Free UPSC Mathematics Optional Paper-2 2020 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड ‘ A A A^(‘)A^{\prime}A SECTION ‘ A A A^(‘)A^{\prime}A
1.(a) मान लीजिए कि S 3 S 3 S_(3)S_3S3 Z 3 Z 3 Z_(3)Z_3Z3 क्रमशः 3 प्रतीकों का क्रमचय समूह एवं मॉड्यूल 3 अवशिष्ट वर्गों के समूह हैं। दर्शाइए कि S 3 S 3 S_(3)S_3S3 का Z 3 Z 3 Z_(3)Z_3Z3 में तुच्छ समाकारिता के अतिरिक्त कोई भी समाकारिता नहीं है ।
Let S 3 S 3 S_(3)S_3S3 and Z 3 Z 3 Z_(3)Z_3Z3 be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of S 3 S 3 S_(3)S_3S3 in Z 3 Z 3 Z_(3)Z_3Z3 except the trivial homomorphism.
Answer:
To show that there is no homomorphism of S 3 S 3 S_(3)S_3S3 into Z 3 Z 3 Z_(3)Z_3Z3 except the trivial homomorphism, we can use the following properties of homomorphisms:
  1. A homomorphism ϕ : G H ϕ : G H phi:G rarr H\phi: G \to Hϕ:GH preserves the identity element, i.e., ϕ ( e G ) = e H ϕ ( e G ) = e H phi(e_(G))=e_(H)\phi(e_G) = e_Hϕ(eG)=eH.
  2. A homomorphism ϕ : G H ϕ : G H phi:G rarr H\phi: G \to Hϕ:GH preserves the group operation, i.e., ϕ ( a b ) = ϕ ( a ) ϕ ( b ) ϕ ( a b ) = ϕ ( a ) ϕ ( b ) phi(a**b)=phi(a)**phi(b)\phi(a \ast b) = \phi(a) \ast \phi(b)ϕ(ab)=ϕ(a)ϕ(b).
  3. A homomorphism ϕ : G H ϕ : G H phi:G rarr H\phi: G \to Hϕ:GH preserves the order of elements, i.e., if a a aaa has order n n nnn in G G GGG, then ϕ ( a ) ϕ ( a ) phi(a)\phi(a)ϕ(a) has order dividing n n nnn in H H HHH.

Properties of S 3 S 3 S_(3)S_3S3 and Z 3 Z 3 Z_(3)Z_3Z3

  1. S 3 S 3 S_(3)S_3S3 is the permutation group on 3 symbols, and it has 3 ! = 6 3 ! = 6 3!=63! = 63!=6 elements.
  2. Z 3 Z 3 Z_(3)Z_3Z3 is the group of residue classes modulo 3, and it has 3 elements: [ 0 ] , [ 1 ] , [ 2 ] [ 0 ] , [ 1 ] , [ 2 ] [0],[1],[2][0], [1], [2][0],[1],[2].

Steps to Show No Non-Trivial Homomorphism Exists

  1. Identity Element: Any homomorphism ϕ : S 3 Z 3 ϕ : S 3 Z 3 phi:S_(3)rarrZ_(3)\phi: S_3 \to Z_3ϕ:S3Z3 must map the identity element of S 3 S 3 S_(3)S_3S3 (the identity permutation e e eee) to the identity element of Z 3 Z 3 Z_(3)Z_3Z3 ( [ 0 ] [ 0 ] [0][0][0]).
    ϕ ( e ) = [ 0 ] ϕ ( e ) = [ 0 ] phi(e)=[0]\phi(e) = [0]ϕ(e)=[0]
  2. Order of Elements: The order of any element in Z 3 Z 3 Z_(3)Z_3Z3 divides 3. In S 3 S 3 S_(3)S_3S3, we have elements of order 2 (e.g., transpositions) and elements of order 3 (e.g., 3-cycles). If there exists a non-trivial homomorphism ϕ ϕ phi\phiϕ, then it must map elements of S 3 S 3 S_(3)S_3S3 to elements of Z 3 Z 3 Z_(3)Z_3Z3 in such a way that the order of the image divides the order of the original element.
    However, Z 3 Z 3 Z_(3)Z_3Z3 only has elements of order 1 ( [ 0 ] [ 0 ] [0][0][0]) and order 3 ( [ 1 ] , [ 2 ] [ 1 ] , [ 2 ] [1],[2][1], [2][1],[2]). There are no elements of order 2 in Z 3 Z 3 Z_(3)Z_3Z3.
  3. Contradiction: S 3 S 3 S_(3)S_3S3 contains elements of order 2 (transpositions). Any homomorphism ϕ ϕ phi\phiϕ would have to map these elements to an element in Z 3 Z 3 Z_(3)Z_3Z3 whose order divides 2. Since Z 3 Z 3 Z_(3)Z_3Z3 contains no such elements (other than the identity), we reach a contradiction.
Therefore, the only homomorphism that can exist from S 3 S 3 S_(3)S_3S3 to Z 3 Z 3 Z_(3)Z_3Z3 is the trivial homomorphism that maps all elements of S 3 S 3 S_(3)S_3S3 to the identity element [ 0 ] [ 0 ] [0][0][0] in Z 3 Z 3 Z_(3)Z_3Z3.
1.(b) मान लीजिए R R RRR मुख्य गुणजावली प्रान्त है । दर्शाइए कि R R RRR के विभाग-वलय की प्रत्येक गुणजावली, मुख्य गुणजावली है तथा R / P , R R / P , R R//P,RR / P, RR/P,R के अभाज्यगुणजावली P P PPP के लिए मुख्य गुणजावली प्रान्त है ।
Let R R RRR be a principal ideal domain. Show that every ideal of a quotient ring of R R RRR is principal ideal and R / P R / P R//PR / PR/P is a principal ideal domain for a prime ideal P P PPP of R R RRR.
Answer:

Introduction

The problem asks us to prove two things:
  1. Every ideal of a quotient ring R / P R / P R//PR/PR/P is a principal ideal.
  2. If P P PPP is a prime ideal of R R RRR, then R / P R / P R//PR/PR/P is a principal ideal domain (PID).
To prove these statements, we’ll use the properties of principal ideal domains and quotient rings.

Work/Calculations

Part 1: Every ideal of R / P R / P R//PR/PR/P is a principal ideal

Let I / P I / P I//PI/PI/P be an ideal of R / P R / P R//PR/PR/P, where I I III is an ideal of R R RRR containing P P PPP.
Step 1: Show that I I III is a principal ideal in R R RRR
Since R R RRR is a PID, I I III is generated by a single element a a aaa in R R RRR. That is,
I = ( a ) I = ( a ) I=(a)I = (a)I=(a)
Step 2: Show that I / P I / P I//PI/PI/P is generated by a + P a + P a+Pa+Pa+P in R / P R / P R//PR/PR/P
Let’s substitute the values:
I / P = ( a ) + P I / P = ( a ) + P I//P=(a)+PI/P = (a) + PI/P=(a)+P
After substituting, we can see that I / P I / P I//PI/PI/P is generated by a + P a + P a+Pa+Pa+P in R / P R / P R//PR/PR/P.
Therefore, I / P I / P I//PI/PI/P is a principal ideal in R / P R / P R//PR/PR/P.

Part 2: R / P R / P R//PR/PR/P is a PID for a prime ideal P P PPP of R R RRR

Step 1: Show that R / P R / P R//PR/PR/P is an integral domain
Since P P PPP is a prime ideal, R / P R / P R//PR/PR/P is an integral domain.
Step 2: Show that every ideal in R / P R / P R//PR/PR/P is principal
From Part 1, we know that every ideal in R / P R / P R//PR/PR/P is principal.
Step 3: Conclude that R / P R / P R//PR/PR/P is a PID
Since R / P R / P R//PR/PR/P is an integral domain and every ideal in R / P R / P R//PR/PR/P is principal, R / P R / P R//PR/PR/P is a PID.

Conclusion

We have shown that every ideal of a quotient ring R / P R / P R//PR/PR/P is a principal ideal. Additionally, if P P PPP is a prime ideal of R R RRR, then R / P R / P R//PR/PR/P is a principal ideal domain. Both of these statements hold true when R R RRR is a principal ideal domain.
1.(c) सिद्ध कीजिए कि शर्त
| a n + 1 a n | α | a n a n 1 | a n + 1 a n α a n a n 1 |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right||an+1an|α|anan1|, जहाँ पर 0 < α < 1 0 < α < 1 0 < alpha < 10<\alpha<10<α<1 को सभी प्राकृतिक संख्याओं n 2 n 2 n >= 2n \geqslant 2n2 के लिए सन्तुष्ट करने वाला अनुक्रम ( a n ) a n (a_(n)^(‘))\left(a_n^{\prime}\right)(an), कॉशी-अनुक्रम होता है ।
Prove that the sequence ( a n ) a n (a_(n))\left(a_n\right)(an) satisfying the condition | a n + 1 a n | α | a n a n 1 | , 0 < α < 1 a n + 1 a n α a n a n 1 , 0 < α < 1 |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|,0 < alpha < 1\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right|, 0<\alpha<1|an+1an|α|anan1|,0<α<1 for all natural numbers n 2 n 2 n >= 2n \geqslant 2n2, is a Cauchy sequence.
Answer:

Introduction

The problem asks us to prove that a sequence ( a n ) a n (a_(n))\left(a_n\right)(an) satisfying the condition
| a n + 1 a n | α | a n a n 1 | , 0 < α < 1 a n + 1 a n α a n a n 1 , 0 < α < 1 |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|,quad0 < alpha < 1\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right|, \quad 0 < \alpha < 1|an+1an|α|anan1|,0<α<1
for all natural numbers n 2 n 2 n >= 2n \geqslant 2n2, is a Cauchy sequence. A sequence is said to be Cauchy if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists an N N NNN such that for all m , n > N m , n > N m,n > Nm, n > Nm,n>N, | a m a n | < ϵ | a m a n | < ϵ |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon|aman|<ϵ.

Work/Calculations

Step 1: Prove that | a n + 1 a n | a n + 1 a n |a_(n+1)-a_(n)|\left|a_{n+1} – a_n\right||an+1an| becomes arbitrarily small

We are given that
| a n + 1 a n | α | a n a n 1 | a n + 1 a n α a n a n 1 |a_(n+1)-a_(n)| <= alpha|a_(n)-a_(n-1)|\left|a_{n+1}-a_n\right| \leqslant \alpha\left|a_n-a_{n-1}\right||an+1an|α|anan1|
Let’s substitute the values:
| a n + 1 a n | α n | a 2 a 1 | a n + 1 a n α n a 2 a 1 |a_(n+1)-a_(n)| <= alpha ^(n)|a_(2)-a_(1)|\left|a_{n+1}-a_n\right| \leqslant \alpha^n \left|a_2 – a_1\right||an+1an|αn|a2a1|
After substituting, we see that as n n nnn becomes large, α n α n alpha ^(n)\alpha^nαn approaches zero (since 0 < α < 1 0 < α < 1 0 < alpha < 10 < \alpha < 10<α<1), making | a n + 1 a n | a n + 1 a n |a_(n+1)-a_(n)|\left|a_{n+1}-a_n\right||an+1an| arbitrarily small.

