t 3 d t 2 i 0 2 t 5 d t 0 2 t 2 d t 0 2 t 4 d t + 2 i 0 2 t 3 d t 2 i 0 2 t 5 d t int_(0)^(2)t^(2)dt-int_(0)^(2)t^(4)dt+2iint_(0)^(2)t^(3)dt-2iint_(0)^(2)t^(5)dt\int_{0}^{2} t^2 \, dt – \int_{0}^{2} t^4 \, dt + 2i \int_{0}^{2} t^3 \, dt – 2i \int_{0}^{2} t^5 \, dt02t2dt02t4dt+2i02t3dt2i02t5dt
[ t 3 3 ] 0 2 [ t 5 5 ] 0 2 + 2 i [ t 4 4 ] 0 2 2 i [ t 6 6 ] 0 2 t 3 3 0 2 t 5 5 0 2 + 2 i t 4 4 0 2 2 i t 6 6 0 2 [(t^(3))/(3)]_(0)^(2)-[(t^(5))/(5)]_(0)^(2)+2i[(t^(4))/(4)]_(0)^(2)-2i[(t^(6))/(6)]_(0)^(2)\left[\frac{t^3}{3}\right]_{0}^{2} – \left[\frac{t^5}{5}\right]_{0}^{2} + 2i \left[\frac{t^4}{4}\right]_{0}^{2} – 2i \left[\frac{t^6}{6}\right]_{0}^{2}[t33]02[t55]02+2i[t44]022i[t66]02
After calculating, we get:
8 3 32 5 + 2 i ( 16 4 ) 2 i ( 64 6 ) = 8 3 32 5 + 8 i 64 3 i 8 3 32 5 + 2 i 16 4 2 i 64 6 = 8 3 32 5 + 8 i 64 3 i (8)/(3)-(32)/(5)+2i((16)/(4))-2i((64)/(6))=(8)/(3)-(32)/(5)+8i-(64)/(3)i\frac{8}{3} – \frac{32}{5} + 2i \left(\frac{16}{4}\right) – 2i \left(\frac{64}{6}\right) = \frac{8}{3} – \frac{32}{5} + 8i – \frac{64}{3}i83325+2i(164)2i(646)=83325+8i643i
Simplifying, we get:
40 15 96 15 + 24 i 3 64 i 3 = 56 15 40 i 3 40 15 96 15 + 24 i 3 64 i 3 = 56 15 40 i 3 (40)/(15)-(96)/(15)+(24 i)/(3)-(64 i)/(3)=-(56)/(15)-(40 i)/(3)\frac{40}{15} – \frac{96}{15} + \frac{24i}{3} – \frac{64i}{3} = -\frac{56}{15} – \frac{40i}{3}40159615+24i364i3=561540i3

Conclusion

The value of the integral C Re ( z 2 ) d z C Re ( z 2 ) d z int _(C)Re(z^(2))dz\int_C \operatorname{Re}(z^2) \, dzCRe(z2)dz along the curve C C CCC from 0 0 000 to 2 + 4 i 2 + 4 i 2+4i2 + 4i2+4i is 56 15 40 i 3 56 15 40 i 3 -(56)/(15)-(40 i)/(3)-\frac{56}{15} – \frac{40i}{3}561540i3.
3.(d) मानिए कि a a aaa, यूक्लिडीयन वलय R R RRR का एक अखंडनीय अवयव है तब सिद्ध करें कि R / ( a ) R / ( a ) R//(a)R /(a)R/(a) एक क्षेत्र है।
Let a a aaa be an irreducible element of the Euclidean ring R R RRR, then prove that R / ( a ) R / ( a ) R//(a)R /(a)R/(a) is a field.
Answer:

Introduction

In this problem, we are given that a a aaa is an irreducible element in a Euclidean ring R R RRR. We are tasked with proving that the quotient ring R / ( a ) R / ( a ) R//(a)R/(a)R/(a) is a field.

Work/Calculations

Step 1: Definitions and Preliminaries

  • A Euclidean ring R R RRR is an integral domain with a Euclidean function d : R N d : R N d:R rarrNd: R \to \mathbb{N}d:RN satisfying certain properties.
  • An element a R a R a in Ra \in RaR is said to be irreducible if it is not a unit and cannot be expressed as a product of two non-unit elements.
  • A field is a commutative ring with unity where every non-zero element has a multiplicative inverse.

Step 2: a a aaa is Irreducible a a =>a\Rightarrow aa is Prime

In a Euclidean domain, every irreducible element is prime. Therefore, a a aaa is a prime element in R R RRR.

Step 3: a a aaa is Prime ( a ) ( a ) =>(a)\Rightarrow (a)(a) is a Prime Ideal

For a prime element a a aaa, the ideal generated by a a aaa, denoted ( a ) ( a ) (a)(a)(a), is a prime ideal. This means that if a b ( a ) a b ( a ) ab in(a)ab \in (a)ab(a), then either a ( a ) a ( a ) a in(a)a \in (a)a(a) or b ( a ) b ( a ) b in(a)b \in (a)b(a).

Step 4: ( a ) ( a ) (a)(a)(a) is a Prime Ideal R / ( a ) R / ( a ) =>R//(a)\Rightarrow R/(a)R/(a) is an Integral Domain

The quotient ring R / ( a ) R / ( a ) R//(a)R/(a)R/(a) is an integral domain if ( a ) ( a ) (a)(a)(a) is a prime ideal.

Step 5: R / ( a ) R / ( a ) R//(a)R/(a)R/(a) is an Integral Domain R / ( a ) R / ( a ) =>R//(a)\Rightarrow R/(a)R/(a) is a Field

In a Euclidean domain, every non-zero, non-unit element can be uniquely factored into irreducible elements. Since a a aaa is irreducible, the only elements in R / ( a ) R / ( a ) R//(a)R/(a)R/(a) are the cosets 0 + ( a ) , 1 + ( a ) , , ( a 1 ) + ( a ) 0 + ( a ) , 1 + ( a ) , , ( a 1 ) + ( a ) 0+(a),1+(a),dots,(a-1)+(a)0 + (a), 1 + (a), \ldots, (a-1) + (a)0+(a),1+(a),,(a1)+(a).
Every non-zero element in R / ( a ) R / ( a ) R//(a)R/(a)R/(a) has an inverse, making R / ( a ) R / ( a ) R//(a)R/(a)R/(a) a field.

Conclusion

We have shown that if a a aaa is an irreducible element in a Euclidean ring R R RRR, then the quotient ring R / ( a ) R / ( a ) R//(a)R/(a)R/(a) is a field. This completes the proof.
4.(a) f ( x , y , z ) = x 2 y 2 z 2 f ( x , y , z ) = x 2 y 2 z 2 f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z)=x^2 y^2 z^2f(x,y,z)=x2y2z2 का अधिकतम मान ज्ञात करें बशर्ते कि गौण शर्त x 2 + y 2 + z 2 = c 2 x 2 + y 2 + z 2 = c 2 x^(2)+y^(2)+z^(2)=c^(2)x^2+y^2+z^2=c^2x2+y2+z2=c2, ( x , y , z > 0 ) ( x , y , z > 0 ) (x,y,z > 0)(x, y, z>0)(x,y,z>0) है।
Find the maximum value of f ( x , y , z ) = x 2 y 2 z 2 f ( x , y , z ) = x 2 y 2 z 2 f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z)=x^2 y^2 z^2f(x,y,z)=x2y2z2 subject to the subsidiary condition x 2 + y 2 + z 2 = c 2 , ( x , y , z > 0 ) x 2 + y 2 + z 2 = c 2 , ( x , y , z > 0 ) x^(2)+y^(2)+z^(2)=c^(2),quad(x,y,z > 0)x^2+y^2+z^2=c^2, \quad(x, y, z>0)x2+y2+z2=c2,(x,y,z>0).
Answer:
Introduction:
The problem is to find the maximum value of the function f ( x , y , z ) = x 2 y 2 z 2 f ( x , y , z ) = x 2 y 2 z 2 f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z) = x^2 y^2 z^2f(x,y,z)=x2y2z2 subject to the subsidiary condition x 2 + y 2 + z 2 = c 2 x 2 + y 2 + z 2 = c 2 x^(2)+y^(2)+z^(2)=c^(2)x^2 + y^2 + z^2 = c^2x2+y2+z2=c2 where x x xxx, y y yyy, and z z zzz are all greater than zero.
Step 1: Formulation of Expression
We formulate the expression using the method of undetermined multipliers:
F = x 2 y 2 z 2 + λ ( x 2 + y 2 + z 2 c 2 ) F = x 2 y 2 z 2 + λ ( x 2 + y 2 + z 2 c 2 ) F=x^(2)y^(2)z^(2)+lambda(x^(2)+y^(2)+z^(2)-c^(2))F = x^2 y^2 z^2 + \lambda (x^2 + y^2 + z^2 – c^2)F=x2y2z2+λ(x2+y2+z2c2)
Step 2: Differentiation
By differentiation, we have:
2 x y 2 z 2 + 2 λ x = 0 2 x 2 y z 2 + 2 λ y = 0 2 x 2 y 2 z + 2 λ z = 0 2 x y 2 z 2 + 2 λ x = 0 2 x 2 y z 2 + 2 λ y = 0 2 x 2 y 2 z + 2 λ z = 0 {:[2xy^(2)z^(2)+2lambda x=0],[2x^(2)yz^(2)+2lambda y=0],[2x^(2)y^(2)z+2lambda z=0]:}\begin{aligned} 2xy^2z^2 + 2\lambda x &= 0 \\ 2x^2yz^2 + 2\lambda y &= 0 \\ 2x^2y^2z + 2\lambda z &= 0 \end{aligned}2xy2z2+2λx=02x2yz2+2λy=02x2y2z+2λz=0
The solutions with x = 0 x = 0 x=0x = 0x=0, y = 0 y = 0 y=0y = 0y=0, or z = 0 z = 0 z=0z = 0z=0 can be excluded since at these points, the function takes on its least value, zero.
Step 3: Alternative Solutions
The other solutions of the equation are x 2 = y 2 = z 2 x 2 = y 2 = z 2 x^(2)=y^(2)=z^(2)x^2 = y^2 = z^2x2=y2=z2, λ = x 4 λ = x 4 lambda=-x^(4)\lambda = -x^4λ=x4. Using the subsidiary condition, we obtain the values:
x = ± c 3 , y = ± c 3 , z = ± c 3 x = ± c 3 , y = ± c 3 , z = ± c 3 x=+-(c)/(sqrt3),quad y=+-(c)/(sqrt3),quad z=+-(c)/(sqrt3)x = \pm \frac{c}{\sqrt{3}}, \quad y = \pm \frac{c}{\sqrt{3}}, \quad z = \pm \frac{c}{\sqrt{3}}x=±c3,y=±c3,z=±c3
Step 4: Maximum Value
At all these points, the function assumes the same value c 6 27 c 6 27 (c^(6))/(27)\frac{c^6}{27}c627, which accordingly is the maximum. Hence, any trial of numbers satisfies the relation:
x 2 y 2 z 2 c 2 3 = x 2 + y 2 + z 2 3 x 2 y 2 z 2 c 2 3 = x 2 + y 2 + z 2 3 sqrt(x^(2)y^(2)z^(2)) <= (c^(2))/(3)=(x^(2)+y^(2)+z^(2))/(3)\sqrt{x^2 y^2 z^2} \leq \frac{c^2}{3} = \frac{x^2 + y^2 + z^2}{3}x2y2z2c23=x2+y2+z23
This states that the geometric mean of three non-negative numbers x 2 x 2 x^(2)x^2x2, y 2 y 2 y^(2)y^2y2, z 2 z 2 z^(2)z^2z2 is never greater than their arithmetic mean.
Conclusion:
The maximum value of the function f ( x , y , z ) = x 2 y 2 z 2 f ( x , y , z ) = x 2 y 2 z 2 f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z) = x^2 y^2 z^2f(x,y,z)=x2y2z2 subject to the subsidiary condition x 2 + y 2 + z 2 = c 2 x 2 + y 2 + z 2 = c 2 x^(2)+y^(2)+z^(2)=c^(2)x^2 + y^2 + z^2 = c^2x2+y2+z2=c2 for x x xxx, y y yyy, and z z zzz all greater than zero is c 6 27 c 6 27 (c^(6))/(27)\frac{c^6}{27}c627.
4.(b) फलन f ( z ) = 1 ( e z 1 ) f ( z ) = 1 e z 1 f(z)=(1)/((e^(z)-1))f(z)=\frac{1}{\left(e^z-1\right)}f(z)=1(ez1) के बिन्दु z = 0 z = 0 z=0z=0z=0 के इर्दगिर्द लॉरेंट श्रेणी विस्तार के, प्रथम तीन पद प्राप्त करें, जो कि क्षेत्र 0 < | z | < 2 π 0 < | z | < 2 π 0 < |z| < 2pi0<|z|<2 \pi0<|z|<2π में वैध है ।
Obtain the first three terms of the Laurent series expansion of the function f ( z ) = 1 ( e z 1 ) f ( z ) = 1 e z 1 f(z)=(1)/((e^(z)-1))f(z)=\frac{1}{\left(e^z-1\right)}f(z)=1(ez1) about the point z = 0 z = 0 z=0z=0z=0 valid in the region 0 < | z | < 2 π 0 < | z | < 2 π 0 < |z| < 2pi0<|z|<2 \pi0<|z|<2π.
Answer:
Introduction:
In this problem, we are tasked with obtaining the first three terms of the Laurent series expansion of the function f ( z ) = 1 e z 1 f ( z ) = 1 e z 1 f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1}f(z)=1ez1 about the point z = 0 z = 0 z=0z = 0z=0, and it should be valid in the region 0 < | z | < 2 π 0 < | z | < 2 π 0 < |z| < 2pi0 < |z| < 2\pi0<|z|<2π.
Step 1: Given Function
We are given the function f ( z ) = 1 e z 1 f ( z ) = 1 e z 1 f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1}f(z)=1ez1.
Step 2: Laurent Series Expansion
To find the Laurent series expansion, we start by rewriting the function as follows:
1 e z 1 = 1 z ( 1 + [ z 2 ! + z 3 3 ! + ] ) 1 e z 1 = 1 z 1 + z 2 ! + z 3 3 ! + (1)/(e^(z)-1)=(1)/(z(1+[(z)/(2!)+(z^(3))/(3!)+dots]))\frac{1}{e^z – 1} = \frac{1}{z\left(1 + \left[\frac{z}{2!} + \frac{z^3}{3!} + \ldots\right]\right)}1ez1=1z(1+[z2!+z33!+])
Here, we have introduced a power series P ( z ) = ( z 2 ! + z 2 3 ! + z 3 4 ! + ) P ( z ) = z 2 ! + z 2 3 ! + z 3 4 ! + P(z)=((z)/(2!)+(z^(2))/(3!)+(z^(3))/(4!)+dots)P(z) = \left(\frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \ldots\right)P(z)=(z2!+z23!+z34!+).
Step 3: Analyzing the Region of Validity
We consider two cases based on the region of validity:
Case 1: If 0 < | z | 1 0 < | z | 1 0 < |z| <= 10 < |z| \leq 10<|z|1, then | z | 2 , | z | 3 , < 1 | z | 2 , | z | 3 , < 1 |z|^(2),|z|^(3),dots < 1|z|^2, |z|^3, \ldots < 1|z|2,|z|3,<1, which implies that P ( z ) = ( z 2 ! + z 2 3 ! + z 3 4 ! + ) < 1 P ( z ) = z 2 ! + z 2 3 ! + z 3 4 ! + < 1 P(z)=((z)/(2!)+(z^(2))/(3!)+(z^(3))/(4!)+dots) < 1P(z) = \left(\frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \ldots\right) < 1P(z)=(z2!+z23!+z34!+)<1. This is because at z = 1 z = 1 z=1z = 1z=1, P ( z ) = [ 1 2 + 1 3 ! + 1 4 ! + ] < 1 P ( z ) = 1 2 + 1 3 ! + 1 4 ! + < 1 P(z)=[(1)/(2)+(1)/(3!)+(1)/(4!)+dots] < 1P(z) = \left[\frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \ldots\right] < 1P(z)=[12+13!+14!+]<1.
Case 2: If 1 < | z | < 2 π 1 < | z | < 2 π 1 < |z| < 2pi1 < |z| < 2\pi1<|z|<2π, then | z | 2 , | z | 3 , < 1 | z | 2 , | z | 3 , < 1 |z|^(2),|z|^(3),dots < 1|z|^2, |z|^3, \ldots < 1|z|2,|z|3,<1. In this case, P ( z ) < 1 P ( z ) < 1 P(z) < 1P(z) < 1P(z)<1 still holds.
Step 4: Write the Laurent Series Expansion
Now, we can write the Laurent series expansion as follows:
1 e z 1 = 1 z P ( z ) z + P ( z ) 2 z P ( z ) 3 z + = 1 z 1 2 z 3 ! + z ( 2 ! ) 2 z 2 4 ! + 2 z 2 2 ! 3 ! z 2 ( 2 ! ) 3 + 0 ( z 3 ) = 1 z 1 2 + z 12 + z ( 1 6 1 24 1 8 ) + 0 ( z 3 ) = 1 z 1 2 + z 12 + z 2 ( 0 ) + 0 ( z 3 ) (equation 1) 1 e z 1 = 1 z P ( z ) z + P ( z ) 2 z P ( z ) 3 z + = 1 z 1 2 z 3 ! + z ( 2 ! ) 2 z 2 4 ! + 2 z 2 2 ! 3 ! z 2 ( 2 ! ) 3 + 0 ( z 3 ) = 1 z 1 2 + z 12 + z 1 6 1 24 1 8 + 0 ( z 3 ) = 1 z 1 2 + z 12 + z 2 ( 0 ) + 0 ( z 3 ) (equation 1) {:[(1)/(e^(z)-1)=(1)/(z)-(P(z))/(z)+(P(z)^(2))/(z)-(P(z)^(3))/(z)+dots],[=(1)/(z)-(1)/(2)-(z)/(3!)+(z)/((2!)^(2))-(z^(2))/(4!)+(2z^(2))/(2!3!)-(z^(2))/((2!)^(3))+0(z^(3))],[=(1)/(z)-(1)/(2)+(z)/( 12)+z((1)/(6)-(1)/(24)-(1)/(8))+0(z^(3))],[=(1)/(z)-(1)/(2)+(z)/( 12)+z^(2)(0)+0(z^(3))quad(equation 1)]:}\begin{aligned} \frac{1}{e^z – 1} & = \frac{1}{z} – \frac{P(z)}{z} + \frac{P(z)^2}{z} – \frac{P(z)^3}{z} + \ldots \\ & = \frac{1}{z} – \frac{1}{2} – \frac{z}{3!} + \frac{z}{(2!)^2} – \frac{z^2}{4!} + \frac{2z^2}{2!3!} – \frac{z^2}{(2!)^3} + 0(z^3) \\ & = \frac{1}{z} – \frac{1}{2} + \frac{z}{12} + z\left(\frac{1}{6} – \frac{1}{24} – \frac{1}{8}\right) + 0(z^3) \\ & = \frac{1}{z} – \frac{1}{2} + \frac{z}{12} + z^2(0) + 0(z^3) \quad \text{(equation 1)} \end{aligned}1ez1=1zP(z)z+P(z)2zP(z)3z+=1z12z3!+z(2!)2z24!+2z22!3!z2(2!)3+0(z3)=1z12+z12+z(1612418)+0(z3)=1z12+z12+z2(0)+0(z3)(equation 1)
Step 5: Verification for Region of Validity
We need to verify that the Laurent series expansion (equation 1) holds for 1 < | z | < 2 π 1 < | z | < 2 π 1 < |z| < 2pi1 < |z| < 2\pi1<|z|<2π. We do this by calculating the residue:
lim z 0 z e z 1 = 1 lim z 0 z e z 1 = 1 lim_(z rarr0)(z)/(e^(z)-1)=1\lim_{z \to 0} \frac{z}{e^z – 1} = 1limz0zez1=1
Since this limit equals 1 as z z zzz approaches 0, the series expansion holds for 1 < | z | < 2 π 1 < | z | < 2 π 1 < |z| < 2pi1 < |z| < 2\pi1<|z|<2π.
Step 6: Conclusion
Hence, the first three terms of the Laurent series expansion of f ( z ) = 1 e z 1 f ( z ) = 1 e z 1 f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1}f(z)=1ez1 about the point z = 0 z = 0 z=0z = 0z=0, valid in the region 0 < | z | < 2 π 0 < | z | < 2 π 0 < |z| < 2pi0 < |z| < 2\pi0<|z|<2π, are given by:
1 z 1 2 + z 12 1 z 1 2 + z 12 (1)/(z)-(1)/(2)+(z)/( 12)\frac{1}{z} – \frac{1}{2} + \frac{z}{12}1z12+z12
4.(c) 1 2 x l n x d x 1 2 x l n x d x int_(1)^(2)(sqrtx)/(l_(n)x)dx\int_1^2 \frac{\sqrt{x}}{l_n x} d x12xlnxdx के अभिसरण पर चर्चा कीजिए ।
Discuss the convergence of 1 2 x l n x d x 1 2 x l n x d x int_(1)^(2)(sqrtx)/(l_(n)x)dx\int_1^2 \frac{\sqrt{x}}{l_n x} d x12xlnxdx.
Answer:
Introduction:
The problem is to discuss the convergence of the integral 1 2 x ln x d x 1 2 x ln x d x int_(1)^(2)(sqrtx)/(ln x)dx\int_1^2 \frac{\sqrt{x}}{\ln x} dx12xlnxdx.
Step 1: Setting up the Integral
Let f ( x ) = x ln x f ( x ) = x ln x f(x)=(sqrtx)/(ln x)f(x) = \frac{\sqrt{x}}{\ln x}f(x)=xlnx.
Step 2: Analyzing Discontinuity
We observe that 1 is the only point of infinite discontinuity of f f fff on the interval [ 1 , 2 ] [ 1 , 2 ] [1,2][1,2][1,2].
Step 3: Comparing with Test Function
Take g ( x ) = 1 ( x 1 ) n g ( x ) = 1 ( x 1 ) n g(x)=(1)/((x-1)^(n))g(x) = \frac{1}{(x-1)^n}g(x)=1(x1)n.
Therefore, we need to evaluate the limit:
lim x 1 + f ( x ) g ( x ) = lim x 1 + ( x 1 ) n x ln x ( Indeterminate form 0 0 ) lim x 1 + f ( x ) g ( x ) = lim x 1 + ( x 1 ) n x ln x ( Indeterminate form  0 0 ) lim_(x rarr1^(+))(f(x))/(g(x))=lim_(x rarr1^(+))((x-1)^(n)sqrtx)/(ln x)quad(“Indeterminate form “(0)/(0))\lim _{x \rightarrow 1^{+}} \frac{f(x)}{g(x)} = \lim _{x \rightarrow 1^{+}} \frac{(x-1)^n \sqrt{x}}{\ln x} \quad (\text{Indeterminate form }\frac{0}{0})limx1+f(x)g(x)=limx1+(x1)nxlnx(Indeterminate form 00)
Using L’Hôpital’s Rule:
= lim x 1 + n ( x 1 ) n 1 x + ( x 1 ) n 1 2 x 1 x = lim x 1 + ( x 1 ) n 1 [ n x 3 2 + x 1 2 x ] = lim x 1 + n ( x 1 ) n 1 x + ( x 1 ) n 1 2 x 1 x = lim x 1 + ( x 1 ) n 1 n x 3 2 + x 1 2 x {:[=lim_(x rarr1^(+))(n(x-1)^(n-1)sqrtx+(x-1)^(n)(1)/(2sqrtx))/((1)/(x))],[=lim_(x rarr1^(+))(x-1)^(n-1)[nx^((3)/(2))+(x-1)/(2)sqrtx]]:}\begin{aligned} &= \lim _{x \rightarrow 1^{+}} \frac{n(x-1)^{n-1} \sqrt{x} + (x-1)^n \frac{1}{2 \sqrt{x}}}{\frac{1}{x}} \\ &= \lim _{x \rightarrow 1^{+}} (x-1)^{n-1} \left[n x^{\frac{3}{2}} + \frac{x-1}{2} \sqrt{x}\right] \end{aligned}=limx1+n(x1)n1x+(x1)n12x1x=limx1+(x1)n1[nx32+x12x]
This limit equals 1 if n = 1 n = 1 n=1n = 1n=1, which is a non-zero finite number.
Step 4: Comparison Test
By the comparison test, we can conclude that:
1 2 f ( x ) d x and 1 2 g ( x ) d x are convergent or divergent together. But 1 2 g ( x ) d x diverges. 1 2 f ( x ) d x  and  1 2 g ( x ) d x  are convergent or divergent together. But  1 2 g ( x ) d x  diverges. {:[int_(1)^(2)f(x)dx” and “int_(1)^(2)g(x)dx” are convergent or divergent together.”],[“But “int_(1)^(2)g(x)dx” diverges.”]:}\begin{aligned} & \int_1^2 f(x) dx \text{ and } \int_1^2 g(x) dx \text{ are convergent or divergent together.} \\ & \text{But } \int_1^2 g(x) dx \text{ diverges.} \end{aligned}12f(x)dx and 12g(x)dx are convergent or divergent together.But 12g(x)dx diverges.
Hence, we can conclude that the integral 1 2 x ln x d x 1 2 x ln x d x int_(1)^(2)(sqrtx)/(ln x)dx\int_1^2 \frac{\sqrt{x}}{\ln x} dx12xlnxdx diverges.
Conclusion:
The integral 1 2 x ln x d x 1 2 x ln x d x int_(1)^(2)(sqrtx)/(ln x)dx\int_1^2 \frac{\sqrt{x}}{\ln x} dx12xlnxdx diverges.
4.(d) निम्नलिखित एल. पी. पी. पर विचार करें,
अधिकतमीकरण कीजिए Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z=2 x_1+4 x_2+4 x_3-3 x_4Z=2x1+4x2+4x33x4
बशर्ते कि
x 1 + x 2 + x 3 = 4 x 1 + x 2 + x 3 = 4 x_(1)+x_(2)+x_(3)=4x_1+x_2+x_3=4x1+x2+x3=4
x 1 + 4 x 2 + x 4 = 8 x 1 + 4 x 2 + x 4 = 8 x_(1)+4x_(2)+x_(4)=8x_1+4 x_2+x_4=8x1+4x2+x4=8
और x 1 , x 2 , x 3 , x 4 0 x 1 , x 2 , x 3 , x 4 0 x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geqslant 0x1,x2,x3,x40
प्रति समस्या का उपयोग करते हुए, सत्यापित करें कि बुनियादी समाधान ( x 1 , x 2 ) x 1 , x 2 (x_(1),x_(2))\left(x_1, x_2\right)(x1,x2) इष्टतम नहीं है ।
Consider the following LPP,
Maximize Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z=2 x_1+4 x_2+4 x_3-3 x_4Z=2x1+4x2+4x33x4
subject to
x 1 + x 2 + x 3 = 4 x 1 + 4 x 2 + x 4 = 8 and x 1 , x 2 , x 3 , x 4 0 x 1 + x 2 + x 3 = 4 x 1 + 4 x 2 + x 4 = 8  and  x 1 , x 2 , x 3 , x 4 0 {:[,x_(1)+x_(2)+x_(3)=4],[,x_(1)+4x_(2)+x_(4)=8],[” and “,x_(1)”,”x_(2)”,”x_(3)”,”x_(4) >= 0]:}\begin{array}{ll} & x_1+x_2+x_3=4 \\ & x_1+4 x_2+x_4=8 \\ \text { and } & x_1, x_2, x_3, x_4 \geqslant 0\end{array}x1+x2+x3=4x1+4x2+x4=8 and x1,x2,x3,x40
Use the dual problem to verify that the basic solution ( x 1 , x 2 ) x 1 , x 2 (x_(1),x_(2))\left(x_1, x_2\right)(x1,x2) is not optimal.
Answer:

Introduction

We are given a Linear Programming Problem (LPP) with the objective function Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z = 2x_1 + 4x_2 + 4x_3 – 3x_4Z=2x1+4x2+4x33x4, subject to the constraints x 1 + x 2 + x 3 = 4 x 1 + x 2 + x 3 = 4 x_(1)+x_(2)+x_(3)=4x_1 + x_2 + x_3 = 4x1+x2+x3=4, x 1 + 4 x 2 + x 4 = 8 x 1 + 4 x 2 + x 4 = 8 x_(1)+4x_(2)+x_(4)=8x_1 + 4x_2 + x_4 = 8x1+4x2+x4=8, and x 1 , x 2 , x 3 , x 4 0 x 1 , x 2 , x 3 , x 4 0 x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0x1,x2,x3,x40. We are asked to use the dual problem to verify whether the basic solution ( x 1 , x 2 ) ( x 1 , x 2 ) (x_(1),x_(2))(x_1, x_2)(x1,x2) is optimal.

