खण्ड ‘A’ SECTION ‘ AA ‘
1.(a) मान लीजिए कि GG एक परिमित समूह है और HH तथा K,GK, G के उप-समूह हैं, ऐसा कि K sub HK \subset H । दर्शाइए (G:K)=(G:H)(H:K)(G: K)=(G: H)(H: K) ।
Let GG be a finite group, HH and KK subgroups of GG such that K sub HK \subset H. Show that (G:K)=(G:H)(H:K)(G: K)=(G: H)(H: K).
Answer:
Introduction:
We are given a finite group GG and two subgroups HH and KK such that K sub HK \subset H. We are asked to prove that (G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K), where (G:K)(G: K), (G:H)(G: H), and (H:K)(H: K) are the indices of the subgroups KK, HH, and KK in GG, GG, and HH respectively.
Work/Calculations:
Definition of Index:
The index (A:B)(A: B) of a subgroup BB in a group AA is defined as the number of distinct left cosets of BB in AA. Mathematically, (A:B)=|A//B|(A: B) = |A/B|, where |A//B||A/B| is the number of distinct left cosets.
Step 1: Express (G:K)(G: K) in terms of cosets
The index (G:K)(G: K) is the number of distinct left cosets of KK in GG. Let’s denote this set of cosets as G//KG/K.
Step 2: Express (G:H)(G: H) and (H:K)(H: K) in terms of cosets
Similarly, (G:H)(G: H) is the number of distinct left cosets of HH in GG, denoted as G//HG/H, and (H:K)(H: K) is the number of distinct left cosets of KK in HH, denoted as H//KH/K.
Step 3: Relate G//KG/K with G//HG/H and H//KH/K
Each coset gKgK in G//KG/K can be uniquely expressed as hKhK where hh is in some coset gHgH in G//HG/H. Furthermore, each coset gHgH in G//HG/H contains exactly (H:K)(H: K) distinct cosets of the form hKhK in H//KH/K.
Therefore, the total number of distinct cosets gKgK in G//KG/K can be obtained by multiplying the number of distinct cosets gHgH in G//HG/H by the number of distinct cosets hKhK in H//KH/K.
Step 4: Mathematical Expression
This relationship can be mathematically expressed as:
(G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K)
Conclusion:
We have successfully proven that (G:K)=(G:H)(H:K)(G: K) = (G: H)(H: K) by relating the number of distinct left cosets of KK in GG with the number of distinct left cosets of HH in GG and KK in HH. This proves the statement for finite groups GG and subgroups HH and KK such that K sub HK \subset H.
Since lim_((x,y)rarr(1,-1))f(x,y)=f(1,-1)=0\lim_{{(x, y) \to (1, -1)}} f(x, y) = f(1, -1) = 0, the function is continuous at (1,-1)(1, -1).
Step 2: Checking Differentiability at (1,-1)(1, -1)
To check for differentiability, we need to find the partial derivatives (del f)/(del x)\frac{\partial f}{\partial x} and (del f)/(del y)\frac{\partial f}{\partial y} and check if they are continuous at (1,-1)(1, -1).
Since both partial derivatives are continuous at (1,-1)(1, -1), the function f(x,y)f(x, y) is differentiable at (1,-1)(1, -1).
Conclusion:
We have shown that the function f(x,y)f(x, y) is continuous and differentiable at the point (1,-1)(1, -1) by proving that the limit of the function as (x,y)(x, y) approaches (1,-1)(1, -1) is equal to f(1,-1)f(1, -1) and that the partial derivatives are continuous at that point.
1.(c) मूल्यांकन कीजिए :
int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,a > 0,a!=1.\int_0^{\infty} \frac{\tan ^{-1}(a x)}{x\left(1+x^2\right)} d x, a>0, a \neq 1 .
Evaluate
int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,a > 0,a!=1.\int_0^{\infty} \frac{\tan ^{-1}(a x)}{x\left(1+x^2\right)} d x, a>0, a \neq 1 .
Answer:
Introduction
The problem at hand is to evaluate the integral
int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx,quad a > 0,quad a!=1\int_0^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx, \quad a > 0, \quad a \neq 1
We will use the method of residues to solve this integral. We will consider a contour integral in the complex plane and then apply the residue theorem to find the value of the integral.
Work/Calculations
Step 1: Define the Contour Integral
Let’s consider a contour CC consisting of a line segment from epsilon\epsilon to RR along the real axis and closed by a semi-circle C_(R)C_R in the upper half-plane. Here, epsilon\epsilon is a small positive number approaching zero, and RR is a large positive number approaching infinity.
We can show that the integral along C_(R)C_R vanishes as R rarr ooR \rightarrow \infty using Jordan’s lemma. For the sake of completeness, we assume this lemma holds true for this integral.
Step 3: Find the Residues
The singularities of f(z)f(z) are at z=0z = 0 and z=+-iz = \pm i. Only the singularity at z=iz = i is enclosed by CC. The singularity at z=0z = 0 is not enclosed because the integral starts from epsilon\epsilon, a small positive number.
The residue at z=iz = i is given by:
“Residue at “z=i=lim_(z rarr i)(z-i)(tan^(-1)(az))/(z(1+z^(2)))=lim_(z rarr i)(z-i)(tan^(-1)(az))/(z(z+i)(z-i))\text{Residue at } z=i = \lim_{z \to i} (z-i) \frac{\tan^{-1}(az)}{z(1+z^2)}=\lim_{z \to i} (z-i) \frac{\tan^{-1}(az)}{z(z+i)(z-i)}
“Residue at “z=i=(tan^(-1)(ai))/(2i^(2))\text{Residue at } z=i = \frac{\tan^{-1}(ai)}{2i^2}
“Residue at “z=i=-(tan^(-1)(ai))/(2)\text{Residue at } z=i = -\frac{\tan^{-1}(ai)}{2}
Step 4: Apply the Residue Theorem
By the residue theorem, the contour integral is:
oint_(C)(tan^(-1)(az))/(z(1+z^(2)))dz=2pi i xx(-(tan^(-1)(ai))/(2))=-pi itan^(-1)(ai)\oint_C \frac{\tan^{-1}(az)}{z(1+z^2)} dz = 2\pi i \times \left(-\frac{\tan^{-1}(ai)}{2}\right) = -\pi i \tan^{-1}(ai)
Step 5: Evaluate the Original Integral
Combining Steps 2 and 4, we obtain:
int_(epsilon)^(R)(tan^(-1)(ax))/(x(1+x^(2)))dx=-(pi itan^(-1)(ai))/(2)\int_{\epsilon}^{R} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx = -\frac{\pi i \tan^{-1}(ai)}{2}
As epsilon rarr0\epsilon \rightarrow 0 and R rarr ooR \rightarrow \infty, we get:
int_(0)^(oo)(tan^(-1)(ax))/(x(1+x^(2)))dx=-(pi itan^(-1)(ai))/(2)\int_0^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^2)} dx = -\frac{\pi i \tan^{-1}(ai)}{2}
is equal to -(pi itan^(-1)(ai))/(2)-\frac{\pi i \tan^{-1}(ai)}{2} when a > 0a > 0 and a!=1a \neq 1. We used the method of residues to evaluate this integral, considering a contour in the complex plane and applying the residue theorem. The ii in the result represents the imaginary unit.
(d) मान लीजिये C\mathbb{C} में DD प्रक्षेत्र पर f(z)f(z) एक विश्लेषिक फलन है और समीकरण Im f(z)=(Re f(z))^(2),Z in D\operatorname{Im} f(z)=(\operatorname{Re} f(z))^2, Z \in D को संतुष्ट करता है । दर्शाइए कि DD में f(z)f(z) अचर है ।
Suppose f(z)f(z) is analytic function on a domain DD in ₫₫ and satisfies the equation Im f(z)=(Re f(z))^(2),Z in Df(z)=(\operatorname{Re} f(z))^2, Z \in D. Show that f(z)f(z) is constant in DD.
Answer:
Introduction
We are given that f(z)f(z) is an analytic function on a domain DD in the complex plane C\mathbb{C}. The function satisfies the equation “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2 for all z in Dz \in D. Our goal is to show that f(z)f(z) must be a constant function in DD.
Work/Calculations
Step 1: Write f(z)f(z) in terms of its real and imaginary parts
Let f(z)=u(x,y)+iv(x,y)f(z) = u(x, y) + iv(x, y), where u(x,y)u(x, y) and v(x,y)v(x, y) are the real and imaginary parts of f(z)f(z), respectively. Here, z=x+iyz = x + iy.