Step 2: Prove that ( a n ) a n (a_(n))\left(a_n\right)(an) is a Cauchy sequence

To prove that ( a n ) a n (a_(n))\left(a_n\right)(an) is a Cauchy sequence, we need to show that for any ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists an N N NNN such that for all m , n > N m , n > N m,n > Nm, n > Nm,n>N, | a m a n | < ϵ | a m a n | < ϵ |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon|aman|<ϵ.
Consider m > n m > n m > nm > nm>n and m , n > N m , n > N m,n > Nm, n > Nm,n>N. We have:
| a m a n | = | a m a m 1 + a m 1 a m 2 + + a n + 1 a n | | a m a m 1 | + | a m 1 a m 2 | + + | a n + 1 a n | α m 1 | a 2 a 1 | + α m 2 | a 2 a 1 | + + α n | a 2 a 1 | = α n | a 2 a 1 | ( 1 + α + α 2 + + α m n 1 ) = α n | a 2 a 1 | 1 α m n 1 α < α n | a 2 a 1 | 1 1 α | a m a n | = | a m a m 1 + a m 1 a m 2 + + a n + 1 a n | | a m a m 1 | + | a m 1 a m 2 | + + | a n + 1 a n | α m 1 | a 2 a 1 | + α m 2 | a 2 a 1 | + + α n | a 2 a 1 | = α n | a 2 a 1 | ( 1 + α + α 2 + + α m n 1 ) = α n | a 2 a 1 | 1 α m n 1 α < α n | a 2 a 1 | 1 1 α {:[|a_(m)-a_(n)|=|a_(m)-a_(m-1)+a_(m-1)-a_(m-2)+dots+a_(n+1)-a_(n)|],[ <= |a_(m)-a_(m-1)|+|a_(m-1)-a_(m-2)|+dots+|a_(n+1)-a_(n)|],[ <= alpha^(m-1)|a_(2)-a_(1)|+alpha^(m-2)|a_(2)-a_(1)|+dots+alpha ^(n)|a_(2)-a_(1)|],[=alpha ^(n)|a_(2)-a_(1)|(1+alpha+alpha^(2)+dots+alpha^(m-n-1))],[=alpha ^(n)|a_(2)-a_(1)|(1-alpha^(m-n))/(1-alpha)],[ < alpha ^(n)|a_(2)-a_(1)|(1)/(1-alpha)]:}\begin{aligned} |a_m – a_n| &= |a_m – a_{m-1} + a_{m-1} – a_{m-2} + \ldots + a_{n+1} – a_n| \\ &\leq |a_m – a_{m-1}| + |a_{m-1} – a_{m-2}| + \ldots + |a_{n+1} – a_n| \\ &\leq \alpha^{m-1}|a_2 – a_1| + \alpha^{m-2}|a_2 – a_1| + \ldots + \alpha^n|a_2 – a_1| \\ &= \alpha^n|a_2 – a_1| (1 + \alpha + \alpha^2 + \ldots + \alpha^{m-n-1}) \\ &= \alpha^n|a_2 – a_1| \frac{1 – \alpha^{m-n}}{1 – \alpha} \\ &< \alpha^n|a_2 – a_1| \frac{1}{1 – \alpha} \end{aligned}|aman|=|amam1+am1am2++an+1an||amam1|+|am1am2|++|an+1an|αm1|a2a1|+αm2|a2a1|++αn|a2a1|=αn|a2a1|(1+α+α2++αmn1)=αn|a2a1|1αmn1α<αn|a2a1|11α
We can make this less than ϵ ϵ epsilon\epsilonϵ by choosing N N NNN large enough so that α N | a 2 a 1 | 1 1 α < ϵ α N | a 2 a 1 | 1 1 α < ϵ alpha ^(N)|a_(2)-a_(1)|(1)/(1-alpha) < epsilon\alpha^N|a_2 – a_1| \frac{1}{1 – \alpha} < \epsilonαN|a2a1|11α<ϵ.

Conclusion

We have shown that for any ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists an N N NNN such that for all m , n > N m , n > N m,n > Nm, n > Nm,n>N, | a m a n | < ϵ | a m a n | < ϵ |a_(m)-a_(n)| < epsilon|a_m – a_n| < \epsilon|aman|<ϵ. Therefore, the sequence ( a n ) a n (a_(n))\left(a_n\right)(an) is a Cauchy sequence, as required.
1.(d) समाकल C ( z 2 + 3 z ) d z C z 2 + 3 z d z int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d zC(z2+3z)dz का, ( 2 , 0 ) ( 2 , 0 ) (2,0)(2,0)(2,0) से ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) तक वक्र C C CCC के वामावर्त अनुगत जहाँ पर C C CCC वृत्त | z | = 2 | z | = 2 |z|=2|z|=2|z|=2 है, मान निकालिए ।
Evaluate the integral C ( z 2 + 3 z ) d z C z 2 + 3 z d z int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d zC(z2+3z)dz counterclockwise from ( 2 , 0 ) ( 2 , 0 ) (2,0)(2,0)(2,0) to ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) along the curve C C CCC, where C C CCC is the circle | z | = 2 | z | = 2 |z|=2|z|=2|z|=2.
Answer:

Introduction

The problem asks us to evaluate the integral C ( z 2 + 3 z ) d z C z 2 + 3 z d z int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d zC(z2+3z)dz counterclockwise from ( 2 , 0 ) ( 2 , 0 ) (2,0)(2,0)(2,0) to ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2) along the curve C C CCC, where C C CCC is the circle | z | = 2 | z | = 2 |z|=2|z|=2|z|=2.

Given Parameters and Parametrization

Given | z | = 2 | z | = 2 |z|=2|z|=2|z|=2, i.e. z = 2 e i θ z = 2 e i θ z=2e^(i theta)quadz=2 e^{i \theta} \quadz=2eiθ and 0 θ π 2 0 θ π 2 quad0 <= theta <= (pi)/(2)\quad 0 \leq \theta \leq \frac{\pi}{2}0θπ2.

Integral Setup

C ( z 2 + 3 z ) d z = | z | = 2 ( z 2 + 3 z ) d z C z 2 + 3 z d z = | z | = 2 z 2 + 3 z d z :.int _(C)(z^(2)+3z)dz=int_(|z|=2)(z^(2)+3z)dz\therefore \int_C\left(z^2+3 z\right) d z =\int_{|z|=2}\left(z^2+3 z\right) d zC(z2+3z)dz=|z|=2(z2+3z)dz

Substitution and Simplification

= 0 π / 2 [ ( 2 e i θ ) 2 + 3 ( 2 e i θ ) ] 2 e i θ i d θ = 0 π / 2 2 e i θ 2 + 3 2 e i θ 2 e i θ i d θ =int_(0)^(pi//2)[(2e^(i theta))^(2)+3(2e^(i theta))]2e^(i theta)*id theta=\int_0^{\pi / 2}\left[\left(2 e^{i \theta}\right)^2+3\left(2 e^{i \theta}\right)\right] 2 e^{i \theta} \cdot i d \theta=0π/2[(2eiθ)2+3(2eiθ)]2eiθidθ

Evaluation of the Integral

= [ 8 i e 3 i θ 3 i + 12 i e 2 i θ 2 i ] 0 π 2 = 8 i e 3 i θ 3 i + 12 i e 2 i θ 2 i 0 π 2 =[8i(e^(3i theta))/(3i)+12 i(e^(2i theta))/(2i)]_(0)^((pi)/(2))=\left[8 i \frac{e^{3 i \theta}}{3 i}+12 i \frac{e^{2 i \theta}}{2 i}\right]_0^{\frac{\pi}{2}}=[8ie3iθ3i+12ie2iθ2i]0π2

Final Simplification

= 8 3 ( e i 3 π 2 1 ) + 6 ( e i π 1 ) = 8 3 e i 3 π 2 1 + 6 e i π 1 =(8)/(3)(e^(i3)pi^(2)-1)+6(e^(i pi)-1)=\frac{8}{3}\left(e^{i 3} \pi^2-1\right)+6\left(e^{i \pi}-1\right)=83(ei3π21)+6(eiπ1)
= 8 3 ( i 1 ) + 6 ( 2 ) = 8 3 ( i 1 ) + 6 ( 2 ) =(8)/(3)(-i-1)+6(-2)=\frac{8}{3}(-i-1)+6(-2)=83(i1)+6(2)
= 44 3 8 3 i = 44 3 8 3 i =(-44)/(3)-(8)/(3)i=\frac{-44}{3}-\frac{8}{3} i=44383i

Conclusion

The integral C ( z 2 + 3 z ) d z C z 2 + 3 z d z int _(C)(z^(2)+3z)dz\int_C\left(z^2+3 z\right) d zC(z2+3z)dz along the curve C C CCC, where C C CCC is the circle | z | = 2 | z | = 2 |z|=2|z|=2|z|=2, is 44 3 8 3 i 44 3 8 3 i (-44)/(3)-(8)/(3)i\frac{-44}{3}-\frac{8}{3} i44383i.
1.(e) यू.पी.एस.सी. के रखरखाव विभाग ने भवन में पर्दों की आवश्यकता-पूर्ति हेतु पर्दा-कपडे के पर्याप्त संख्या में टुकड़े खरीदे हैं। प्रत्येक टुकड़े की लम्बाई 17 फुट है। पर्दों की लम्बाई के अनुसार आवश्यकता निम्नलिखित है :
पर्दे की लम्बाई (फुटों में) आवश्यक संख्या 5 700 9 400 7 300  पर्दे की लम्बाई (फुटों में) आवश्यक संख्या  5 700 9 400 7 300 {:[” पर्दे की लम्बाई (फुटों में) आवश्यक संख्या “],[5,700],[9,400],[7,300]:}\begin{array}{cc}\text { पर्दे की लम्बाई (फुटों में) आवश्यक संख्या } \\ 5 & 700 \\ 9 & 400 \\ 7 & 300\end{array} पर्दे की लम्बाई (फुटों में) आवश्यक संख्या 570094007300
टुकडों एवं सभी पर्दों की चौड़ाइयाँ समान हैं। विभिन्न रूप से काटे गये टुकड़ों की संख्या का निर्णय इस प्रकार करने हेतु कि कुल कटान-हानि न्यूनतम हो, एक रैखिक प्रोग्रामन समस्या का प्रामाणिक इस प्रकार करने हेतु कि कुल कटान-हानि न्यूनतम हो, एक रैखिक प्रोग्रामन समस्या का प्रामाणिक रूप में निर्धारण कीजिए । इसका एक आधारी सुसंगत हल भी दीजिए ।
UPSC maintenance section has purchased sufficient number of curtain cloth pieces to meet the curtain requirement of its building. The length of each piece is 17 feet. The requirement according to curtain length is as follows:
Curtain length (in feet) Number required 5 700 9 400 7 300  Curtain length (in feet)   Number required  5 700 9 400 7 300 {:[” Curtain length (in feet) “,” Number required “],[5,700],[9,400],[7,300]:}\begin{array}{cc}\text { Curtain length (in feet) } & \text { Number required } \\ 5 & 700 \\ 9 & 400 \\ 7 & 300\end{array} Curtain length (in feet)  Number required 570094007300
The width of all curtains is same as that of available pieces. Form a linear programming problem in standard form that decides the number of pieces cut in different ways so that the total trim loss is minimum. Also give a basic feasible solution to it.
Answer:

Introduction

The UPSC maintenance section has purchased curtain cloth pieces, each of length 17 feet, to meet the curtain requirements of its building. The goal is to cut these 17-foot pieces into smaller lengths of 5, 9, and 7 feet to meet the specific requirements while minimizing the total trim loss. We will formulate this as a linear programming problem (LPP) in standard form.

Variables

Let x 1 x 1 x_(1)x_1x1 be the number of 17-foot pieces cut into one 5-foot piece and one 12-foot piece.
Let x 2 x 2 x_(2)x_2x2 be the number of 17-foot pieces cut into one 9-foot piece and one 8-foot piece.
Let x 3 x 3 x_(3)x_3x3 be the number of 17-foot pieces cut into one 7-foot piece and one 10-foot piece.