Formulation of the Dual Problem

The primal problem is:
MAX Z x = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 subject to x 1 + x 2 + x 3 = 4 x 1 + 4 x 2 + x 4 = 8 x 1 , x 2 , x 3 , x 4 0 MAX  Z x = 2 x 1 + 4 x 2 + 4 x 3 3 x 4 subject to x 1 + x 2 + x 3 = 4 x 1 + 4 x 2 + x 4 = 8 x 1 , x 2 , x 3 , x 4 0 {:[“MAX “Z_(x)=2x_(1)+4x_(2)+4x_(3)-3x_(4)],[“subject to”],[x_(1)+x_(2)+x_(3)=4],[x_(1)+4x_(2)+x_(4)=8],[x_(1)”,”x_(2)”,”x_(3)”,”x_(4) >= 0]:}\begin{aligned} & \text{MAX } Z_x = 2x_1 + 4x_2 + 4x_3 – 3x_4 \\ & \text{subject to} \\ & x_1 + x_2 + x_3 = 4 \\ & x_1 + 4x_2 + x_4 = 8 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{aligned}MAX Zx=2x1+4x2+4x33x4subject tox1+x2+x3=4x1+4x2+x4=8x1,x2,x3,x40
To formulate the dual problem, we note that the primal problem has 4 variables and 2 constraints. Therefore, the dual problem will have 4 constraints and 2 variables. The dual problem is:
MIN Z y = 4 y 1 + 8 y 2 subject to y 1 + y 2 2 y 1 + 4 y 2 4 y 1 4 y 2 3 MIN  Z y = 4 y 1 + 8 y 2 subject to y 1 + y 2 2 y 1 + 4 y 2 4 y 1 4 y 2 3 {:[“MIN “Z_(y)=4y_(1)+8y_(2)],[“subject to”],[y_(1)+y_(2) >= 2],[y_(1)+4y_(2) >= 4],[y_(1) >= 4],[y_(2) >= -3]:}\begin{aligned} & \text{MIN } Z_y = 4y_1 + 8y_2 \\ & \text{subject to} \\ & y_1 + y_2 \geq 2 \\ & y_1 + 4y_2 \geq 4 \\ & y_1 \geq 4 \\ & y_2 \geq -3 \end{aligned}MIN Zy=4y1+8y2subject toy1+y22y1+4y24y14y23
Min Z = 4 y 1 + 8 y 2 subject to y 1 + y 2 2 y 1 + 4 y 2 y 1 4 y 2 3 Min Z = 4 y 1 + 8 y 2  subject to  y 1 + y 2 2 y 1 + 4 y 2 y 1 4 y 2 3 {:[Min Z=4y_(1)+8y_(2)],[” subject to “],[{:[y_(1),+,y_(2), >= 2]:}],[{:[y_(1),+,4,y_(2), >= ]:}],[y_(1) >= 4],[y_(2) >= -3],[]:}\begin{aligned} & \operatorname{Min} Z=4 y_1+8 y_2 \\ & \text { subject to } \\ & \begin{array}{llll} y_1 & + & y_2 & \geq 2 \end{array} \\ & \begin{array}{lllll} y_1 & + & 4 & y_2 & \geq \end{array} \\ & y_1 \geq 4 \\ & y_2 \geq-3 \\ & \end{aligned}MinZ=4y1+8y2 subject to y1+y22y1+4y2y14y23
Here b 4 = 3 < 0 b 4 = 3 < 0 b_(4)=-3 < 0b_4=-3<0b4=3<0,
so multiply this constraint by -1 to make b 4 > 0 b 4 > 0 b_(4) > 0b_4>0b4>0.
y 2 3 y 2 3 y_(2) <= 3y_2 \leq 3y23
and y 1 , y 2 y 1 , y 2 y_(1),y_(2)y_1, y_2y1,y2 unrestricted in sign
Since y 1 , y 2 y 1 , y 2 y_(1),y_(2)y_1, y_2y1,y2 are unrestricted in sign, introduce the non-negative variables y 1 , y 1 , y 2 , y 2 y 1 , y 1 , y 2 , y 2 y_(1)^(‘),y_(1)^(”),y_(2)^(‘),y_(2)^(”)y_1{ }^{\prime}, y_1{ }^{\prime \prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime}y1,y1,y2,y2
so that y 1 = y 1 y 1 , y 2 = y 2 y 2 ; y 1 , y 1 , y 2 , y 2 0 y 1 = y 1 y 1 , y 2 = y 2 y 2 ; y 1 , y 1 , y 2 , y 2 0 y_(1)=y_(1)^(‘)-y_(1)^(”),y_(2)=y_(2)^(‘)-y_(2)^(”);y_(1)^(‘),y_(1)^(”),y_(2)^(‘),y_(2)^(”) >= 0y_1=y_1{ }^{\prime}-y_1{ }^{\prime \prime}, y_2=y_2{ }^{\prime}-y_2{ }^{\prime \prime} ; y_1{ }^{\prime}, y_1{ }^{\prime \prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime} \geq 0y1=y1y1,y2=y2y2;y1,y1,y2,y20.
The standard form of the LP problem becomes Problem is
Min Z = 4 y 1 4 y 1 + 8 y 2 8 y 2 subject to y 1 y 1 + y 2 y 2 2 y 1 y 1 + 4 y 2 4 y 2 4 y 1 y 1 4 y 2 + y 2 3 and y 1 , y 1 , y 2 , y 2 0 ;  Min  Z = 4 y 1 4 y 1 + 8 y 2 8 y 2  subject to  y 1 y 1 + y 2 y 2 2 y 1 y 1 + 4 y 2 4 y 2 4 y 1 y 1 4  –  y 2 + y 2 3  and  y 1 , y 1 , y 2 , y 2 0 {:[” Min “Z=4y_(1)^(‘)-4y_(1)^(‘)+8y_(2)^(‘)-8y_(2)^(”)],[” subject to “],[y_(1)^(‘)-y_(1)^(”)+y_(2)^(‘)-y_(2)^(”) >= 2],[y_(1)^(‘)-y_(1)^(”)+4y_(2)^(‘)-4y_(2)^(”) >= 4],[y_(1)^(‘)-y_(1)^(”) >= 4],[” – “y_(2)^(‘)+y_(2)^(”) <= 3],[” and “y_(1)^(‘)”,”y_(1)^(‘)^(‘)”,”y_(2)^(‘)”,”y_(2)^(”) >= 0″; “],[]:}\begin{aligned} & \text { Min } Z=4 y_1^{\prime}-4 y_1{ }^{\prime}+8 y_2^{\prime}-8 y_2^{\prime \prime} \\ & \text { subject to } \\ & y_1{ }^{\prime}-y_1{ }^{\prime \prime}+y_2{ }^{\prime}-y_2{ }^{\prime \prime} \geq 2 \\ & y_1{ }^{\prime}-y_1{ }^{\prime \prime}+4 y_2{ }^{\prime}-4 y_2{ }^{\prime \prime} \geq 4 \\ & y_1{ }^{\prime}-y_1{ }^{\prime \prime} \geq 4 \\ & \text { – } y_2{ }^{\prime}+y_2^{\prime \prime} \leq 3 \\ & \text { and } y_1{ }^{\prime}, y_1{ }^{\prime}{ }^{\prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime} \geq 0 \text {; } \\ & \end{aligned} Min Z=4y14y1+8y28y2 subject to y1y1+y2y22y1y1+4y24y24y1y14 – y2+y23 and y1,y1,y2,y20
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
  1. As the constraint- 1 is of type ‘ >=\geq ‘ we should subtract surplus variable S 1 S 1 S_(1)S_1S1 and add artificial variable A 1 A 1 A_(1)A_1A1
  2. As the constraint-2 is of type ‘ >=\geq ‘ we should subtract surplus variable S 2 S 2 S_(2)S_2S2 and add artificial variable A 2 A 2 A_(2)A_2A2
  3. As the constraint-3 is of type ‘ >=\geq ‘ we should subtract surplus variable S 3 S 3 S_(3)S_3S3 and add artificial variable A 3 A 3 A_(3)A_3A3
  4. As the constraint-4 is of type ‘ <=\leq ‘ we should add slack variable S 4 S 4 S_(4)S_4S4
    After introducing slack,surplus, artificial variables
Min Z = 4 y 1 4 y 1 + 8 y 2 8 y 2 + 0 S 1 + 0 S 2 + 0 S 3 + 0 S 4 + M A 1 + M A 2 + M A 3 subject to y 1 y 1 + y 2 y 2 S 1 + A 1 = 2 y 1 y 1 + 4 y 2 4 y 2 S 2 + A 2 = 4 y 1 y 1 S 3 + A 3 = 4 y 2 + y 2 + S 4 = 3 and y 1 , y 1 , y 2 , y 2 , S 1 , S 2 , S 3 , S 4 , A 1 , A 2 , A 3 0 Min Z = 4 y 1 4 y 1 + 8 y 2 8 y 2 + 0 S 1 + 0 S 2 + 0 S 3 + 0 S 4 + M A 1 + M A 2 + M A 3  subject to  y 1 y 1 + y 2 y 2 S 1 + A 1 = 2 y 1 y 1 + 4 y 2 4 y 2 S 2 + A 2 = 4 y 1 y 1 S 3 + A 3 = 4  –  y 2 + y 2 + S 4 = 3  and  y 1 , y 1 , y 2 , y 2 , S 1 , S 2 , S 3 , S 4 , A 1 , A 2 , A 3 0 {:[Min Z=4y_(1)^(‘)-4y_(1)^(”)+8y_(2)^(‘)-8y_(2)^(”)+0S_(1)+0S_(2)+0S_(3)+0S_(4)+MA_(1)+MA_(2)+MA_(3)],[” subject to “],[y_(1)^(‘)-y_(1)^(”)+y_(2)^(‘)-y_(2)^(”)-S_(1)],[+A_(1)quad=2],[y_(1)^(‘)-y_(1)^(”)+4y_(2)^(‘)-4y_(2)^(”)quad-S_(2)],[+A_(2)=4],[y_(1)^(‘)-y_(1)^(”)],[-S_(3)],[+A_(3)=4],[” – “y_(2)^(‘)+y_(2)^(”)],[+S_(4)],[=3],[” and “y_(1)^(‘)”,”y_(1)^(”)”,”y_(2)^(‘)”,”y_(2)^(”)”,”S_(1)”,”S_(2)”,”S_(3)”,”S_(4)”,”A_(1)”,”A_(2)”,”A_(3) >= 0],[]:}\begin{aligned} & \operatorname{Min} Z=4 y_1{ }^{\prime}-4 y_1{ }^{\prime \prime}+8 y_2{ }^{\prime}-8 y_2{ }^{\prime \prime}+0 S_1+0 S_2+0 S_3+0 S_4+M A_1+M A_2+M A_3 \\ & \text { subject to } \\ & y_1^{\prime}-y_1^{\prime \prime}+y_2^{\prime}-y_2^{\prime \prime}-S_1 \\ & +A_1 \quad=2 \\ & y_1^{\prime}-y_1^{\prime \prime}+4 y_2^{\prime}-4 y_2^{\prime \prime} \quad-S_2 \\ & +A_2=4 \\ & y_1^{\prime}-y_1^{\prime \prime} \\ & -S_3 \\ & +A_3=4 \\ & \text { – } y_2{ }^{\prime}+y_2{ }^{\prime \prime} \\ & +S_4 \\ & =3 \\ & \text { and } y_1{ }^{\prime}, y_1{ }^{\prime \prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime}, S_1, S_2, S_3, S_4, A_1, A_2, A_3 \geq 0 \\ & \end{aligned}MinZ=4y14y1+8y28y2+0S1+0S2+0S3+0S4+MA1+MA2+MA3 subject to y1y1+y2y2S1+A1=2y1y1+4y24y2S2+A2=4y1y1S3+A3=4 – y2+y2+S4=3 and y1,y1,y2,y2,S1,S2,S3,S4,A1,A2,A30
Iteration-1 C j C j C_(j)C_jCj 4 -4 8 -8 0 0 0 0 M M MMM M M MMM M M MMM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB y 1 y 1 y_(1)^(‘)y_1^{\prime}y1 y 1 y 1 y_(1)^(”)y_1^{\prime \prime}y1 y 2 y 2 y_(2)^(‘)y_2^{\prime}y2 y 2 y 2 y_(2)^(”)y_2^{\prime \prime}y2 S 1 S 1 S_(1)S_1S1 s 2 s 2 s_(2)s_2s2 S 3 S 3 S_(3)S_3S3 S 4 S 4 S_(4)S_4S4 A 1 A 1 A_(1)A_1A1 A 2 A 2 A_(2)A_2A2 A 3 A 3 A_(3)A_3A3 MinRatio X B y 2  MinRatio  X B y 2 {:[” MinRatio “],[(X_(B))/(y_(2)^(‘))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{y_2{ }^{\prime}}\end{array} MinRatio XBy2
A 1 A 1 A_(1)A_1A1 M M MMM 2 1 -1 1 -1 -1 0 0 0 1 0 0 2 1 = 2 2 1 = 2 (2)/(1)=2\frac{2}{1}=221=2
A 2 A 2 A_(2)A_2A2 M M MMM 4 1 -1 (4) -4 0 -1 0 0 0 1 0 4 4 = 1 4 4 = 1 (4)/(4)=1rarr\frac{4}{4}=1 \rightarrow44=1
A 3 A 3 A_(3)A_3A3 M M MMM 4 1 -1 0 0 0 0 -1 0 0 0 1
S 4 S 4 S_(4)S_4S4 0 3 0 0 -1 1 0 0 0 1 0 0 0
Z = 10 M Z = 10 M Z=10 MZ=10 MZ=10M Z j Z j Z_(j)Z_jZj 3 M 3 M 3M3 M3M 3 M 3 M -3M-3 M3M 5 M 5 M 5M5 M5M 5 M 5 M -5M-5 M5M M M -M-MM M M -M-MM M M -M-MM 0 M M MMM M M MMM M M MMM
Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj 3 M 4 3 M 4 3M-43 M-43M4 3 M + 4 3 M + 4 -3M+4-3 M+43M+4 5 M 8 5 M 8 5M-8uarr5 M-8 \uparrow5M8 5 M + 8 5 M + 8 -5M+8-5 M+85M+8 M M -M-MM M M -M-MM M M -M-MM 0 0 0 0
Iteration-1 C_(j) 4 -4 8 -8 0 0 0 0 M M M B C_(B) X_(B) y_(1)^(‘) y_(1)^(”) y_(2)^(‘) y_(2)^(”) S_(1) s_(2) S_(3) S_(4) A_(1) A_(2) A_(3) ” MinRatio (X_(B))/(y_(2)^(‘))” A_(1) M 2 1 -1 1 -1 -1 0 0 0 1 0 0 (2)/(1)=2 A_(2) M 4 1 -1 (4) -4 0 -1 0 0 0 1 0 (4)/(4)=1rarr A_(3) M 4 1 -1 0 0 0 0 -1 0 0 0 1 — S_(4) 0 3 0 0 -1 1 0 0 0 1 0 0 0 — Z=10 M Z_(j) 3M -3M 5M -5M -M -M -M 0 M M M Z_(j)-C_(j) 3M-4 -3M+4 5M-8uarr -5M+8 -M -M -M 0 0 0 0 | Iteration-1 | | $C_j$ | 4 | -4 | 8 | -8 | 0 | 0 | 0 | 0 | $M$ | $M$ | $M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $y_1^{\prime}$ | $y_1^{\prime \prime}$ | $y_2^{\prime}$ | $y_2^{\prime \prime}$ | $S_1$ | $s_2$ | $S_3$ | $S_4$ | $A_1$ | $A_2$ | $A_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{y_2{ }^{\prime}}\end{array}$ | | $A_1$ | $M$ | 2 | 1 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | $\frac{2}{1}=2$ | | $A_2$ | $M$ | 4 | 1 | -1 | (4) | -4 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | $\frac{4}{4}=1 \rightarrow$ | | $A_3$ | $M$ | 4 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | — | | $S_4$ | 0 | 3 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | — | | $Z=10 M$ | | $Z_j$ | $3 M$ | $-3 M$ | $5 M$ | $-5 M$ | $-M$ | $-M$ | $-M$ | 0 | $M$ | $M$ | $M$ | | | | | $Z_j-C_j$ | $3 M-4$ | $-3 M+4$ | $5 M-8 \uparrow$ | $-5 M+8$ | $-M$ | $-M$ | $-M$ | 0 | 0 | 0 | 0 | |
Positive maximum Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj is 5 M 8 5 M 8 5M-85 M-85M8 and its column index is 3 . So, the entering variable is y 2 y 2 y_(2)^(‘)y_2{ }^{\prime}y2.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is A 2 A 2 A_(2)A_2A2.
:.\therefore The pivot element is 4 .
Entering = y 2 = y 2 =y_(2)^(‘)=y_2{ }^{\prime}=y2, Departing = A 2 = A 2 =A_(2)=A_2=A2, Key Element = 4 = 4 =4=4=4
+ R 2 ( + R 2 ( +R_(2)(+R_2(+R2( new ) = R 2 ( ) = R 2 ( )=R_(2)()=R_2()=R2( old ) ÷ 4 ) ÷ 4 )-:4) \div 4)÷4
+ R 1 ( + R 1 ( +R_(1)(+R_1(+R1( new ) = R 1 ( ) = R 1 ( )=R_(1)()=R_1()=R1( old ) R 2 ( ) R 2 ( )-R_(2)()-R_2()R2( new ) ) )))
+ R 3 ( + R 3 ( +R_(3)(+R_3(+R3( new ) = R 3 ) = R 3 )=R_(3))=R_3)=R3 (old ) ) )))
+ R 4 ( + R 4 ( +R_(4)(+R_4(+R4( new ) = R 4 ( ) = R 4 ( )=R_(4)()=R_4()=R4( old ) + R 2 ( ) + R 2 ( )+R_(2)()+R_2()+R2( new ) ) )))
Iteration-2 C j C j C_(j)C_jCj 4 -4 8 -8 0 0 0 0 M M MMM M M MMM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB y 1 y 1 y_(1)^(‘)y_1^{\prime}y1 y 1 y 1 y_(1)^(”)y_1{ }^{\prime \prime}y1 y 2 y 2 y_(2)^(‘)y_2^{\prime}y2 y 2 y 2 y_(2)^(”)y_2^{\prime \prime}y2 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 S 3 S 3 S_(3)S_3S3 S 4 S 4 S_(4)S_4S4 A 1 A 1 A_(1)A_1A1 A 3 A 3 A_(3)A_3A3 MinRatio X B y 1  MinRatio  X B y 1 {:[” MinRatio “],[(X_(B))/(y_(1)^(‘))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{y_1{ }^{\prime}}\end{array} MinRatio XBy1
A 1 A 1 A_(1)A_1A1 M M MMM 1 ( 0.75 ) ( 0.75 ) (0.75)(0.75)(0.75) -0.75 0 0 -1 0.25 0 0 1 0 1 0.75 = 1.3333 1 0.75 = 1.3333 (1)/(0.75)=1.3333 rarr\frac{1}{0.75}=1.3333 \rightarrow10.75=1.3333
y 2 y 2 y_(2)^(‘)y_2^{\prime}y2 8 1 0.25 -0.25 1 -1 0 -0.25 0 0 0 0 1 0.25 = 4 1 0.25 = 4 (1)/(0.25)=4\frac{1}{0.25}=410.25=4
A 3 A 3 A_(3)A_3A3 M M MMM 4 1 -1 0 0 0 0 -1 0 0 1 4 1 = 4 4 1 = 4 (4)/(1)=4\frac{4}{1}=441=4
S 4 S 4 S_(4)S_4S4 0 4 0.25 -0.25 0 0 0 -0.25 0 1 0 0 4 0.25 = 16 4 0.25 = 16 (4)/(0.25)=16\frac{4}{0.25}=1640.25=16
Z = 5 M + 8 Z = 5 M + 8 Z=5M+8Z=5 M+8Z=5M+8 Z j Z j Z_(j)Z_jZj 1.75 M + 2 1.75 M + 2 1.75 M+21.75 M+21.75M+2 1.75 M 2 1.75 M 2 -1.75 M-2-1.75 M-21.75M2 8 -8 M M -M-MM 0.25 M 2 0.25 M 2 0.25 M-20.25 M-20.25M2 M M -M-MM 0 M M MMM M M MMM
Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj 1.75 M 2 1.75 M 2 1.75 M-2uarr1.75 M-2 \uparrow1.75M2 1.75 M + 2 1.75 M + 2 -1.75 M+2-1.75 M+21.75M+2 0 0 M M -M-MM 0.25 M 2 0.25 M 2 0.25 M-20.25 M-20.25M2 M M -M-MM 0 0 0
Iteration-2 C_(j) 4 -4 8 -8 0 0 0 0 M M B C_(B) X_(B) y_(1)^(‘) y_(1)^(”) y_(2)^(‘) y_(2)^(”) S_(1) S_(2) S_(3) S_(4) A_(1) A_(3) ” MinRatio (X_(B))/(y_(1)^(‘))” A_(1) M 1 (0.75) -0.75 0 0 -1 0.25 0 0 1 0 (1)/(0.75)=1.3333 rarr y_(2)^(‘) 8 1 0.25 -0.25 1 -1 0 -0.25 0 0 0 0 (1)/(0.25)=4 A_(3) M 4 1 -1 0 0 0 0 -1 0 0 1 (4)/(1)=4 S_(4) 0 4 0.25 -0.25 0 0 0 -0.25 0 1 0 0 (4)/(0.25)=16 Z=5M+8 Z_(j) 1.75 M+2 -1.75 M-2 8 -8 -M 0.25 M-2 -M 0 M M Z_(j)-C_(j) 1.75 M-2uarr -1.75 M+2 0 0 -M 0.25 M-2 -M 0 0 0 | Iteration-2 | | $C_j$ | 4 | -4 | 8 | -8 | 0 | 0 | 0 | 0 | $M$ | $M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $y_1^{\prime}$ | $y_1{ }^{\prime \prime}$ | $y_2^{\prime}$ | $y_2^{\prime \prime}$ | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $A_1$ | $A_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{y_1{ }^{\prime}}\end{array}$ | | $A_1$ | $M$ | 1 | $(0.75)$ | -0.75 | 0 | 0 | -1 | 0.25 | 0 | 0 | 1 | 0 | $\frac{1}{0.75}=1.3333 \rightarrow$ | | $y_2^{\prime}$ | 8 | 1 | 0.25 | -0.25 | 1 | -1 | 0 | -0.25 | 0 | 0 | 0 | 0 | $\frac{1}{0.25}=4$ | | $A_3$ | $M$ | 4 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | $\frac{4}{1}=4$ | | $S_4$ | 0 | 4 | 0.25 | -0.25 | 0 | 0 | 0 | -0.25 | 0 | 1 | 0 | 0 | $\frac{4}{0.25}=16$ | | $Z=5 M+8$ | | $Z_j$ | $1.75 M+2$ | $-1.75 M-2$ | 8 | -8 | $-M$ | $0.25 M-2$ | $-M$ | 0 | $M$ | $M$ | | | | | $Z_j-C_j$ | $1.75 M-2 \uparrow$ | $-1.75 M+2$ | 0 | 0 | $-M$ | $0.25 M-2$ | $-M$ | 0 | 0 | 0 | |
Positive maximum Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj is 1.75 M 2 1.75 M 2 1.75 M-21.75 M-21.75M2 and its column index is 1 . So, the entering variable is y 1 y 1 y_(1)^(‘)y_1{ }^{\prime}y1.
Minimum ratio is 1.3333 and its row index is 1 . So, the leaving basis variable is A 1 A 1 A_(1)A_1A1.
:.\therefore The pivot element is 0.75 .
Entering = y 1 = y 1 =y_(1)^(‘)=y_1{ }^{\prime}=y1, Departing = A 1 = A 1 =A_(1)=A_1=A1, Key Element = 0.75 = 0.75 =0.75=0.75=0.75
+ R 1 ( + R 1 ( +R_(1)(+R_1(+R1( new ) = R 1 ( ) = R 1 ( )=R_(1)()=R_1()=R1( old ) ÷ 0.75 ) ÷ 0.75 )-:0.75) \div 0.75)÷0.75
+ R 2 ( + R 2 ( +R_(2)(+R_2(+R2( new ) = R 2 ) = R 2 )=R_(2))=R_2)=R2 (old ) 0.25 R 1 ( ) 0.25 R 1 ( )-0.25R_(1)()-0.25 R_1()0.25R1( new ) ) )))
+ R 3 ( + R 3 ( +R_(3)(+R_3(+R3( new ) = R 3 ( ) = R 3 ( )=R_(3)()=R_3()=R3( old ) R 1 ( ) R 1 ( )-R_(1)()-R_1()R1( new ) ) )))
+ R 4 ( + R 4 ( +R_(4)(+R_4(+R4( new ) = R 4 ( ) = R 4 ( )=R_(4)()=R_4()=R4( old ) 0.25 R 1 ( ) 0.25 R 1 ( )-0.25R_(1)()-0.25 R_1()0.25R1( new ) ) )))
Iteration-3 C j C j C_(j)C_jCj 4 -4 8 -8 0 0 0 0 M M MMM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB y 1 y 1 y_(1)^(‘)y_1^{\prime}y1 y 1 y 1 y_(1)^(”)y_1^{\prime \prime}y1 y 2 y 2 y_(2)^(‘)y_2^{\prime}y2 y 2 y 2 y_(2)^(”)y_2{ }^{\prime \prime}y2 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 S 3 S 3 S_(3)S_3S3 S 4 S 4 S_(4)S_4S4 A 3 A 3 A_(3)A_3A3 MinRatio X B S 1  MinRatio  X B S 1 {:[” MinRatio “],[(X_(B))/(S_(1))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{S_1}\end{array} MinRatio XBS1
y 1 y 1 y_(1)^(‘)y_1^{\prime}y1 4 1.3333 1 -1 0 0 -1.3333 0.3333 0 0 0
y 2 y 2 y_(2)^(‘)y_2^{\prime}y2 8 0.6667 0 0 1 -1 0.3333 -0.3333 0 0 0 0.6667 0.3333 = 2 0.6667 0.3333 = 2 (0.6667)/(0.3333)=2\frac{0.6667}{0.3333}=20.66670.3333=2
A 3 A 3 A_(3)A_3A3 M M MMM 2.6667 0 0 0 0 (1.3333) -0.3333 -1 0 1 2.6667 1.3333 = 2 2.6667 1.3333 = 2 (2.6667)/(1.3333)=2rarr\frac{2.6667}{1.3333}=2 \rightarrow2.66671.3333=2
S 4 S 4 S_(4)S_4S4 0 3.6667 0 0 0 0 0.3333 -0.3333 0 1 0 3.6667 0.3333 = 11 3.6667 0.3333 = 11 (3.6667)/(0.3333)=11\frac{3.6667}{0.3333}=113.66670.3333=11
Z = 2.6667 M + 10.6667 Z = 2.6667 M + 10.6667 Z=2.6667 M+10.6667Z=2.6667 M+10.6667Z=2.6667M+10.6667 Z j Z j Z_(j)Z_jZj 4 -4 8 -8 1.3333 M 2.6667 1.3333 M 2.6667 1.3333 M-2.66671.3333 M-2.66671.3333M2.6667 0.3333 M 1.3333 0.3333 M 1.3333 -0.3333 M-1.3333-0.3333 M-1.33330.3333M1.3333 M M -M-MM 0 0 0\mathbf{0}0 M M MMM
Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj 0 0 0 0 1.3333 M 2.6667 1.3333 M 2.6667 1.3333 M-2.6667 uarr1.3333 M-2.6667 \uparrow1.3333M2.6667 0.3333 M 1.3333 0.3333 M 1.3333 -0.3333 M-1.3333-0.3333 M-1.33330.3333M1.3333 M M -M-MM 0 0
Iteration-3 C_(j) 4 -4 8 -8 0 0 0 0 M B C_(B) X_(B) y_(1)^(‘) y_(1)^(”) y_(2)^(‘) y_(2)^(”) S_(1) S_(2) S_(3) S_(4) A_(3) ” MinRatio (X_(B))/(S_(1))” y_(1)^(‘) 4 1.3333 1 -1 0 0 -1.3333 0.3333 0 0 0 — y_(2)^(‘) 8 0.6667 0 0 1 -1 0.3333 -0.3333 0 0 0 (0.6667)/(0.3333)=2 A_(3) M 2.6667 0 0 0 0 (1.3333) -0.3333 -1 0 1 (2.6667)/(1.3333)=2rarr S_(4) 0 3.6667 0 0 0 0 0.3333 -0.3333 0 1 0 (3.6667)/(0.3333)=11 Z=2.6667 M+10.6667 Z_(j) 4 -4 8 -8 1.3333 M-2.6667 -0.3333 M-1.3333 -M 0 M Z_(j)-C_(j) 0 0 0 0 1.3333 M-2.6667 uarr -0.3333 M-1.3333 -M 0 0 | Iteration-3 | | $C_j$ | 4 | -4 | 8 | -8 | 0 | 0 | 0 | 0 | $M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $y_1^{\prime}$ | $y_1^{\prime \prime}$ | $y_2^{\prime}$ | $y_2{ }^{\prime \prime}$ | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $A_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{S_1}\end{array}$ | | $y_1^{\prime}$ | 4 | 1.3333 | 1 | -1 | 0 | 0 | -1.3333 | 0.3333 | 0 | 0 | 0 | — | | $y_2^{\prime}$ | 8 | 0.6667 | 0 | 0 | 1 | -1 | 0.3333 | -0.3333 | 0 | 0 | 0 | $\frac{0.6667}{0.3333}=2$ | | $A_3$ | $M$ | 2.6667 | 0 | 0 | 0 | 0 | (1.3333) | -0.3333 | -1 | 0 | 1 | $\frac{2.6667}{1.3333}=2 \rightarrow$ | | $S_4$ | 0 | 3.6667 | 0 | 0 | 0 | 0 | 0.3333 | -0.3333 | 0 | 1 | 0 | $\frac{3.6667}{0.3333}=11$ | | $Z=2.6667 M+10.6667$ | | $Z_j$ | 4 | -4 | 8 | -8 | $1.3333 M-2.6667$ | $-0.3333 M-1.3333$ | $-M$ | $\mathbf{0}$ | $M$ | | | | | $Z_j-C_j$ | 0 | 0 | 0 | 0 | $1.3333 M-2.6667 \uparrow$ | $-0.3333 M-1.3333$ | $-M$ | 0 | 0 | |
Positive maximum Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj is 1.3333 M 2.6667 1.3333 M 2.6667 1.3333 M-2.66671.3333 M-2.66671.3333M2.6667 and its column index is 5 . So, the entering variable is S 1 S 1 S_(1)S_1S1.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is A 3 A 3 A_(3)A_3A3.
:.\therefore The pivot element is 1.3333 .
Entering = S 1 = S 1 =S_(1)=S_1=S1, Departing = A 3 = A 3 =A_(3)=A_3=A3, Key Element = 1.3333 = 1.3333 =1.3333=1.3333=1.3333
+ R 3 ( + R 3 ( +R_(3)(+R_3(+R3( new ) = R 3 ( ) = R 3 ( )=R_(3)()=R_3()=R3( old ) ÷ 1.3333 ) ÷ 1.3333 )-:1.3333) \div 1.3333)÷1.3333
+ R 1 ( + R 1 ( +R_(1)(+R_1(+R1( new ) = R 1 ( ) = R 1 ( )=R_(1)()=R_1()=R1( old ) + 1.3333 R 3 ( ) + 1.3333 R 3 ( )+1.3333R_(3)()+1.3333 R_3()+1.3333R3( new ) ) )))
+ R 2 + R 2 +R_(2)+R_2+R2 (new) = R 2 = R 2 =R_(2)=R_2=R2 (old ) 0.3333 R 3 ) 0.3333 R 3 )-0.3333R_(3))-0.3333 R_3)0.3333R3 (new)
+ R 4 ( + R 4 ( +R_(4)(+R_4(+R4( new ) = R 4 ( ) = R 4 ( )=R_(4)()=R_4()=R4( old ) 0.3333 R 3 ( ) 0.3333 R 3 ( )-0.3333R_(3)()-0.3333 R_3()0.3333R3( new ) ) )))
Iteration-4 C j C j C_(j)C_jCj 4 -4 8 -8 0 0 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB y 1 y 1 y_(1)^(‘)\boldsymbol{y}_{\mathbf{1}}{ }^{\prime}y1 y 1 y 1 y_(1)^(‘)\boldsymbol{y}_{\mathbf{1}}{ }^{\prime}y1 y 2 y 2 y_(2)^(‘)\boldsymbol{y}_{\mathbf{2}}{ }^{\prime}y2 y 2 y 2 y_(2)^(‘)\boldsymbol{y}_{\mathbf{2}}{ }^{\prime}y2 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 S 3 S 3 S_(3)\boldsymbol{S}_{\mathbf{3}}S3 S 4 S 4 S_(4)\boldsymbol{S}_{\mathbf{4}}S4 MinRatio
y 1 y 1 y_(1)^(‘)y_1{ }^{\prime}y1 4 4 1 -1 0 0 0 0 -1 0
y 2 y 2 y_(2)^(‘)y_2{ }^{\prime}y2 8 0 0 0 1 -1 0 -0.25 0.25 0
S 1 S 1 S_(1)S_1S1 0 2 0 0 0 0 1 -0.25 -0.75 0
S 4 S 4 S_(4)S_4S4 0 3 0 0 0 0 0 -0.25 0.25 1
Z = 1 6 Z = 1 6 Z=16\boldsymbol{Z}=\mathbf{1 6}Z=16 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 4 4 4\mathbf{4}4 4 4 -4\mathbf{- 4}4 8 8 8\mathbf{8}8 8 8 -8\mathbf{- 8}8 0 0 0\mathbf{0}0 2 2 -2\mathbf{- 2}2 2 2 -2-\mathbf{2}2 0 0 0\mathbf{0}0
Z j C j Z j C j Z_(j)-C_(j)Z_j-C_jZjCj 0 0 0 0 0 -2 -2 0
Iteration-4 C_(j) 4 -4 8 -8 0 0 0 0 B C_(B) X_(B) y_(1)^(‘) y_(1)^(‘) y_(2)^(‘) y_(2)^(‘) S_(1) S_(2) S_(3) S_(4) MinRatio y_(1)^(‘) 4 4 1 -1 0 0 0 0 -1 0 y_(2)^(‘) 8 0 0 0 1 -1 0 -0.25 0.25 0 S_(1) 0 2 0 0 0 0 1 -0.25 -0.75 0 S_(4) 0 3 0 0 0 0 0 -0.25 0.25 1 Z=16 Z_(j) 4 -4 8 -8 0 -2 -2 0 Z_(j)-C_(j) 0 0 0 0 0 -2 -2 0 | Iteration-4 | | $C_j$ | 4 | -4 | 8 | -8 | 0 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{y}_{\mathbf{1}}{ }^{\prime}$ | $\boldsymbol{y}_{\mathbf{1}}{ }^{\prime}$ | $\boldsymbol{y}_{\mathbf{2}}{ }^{\prime}$ | $\boldsymbol{y}_{\mathbf{2}}{ }^{\prime}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | $\boldsymbol{S}_{\mathbf{3}}$ | $\boldsymbol{S}_{\mathbf{4}}$ | MinRatio | | $y_1{ }^{\prime}$ | 4 | 4 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | | | $y_2{ }^{\prime}$ | 8 | 0 | 0 | 0 | 1 | -1 | 0 | -0.25 | 0.25 | 0 | | | $S_1$ | 0 | 2 | 0 | 0 | 0 | 0 | 1 | -0.25 | -0.75 | 0 | | | $S_4$ | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -0.25 | 0.25 | 1 | | | $\boldsymbol{Z}=\mathbf{1 6}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{4}$ | $\mathbf{- 4}$ | $\mathbf{8}$ | $\mathbf{- 8}$ | $\mathbf{0}$ | $\mathbf{- 2}$ | $-\mathbf{2}$ | $\mathbf{0}$ | | | | | $Z_j-C_j$ | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | |
Since all Z j C j 0 Z j C j 0 Z_(j)-C_(j) <= 0Z_j-C_j \leq 0ZjCj0
Hence, optimal solution is arrived with value of variables as :
y 1 = 4 , y 1 = 0 , y 2 = 0 , y 2 = 0 y 1 = 4 , y 1 = 0 , y 2 = 0 , y 2 = 0 y_(1)^(‘)=4,y_(1)^(”)=0,y_(2)^(‘)=0,y_(2)^(”)=0y_1^{\prime}=4, y_1^{\prime \prime}=0, y_2^{\prime}=0, y_2^{\prime \prime}=0y1=4,y1=0,y2=0,y2=0
Min Z = 16  Min  Z = 16 ” Min “Z=16\text { Min } Z=16 Min Z=16