Step 2: Use the given condition
We are given that “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2, which translates to v(x,y)=u(x,y)^(2)v(x, y) = u(x, y)^2.
Step 3: Use the Cauchy-Riemann equations
Since f(z)f(z) is analytic, it satisfies the Cauchy-Riemann equations:
This implies that u(x,y)u(x, y) is a constant, say cc.
Step 5: Conclude that f(z)f(z) is constant
Since u(x,y)=cu(x, y) = c, it follows that v(x,y)=c^(2)v(x, y) = c^2. Therefore, f(z)=c+ic^(2)f(z) = c + ic^2, which is a constant.
Conclusion
We have shown that if f(z)f(z) is an analytic function satisfying “Im”(f(z))=(“Re”(f(z)))^(2)\text{Im}(f(z)) = (\text{Re}(f(z)))^2 for all z in Dz \in D, then f(z)f(z) must be a constant function in DD.
1.(e) ग्राफी विधि के इस्तेमाल के द्वारा रैखिक प्रोग्रामन समस्या को हल कीजिए । अधिकतमीकरण कीजिए Z=3x_(1)+2x_(2)Z=3 x_1+2 x_2 बशर्ते कि
In this linear programming problem, we aim to maximize the objective function Z=3x_(1)+2x_(2)Z = 3x_1 + 2x_2 subject to the following constraints:
x_(1)-x_(2) >= 1x_1 – x_2 \geq 1
x_(1)+x_(3) >= 3x_1 + x_3 \geq 3
x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geq 0
We will use the graphical method to solve this problem in a 3D space.
Step 1: Constraints Visualization
First, let’s visualize the constraints in a 3D space. The feasible region is the intersection of the half-spaces defined by the inequalities.
Step 2: Identifying the Feasible Region
From the graph, it’s clear that the feasible region is unbounded. This means that the objective function can take on infinitely large values, and there is no maximum value for ZZ.
Conclusion:
The feasible region for this linear programming problem is unbounded, which means that the objective function Z=3x_(1)+2x_(2)Z = 3x_1 + 2x_2 can take on infinitely large values. Therefore, the problem does not have a maximum value for ZZ under the given constraints.
(a) यदि GG और HH परिमित समूह हैं जिनकी कोटियां सापेक्षतः अभाज्य हैं, तो सिद्ध करें कि GG से HH तक केवल एक ही समाकारिता होमोमोर्फिज्म है जो कि तुच्छ है।
If GG and HH are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from GG to HH, the trivial one.
Answer:
Introduction:
We are given two finite groups GG and HH whose orders are relatively prime. We are asked to prove that there is only one homomorphism from GG to HH, which is the trivial homomorphism.
Work/Calculations:
Step 1: Definitions and Assumptions
Let |G|=n|G| = n and |H|=m|H| = m. Since GG and HH are finite groups with relatively prime orders, gcd(n,m)=1\gcd(n, m) = 1.
Let phi:G rarr H\phi: G \to H be a homomorphism.
Step 2: Properties of Homomorphism
We know that the order of phi(g)\phi(g) must divide the order of gg for any g in Gg \in G. This is because if g^(k)=e_(G)g^k = e_G in GG, then phi(g)^(k)=phi(e_(G))=e_(H)\phi(g)^k = \phi(e_G) = e_H in HH.
Step 3: Relatively Prime Orders
Since gcd(n,m)=1\gcd(n, m) = 1, the only possible order for phi(g)\phi(g) that divides both nn and mm is 1. This means that phi(g)\phi(g) must be the identity element in HH for all g in Gg \in G.
Step 4: The Trivial Homomorphism
The only homomorphism phi:G rarr H\phi: G \to H that satisfies these conditions is the trivial homomorphism, which maps every element of GG to the identity element of HH:
phi(g)=e_(H)quad”for all”quad g in G\phi(g) = e_H \quad \text{for all} \quad g \in G
Conclusion:
We have shown that if GG and HH are finite groups with relatively prime orders, then the only homomorphism from GG to HH is the trivial one, which maps every element in GG to the identity element in HH.
2.(b) समूह Z_(12)Z_{12} के सभी विभाग समूह लिखिए ।
Write down all quotient groups of the group Z_(12)Z_{12}.
Answer:
Introduction:
We are asked to find all the quotient groups of the group Z_(12)\mathbb{Z}_{12}, which is the group of integers modulo 12. The group Z_(12)\mathbb{Z}_{12} consists of the elements {0,1,2,dots,11}\{0, 1, 2, \ldots, 11\} under addition modulo 12.
Work/Calculations:
Step 1: Identify Subgroups of Z_(12)\mathbb{Z}_{12}
First, let’s identify the subgroups of Z_(12)\mathbb{Z}_{12}. The subgroups are generated by the divisors of 12. The divisors of 12 are {1,2,3,4,6,12}\{1, 2, 3, 4, 6, 12\}.
To find the quotient groups Z_(12)//H\mathbb{Z}_{12} / H, where HH is a subgroup of Z_(12)\mathbb{Z}_{12}, we need to find the cosets of each subgroup HH.
Z_(12)//(:1:)\mathbb{Z}_{12} / \langle 1 \rangle has one coset, {0}\{0\}, so it is isomorphic to Z_(1)\mathbb{Z}_1.
Z_(12)//(:2:)\mathbb{Z}_{12} / \langle 2 \rangle has two cosets, {0,2,4,6,8,10}\{0, 2, 4, 6, 8, 10\} and {1,3,5,7,9,11}\{1, 3, 5, 7, 9, 11\}, so it is isomorphic to Z_(2)\mathbb{Z}_2.
Z_(12)//(:3:)\mathbb{Z}_{12} / \langle 3 \rangle has three cosets, so it is isomorphic to Z_(3)\mathbb{Z}_3.
Z_(12)//(:4:)\mathbb{Z}_{12} / \langle 4 \rangle has four cosets, so it is isomorphic to Z_(4)\mathbb{Z}_4.
Z_(12)//(:6:)\mathbb{Z}_{12} / \langle 6 \rangle has six cosets, so it is isomorphic to Z_(6)\mathbb{Z}_6.
Step 3: List All Quotient Groups
The quotient groups are Z_(1),Z_(2),Z_(3),Z_(4),\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, and Z_(6)\mathbb{Z}_6.
Conclusion:
The quotient groups of Z_(12)\mathbb{Z}_{12} are Z_(1),Z_(2),Z_(3),Z_(4),\mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, and Z_(6)\mathbb{Z}_6.
2.(c) अवकलों का उपयोग करते हुए, f(4*1,4*9)f(4 \cdot 1,4 \cdot 9) का सन्निकट मान ज्ञात करें, जहाँ
f(x,y)=(x^(3)+x^(2)y)^((1)/(2))” है। “f(x, y)=\left(x^3+x^2 y\right)^{\frac{1}{2}} \text { है। }
Using differentials, find an approximate value of f(4*1,4.9)f(4 \cdot 1,4.9) where f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y)=\left(x^3+x^2 y\right)^{\frac{1}{2}}.
Answer:
Introduction:
In this problem, we are tasked with finding an approximate value of f(4.1,4.9)f(4.1, 4.9) where f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y) = \left(x^3 + x^2 y\right)^{\frac{1}{2}} using differentials.
Step 1: Given Function
Given the function f(x,y)=(x^(3)+x^(2)y)^((1)/(2))f(x, y) = \left(x^3 + x^2 y\right)^{\frac{1}{2}} (equation 1).
Step 2: Calculate f(4.1,4.9)f(4.1, 4.9)
We want to find f(4.1,4.9)f(4.1, 4.9) using equation (1):
2.(d) दर्शाइए कि वियुक्त विचित्र बिन्दु z_(0)z_0, फलन f(z)f(z) का mm कोटि का पोल होगा यदि और केवल यदि f(z)f(z) को f(z)=(phi(z))/((z-z_(0))^(m))f(z)=\frac{\phi(z)}{\left(z-z_0\right)^m} के रूप में लिखा जा सके, जहाँ phi(z)\phi(z) विश्लेषिक है और z_(0)z_0 पर शून्येतर है । इसके अलावा Res_(z=z_(0))f(z)=(phi^((m-1))(z_(0)))/((m-1)!)\underset{z=z_0}{\operatorname{Res}} f(z)=\frac{\phi^{(m-1)}\left(z_0\right)}{(m-1) !} यदि m >= 1m \geqslant 1 ।
Show that an isolated singular point z_(0)z_0 of a function f(z)f(z) is a pole of order mm if and only if f(z)f(z) can be written in the form f(z)=(phi(z))/((z-z_(0))^(m))f(z)=\frac{\phi(z)}{\left(z-z_0\right)^m} where phi(z)\phi(z) is analytic and non zero at z_(0)z_0.