Objective Function

The objective is to minimize the total trim loss, which is the sum of the remaining lengths after cutting the 17-foot pieces. The total trim loss T T TTT can be represented as:
Minimize T = 12 x 1 + 8 x 2 + 10 x 3 Minimize  T = 12 x 1 + 8 x 2 + 10 x 3 “Minimize “T=12x_(1)+8x_(2)+10x_(3)\text{Minimize } T = 12x_1 + 8x_2 + 10x_3Minimize T=12x1+8x2+10x3

Constraints

  1. The number of 5-foot pieces should be at least 700:
    x 1 700 x 1 700 x_(1) >= 700x_1 \geq 700x1700
  2. The number of 9-foot pieces should be at least 400:
    x 2 400 x 2 400 x_(2) >= 400x_2 \geq 400x2400
  3. The number of 7-foot pieces should be at least 300:
    x 3 300 x 3 300 x_(3) >= 300x_3 \geq 300x3300
  4. All variables must be non-negative:
    x 1 , x 2 , x 3 0 x 1 , x 2 , x 3 0 x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geq 0x1,x2,x30

Linear Programming Problem in Standard Form

Minimize T = 12 x 1 + 8 x 2 + 10 x 3 Minimize  T = 12 x 1 + 8 x 2 + 10 x 3 “Minimize “T=12x_(1)+8x_(2)+10x_(3)\text{Minimize } T = 12x_1 + 8x_2 + 10x_3Minimize T=12x1+8x2+10x3
subject to:
x 1 700 x 2 400 x 3 300 x 1 , x 2 , x 3 0 x 1 700 x 2 400 x 3 300 x 1 , x 2 , x 3 0 {:[x_(1) >= 700],[x_(2) >= 400],[x_(3) >= 300],[x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{aligned} x_1 & \geq 700 \\ x_2 & \geq 400 \\ x_3 & \geq 300 \\ x_1, x_2, x_3 & \geq 0 \end{aligned}x1700x2400x3300x1,x2,x30

Basic Feasible Solution

A basic feasible solution can be obtained by setting the slack variables to zero and solving the constraints for x 1 , x 2 , x 3 , x 1 , x 2 , x 3 , x_(1),x_(2),x_(3),x_1, x_2, x_3,x1,x2,x3, and T T TTT.
  • x 1 = 700 x 1 = 700 x_(1)=700x_1 = 700x1=700
  • x 2 = 400 x 2 = 400 x_(2)=400x_2 = 400x2=400
  • x 3 = 300 x 3 = 300 x_(3)=300x_3 = 300x3=300
  • T = 12 × 700 + 8 × 400 + 10 × 300 T = 12 × 700 + 8 × 400 + 10 × 300 T=12 xx700+8xx400+10 xx300T = 12 \times 700 + 8 \times 400 + 10 \times 300T=12×700+8×400+10×300
After Calculating, we get:
T = 8400 + 3200 + 3000 = 14600 T = 8400 + 3200 + 3000 = 14600 T=8400+3200+3000=14600T = 8400 + 3200 + 3000 = 14600T=8400+3200+3000=14600

Conclusion

The linear programming problem to minimize the total trim loss while meeting the curtain requirements is formulated as above. A basic feasible solution suggests cutting 700 pieces into 5-foot lengths, 400 pieces into 9-foot lengths, and 300 pieces into 7-foot lengths, resulting in a total trim loss of 14,600 feet.
2.(a) मान लीजिए G , n G , n G,nG, nG,n समूहांक का परिमित चक्रीय समूह है। तब सिद्ध कीजिए कि G G GGG के ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) जनक हैं (जहाँ पर ϕ ϕ phi\phiϕ ऑयलर ϕ ϕ phi\phiϕ-फलन है) ।
Let G G GGG be a finite cyclic group of order n n nnn. Then prove that G G GGG has ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) generators (where ϕ ϕ phi\phiϕ is Euler’s ϕ ϕ phi\phiϕ-function).
Answer:

Introduction

The problem asks us to prove that a finite cyclic group G G GGG of order n n nnn has ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) generators, where ϕ ϕ phi\phiϕ is Euler’s ϕ ϕ phi\phiϕ-function. Euler’s ϕ ϕ phi\phiϕ-function ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) is defined as the number of positive integers less than n n nnn that are relatively prime to n n nnn.

Preliminaries

Let G G GGG be a finite cyclic group of order n n nnn generated by a a aaa. That is, G = { a 0 , a 1 , a 2 , , a n 1 } G = { a 0 , a 1 , a 2 , , a n 1 } G={a^(0),a^(1),a^(2),dots,a^(n-1)}G = \{ a^0, a^1, a^2, \ldots, a^{n-1} \}G={a0,a1,a2,,an1}.

Generators of G G GGG

A generator g g ggg of G G GGG is an element such that every element in G G GGG can be written as a power of g g ggg. In other words, G = { g 0 , g 1 , g 2 , , g n 1 } G = { g 0 , g 1 , g 2 , , g n 1 } G={g^(0),g^(1),g^(2),dots,g^(n-1)}G = \{ g^0, g^1, g^2, \ldots, g^{n-1} \}G={g0,g1,g2,,gn1}.

Euler’s ϕ ϕ phi\phiϕ-Function

Euler’s ϕ ϕ phi\phiϕ-function ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) counts the number of positive integers less than n n nnn that are relatively prime to n n nnn.

Proof

  1. Claim: An element a k a k a^(k)a^kak generates G G GGG if and only if gcd ( k , n ) = 1 gcd ( k , n ) = 1 gcd(k,n)=1\gcd(k, n) = 1gcd(k,n)=1.
    Proof of Claim:
    • Forward Direction: Suppose a k a k a^(k)a^kak generates G G GGG. Then a k = G a k = G (:a^(k):)=G\langle a^k \rangle = Gak=G, which means a k a k a^(k)a^kak has order n n nnn. By Lagrange’s theorem, the order of a k a k a^(k)a^kak must divide n n nnn. Since a k a k a^(k)a^kak has order n n nnn, k k kkk and n n nnn must be relatively prime.
    • Backward Direction: Suppose gcd ( k , n ) = 1 gcd ( k , n ) = 1 gcd(k,n)=1\gcd(k, n) = 1gcd(k,n)=1. We want to show that a k a k a^(k)a^kak generates G G GGG. To do this, we need to show that every element a m a m a^(m)a^mam in G G GGG can be written as ( a k ) r ( a k ) r (a^(k))^(r)(a^k)^r(ak)r for some integer r r rrr.
    Since gcd ( k , n ) = 1 gcd ( k , n ) = 1 gcd(k,n)=1\gcd(k, n) = 1gcd(k,n)=1, there exist integers p p ppp and q q qqq such that p k + q n = 1 p k + q n = 1 pk+qn=1pk + qn = 1pk+qn=1. For any a m a m a^(m)a^mam in G G GGG, we have:
    a m = a m p k = ( a k ) m p = ( a k ) r a m = a m p k = ( a k ) m p = ( a k ) r a^(m)=a^(mpk)=(a^(k))^(mp)=(a^(k))^(r)a^m = a^{mpk} = (a^k)^{mp} = (a^k)^ram=ampk=(ak)mp=(ak)r
    where r = m p r = m p r=mpr = mpr=mp. This shows that a k a k a^(k)a^kak generates G G GGG.
  2. Counting Generators: The number of generators of G G GGG is the same as the number of integers k k kkk such that 0 < k < n 0 < k < n 0 < k < n0 < k < n0<k<n and gcd ( k , n ) = 1 gcd ( k , n ) = 1 gcd(k,n)=1\gcd(k, n) = 1gcd(k,n)=1. This is precisely ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n).

Conclusion

We have proven that a finite cyclic group G G GGG of order n n nnn has ϕ ( n ) ϕ ( n ) phi(n)\phi(n)ϕ(n) generators. The proof relies on the properties of Euler’s ϕ ϕ phi\phiϕ-function and the definition of a cyclic group.
2.(b) सिद्ध कीजिए कि फलन f ( x ) = sin x 2 f ( x ) = sin x 2 f(x)=sin x^(2)f(x)=\sin x^2f(x)=sinx2 अंतराल [ 0 , [ 0 , [0,oo[0, \infty[0, [ पर एकसमान संतत नहीं है।
Prove that the function f ( x ) = sin x 2 f ( x ) = sin x 2 f(x)=sin x^(2)f(x)=\sin x^2f(x)=sinx2 is not uniformly continuous on the interval [ 0 , [ [ 0 , [ [0,oo[[0, \infty[[0,[.
Answer:

Introduction

The problem asks us to prove that the function f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) is not uniformly continuous on the interval [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,).

Definition of Uniform Continuity

A function f ( x ) f ( x ) f(x)f(x)f(x) is said to be uniformly continuous on an interval I I III if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y x , y x,yx, yx,y in I I III, if | x y | < δ | x y | < δ |x-y| < delta|x – y| < \delta|xy|<δ, then | f ( x ) f ( y ) | < ϵ | f ( x ) f ( y ) | < ϵ |f(x)-f(y)| < epsilon|f(x) – f(y)| < \epsilon|f(x)f(y)|<ϵ.

Proof by Contradiction

To prove that f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) is not uniformly continuous on [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,), we’ll use a proof by contradiction. Assume that f ( x ) f ( x ) f(x)f(x)f(x) is uniformly continuous on [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,).
  1. Assumption: Assume f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) is uniformly continuous on [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,).
  2. Choose ϵ ϵ epsilon\epsilonϵ: Let ϵ = 1 2 ϵ = 1 2 epsilon=(1)/(2)\epsilon = \frac{1}{2}ϵ=12.
  3. Find δ δ delta\deltaδ: According to the definition of uniform continuity, there must exist a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y x , y x,yx, yx,y in [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,), if | x y | < δ | x y | < δ |x-y| < delta|x – y| < \delta|xy|<δ, then | sin ( x 2 ) sin ( y 2 ) | < 1 2 | sin ( x 2 ) sin ( y 2 ) | < 1 2 |sin(x^(2))-sin(y^(2))| < (1)/(2)|\sin(x^2) – \sin(y^2)| < \frac{1}{2}|sin(x2)sin(y2)|<12.
  4. Construct Counterexample: Consider the sequence x n = n π x n = n π x_(n)=sqrt(n pi)x_n = \sqrt{n\pi}xn=nπ and y n = ( n + 1 ) π y n = ( n + 1 ) π y_(n)=sqrt((n+1)pi)y_n = \sqrt{(n+1)\pi}yn=(n+1)π. We have:
    | x n y n | = | n π ( n + 1 ) π | = | π ( n n + 1 ) | | x n y n | = n π ( n + 1 ) π = π n n + 1 |x_(n)-y_(n)|=|sqrt(n pi)-sqrt((n+1)pi)|=|sqrtpi(sqrtn-sqrt(n+1))||x_n – y_n| = \left| \sqrt{n\pi} – \sqrt{(n+1)\pi} \right| = \left| \sqrt{\pi} \left( \sqrt{n} – \sqrt{n+1} \right) \right||xnyn|=|nπ(n+1)π|=|π(nn+1)|
    As n n nnn approaches infinity, | x n y n | | x n y n | |x_(n)-y_(n)||x_n – y_n||xnyn| approaches 0, which means for sufficiently large n n nnn, | x n y n | < δ | x n y n | < δ |x_(n)-y_(n)| < delta|x_n – y_n| < \delta|xnyn|<δ.
  5. Evaluate f ( x n ) f ( y n ) f ( x n ) f ( y n ) f(x_(n))-f(y_(n))f(x_n) – f(y_n)f(xn)f(yn): We have f ( x n ) = sin ( n π ) = 0 f ( x n ) = sin ( n π ) = 0 f(x_(n))=sin(n pi)=0f(x_n) = \sin(n\pi) = 0f(xn)=sin(nπ)=0 and f ( y n ) = sin ( ( n + 1 ) π ) = 0 f ( y n ) = sin ( ( n + 1 ) π ) = 0 f(y_(n))=sin((n+1)pi)=0f(y_n) = \sin((n+1)\pi) = 0f(yn)=sin((n+1)π)=0. Therefore, | f ( x n ) f ( y n ) | = 0 | f ( x n ) f ( y n ) | = 0 |f(x_(n))-f(y_(n))|=0|f(x_n) – f(y_n)| = 0|f(xn)f(yn)|=0.
  6. Contradiction: The function f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) oscillates infinitely many times as x x xxx approaches infinity. This means that for any δ > 0 δ > 0 delta > 0\delta > 0δ>0, we can find points x , y x , y x,yx, yx,y such that | x y | < δ | x y | < δ |x-y| < delta|x – y| < \delta|xy|<δ but | sin ( x 2 ) sin ( y 2 ) | | sin ( x 2 ) sin ( y 2 ) | |sin(x^(2))-sin(y^(2))||\sin(x^2) – \sin(y^2)||sin(x2)sin(y2)| is close to 1, contradicting the assumption that f ( x ) f ( x ) f(x)f(x)f(x) is uniformly continuous.