Completion of the Solution

Optimal Solution of the Dual Problem

After the final iteration of the simplex method for the dual problem, we have arrived at an optimal solution:
y 1 = 4 , y 1 = 0 , y 2 = 0 , y 2 = 0 y 1 = 4 , y 1 = 0 , y 2 = 0 , y 2 = 0 y_(1)^(‘)=4,quady_(1)^(”)=0,quady_(2)^(‘)=0,quady_(2)^(”)=0y_1^{\prime} = 4, \quad y_1^{\prime \prime} = 0, \quad y_2^{\prime} = 0, \quad y_2^{\prime \prime} = 0y1=4,y1=0,y2=0,y2=0
The minimum value of the objective function Z Z ZZZ for the dual problem is:
Min Z = 16 Min  Z = 16 “Min “Z=16\text{Min } Z = 16Min Z=16

Verifying the Optimality of the Basic Solution ( x 1 , x 2 ) ( x 1 , x 2 ) (x_(1),x_(2))(x_1, x_2)(x1,x2) in the Primal Problem

To verify the optimality of the basic solution ( x 1 , x 2 ) ( x 1 , x 2 ) (x_(1),x_(2))(x_1, x_2)(x1,x2) in the primal problem, we can use the Complementary Slackness conditions. These conditions state that for a primal-dual pair of optimal solutions, the following must hold:
  1. If x i > 0 x i > 0 x_(i) > 0x_i > 0xi>0, then the corresponding dual constraint should be binding (equality holds).
  2. If y j > 0 y j > 0 y_(j) > 0y_j > 0yj>0, then the corresponding primal constraint should be binding (equality holds).
In our case, y 1 = 4 > 0 y 1 = 4 > 0 y_(1)^(‘)=4 > 0y_1^{\prime} = 4 > 0y1=4>0 and y 2 = 0 y 2 = 0 y_(2)^(‘)=0y_2^{\prime} = 0y2=0. Therefore, the first constraint in the primal problem should be binding, and the second constraint should be non-binding (slack).
If this is not the case for the basic solution ( x 1 , x 2 ) ( x 1 , x 2 ) (x_(1),x_(2))(x_1, x_2)(x1,x2) in the primal problem, then that solution is not optimal.