Moreover Res_(z=z_(0))f(z)=(phi^((m-1))(z_(0)))/((m-1)!)\underset{z=z_0}{\operatorname{Res}} f(z)=\frac{\phi^{(m-1)}\left(z_0\right)}{(m-1) !} if m >= 1m \geqslant 1.
Answer:
Introduction
We are given a function f(z)f(z) with an isolated singular point at z_(0)z_0. We want to show that z_(0)z_0 is a pole of order mm if and only if f(z)f(z) can be written as f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}, where phi(z)\phi(z) is analytic and non-zero at z_(0)z_0. Additionally, we want to find the residue of f(z)f(z) at z_(0)z_0 in terms of phi(z)\phi(z) and mm.
Work/Calculations
Part 1: f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m} implies z_(0)z_0 is a pole of order mm
If f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}, where phi(z)\phi(z) is analytic and phi(z_(0))!=0\phi(z_0) \neq 0, then f(z)f(z) has a pole of order mm at z_(0)z_0 by definition.
Part 2: z_(0)z_0 is a pole of order mm implies f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}
If z_(0)z_0 is a pole of order mm for f(z)f(z), then we can write f(z)f(z) as a Laurent series around z_(0)z_0:
f(z)=sum_(n=-m)^(oo)a_(n)(z-z_(0))^(n)f(z) = \sum_{n=-m}^{\infty} a_n (z – z_0)^n
Here, a_(-m)!=0a_{-m} \neq 0 and a_(n)=0a_n = 0 for n < -mn < -m.
We can rewrite this as:
f(z)=(1)/((z-z_(0))^(m))sum_(n=0)^(oo)a_(n-m)(z-z_(0))^(n)f(z) = \frac{1}{(z – z_0)^m} \sum_{n=0}^{\infty} a_{n-m} (z – z_0)^{n}
Let phi(z)=sum_(n=0)^(oo)a_(n-m)(z-z_(0))^(n)\phi(z) = \sum_{n=0}^{\infty} a_{n-m} (z – z_0)^{n}. phi(z)\phi(z) is analytic at z_(0)z_0 and phi(z_(0))=a_(0)!=0\phi(z_0) = a_0 \neq 0.
Since phi(z)\phi(z) is analytic at z_(0)z_0, this limit is simply (phi^((m-1))(z_(0)))/((m-1)!)\frac{\phi^{(m-1)}(z_0)}{(m-1)!}.
Conclusion
We have shown that z_(0)z_0 is a pole of order mm for f(z)f(z) if and only if f(z)f(z) can be written in the form f(z)=(phi(z))/((z-z_(0))^(m))f(z) = \frac{\phi(z)}{(z – z_0)^m}, where phi(z)\phi(z) is analytic and non-zero at z_(0)z_0. Moreover, the residue of f(z)f(z) at z_(0)z_0 is (phi^((m-1))(z_(0)))/((m-1)!)\frac{\phi^{(m-1)}(z_0)}{(m-1)!} if m >= 1m \geq 1.
3.(a) f_(n)(x)=(nx)/(1+n^(2)x^(2)),AA x inR(-oo,oo)f_n(x)=\frac{n x}{1+n^2 x^2}, \forall x \in \mathbb{R}(-\infty, \infty)
n=1,2,3,dots.n=1,2,3, \ldots .
के एकसमान अभिसरण पर चर्चा कें ।
Discuss the uniform convergence of
f_(n)(x)=(nx)/(1+n^(2)x^(2)),AA x inR(-oo,oo)f_n(x)=\frac{n x}{1+n^2 x^2}, \forall x \in \mathbb{R}(-\infty, \infty)
n=1,2,3,dotsn=1,2,3, \ldots
Answer:
Introduction
We are interested in investigating the uniform convergence of the sequence of functions f_(n)(x)=(nx)/(1+n^(2)x^(2))f_n(x) = \frac{nx}{1 + n^2 x^2} for n=1,2,3,dotsn = 1, 2, 3, \ldots and x inRx \in \mathbb{R}.
Work/Calculations
Step 1: Pointwise Convergence
First, let’s find the pointwise limit of f_(n)(x)f_n(x) as n rarr oon \to \infty.
For x!=0x \neq 0, the limit is zero because the denominator grows faster than the numerator. For x=0x = 0, the function is zero for all nn. Therefore, the pointwise limit function f(x)f(x) is zero for all xx.
The supremum of |f_(n)(x)||f_n(x)| is (1)/(sqrt3)\frac{1}{\sqrt{3}} for all nn, and it does not go to zero as n rarr oon \to \infty.
Conclusion
The sequence of functions f_(n)(x)=(nx)/(1+n^(2)x^(2))f_n(x) = \frac{nx}{1 + n^2 x^2} converges pointwise to the zero function f(x)=0f(x) = 0 for all x inRx \in \mathbb{R}. However, it does not converge uniformly to f(x)f(x) because s u p|f_(n)(x)|\sup |f_n(x)| is not zero and does not go to zero as n rarr oon \to \infty.
3.(b) एकधा विधि का इस्तेमाल करते हुए रैखिक प्रोत्रामन समस्या को हल कीजिये :
न्यूनतमीकरण कीजिए Z=x_(1)+2x_(2)-3x_(3)-2x_(4)Z=x_1+2 x_2-3 x_3-2 x_4
बशर्ते कि
x_(1)+2x_(2)-3x_(3)+x_(4)=4x_1+2 x_2-3 x_3+x_4=4
x_(1)+2x_(2)+x_(3)+2x_(4)=4x_1+2 x_2+x_3+2 x_4=4
और x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0
Solve the linear programming problem using Simplex method.
Minimize Z=x_(1)+2x_(2)-3x_(3)-2x_(4)Z=x_1+2 x_2-3 x_3-2 x_4
subject to x_(1)+2x_(2)-3x_(3)+x_(4)=4x_1+2 x_2-3 x_3+x_4=4x_(1)+2x_(2)+x_(3)+2x_(4)=4x_1+2 x_2+x_3+2 x_4=4 and x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0
Answer:
{:[” Min “Z=x_(1)+2x_(2)-3x_(3)-2x_(4)],[” subject to “],[x_(1)+2x_(2)-3x_(3)+x_(4)=4],[x_(1)+2x_(2)+x_(3)+2x_(4)=4],[” and “x_(1)”,”x_(2)”,”x_(3)”,”x_(4) >= 0]:}\begin{aligned}
& \text { Min } Z=x_1+2 x_2-3 x_3-2 x_4 \\
& \text { subject to } \\
& x_1+2 x_2-3 x_3+x_4=4 \\
& x_1+2 x_2+x_3+2 x_4=4 \\
& \text { and } x_1, x_2, x_3, x_4 \geq 0
\end{aligned}
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
As the constraint-1 is of type ‘ = ‘ we should add artificial variable A_(1)A_1
As the constraint-2 is of type ‘ = ‘ we should add artificial variable A_(2)A_2
After introducing artificial variables
Negative minimum C_(j)-Z_(j)C_j-Z_j is -4M+2-4 M+2 and its column index is 2 . So, the entering variable is x_(2)x_2.
Minimum ratio is 2 and its row index is 1 . So, the leaving basis variable is A_(1)A_1. :.\therefore The pivot element is 2 .
Entering =x_(2)=x_2, Departing =A_(1)=A_1, Key Element =2=2 R_(1)(R_1( new )=R_(1)()=R_1( old )-:2) \div 2 R_(2)(R_2( new )=R_(2))=R_2 (old )-2R_(1)()-2 R_1( new ))
Negative minimum C_(j)-Z_(j)C_j-Z_j is -4M-4 M and its column index is 3 . So, the entering variable is x_(3)x_3.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is A_(2)A_2. :.\therefore The pivot element is 4 .
Entering =x_(3)=x_3, Departing =A_(2)=A_2, Key Element =4=4
{:[R_(2)(” new “)=R_(2)(” old “)-:4],[R_(1)(” new “)=R_(1)(” old “)+1.5R_(2)(” new “)]:}\begin{aligned}
& R_2(\text { new })=R_2(\text { old }) \div 4 \\
& R_1(\text { new })=R_1(\text { old })+1.5 R_2(\text { new })
\end{aligned}
Negative minimum C_(j)-Z_(j)C_j-Z_j is -3 and its column index is 4 . So, the entering variable is x_(4)x_4.