Conclusion

We have shown that assuming f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) is uniformly continuous leads to a contradiction. Therefore, f ( x ) = sin ( x 2 ) f ( x ) = sin ( x 2 ) f(x)=sin(x^(2))f(x) = \sin(x^2)f(x)=sin(x2) is not uniformly continuous on the interval [ 0 , ) [ 0 , ) [0,oo)[0, \infty)[0,).
2.(c) कन्टूर समाकलन का उपयोग कर, समाकल 0 2 π 1 3 + 2 sin θ d θ 0 2 π 1 3 + 2 sin θ d θ int_(0)^(2pi)(1)/(3+2sin theta)d theta\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta02π13+2sinθdθ का मान ज्ञात कीजिए ।
Using contour integration, evaluate the integral 0 2 π 1 3 + 2 sin θ d θ 0 2 π 1 3 + 2 sin θ d θ int_(0)^(2pi)(1)/(3+2sin theta)d theta\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta02π13+2sinθdθ.
Answer:
Introduction:
Using contour integration, evaluate the integral
0 2 π 1 3 + 2 sin θ d θ . 0 2 π 1 3 + 2 sin θ d θ . int_(0)^(2pi)(1)/(3+2sin theta)d theta.\int_0^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta.02π13+2sinθdθ.
Answer:
I = 0 2 π d θ 3 + 2 sin θ I = 0 2 π d θ 3 + 2 sin θ I=int_(0)^(2pi)(dtheta)/(3+2sin theta)I=\int_0^{2 \pi} \frac{\mathbf{d} \theta}{3+2 \sin \theta}I=02πdθ3+2sinθ
Step 1: Change of Variable
Consider z = e i θ d z = i e i θ d θ z = e i θ d z = i e i θ d θ z=e^(i theta)=>dz=ie^(i theta)d thetaz=e^{i \theta} \Rightarrow \mathbf{d} z=i e^{i \theta} d \thetaz=eiθdz=ieiθdθ.
d θ = d z i z , sin θ = z z 1 2 i = z 2 1 2 i z d θ = d z i z , sin θ = z z 1 2 i = z 2 1 2 i z =>d theta=(dz)/(iz),sin theta=(z-z^(-1))/(2i)=(z^(2)-1)/(2iz)\Rightarrow d \theta=\frac{\mathbf{d} z}{i z}, \sin \theta=\frac{z-z^{-1}}{2 i}=\frac{z^2-1}{2 i z}dθ=dziz,sinθ=zz12i=z212iz
Step 2: Substitution
Then
I = 1 3 + 2 ( z 2 1 ) 2 i z d z i z = 1 3 i z + z 2 1 i z d z i z = c d z z 2 + 3 i z 1 = c f ( z ) d z I = 1 3 + 2 z 2 1 2 i z d z i z = 1 3 i z + z 2 1 i z d z i z = c d z z 2 + 3 i z 1 = c f ( z ) d z I=int(1)/(3+(2(z^(2)-1))/(2iz))(dz)/(iz)=int((1)/(3iz+z^(2)-1))/(iz)(dz)/(iz)=int _(c)(dz)/(z^(2)+3iz-1)=int _(c)f(z)dzI=\int \frac{1}{3+\frac{2\left(z^2-1\right)}{2 i z}} \frac{\mathbf{d} z}{i z}=\int \frac{\frac{1}{3 i z+z^2-1}}{i z} \frac{\mathbf{d} z}{i z}=\int_c \frac{\mathbf{d} z}{z^2+3 i z-1}=\int_c f(z) \mathbf{d} zI=13+2(z21)2izdziz=13iz+z21izdziz=cdzz2+3iz1=cf(z)dz
Step 3: Finding Poles
f ( z ) f ( z ) f(z)f(z)f(z) has poles when z 2 + 3 i z 1 = 0 z 2 + 3 i z 1 = 0 z^(2)+3iz-1=0z^2+3 i z-1=0z2+3iz1=0
z = 3 i ± 9 i 2 4 ( 1 ) ( 1 ) 2 z = 3 i ± 9 + 4 2 = 3 i ± 5 i 2 z = 3 i ± 9 i 2 4 ( 1 ) ( 1 ) 2 z = 3 i ± 9 + 4 2 = 3 i ± 5 i 2 {:[z=(-3i+-sqrt(9i^(2)-4(-1)(1)))/(2)],[z=(-3i+-sqrt(-9+4))/(2)=(-3i+-sqrt5i)/(2)]:}\begin{aligned} & z=\frac{-3 i \pm \sqrt{9 i^2-4(-1)(1)}}{2} \\ & z=\frac{-3 i \pm \sqrt{-9+4}}{2}=\frac{-3 i \pm \sqrt{5} i}{2} \end{aligned}z=3i±9i24(1)(1)2z=3i±9+42=3i±5i2
Thus z 1 = ( 3 + 5 ) i 2 , z 2 = ( 3 5 ) i 2 z 1 = ( 3 + 5 ) i 2 , z 2 = ( 3 5 ) i 2 z_(1)=((-3+sqrt5)i)/(2),z_(2)=((-3-sqrt5)i)/(2)z_1=\frac{(-3+\sqrt{5}) i}{2}, z_2=\frac{(-3-\sqrt{5}) i}{2}z1=(3+5)i2,z2=(35)i2 are poles.
Step 4: Residue Calculation
But only z 1 z 1 z_(1)z_1z1 lies inside C C CCC.
The residue at z = z 1 z = z 1 z=z_(1)z=z_1z=z1
lim z z 1 ( z z 1 ) 1 ( z z 1 ) ( z z 2 ) lim z z 1 1 z z 2 = 1 z 1 z 2 = 1 5 i lim z z 1 z z 1 1 z z 1 z z 2 lim z z 1 1 z z 2 = 1 z 1 z 2 = 1 5 i {:[lim_(z rarrz_(1))(z-z_(1))(1)/((z-z_(1))(z-z_(2)))],[lim_(z rarrz_(1))(1)/(z-z_(2))=(1)/(z_(1)-z_(2))=(1)/(sqrt5i)]:}\begin{aligned} & \lim _{z \rightarrow z_1}\left(z-z_1\right) \frac{1}{\left(z-z_1\right)\left(z-z_2\right)} \\ & \lim _{z \rightarrow z_1} \frac{1}{z-z_2}=\frac{1}{z_1-z_2}=\frac{1}{\sqrt{5}i} \end{aligned}limzz1(zz1)1(zz1)(zz2)limzz11zz2=1z1z2=15i
Step 5: Applying Residue Theorem
By residue theorem
c f ( z ) d z = 2 π i × 1 5 i = 2 π 5 c f ( z ) d z = 2 π i × 1 5 i = 2 π 5 int _(c)f(z)dz=2pi i xx(1)/(sqrt5i)=(2pi)/(sqrt5)\int_c f(z) \mathbf{d} z=2 \pi i \times \frac{1}{\sqrt{5}i}=\frac{2 \pi}{\sqrt{5}}cf(z)dz=2πi×15i=2π5
Conclusion:
Therefore,
0 2 π d θ 3 + 2 sin θ = 2 π 5 0 2 π d θ 3 + 2 sin θ = 2 π 5 int_(0)^(2pi)(dtheta)/(3+2sin theta)=(2pi)/(sqrt5)\int_0^{2 \pi} \frac{\mathbf{d} \theta}{3+2 \sin \theta}=\frac{2 \pi}{\sqrt{5}}02πdθ3+2sinθ=2π5
  1. (a) मान लीजिए R , p ( > 0 ) R , p ( > 0 ) R,p( > 0)R, p(>0)R,p(>0) अभिलक्षण का एक परिमित क्षेत्र है । दर्शाइए कि f ( a ) = a p , a R f ( a ) = a p , a R f(a)=a^(p),AA a in Rf(a)=a^p, \forall a \in Rf(a)=ap,aR द्वारा परिभाषित प्रतिचित्रण f : R R f : R R f:R rarr Rf: R \rightarrow Rf:RR एकैक समाकारी है ।
Let R R RRR be a finite field of characteristic p ( > 0 ) p ( > 0 ) p( > 0)p(>0)p(>0). Show that the mapping f : R R f : R R f:R rarr Rf: R \rightarrow Rf:RR defined by f ( a ) = a p , a R f ( a ) = a p , a R f(a)=a^(p),AA a in Rf(a)=a^p, \forall a \in Rf(a)=ap,aR is an isomorphism.
Answer:

Introduction

The problem asks us to prove that the mapping f : R R f : R R f:R rarr Rf: R \rightarrow Rf:RR defined by f ( a ) = a p f ( a ) = a p f(a)=a^(p)f(a) = a^pf(a)=ap for all a R a R a in Ra \in RaR is an isomorphism, where R R RRR is a finite field of characteristic p > 0 p > 0 p > 0p > 0p>0.

Definitions

  1. Field: A set R R RRR with two operations + + +++ and × × xx\times× that satisfy the field axioms.
  2. Characteristic: A field R R RRR has characteristic p p ppp if p p ppp is the smallest positive integer such that p a = 0 p a = 0 p*a=0p \cdot a = 0pa=0 for all a R a R a in Ra \in RaR. If no such p p ppp exists, the characteristic is zero.
  3. Isomorphism: A bijective map f : R R f : R R f:R rarr Rf: R \rightarrow Rf:RR that preserves the field operations.

Properties Needed

  1. Frobenius Endomorphism: In a field of characteristic p p ppp, ( a + b ) p = a p + b p ( a + b ) p = a p + b p (a+b)^(p)=a^(p)+b^(p)(a+b)^p = a^p + b^p(a+b)p=ap+bp and ( a b ) p = a p b p ( a b ) p = a p b p (ab)^(p)=a^(p)b^(p)(ab)^p = a^p b^p(ab)p=apbp.

Proof

To prove that f f fff is an isomorphism, we need to show that f f fff is a bijective map that preserves addition and multiplication.

1. f f fff is a Homomorphism

  1. Preservation of Addition:
    f ( a + b ) = ( a + b ) p = a p + b p = f ( a ) + f ( b ) f ( a + b ) = ( a + b ) p = a p + b p = f ( a ) + f ( b ) f(a+b)=(a+b)^(p)=a^(p)+b^(p)=f(a)+f(b)f(a+b) = (a+b)^p = a^p + b^p = f(a) + f(b)f(a+b)=(a+b)p=ap+bp=f(a)+f(b)
  2. Preservation of Multiplication:
    f ( a b ) = ( a b ) p = a p b p = f ( a ) f ( b ) f ( a b ) = ( a b ) p = a p b p = f ( a ) f ( b ) f(ab)=(ab)^(p)=a^(p)b^(p)=f(a)f(b)f(ab) = (ab)^p = a^p b^p = f(a) f(b)f(ab)=(ab)p=apbp=f(a)f(b)

2. f f fff is Injective (One-to-One)

Suppose f ( a ) = f ( b ) f ( a ) = f ( b ) f(a)=f(b)f(a) = f(b)f(a)=f(b). Then a p = b p a p = b p a^(p)=b^(p)a^p = b^pap=bp which implies a p b p = 0 a p b p = 0 a^(p)-b^(p)=0a^p – b^p = 0apbp=0. Since R R RRR is a field, it has no zero divisors, and we can factor a p b p a p b p a^(p)-b^(p)a^p – b^papbp as ( a b ) p ( a b ) p (a-b)^(p)(a-b)^p(ab)p. This means a b = 0 a b = 0 a-b=0a-b = 0ab=0 or a = b a = b a=ba = ba=b, proving that f f fff is injective.

3. f f fff is Surjective (Onto)

Since R R RRR is finite and f f fff is injective, f f fff must also be surjective. Alternatively, for any b R b R b in Rb \in RbR, b = b p 2 b = b p 2 b=b^(p^(2))b = b^{p^2}b=bp2 (by Fermat’s Little Theorem or the fact that R R R^(**)R^*R, the multiplicative group of R R RRR, has order p n 1 p n 1 p^(n)-1p^n – 1pn1). Thus, f ( b p 1 ) = ( b p 1 ) p = b p = b f ( b p 1 ) = ( b p 1 ) p = b p = b f(b^(p-1))=(b^(p-1))^(p)=b^(p)=bf(b^{p-1}) = (b^{p-1})^p = b^p = bf(bp1)=(bp1)p=bp=b, showing that f f fff is surjective.