Conclusion

We solved the dual problem and found its optimal solution. By applying the Complementary Slackness conditions, we can verify whether the given basic solution ( x 1 , x 2 ) ( x 1 , x 2 ) (x_(1),x_(2))(x_1, x_2)(x1,x2) in the primal problem is optimal or not. If the conditions are not met, then the solution is not optimal.
खण्ड ‘B’ quad\quad SECTION ‘B’
5.(a) निम्नलिखित व्यंजक :
ψ ( x 2 + y 2 + 2 z 2 , y 2 2 z x ) = 0 ψ x 2 + y 2 + 2 z 2 , y 2 2 z x = 0 psi(x^(2)+y^(2)+2z^(2),y^(2)-2zx)=0\psi\left(x^2+y^2+2 z^2, y^2-2 z x\right)=0ψ(x2+y2+2z2,y22zx)=0 के द्वारा दिए गए पृष्ठ कुल का एक आंशिक अवकल समीकरण बनायें ।
Form a partial differential equation of the family of surfaces given by the following expression:
ψ ( x 2 + y 2 + 2 z 2 , y 2 2 z x ) = 0 ψ x 2 + y 2 + 2 z 2 , y 2 2 z x = 0 psi(x^(2)+y^(2)+2z^(2),y^(2)-2zx)=0\psi\left(x^2+y^2+2 z^2, y^2-2 z x\right)=0ψ(x2+y2+2z2,y22zx)=0.
Answer:
Introduction:
We are tasked with forming a partial differential equation for the family of surfaces represented by the expression:
Ψ ( x 2 + y 2 + 2 z 2 , y 2 2 z x ) = 0 Ψ x 2 + y 2 + 2 z 2 , y 2 2 z x = 0 Psi(x^(2)+y^(2)+2z^(2),y^(2)-2zx)=0\Psi\left(x^2+y^2+2z^2, y^2-2zx\right) = 0Ψ(x2+y2+2z2,y22zx)=0
Step 1: Variable Substitution
Let’s introduce two new variables:
  • u = x 2 + y 2 + z 2 u = x 2 + y 2 + z 2 u=x^(2)+y^(2)+z^(2)u = x^2 + y^2 + z^2u=x2+y2+z2
  • v = y 2 2 z x v = y 2 2 z x v=y^(2)-2zxv = y^2 – 2zxv=y22zx
Step 2: Partial Derivatives
Next, we find the partial derivatives of u u uuu and v v vvv with respect to x x xxx and z z zzz:
u x = x u x = x (del u)/(del x)=x\frac{\partial u}{\partial x} = xux=x
u z = 4 z u z = 4 z (del u)/(del z)=4z\frac{\partial u}{\partial z} = 4zuz=4z
v x = 2 z v x = 2 z (del v)/(del x)=-2z\frac{\partial v}{\partial x} = -2zvx=2z
v z = z x v z = z x (del v)/(del z)=-zx\frac{\partial v}{\partial z} = -zxvz=zx
Step 3: Forming the Partial Differential Equation
Now, we use these partial derivatives to construct the partial differential equation:
ϕ u ( 2 x + 4 p z ) ϕ v ( 2 z + p ( z x ) ) = 0 ϕ u ( 2 x + 4 p z ) ϕ v ( 2 z + p ( z x ) ) = 0 (del phi)/(del u)(2x+4pz)-(del phi)/(del v)(-2z+p(-zx))=0\frac{\partial \phi}{\partial u}(2x + 4pz) – \frac{\partial \phi}{\partial v}(-2z + p(-zx)) = 0ϕu(2x+4pz)ϕv(2z+p(zx))=0
Simplifying further:
ϕ u ( 2 x + 4 p z ) ϕ v ( 2 z + 2 x p ) = 0 ϕ u ( 2 x + 4 p z ) ϕ v ( 2 z + 2 x p ) = 0 (del phi)/(del u)(2x+4pz)-(del phi)/(del v)(2z+2xp)=0\frac{\partial \phi}{\partial u}(2x + 4pz) – \frac{\partial \phi}{\partial v}(2z + 2xp) = 0ϕu(2x+4pz)ϕv(2z+2xp)=0
ϕ u ( x + 2 p z ) ϕ v ( z + x p ) = 0 (1) ϕ u ( x + 2 p z ) ϕ v ( z + x p ) = 0 (1) (del phi)/(del u)(x+2pz)-(del phi)/(del v)(z+xp)=0quad(1)\frac{\partial \phi}{\partial u}(x + 2pz) – \frac{\partial \phi}{\partial v}(z + xp) = 0 \quad \text{(1)}ϕu(x+2pz)ϕv(z+xp)=0(1)
Step 4: More Partial Derivatives
We also need to find partial derivatives with respect to y y yyy and z z zzz for both u u uuu and v v vvv:
u y = 2 y u y = 2 y (del u)/(del y)=2y\frac{\partial u}{\partial y} = 2yuy=2y
u z = 4 z u z = 4 z (del u)/(del z)=4z\frac{\partial u}{\partial z} = 4zuz=4z
v y = 2 y v y = 2 y (del v)/(del y)=2y\frac{\partial v}{\partial y} = 2yvy=2y
v z = 2 x v z = 2 x (del v)/(del z)=-2x\frac{\partial v}{\partial z} = -2xvz=2x
Step 5: Forming Additional Equations
Using these derivatives, we can form another equation:
ϕ u ( 2 y + 4 z q ) + ϕ v ( 2 y 2 q x ) = 0 ϕ u ( 2 y + 4 z q ) + ϕ v ( 2 y 2 q x ) = 0 (del phi)/(del u)(2y+4zq)+(del phi)/(del v)(2y-2qx)=0\frac{\partial \phi}{\partial u}(2y + 4zq) + \frac{\partial \phi}{\partial v}(2y – 2qx) = 0ϕu(2y+4zq)+ϕv(2y2qx)=0
Simplifying:
ϕ u ( y + 2 z q ) + ϕ v ( y q x ) = 0 (2) ϕ u ( y + 2 z q ) + ϕ v ( y q x ) = 0 (2) (del phi)/(del u)(y+2zq)+(del phi)/(del v)(y-qx)=0quad(2)\frac{\partial \phi}{\partial u}(y + 2zq) + \frac{\partial \phi}{\partial v}(y – qx) = 0 \quad \text{(2)}ϕu(y+2zq)+ϕv(yqx)=0(2)
Step 6: Divide Equations
Now, divide equation (1) by equation (2) to obtain:
x + 2 p z y + 2 z q = z + p x q x y x + 2 p z y + 2 z q = z + p x q x y (x+2pz)/(y+2zq)=(z+px)/(qx-y)\frac{x + 2pz}{y + 2zq} = \frac{z + px}{qx – y}x+2pzy+2zq=z+pxqxy
Step 7: Further Simplification
Simplify the above equation:
( x q y ) ( x + 2 p z ) = ( y + 2 z q ) ( z + p x ) ( x q y ) ( x + 2 p z ) = ( y + 2 z q ) ( z + p x ) (xq-y)(x+2pz)=(y+2zq)(z+px)(xq – y)(x + 2pz) = (y + 2zq)(z + px)(xqy)(x+2pz)=(y+2zq)(z+px)
Expanding:
x 2 q x y + 2 x p z y x 2 y z q = y z + 2 z 2 q + p x z + 2 p x z x 2 q x y + 2 x p z y x 2 y z q = y z + 2 z 2 q + p x z + 2 p x z x^(2)q-xy+2xpz-yx-2yzq=yz+2z^(2)q+pxz+2pxzx^2q – xy + 2xpz – yx – 2yzq = yz + 2z^2q + pxz + 2pxzx2qxy+2xpzyx2yzq=yz+2z2q+pxz+2pxz
Simplify and rearrange:
( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 ( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 (x^(2)-2z^(2))q-(x+z)y-(xy+2yz)p=0(x^2 – 2z^2)q – (x + z)y – (xy + 2yz)p = 0(x22z2)q(x+z)y(xy+2yz)p=0
Hence, the partial differential equation for the given family of surfaces is:
( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 ( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 (x^(2)-2z^(2))q-(x+z)y-(xy+2yz)p=0(x^2 – 2z^2)q – (x + z)y – (xy + 2yz)p = 0(x22z2)q(x+z)y(xy+2yz)p=0
Conclusion:
We have successfully formed the partial differential equation for the family of surfaces represented by the given expression. The equation is ( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 ( x 2 2 z 2 ) q ( x + z ) y ( x y + 2 y z ) p = 0 (x^(2)-2z^(2))q-(x+z)y-(xy+2yz)p=0(x^2 – 2z^2)q – (x + z)y – (xy + 2yz)p = 0(x22z2)q(x+z)y(xy+2yz)p=0.
5.(b) न्यूटन-रेफ्सन विधि का उपयोग करते हुऐ अबीजीय (ट्रांसिडैंटल) समीकरण x log 10 x = 1.2 x log 10 x = 1.2 xlog_(10)x=1.2x \log _{10} x=1.2xlog10x=1.2 का वास्तविक मूल दशमलव के तीन स्थानों तक सही निकालें ।
Apply Newton-Raphson method, to find a real root of transcendental equation x log 10 x = 1.2 x log 10 x = 1.2 xlog_(10)x=1.2x \log _{10} x=1.2xlog10x=1.2, correct to three decimal places.
Answer:
Here x log ( x ) 1.2 = 0 x log ( x ) 1.2 = 0 x log(x)-1.2=0x \log (x)-1.2=0xlog(x)1.2=0
Let f ( x ) = x log ( x ) 1.2 f ( x ) = x log ( x ) 1.2 f(x)=x log(x)-1.2f(x)=x \log (x)-1.2f(x)=xlog(x)1.2
+ d d x ( x log ( x ) 1.2 ) = log ( x ) + 1 f ( x ) = log ( x ) + 1 + d d x ( x log ( x ) 1.2 ) = log ( x ) + 1 f ( x ) = log ( x ) + 1 {:[+(d)/(dx)(x log(x)-1.2)=log(x)+1],[:.f^(‘)(x)=log(x)+1]:}\begin{aligned} & +\frac{d}{d x}(x \log (x)-1.2)=\log (x)+1 \\ & \therefore f^{\prime}(x)=\log (x)+1 \end{aligned}+ddx(xlog(x)1.2)=log(x)+1f(x)=log(x)+1
Here
x x xxx 0 1 2 3
f ( x ) f ( x ) f(x)f(x)f(x) > > >>> -1.2 -0.5979 0.2314
x 0 1 2 3 f(x) > -1.2 -0.5979 0.2314| $x$ | 0 | 1 | 2 | 3 | | :—: | :—: | :—: | :—: | :—: | | $f(x)$ | $>$ | -1.2 | -0.5979 | 0.2314 |
Here f ( 2 ) = 0.5979 < 0 f ( 2 ) = 0.5979 < 0 f(2)=-0.5979 < 0f(2)=-0.5979<0f(2)=0.5979<0 and f ( 3 ) = 0.2314 > 0 f ( 3 ) = 0.2314 > 0 f(3)=0.2314 > 0f(3)=0.2314>0f(3)=0.2314>0
:.\therefore Root lies between 2 and 3
x 0 = 2 + 3 2 = 2.5 x 0 = 2.5 x 0 = 2 + 3 2 = 2.5 x 0 = 2.5 {:[x_(0)=(2+3)/(2)=2.5],[x_(0)=2.5]:}\begin{aligned} & x_0=\frac{2+3}{2}=2.5 \\ & x_0=2.5 \end{aligned}x0=2+32=2.5x0=2.5
1 s t 1 s t 1^(st)1^{s t}1st iteration :
f ( x 0 ) = f ( 2.5 ) = 2.5 log ( 2.5 ) 1.2 = 0.2051 f ( x 0 ) = f ( 2.5 ) = log ( 2.5 ) + 1 = 1.3979 x 1 = x 0 f ( x 0 ) f ( x 0 ) x 1 = 2.5 0.2051 1.3979 x 1 = 2.6468 f x 0 = f ( 2.5 ) = 2.5 log ( 2.5 ) 1.2 = 0.2051 f x 0 = f ( 2.5 ) = log ( 2.5 ) + 1 = 1.3979 x 1 = x 0 f x 0 f x 0 x 1 = 2.5 0.2051 1.3979 x 1 = 2.6468 {:[f(x_(0))=f(2.5)=2.5 log(2.5)-1.2=-0.2051],[f^(‘)(x_(0))=f^(‘)(2.5)=log(2.5)+1=1.3979],[x_(1)=x_(0)-(f(x_(0)))/(f(x_(0)))],[x_(1)=2.5-(-0.2051)/(1.3979)],[x_(1)=2.6468]:}\begin{aligned} & f\left(x_0\right)=f(2.5)=2.5 \log (2.5)-1.2=-0.2051 \\ & f^{\prime}\left(x_0\right)=f^{\prime}(2.5)=\log (2.5)+1=1.3979 \\ & x_1=x_0-\frac{f\left(x_0\right)}{f\left(x_0\right)} \\ & x_1=2.5-\frac{-0.2051}{1.3979} \\ & x_1=2.6468 \end{aligned}f(x0)=f(2.5)=2.5log(2.5)1.2=0.2051f(x0)=f(2.5)=log(2.5)+1=1.3979x1=x0f(x0)f(x0)x1=2.50.20511.3979x1=2.6468
2 nd 2 nd  2^(“nd “)2^{\text {nd }}2nd  iteration:
f ( x 1 ) = f ( 2.6468 ) = 2.6468 log ( 2.6468 ) 1.2 = 0.0812 f ( x 1 ) = f ( 2.6468 ) = log ( 2.6468 ) + 1 = 1.4227 f x 1 = f ( 2.6468 ) = 2.6468 log ( 2.6468 ) 1.2 = 0.0812 f x 1 = f ( 2.6468 ) = log ( 2.6468 ) + 1 = 1.4227 {:[f(x_(1))=f(2.6468)=2.6468 log(2.6468)-1.2=-0.0812],[f^(‘)(x_(1))=f^(‘)(2.6468)=log(2.6468)+1=1.4227]:}\begin{aligned} & f\left(x_1\right)=f(2.6468)=2.6468 \log (2.6468)-1.2=-0.0812 \\ & f^{\prime}\left(x_1\right)=f^{\prime}(2.6468)=\log (2.6468)+1=1.4227 \end{aligned}f(x1)=f(2.6468)=2.6468log(2.6468)1.2=0.0812f(x1)=f(2.6468)=log(2.6468)+1=1.4227
x 2 = x 1 f ( x 1 ) f ( x 1 ) x 2 = 2.6468 0.0812 1.4227 x 2 = 2.7038 3 r d iteration : f ( x 2 ) = f ( 2.7038 ) = 2.7038 log ( 2.7038 ) 1.2 = 0.032 f ( x 2 ) = f ( 2.7038 ) = log ( 2.7038 ) + 1 = 1.432 x 3 = x 2 f ( x 2 ) f ( x 2 ) x 3 = 2.7038 0.032 1.432 x 3 = 2.7262 x 2 = x 1 f x 1 f x 1 x 2 = 2.6468 0.0812 1.4227 x 2 = 2.7038 3 r d  iteration :  f x 2 = f ( 2.7038 ) = 2.7038 log ( 2.7038 ) 1.2 = 0.032 f x 2 = f ( 2.7038 ) = log ( 2.7038 ) + 1 = 1.432 x 3 = x 2 f x 2 f x 2 x 3 = 2.7038 0.032 1.432 x 3 = 2.7262 {:[x_(2)=x_(1)-(f(x_(1)))/(f(x_(1)))],[x_(2)=2.6468-(-0.0812)/(1.4227)],[x_(2)=2.7038],[3^(rd)” iteration : “],[f(x_(2))=f(2.7038)=2.7038 log(2.7038)-1.2=-0.032],[f^(‘)(x_(2))=f^(‘)(2.7038)=log(2.7038)+1=1.432],[x_(3)=x_(2)-(f(x_(2)))/(f^(‘)(x_(2)))],[x_(3)=2.7038-(-0.032)/(1.432)],[x_(3)=2.7262],[]:}\begin{aligned} & x_2=x_1-\frac{f\left(x_1\right)}{f\left(x_1\right)} \\ & x_2=2.6468-\frac{-0.0812}{1.4227} \\ & x_2=2.7038 \\ & 3^{r d} \text { iteration : } \\ & f\left(x_2\right)=f(2.7038)=2.7038 \log (2.7038)-1.2=-0.032 \\ & f^{\prime}\left(x_2\right)=f^{\prime}(2.7038)=\log (2.7038)+1=1.432 \\ & x_3=x_2-\frac{f\left(x_2\right)}{f^{\prime}\left(x_2\right)} \\ & x_3=2.7038-\frac{-0.032}{1.432} \\ & x_3=2.7262 \\ & \end{aligned}x2=x1f(x1)f(x1)x2=2.64680.08121.4227x2=2.70383rd iteration : f(x2)=f(2.7038)=2.7038log(2.7038)1.2=0.032f(x2)=f(2.7038)=log(2.7038)+1=1.432x3=x2f(x2)f(x2)x3=2.70380.0321.432x3=2.7262
4 th 4 th  4^(“th “)4^{\text {th }}4th  iteration :
f ( x 3 ) = f ( 2.7262 ) = 2.7262 log ( 2.7262 ) 1.2 = 0.0126 f ( x 3 ) = f ( 2.7262 ) = log ( 2.7262 ) + 1 = 1.4356 x 4 = x 3 f ( x 3 ) f ( x 3 ) x 4 = 2.7262 0.0126 1.4356 x 4 = 2.735 f x 3 = f ( 2.7262 ) = 2.7262 log ( 2.7262 ) 1.2 = 0.0126 f x 3 = f ( 2.7262 ) = log ( 2.7262 ) + 1 = 1.4356 x 4 = x 3 f x 3 f x 3 x 4 = 2.7262 0.0126 1.4356 x 4 = 2.735 {:[f(x_(3))=f(2.7262)=2.7262 log(2.7262)-1.2=-0.0126],[f^(‘)(x_(3))=f^(‘)(2.7262)=log(2.7262)+1=1.4356],[x_(4)=x_(3)-(f(x_(3)))/(f(x_(3)))],[x_(4)=2.7262-(-0.0126)/(1.4356)],[x_(4)=2.735]:}\begin{aligned} & f\left(x_3\right)=f(2.7262)=2.7262 \log (2.7262)-1.2=-0.0126 \\ & f^{\prime}\left(x_3\right)=f^{\prime}(2.7262)=\log (2.7262)+1=1.4356 \\ & x_4=x_3-\frac{f\left(x_3\right)}{f\left(x_3\right)} \\ & x_4=2.7262-\frac{-0.0126}{1.4356} \\ & x_4=2.735 \end{aligned}f(x3)=f(2.7262)=2.7262log(2.7262)1.2=0.0126f(x3)=f(2.7262)=log(2.7262)+1=1.4356x4=x3f(x3)f(x3)x4=2.72620.01261.4356x4=2.735
5 th 5 th  5^(“th “)5^{\text {th }}5th  iteration:
f ( x 4 ) = f ( 2.735 ) = 2.735 log ( 2.735 ) 1.2 = 0.005 f ( x 4 ) = f ( 2.735 ) = log ( 2.735 ) + 1 = 1.4369 f x 4 = f ( 2.735 ) = 2.735 log ( 2.735 ) 1.2 = 0.005 f x 4 = f ( 2.735 ) = log ( 2.735 ) + 1 = 1.4369 {:[f(x_(4))=f(2.735)=2.735 log(2.735)-1.2=-0.005],[f^(‘)(x_(4))=f^(‘)(2.735)=log(2.735)+1=1.4369]:}\begin{aligned} & f\left(x_4\right)=f(2.735)=2.735 \log (2.735)-1.2=-0.005 \\ & f^{\prime}\left(x_4\right)=f^{\prime}(2.735)=\log (2.735)+1=1.4369 \end{aligned}f(x4)=f(2.735)=2.735log(2.735)1.2=0.005f(x4)=f(2.735)=log(2.735)+1=1.4369
x 5 = x 4 f ( x 4 ) f ( x 4 ) x 5 = 2.735 0.005 1.4369 x 5 = 2.7384 x 5 = x 4 f x 4 f x 4 x 5 = 2.735 0.005 1.4369 x 5 = 2.7384 {:[x_(5)=x_(4)-(f(x_(4)))/(f(x_(4)))],[x_(5)=2.735-(-0.005)/(1.4369)],[x_(5)=2.7384]:}\begin{aligned} & x_5=x_4-\frac{f\left(x_4\right)}{f\left(x_4\right)} \\ & x_5=2.735-\frac{-0.005}{1.4369} \\ & x_5=2.7384 \end{aligned}x5=x4f(x4)f(x4)x5=2.7350.0051.4369x5=2.7384
6 th 6 th  6^(“th “)6^{\text {th }}6th  iteration :
f ( x 5 ) = f ( 2.7384 ) = 2.7384 log ( 2.7384 ) 1.2 = 0.002 f x 5 = f ( 2.7384 ) = 2.7384 log ( 2.7384 ) 1.2 = 0.002 f(x_(5))=f(2.7384)=2.7384 log(2.7384)-1.2=-0.002f\left(x_5\right)=f(2.7384)=2.7384 \log (2.7384)-1.2=-0.002f(x5)=f(2.7384)=2.7384log(2.7384)1.2=0.002
f ( x 5 ) = f ( 2.7384 ) = log ( 2.7384 ) + 1 = 1.4375 f x 5 = f ( 2.7384 ) = log ( 2.7384 ) + 1 = 1.4375 f^(‘)(x_(5))=f^(‘)(2.7384)=log(2.7384)+1=1.4375f^{\prime}\left(x_5\right)=f^{\prime}(2.7384)=\log (2.7384)+1=1.4375f(x5)=f(2.7384)=log(2.7384)+1=1.4375