Minimum ratio is 0 and its row index is 2 . So, the leaving basis variable is x_(3)x_3. :.\therefore The pivot element is 0.25 .
Entering =x_(4)=x_4, Departing =x_(3)=x_3, Key Element =0.25=0.25
{:[R_(2)(” new “)=R_(2)(” old “)-:0.25],[R_(1)(” new “)=R_(1)(” old “)-0.875R_(2)(” new “)]:}\begin{aligned}
& R_2(\text { new })=R_2(\text { old }) \div 0.25 \\
& R_1(\text { new })=R_1(\text { old })-0.875 R_2(\text { new })
\end{aligned}
Hence, optimal solution is arrived with value of variables as :
{:[x_(1)=0″,”x_(2)=2″,”x_(3)=0″,”x_(4)=0],[” Min “Z=4]:}\begin{aligned}
& x_1=0, x_2=2, x_3=0, x_4=0 \\
& \text { Min } Z=4
\end{aligned}
3.(c) समाकल int _(c)Re(z^(2))dz\int_c \operatorname{Re}\left(z^2\right) d z का मूल्यांकन वक्र CC के साथ-साथ 0 से 2+4i2+4 i तक कें, जहाँ CC एक परवलय y=x^(2)y=x^2 है ।
Evaluate the integral int _(c)Re(z^(2))dz\int_c \operatorname{Re}\left(z^2\right) d z from 0 to 2+4i2+4 i along the curve CC where CC is a parabola y=x^(2)y=x^2.
Answer:
Introduction
We are asked to evaluate the integral int _(C)Re(z^(2))dz\int_C \operatorname{Re}(z^2) \, dz along the curve CC, which is a parabola defined by y=x^(2)y = x^2. The integral is to be evaluated from 00 to 2+4i2 + 4i.
Work/Calculations
Step 1: Parametrization of the Curve CC
The curve CC is a parabola y=x^(2)y = x^2. We can parametrize this curve using xx as the parameter:
z(t)=t+t^(2)i,quad0 <= t <= 2z(t) = t + t^2 i, \quad 0 \leq t \leq 2
Here, tt ranges from 00 to 22, which ensures that zz ranges from 00 to 2+4i2 + 4i.
Step 2: Compute dzdz
To find dzdz, we differentiate z(t)z(t) with respect to tt:
(dz)/(dt)=1+2ti\frac{dz}{dt} = 1 + 2ti
Step 3: Compute Re(z^(2))\operatorname{Re}(z^2)
The function z^(2)z^2 is given by:
z^(2)=(t+t^(2)i)^(2)=t^(2)+2t^(3)i-t^(4)=t^(2)-t^(4)+2t^(3)iz^2 = (t + t^2 i)^2 = t^2 + 2t^3 i – t^4 = t^2 – t^4 + 2t^3 i
The real part of z^(2)z^2 is Re(z^(2))=t^(2)-t^(4)\operatorname{Re}(z^2) = t^2 – t^4.
The value of the integral int _(C)Re(z^(2))dz\int_C \operatorname{Re}(z^2) \, dz along the curve CC from 00 to 2+4i2 + 4i is -(56)/(15)-(40 i)/(3)-\frac{56}{15} – \frac{40i}{3}.
3.(d) मानिए कि aa, यूक्लिडीयन वलय RR का एक अखंडनीय अवयव है तब सिद्ध करें कि R//(a)R /(a) एक क्षेत्र है।
Let aa be an irreducible element of the Euclidean ring RR, then prove that R//(a)R /(a) is a field.
Answer:
Introduction
In this problem, we are given that aa is an irreducible element in a Euclidean ring RR. We are tasked with proving that the quotient ring R//(a)R/(a) is a field.
Work/Calculations
Step 1: Definitions and Preliminaries
A Euclidean ring RR is an integral domain with a Euclidean function d:R rarrNd: R \to \mathbb{N} satisfying certain properties.
An element a in Ra \in R is said to be irreducible if it is not a unit and cannot be expressed as a product of two non-unit elements.
A field is a commutative ring with unity where every non-zero element has a multiplicative inverse.
Step 2: aa is Irreducible =>a\Rightarrow a is Prime
In a Euclidean domain, every irreducible element is prime. Therefore, aa is a prime element in RR.
Step 3: aa is Prime =>(a)\Rightarrow (a) is a Prime Ideal
For a prime element aa, the ideal generated by aa, denoted (a)(a), is a prime ideal. This means that if ab in(a)ab \in (a), then either a in(a)a \in (a) or b in(a)b \in (a).
Step 4: (a)(a) is a Prime Ideal =>R//(a)\Rightarrow R/(a) is an Integral Domain
The quotient ring R//(a)R/(a) is an integral domain if (a)(a) is a prime ideal.
Step 5: R//(a)R/(a) is an Integral Domain =>R//(a)\Rightarrow R/(a) is a Field
In a Euclidean domain, every non-zero, non-unit element can be uniquely factored into irreducible elements. Since aa is irreducible, the only elements in R//(a)R/(a) are the cosets 0+(a),1+(a),dots,(a-1)+(a)0 + (a), 1 + (a), \ldots, (a-1) + (a).
Every non-zero element in R//(a)R/(a) has an inverse, making R//(a)R/(a) a field.
Conclusion
We have shown that if aa is an irreducible element in a Euclidean ring RR, then the quotient ring R//(a)R/(a) is a field. This completes the proof.
4.(a) f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z)=x^2 y^2 z^2 का अधिकतम मान ज्ञात करें बशर्ते कि गौण शर्त x^(2)+y^(2)+z^(2)=c^(2)x^2+y^2+z^2=c^2, (x,y,z > 0)(x, y, z>0) है।
Find the maximum value of f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z)=x^2 y^2 z^2 subject to the subsidiary condition x^(2)+y^(2)+z^(2)=c^(2),quad(x,y,z > 0)x^2+y^2+z^2=c^2, \quad(x, y, z>0).
Answer:
Introduction:
The problem is to find the maximum value of the function f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z) = x^2 y^2 z^2 subject to the subsidiary condition x^(2)+y^(2)+z^(2)=c^(2)x^2 + y^2 + z^2 = c^2 where xx, yy, and zz are all greater than zero.
Step 1: Formulation of Expression
We formulate the expression using the method of undetermined multipliers:
{:[2xy^(2)z^(2)+2lambda x=0],[2x^(2)yz^(2)+2lambda y=0],[2x^(2)y^(2)z+2lambda z=0]:}\begin{aligned}
2xy^2z^2 + 2\lambda x &= 0 \\
2x^2yz^2 + 2\lambda y &= 0 \\
2x^2y^2z + 2\lambda z &= 0
\end{aligned}
The solutions with x=0x = 0, y=0y = 0, or z=0z = 0 can be excluded since at these points, the function takes on its least value, zero.
Step 3: Alternative Solutions
The other solutions of the equation are x^(2)=y^(2)=z^(2)x^2 = y^2 = z^2, lambda=-x^(4)\lambda = -x^4. Using the subsidiary condition, we obtain the values:
x=+-(c)/(sqrt3),quad y=+-(c)/(sqrt3),quad z=+-(c)/(sqrt3)x = \pm \frac{c}{\sqrt{3}}, \quad y = \pm \frac{c}{\sqrt{3}}, \quad z = \pm \frac{c}{\sqrt{3}}
Step 4: Maximum Value
At all these points, the function assumes the same value (c^(6))/(27)\frac{c^6}{27}, which accordingly is the maximum. Hence, any trial of numbers satisfies the relation:
This states that the geometric mean of three non-negative numbers x^(2)x^2, y^(2)y^2, z^(2)z^2 is never greater than their arithmetic mean.
Conclusion:
The maximum value of the function f(x,y,z)=x^(2)y^(2)z^(2)f(x, y, z) = x^2 y^2 z^2 subject to the subsidiary condition x^(2)+y^(2)+z^(2)=c^(2)x^2 + y^2 + z^2 = c^2 for xx, yy, and zz all greater than zero is (c^(6))/(27)\frac{c^6}{27}.
4.(b) फलन f(z)=(1)/((e^(z)-1))f(z)=\frac{1}{\left(e^z-1\right)} के बिन्दु z=0z=0 के इर्दगिर्द लॉरेंट श्रेणी विस्तार के, प्रथम तीन पद प्राप्त करें, जो कि क्षेत्र 0 < |z| < 2pi0<|z|<2 \pi में वैध है ।
Obtain the first three terms of the Laurent series expansion of the function f(z)=(1)/((e^(z)-1))f(z)=\frac{1}{\left(e^z-1\right)} about the point z=0z=0 valid in the region 0 < |z| < 2pi0<|z|<2 \pi.