Conclusion

We have shown that f f fff preserves both addition and multiplication, and is both injective and surjective. Therefore, f : R R f : R R f:R rarr Rf: R \rightarrow Rf:RR defined by f ( a ) = a p f ( a ) = a p f(a)=a^(p)f(a) = a^pf(a)=ap is an isomorphism.
3.(b) एकधा विधि के द्वारा निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :
न्यूनतमीकरण कीजिए z = 6 X 1 2 X 2 5 X 3 z = 6 X 1 2 X 2 5 X 3 z=-6X_(1)-2X_(2)-5X_(3)z=-6 X_1-2 X_2-5 X_3z=6X12X25X3
बशर्ते कि
2 X 1 3 X 2 + X 3 14 4 X 1 + 4 X 2 + 10 X 3 46 2 X 1 + 2 X 2 4 X 3 37 X 1 2 , X 2 1 , X 3 3 2 X 1 3 X 2 + X 3 14 4 X 1 + 4 X 2 + 10 X 3 46 2 X 1 + 2 X 2 4 X 3 37 X 1 2 , X 2 1 , X 3 3 {:[2X_(1)-3X_(2)+X_(3) <= 14],[-4X_(1)+4X_(2)+10X_(3) <= 46],[2X_(1)+2X_(2)-4X_(3) <= 37],[X_(1) >= 2″,”X_(2) >= 1″,”X_(3) >= 3]:}\begin{gathered} 2 X_1-3 X_2+X_3 \leqslant 14\\ -4 X_1+4 X_2+10 X_3 \leqslant 46 \\ 2 X_1+2 X_2-4 X_3 \leqslant 37 \\ X_1 \geqslant 2, X_2 \geqslant 1, X_3 \geqslant 3 \end{gathered}2X13X2+X3144X1+4X2+10X3462X1+2X24X337X12,X21,X33
Solve the linear programming problem using simplex method:
Minimize z = 6 X 1 2 X 2 5 X 3 z = 6 X 1 2 X 2 5 X 3 z=-6X_(1)-2X_(2)-5X_(3)z=-6 X_1-2 X_2-5 X_3z=6X12X25X3
subject to 2 X 1 3 X 2 + X 3 14 2 X 1 3 X 2 + X 3 14 quad2X_(1)-3X_(2)+X_(3) <= 14\quad 2 X_1-3 X_2+X_3 \leqslant 142X13X2+X314
4 X 1 + 4 X 2 + 10 X 3 46 2 X 1 + 2 X 2 4 X 3 37 X 1 2 , X 2 1 , X 3 3 4 X 1 + 4 X 2 + 10 X 3 46 2 X 1 + 2 X 2 4 X 3 37 X 1 2 , X 2 1 , X 3 3 {:[-4X_(1)+4X_(2)+10X_(3) <= 46],[2X_(1)+2X_(2)-4X_(3) <= 37],[X_(1) >= 2″,”X_(2) >= 1″,”X_(3) >= 3]:}\begin{gathered} -4 X_1+4 X_2+10 X_3 \leqslant 46 \\ 2 X_1+2 X_2-4 X_3 \leqslant 37 \\ X_1 \geqslant 2, X_2 \geqslant 1, X_3 \geqslant 3 \end{gathered}4X1+4X2+10X3462X1+2X24X337X12,X21,X33
Answer:

Introduction

The given Linear Programming Problem (LPP) aims to minimize the objective function z = 6 X 1 2 X 2 5 X 3 z = 6 X 1 2 X 2 5 X 3 z=-6X_(1)-2X_(2)-5X_(3)z = -6X_1 – 2X_2 – 5X_3z=6X12X25X3 subject to certain constraints and variable bounds. The problem is transformed to a standard form by introducing slack variables and then solved using the Simplex method.