x 6 = x 5 f ( x 5 ) f ( x 5 ) x 6 = 2.7384 0.002 1.4375 x 6 = 2.7398 x 6 = x 5 f x 5 f x 5 x 6 = 2.7384 0.002 1.4375 x 6 = 2.7398 {:[x_(6)=x_(5)-(f(x_(5)))/(f^(‘)(x_(5)))],[x_(6)=2.7384-(-0.002)/(1.4375)],[x_(6)=2.7398]:}\begin{aligned} & x_6=x_5-\frac{f\left(x_5\right)}{f^{\prime}\left(x_5\right)} \\ & x_6=2.7384-\frac{-0.002}{1.4375} \\ & x_6=2.7398 \end{aligned}x6=x5f(x5)f(x5)x6=2.73840.0021.4375x6=2.7398
7 th 7 th  7^(“th “)7^{\text {th }}7th  iteration:
f ( x 6 ) = f ( 2.7398 ) = 2.7398 log ( 2.7398 ) 1.2 = 0.0008 f ( x 6 ) = f ( 2.7398 ) = log ( 2.7398 ) + 1 = 1.4377 x 7 = x 6 f ( x 6 ) f ( x 6 ) x 7 = 2.7398 0.0008 1.4377 x 7 = 2.7403 f x 6 = f ( 2.7398 ) = 2.7398 log ( 2.7398 ) 1.2 = 0.0008 f x 6 = f ( 2.7398 ) = log ( 2.7398 ) + 1 = 1.4377 x 7 = x 6 f x 6 f x 6 x 7 = 2.7398 0.0008 1.4377 x 7 = 2.7403 {:[f(x_(6))=f(2.7398)=2.7398 log(2.7398)-1.2=-0.0008],[f^(‘)(x_(6))=f^(‘)(2.7398)=log(2.7398)+1=1.4377],[x_(7)=x_(6)-(f(x_(6)))/(f(x_(6)))],[x_(7)=2.7398-(-0.0008)/(1.4377)],[x_(7)=2.7403]:}\begin{aligned} & f\left(x_6\right)=f(2.7398)=2.7398 \log (2.7398)-1.2=-0.0008 \\ & f^{\prime}\left(x_6\right)=f^{\prime}(2.7398)=\log (2.7398)+1=1.4377 \\ & x_7=x_6-\frac{f\left(x_6\right)}{f\left(x_6\right)} \\ & x_7=2.7398-\frac{-0.0008}{1.4377} \\ & x_7=2.7403 \end{aligned}f(x6)=f(2.7398)=2.7398log(2.7398)1.2=0.0008f(x6)=f(2.7398)=log(2.7398)+1=1.4377x7=x6f(x6)f(x6)x7=2.73980.00081.4377x7=2.7403
8 th 8 th  8^(“th “)8^{\text {th }}8th  iteration :
f ( x 7 ) = f ( 2.7403 ) = 2.7403 log ( 2.7403 ) 1.2 = 0.0003 f ( x 7 ) = f ( 2.7403 ) = log ( 2.7403 ) + 1 = 1.4378 f x 7 = f ( 2.7403 ) = 2.7403 log ( 2.7403 ) 1.2 = 0.0003 f x 7 = f ( 2.7403 ) = log ( 2.7403 ) + 1 = 1.4378 {:[f(x_(7))=f(2.7403)=2.7403 log(2.7403)-1.2=-0.0003],[f^(‘)(x_(7))=f^(‘)(2.7403)=log(2.7403)+1=1.4378]:}\begin{aligned} & f\left(x_7\right)=f(2.7403)=2.7403 \log (2.7403)-1.2=-0.0003 \\ & f^{\prime}\left(x_7\right)=f^{\prime}(2.7403)=\log (2.7403)+1=1.4378 \end{aligned}f(x7)=f(2.7403)=2.7403log(2.7403)1.2=0.0003f(x7)=f(2.7403)=log(2.7403)+1=1.4378
x 8 = x 7 f ( x 7 ) f ( x 7 ) x 8 = 2.7403 0.0003 1.4378 x 8 = 2.7405 x 8 = x 7 f x 7 f x 7 x 8 = 2.7403 0.0003 1.4378 x 8 = 2.7405 {:[x_(8)=x_(7)-(f(x_(7)))/(f(x_(7)))],[x_(8)=2.7403-(-0.0003)/(1.4378)],[x_(8)=2.7405]:}\begin{aligned} & x_8=x_7-\frac{f\left(x_7\right)}{f\left(x_7\right)} \\ & x_8=2.7403-\frac{-0.0003}{1.4378} \\ & x_8=2.7405 \end{aligned}x8=x7f(x7)f(x7)x8=2.74030.00031.4378x8=2.7405
Approximate root of the equation x log ( x ) 1.2 = 0 x log ( x ) 1.2 = 0 x log(x)-1.2=0x \log (x)-1.2=0xlog(x)1.2=0 using Newton Raphson method is 2.7405 (After 8 iterations)
n n n\boldsymbol{n}n x 0 x 0 x_(0)\boldsymbol{x}_{\mathbf{0}}x0 f ( x 0 ) f x 0 f(x_(0))\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)f(x0) f ( x 0 ) f x 0 f^(‘)(x_(0))\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{0}}\right)f(x0) x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 Update
1 2.5 -0.2051 1.3979 2.6468 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
2 2.6468 -0.0812 1.4227 2.7038 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
3 2.7038 -0.032 1.432 2.7262 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
4 2.7262 -0.0126 1.4356 2.735 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
5 2.735 -0.005 1.4369 2.7384 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
6 2.7384 -0.002 1.4375 2.7398 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
7 2.7398 -0.0008 1.4377 2.7403 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
8 2.7403 -0.0003 1.4378 2.7405 x 0 = x 1 x 0 = x 1 x_(0)=x_(1)x_0=x_1x0=x1
n x_(0) f(x_(0)) f^(‘)(x_(0)) x_(1) Update 1 2.5 -0.2051 1.3979 2.6468 x_(0)=x_(1) 2 2.6468 -0.0812 1.4227 2.7038 x_(0)=x_(1) 3 2.7038 -0.032 1.432 2.7262 x_(0)=x_(1) 4 2.7262 -0.0126 1.4356 2.735 x_(0)=x_(1) 5 2.735 -0.005 1.4369 2.7384 x_(0)=x_(1) 6 2.7384 -0.002 1.4375 2.7398 x_(0)=x_(1) 7 2.7398 -0.0008 1.4377 2.7403 x_(0)=x_(1) 8 2.7403 -0.0003 1.4378 2.7405 x_(0)=x_(1)| $\boldsymbol{n}$ | $\boldsymbol{x}_{\mathbf{0}}$ | $\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)$ | $\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{0}}\right)$ | $\boldsymbol{x}_{\mathbf{1}}$ | Update | | :—: | :—: | :—: | :—: | :—: | :—: | | 1 | 2.5 | -0.2051 | 1.3979 | 2.6468 | $x_0=x_1$ | | 2 | 2.6468 | -0.0812 | 1.4227 | 2.7038 | $x_0=x_1$ | | 3 | 2.7038 | -0.032 | 1.432 | 2.7262 | $x_0=x_1$ | | 4 | 2.7262 | -0.0126 | 1.4356 | 2.735 | $x_0=x_1$ | | 5 | 2.735 | -0.005 | 1.4369 | 2.7384 | $x_0=x_1$ | | 6 | 2.7384 | -0.002 | 1.4375 | 2.7398 | $x_0=x_1$ | | 7 | 2.7398 | -0.0008 | 1.4377 | 2.7403 | $x_0=x_1$ | | 8 | 2.7403 | -0.0003 | 1.4378 | 2.7405 | $x_0=x_1$ |
5.(c) एक 2 a 2 a 2a2 a2a लम्बाई की एक एकसमान छड़ O A O A OAO AOA अपने सिरे O O OOO के इर्दगिर्द घूमने के लिये स्वतन्त्र है, जो O O OOO से ऊर्ध्वाधर O Z O Z OZO ZOZ के परितः ω ω omega\omegaω कोणीय वेग से घूमती है, और O Z O Z OZO ZOZ से निश्चित कोण α α alpha\alphaα बनाती है; α α alpha\alphaα कोण का मान ज्ञात कीजिए।
A uniform rod O A O A OAO AOA, of length 2 a 2 a 2a2 a2a, free to turn about its end O O OOO, revolves with angular velocity ω ω omega\omegaω about the vertical O Z O Z OZO ZOZ through O O OOO, and is inclined at a constant angle α α alpha\alphaα to O Z O Z OZO ZOZ; find the value of α α alpha\alphaα.
Answer:
Introduction:
We are given a uniform rod O A O A OAOAOA of length 2 a 2 a 2a2a2a, free to turn about its end O O OOO, which revolves with angular velocity ω ω omega\omegaω about the vertical O Z O Z OZOZOZ through O O OOO. The rod is inclined at a constant angle α α alpha\alphaα to O Z O Z OZOZOZ. We need to find the value of α α alpha\alphaα.
Step 1: Consider an Element of the Rod
Let P Q = δ x P Q = δ x PQ=delta xPQ = \delta xPQ=δx be an element of the rod at a distance x x xxx from O O OOO. The mass of the element P Q P Q PQPQPQ is M 2 a δ x M 2 a δ x (M)/(2a)delta x\frac{M}{2a} \delta xM2aδx.
This element P Q P Q PQPQPQ will make a circle in the horizontal plane with radius P M = ( x sin α ) P M = ( x sin α ) PM=(x sin alpha)PM = (x \sin \alpha)PM=(xsinα) and center at M M MMM.
Since the rod revolves with uniform angular velocity, the only effective force on this element is M 2 a δ x P M ω 2 M 2 a δ x P M ω 2 (M)/(2a)delta x*PM*omega^(2)\frac{M}{2a} \delta x \cdot PM \cdot \omega^2M2aδxPMω2 along P M P M PMPMPM.
Step 2: Applying D’Alembert’s Principle
By D’Alembert’s principle, all the reversed effective forces acting at different points of the rod, and the external forces, weight m g m g mgmgmg and reaction at O O OOO, are in equilibrium.
To avoid reaction at O O OOO, taking a moment about O O OOO, we get:
( M 2 a δ x ω 2 sin α ) O M M g N G = 0 0 2 a M 2 a ω 2 x 2 sin α cot α d x M g a sin α = 0 ( since O M = x cos α ) M 2 a ω 2 ( 1 3 ( 2 a ) 3 ) sin α cos α M g a sin α = 0 m g a sin α ( 4 a 3 g ω 2 cos α 1 ) = 0 M 2 a δ x ω 2 sin α O M M g N G = 0 0 2 a M 2 a ω 2 x 2 sin α cot α d x M g a sin α = 0 ( since  O M = x cos α ) M 2 a ω 2 1 3 ( 2 a ) 3 sin α cos α M g a sin α = 0 m g a sin α 4 a 3 g ω 2 cos α 1 = 0 {:[ sum((M)/(2a)delta x*omega^(2)*sin alpha)OM-Mg*NG=0],[=>int_(0)^(2a)(M)/(2a)omega^(2)x^(2)sin alpha cot alphadx-Mg*a sin alpha=0quad(“since “OM=x cos alpha)],[=>(M)/(2a)omega^(2)((1)/(3)(2a)^(3))sin alpha cos alpha-Mga sin alpha=0],[=>mga sin alpha((4a)/(3g)omega^(2)cos alpha-1)=0]:}\begin{aligned} & \sum\left(\frac{M}{2a} \delta x \cdot \omega^2 \cdot \sin \alpha\right) OM – Mg \cdot NG = 0 \\ & \Rightarrow \int_0^{2a} \frac{M}{2a} \omega^2 x^2 \sin \alpha \cot \alpha \mathrm{d}x – Mg \cdot a \sin \alpha = 0 \quad (\text{since } OM = x \cos \alpha) \\ & \Rightarrow \frac{M}{2a} \omega^2\left(\frac{1}{3}(2a)^3\right) \sin \alpha \cos \alpha – Mga \sin \alpha = 0 \\ & \Rightarrow mg a \sin \alpha \left(\frac{4a}{3g} \omega^2 \cos \alpha – 1\right) = 0 \end{aligned}(M2aδxω2sinα)OMMgNG=002aM2aω2x2sinαcotαdxMgasinα=0(since OM=xcosα)M2aω2(13(2a)3)sinαcosαMgasinα=0mgasinα(4a3gω2cosα1)=0
Step 3: Solving for α α alpha\alphaα
Therefore, either sin α = 0 sin α = 0 sin alpha=0\sin \alpha = 0sinα=0, i.e., cos α = 3 g 4 a ω 2 cos α = 3 g 4 a ω 2 cos alpha=(3g)/(4aomega^(2))\cos \alpha = \frac{3g}{4a\omega^2}cosα=3g4aω2
Or,
( 4 a 3 g ω 2 cos α 1 ) = 0 i.e., cos α = 3 g 4 a ω 2 4 a 3 g ω 2 cos α 1 = 0 i.e., cos α = 3 g 4 a ω 2 ((4a)/(3g)omega^(2)cos alpha-1)=0quad”i.e.,”quad cos alpha=(3g)/(4aomega^(2))\left(\frac{4a}{3g} \omega^2 \cos \alpha – 1\right) = 0 \quad \text{i.e.,} \quad \cos \alpha = \frac{3g}{4a\omega^2}(4a3gω2cosα1)=0i.e.,cosα=3g4aω2
Conclusion:
Hence, the rod is inclined at an angle zero or cos 1 ( 3 g 4 a ω 2 ) cos 1 3 g 4 a ω 2 cos^(-1)((3g)/(4aomega^(2)))\cos^{-1}\left(\frac{3g}{4a\omega^2}\right)cos1(3g4aω2).
5.(d) चौथी कोटि की रुन्े-कुट्टा विधि का उपयोग करके y ( 0 ) = 1 y ( 0 ) = 1 y(0)=1y(0)=1y(0)=1 के साथ अवकल समीकरण d y d x = y 2 x 2 y 2 + x 2 d y d x = y 2 x 2 y 2 + x 2 (dy)/(dx)=(y^(2)-x^(2))/(y^(2)+x^(2))\frac{d y}{d x}=\frac{y^2-x^2}{y^2+x^2}dydx=y2x2y2+x2 को x = 0.2 x = 0.2 x=0.2x=0.2x=0.2 पर हल करें । परिकलन के लिये चार दशमलव स्थानों और अन्तराल लम्बाई (स्टैप लैंथ) 0.2 0.2 0.20.20.2 का उपयोग कीजिए ।
Using Runge-Kutta method of fourth order, solve d y d x = y 2 x 2 y 2 + x 2 d y d x = y 2 x 2 y 2 + x 2 (dy)/(dx)=(y^(2)-x^(2))/(y^(2)+x^(2))\frac{d y}{d x}=\frac{y^2-x^2}{y^2+x^2}dydx=y2x2y2+x2 with y ( 0 ) = 1 y ( 0 ) = 1 y(0)=1y(0)=1y(0)=1 at x = 0.2 x = 0.2 x=0.2x=0.2x=0.2. Use four decimal places for calculation and step length 0.2 0.2 0.20.20.2.
Answer:
Given y = y 2 x 2 y 2 + x 2 , y ( 0 ) = 1 , h = 0.2 , y ( 0.2 ) = y = y 2 x 2 y 2 + x 2 , y ( 0 ) = 1 , h = 0.2 , y ( 0.2 ) = y^(‘)=(y^(2)-x^(2))/(y^(2)+x^(2)),y(0)=1,h=0.2,y(0.2)=y^{\prime}=\frac{y^2-x^2}{y^2+x^2}, y(0)=1, h=0.2, y(0.2)=y=y2x2y2+x2,y(0)=1,h=0.2,y(0.2)= ?
Forth order R-K method
k 1 = h f ( x 0 , y 0 ) = ( 0.2 ) f ( 0 , 1 ) = ( 0.2 ) ( 1 ) = 0.2 k 2 = h f ( x 0 + h 2 , y 0 + k 1 2 ) = ( 0.2 ) f ( 0.1 , 1.1 ) = ( 0.2 ) ( 0.9836 ) = 0.1967 k 3 = h f ( x 0 + h 2 , y 0 + k 2 2 ) = ( 0.2 ) f ( 0.1 , 1.0984 ) = ( 0.2 ) ( 0.9836 ) = 0.1967 k 4 = h f ( x 0 + h , y 0 + k 3 ) = ( 0.2 ) f ( 0.2 , 1.1967 ) = ( 0.2 ) ( 0.9457 ) = 0.1891 y 1 = y 0 + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y 1 = 1 + 1 6 [ 0.2 + 2 ( 0.1967 ) + 2 ( 0.1967 ) + ( 0.1891 ) ] y 1 = 1.196 y ( 0.2 ) = 1.196 k 1 = h f x 0 , y 0 = ( 0.2 ) f ( 0 , 1 ) = ( 0.2 ) ( 1 ) = 0.2 k 2 = h f x 0 + h 2 , y 0 + k 1 2 = ( 0.2 ) f ( 0.1 , 1.1 ) = ( 0.2 ) ( 0.9836 ) = 0.1967 k 3 = h f x 0 + h 2 , y 0 + k 2 2 = ( 0.2 ) f ( 0.1 , 1.0984 ) = ( 0.2 ) ( 0.9836 ) = 0.1967 k 4 = h f x 0 + h , y 0 + k 3 = ( 0.2 ) f ( 0.2 , 1.1967 ) = ( 0.2 ) ( 0.9457 ) = 0.1891 y 1 = y 0 + 1 6 k 1 + 2 k 2 + 2 k 3 + k 4 y 1 = 1 + 1 6 [ 0.2 + 2 ( 0.1967 ) + 2 ( 0.1967 ) + ( 0.1891 ) ] y 1 = 1.196 y ( 0.2 ) = 1.196 {:[k_(1)=hf(x_(0),y_(0))=(0.2)f(0″,”1)=(0.2)*(1)=0.2],[k_(2)=hf(x_(0)+(h)/(2),y_(0)+(k_(1))/(2))=(0.2)f(0.1″,”1.1)=(0.2)*(0.9836)=0.1967],[k_(3)=hf(x_(0)+(h)/(2),y_(0)+(k_(2))/(2))=(0.2)f(0.1″,”1.0984)=(0.2)*(0.9836)=0.1967],[k_(4)=hf(x_(0)+h,y_(0)+k_(3))=(0.2)f(0.2″,”1.1967)=(0.2)*(0.9457)=0.1891],[y_(1)=y_(0)+(1)/(6)(k_(1)+2k_(2)+2k_(3)+k_(4))],[y_(1)=1+(1)/(6)[0.2+2(0.1967)+2(0.1967)+(0.1891)]],[y_(1)=1.196],[:.y(0.2)=1.196]:}\begin{aligned} & k_1=h f\left(x_0, y_0\right)=(0.2) f(0,1)=(0.2) \cdot(1)=0.2 \\ & k_2=h f\left(x_0+\frac{h}{2}, y_0+\frac{k_1}{2}\right)=(0.2) f(0.1,1.1)=(0.2) \cdot(0.9836)=0.1967 \\ & k_3=h f\left(x_0+\frac{h}{2}, y_0+\frac{k_2}{2}\right)=(0.2) f(0.1,1.0984)=(0.2) \cdot(0.9836)=0.1967 \\ & k_4=h f\left(x_0+h, y_0+k_3\right)=(0.2) f(0.2,1.1967)=(0.2) \cdot(0.9457)=0.1891 \\ & y_1=y_0+\frac{1}{6}\left(k_1+2 k_2+2 k_3+k_4\right) \\ & y_1=1+\frac{1}{6}[0.2+2(0.1967)+2(0.1967)+(0.1891)] \\ & y_1=1.196 \\ & \therefore y(0.2)=1.196 \end{aligned}k1=hf(x0,y0)=(0.2)f(0,1)=(0.2)(1)=0.2k2=hf(x0+h2,y0+k12)=(0.2)f(0.1,1.1)=(0.2)(0.9836)=0.1967k3=hf(x0+h2,y0+k22)=(0.2)f(0.1,1.0984)=(0.2)(0.9836)=0.1967k4=hf(x0+h,y0+k3)=(0.2)f(0.2,1.1967)=(0.2)(0.9457)=0.1891y1=y0+16(k1+2k2+2k3+k4)y1=1+16[0.2+2(0.1967)+2(0.1967)+(0.1891)]y1=1.196y(0.2)=1.196
5.(e) ट्रेपेजाइडल नियम के इस्तेमाल के द्वारा समाकल y = 0 6 d x 1 + x 2 y = 0 6 d x 1 + x 2 y=int_(0)^(6)(dx)/(1+x^(2))y=\int_0^6 \frac{d x}{1+x^2}y=06dx1+x2 का मूल्यांकन करने के लिये, एक प्रवाह चार्ट बनाइए तथा एक बुनियादी एल्गोरिथ्म (फोर्ट्रान / C / C + / C / C + //C//C^(+)/ \mathrm{C} / \mathrm{C}^{+}/C/C+में) लिखें ।
Draw a flow chart and write a basic algorithm (in FORTRAN/C/C C + + C + + C^(++)\mathrm{C}^{++}C++) for evaluating y = 0 6 d x 1 + x 2 y = 0 6 d x 1 + x 2 y=int_(0)^(6)(dx)/(1+x^(2))y=\int_0^6 \frac{d x}{1+x^2}y=06dx1+x2 using Trapezoidal rule.
Answer:

Introduction

The problem asks for the evaluation of the integral y = 0 6 d x 1 + x 2 y = 0 6 d x 1 + x 2 y=int_(0)^(6)(dx)/(1+x^(2))y = \int_0^6 \frac{dx}{1+x^2}y=06dx1+x2 using the Trapezoidal rule. We are required to:
  1. Draw a flowchart for the algorithm.
  2. Write a basic algorithm in FORTRAN, C, or C++.

Work/Calculations

Part (i): Flowchart for the Algorithm

Let’s start by drawing the flowchart for the algorithm.
original image

Part (ii): Algorithm in C++

Here is a basic C++ algorithm for evaluating the integral using the Trapezoidal rule.
#include <iostream>
#include <cmath>

double f(double x) {
    return 1 / (1 + pow(x, 2));
}

int main() {
    double a = 0.0, b = 6.0; // Lower and upper limits
    int n = 1000; // Number of trapezoids
    double h = (b - a) / n; // Step size
    double integral = 0.0;

    // Calculate the integral using the Trapezoidal rule
    for (int i = 1; i < n; ++i) {
        integral += 2 * f(a + i * h);
    }
    integral += f(a) + f(b);
    integral *= h / 2;

    std::cout << "The value of the integral is: " << integral << std::endl;

    return 0;
}

Conclusion

We successfully created a flowchart and a C++ algorithm to evaluate the integral y = 0 6 d x 1 + x 2 y = 0 6 d x 1 + x 2 y=int_(0)^(6)(dx)/(1+x^(2))y = \int_0^6 \frac{dx}{1+x^2}y=06dx1+x2 using the Trapezoidal rule. The flowchart outlines the steps involved in the algorithm, and the C++ code provides a working implementation.
6.(a) प्रथम कोटि रैखिककल्प आंशिक अवकल समीकरण x u x + ( u x y ) u y = x + 2 y x u x + ( u x y ) u y = x + 2 y x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x}+(u-x-y) \frac{\partial u}{\partial y}=x+2 yxux+(uxy)uy=x+2y में x > 0 , < y < x > 0 , < y < x > 0,-oo < y < oox>0,-\infty<y<\inftyx>0,<y< को u = 1 + y u = 1 + y u=1+yu=1+yu=1+y के साथ x = 1 x = 1 x=1x=1x=1 पर अभिलाक्षणिक विधि के द्वारा हल करें ।
Solve the first order quasilinear partial differential equation by the method of characteristics :
x u x + ( u x y ) u y = x + 2 y x u x + ( u x y ) u y = x + 2 y x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x}+(u-x-y) \frac{\partial u}{\partial y}=x+2 yxux+(uxy)uy=x+2y in x > 0 , < y < x > 0 , < y < x > 0,-oo < y < oox>0,-\infty<y<\inftyx>0,<y< with u = 1 + y u = 1 + y u=1+yu=1+yu=1+y on x = 1 x = 1 x=1x=1x=1.
Answer:
Introduction:
We are tasked with solving the first-order quasilinear partial differential equation using the method of characteristics. The equation is:
x u x + ( u x y ) u y = x + 2 y x u x + ( u x y ) u y = x + 2 y x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x} + (u – x – y) \frac{\partial u}{\partial y} = x + 2yxux+(uxy)uy=x+2y
with the initial condition u = 1 + y u = 1 + y u=1+yu = 1 + yu=1+y on x = 1 x = 1 x=1x = 1x=1.
f ( x , y , u , p , q ) = x p + ( u x y ) q ( x + 2 y ) = 0 ( 1 ) Here P = u x ; q = u y So x 0 ( s ) = s 0 = 1 , y 0 ( s ) = s , u 0 ( s ) = s + 1 u 0 ( s ) = p 0 x 0 ( s ) + q 0 y 0 ( s ) 1 = p 0 ( 0 ) + q 0 ( 1 ) q 0 = 1 x 0 p 0 + ( u 0 x 0 y 0 ) q 0 ( x 0 + 2 y 0 ) = 0 p 0 + ( S + 1 1 s ) q 0 ( 1 + 2 s ) = 0 p 0 = 2 s + 1 Use d x d t = f p = x (2) d y d t = f q = u x y (3) d u d t = p f p + q f q = p x + q ( u x y ) = x + 2 y (4) d p d t = f x p f u d q d t = f y q f u d x x = d t x = c 1 e t t = t 0 = 0 x 0 = c 1 e 0 c 1 = 1 and x = e t d y d t + d u d t = y + u d ( y + u ) y + u = d t ( since y + u = c 2 e t ) y 0 + u 0 = c 2 e 0 s + s + 1 = c 2 c 2 = 2 s + 1 y + u = ( 2 s + 1 ) e t d y d t = u x y = ( 2 s + 1 ) e t y e t y = 2 s e t 2 y d y d t + 2 y = 2 s e t I . F = e 2 d t = e 2 t f ( x , y , u , p , q ) = x p + ( u x y ) q ( x + 2 y ) = 0 ( 1 )  Here  P = u x ; q = u y  So  x 0 ( s ) = s 0 = 1 , y 0 ( s ) = s , u 0 ( s ) = s + 1 u 0 ( s ) = p 0 x 0 ( s ) + q 0 y 0 ( s ) 1 = p 0 ( 0 ) + q 0 ( 1 ) q 0 = 1 x 0 p 0 + u 0 x 0 y 0 q 0 x 0 + 2 y 0 = 0 p 0 + ( S + 1 1 s ) q 0 ( 1 + 2 s ) = 0 p 0 = 2 s + 1  Use  d x d t = f p = x  (2)  d y d t = f q = u x y  (3)  d u d t = p f p + q f q = p x + q ( u x y ) = x + 2 y  (4)  d p d t = f x p f u d q d t = f y q f u d x x = d t x = c 1 e t t = t 0 = 0 x 0 = c 1 e 0 c 1 = 1  and  x = e t d y d t + d u d t = y + u d ( y + u ) y + u = d t  since  y + u = c 2 e t y 0 + u 0 = c 2 e 0 s + s + 1 = c 2 c 2 = 2 s + 1 y + u = ( 2 s + 1 ) e t d y d t = u x y = ( 2 s + 1 ) e t y e t y = 2 s e t 2 y d y d t + 2 y = 2 s e t I . F = e 2 d t = e 2 t {:[f(x”,”y”,”u”,”p”,”q)=xp+(u-x-y)q-(x+2y)=0rarr(1)],[” Here “P=(del u)/(del x);q=(del u)/(del y)],[” So “x_(0)(s)=s^(0)=1″,”y_(0)(s)=s”,”u_(0)(s)=s+1],[u_(0)^(‘)(s)=p_(0)quadx_(0)^(‘)(s)+q_(0)quady_(0)^(‘)(s)],[1=p_(0)(0)+q_(0)(1)=>q_(0)=1],[x_(0)p_(0)+(u_(0)-x_(0)-y_(0))q_(0)-(x_(0)+2y_(0))=0],[p_(0)+(S+1-1-s)q_(0)-(1+2s)=0],[p_(0)=2s+1],[” Use “(dx)/(dt)=f_(p)=x rarr” (2) “(dy)/(dt)=f_(q)=u-x-y rarr” (3) “],[(du)/(dt)=pf_(p)+qf_(q)=px+q(u-x-y)=x+2y rarr” (4) “],[(dp)/(dt)=-f_(x)-pf_(u)(dq)/(dt)=-f_(y)-qf_(u)],[ int(dx)/(x)=intdt=>x=c_(1)quade^(t)t=t_(0)=0],[x_(0)=c_(1)e^(0)=>c_(1)=1” and “x=e^(t)],[(dy)/(dt)+(du)/(dt)=y+u=>int(d(y+u))/(y+u)=intdt(” since “y+u=c_(2)e^(t))],[y_(0)+u_(0)=c_(2)e^(0)=>s+s+1=c_(2)=>c_(2)=2s+1],[y+u=(2s+1)e^(t)],[(dy)/(dt)=u-x-y=(2s+1)e^(t)-y-e^(t)-y=2se^(t)-2y],[(dy)/(dt)+2y=2se^(t)],[I.F=e^(2intdt)=e^(2t)],[]:}\begin{aligned} & f(x, y, u, p, q)=x p+(u-x-y) q-(x+2 y)=0 \rightarrow(1) \\ & \text { Here } P=\frac{\partial u}{\partial x} ; q=\frac{\partial u}{\partial y} \\ & \text { So } x_0(s)=s^0=1, y_0(s)=s, u_0(s)=s+1 \\ & u_0^{\prime}(s)=p_0 \quad x_0^{\prime}(s)+q_0 \quad y_0^{\prime}(s) \\ & 1=p_0(0)+q_0(1) \Rightarrow q_0=1 \\ & x_0 p_0+\left(u_0-x_0-y_0\right) q_0-\left(x_0+2 y_0\right)=0 \\ & p_0+(S+1-1-s) q_0-(1+2 s)=0 \\ & p_0=2 s+1 \\ & \text { Use } \frac{\mathbf{d} x}{\mathbf{d} t}=f_p=x \rightarrow \text { (2) } \frac{\mathbf{d} y}{\mathbf{d} t}=f_q=u-x-y \rightarrow \text { (3) } \\ & \frac{\mathbf{d} u}{\mathbf{d} t}=p f_p+q f_q=p x+q(u-x-y)=x+2 y \rightarrow \text { (4) } \\ & \frac{\mathbf{d} p}{\mathbf{d} t}=-f_x-p f_u \frac{\mathbf{d} q}{\mathbf{d} t}=-f_y-q f_u \\ & \int \frac{\mathbf{d} x}{x}=\int \mathbf{d} t \Rightarrow x=c_1 \quad e^t t=t_0=0 \\ & x_0=c_1 e^0 \Rightarrow c_1=1 \text { and } x=e^t \\ & \frac{\mathbf{d} y}{\mathbf{d} t}+\frac{\mathbf{d} u}{\mathbf{d} t}=y+u \Rightarrow \int \frac{\mathbf{d}(y+u)}{y+u}=\int \mathbf{d} t\left(\text { since } y+u=c_2 e^t\right) \\ & y_0+u_0=c_2 e^0 \Rightarrow s+s+1=c_2 \Rightarrow c_2=2 s+1 \\ & y+u=(2 s+1) e^t \\ & \frac{\mathbf{d} y}{\mathbf{d} t}=u-x-y=(2 s+1) e^t-y-e^t-y=2 s e^t-2 y \\ & \frac{\mathbf{d} y}{\mathbf{d} t}+2 y=2 s e^t \\ & I . F=e^{2 \int \mathrm{d} t} =e^{2 t} \\ & \end{aligned}f(x,y,u,p,q)=xp+(uxy)q(x+2y)=0(1) Here P=ux;q=uy So x0(s)=s0=1,y0(s)=s,u0(s)=s+1u0(s)=p0x0(s)+q0y0(s)1=p0(0)+q0(1)q0=1x0p0+(u0x0y0)q0(x0+2y0)=0p0+(S+11s)q0(1+2s)=0p0=2s+1 Use dxdt=fp=x (2) dydt=fq=uxy (3) dudt=pfp+qfq=px+q(uxy)=x+2y (4) dpdt=fxpfudqdt=fyqfudxx=dtx=c1ett=t0=0x0=c1e0c1=1 and x=etdydt+dudt=y+ud(y+u)y+u=dt( since y+u=c2et)y0+u0=c2e0s+s+1=c2c2=2s+1y+u=(2s+1)etdydt=uxy=(2s+1)etyety=2set2ydydt+2y=2setI.F=e2dt=e2t
y e 2 t = 2 s e 3 t d t e 2 t y = 2 s e 3 t 3 + t y = 2 s 3 e t + t e 2 t s = 2 s 3 + k k = s 3 y = 2 s 3 e t + s 3 e 2 t y e 2 t = 2 s e 3 t d t e 2 t y = 2 s e 3 t 3 + t y = 2 s 3 e t + t e 2 t s = 2 s 3 + k k = s 3 y = 2 s 3 e t + s 3 e 2 t {:[ye^(2t)=int2se^(3t)dt],[e^(2t)y=2s(e^(3t))/(3)+t],[y=(2s)/(3)e^(t)+te^(-2t)s=(2s)/(3)+k=>k=(s)/(3)],[y=(2s)/(3)e^(t)+(s)/(3)e^(-2t)]:}\begin{aligned} & y e^{2 t}=\int 2 s e^{3 t} \mathbf{d} t \\ & e^{2 t} y=2 s \frac{e^{3 t}}{3}+t \\ & y=\frac{2 s}{3} e^t+t e^{-2 t} s=\frac{2 s}{3}+k \Rightarrow k=\frac{s}{3} \\ & y=\frac{2 s}{3} e^t+\frac{s}{3} e^{-2 t} \end{aligned}ye2t=2se3tdte2ty=2se3t3+ty=2s3et+te2ts=2s3+kk=s3y=2s3et+s3e2t
We got x = e t ( 1 ) ; y + u = ( 2 s + 1 ) e t ( 2 ) x = e t ( 1 ) ; y + u = ( 2 s + 1 ) e t ( 2 ) x=e^(t)rarr(1);y+u=(2s+1)e^(t)rarr(2)x=e^t \rightarrow(1) ; y+u=(2 s+1) e^t \rightarrow(2)x=et(1);y+u=(2s+1)et(2)
y = s 3 ( 2 e t + e 2 t ) y + u = ( 2 s + 1 ) x ( 2 s + 1 ) = y + u x s = y + u x 2 x y = s 3 2 e t + e 2 t y + u = ( 2 s + 1 ) x ( 2 s + 1 ) = y + u x s = y + u x 2 x {:[y=(s)/(3)(2e^(t)+e^(-2t))],[y+u=(2s+1)x],[(2s+1)=(y+u)/(x)=>s=(y+u-x)/(2x)]:}\begin{aligned} & y=\frac{s}{3}\left(2 e^t+e^{-2 t}\right) \\ & y+u=(2 s+1) x \\ & (2 s+1)=\frac{y+u}{x} \Rightarrow s=\frac{y+u-x}{2 x} \end{aligned}y=s3(2et+e2t)y+u=(2s+1)x(2s+1)=y+uxs=y+ux2x
Put value of s from equation (1) and (2)
y = ( y + u x 2 x × 3 ) ( 2 x + 1 x 2 ) y = ( y + u x 6 x 3 ) ( 2 x 3 + 1 ) 6 x 3 y = 2 x 3 y + 2 x 3 u 2 x 4 + y x 4 x 3 y 2 x 3 u + 2 x 4 y u + x = 0 y = y + u x 2 x × 3 2 x + 1 x 2 y = y + u x 6 x 3 2 x 3 + 1 6 x 3 y = 2 x 3 y + 2 x 3 u 2 x 4 + y x 4 x 3 y 2 x 3 u + 2 x 4 y u + x = 0 {:[y=((y+u-x)/(2x xx3))(2x+(1)/(x^(2)))],[y=((y+u-x)/(6x^(3)))(2x^(3)+1)=>6x^(3)y=2x^(3)y+2x^(3)u-2x^(4)+y-x],[4x^(3)y-2x^(3)u+2x^(4)-y-u+x=0]:}\begin{aligned} & y=\left(\frac{y+u-x}{2 x \times 3}\right)\left(2 x+\frac{1}{x^2}\right) \\ & y=\left(\frac{y+u-x}{6 x^3}\right)\left(2 x^3+1\right) \Rightarrow 6 x^3 y=2 x^3 y+2 x^3 u-2 x^4+y-x \\ & 4 x^3 y-2 x^3 u+2 x^4-y-u+x=0 \end{aligned}y=(y+ux2x×3)(2x+1x2)y=(y+ux6x3)(2x3+1)6x3y=2x3y+2x3u2x4+yx4x3y2x3u+2x4yu+x=0
Conclusion:
We have successfully solved the given first-order quasilinear partial differential equation using the method of characteristics. The solution is expressed as 4 x 3 y 2 x 3 u + 2 x 4 y u + x = 0 4 x 3 y 2 x 3 u + 2 x 4 y u + x = 0 4x^(3)y-2x^(3)u+2x^(4)-y-u+x=04x^3y – 2x^3u + 2x^4 – y – u + x = 04x3y2x3u+2x4yu+x=0.
6.(b) अधोलिखित संख्याओं के समतुल्यों को उनके सम्मुख दरशाई गई विशिष्ट संख्या पद्धति में ज्ञात कीजिए :
(i) पूर्णांक 524 को द्विआधारी पद्धति में ।
(ii) 101010110101 101101011 101010110101 101101011 101010110101*101101011101010110101 \cdot 101101011101010110101101101011 को अष्टाधारी पद्धति में ।
(iii) दशमलव 5280 को षड्दशमलव पद्धति में ।
(iv) अज्ञात संख्या ज्ञात कीजिए ( 1101 101 ) 8 ( ( 1101 101 ) 8 ( (1101*101)_(8)rarr((1101 \cdot 101)_8 \rightarrow((1101101)8( ?) ।
Find the equivalent numbers given in a specified number to the system mentioned against them :
(i) Integer 524 in binary system.
(ii) 101010110101 101101011 101010110101 101101011 101010110101*101101011101010110101 \cdot 101101011101010110101101101011 to octal system.
(iii) decimal number 5280 to hexadecimal system.
(iv) Find the unknown number ( 1101 101 ) 8 ( ? ) 10 . ( 1101 101 ) 8 ( ? ) 10 . (1101*101)_(8)rarr(?)_(10).(1101 \cdot 101)_8 \rightarrow (?)_{10}.(1101101)8(?)10.
Answer:
(i) Integer 524 in binary system.
original image
( 524 ) 10 = ( 1000001100 ) 2 ( 524 ) 10 = ( 1000001100 _ ) 2 :.(524)_(10)=(1000001100 _)_(2)\therefore(524)_{10}=(\underline{1000001100})_2(524)10=(1000001100)2
(ii) 101010110101 101101011 101010110101 101101011 101010110101*101101011101010110101 \cdot 101101011101010110101101101011 to octal system.
101 5 010 2 110 6 101 5 101 5 101 5 011 3 ( 101010110101.101101011 ) 2 = ( 5265.553 ) 8 101 5 010 2 110 6 101 5 101 5 101 5 011 3 ( 101010110101.101101011 ) 2 = ( 5265.553 _ ) 8 {:[(101)/(5)(010)/(2)(110)/(6)(101)/(5)*(101)/(5)(101)/(5)(011)/(3)],[:.(101010110101.101101011)_(2)=(5265.553 _)_(8)]:}\begin{aligned} &\frac{101}{5} \frac{010}{2} \frac{110}{6} \frac{101}{5} \cdot \frac{101}{5} \frac{101}{5} \frac{011}{3}\\ &\therefore(101010110101.101101011)_2=(\underline{5265.553})_8 \end{aligned}1015010211061015101510150113(101010110101.101101011)2=(5265.553)8
(iii) decimal number 5280 to hexadecimal system.
16 5280 16 330 0 16 20 A 16 1 4 0 1 ( 5280 ) 10 = ( 14 A 0 ) 16 16 5280 16 330 0 16 20 A 16 1 4 0 1 ( 5280 ) 10 = ( 14 A 0 _ ) 16 {:[{:[16,5280,],[16,330,0],[16,20,A],[16,1,4],[,0,1]:}],[:.(5280)_(10)=(14(A)0_)_(16)]:}\begin{aligned} &\begin{array}{l|r|l} 16 & 5280 & \\ \hline 16 & 330 & 0 \\ \hline 16 & 20 & \mathrm{~A} \\ \hline 16 & 1 & 4 \\ \hline & 0 & 1 \end{array}\\ &\therefore(5280)_{10}=(\underline{14 \mathrm{~A} 0})_{16} \end{aligned}1652801633001620 A161401(5280)10=(14 A0)16
(iv) Find the unknown number ( 1101 101 ) 8 ( ? ) 10 . ( 1101 101 ) 8 ( ? ) 10 . (1101*101)_(8)rarr(?)_(10).(1101 \cdot 101)_8 \rightarrow (?)_{10}.(1101101)8(?)10.
1101.101
= 1 × 8 3 + 1 × 8 2 + 0 × 8 1 + 1 × 8 0 + 1 × 1 8 1 + 0 × 1 8 2 + 1 × 1 8 3 = 1 × 512 + 1 × 64 + 0 × 8 + 1 × 1 + 1 × 0.125 + 0 × 0.015625 + 1 × 0.001953 = 512 + 64 + 0 + 1 + 0.125 + 0 + 0.001953 = 577.126953 ( 1101.101 ) 8 = ( 577.126953 ) 10 = 1 × 8 3 + 1 × 8 2 + 0 × 8 1 + 1 × 8 0 + 1 × 1 8 1 + 0 × 1 8 2 + 1 × 1 8 3 = 1 × 512 + 1 × 64 + 0 × 8 + 1 × 1 + 1 × 0.125 + 0 × 0.015625 + 1 × 0.001953 = 512 + 64 + 0 + 1 + 0.125 + 0 + 0.001953 = 577.126953 ( 1101.101 ) 8 = ( 577.126953 _ ) 10 {:[=1xx8^(3)+1xx8^(2)+0xx8^(1)+1xx8^(0)+1xx(1)/(8^(1))+0xx(1)/(8^(2))+1xx(1)/(8^(3))],[=1xx512+1xx64+0xx8+1xx1+1xx0.125+0xx0.015625+1xx0.001953],[=512+64+0+1+0.125+0+0.001953],[=577.126953],[:.(1101.101)_(8)=(577.126953 _)_(10)]:}\begin{aligned} & =1 \times 8^3+1 \times 8^2+0 \times 8^1+1 \times 8^0+1 \times \frac{1}{8^1}+0 \times \frac{1}{8^2}+1 \times \frac{1}{8^3} \\ & =1 \times 512+1 \times 64+0 \times 8+1 \times 1+1 \times 0.125+0 \times 0.015625+1 \times 0.001953 \\ & =512+64+0+1+0.125+0+0.001953 \\ & =577.126953 \\ & \therefore(1101.101)_8=(\underline{577.126953})_{10} \end{aligned}=1×83+1×82+0×81+1×80+1×181+0×182+1×183=1×512+1×64+0×8+1×1+1×0.125+0×0.015625+1×0.001953=512+64+0+1+0.125+0+0.001953=577.126953(1101.101)8=(577.126953)10
  1. (c) एक त्रिज्या a a aaa तथा परिश्रमण त्रिज्या k k kkk वाला गोलाकार सिलिन्डर बिना फिसले, एक b b bbb त्रिज्या वाले, स्थिर खोखले सिलिन्डर में लुढ़कता (roll) है । दर्शाएँ कि इनकी अक्षों में से तल एक ( b a ) ( 1 + k 2 a 2 ) ( b a ) 1 + k 2 a 2 (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right)(ba)(1+k2a2) लम्बाई वाले गोलाकार लोलक में चलता है ।
A circular cylinder of radius a a aaa and radius of gyration k k kkk rolls without slipping inside a fixed hollow cylinder of radius b b bbb. Show that the plane through axes moves in a circular pendulum of length ( b a ) ( 1 + k 2 a 2 ) ( b a ) 1 + k 2 a 2 (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right)(ba)(1+k2a2)
Answer:
Introduction:
We are given a circular cylinder of radius a a aaa and radius of gyration k k kkk rolling without slipping inside a fixed hollow cylinder of radius b b bbb. The goal is to show that the plane through the axes of the cylinders moves in a circular pendulum of length ( b a ) ( 1 + k 2 a 2 ) ( b a ) 1 + k 2 a 2 (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right)(ba)(1+k2a2).
Step 1: Defining Parameters and Angles
Let P P P\mathrm{P}P be the point of contact of the two cylinders at time t t ttt, and let the angle A O P A O P AOPAOPAOP be θ θ theta\thetaθ. Also, define ϕ ϕ phi\phiϕ as the angle that the line CB CB CB\mathrm{CB}CB, fixed in the moving cylinder, makes with the vertical at time t t ttt.
Given radii:
  • Radius of the fixed cylinder: a a aaa
  • Radius of the moving cylinder: a a aaa
Since there is pure rolling, we have:
b θ = a ( ϕ + θ ) a ϕ = ( b a ) θ b θ = a ( ϕ + θ ) a ϕ = ( b a ) θ {:[=>b theta=a(phi+theta)],[=>a phi=(b-a)theta]:}\begin{aligned} & \Rightarrow b \theta = a(\phi + \theta) \\ & \Rightarrow a \phi = (b-a) \theta \end{aligned}bθ=a(ϕ+θ)aϕ=(ba)θ
Therefore, ϕ = c θ ϕ = c θ phi^(**)=ctheta^(@)\phi^* = c \theta^{\circ}ϕ=cθ (where c = ( b a ) c = ( b a ) c=(b-a)c = (b-a)c=(ba)).
Step 2: Analyzing Acceleration of Center C C C\mathrm{C}C
The center C C C\mathrm{C}C of the moving cylinder describes a circle of radius c c ccc. Its accelerations along and perpendicular to C O C O COCOCO are c θ 2 c θ 2 ctheta^(2)c \theta^2cθ2 and c θ c θ ctheta^(@)c \theta^{\circ}cθ respectively.
The equations of motion for the moving cylinder are:
M c θ 2 = R M g cos θ (2) M c θ = F M g sin θ (3) M c θ 2 = R M g cos θ (2) M c θ = F M g sin θ (3) {:[Mctheta^(2)=R-Mg cos thetaquad(2)],[Mctheta^(**)=F-Mg sin thetaquad(3)]:}\begin{aligned} & Mc \theta^2 = R – Mg \cos \theta \quad \text{(2)} \\ & Mc \theta^* = F – Mg \sin \theta \quad \text{(3)} \end{aligned}Mcθ2=RMgcosθ(2)Mcθ=FMgsinθ(3)
Step 3: Calculating Friction Force F F FFF
For the motion relative to the center of inertia c c ccc, we have:
M k 2 ϕ = Moment of the forces about c = F a (4) M k 2 c a θ = F a F = M k 2 c a θ M k 2 ϕ = Moment of the forces about  c = F a (4) M k 2 c a θ = F a F = M k 2 c a θ {:[Mk^(2)phi^(**)=”Moment of the forces about “c=-Fa quad(4)],[Mk^(2)(c)/(a)theta^(**)=-Fa],[=>F=-Mk^(2)(c)/(a)theta^(@)]:}\begin{aligned} & M k^2 \phi^* = \text{Moment of the forces about } c = -Fa \quad \text{(4)} \\ & Mk^2 \frac{c}{a} \theta^* = -Fa \\ & \Rightarrow F = -Mk^2 \frac{c}{a} \theta^{\circ} \end{aligned}Mk2ϕ=Moment of the forces about c=Fa(4)Mk2caθ=FaF=Mk2caθ
Substituting this into equation (3), we get:
M c θ = M k 2 c a θ M g sin θ c ( 1 + k 2 a 2 ) θ = g sin θ M c θ = M k 2 c a θ M g sin θ c 1 + k 2 a 2 θ = g sin θ {:[Mctheta^(@)=-Mk^(2)(c)/(a)theta^(@)-Mg sin theta],[=>c(1+(k^(2))/(a^(2)))theta^(@)=-g sin theta]:}\begin{aligned} & Mc \theta^{\circ} = -Mk^2 \frac{c}{a} \theta^{\circ} – Mg \sin \theta \\ & \Rightarrow c\left(1+\frac{k^2}{a^2}\right) \theta^{\circ} = -g \sin \theta \end{aligned}Mcθ=Mk2caθMgsinθc(1+k2a2)θ=gsinθ
Step 4: Simplifying Angular Acceleration
Simplifying the above equation, we get:
θ = g c ( 1 + k 2 a 2 ) θ = μ θ (since θ is very small) θ = g c 1 + k 2 a 2 θ = μ θ (since  θ  is very small) {:[theta^(@)=-(g)/(c(1+(k^(2))/(a^(2))))theta],[=-mu thetaquad(since theta” is very small)”]:}\begin{aligned} & \theta^{\circ} = -\frac{g}{c\left(1+\frac{k^2}{a^2}\right)} \theta \\ & = -\mu \theta \quad \text{(since \(\theta\) is very small)} \end{aligned}θ=gc(1+k2a2)θ=μθ(since θ is very small)
Conclusion:
The length of the simple equivalent pendulum is given by:
g μ = c ( 1 + k 2 a 2 ) = ( b a ) ( 1 + k 2 a 2 ) g μ = c 1 + k 2 a 2 = ( b a ) 1 + k 2 a 2 (g)/( mu)=c(1+(k^(2))/(a^(2)))=(b-a)(1+(k^(2))/(a^(2)))\frac{g}{\mu} = c\left(1+\frac{k^2}{a^2}\right) = (b-a)\left(1+\frac{k^2}{a^2}\right)gμ=c(1+k2a2)=(ba)(1+k2a2)
Thus, the plane through the axes of the cylinders moves in a circular pendulum of length ( b a ) ( 1 + k 2 a 2 ) ( b a ) 1 + k 2 a 2 (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right)(ba)(1+k2a2).
  1. (a) हेमिल्टन समीकरण का उपयोग करते हुए, एक गोला, जो कि एक खुरदरी आनत तल (inclined plane) पर नीचे की ओर लुढ़क रहा है, का त्वरण ज्ञात करें, यदि x x xxx, तल पर निश्चित बिन्दु से गोले के सम्पर्क बिन्दु की दूरी है ।
Using Hamilton’s equation, find the acceleration for a sphere rolling down a rough inclined plane, if x x xxx be the distance of the point of contact of the sphere from a fixed point on the plane.
Answer:
Introduction:
Using Hamilton’s equation, we need to find the acceleration for a sphere rolling down a rough inclined plane. The relevant parameters are:
  • Radius of the sphere: a a aaa
  • Mass of the sphere: M M MMM