Answer:
Introduction:
In this problem, we are tasked with obtaining the first three terms of the Laurent series expansion of the function f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1} about the point z=0z = 0, and it should be valid in the region 0 < |z| < 2pi0 < |z| < 2\pi.
Step 1: Given Function
We are given the function f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1}.
Step 2: Laurent Series Expansion
To find the Laurent series expansion, we start by rewriting the function as follows:
Here, we have introduced a power series P(z)=((z)/(2!)+(z^(2))/(3!)+(z^(3))/(4!)+dots)P(z) = \left(\frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \ldots\right).
Step 3: Analyzing the Region of Validity
We consider two cases based on the region of validity:
Case 1: If 0 < |z| <= 10 < |z| \leq 1, then |z|^(2),|z|^(3),dots < 1|z|^2, |z|^3, \ldots < 1, which implies that P(z)=((z)/(2!)+(z^(2))/(3!)+(z^(3))/(4!)+dots) < 1P(z) = \left(\frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \ldots\right) < 1. This is because at z=1z = 1, P(z)=[(1)/(2)+(1)/(3!)+(1)/(4!)+dots] < 1P(z) = \left[\frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \ldots\right] < 1.
Case 2: If 1 < |z| < 2pi1 < |z| < 2\pi, then |z|^(2),|z|^(3),dots < 1|z|^2, |z|^3, \ldots < 1. In this case, P(z) < 1P(z) < 1 still holds.
Step 4: Write the Laurent Series Expansion
Now, we can write the Laurent series expansion as follows:
Since this limit equals 1 as zz approaches 0, the series expansion holds for 1 < |z| < 2pi1 < |z| < 2\pi.
Step 6: Conclusion
Hence, the first three terms of the Laurent series expansion of f(z)=(1)/(e^(z)-1)f(z) = \frac{1}{e^z – 1} about the point z=0z = 0, valid in the region 0 < |z| < 2pi0 < |z| < 2\pi, are given by:
This limit equals 1 if n=1n = 1, which is a non-zero finite number.
Step 4: Comparison Test
By the comparison test, we can conclude that:
{:[int_(1)^(2)f(x)dx” and “int_(1)^(2)g(x)dx” are convergent or divergent together.”],[“But “int_(1)^(2)g(x)dx” diverges.”]:}\begin{aligned}
& \int_1^2 f(x) dx \text{ and } \int_1^2 g(x) dx \text{ are convergent or divergent together.} \\
& \text{But } \int_1^2 g(x) dx \text{ diverges.}
\end{aligned}
Hence, we can conclude that the integral int_(1)^(2)(sqrtx)/(ln x)dx\int_1^2 \frac{\sqrt{x}}{\ln x} dx diverges.
Conclusion:
The integral int_(1)^(2)(sqrtx)/(ln x)dx\int_1^2 \frac{\sqrt{x}}{\ln x} dx diverges.
4.(d) निम्नलिखित एल. पी. पी. पर विचार करें,
अधिकतमीकरण कीजिए Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z=2 x_1+4 x_2+4 x_3-3 x_4
बशर्ते कि
x_(1)+x_(2)+x_(3)=4x_1+x_2+x_3=4
x_(1)+4x_(2)+x_(4)=8x_1+4 x_2+x_4=8
और x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geqslant 0
प्रति समस्या का उपयोग करते हुए, सत्यापित करें कि बुनियादी समाधान (x_(1),x_(2))\left(x_1, x_2\right) इष्टतम नहीं है ।
Consider the following LPP,
Maximize Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z=2 x_1+4 x_2+4 x_3-3 x_4
subject to {:[,x_(1)+x_(2)+x_(3)=4],[,x_(1)+4x_(2)+x_(4)=8],[” and “,x_(1)”,”x_(2)”,”x_(3)”,”x_(4) >= 0]:}\begin{array}{ll} & x_1+x_2+x_3=4 \\ & x_1+4 x_2+x_4=8 \\ \text { and } & x_1, x_2, x_3, x_4 \geqslant 0\end{array}
Use the dual problem to verify that the basic solution (x_(1),x_(2))\left(x_1, x_2\right) is not optimal.
Answer:
Introduction
We are given a Linear Programming Problem (LPP) with the objective function Z=2x_(1)+4x_(2)+4x_(3)-3x_(4)Z = 2x_1 + 4x_2 + 4x_3 – 3x_4, subject to the constraints x_(1)+x_(2)+x_(3)=4x_1 + x_2 + x_3 = 4, x_(1)+4x_(2)+x_(4)=8x_1 + 4x_2 + x_4 = 8, and x_(1),x_(2),x_(3),x_(4) >= 0x_1, x_2, x_3, x_4 \geq 0. We are asked to use the dual problem to verify whether the basic solution (x_(1),x_(2))(x_1, x_2) is optimal.
To formulate the dual problem, we note that the primal problem has 4 variables and 2 constraints. Therefore, the dual problem will have 4 constraints and 2 variables. The dual problem is:
Here b_(4)=-3 < 0b_4=-3<0,
so multiply this constraint by -1 to make b_(4) > 0b_4>0.
y_(2) <= 3y_2 \leq 3
and y_(1),y_(2)y_1, y_2 unrestricted in sign
Since y_(1),y_(2)y_1, y_2 are unrestricted in sign, introduce the non-negative variables y_(1)^(‘),y_(1)^(”),y_(2)^(‘),y_(2)^(”)y_1{ }^{\prime}, y_1{ }^{\prime \prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime}
so that y_(1)=y_(1)^(‘)-y_(1)^(”),y_(2)=y_(2)^(‘)-y_(2)^(”);y_(1)^(‘),y_(1)^(”),y_(2)^(‘),y_(2)^(”) >= 0y_1=y_1{ }^{\prime}-y_1{ }^{\prime \prime}, y_2=y_2{ }^{\prime}-y_2{ }^{\prime \prime} ; y_1{ }^{\prime}, y_1{ }^{\prime \prime}, y_2{ }^{\prime}, y_2{ }^{\prime \prime} \geq 0.
The standard form of the LP problem becomes Problem is
Positive maximum Z_(j)-C_(j)Z_j-C_j is 5M-85 M-8 and its column index is 3 . So, the entering variable is y_(2)^(‘)y_2{ }^{\prime}.
Minimum ratio is 1 and its row index is 2 . So, the leaving basis variable is A_(2)A_2. :.\therefore The pivot element is 4 .
Entering =y_(2)^(‘)=y_2{ }^{\prime}, Departing =A_(2)=A_2, Key Element =4=4 +R_(2)(+R_2( new )=R_(2)()=R_2( old )-:4) \div 4 +R_(1)(+R_1( new )=R_(1)()=R_1( old )-R_(2)()-R_2( new )) +R_(3)(+R_3( new )=R_(3))=R_3 (old )) +R_(4)(+R_4( new )=R_(4)()=R_4( old )+R_(2)()+R_2( new ))
Positive maximum Z_(j)-C_(j)Z_j-C_j is 1.75 M-21.75 M-2 and its column index is 1 . So, the entering variable is y_(1)^(‘)y_1{ }^{\prime}.
Minimum ratio is 1.3333 and its row index is 1 . So, the leaving basis variable is A_(1)A_1. :.\therefore The pivot element is 0.75 .
Entering =y_(1)^(‘)=y_1{ }^{\prime}, Departing =A_(1)=A_1, Key Element =0.75=0.75 +R_(1)(+R_1( new )=R_(1)()=R_1( old )-:0.75) \div 0.75 +R_(2)(+R_2( new )=R_(2))=R_2 (old )-0.25R_(1)()-0.25 R_1( new )) +R_(3)(+R_3( new )=R_(3)()=R_3( old )-R_(1)()-R_1( new )) +R_(4)(+R_4( new )=R_(4)()=R_4( old )-0.25R_(1)()-0.25 R_1( new ))
Positive maximum Z_(j)-C_(j)Z_j-C_j is 1.3333 M-2.66671.3333 M-2.6667 and its column index is 5 . So, the entering variable is S_(1)S_1.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is A_(3)A_3. :.\therefore The pivot element is 1.3333 .