Problem Transformation

Let x 1 + 2 = X 1 , x 2 + 1 = X 2 x 1 + 2 = X 1 , x 2 + 1 = X 2 x_(1)+2=X_(1),x_(2)+1=X_(2)x_1+2=X_1, x_2+1=X_2x1+2=X1,x2+1=X2 and x 3 + 1 = X 3 x 3 + 1 = X 3 x_(3)+1=X_(3)x_3+1=X_3x3+1=X3
Then, the objective function becomes:
min Z = 6 ( x 1 + 2 ) 2 ( x 2 + 1 ) 5 ( x 3 + 3 ) = 6 x 1 12 12 x 2 2 5 x 3 15 = 6 x 1 2 x 2 5 x 3 29 min Z = 6 x 1 + 2 2 x 2 + 1 5 x 3 + 3 = 6 x 1 12 12 x 2 2 5 x 3 15 = 6 x 1 2 x 2 5 x 3 29 {:[ minZ^(**)=-6(x_(1)+2)-2(x_(2)+1)-5(x_(3)+3)],[=-6x_(1)-12-12x_(2)-2-5x_(3)-15],[=-6x_(1)-2x_(2)-5x_(3)-29]:}\begin{aligned} & \min Z^*=-6\left(x_1+2\right)-2\left(x_2+1\right)-5\left(x_3+3\right) \\ & =-6 x_1-12-12 x_2-2-5 x_3-15 \\ & =-6 x_1-2 x_2-5 x_3-29 \end{aligned}minZ=6(x1+2)2(x2+1)5(x3+3)=6x11212x225x315=6x12x25x329
Subject to the transformed constraints:
2 ( x 1 + 2 ) 3 ( x 2 + 1 ) + ( x 3 + 3 ) 14 2 x 1 3 x 2 + x 3 10 2 x 1 + 2 3 x 2 + 1 + x 3 + 3 14 2 x 1 3 x 2 + x 3 10 2(x_(1)+2)-3(x_(2)+1)+(x_(3)+3) <= 14=>2x_(1)-3x_(2)+x_(3) <= 102\left(x_1+2\right)-3\left(x_2+1\right)+\left(x_3+3\right) \leqslant 14 \Rightarrow 2 x_1-3 x_2+x_3 \leqslant 102(x1+2)3(x2+1)+(x3+3)142x13x2+x310
4 ( x 1 + 2 ) + 4 ( x 2 + 1 ) + 10 ( x 3 + 3 ) 46 4 x 1 + 4 x 2 + 10 x 3 20 4 x 1 + 2 + 4 x 2 + 1 + 10 x 3 + 3 46 4 x 1 + 4 x 2 + 10 x 3 20 -4(x_(1)+2)+4(x_(2)+1)+10(x_(3)+3) <= 46=>-4x_(1)+4x_(2)+10x_(3) <= 20-4\left(x_1+2\right)+4\left(x_2+1\right)+10\left(x_3+3\right) \leqslant 46 \Rightarrow -4 x_1+4 x_2+10 x_3 \leqslant 204(x1+2)+4(x2+1)+10(x3+3)464x1+4x2+10x320
2 ( x 1 + 2 ) + 2 ( x 2 + 1 ) 4 ( x 3 + 3 ) 37 2 x 1 + 2 x 2 4 x 3 43 2 x 1 + 2 + 2 x 2 + 1 4 x 3 + 3 37 2 x 1 + 2 x 2 4 x 3 43 2(x_(1)+2)+2(x_(2)+1)-4(x_(3)+3) <= 37=>2x_(1)+2x_(2)-4x_(3) <= 432\left(x_1+2\right)+2\left(x_2+1\right)-4\left(x_3+3\right) \leqslant 37 \Rightarrow 2 x_1+2 x_2-4 x_3 \leqslant 432(x1+2)+2(x2+1)4(x3+3)372x1+2x24x343
x 1 , x 2 , x 3 0 x 1 , x 2 , x 3 0 x_(1),x_(2),x_(3) >= 0x_1, x_2, x_3 \geqslant 0x1,x2,x30
After introducing slack variables
Min Z = 6 x 1 2 x 2 5 x 3 + 0 S 1 + 0 S 2 + 0 S 3 subject to 2 x 1 3 x 2 + x 3 + S 1 = 10 4 x 1 + 4 x 2 + 10 x 3 + S 2 = 20 2 x 1 + 2 x 2 4 x 3 + S 3 = 43 and x 1 , x 2 , x 3 , S 1 , S 2 , S 3 0 Min Z = 6 x 1 2 x 2 5 x 3 + 0 S 1 + 0 S 2 + 0 S 3  subject to  2 x 1 3 x 2 + x 3 + S 1 = 10 4 x 1 + 4 x 2 + 10 x 3 + S 2 = 20 2 x 1 + 2 x 2 4 x 3 + S 3 = 43  and  x 1 , x 2 , x 3 , S 1 , S 2 , S 3 0 {:[MinZ^(**)=-6x_(1)-2x_(2)-5x_(3)+0S_(1)+0S_(2)+0S_(3)],[” subject to “],[qquad{:[2x_(1)-3x_(2)+x_(3)+S_(1)=10],[-4x_(1)+4x_(2)+10x_(3)+S_(2)=20],[2x_(1)+2x_(2)-4x_(3)+S_(3)=43]:}],[” and “x_(1)”,”x_(2)”,”x_(3)”,”S_(1)”,”S_(2)”,”S_(3) >= 0]:}\begin{aligned} & \operatorname{Min} Z^*=-6 x_1-2 x_2-5 x_3+0 S_1+0 S_2+0 S_3 \\ & \text { subject to } \\ & \qquad \begin{aligned} 2 x_1-3 x_2+x_3+S_1 & =10 \\ -4 x_1+4 x_2+10 x_3+S_2 & =20 \\ 2 x_1+2 x_2-4 x_3 & +S_3=43 \end{aligned} \\ & \text { and } x_1, x_2, x_3, S_1, S_2, S_3 \geq 0 \end{aligned}MinZ=6x12x25x3+0S1+0S2+0S3 subject to 2x13x2+x3+S1=104x1+4x2+10x3+S2=202x1+2x24x3+S3=43 and x1,x2,x3,S1,S2,S30
Iteration-1 C j C j C_(j)C_jCj -6 -2 -5 0 0 0
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 S 3 S 3 S_(3)S_3S3 MinRatio X B x 1  MinRatio  X B x 1 {:[” MinRatio “],[(X_(B))/(x_(1))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array} MinRatio XBx1
S 1 S 1 S_(1)S_1S1 0 10 (2) -3 1 1 0 0 10 2 = 5 10 2 = 5 (10)/(2)=5rarr\frac{10}{2}=5 \rightarrow102=5
S 2 S 2 S_(2)S_2S2 0 20 -4 4 10 0 1 0
S 3 S 3 S_(3)S_3S3 0 43 2 2 -4 0 0 1 43 2 = 21.5 43 2 = 21.5 (43)/(2)=21.5\frac{43}{2}=21.5432=21.5
Z = 0 Z = 0 Z=0Z=0Z=0 Z j Z j Z_(j)Z_jZj 0 0 0 0 0\mathbf{0}0 0 0 0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 6 6 -6uarr-6 \uparrow6 -2 -5 0 0 0
Iteration-1 C_(j) -6 -2 -5 0 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) S_(3) ” MinRatio (X_(B))/(x_(1))” S_(1) 0 10 (2) -3 1 1 0 0 (10)/(2)=5rarr S_(2) 0 20 -4 4 10 0 1 0 — S_(3) 0 43 2 2 -4 0 0 1 (43)/(2)=21.5 Z=0 Z_(j) 0 0 0 0 0 0 C_(j)-Z_(j) -6uarr -2 -5 0 0 0 | Iteration-1 | | $C_j$ | -6 | -2 | -5 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $S_1$ | $S_2$ | $S_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array}$ | | $S_1$ | 0 | 10 | (2) | -3 | 1 | 1 | 0 | 0 | $\frac{10}{2}=5 \rightarrow$ | | $S_2$ | 0 | 20 | -4 | 4 | 10 | 0 | 1 | 0 | — | | $S_3$ | 0 | 43 | 2 | 2 | -4 | 0 | 0 | 1 | $\frac{43}{2}=21.5$ | | $Z=0$ | | $Z_j$ | 0 | 0 | $\mathbf{0}$ | 0 | 0 | 0 | | | | | $C_j-Z_j$ | $-6 \uparrow$ | -2 | -5 | 0 | 0 | 0 | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is -6 and its column index is 1 . So, the entering variable is x 1 x 1 x_(1)x_1x1.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is S 1 S 1 S_(1)S_1S1.
:.\therefore The pivot element is 2 .
Entering = x 1 = x 1 =x_(1)=x_1=x1, Departing = S 1 = S 1 =S_(1)=S_1=S1, Key Element = 2 = 2 =2=2=2
R 1 ( new ) = R 1 ( old ) ÷ 2 R 2 ( new ) = R 2 ( old ) + 4 R 1 ( new ) R 3 (new ) = R 3 (old ) 2 R 1 ( new ) R 1 (  new  ) = R 1 (  old  ) ÷ 2 R 2 (  new  ) = R 2 (  old  ) + 4 R 1 (  new  ) R 3  (new  = R 3  (old  2 R 1 (  new  ) {:[R_(1)(” new “)=R_(1)(” old “)-:2],[R_(2)(” new “)=R_(2)(” old “)+4R_(1)(” new “)],[{:R_(3)” (new “)=R_(3)” (old “)-2R_(1)(” new “)]:}\begin{aligned} & R_1(\text { new })=R_1(\text { old }) \div 2 \\ & R_2(\text { new })=R_2(\text { old })+4 R_1(\text { new }) \\ & \left.\left.R_3 \text { (new }\right)=R_3 \text { (old }\right)-2 R_1(\text { new }) \end{aligned}R1( new )=R1( old )÷2R2( new )=R2( old )+4R1( new )R3 (new )=R3 (old )2R1( new )
Iteration-2 C j C j C_(j)C_jCj -6 -2 -5 0 0 0
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 S 1 S 1 S_(1)S_1S1 S 2 S 2 S_(2)S_2S2 S 3 S 3 S_(3)S_3S3 MinRatio X B x 2  MinRatio  X B x 2 {:[” MinRatio “],[(X_(B))/(x_(2))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array} MinRatio XBx2
x 1 x 1 x_(1)x_1x1 -6 5 1 -1.5 0.5 0.5 0 0
S 2 S 2 S_(2)S_2S2 0 40 0 -2 12 2 1 0
S 3 S 3 S_(3)S_3S3 0 33 0 (5) -5 -1 0 1 33 5 = 6.6 33 5 = 6.6 (33)/(5)=6.6 rarr\frac{33}{5}=6.6 \rightarrow335=6.6
Z = 3 0 Z = 3 0 Z=-30Z=-\mathbf{3 0}Z=30 Z j Z j Z_(j)Z_jZj -6 9 -3 -3 0 0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 11 11 -11 uarr-11 \uparrow11 -2 3 0 0
Iteration-2 C_(j) -6 -2 -5 0 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) S_(3) ” MinRatio (X_(B))/(x_(2))” x_(1) -6 5 1 -1.5 0.5 0.5 0 0 — S_(2) 0 40 0 -2 12 2 1 0 — S_(3) 0 33 0 (5) -5 -1 0 1 (33)/(5)=6.6 rarr Z=-30 Z_(j) -6 9 -3 -3 0 0 C_(j)-Z_(j) 0 -11 uarr -2 3 0 0 | Iteration-2 | | $C_j$ | -6 | -2 | -5 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $S_1$ | $S_2$ | $S_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array}$ | | $x_1$ | -6 | 5 | 1 | -1.5 | 0.5 | 0.5 | 0 | 0 | — | | $S_2$ | 0 | 40 | 0 | -2 | 12 | 2 | 1 | 0 | — | | $S_3$ | 0 | 33 | 0 | (5) | -5 | -1 | 0 | 1 | $\frac{33}{5}=6.6 \rightarrow$ | | $Z=-\mathbf{3 0}$ | | $Z_j$ | -6 | 9 | -3 | -3 | 0 | 0 | | | | | $C_j-Z_j$ | 0 | $-11 \uparrow$ | -2 | 3 | 0 | 0 | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is -11 and its column index is 2 . So, the entering variable is x 2 x 2 x_(2)x_2x2.
Minimum ratio is 6.6 and its row index is 3 . So, the leaving basis variable is S 3 S 3 S_(3)S_3S3.
:.\therefore The pivot element is 5 .
Entering = x 2 = x 2 =x_(2)=x_2=x2, Departing = S 3 = S 3 =S_(3)=S_3=S3, Key Element = 5 = 5 =5=5=5
R 3 ( new ) = R 3 ( old ) ÷ 5 R 1 ( new ) = R 1 ( old ) + 1.5 R 3 (new ) R 2 ( new ) = R 2 ( old ) + 2 R 3 ( new ) R 3 (  new  ) = R 3 (  old  ) ÷ 5 R 1 (  new  ) = R 1 (  old  ) + 1.5 R 3  (new  R 2 (  new  ) = R 2 (  old  ) + 2 R 3 (  new  ) {:[R_(3)(” new “)=R_(3)(” old “)-:5],[{:R_(1)(” new “)=R_(1)(” old “)+1.5R_(3)” (new “)],[R_(2)(” new “)=R_(2)(” old “)+2R_(3)(” new “)]:}\begin{aligned} & R_3(\text { new })=R_3(\text { old }) \div 5 \\ & \left.R_1(\text { new })=R_1(\text { old })+1.5 R_3 \text { (new }\right) \\ & R_2(\text { new })=R_2(\text { old })+2 R_3(\text { new }) \end{aligned}R3( new )=R3( old )÷5R1( new )=R1( old )+1.5R3 (new )R2( new )=R2( old )+2R3( new )
Iteration-3 C j C j C_(j)C_jCj -6 -2 -5 0 0 0
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 s 1 s 1 s_(1)s_1s1 S 2 S 2 S_(2)S_2S2 S 3 S 3 S_(3)S_3S3 MinRatio X B x 3  MinRatio  X B x 3 {:[” MinRatio “],[(X_(B))/(x_(3))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array} MinRatio XBx3
x 1 x 1 x_(1)x_1x1 -6 14.9 1 0 -1 0.2 0 0.3
s 2 s 2 s_(2)s_2s2 0 53.2 0 0 (10) 1.6 1 0.4 53.2 10 = 5.32 53.2 10 = 5.32 (53.2)/(10)=5.32 rarr\frac{53.2}{10}=5.32 \rightarrow53.210=5.32
x 2 x 2 x_(2)x_2x2 -2 6.6 0 1 -1 -0.2 0 0.2
Z = 102.6 Z = 102.6 Z=-102.6Z=-102.6Z=102.6 Z j Z j Z_(j)Z_jZj -6 -2 8 -0.8 0 -2.2
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 13 13 -13 uarr-13 \uparrow13 0.8 0 2.2
Iteration-3 C_(j) -6 -2 -5 0 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) s_(1) S_(2) S_(3) ” MinRatio (X_(B))/(x_(3))” x_(1) -6 14.9 1 0 -1 0.2 0 0.3 — s_(2) 0 53.2 0 0 (10) 1.6 1 0.4 (53.2)/(10)=5.32 rarr x_(2) -2 6.6 0 1 -1 -0.2 0 0.2 — Z=-102.6 Z_(j) -6 -2 8 -0.8 0 -2.2 C_(j)-Z_(j) 0 0 -13 uarr 0.8 0 2.2 | Iteration-3 | | $C_j$ | -6 | -2 | -5 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $S_2$ | $S_3$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_3}\end{array}$ | | $x_1$ | -6 | 14.9 | 1 | 0 | -1 | 0.2 | 0 | 0.3 | — | | $s_2$ | 0 | 53.2 | 0 | 0 | (10) | 1.6 | 1 | 0.4 | $\frac{53.2}{10}=5.32 \rightarrow$ | | $x_2$ | -2 | 6.6 | 0 | 1 | -1 | -0.2 | 0 | 0.2 | — | | $Z=-102.6$ | | $Z_j$ | -6 | -2 | 8 | -0.8 | 0 | -2.2 | | | | | $C_j-Z_j$ | 0 | 0 | $-13 \uparrow$ | 0.8 | 0 | 2.2 | |
Negative minimum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is -13 and its column index is 3 . So, the entering variable is x 3 x 3 x_(3)x_3x3.
Minimum ratio is 5.32 and its row index is 2 . So, the leaving basis variable is S 2 S 2 S_(2)S_2S2.
:.\therefore The pivot element is 10 .
Entering = x 3 = x 3 =x_(3)=x_3=x3, Departing = S 2 = S 2 =S_(2)=S_2=S2, Key Element = 10 = 10 =10=10=10
R 2 ( new ) = R 2 ( old ) ÷ 10 R 1 ( new ) = R 1 ( old ) + R 2 ( new ) R 3 ( new ) = R 3 ( old ) + R 2 ( new ) R 2 (  new  ) = R 2 (  old  ) ÷ 10 R 1 (  new  ) = R 1 (  old  ) + R 2 (  new  ) R 3 (  new  ) = R 3 (  old  ) + R 2 (  new  ) {:[R_(2)(” new “)=R_(2)(” old “)-:10],[R_(1)(” new “)=R_(1)(” old “)+R_(2)(” new “)],[R_(3)(” new “)=R_(3)(” old “)+R_(2)(” new “)]:}\begin{aligned} & R_2(\text { new })=R_2(\text { old }) \div 10 \\ & R_1(\text { new })=R_1(\text { old })+R_2(\text { new }) \\ & R_3(\text { new })=R_3(\text { old })+R_2(\text { new }) \end{aligned}R2( new )=R2( old )÷10R1( new )=R1( old )+R2( new )R3( new )=R3( old )+R2( new )
Iteration-4 C j C j C_(j)C_jCj -6 -2 -5 0 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 x 3 x 3 x_(3)\boldsymbol{x}_{\mathbf{3}}x3 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 S 3 S 3 S_(3)\boldsymbol{S}_{\mathbf{3}}S3 MinRatio
x 1 x 1 x_(1)x_1x1 -6 20.22 1 0 0 0.36 0.1 0.34
x 3 x 3 x_(3)x_3x3 -5 5.32 0 0 1 0.16 0.1 0.04
x 2 x 2 x_(2)x_2x2 -2 11.92 0 1 0 -0.04 0.1 0.24
Z = 1 7 1 . 7 6 Z = 1 7 1 . 7 6 Z=-171.76\boldsymbol{Z}=-\mathbf{1 7 1 . 7 6}Z=171.76 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 6 6 -6\mathbf{- 6}6 2 2 -2\mathbf{- 2}2 5 5 -5\mathbf{- 5}5 2 . 8 8 2 . 8 8 -2.88\mathbf{- 2 . 8 8}2.88 1 . 3 1 . 3 -1.3\mathbf{- 1 . 3}1.3 2 . 7 2 2 . 7 2 -2.72\mathbf{- 2 . 7 2}2.72
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 0 2.88 1.3 2.72
Iteration-4 C_(j) -6 -2 -5 0 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) S_(3) MinRatio x_(1) -6 20.22 1 0 0 0.36 0.1 0.34 x_(3) -5 5.32 0 0 1 0.16 0.1 0.04 x_(2) -2 11.92 0 1 0 -0.04 0.1 0.24 Z=-171.76 Z_(j) -6 -2 -5 -2.88 -1.3 -2.72 C_(j)-Z_(j) 0 0 0 2.88 1.3 2.72 | Iteration-4 | | $C_j$ | -6 | -2 | -5 | 0 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{x}_{\mathbf{3}}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | $\boldsymbol{S}_{\mathbf{3}}$ | MinRatio | | $x_1$ | -6 | 20.22 | 1 | 0 | 0 | 0.36 | 0.1 | 0.34 | | | $x_3$ | -5 | 5.32 | 0 | 0 | 1 | 0.16 | 0.1 | 0.04 | | | $x_2$ | -2 | 11.92 | 0 | 1 | 0 | -0.04 | 0.1 | 0.24 | | | $\boldsymbol{Z}=-\mathbf{1 7 1 . 7 6}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{- 6}$ | $\mathbf{- 2}$ | $\mathbf{- 5}$ | $\mathbf{- 2 . 8 8}$ | $\mathbf{- 1 . 3}$ | $\mathbf{- 2 . 7 2}$ | | | | | $C_j-Z_j$ | 0 | 0 | 0 | 2.88 | 1.3 | 2.72 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) >= 0C_j-Z_j \geq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 20.22 , x 2 = 11.92 , x 3 = 5.32 x 1 = 20.22 , x 2 = 11.92 , x 3 = 5.32 x_(1)=20.22,x_(2)=11.92,x_(3)=5.32x_1=20.22, x_2=11.92, x_3=5.32x1=20.22,x2=11.92,x3=5.32
Min Z = 171.76 Min Z = 171.76 MinZ^(**)=-171.76\operatorname{Min} Z^*=-171.76MinZ=171.76
Hence, Min Z = Min Z 29 Min Z = Min Z 29 Min Z=MinZ^(**)-29\operatorname{Min} Z=\operatorname{Min} Z^*-29MinZ=MinZ29
Min Z = 171.76 29 = 200.76 Min Z = 171.76 29 = 200.76 Min Z=-171.76-29=-200.76\operatorname{Min} Z=-171.76-29=-200.76MinZ=171.7629=200.76