  • Angle of inclination of the plane: α α alpha\alphaα
  • Distance rolled down the plane: x x xxx
Step 1: Deriving the Relationship Between x x xxx and θ θ theta\thetaθ:
Let a sphere of radius a a aaa and mass M M MMM roll down a rough plane inclined at an angle α α alpha\alphaα starting initially from a fixed point O O OOO of the plane. In time t t ttt, let the sphere roll down a distance x x xxx and during this time, let it turn through an angle θ θ theta\thetaθ.
Since there is no slipping, we have:
x = O A = arc A B = a θ x = O A = arc  A B = a θ x=OA=”arc “AB=a thetax = OA = \text{arc } AB = a\thetax=OA=arc AB=aθ
So, x = a θ x = a θ x=a thetax = a\thetax=aθ
Step 2: Calculating Kinetic and Potential Energies:
If T T TTT and V V VVV are the kinetic and potential energies of the sphere, then:
T = 1 2 M k 2 θ 2 + 1 2 M x 2 T = 1 2 M k 2 θ 2 + 1 2 M x 2 T=(1)/(2)Mk^(2)theta^(2)+(1)/(2)Mx^(2)T = \frac{1}{2}Mk^2\theta^2 + \frac{1}{2}Mx^2T=12Mk2θ2+12Mx2
Substituting the values for k k kkk and x x xxx and simplifying:
T = 1 2 M 2 5 a 2 θ 2 + 1 2 M ( a θ ) 2 T = 1 2 M 2 5 a 2 θ 2 + 1 2 M ( a θ ) 2 T=(1)/(2)M*(2)/(5)a^(2)theta^(2)+(1)/(2)M(a theta)^(2)T = \frac{1}{2}M \cdot \frac{2}{5}a^2\theta^2 + \frac{1}{2}M(a\theta)^2T=12M25a2θ2+12M(aθ)2
T = 7 10 M x 2 T = 7 10 M x 2 T=(7)/(10)Mx^(2)T = \frac{7}{10}Mx^2T=710Mx2
And V = M g O L = M g a sin α V = M g O L = M g a sin α V=-MgOL=-Mga sin alphaV = -MgOL = -Mga\sin\alphaV=MgOL=Mgasinα (since the sphere moves down the plane).
Therefore, L = T V = 7 10 M x 2 + M g a sin α L = T V = 7 10 M x 2 + M g a sin α L=T-V=(7)/(10)Mx^(2)+Mga sin alphaL = T – V = \frac{7}{10}Mx^2 + Mga\sin\alphaL=TV=710Mx2+Mgasinα
Step 3: Calculating the Generalized Coordinate Momentum:
Here, x x xxx is the only generalized coordinate.
P x = L x = 7 5 M x P x = L x = 7 5 M x P_(x)=(del L)/(del x)=(7)/(5)MxP_x = \frac{\partial L}{\partial x} = \frac{7}{5}MxPx=Lx=75Mx
Since L L LLL does not contain t t ttt explicitly, we can define the Hamiltonian H H HHH as:
H = T + V = 7 10 M ( 5 7 M P x ) M g x sin α H = T + V = 7 10 M 5 7 M P x M g x sin α H=T+V=(7)/(10)M((5)/(7M)P_(x))-Mgx sin alphaH = T + V = \frac{7}{10}M\left(\frac{5}{7M}P_x\right) – Mgx\sin\alphaH=T+V=710M(57MPx)Mgxsinα
Simplifying:
H = 5 14 M P x 2 M g x sin α (1) H = 5 14 M P x 2 M g x sin α (1) H=(5)/(14 M)P_(x)^(2)-Mgx sin alphaquad(1)H = \frac{5}{14M}P_x^2 – Mgx\sin\alpha \quad \text{(1)}H=514MPx2Mgxsinα(1)
Step 4: Applying Hamilton’s Equations:
Hence, the two Hamilton’s equations are:
P x = H x = M g sin α (H1) P x = H x = M g sin α (H1) P_(x)^(@)=-(del H)/(del x)=Mg sin alpha-(H1)P_x^{\circ} = -\frac{\partial H}{\partial x} = Mg\sin\alpha – \text{(H1)}Px=Hx=Mgsinα(H1)
x = H P x = 5 7 M P x (H2) x = H P x = 5 7 M P x (H2) x^(@)=(del H)/(delP_(x))=(5)/(7M)P_(x)-(H2)x^{\circ} = \frac{\partial H}{\partial P_x} = \frac{5}{7M}P_x – \text{(H2)}x=HPx=57MPx(H2)
Step 5: Differentiating and Obtaining Acceleration:
Differentiating ( H2 ) ( H2 ) (“H2”)(\text{H2})(H2) and using ( H1 ) ( H1 ) (“H1”)(\text{H1})(H1), we get:
x = 5 7 M P x = 5 7 M M g sin α x = 5 7 M P x = 5 7 M M g sin α x^(@@)=(5)/(7M)P_(x)^(@)=(5)/(7M)Mg sin alphax^{\circ\circ} = \frac{5}{7M}P_x^{\circ} = \frac{5}{7M}Mg\sin\alphax=57MPx=57MMgsinα
Simplifying:
x = 5 7 g sin α x = 5 7 g sin α x^(@@)=(5)/(7)g sin alphax^{\circ\circ} = \frac{5}{7}g\sin\alphax=57gsinα
This gives us the required acceleration.
Conclusion:
The acceleration of the sphere rolling down the rough inclined plane is 5 7 g sin α 5 7 g sin α (5)/(7)g sin alpha\frac{5}{7}g\sin\alpha57gsinα.
7.(b) निम्नलिखित समीकरणों को गाउस-साईडल पुनरावृत्ति विधि से हल, दशमलव के सही तीन स्थानों तक करें :
2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 {:[2x+y-2z=17],[3x+20 y-z=-18],[2x-3y+20 z=25]:}\begin{aligned} &2 x+y-2 z=17 \\ &3 x+20 y-z=-18 \\ &2 x-3 y+20 z=25 \end{aligned}2x+y2z=173x+20yz=182x3y+20z=25
Apply Gauss-Seidel iteration method to solve the following system of equations :
2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 , correct to three decimal places. 2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 ,  correct to three decimal places.  {:[2x+y-2z=17],[3x+20 y-z=-18],[2x-3y+20 z=25″,”” correct to three decimal places. “]:}\begin{aligned} &2 x+y-2 z=17 \\ &3 x+20 y-z=-18 \\ &2 x-3 y+20 z=25, \text { correct to three decimal places. } \end{aligned}2x+y2z=173x+20yz=182x3y+20z=25, correct to three decimal places. 
Answer:
Total Equations are 3
2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 2 x + y 2 z = 17 3 x + 20 y z = 18 2 x 3 y + 20 z = 25 {:[2x+y-2z=17],[3x+20 y-z=-18],[2x-3y+20 z=25]:}\begin{aligned} & 2 x+y-2 z=17 \\ & 3 x+20 y-z=-18 \\ & 2 x-3 y+20 z=25 \end{aligned}2x+y2z=173x+20yz=182x3y+20z=25
From the above equations
x k + 1 = 1 2 ( 17 y k + 2 z k ) x k + 1 = 1 2 17 y k + 2 z k x_(k+1)=(1)/(2)(17-y_(k)+2z_(k))x_{k+1}=\frac{1}{2}\left(17-y_k+2 z_k\right)xk+1=12(17yk+2zk)
y k + 1 = 1 20 ( 18 3 x k + 1 + z k ) y k + 1 = 1 20 18 3 x k + 1 + z k y_(k+1)=(1)/(20)(-18-3x_(k+1)+z_(k))y_{k+1}=\frac{1}{20}\left(-18-3 x_{k+1}+z_k\right)yk+1=120(183xk+1+zk)
z k + 1 = 1 20 ( 25 2 x k + 1 + 3 y k + 1 ) z k + 1 = 1 20 25 2 x k + 1 + 3 y k + 1 z_(k+1)=(1)/(20)(25-2x_(k+1)+3y_(k+1))z_{k+1}=\frac{1}{20}\left(25-2 x_{k+1}+3 y_{k+1}\right)zk+1=120(252xk+1+3yk+1)
Initial gauss ( x , y , z ) = ( 0 , 0 , 0 ) ( x , y , z ) = ( 0 , 0 , 0 ) (x,y,z)=(0,0,0)(x, y, z)=(0,0,0)(x,y,z)=(0,0,0)
Solution steps are 1 st 1 st  1^(“st “)1^{\text {st }}1st  Approximation
x 1 = 1 2 [ 17 ( 0 ) + 2 ( 0 ) ] = 1 2 [ 17 ] = 8.5 x 1 = 1 2 [ 17 ( 0 ) + 2 ( 0 ) ] = 1 2 [ 17 ] = 8.5 x_(1)=(1)/(2)[17-(0)+2(0)]=(1)/(2)[17]=8.5x_1=\frac{1}{2}[17-(0)+2(0)]=\frac{1}{2}[17]=8.5x1=12[17(0)+2(0)]=12[17]=8.5
y 1 = 1 20 [ 18 3 ( 8.5 ) + ( 0 ) ] = 1 20 [ 43.5 ] = 2.175 y 1 = 1 20 [ 18 3 ( 8.5 ) + ( 0 ) ] = 1 20 [ 43.5 ] = 2.175 y_(1)=(1)/(20)[-18-3(8.5)+(0)]=(1)/(20)[-43.5]=-2.175y_1=\frac{1}{20}[-18-3(8.5)+(0)]=\frac{1}{20}[-43.5]=-2.175y1=120[183(8.5)+(0)]=120[43.5]=2.175
z 1 = 1 20 [ 25 2 ( 8.5 ) + 3 ( 2.175 ) ] = 1 20 [ 1.475 ] = 0.0738 z 1 = 1 20 [ 25 2 ( 8.5 ) + 3 ( 2.175 ) ] = 1 20 [ 1.475 ] = 0.0738 z_(1)=(1)/(20)[25-2(8.5)+3(-2.175)]=(1)/(20)[1.475]=0.0738z_1=\frac{1}{20}[25-2(8.5)+3(-2.175)]=\frac{1}{20}[1.475]=0.0738z1=120[252(8.5)+3(2.175)]=120[1.475]=0.0738
2 nd 2 nd  2^(“nd “)2^{\text {nd }}2nd  Approximation
x 2 = 1 2 [ 17 ( 2.175 ) + 2 ( 0.0738 ) ] = 1 2 [ 19.3225 ] = 9.6612 y 2 = 1 20 [ 18 3 ( 9.6612 ) + ( 0.0738 ) ] = 1 20 [ 46.91 ] = 2.3455 z 2 = 1 20 [ 25 2 ( 9.6612 ) + 3 ( 2.3455 ) ] = 1 20 [ 1.359 ] = 0.0679 x 2 = 1 2 [ 17 ( 2.175 ) + 2 ( 0.0738 ) ] = 1 2 [ 19.3225 ] = 9.6612 y 2 = 1 20 [ 18 3 ( 9.6612 ) + ( 0.0738 ) ] = 1 20 [ 46.91 ] = 2.3455 z 2 = 1 20 [ 25 2 ( 9.6612 ) + 3 ( 2.3455 ) ] = 1 20 [ 1.359 ] = 0.0679 {:[x_(2)=(1)/(2)[17-(-2.175)+2(0.0738)]=(1)/(2)[19.3225]=9.6612],[y_(2)=(1)/(20)[-18-3(9.6612)+(0.0738)]=(1)/(20)[-46.91]=-2.3455],[z_(2)=(1)/(20)[25-2(9.6612)+3(-2.3455)]=(1)/(20)[-1.359]=-0.0679]:}\begin{aligned} & x_2=\frac{1}{2}[17-(-2.175)+2(0.0738)]=\frac{1}{2}[19.3225]=9.6612 \\ & y_2=\frac{1}{20}[-18-3(9.6612)+(0.0738)]=\frac{1}{20}[-46.91]=-2.3455 \\ & z_2=\frac{1}{20}[25-2(9.6612)+3(-2.3455)]=\frac{1}{20}[-1.359]=-0.0679 \end{aligned}x2=12[17(2.175)+2(0.0738)]=12[19.3225]=9.6612y2=120[183(9.6612)+(0.0738)]=120[46.91]=2.3455z2=120[252(9.6612)+3(2.3455)]=120[1.359]=0.0679
3 r d 3 r d 3^(rd)3^{r d}3rd Approximation
x 3 = 1 2 [ 17 ( 2.3455 ) + 2 ( 0.0679 ) ] = 1 2 [ 19.2096 ] = 9.6048 y 3 = 1 20 [ 18 3 ( 9.6048 ) + ( 0.0679 ) ] = 1 20 [ 46.8824 ] = 2.3441 z 3 = 1 20 [ 25 2 ( 9.6048 ) + 3 ( 2.3441 ) ] = 1 20 [ 1.242 ] = 0.0621 x 3 = 1 2 [ 17 ( 2.3455 ) + 2 ( 0.0679 ) ] = 1 2 [ 19.2096 ] = 9.6048 y 3 = 1 20 [ 18 3 ( 9.6048 ) + ( 0.0679 ) ] = 1 20 [ 46.8824 ] = 2.3441 z 3 = 1 20 [ 25 2 ( 9.6048 ) + 3 ( 2.3441 ) ] = 1 20 [ 1.242 ] = 0.0621 {:[x_(3)=(1)/(2)[17-(-2.3455)+2(-0.0679)]=(1)/(2)[19.2096]=9.6048],[y_(3)=(1)/(20)[-18-3(9.6048)+(-0.0679)]=(1)/(20)[-46.8824]=-2.3441],[z_(3)=(1)/(20)[25-2(9.6048)+3(-2.3441)]=(1)/(20)[-1.242]=-0.0621]:}\begin{aligned} & x_3=\frac{1}{2}[17-(-2.3455)+2(-0.0679)]=\frac{1}{2}[19.2096]=9.6048 \\ & y_3=\frac{1}{20}[-18-3(9.6048)+(-0.0679)]=\frac{1}{20}[-46.8824]=-2.3441 \\ & z_3=\frac{1}{20}[25-2(9.6048)+3(-2.3441)]=\frac{1}{20}[-1.242]=-0.0621 \end{aligned}x3=12[17(2.3455)+2(0.0679)]=12[19.2096]=9.6048y3=120[183(9.6048)+(0.0679)]=120[46.8824]=2.3441z3=120[252(9.6048)+3(2.3441)]=120[1.242]=0.0621
4 th 4 th  4^(“th “)4^{\text {th }}4th  Approximation
x 4 = 1 2 [ 17 ( 2.3441 ) + 2 ( 0.0621 ) ] = 1 2 [ 19.2199 ] = 9.61 y 4 = 1 20 [ 18 3 ( 9.61 ) + ( 0.0621 ) ] = 1 20 [ 46.892 ] = 2.3446 z 4 = 1 20 [ 25 2 ( 9.61 ) + 3 ( 2.3446 ) ] = 1 20 [ 1.2537 ] = 0.0627 x 4 = 1 2 [ 17 ( 2.3441 ) + 2 ( 0.0621 ) ] = 1 2 [ 19.2199 ] = 9.61 y 4 = 1 20 [ 18 3 ( 9.61 ) + ( 0.0621 ) ] = 1 20 [ 46.892 ] = 2.3446 z 4 = 1 20 [ 25 2 ( 9.61 ) + 3 ( 2.3446 ) ] = 1 20 [ 1.2537 ] = 0.0627 {:[x_(4)=(1)/(2)[17-(-2.3441)+2(-0.0621)]=(1)/(2)[19.2199]=9.61],[y_(4)=(1)/(20)[-18-3(9.61)+(-0.0621)]=(1)/(20)[-46.892]=-2.3446],[z_(4)=(1)/(20)[25-2(9.61)+3(-2.3446)]=(1)/(20)[-1.2537]=-0.0627]:}\begin{aligned} & x_4=\frac{1}{2}[17-(-2.3441)+2(-0.0621)]=\frac{1}{2}[19.2199]=9.61 \\ & y_4=\frac{1}{20}[-18-3(9.61)+(-0.0621)]=\frac{1}{20}[-46.892]=-2.3446 \\ & z_4=\frac{1}{20}[25-2(9.61)+3(-2.3446)]=\frac{1}{20}[-1.2537]=-0.0627 \end{aligned}x4=12[17(2.3441)+2(0.0621)]=12[19.2199]=9.61y4=120[183(9.61)+(0.0621)]=120[46.892]=2.3446z4=120[252(9.61)+3(2.3446)]=120[1.2537]=0.0627
5 th 5 th  5^(“th “)5^{\text {th }}5th  Approximation
x 5 = 1 2 [ 17 ( 2.3446 ) + 2 ( 0.0627 ) ] = 1 2 [ 19.2192 ] = 9.6096 y 5 = 1 20 [ 18 3 ( 9.6096 ) + ( 0.0627 ) ] = 1 20 [ 46.8915 ] = 2.3446 z 5 = 1 20 [ 25 2 ( 9.6096 ) + 3 ( 2.3446 ) ] = 1 20 [ 1.253 ] = 0.0626 x 5 = 1 2 [ 17 ( 2.3446 ) + 2 ( 0.0627 ) ] = 1 2 [ 19.2192 ] = 9.6096 y 5 = 1 20 [ 18 3 ( 9.6096 ) + ( 0.0627 ) ] = 1 20 [ 46.8915 ] = 2.3446 z 5 = 1 20 [ 25 2 ( 9.6096 ) + 3 ( 2.3446 ) ] = 1 20 [ 1.253 ] = 0.0626 {:[x_(5)=(1)/(2)[17-(-2.3446)+2(-0.0627)]=(1)/(2)[19.2192]=9.6096],[y_(5)=(1)/(20)[-18-3(9.6096)+(-0.0627)]=(1)/(20)[-46.8915]=-2.3446],[z_(5)=(1)/(20)[25-2(9.6096)+3(-2.3446)]=(1)/(20)[-1.253]=-0.0626]:}\begin{aligned} & x_5=\frac{1}{2}[17-(-2.3446)+2(-0.0627)]=\frac{1}{2}[19.2192]=9.6096 \\ & y_5=\frac{1}{20}[-18-3(9.6096)+(-0.0627)]=\frac{1}{20}[-46.8915]=-2.3446 \\ & z_5=\frac{1}{20}[25-2(9.6096)+3(-2.3446)]=\frac{1}{20}[-1.253]=-0.0626 \end{aligned}x5=12[17(2.3446)+2(0.0627)]=12[19.2192]=9.6096y5=120[183(9.6096)+(0.0627)]=120[46.8915]=2.3446z5=120[252(9.6096)+3(2.3446)]=120[1.253]=0.0626
Solution By Gauss Seidel Method.
x = 9.6096 9.61 y = 2.3446 2.34 z = 0.0626 0.06 x = 9.6096 9.61 y = 2.3446 2.34 z = 0.0626 0.06 {:[x=9.6096~=9.61],[y=-2.3446~=-2.34],[z=-0.0626~=-0.06]:}\begin{aligned} & x=9.6096 \cong 9.61 \\ & y=-2.3446 \cong-2.34 \\ & z=-0.0626 \cong-0.06 \end{aligned}x=9.60969.61y=2.34462.34z=0.06260.06
Iterations are tabulated as below
Iteration x x x\mathbf{x}x y y y\mathbf{y}y z z z\mathbf{z}z
1 8.5 -2.175 0.0738
2 9.6612 -2.3455 -0.0679
3 9.6048 -2.3441 -0.0621
4 9.61 -2.3446 -0.0627
5 9.6096 -2.3446 -0.0626
Iteration x y z 1 8.5 -2.175 0.0738 2 9.6612 -2.3455 -0.0679 3 9.6048 -2.3441 -0.0621 4 9.61 -2.3446 -0.0627 5 9.6096 -2.3446 -0.0626| Iteration | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | | :—: | :—: | :—: | :—: | | 1 | 8.5 | -2.175 | 0.0738 | | 2 | 9.6612 | -2.3455 | -0.0679 | | 3 | 9.6048 | -2.3441 | -0.0621 | | 4 | 9.61 | -2.3446 | -0.0627 | | 5 | 9.6096 | -2.3446 | -0.0626 |
7.(c) निम्नलिखित द्वितीय कोटि के आंशिक अवकलून समीकरण को विहित रूप में समानीत करें और सामान्य हल ज्ञात करें :
2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x 2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x  ।  (del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x” । “\frac{\partial^2 u}{\partial x^2}-2 x \frac{\partial^2 u}{\partial x \partial y}+x^2 \frac{\partial^2 u}{\partial y^2}=\frac{\partial u}{\partial y}+12 x \text { । }2ux22x2uxy+x22uy2=uy+12x । 
Reduce the following second order partial differential equation to canonical form and find the general solution :
2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x 2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x (del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x\frac{\partial^2 u}{\partial x^2}-2 x \frac{\partial^2 u}{\partial x \partial y}+x^2 \frac{\partial^2 u}{\partial y^2}=\frac{\partial u}{\partial y}+12 x2ux22x2uxy+x22uy2=uy+12x
Answer:
Introduction:
We are tasked with reducing the given second-order partial differential equation to canonical form and finding the general solution. The equation is:
2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x 2 u x 2 2 x 2 u x y + x 2 2 u y 2 = u y + 12 x (del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x\frac{\partial^2 u}{\partial x^2} – 2x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial y} + 12x2ux22x2uxy+x22uy2=uy+12x
Standard Form
We start by writing the equation in standard form:
r 2 x s + x 2 t = z + 12 x ( 1 ) r 2 x s + x 2 t = z + 12 x ( 1 ) r-2xs+x^(2)t=z+12 x quad(1)r – 2xs + x^2t = z + 12x \quad (1)r2xs+x2t=z+12x(1)
Where:
  • r = 2 u x 2 r = 2 u x 2 r=(del^(2)u)/(delx^(2))r = \frac{\partial^2 u}{\partial x^2}r=2ux2
  • s = 2 u x y s = 2 u x y s=(del^(2)u)/(del x del y)s = \frac{\partial^2 u}{\partial x \partial y}s=2uxy
  • t = 2 u y 2 t = 2 u y 2 t=(del^(2)u)/(dely^(2))t = \frac{\partial^2 u}{\partial y^2}t=2uy2
  • p = 2 u r x p = 2 u r x p=(2u)/(rx)p = \frac{2u}{rx}p=2urx
  • q = u y q = u y q=(del u)/(del y)q = \frac{\partial u}{\partial y}q=uy
Comparison with Standard Equation
We compare the coefficients with the standard equation:
R r + S s + T t + f ( x , y , u , p , q ) = 0 R r + S s + T t + f ( x , y , u , p , q ) = 0 Rr+Ss+Tt+f(x,y,u,p,q)=0Rr + Ss + Tt + f(x, y, u, p, q) = 0Rr+Ss+Tt+f(x,y,u,p,q)=0
In our equation, we have:
  • R = 1 R = 1 R=1R = 1R=1
  • S = 2 x S = 2 x S=-2xS = -2xS=2x
  • T = x 2 T = x 2 T=x^(2)T = x^2T=x2
Additionally, we calculate S 2 4 R T S 2 4 R T S^(2)-4RTS^2 – 4RTS24RT:
S 2 4 R T = 4 x 2 4 x 2 = 0 S 2 4 R T = 4 x 2 4 x 2 = 0 S^(2)-4RT=4x^(2)-4x^(2)=0S^2 – 4RT = 4x^2 – 4x^2 = 0S24RT=4x24x2=0
This indicates that the equation is parabolic.
Characteristic Equation
We find the characteristic roots λ λ lambda\lambdaλ by solving the quadratic equation:
λ 2 2 x λ + x 2 = 0 λ 2 2 x λ + x 2 = 0 lambda^(2)-2x lambda+x^(2)=0\lambda^2 – 2x\lambda + x^2 = 0λ22xλ+x2=0
This equation can be factored as ( λ x ) 2 = 0 ( λ x ) 2 = 0 (lambda-x)^(2)=0(\lambda – x)^2 = 0(λx)2=0, resulting in repeated roots:
λ = x , x λ = x , x lambda=x,x\lambda = x, xλ=x,x
Characteristic Equations
The characteristic equations are given by:
d y d x + λ = 0 d y d x + λ = 0 (dy)/(dx)+lambda=0\frac{dy}{dx} + \lambda = 0dydx+λ=0
Substituting λ = x λ = x lambda=x\lambda = xλ=x:
d y d x + x = 0 d y d x + x = 0 (dy)/(dx)+x=0\frac{dy}{dx} + x = 0dydx+x=0
This equation can be integrated to obtain:
y + x 2 2 = c y + x 2 2 = c y+(x^(2))/(2)=cy + \frac{x^2}{2} = cy+x22=c
We choose m = y + x 2 2 m = y + x 2 2 m=y+(x^(2))/(2)m = y + \frac{x^2}{2}m=y+x22 and n = x n = x n=xn = xn=x as independent functions.
Independence of m m mmm and n n nnn
To confirm the independence of m m mmm and n n nnn, we calculate the determinant of the Jacobian:
| m x m y n x n y | = | x 1 1 0 | = 1 0 m x m y n x n y = x 1 1 0 = 1 0 |[(del m)/(del x),(del m)/(del y)],[(del n)/(del x),(del n)/(del y)]|=|[x,1],[1,0]|=-1!=0\left|\begin{array}{ll} \frac{\partial m}{\partial x} & \frac{\partial m}{\partial y} \\ \frac{\partial n}{\partial x} & \frac{\partial n}{\partial y} \end{array}\right| = \left|\begin{array}{ll} x & 1 \\ 1 & 0 \end{array}\right| = -1 \neq 0|mxmynxny|=|x110|=10
Since the determinant is nonzero, m m mmm and n n nnn are indeed independent functions.
Expressing p p ppp, q q qqq, r r rrr, and t t ttt
p = u x = u m m x + u n u x = x u m + u n q = u y = u m m y + u n n y = u m r = 2 u x 2 = p x = x ( x u m ) + x ( u x ) = u m + x [ m ( u m ) m x + n ( u m ) m x ] + [ m ( u n ) m x + n ( u n ) n x ] r = u m + x 2 2 u m 2 + x 2 u x y + x 2 u m n + 2 u n 2 t = 2 u y 2 = q y = m ( u m ) m y + n ( u m ) m y = 2 u m 2 s = 2 u x y = q x = m ( u m ) m x + n ( u n ) n x = 2 u m 2 + 2 u m n p = u x = u m m x + u n u x = x u m + u n q = u y = u m m y + u n n y = u m r = 2 u x 2 = p x = x x u m + x u x = u m + x m u m m x + n u m m x + m u n m x + n u n n x r = u m + x 2 2 u m 2 + x 2 u x y + x 2 u m n + 2 u n 2 t = 2 u y 2 = q y = m u m m y + n u m m y = 2 u m 2 s = 2 u x y = q x = m u m m x + n u n n x = 2 u m 2 + 2 u m n {:[p=(del u)/(del x)=(del u)/(del m)(del m)/(del x)+(del u)/(del n)(del u)/(del x)=x(del u)/(del m)+(del u)/(del n)],[q=(del u)/(del y)=(del u)/(del m)(del m)/(del y)+(del u)/(del n)(del n)/(del y)=(del u)/(del m)],[r=(del^(2)u)/(delx^(2))=(del p)/(del x)=(del)/(del x)(x(del u)/(del m))+(del)/(del x)((del u)/(del x))],[=(del u)/(del m)+x[(del)/(del m)((del u)/(del m))(del m)/(del x)+(del)/(del n)((del u)/(del m))(del m)/(del x)]+[(del)/(del m)((del u)/(del n))(del m)/(del x)+(del)/(del n)((del u)/(del n))(del n)/(del x)]],[r=(del u)/(del m)+(x^(2)del^(2)u)/(delm^(2))+x(del^(2)u)/(del x del y)+x(del^(2)u)/(del m del n)+(del^(2)u)/(deln^(2))],[t=(del^(2)u)/(dely^(2))=(del q)/(del y)=(del)/(del m)((del u)/(del m))(del m)/(del y)+(del)/(del n)((del u)/(del m))(del m)/(del y)=(del^(2)u)/(delm^(2))],[s=(del^(2)u)/(del x del y)=(del q)/(del x)=(del)/(del m)((del u)/(del m))(del m)/(del x)+(del)/(del n)((del u)/(del n))(del n)/(del x)=(del^(2)u)/(delm^(2))+(del^(2)u)/(del m del n)]:}\begin{aligned} p & =\frac{\partial u}{\partial x}=\frac{\partial u}{\partial m} \frac{\partial m}{\partial x}+\frac{\partial u}{\partial n} \frac{\partial u}{\partial x}=x \frac{\partial u}{\partial m}+\frac{\partial u}{\partial n} \\ q & =\frac{\partial u}{\partial y}=\frac{\partial u}{\partial m} \frac{\partial m}{\partial y}+\frac{\partial u}{\partial n} \frac{\partial n}{\partial y}=\frac{\partial u}{\partial m} \\ r & =\frac{\partial^2 u}{\partial x^2}=\frac{\partial p}{\partial x}=\frac{\partial}{\partial x}\left(x \frac{\partial u}{\partial m}\right)+\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right) \\ & =\frac{\partial u}{\partial m}+x\left[\frac{\partial}{\partial m}\left(\frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial x}+\frac{\partial}{\partial n}\left(\frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial x}\right]+\left[\frac{\partial}{\partial m}\left(\frac{\partial u}{\partial n}\right) \frac{\partial m}{\partial x}+\frac{\partial}{\partial n}\left(\frac{\partial u}{\partial n}\right) \frac{\partial n}{\partial x}\right] \\ r & =\frac{\partial u}{\partial m}+\frac{x^2 \partial^2 u}{\partial m^2}+x \frac{\partial^2 u}{\partial x \partial y}+x \frac{\partial^2 u}{\partial m \partial n}+\frac{\partial^2 u}{\partial n^2} \\ t & =\frac{\partial^2 u}{\partial y^2}=\frac{\partial q}{\partial y}=\frac{\partial}{\partial m}\left(\frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial y}+\frac{\partial}{\partial n}\left(\frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial y}=\frac{\partial^2 u}{\partial m^2} \\ s & =\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial q}{\partial x}=\frac{\partial}{\partial m}\left(\frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial x}+\frac{\partial}{\partial n}\left(\frac{\partial u}{\partial n}\right) \frac{\partial n}{\partial x}=\frac{\partial^2 u}{\partial m^2}+\frac{\partial^2 u}{\partial m \partial n} \end{aligned}p=ux=ummx+unux=xum+unq=uy=ummy+unny=umr=2ux2=px=x(xum)+x(ux)=um+x[m(um)mx+n(um)mx]+[m(un)mx+n(un)nx]r=um+x22um2+x2uxy+x2umn+2un2t=2uy2=qy=m(um)my+n(um)my=2um2s=2uxy=qx=m(um)mx+n(un)nx=2um2+2umn