Entering =S_(1)=S_1, Departing =A_(3)=A_3, Key Element =1.3333=1.3333 +R_(3)(+R_3( new )=R_(3)()=R_3( old )-:1.3333) \div 1.3333 +R_(1)(+R_1( new )=R_(1)()=R_1( old )+1.3333R_(3)()+1.3333 R_3( new )) +R_(2)+R_2 (new) =R_(2)=R_2 (old )-0.3333R_(3))-0.3333 R_3 (new) +R_(4)(+R_4( new )=R_(4)()=R_4( old )-0.3333R_(3)()-0.3333 R_3( new ))
The minimum value of the objective function ZZ for the dual problem is:
“Min “Z=16\text{Min } Z = 16
Verifying the Optimality of the Basic Solution (x_(1),x_(2))(x_1, x_2) in the Primal Problem
To verify the optimality of the basic solution (x_(1),x_(2))(x_1, x_2) in the primal problem, we can use the Complementary Slackness conditions. These conditions state that for a primal-dual pair of optimal solutions, the following must hold:
If x_(i) > 0x_i > 0, then the corresponding dual constraint should be binding (equality holds).
If y_(j) > 0y_j > 0, then the corresponding primal constraint should be binding (equality holds).
In our case, y_(1)^(‘)=4 > 0y_1^{\prime} = 4 > 0 and y_(2)^(‘)=0y_2^{\prime} = 0. Therefore, the first constraint in the primal problem should be binding, and the second constraint should be non-binding (slack).
If this is not the case for the basic solution (x_(1),x_(2))(x_1, x_2) in the primal problem, then that solution is not optimal.
Conclusion
We solved the dual problem and found its optimal solution. By applying the Complementary Slackness conditions, we can verify whether the given basic solution (x_(1),x_(2))(x_1, x_2) in the primal problem is optimal or not. If the conditions are not met, then the solution is not optimal.
खण्ड ‘B’ quad\quad SECTION ‘B’
5.(a) निम्नलिखित व्यंजक : psi(x^(2)+y^(2)+2z^(2),y^(2)-2zx)=0\psi\left(x^2+y^2+2 z^2, y^2-2 z x\right)=0 के द्वारा दिए गए पृष्ठ कुल का एक आंशिक अवकल समीकरण बनायें ।
Form a partial differential equation of the family of surfaces given by the following expression: psi(x^(2)+y^(2)+2z^(2),y^(2)-2zx)=0\psi\left(x^2+y^2+2 z^2, y^2-2 z x\right)=0.
Answer:
Introduction:
We are tasked with forming a partial differential equation for the family of surfaces represented by the expression:
We have successfully formed the partial differential equation for the family of surfaces represented by the given expression. The equation is (x^(2)-2z^(2))q-(x+z)y-(xy+2yz)p=0(x^2 – 2z^2)q – (x + z)y – (xy + 2yz)p = 0.
5.(b) न्यूटन-रेफ्सन विधि का उपयोग करते हुऐ अबीजीय (ट्रांसिडैंटल) समीकरण xlog_(10)x=1.2x \log _{10} x=1.2 का वास्तविक मूल दशमलव के तीन स्थानों तक सही निकालें ।
Apply Newton-Raphson method, to find a real root of transcendental equation xlog_(10)x=1.2x \log _{10} x=1.2, correct to three decimal places.
Answer:
Here x log(x)-1.2=0x \log (x)-1.2=0
Let f(x)=x log(x)-1.2f(x)=x \log (x)-1.2
5.(c) एक 2a2 a लम्बाई की एक एकसमान छड़ OAO A अपने सिरे OO के इर्दगिर्द घूमने के लिये स्वतन्त्र है, जो OO से ऊर्ध्वाधर OZO Z के परितः omega\omega कोणीय वेग से घूमती है, और OZO Z से निश्चित कोण alpha\alpha बनाती है; alpha\alpha कोण का मान ज्ञात कीजिए।
A uniform rod OAO A, of length 2a2 a, free to turn about its end OO, revolves with angular velocity omega\omega about the vertical OZO Z through OO, and is inclined at a constant angle alpha\alpha to OZO Z; find the value of alpha\alpha.
Answer:
Introduction:
We are given a uniform rod OAOA of length 2a2a, free to turn about its end OO, which revolves with angular velocity omega\omega about the vertical OZOZ through OO. The rod is inclined at a constant angle alpha\alpha to OZOZ. We need to find the value of alpha\alpha.
Step 1: Consider an Element of the Rod
Let PQ=delta xPQ = \delta x be an element of the rod at a distance xx from OO. The mass of the element PQPQ is (M)/(2a)delta x\frac{M}{2a} \delta x.
This element PQPQ will make a circle in the horizontal plane with radius PM=(x sin alpha)PM = (x \sin \alpha) and center at MM.
Since the rod revolves with uniform angular velocity, the only effective force on this element is (M)/(2a)delta x*PM*omega^(2)\frac{M}{2a} \delta x \cdot PM \cdot \omega^2 along PMPM.
Step 2: Applying D’Alembert’s Principle
By D’Alembert’s principle, all the reversed effective forces acting at different points of the rod, and the external forces, weight mgmg and reaction at OO, are in equilibrium.
To avoid reaction at OO, taking a moment about OO, we get:
{:[ sum((M)/(2a)delta x*omega^(2)*sin alpha)OM-Mg*NG=0],[=>int_(0)^(2a)(M)/(2a)omega^(2)x^(2)sin alpha cot alphadx-Mg*a sin alpha=0quad(“since “OM=x cos alpha)],[=>(M)/(2a)omega^(2)((1)/(3)(2a)^(3))sin alpha cos alpha-Mga sin alpha=0],[=>mga sin alpha((4a)/(3g)omega^(2)cos alpha-1)=0]:}\begin{aligned}
& \sum\left(\frac{M}{2a} \delta x \cdot \omega^2 \cdot \sin \alpha\right) OM – Mg \cdot NG = 0 \\
& \Rightarrow \int_0^{2a} \frac{M}{2a} \omega^2 x^2 \sin \alpha \cot \alpha \mathrm{d}x – Mg \cdot a \sin \alpha = 0 \quad (\text{since } OM = x \cos \alpha) \\
& \Rightarrow \frac{M}{2a} \omega^2\left(\frac{1}{3}(2a)^3\right) \sin \alpha \cos \alpha – Mga \sin \alpha = 0 \\
& \Rightarrow mg a \sin \alpha \left(\frac{4a}{3g} \omega^2 \cos \alpha – 1\right) = 0
\end{aligned}
Step 3: Solving for alpha\alpha
Therefore, either sin alpha=0\sin \alpha = 0, i.e., cos alpha=(3g)/(4aomega^(2))\cos \alpha = \frac{3g}{4a\omega^2}
Hence, the rod is inclined at an angle zero or cos^(-1)((3g)/(4aomega^(2)))\cos^{-1}\left(\frac{3g}{4a\omega^2}\right).
5.(d) चौथी कोटि की रुन्े-कुट्टा विधि का उपयोग करके y(0)=1y(0)=1 के साथ अवकल समीकरण (dy)/(dx)=(y^(2)-x^(2))/(y^(2)+x^(2))\frac{d y}{d x}=\frac{y^2-x^2}{y^2+x^2} को x=0.2x=0.2 पर हल करें । परिकलन के लिये चार दशमलव स्थानों और अन्तराल लम्बाई (स्टैप लैंथ) 0.20.2 का उपयोग कीजिए ।
Using Runge-Kutta method of fourth order, solve (dy)/(dx)=(y^(2)-x^(2))/(y^(2)+x^(2))\frac{d y}{d x}=\frac{y^2-x^2}{y^2+x^2} with y(0)=1y(0)=1 at x=0.2x=0.2. Use four decimal places for calculation and step length 0.20.2.
Answer:
Given y^(‘)=(y^(2)-x^(2))/(y^(2)+x^(2)),y(0)=1,h=0.2,y(0.2)=y^{\prime}=\frac{y^2-x^2}{y^2+x^2}, y(0)=1, h=0.2, y(0.2)= ?
Forth order R-K method
5.(e) ट्रेपेजाइडल नियम के इस्तेमाल के द्वारा समाकल y=int_(0)^(6)(dx)/(1+x^(2))y=\int_0^6 \frac{d x}{1+x^2} का मूल्यांकन करने के लिये, एक प्रवाह चार्ट बनाइए तथा एक बुनियादी एल्गोरिथ्म (फोर्ट्रान //C//C^(+)/ \mathrm{C} / \mathrm{C}^{+}में) लिखें ।
Draw a flow chart and write a basic algorithm (in FORTRAN/C/C C^(++)\mathrm{C}^{++}) for evaluating y=int_(0)^(6)(dx)/(1+x^(2))y=\int_0^6 \frac{d x}{1+x^2} using Trapezoidal rule.