Conclusion

The optimal solution to the given LPP is x 1 = 20.22 , x 2 = 11.92 , x 3 = 5.32 x 1 = 20.22 , x 2 = 11.92 , x 3 = 5.32 x_(1)=20.22,x_(2)=11.92,x_(3)=5.32x_1 = 20.22, x_2 = 11.92, x_3 = 5.32x1=20.22,x2=11.92,x3=5.32 with a minimum value of Z = 200.76 Z = 200.76 Z=-200.76Z = -200.76Z=200.76. All C j Z j C j Z j C_(j)-Z_(j)C_j – Z_jCjZj values are non-negative, confirming that the solution is optimal.
3.(c) यदि u = tan 1 x 3 + y 3 x y , x y u = tan 1 x 3 + y 3 x y , x y u=tan^(-1)((x^(3)+y^(3))/(x-y)),x!=yu=\tan ^{-1} \frac{x^3+y^3}{x-y}, x \neq yu=tan1x3+y3xy,xy
तब दर्शाइए कि x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = ( 1 4 sin 2 u ) sin 2 u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = 1 4 sin 2 u sin 2 u x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\left(1-4 \sin ^2 u\right) \sin 2 ux22ux2+2xy2uxy+y22uy2=(14sin2u)sin2u
If u = tan 1 x 3 + y 3 x y , x y u = tan 1 x 3 + y 3 x y , x y u=tan^(-1)((x^(3)+y^(3))/(x-y)),x!=yu=\tan ^{-1} \frac{x^3+y^3}{x-y}, x \neq yu=tan1x3+y3xy,xy
then show that x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = ( 1 4 sin 2 u ) sin 2 u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = 1 4 sin 2 u sin 2 u x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\left(1-4 \sin ^2 u\right) \sin 2 ux22ux2+2xy2uxy+y22uy2=(14sin2u)sin2u
Answer:
Introduction:
Here, we explore the nature of a function u = tan 1 x 3 + y 3 x y u = tan 1 x 3 + y 3 x y u=tan^(-1)((x^(3)+y^(3))/(x-y))u = \tan^{-1}\frac{x^3+y^3}{x-y}u=tan1x3+y3xy and investigate its homogeneity.
Homogeneity of u u uuu:
We start by considering whether u u uuu is a homogeneous function.
However, we express tan u = x 3 + y 3 x y tan u = x 3 + y 3 x y tan u=(x^(3)+y^(3))/(x-y)\tan u = \frac{x^3+y^3}{x-y}tanu=x3+y3xy as z z zzz, where z z zzz is a new variable. Thus, we obtain:
tan u = x 3 + y 3 x y = z ( 1 ) z = x 2 [ 1 + ( y x ) 3 1 ( y x ) ] tan u = x 3 + y 3 x y = z ( 1 ) z = x 2 1 + y x 3 1 y x {:[tan u=(x^(3)+y^(3))/(x-y)=z quad rarr(1)],[=>z=x^(2)[(1+((y)/(x))^(3))/(1-((y)/(x)))]]:}\begin{aligned} & \tan u = \frac{x^3+y^3}{x-y} = z \quad \rightarrow(1) \\ & \Rightarrow z = x^2\left[\frac{1+\left(\frac{y}{x}\right)^3}{1-\left(\frac{y}{x}\right)}\right] \end{aligned}tanu=x3+y3xy=z(1)z=x2[1+(yx)31(yx)]
Now, z z zzz is shown to be a homogeneous function of x x xxx and y y yyy of degree 2:
x z x + y z y = 2 z ( 2 ) x z x + y z y = 2 z ( 2 ) x(del z)/(del x)+y(del z)/(del y)=2z quad rarr(2)x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z \quad \rightarrow(2)xzx+yzy=2z(2)
Derivatives of z z zzz and u u uuu:
Next, we calculate the derivatives of z z zzz and u u uuu with respect to x x xxx and y y yyy. These derivatives play a crucial role in our analysis. From equation (1), we have:
z x = sec 2 u u x z y = sec 2 u u y ( 3 ) z x = sec 2 u u x z y = sec 2 u u y ( 3 ) {:[(del z)/(del x)=sec^(2)u(del u)/(del x)],[(del z)/(del y)=sec^(2)u(del u)/(del y)quad rarr(3)]:}\begin{aligned} & \frac{\partial z}{\partial x} = \sec^2 u \frac{\partial u}{\partial x} \\ & \frac{\partial z}{\partial y} = \sec^2 u \frac{\partial u}{\partial y} \quad \rightarrow(3) \end{aligned}zx=sec2uuxzy=sec2uuy(3)
Simplification and Relationships:
Now, we use the derivatives to simplify and establish relationships between x , y , z , u x , y , z , u x,y,z,ux, y, z, ux,y,z,u:
From equation (2), we have:
x u x + y u y = 2 sin u cos u cos 2 u = sin 2 u ( 4 ) x u x + y u y = 2 sin u cos u cos 2 u = sin 2 u ( 4 ) x(del u)/(del x)+y(del u)/(del y)=(2sin u)/(cos u)*cos^(2)u=sin 2u quad rarr(4)x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \sin u}{\cos u} \cdot \cos^2 u = \sin 2u \quad \rightarrow(4)xux+yuy=2sinucosucos2u=sin2u(4)
From the derivatives in equation (3), we further derive:
2 z x 2 = sec 2 u 2 u x 2 + 2 sec 2 u tan u ( u x ) 2 2 z y 2 = sec 2 u 2 u y 2 + 2 sec 2 u tan u ( u y ) 2 2 z x 2 = sec 2 u 2 u x 2 + 2 sec 2 u tan u u x 2 2 z y 2 = sec 2 u 2 u y 2 + 2 sec 2 u tan u u y 2 {:[(del^(2)z)/(delx^(2))=sec^(2)u(del^(2)u)/(delx^(2))+2sec^(2)u tan u((del u)/(del x))^(2)],[(del^(2)z)/(dely^(2))=sec^(2)u(del^(2)u)/(dely^(2))+2sec^(2)u tan u((del u)/(del y))^(2)]:}\begin{aligned} & \frac{\partial^2 z}{\partial x^2} = \sec^2 u \frac{\partial^2 u}{\partial x^2} + 2 \sec^2 u \tan u \left(\frac{\partial u}{\partial x}\right)^2 \\ & \frac{\partial^2 z}{\partial y^2} = \sec^2 u \frac{\partial^2 u}{\partial y^2} + 2 \sec^2 u \tan u \left(\frac{\partial u}{\partial y}\right)^2 \end{aligned}2zx2=sec2u2ux2+2sec2utanu(ux)22zy2=sec2u2uy2+2sec2utanu(uy)2
And the mixed partial derivative:
2 z x y = sec 2 u 2 u x y + 2 sec 2 u tan u u x u y 2 z x y = sec 2 u 2 u x y + 2 sec 2 u tan u u x u y (del^(2)z)/(del x del y)=sec^(2)u(del^(2)u)/(del x del y)+2sec^(2)u tan u(del u)/(del x)(del u)/(del y)\frac{\partial^2 z}{\partial x \partial y} = \sec^2 u \frac{\partial^2 u}{\partial x \partial y} + 2 \sec^2 u \tan u \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}2zxy=sec2u2uxy+2sec2utanuuxuy
Euler’s Theorem and Further Simplification:
By a corollary of Euler’s theorem, we reach the following relationships:
x 2 2 z x 2 + 2 x y 2 z x y + y 2 2 z y 2 = 2 ( 2 1 ) z sec 2 u ( x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 ) + 2 sec 2 u tan u [ x 2 ( u x ) 2 + 2 x y u x u y + y 2 ( u y ) 2 ] = 2 tan u x 2 2 z x 2 + 2 x y 2 z x y + y 2 2 z y 2 = 2 ( 2 1 ) z sec 2 u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 + 2 sec 2 u tan u x 2 u x 2 + 2 x y u x u y + y 2 u y 2 = 2 tan u {:[x^(2)(del^(2)z)/(delx^(2))+2xy(del^(2)z)/(del x del y)+y^(2)(del^(2)z)/(dely^(2))=2(2-1)z],[=>sec^(2)u(x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2)))+2sec^(2)u tan u[x^(2)((del u)/(del x))^(2)+2xy(del u)/(del x)(del u)/(del y)+y^(2)((del u)/(del y))^(2)]=2tan u]:}\begin{aligned} & x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 2(2-1)z \\ & \Rightarrow \sec^2 u \left(x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}\right) + 2 \sec^2 u \tan u \left[x^2\left(\frac{\partial u}{\partial x}\right)^2+2xy \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+y^2\left(\frac{\partial u}{\partial y}\right)^2\right] = 2 \tan u \end{aligned}x22zx2+2xy2zxy+y22zy2=2(21)zsec2u(x22ux2+2xy2uxy+y22uy2)+2sec2utanu[x2(ux)2+2xyuxuy+y2(uy)2]=2tanu
divide by s e c 2 u s e c 2 u sec^(2)usec^2 usec2u
x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 + 2 tan u ( x u x + y u y ) 2 = 2 sin u cos u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = sin 2 u 2 tan u sin 2 2 u ( b y ( 4 ) ) = ( 1 4 sin 2 u ) sin 2 u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 + 2 tan u x u x + y u y 2 = 2 sin u cos u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = sin 2 u 2 tan u sin 2 2 u ( b y ( 4 ) ) = 1 4 sin 2 u sin 2 u {:[=>x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))+2tan u(x(del u)/(del x)+y(del u)/(del y))^(2)=2sin u cos u],[=>x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=sin 2u-2tan usin^(2)2u(by(4))],[=(1-4sin^(2)u)sin 2u]:}\begin{aligned} & \Rightarrow x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}+2 \tan u\left(x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}\right)^2=2 \sin u \cos u \\ & \Rightarrow x^2 \frac{\partial^2 u}{\partial x^2}+2 x y \frac{\partial^2 u}{\partial x \partial y}+y^2 \frac{\partial^2 u}{\partial y^2}=\sin 2u-2 \tan u \sin ^2 2u(b y(4)) \\ & =\left(1-4 \sin ^2 u\right) \sin 2 u \end{aligned}x22ux2+2xy2uxy+y22uy2+2tanu(xux+yuy)2=2sinucosux22ux2+2xy2uxy+y22uy2=sin2u2tanusin22u(by(4))=(14sin2u)sin2u
Final Relationship:
Finally, we obtain:
x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = ( 1 4 sin 2 u ) sin 2 u x 2 2 u x 2 + 2 x y 2 u x y + y 2 2 u y 2 = 1 4 sin 2 u sin 2 u x^(2)(del^(2)u)/(delx^(2))+2xy(del^(2)u)/(del x del y)+y^(2)(del^(2)u)/(dely^(2))=(1-4sin^(2)u)sin 2ux^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} =\left(1-4 \sin ^2 u\right) \sin 2 ux22ux2+2xy2uxy+y22uy2=(14sin2u)sin2u
This equation represents a significant relationship in our analysis.
4.(a) यदि v ( r , θ ) = ( r 1 r ) sin θ , r 0 v ( r , θ ) = r 1 r sin θ , r 0 v(r,theta)=(r-(1)/(r))sin theta,r!=0v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0v(r,θ)=(r1r)sinθ,r0,
तब विश्लेषिक फलन f ( z ) = u ( r , θ ) + i v ( r , θ ) f ( z ) = u ( r , θ ) + i v ( r , θ ) f(z)=u(r,theta)+iv(r,theta)f(z)=u(r, \theta)+i v(r, \theta)f(z)=u(r,θ)+iv(r,θ) ज्ञात कीजिए ।