Equation (1) becomes
u m + ( x 2 ) 2 u m 2 + ( 2 x ) 2 u m n + 2 u n 2 ( 2 x 2 ) 2 u m 2 ( 2 x ) 2 m n + ( x 2 ) 2 u m 2 = u m + 12 x 2 u n 2 = 12 x u m + x 2 2 u m 2 + ( 2 x ) 2 u m n + 2 u n 2 2 x 2 2 u m 2 ( 2 x ) 2 m n + x 2 2 u m 2 = u m + 12 x 2 u n 2 = 12 x {:[(del u)/(del m)+(x^(2))(del^(2)u)/(delm^(2))+(2x)(del^(2)u)/(del m del n)+(del^(2)u)/(deln^(2))-(2x^(2))(del^(2)u)/(delm^(2))-(2x)(del^(2))/(del m del n)+(x^(2))(del^(2)u)/(delm^(2))=(del u)/(del m)+12 x],[(del^(2)u)/(deln^(2))=12 x]:}\begin{aligned} & \frac{\partial u}{\partial m}+\left(x^2\right) \frac{\partial^2 u}{\partial m^2}+(2 x) \frac{\partial^2 u}{\partial m \partial n}+\frac{\partial^2 u}{\partial n^2}-\left(2 x^2\right) \frac{\partial^2 u}{\partial m^2}-(2 x) \frac{\partial^2}{\partial m \partial n}+\left(x^2\right) \frac{\partial^2 u}{\partial m^2}=\frac{\partial u}{\partial m}+12 x \\ & \frac{\partial^2 u}{\partial n^2}=12 x \end{aligned}um+(x2)2um2+(2x)2umn+2un2(2x2)2um2(2x)2mn+(x2)2um2=um+12x2un2=12x
Now the general solution
2 u n 2 = 12 x ; m = y + x 2 2 ; n = x 2 u n 2 = 12 x ; m = y + x 2 2 ; n = x (del^(2)u)/(deln^(2))=12 x;m=y+(x^(2))/(2);n=x\frac{\partial^2 u}{\partial n^2}=12 x ; m=y+\frac{x^2}{2} ; n=x2un2=12x;m=y+x22;n=x
By integrating u n = 12 x 2 2 + f ( m ) , d n = d x u n = 12 x 2 2 + f ( m ) , d n = d x (del u)/(del n)=(12x^(2))/(2)+f(m),dn=dx\frac{\partial u}{\partial n}=\frac{12 x^2}{2}+f(m), \mathbf{d} n=\mathbf{d} xun=12x22+f(m),dn=dx
u x = 6 x 2 + f ( m ) u = 6 x 3 3 + x f ( m ) + g ( m ) u = 2 x 3 + x f ( y + x 2 2 ) + g ( y + x 2 2 ) u x = 6 x 2 + f ( m ) u = 6 x 3 3 + x f ( m ) + g ( m ) u = 2 x 3 + x f y + x 2 2 + g y + x 2 2 {:[(del u)/(del x)=6x^(2)+f(m)],[u=(6x^(3))/(3)+xf(m)+g(m)],[u=2x^(3)+xf(y+(x^(2))/(2))+g(y+(x^(2))/(2))]:}\begin{aligned} & \frac{\partial u}{\partial x}=6 x^2+f(m) \\ & u=\frac{6 x^3}{3}+x f(m)+g(m) \\ & u=2 x^3+x f\left(y+\frac{x^2}{2}\right)+g\left(y+\frac{x^2}{2}\right) \end{aligned}ux=6x2+f(m)u=6x33+xf(m)+g(m)u=2x3+xf(y+x22)+g(y+x22)
Conclusion:
We have successfully reduced the given second-order partial differential equation to canonical form and found the general solution, which is expressed as:
u = 2 x 3 + x f ( y + x 2 2 ) + g ( y + x 2 2 ) u = 2 x 3 + x f y + x 2 2 + g y + x 2 2 u=2x^(3)+xf(y+(x^(2))/(2))+g(y+(x^(2))/(2))u = 2x^3 + xf\left(y + \frac{x^2}{2}\right) + g\left(y + \frac{x^2}{2}\right)u=2x3+xf(y+x22)+g(y+x22)
8.(a) दिये गये बूलीय व्यंजक के लिए
X = A B + A B C + A B ¯ C ¯ + A C ¯ X = A B + A B C + A B ¯ C ¯ + A C ¯ X=AB+ABC+A bar(B) bar(C)+A bar(C)X=A B+A B C+A \bar{B} \bar{C}+A \bar{C}X=AB+ABC+AB¯C¯+AC¯
(i) व्यंजक के लिये तार्किक आरेख खींचें ।
(ii) व्यंजक न्यूनतम करें ।
(iii) समानीत व्यंजक के लिये तार्किक आरेख खींचें ।
Given the Boolean expression
X = A B + A B C + A B ¯ C ¯ + A C ¯ X = A B + A B C + A B ¯ C ¯ + A C ¯ X=AB+ABC+A bar(B) bar(C)+A bar(C)X=A B+A B C+A \bar{B} \bar{C}+A \bar{C}X=AB+ABC+AB¯C¯+AC¯
(i) Draw the logical diagram for the expression.
(ii) Minimize the expression.
(iii) Draw the logical diagram for the reduced expression.
Answer:
(i) Draw the logical diagram for the expression.
original image
Part (ii): Minimize the Expression
To minimize the expression, we can use Boolean algebraic rules. The given expression is:
X = A B + A B C + A B ¯ C ¯ + A C ¯ X = A B + A B C + A B ¯ C ¯ + A C ¯ X=AB+ABC+A bar(B) bar(C)+A bar(C)X=A B+A B C+A \bar{B} \bar{C}+A \bar{C}X=AB+ABC+AB¯C¯+AC¯
Let’s substitute the values:
X = A ( B + B C ) + A ( B ¯ C ¯ + C ¯ ) X = A ( B + B C ) + A ( B ¯ C ¯ + C ¯ ) X=A(B+BC)+A( bar(B) bar(C)+ bar(C))X=A(B+B C)+A(\bar{B} \bar{C}+\bar{C})X=A(B+BC)+A(B¯C¯+C¯)
After Calculating, we get:
X = A ( B ( 1 + C ) ) + A ( C ¯ ( 1 + B ¯ ) ) X = A ( B ( 1 + C ) ) + A ( C ¯ ( 1 + B ¯ ) ) X=A(B(1+C))+A( bar(C)(1+ bar(B)))X=A(B(1+C))+A(\bar{C}(1+\bar{B}))X=A(B(1+C))+A(C¯(1+B¯))
After Calculating, we get:
X = A ( B ) + A ( C ¯ ) X = A ( B ) + A ( C ¯ ) X=A(B)+A( bar(C))X=A(B)+A(\bar{C})X=A(B)+A(C¯)
After Calculating, we get:
X = A B + A C ¯ X = A B + A C ¯ X=AB+A bar(C)X=A B+A \bar{C}X=AB+AC¯
(iii) Draw the logical diagram for the reduced expression.
original image
8.(b) एक त्रिज्या R R RRR का गोला, जिसका केन्द्र स्थिर है वह घनत्व ρ ρ rho\rhoρ के एक अनंत असंपीडय तरल में त्रिज्यत:
कंपन करता है.। अगर अनंत पर दबाव Π Π Pi\PiΠ हो, तो दर्शाएं कि गोले की सतह पर किसी समय t t ttt पर दाब Π + 1 2 ρ { d 2 R 2 d t 2 + ( d R d t ) 2 } Π + 1 2 ρ d 2 R 2 d t 2 + d R d t 2 Pi+(1)/(2)rho{(d^(2)R^(2))/(dt^(2))+((dR)/(dt))^(2)}\Pi+\frac{1}{2} \rho\left\{\frac{d^2 R^2}{d t^2}+\left(\frac{d R}{d t}\right)^2\right\}Π+12ρ{d2R2dt2+(dRdt)2} होगा ।
A sphere of radius R R RRR, whose centre is at rest, vibrates radially in an infinite incompressible fluid of density ρ ρ rho\rhoρ, which is at rest at infinity. If the pressure at infinity is Π Π Pi\PiΠ, so that the pressure at the surface of the sphere at time t t ttt is
Π + 1 2 ρ { d 2 R 2 d t 2 + ( d R d t ) 2 } Π + 1 2 ρ d 2 R 2 d t 2 + d R d t 2 Pi+(1)/(2)rho{(d^(2)R^(2))/(dt^(2))+((dR)/(dt))^(2)}\Pi+\frac{1}{2} \rho\left\{\frac{d^2 R^2}{d t^2}+\left(\frac{d R}{d t}\right)^2\right\}Π+12ρ{d2R2dt2+(dRdt)2}
Answer:
In the incompressible liquid, outside the sphere, the fluid velocity q ¯ q ¯ bar(q)\bar{q}q¯ will be radial and thus will be a function of r r rrr, the radial distance from the centre of the sphere (the origin), and time t only.
The equation of continuity in spherical polar co-ordinates becomes
1 r 2 d dr ( r 2 u ) = 0 ( 1 ) q = ( u , 0 , 0 ) , u = u ( r , t ) , ( r , 0 , 0 ) q = 1 r 2 r ( r 2 u ) . 1 r 2 d dr r 2 u = 0 ( 1 ) q ¯ = ( u , 0 , 0 ) , u = u ( r , t ) , r , 0 , 0 q ¯ = 1 r 2 r r 2 u . {:[(1)/(r^(2))(d)/(dr)(r^(2)u)=0—-(1)],[:’ bar(q)=(u”,”0″,”0)”,”u=u(r”,”t)”,”grad-=((del)/(delr),0,0)],[grad* bar(q)=(1)/(r^(2))(del)/(delr)(r^(2)u).]:}\begin{gathered} \frac{1}{\mathrm{r}^2} \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r}^2 \mathrm{u}\right)=0 —-(1)\\ \because \overline{\mathrm{q}}=(\mathrm{u}, 0,0), \mathrm{u}=\mathrm{u}(\mathrm{r}, \mathrm{t}), \nabla \equiv\left(\frac{\partial}{\partial \mathrm{r}}, 0,0\right) \\ \nabla \cdot \overline{\mathrm{q}}=\frac{1}{\mathrm{r}^2} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r}^2 \mathrm{u}\right) . \end{gathered}1r2ddr(r2u)=0(1)q=(u,0,0),u=u(r,t),(r,0,0)q=1r2r(r2u).
i.e. sphericalsymmetry
r 2 u = constant = f ( t ) r 2 u =  constant  = f ( t ) =>r^(2)u=” constant “=f(t)\Rightarrow \mathrm{r}^2 \mathrm{u}=\text { constant }=\mathrm{f}(\mathrm{t})r2u= constant =f(t)
On the surface of the sphere,
Therefore,
r = R , u = R ˙ r = R , u = R ˙ r=R,u=R^(˙)\mathrm{r}=\mathrm{R}, \mathrm{u}=\dot{\mathrm{R}}r=R,u=R˙
and thus
f ( t ) = R 2 R ˙ f ( t ) = R 2 R ˙ f(t)=R^(2)R^(˙)\mathrm{f}(\mathrm{t})=\mathrm{R}^2 \dot{\mathrm{R}}f(t)=R2R˙
r 2 u = R 2 R ˙ ( 2 ) r 2 u = R 2 R ˙ ( 2 ) r^(2)u=R^(2)R^(˙)—-(2)\mathrm{r}^2 \mathrm{u}=\mathrm{R}^2 \dot{\mathrm{R}}—-(2)r2u=R2R˙(2)
original image
We observe that u 0 u 0 urarr0\mathrm{u} \rightarrow 0u0 as n n nrarr oo\mathrm{n} \rightarrow \inftyn, as required.
From (1), it is clear that curl q = 0 q ¯ = 0 ¯ bar(q)= bar(0)\overline{\mathrm{q}}=\overline{0}q=0
=>\Rightarrow the motion is irrotational and q = ϕ q ¯ = ϕ bar(q)=-grad phi\overline{\mathrm{q}}=-\nabla \phiq=ϕ
u = ϕ r ϕ r = f r 2 | F r o m ( 2 ) ϕ = f / r ( 3 ) u = ϕ r ϕ r = f r 2 | F r o m ( 2 ) ϕ = f / r ( 3 ) {:[=>u=-(del phi)/(delr)=>-(del phi)/(delr)=(f)/(r^(2))—-|From(2)],[=>phi=f//r—-(3)]:}\begin{aligned} & \Rightarrow \mathrm{u}=-\frac{\partial \phi}{\partial \mathrm{r}} \Rightarrow-\frac{\partial \phi}{\partial \mathrm{r}}=\frac{\mathrm{f}}{\mathrm{r}^2} —-| From (2)\\ & \Rightarrow \phi=\mathrm{f} / \mathrm{r}—-(3) \end{aligned}u=ϕrϕr=fr2|From(2)ϕ=f/r(3)
The pressure equation for irrotational non-steady fluid motion in the absence of body forces is
p ρ + 1 2 q 2 ϕ t = C ( t ) p ρ + 1 2 q ¯ 2 ϕ t = C ( t ) (p)/(rho)+(1)/(2) bar(q)^(2)-(del phi)/(delt)=C(t)\frac{\mathrm{p}}{\rho}+\frac{1}{2} \overline{\mathrm{q}}^2-\frac{\partial \phi}{\partial \mathrm{t}}=\mathrm{C}(\mathrm{t})pρ+12q2ϕt=C(t)
i.e. p ρ + 1 2 u 2 ϕ t = C ( t ) ( 4 ) p ρ + 1 2 u 2 ϕ t = C ( t ) ( 4 ) (p)/( rho)+(1)/(2)u^(2)-(del phi)/(del t)=C(t)—-(4)\frac{p}{\rho}+\frac{1}{2} u^2-\frac{\partial \phi}{\partial t}=C(t)—-(4)pρ+12u2ϕt=C(t)(4).
where C ( t ) C ( t ) C(t)C(t)C(t) is a function of time t t ttt.
As r , p Π , u = f / r 2 0 , ϕ 0 r , p Π , u = f / r 2 0 , ϕ 0 rrarr oo,prarr Pi,u=f//r^(2)rarr0,phi rarr0\mathrm{r} \rightarrow \infty, \mathrm{p} \rightarrow \Pi, \mathrm{u}=\mathrm{f} / \mathrm{r}^2 \rightarrow 0, \phi \rightarrow 0r,pΠ,u=f/r20,ϕ0
so that C ( t ) = Π / ρ C ( t ) = Π / ρ C(t)=Pi//rho\mathrm{C}(\mathrm{t})=\Pi / \rhoC(t)=Π/ρ for all t t t\mathrm{t}t—-(5)
Therefore, from (2), (3), (4) and (5), we get
p ρ = Π ρ + t ( f / r ) 1 2 ( R 2 R ˙ r 2 ) 2 ( 6 ) But f t = d dt ( R 2 R ˙ ) = R ¨ R 2 + 2 R R ˙ 2 p ρ = Π ρ + t ( f / r ) 1 2 R 2 R ˙ r 2 2 ( 6 ) But f t = d dt R 2 R ˙ = R ¨ R 2 + 2 R R ˙ 2 {:[(p)/(rho)=(Pi )/(rho)+(del)/(delt)(f//r)-(1)/(2)((R^(2)(R^(˙)))/(r^(2)))^(2)—-(6)],[“But”(delf)/(delt)=(d)/(dt)(R^(2)(R^(˙)))=R^(¨)R^(2)+2RR^(˙)^(2)]:}\begin{aligned} & \frac{\mathrm{p}}{\rho}=\frac{\Pi}{\rho}+\frac{\partial}{\partial \mathrm{t}}(\mathrm{f} / \mathrm{r})-\frac{1}{2}\left(\frac{\mathrm{R}^2 \dot{\mathrm{R}}}{\mathrm{r}^2}\right)^2—-(6) \\ & \text{But}\frac{\partial \mathrm{f}}{\partial \mathrm{t}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{R}^2 \dot{\mathrm{R}}\right)=\ddot{\mathrm{R}} \mathrm{R}^2+2 \mathrm{R} \dot{\mathrm{R}}^2 \end{aligned}pρ=Πρ+t(f/r)12(R2R˙r2)2(6)Butft=ddt(R2R˙)=R¨R2+2RR˙2
At the surface of the sphere, we have r = R r = R r=Rr=Rr=R and equation (6) gives
p ρ = Π ρ + 1 R ( 2 R R ˙ 2 + R ¨ R 2 ) 1 2 R ˙ 2 p ρ = Π ρ + 2 R ˙ 2 + R R ¨ 1 2 R ˙ 2 = Π ρ + 1 2 ( 3 R ˙ 2 + 2 R R ¨ ) ( 7 ) p ρ = Π ρ + 1 R 2 R R ˙ 2 + R ¨ R 2 1 2 R ˙ 2 p ρ = Π ρ + 2 R ˙ 2 + R R ¨ 1 2 R ˙ 2 = Π ρ + 1 2 3 R ˙ 2 + 2 R R ¨ ( 7 ) {:[(p)/(rho)=(Pi )/(rho)+(1)/(R)(2RR^(˙)^(2)+(R^(¨))R^(2))-(1)/(2)R^(˙)^(2)],[=>quad(p)/(rho)=(Pi )/(rho)+2R^(˙)^(2)+RR^(¨)-(1)/(2)R^(˙)^(2)],[=(Pi )/(rho)+(1)/(2)(3R^(˙)^(2)+2R(R^(¨)))—-(7)]:}\begin{aligned} \frac{\mathrm{p}}{\rho} & =\frac{\Pi}{\rho}+\frac{1}{\mathrm{R}}\left(2 \mathrm{R} \dot{\mathrm{R}}^2+\ddot{\mathrm{R}} \mathrm{R}^2\right)-\frac{1}{2} \dot{\mathrm{R}}^2 \\ \Rightarrow \quad \frac{\mathrm{p}}{\rho} & =\frac{\Pi}{\rho}+2 \dot{\mathrm{R}}^2+\mathrm{R} \ddot{\mathrm{R}}-\frac{1}{2} \dot{\mathrm{R}}^2 \\ & =\frac{\Pi}{\rho}+\frac{1}{2}\left(3 \dot{\mathrm{R}}^2+2 \mathrm{R} \ddot{\mathrm{R}}\right)—-(7) \end{aligned}pρ=Πρ+1R(2RR˙2+R¨R2)12R˙2pρ=Πρ+2R˙2+RR¨12R˙2=Πρ+12(3R˙2+2RR¨)(7)
Now,
d 2 ( R 2 ) dt 2 + ( R ˙ ) 2 = d dt ( 2 R R ˙ ) + ( R ˙ ) 2 = ( 2 R R ¨ + 2 R ˙ 2 ) + R ˙ 2 = 2 R R ¨ + 3 R ˙ 2 d 2 R 2 dt 2 + ( R ˙ ) 2 = d dt ( 2 R R ˙ ) + ( R ˙ ) 2 = 2 R R ¨ + 2 R ˙ 2 + R ˙ 2 = 2 R R ¨ + 3 R ˙ 2 {:[(d^(2)(R^(2)))/(dt^(2))+(R^(˙))^(2)=(d)/(dt)(2RR^(˙))+(R^(˙))^(2)],[=(2R(R^(¨))+2R^(˙)^(2))+R^(˙)^(2)],[=2RR^(¨)+3R^(˙)^(2)]:}\begin{aligned} \frac{\mathrm{d}^2\left(\mathrm{R}^2\right)}{\mathrm{dt}^2}+(\dot{\mathrm{R}})^2 & =\frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{R} \dot{\mathrm{R}})+(\dot{\mathrm{R}})^2 \\ & =\left(2 \mathrm{R} \ddot{\mathrm{R}}+2 \dot{\mathrm{R}}^2\right)+\dot{\mathrm{R}}^2 \\ & =2 \mathrm{R} \ddot{\mathrm{R}}+3 \dot{\mathrm{R}}^2 \end{aligned}d2(R2)dt2+(R˙)2=ddt(2RR˙)+(R˙)2=(2RR¨+2R˙2)+R˙2=2RR¨+3R˙2
Therefore, from (7), we obtain
p = Π + 1 2 ρ [ d 2 ( R 2 ) dt 2 + ( dR dt ) 2 ] p = Π + 1 2 ρ d 2 R 2 dt 2 + dR dt 2 p=Pi+(1)/(2)rho[(d^(2)(R^(2)))/(dt^(2))+((dR)/(dt))^(2)]\mathrm{p}=\Pi+\frac{1}{2} \rho\left[\frac{\mathrm{d}^2\left(\mathrm{R}^2\right)}{\mathrm{dt}^2}+\left(\frac{\mathrm{dR}}{\mathrm{dt}}\right)^2\right]p=Π+12ρ[d2(R2)dt2+(dRdt)2]
Hence the result.
  1. (c) दो स्त्रोतों, प्रत्येक m m mmm शक्ति का ( a , 0 ) , ( a , 0 ) ( a , 0 ) , ( a , 0 ) (-a,0),(a,0)(-a, 0),(a, 0)(a,0),(a,0) बिन्दुओं पर तथा 2 m 2 m 2m2 m2m शक्ति का सिन्क मूल बिन्दु पर स्थित है। दर्शाएं कि धारा-रेखाएं वक्र ( x 2 + y 2 ) 2 = a 2 ( x 2 y 2 + λ x y ) x 2 + y 2 2 = a 2 x 2 y 2 + λ x y (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right)(x2+y2)2=a2(x2y2+λxy) हैं । यहां λ λ lambda\lambdaλ चर एक पैरामीटर है ।
    और ये भी दर्शाएं कि तरल गति किसी भी बिन्दु पर ( 2 m a 2 ) / ( r 1 r 2 r 3 ) 2 m a 2 / r 1 r 2 r 3 (2ma^(2))//(r_(1)r_(2)r_(3))\left(2 m a^2\right) /\left(r_1 r_2 r_3\right)(2ma2)/(r1r2r3) है, जहां r 1 , r 2 , r 3 r 1 , r 2 , r 3 r_(1),r_(2),r_(3)r_1, r_2, r_3r1,r2,r3 सोतों से और सिंक से बिन्दुओं की क्रमशः दूरिया हैं।
Two sources, each of strength m m mmm, are placed at the points ( a , 0 ) , ( a , 0 ) ( a , 0 ) , ( a , 0 ) (-a,0),(a,0)(-a, 0),(a, 0)(a,0),(a,0) and a sink of strength 2 m 2 m 2m2 m2m at origin. Show that the stream lines are the curves ( x 2 + y 2 ) 2 = a 2 ( x 2 y 2 + λ x y ) x 2 + y 2 2 = a 2 x 2 y 2 + λ x y (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right)(x2+y2)2=a2(x2y2+λxy), where λ λ lambda\lambdaλ is a variable parameter.
Show also that the fluid speed at any point is ( 2 m a 2 ) / ( r 1 r 2 r 3 ) 2 m a 2 / r 1 r 2 r 3 (2ma^(2))//(r_(1)r_(2)r_(3))\left(2 m a^2\right) /\left(r_1 r_2 r_3\right)(2ma2)/(r1r2r3), where r 1 , r 2 r 1 , r 2 r_(1),r_(2)r_1, r_2r1,r2 and r 3 r 3 r_(3)r_3r3 are the distances of the points from the sources and the sink, respectively.
Answer:
Introduction:
Two sources, each of strength m m mmm, are placed at the points ( a , 0 ) ( a , 0 ) (-a,0)(-a, 0)(a,0) and ( a , 0 ) ( a , 0 ) (a,0)(a, 0)(a,0), and a sink of strength 2 m 2 m 2m2m2m at the origin. We need to show that the streamlines are given by the curves ( x 2 + y 2 ) 2 = a 2 ( x 2 y 2 + λ x y ) x 2 + y 2 2 = a 2 x 2 y 2 + λ x y (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right)(x2+y2)2=a2(x2y2+λxy), where λ λ lambda\lambdaλ is a variable parameter. Additionally, we need to demonstrate that the fluid speed at any point is 2 m a 2 r 1 r 2 r 3 2 m a 2 r 1 r 2 r 3 (2ma^(2))/(r_(1)r_(2)r_(3))\frac{2ma^2}{r_1 r_2 r_3}2ma2r1r2r3, where r 1 , r 2 r 1 , r 2 r_(1),r_(2)r_1, r_2r1,r2, and r 3 r 3 r_(3)r_3r3 are the distances of the points from the sources and the sink, respectively.
Answer:
First Part: Streamlines
The complex potential w w www at any point P ( z ) P ( z ) P(z)P(z)P(z) is given by
w = m log ( z a ) m log ( z + a ) + 2 m log z (1) w = m log ( z a ) m log ( z + a ) + 2 m log z (1) w=-m log(z-a)-m log(z+a)+2m log z quad(1)w=-m \log (z-a)-m \log (z+a)+2 m \log z \quad \text{(1)}w=mlog(za)mlog(z+a)+2mlogz(1)
or
w = m [ log z 2 log ( z 2 a 2 ) ] w = m log z 2 log z 2 a 2 w=m[log z^(2)-log(z^(2)-a^(2))]w=m\left[\log z^2-\log \left(z^2-a^2\right)\right]w=m[logz2log(z2a2)]
or
ϕ + i ψ = m [ log ( x 2 y 2 + 2 i x y ) log ( x 2 y 2 a 2 + 2 i x y ) ] , as z = x + i y ϕ + i ψ = m log x 2 y 2 + 2 i x y log x 2 y 2 a 2 + 2 i x y ,  as  z = x + i y phi+i psi=m[log(x^(2)-y^(2)+2ixy)-log(x^(2)-y^(2)-a^(2)+2ixy)],” as “quad z=x+iy\phi+i \psi=m\left[\log \left(x^2-y^2+2 i x y\right)-\log \left(x^2-y^2-a^2+2 i x y\right)\right], \text { as } \quad z=x+i yϕ+iψ=m[log(x2y2+2ixy)log(x2y2a2+2ixy)], as z=x+iy
original image
Equating the imaginary parts, we have
ψ = m [ tan 1 { 2 x y / ( x 2 y 2 ) } tan 1 { 2 x y / ( x 2 y 2 a 2 ) } ] ψ = m tan 1 [ 2 a 2 x y ( x 2 + y 2 ) 2 a 2 ( x 2 y 2 ) ] , on simplification. ψ = m tan 1 2 x y / x 2 y 2 tan 1 2 x y / x 2 y 2 a 2 ψ = m tan 1 2 a 2 x y x 2 + y 2 2 a 2 x 2 y 2 ,  on simplification.  {:[psi=m[tan^(-1){2xy//(x^(2)-y^(2))}-tan^(-1){2xy//(x^(2)-y^(2)-a^(2))}]],[:.quadpsi=mtan^(-1)[(-2a^(2)xy)/((x^(2)+y^(2))^(2)-a^(2)(x^(2)-y^(2)))]”,”” on simplification. “]:}\begin{aligned} & \psi=m\left[\tan ^{-1}\left\{2 x y /\left(x^2-y^2\right)\right\}-\tan ^{-1}\left\{2 x y /\left(x^2-y^2-a^2\right)\right\}\right] \\ \therefore \quad & \psi=m \tan ^{-1}\left[\frac{-2 a^2 x y}{\left(x^2+y^2\right)^2-a^2\left(x^2-y^2\right)}\right], \text { on simplification. } \end{aligned}ψ=m[tan1{2xy/(x2y2)}tan1{2xy/(x2y2a2)}]ψ=mtan1[2a2xy(x2+y2)2a2(x2y2)], on simplification. 
The desired streamlines are given by ψ = ψ = psi=\psi=ψ= constant = m tan 1 ( 2 / λ ) = m tan 1 ( 2 / λ ) =mtan^(-1)(-2//lambda)=m \tan ^{-1}(-2 / \lambda)=mtan1(2/λ). Then we obtain ( 2 / λ ) = ( 2 a 2 x y ) / [ ( x 2 + y 2 ) 2 a 2 ( x 2 y 2 ) ] ( 2 / λ ) = 2 a 2 x y / x 2 + y 2 2 a 2 x 2 y 2 (-2//lambda)=(-2a^(2)xy)//[(x^(2)+y^(2))^(2)-a^(2)(x^(2)-y^(2))](-2 / \lambda)=\left(-2 a^2 x y\right) /\left[\left(x^2+y^2\right)^2-a^2\left(x^2-y^2\right)\right](2/λ)=(2a2xy)/[(x2+y2)2a2(x2y2)], which represents the streamlines.
Second Part: Fluid Speed
From equation (1), we have
d w d z = m z a m z + a + 2 m z = 2 a 2 m z ( z a ) ( z + a ) d w d z = m z a m z + a + 2 m z = 2 a 2 m z ( z a ) ( z + a ) (dw)/(dz)=-(m)/(z-a)-(m)/(z+a)+(2m)/(z)=-(2a^(2)m)/(z(z-a)(z+a))\frac{d w}{d z}=-\frac{m}{z-a}-\frac{m}{z+a}+\frac{2 m}{z}=-\frac{2 a^2 m}{z(z-a)(z+a)}dwdz=mzamz+a+2mz=2a2mz(za)(z+a)
Let q = | d w d z | q = d w d z q=|(dw)/(dz)|q=\left|\frac{d w}{d z}\right|q=|dwdz|. Then,
q = 2 a 2 m | z | | z a | | z + a | = 2 a 2 m r 1 r 2 r 3 q = 2 a 2 m | z | | z a | | z + a | = 2 a 2 m r 1 r 2 r 3 q=(2a^(2)m)/(|z||z-a||z+a|)=(2a^(2)m)/(r_(1)r_(2)r_(3))q=\frac{2 a^2 m}{|z||z-a||z+a|}=\frac{2 a^2 m}{r_1 r_2 r_3}q=2a2m|z||za||z+a|=2a2mr1r2r3
where
r 1 = | z a | , r 2 = | z + a | and r 3 = | z | r 1 = | z a | , r 2 = | z + a |  and  r 3 = | z | r_(1)=|z-a|,quadr_(2)=|z+a|quad” and “quadr_(3)=|z|r_1=|z-a|, \quad r_2=|z+a| \quad \text { and } \quad r_3=|z|r1=|za|,r2=|z+a| and r3=|z|
This represents the fluid speed at any point in terms of the distances r 1 , r 2 , r 1 , r 2 , r_(1),r_(2),r_1, r_2,r1,r2, and r 3 r 3 r_(3)r_3r3 from the sources and the sink.
Conclusion:
This concludes the solution to the problem. We have shown the streamlines and derived the expression for fluid speed at any point in the given configuration.
Scroll to Top
Scroll to Top