Answer:
Introduction
The problem asks for the evaluation of the integral y=int_(0)^(6)(dx)/(1+x^(2))y = \int_0^6 \frac{dx}{1+x^2} using the Trapezoidal rule. We are required to:
Draw a flowchart for the algorithm.
Write a basic algorithm in FORTRAN, C, or C++.
Work/Calculations
Part (i): Flowchart for the Algorithm
Let’s start by drawing the flowchart for the algorithm.
Part (ii): Algorithm in C++
Here is a basic C++ algorithm for evaluating the integral using the Trapezoidal rule.
#include<iostream>#include<cmath>doublef(double x){
return1 / (1 + pow(x, 2));
}
intmain(){
double a = 0.0, b = 6.0; // Lower and upper limitsint n = 1000; // Number of trapezoidsdouble h = (b - a) / n; // Step sizedouble integral = 0.0;
// Calculate the integral using the Trapezoidal rulefor (int i = 1; i < n; ++i) {
integral += 2 * f(a + i * h);
}
integral += f(a) + f(b);
integral *= h / 2;
std::cout << "The value of the integral is: " << integral << std::endl;
return0;
}
Conclusion
We successfully created a flowchart and a C++ algorithm to evaluate the integral y=int_(0)^(6)(dx)/(1+x^(2))y = \int_0^6 \frac{dx}{1+x^2} using the Trapezoidal rule. The flowchart outlines the steps involved in the algorithm, and the C++ code provides a working implementation.
6.(a) प्रथम कोटि रैखिककल्प आंशिक अवकल समीकरण x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x}+(u-x-y) \frac{\partial u}{\partial y}=x+2 y में x > 0,-oo < y < oox>0,-\infty<y<\infty को u=1+yu=1+y के साथ x=1x=1 पर अभिलाक्षणिक विधि के द्वारा हल करें ।
Solve the first order quasilinear partial differential equation by the method of characteristics : x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x}+(u-x-y) \frac{\partial u}{\partial y}=x+2 y in x > 0,-oo < y < oox>0,-\infty<y<\infty with u=1+yu=1+y on x=1x=1.
Answer:
Introduction:
We are tasked with solving the first-order quasilinear partial differential equation using the method of characteristics. The equation is:
x(del u)/(del x)+(u-x-y)(del u)/(del y)=x+2yx \frac{\partial u}{\partial x} + (u – x – y) \frac{\partial u}{\partial y} = x + 2y
with the initial condition u=1+yu = 1 + y on x=1x = 1.
We have successfully solved the given first-order quasilinear partial differential equation using the method of characteristics. The solution is expressed as 4x^(3)y-2x^(3)u+2x^(4)-y-u+x=04x^3y – 2x^3u + 2x^4 – y – u + x = 0.
6.(b) अधोलिखित संख्याओं के समतुल्यों को उनके सम्मुख दरशाई गई विशिष्ट संख्या पद्धति में ज्ञात कीजिए :
(i) पूर्णांक 524 को द्विआधारी पद्धति में ।
(ii) 101010110101*101101011101010110101 \cdot 101101011 को अष्टाधारी पद्धति में ।
(iii) दशमलव 5280 को षड्दशमलव पद्धति में ।
(iv) अज्ञात संख्या ज्ञात कीजिए (1101*101)_(8)rarr((1101 \cdot 101)_8 \rightarrow( ?) ।
Find the equivalent numbers given in a specified number to the system mentioned against them :
(i) Integer 524 in binary system.
(ii) 101010110101*101101011101010110101 \cdot 101101011 to octal system.
(iii) decimal number 5280 to hexadecimal system.
(iv) Find the unknown number (1101*101)_(8)rarr(?)_(10).(1101 \cdot 101)_8 \rightarrow (?)_{10}.
(c) एक त्रिज्या aa तथा परिश्रमण त्रिज्या kk वाला गोलाकार सिलिन्डर बिना फिसले, एक bb त्रिज्या वाले, स्थिर खोखले सिलिन्डर में लुढ़कता (roll) है । दर्शाएँ कि इनकी अक्षों में से तल एक (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right) लम्बाई वाले गोलाकार लोलक में चलता है ।
A circular cylinder of radius aa and radius of gyration kk rolls without slipping inside a fixed hollow cylinder of radius bb. Show that the plane through axes moves in a circular pendulum of length (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right)
Answer:
Introduction:
We are given a circular cylinder of radius aa and radius of gyration kk rolling without slipping inside a fixed hollow cylinder of radius bb. The goal is to show that the plane through the axes of the cylinders moves in a circular pendulum of length (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right).
Step 1: Defining Parameters and Angles
Let P\mathrm{P} be the point of contact of the two cylinders at time tt, and let the angle AOPAOP be theta\theta. Also, define phi\phi as the angle that the line CB\mathrm{CB}, fixed in the moving cylinder, makes with the vertical at time tt.
Given radii:
Radius of the fixed cylinder: aa
Radius of the moving cylinder: aa
Since there is pure rolling, we have:
{:[=>b theta=a(phi+theta)],[=>a phi=(b-a)theta]:}\begin{aligned}
& \Rightarrow b \theta = a(\phi + \theta) \\
& \Rightarrow a \phi = (b-a) \theta
\end{aligned}
Therefore, phi^(**)=ctheta^(@)\phi^* = c \theta^{\circ} (where c=(b-a)c = (b-a)).
Step 2: Analyzing Acceleration of Center C\mathrm{C}
The center C\mathrm{C} of the moving cylinder describes a circle of radius cc. Its accelerations along and perpendicular to COCO are ctheta^(2)c \theta^2 and ctheta^(@)c \theta^{\circ} respectively.
The equations of motion for the moving cylinder are:
{:[Mctheta^(2)=R-Mg cos thetaquad(2)],[Mctheta^(**)=F-Mg sin thetaquad(3)]:}\begin{aligned}
& Mc \theta^2 = R – Mg \cos \theta \quad \text{(2)} \\
& Mc \theta^* = F – Mg \sin \theta \quad \text{(3)}
\end{aligned}
Step 3: Calculating Friction Force FF
For the motion relative to the center of inertia cc, we have:
{:[Mk^(2)phi^(**)=”Moment of the forces about “c=-Fa quad(4)],[Mk^(2)(c)/(a)theta^(**)=-Fa],[=>F=-Mk^(2)(c)/(a)theta^(@)]:}\begin{aligned}
& M k^2 \phi^* = \text{Moment of the forces about } c = -Fa \quad \text{(4)} \\
& Mk^2 \frac{c}{a} \theta^* = -Fa \\
& \Rightarrow F = -Mk^2 \frac{c}{a} \theta^{\circ}
\end{aligned}
Substituting this into equation (3), we get:
{:[Mctheta^(@)=-Mk^(2)(c)/(a)theta^(@)-Mg sin theta],[=>c(1+(k^(2))/(a^(2)))theta^(@)=-g sin theta]:}\begin{aligned}
& Mc \theta^{\circ} = -Mk^2 \frac{c}{a} \theta^{\circ} – Mg \sin \theta \\
& \Rightarrow c\left(1+\frac{k^2}{a^2}\right) \theta^{\circ} = -g \sin \theta
\end{aligned}
Step 4: Simplifying Angular Acceleration
Simplifying the above equation, we get:
{:[theta^(@)=-(g)/(c(1+(k^(2))/(a^(2))))theta],[=-mu thetaquad(since theta” is very small)”]:}\begin{aligned}
& \theta^{\circ} = -\frac{g}{c\left(1+\frac{k^2}{a^2}\right)} \theta \\
& = -\mu \theta \quad \text{(since \(\theta\) is very small)}
\end{aligned}
Conclusion:
The length of the simple equivalent pendulum is given by:
Thus, the plane through the axes of the cylinders moves in a circular pendulum of length (b-a)(1+(k^(2))/(a^(2)))(b-a)\left(1+\frac{k^2}{a^2}\right).
(a) हेमिल्टन समीकरण का उपयोग करते हुए, एक गोला, जो कि एक खुरदरी आनत तल (inclined plane) पर नीचे की ओर लुढ़क रहा है, का त्वरण ज्ञात करें, यदि xx, तल पर निश्चित बिन्दु से गोले के सम्पर्क बिन्दु की दूरी है ।
Using Hamilton’s equation, find the acceleration for a sphere rolling down a rough inclined plane, if xx be the distance of the point of contact of the sphere from a fixed point on the plane.
Answer:
Introduction:
Using Hamilton’s equation, we need to find the acceleration for a sphere rolling down a rough inclined plane. The relevant parameters are:
Radius of the sphere: aa
Mass of the sphere: MM
Angle of inclination of the plane: alpha\alpha
Distance rolled down the plane: xx
Step 1: Deriving the Relationship Between xx and theta\theta:
Let a sphere of radius aa and mass MM roll down a rough plane inclined at an angle alpha\alpha starting initially from a fixed point OO of the plane. In time tt, let the sphere roll down a distance xx and during this time, let it turn through an angle theta\theta.
Since there is no slipping, we have:
x=OA=”arc “AB=a thetax = OA = \text{arc } AB = a\theta
So, x=a thetax = a\theta
Step 2: Calculating Kinetic and Potential Energies:
If TT and VV are the kinetic and potential energies of the sphere, then:
7.(c) निम्नलिखित द्वितीय कोटि के आंशिक अवकलून समीकरण को विहित रूप में समानीत करें और सामान्य हल ज्ञात करें :
(del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x” । “\frac{\partial^2 u}{\partial x^2}-2 x \frac{\partial^2 u}{\partial x \partial y}+x^2 \frac{\partial^2 u}{\partial y^2}=\frac{\partial u}{\partial y}+12 x \text { । }।
Reduce the following second order partial differential equation to canonical form and find the general solution : (del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x\frac{\partial^2 u}{\partial x^2}-2 x \frac{\partial^2 u}{\partial x \partial y}+x^2 \frac{\partial^2 u}{\partial y^2}=\frac{\partial u}{\partial y}+12 x
Answer:
Introduction:
We are tasked with reducing the given second-order partial differential equation to canonical form and finding the general solution. The equation is:
(del^(2)u)/(delx^(2))-2x(del^(2)u)/(del x del y)+x^(2)(del^(2)u)/(dely^(2))=(del u)/(del y)+12 x\frac{\partial^2 u}{\partial x^2} – 2x \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial y} + 12x
Standard Form
We start by writing the equation in standard form:
r-2xs+x^(2)t=z+12 x quad(1)r – 2xs + x^2t = z + 12x \quad (1)
We have successfully reduced the given second-order partial differential equation to canonical form and found the general solution, which is expressed as:
(iii) Draw the logical diagram for the reduced expression.
8.(b) एक त्रिज्या RR का गोला, जिसका केन्द्र स्थिर है वह घनत्व rho\rho के एक अनंत असंपीडय तरल में त्रिज्यत:
कंपन करता है.। अगर अनंत पर दबाव Pi\Pi हो, तो दर्शाएं कि गोले की सतह पर किसी समय tt पर दाब Pi+(1)/(2)rho{(d^(2)R^(2))/(dt^(2))+((dR)/(dt))^(2)}\Pi+\frac{1}{2} \rho\left\{\frac{d^2 R^2}{d t^2}+\left(\frac{d R}{d t}\right)^2\right\} होगा ।
A sphere of radius RR, whose centre is at rest, vibrates radially in an infinite incompressible fluid of density rho\rho, which is at rest at infinity. If the pressure at infinity is Pi\Pi, so that the pressure at the surface of the sphere at time tt is
In the incompressible liquid, outside the sphere, the fluid velocity bar(q)\bar{q} will be radial and thus will be a function of rr, the radial distance from the centre of the sphere (the origin), and time t only.
The equation of continuity in spherical polar co-ordinates becomes
We observe that urarr0\mathrm{u} \rightarrow 0 as nrarr oo\mathrm{n} \rightarrow \infty, as required.
From (1), it is clear that curl bar(q)= bar(0)\overline{\mathrm{q}}=\overline{0} =>\Rightarrow the motion is irrotational and bar(q)=-grad phi\overline{\mathrm{q}}=-\nabla \phi
(c) दो स्त्रोतों, प्रत्येक mm शक्ति का (-a,0),(a,0)(-a, 0),(a, 0) बिन्दुओं पर तथा 2m2 m शक्ति का सिन्क मूल बिन्दु पर स्थित है। दर्शाएं कि धारा-रेखाएं वक्र (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right) हैं । यहां lambda\lambda चर एक पैरामीटर है ।
और ये भी दर्शाएं कि तरल गति किसी भी बिन्दु पर (2ma^(2))//(r_(1)r_(2)r_(3))\left(2 m a^2\right) /\left(r_1 r_2 r_3\right) है, जहां r_(1),r_(2),r_(3)r_1, r_2, r_3 सोतों से और सिंक से बिन्दुओं की क्रमशः दूरिया हैं।
Two sources, each of strength mm, are placed at the points (-a,0),(a,0)(-a, 0),(a, 0) and a sink of strength 2m2 m at origin. Show that the stream lines are the curves (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right), where lambda\lambda is a variable parameter.
Show also that the fluid speed at any point is (2ma^(2))//(r_(1)r_(2)r_(3))\left(2 m a^2\right) /\left(r_1 r_2 r_3\right), where r_(1),r_(2)r_1, r_2 and r_(3)r_3 are the distances of the points from the sources and the sink, respectively.
Answer:
Introduction:
Two sources, each of strength mm, are placed at the points (-a,0)(-a, 0) and (a,0)(a, 0), and a sink of strength 2m2m at the origin. We need to show that the streamlines are given by the curves (x^(2)+y^(2))^(2)=a^(2)(x^(2)-y^(2)+lambda xy)\left(x^2+y^2\right)^2=a^2\left(x^2-y^2+\lambda x y\right), where lambda\lambda is a variable parameter. Additionally, we need to demonstrate that the fluid speed at any point is (2ma^(2))/(r_(1)r_(2)r_(3))\frac{2ma^2}{r_1 r_2 r_3}, where r_(1),r_(2)r_1, r_2, and r_(3)r_3 are the distances of the points from the sources and the sink, respectively.
Answer:
First Part: Streamlines
The complex potential ww at any point P(z)P(z) is given by
w=-m log(z-a)-m log(z+a)+2m log z quad(1)w=-m \log (z-a)-m \log (z+a)+2 m \log z \quad \text{(1)}
phi+i psi=m[log(x^(2)-y^(2)+2ixy)-log(x^(2)-y^(2)-a^(2)+2ixy)],” as “quad z=x+iy\phi+i \psi=m\left[\log \left(x^2-y^2+2 i x y\right)-\log \left(x^2-y^2-a^2+2 i x y\right)\right], \text { as } \quad z=x+i y
Equating the imaginary parts, we have
{:[psi=m[tan^(-1){2xy//(x^(2)-y^(2))}-tan^(-1){2xy//(x^(2)-y^(2)-a^(2))}]],[:.quadpsi=mtan^(-1)[(-2a^(2)xy)/((x^(2)+y^(2))^(2)-a^(2)(x^(2)-y^(2)))]”,”” on simplification. “]:}\begin{aligned}
& \psi=m\left[\tan ^{-1}\left\{2 x y /\left(x^2-y^2\right)\right\}-\tan ^{-1}\left\{2 x y /\left(x^2-y^2-a^2\right)\right\}\right] \\
\therefore \quad & \psi=m \tan ^{-1}\left[\frac{-2 a^2 x y}{\left(x^2+y^2\right)^2-a^2\left(x^2-y^2\right)}\right], \text { on simplification. }
\end{aligned}
The desired streamlines are given by psi=\psi= constant =mtan^(-1)(-2//lambda)=m \tan ^{-1}(-2 / \lambda). Then we obtain (-2//lambda)=(-2a^(2)xy)//[(x^(2)+y^(2))^(2)-a^(2)(x^(2)-y^(2))](-2 / \lambda)=\left(-2 a^2 x y\right) /\left[\left(x^2+y^2\right)^2-a^2\left(x^2-y^2\right)\right], which represents the streamlines.
Second Part: Fluid Speed
From equation (1), we have
r_(1)=|z-a|,quadr_(2)=|z+a|quad” and “quadr_(3)=|z|r_1=|z-a|, \quad r_2=|z+a| \quad \text { and } \quad r_3=|z|
This represents the fluid speed at any point in terms of the distances r_(1),r_(2),r_1, r_2, and r_(3)r_3 from the sources and the sink.
Conclusion:
This concludes the solution to the problem. We have shown the streamlines and derived the expression for fluid speed at any point in the given configuration.