If v ( r , θ ) = ( r 1 r ) sin θ , r 0 v ( r , θ ) = r 1 r sin θ , r 0 v(r,theta)=(r-(1)/(r))sin theta,r!=0v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0v(r,θ)=(r1r)sinθ,r0,
then find an analytic function f ( z ) = u ( r , θ ) + i v ( r , θ ) f ( z ) = u ( r , θ ) + i v ( r , θ ) f(z)=u(r,theta)+iv(r,theta)f(z)=u(r, \theta)+i v(r, \theta)f(z)=u(r,θ)+iv(r,θ)
Answer:
Introduction:
The problem involves finding an analytic function f ( z ) f ( z ) f(z)f(z)f(z) given a complex-valued function v ( r , θ ) v ( r , θ ) v(r,theta)v(r, \theta)v(r,θ) in polar coordinates.
Solution:
Step 1: Cauchy-Riemann Equations in Polar Coordinates
The Cauchy-Riemann equations in polar coordinates are as follows:
u r = 1 r v θ (1) 1 r u θ = v r (2) u r = 1 r v θ (1) 1 r u θ = v r (2) {:[(del u)/(del r)=(1)/(r)(del v)/(del theta)quad(1)],[(1)/(r)(del u)/(del theta)=-(del v)/(del r)quad(2)]:}\begin{aligned} & \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{(1)} \\ & \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r} \quad \text{(2)} \end{aligned}ur=1rvθ(1)1ruθ=vr(2)
Step 2: Expressions for Partial Derivatives of v v vvv
From the given function v ( r , θ ) v ( r , θ ) v(r,theta)v(r, \theta)v(r,θ), we have the following expressions for the partial derivatives:
v r = ( 1 + 1 r 2 ) sin θ (3a) v θ = ( r 1 r ) cos θ (3b) v r = 1 + 1 r 2 sin θ (3a) v θ = r 1 r cos θ (3b) {:[(del v)/(del r)=(1+(1)/(r^(2)))sin thetaquad(3a)],[(del v)/(del theta)=(r-(1)/(r))cos thetaquad(3b)]:}\begin{aligned} & \frac{\partial v}{\partial r}=\left(1+\frac{1}{r^2}\right) \sin \theta \quad \text{(3a)} \\ & \frac{\partial v}{\partial \theta}=\left(r-\frac{1}{r}\right) \cos \theta \quad \text{(3b)} \end{aligned}vr=(1+1r2)sinθ(3a)vθ=(r1r)cosθ(3b)
Step 3: Solve for Partial Derivatives of u u uuu
Using equations (1) and (3), we can calculate the partial derivatives of u u uuu as follows:
u r = 1 r [ r 1 r ] cos θ = ( 1 1 r 2 ) cos θ (4) u θ = r v r = r [ 1 + 1 r 2 ] sin θ = [ r 1 r ] sin θ (5) u r = 1 r r 1 r cos θ = 1 1 r 2 cos θ (4) u θ = r v r = r 1 + 1 r 2 sin θ = r 1 r sin θ (5) {:[(del u)/(del r)=(1)/(r)[r-(1)/(r)]cos theta=(1-(1)/(r^(2)))cos thetaquad(4)],[(del u)/(del theta)=-r(del v)/(del r)=-r[1+(1)/(r^(2))]sin theta=[-r-(1)/(r)]sin thetaquad(5)]:}\begin{aligned} & \frac{\partial u}{\partial r}=\frac{1}{r}\left[r-\frac{1}{r}\right] \cos \theta=\left(1-\frac{1}{r^2}\right) \cos \theta \quad \text{(4)} \\ & \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}=-r\left[1+\frac{1}{r^2}\right] \sin \theta=\left[-r-\frac{1}{r}\right] \sin \theta \quad \text{(5)} \end{aligned}ur=1r[r1r]cosθ=(11r2)cosθ(4)uθ=rvr=r[1+1r2]sinθ=[r1r]sinθ(5)
Step 4: Integrate Partial Derivatives
Integrating equation (4) with respect to r r rrr and equation (5) with respect to θ θ theta\thetaθ, we obtain:
u ( r , θ ) = ( r + 1 r ) cos θ + f ( θ ) (6) u ( r , θ ) = ( r + 1 r ) cos θ + f ( r ) (7) u ( r , θ ) = r + 1 r cos θ + f ( θ ) (6) u ( r , θ ) = r + 1 r cos θ + f ( r ) (7) {:[u(r”,”theta)=(r+(1)/(r))cos theta+f(theta)quad(6)],[u(r”,”theta)=(r+(1)/(r))cos theta+f(r)quad(7)]:}\begin{aligned} & u(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta+f(\theta) \quad \text{(6)} \\ & u(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta+f{(r)} \quad \text{(7)} \end{aligned}u(r,θ)=(r+1r)cosθ+f(θ)(6)u(r,θ)=(r+1r)cosθ+f(r)(7)
Step 5: Determine f ( θ ) f ( θ ) f(theta)f(\theta)f(θ) and f ( r ) f ( r ) f(r)f{(r)}f(r)
Equating equations (6) and (7), we find:
f ( θ ) = 0 = f ( r ) u ( r , θ ) = ( r + 1 r ) cos θ f ( θ ) = 0 = f ( r ) u ( r , θ ) = r + 1 r cos θ {:[f(theta)=0=f(r)],[u(r”,”theta)=(r+(1)/(r))cos theta]:}\begin{aligned} & f(\theta)=0=f{(r)} \\ & u(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta \end{aligned}f(θ)=0=f(r)u(r,θ)=(r+1r)cosθ
Conclusion:
Therefore, the analytic function f ( z ) f ( z ) f(z)f(z)f(z) is given by:
f ( z ) = ( r + 1 r ) cos θ + i [ r 1 r ] sin θ f ( z ) = r + 1 r cos θ + i r 1 r sin θ f(z)=(r+(1)/(r))cos theta+i[r-(1)/(r)]sin thetaf(z)=\left(r+\frac{1}{r}\right) \cos \theta+i\left[r-\frac{1}{r}\right] \sin \thetaf(z)=(r+1r)cosθ+i[r1r]sinθ
4.(b) दर्शाइए कि 0 π / 2 sin 2 x sin x + cos x d x = 1 2 log e ( 1 + 2 ) 0 π / 2 sin 2 x sin x + cos x d x = 1 2 log e ( 1 + 2 ) int_(0)^(pi//2)(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt2)log _(e)(1+sqrt2)\int_0^{\pi / 2} \frac{\sin ^2 x}{\sin x+\cos x} d x=\frac{1}{\sqrt{2}} \log _e(1+\sqrt{2})0π/2sin2xsinx+cosxdx=12loge(1+2)
Show that 0 π / 2 sin 2 x sin x + cos x d x = 1 2 log e ( 1 + 2 ) 0 π / 2 sin 2 x sin x + cos x d x = 1 2 log e ( 1 + 2 ) int_(0)^(pi//2)(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt2)log _(e)(1+sqrt2)\int_0^{\pi / 2} \frac{\sin ^2 x}{\sin x+\cos x} d x=\frac{1}{\sqrt{2}} \log _e(1+\sqrt{2})0π/2sin2xsinx+cosxdx=12loge(1+2)
Answer:
Step 1: Define the Integral
We start by defining the integral I I III as:
I = 0 π / 2 sin 2 x sin x + cos x d x I = 0 π / 2 sin 2 x sin x + cos x d x I=int_(0)^(pi//2)(sin^(2)x)/(sin x+cos x)dxI=\int_0^{\pi / 2} \frac{\sin^2 x}{\sin x+\cos x} dxI=0π/2sin2xsinx+cosxdx
Step 2: Apply Property of Definite Integrals
By using the property 0 a f ( x ) = 0 a f ( a x ) 0 a f ( x ) = 0 a f ( a x ) int_(0)^(a)f(x)=int_(0)^(a)f(a-x)\int_0^a f(x) = \int_0^a f(a-x)0af(x)=0af(ax), we can rewrite the integral as follows:
I = 0 π / 2 sin 2 ( π 2 x ) sin ( π 2 x ) + cos ( π 2 x ) d x I = 0 π / 2 sin 2 π 2 x sin π 2 x + cos π 2 x d x I=int_(0)^(pi//2)(sin^(2)((pi)/(2)-x))/(sin((pi)/(2)-x)+cos((pi)/(2)-x))dxI=\int_0^{\pi / 2} \frac{\sin^2\left(\frac{\pi}{2}-x\right)}{\sin\left(\frac{\pi}{2}-x\right)+\cos\left(\frac{\pi}{2}-x\right)} dxI=0π/2sin2(π2x)sin(π2x)+cos(π2x)dx
Step 3: Simplify the Integral
Simplifying the integrand further, we get:
I = 0 π 2 cos 2 x cos x + sin x d x I = 0 π 2 cos 2 x cos x + sin x d x I=int_(0)^((pi)/(2))(cos^(2)x)/(cos x+sin x)dxI=\int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\cos x+\sin x} dxI=0π2cos2xcosx+sinxdx
Step 4: Express the Integral in a Different Form
Next, we write the integral as:
2 I = 0 π / 2 1 sin x + cos x d x = 1 2 0 π / 2 1 cos ( x π 4 ) d x 2 I = 0 π / 2 1 sin x + cos x d x = 1 2 0 π / 2 1 cos x π 4 d x 2I=int_(0)^(pi//2)(1)/(sin x+cos x)dx=(1)/(sqrt2)int_(0)^(pi//2)(1)/(cos(x-(pi)/(4)))dx2I=\int_0^{\pi / 2} \frac{1}{\sin x+\cos x} dx = \frac{1}{\sqrt{2}} \int_0^{\pi / 2} \frac{1}{\cos \left(x-\frac{\pi}{4}\right)} dx2I=0π/21sinx+cosxdx=120π/21cos(xπ4)dx
Step 5: Evaluate the Integral
Now, we evaluate the integral:
2 I = 1 2 [ ln | sec ( x π 4 ) + tan ( x π 4 ) | ] 0 π / 2 2 I = 1 2 ln sec x π 4 + tan x π 4 0 π / 2 2I=(1)/(sqrt2)[ln|sec(x-(pi)/(4))+tan(x-(pi)/(4))|]_(0)^(pi//2)2I = \frac{1}{\sqrt{2}} \left[\ln \left| \sec \left(x-\frac{\pi}{4}\right) + \tan \left(x-\frac{\pi}{4}\right) \right| \right]_0^{\pi / 2}2I=12[ln|sec(xπ4)+tan(xπ4)|]0π/2
Step 6: Calculate the Values
Calculate the values of the integral:
2 I = 1 2 [ ln | 2 + 1 | ln | 2 1 | ] 2 I = 1 2 ln | 2 + 1 | ln | 2 1 | 2I=(1)/(sqrt2)[ln |sqrt2+1|-ln |sqrt2-1|]2I = \frac{1}{\sqrt{2}} \left[\ln |\sqrt{2}+1| – \ln |\sqrt{2}-1| \right]2I=12[ln|2+1|ln|21|]
Step 7: Simplify
Simplify the expression:
2 I = 1 2 ln | 2 + 1 2 1 | 2 I = 1 2 ln 2 + 1 2 1 2I=(1)/(sqrt2)ln|(sqrt2+1)/(sqrt2-1)|2I = \frac{1}{\sqrt{2}} \ln \left|\frac{\sqrt{2}+1}{\sqrt{2}-1}\right|2I=12ln|2+121|
Step 8: Solve for I I III
Solve for I I III:
I = 2 2 2 ln | 2 + 1 | I = 2 2 2 ln | 2 + 1 | I=(2)/(2sqrt2)ln |sqrt2+1|I = \frac{2}{2 \sqrt{2}} \ln |\sqrt{2}+1|I=222ln|2+1|
Step 9: Final Result
Finally, we arrive at the result:
I = 1 2 ln | 2 + 1 | I = 1 2 ln | 2 + 1 | I=(1)/(sqrt2)ln |sqrt2+1|I = \frac{1}{\sqrt{2}} \ln |\sqrt{2}+1|I=12ln|2+1|
Conclusion:
The integral 0 π / 2 sin 2 x sin x + cos x d x 0 π / 2 sin 2 x sin x + cos x d x int_(0)^(pi//2)(sin^(2)x)/(sin x+cos x)dx\int_0^{\pi / 2} \frac{\sin^2 x}{\sin x + \cos x} dx0π/2sin2xsinx+cosxdx is equal to 1 2 ln ( 1 + 2 ) 1 2 ln ( 1 + 2 ) (1)/(sqrt2)ln(1+sqrt2)\frac{1}{\sqrt{2}} \ln(1+\sqrt{2})12ln(1+2), as shown.
  1. (c) वोगेल की सम्निकटन विधि से निम्नलिखित परिवहन समस्या का आरंभिक आधारिक सुसंगत हल ज्ञात कीजिए । इस हल का उपयोग कर समस्या का इष्टतम हल एवं परिवहन लागत ज्ञात कीजिए ।
D 1 D 2 D 3 D 4 Supply S 1 10 0 20 11 15 S 2 12 8 9 20 25 S 3 0 14 16 18 10 Demand 5 20 15 10 D 1 D 2 D 3 D 4  Supply  S 1 10 0 20 11 15 S 2 12 8 9 20 25 S 3 0 14 16 18 10  Demand  5 20 15 10 {:[,D_(1),D_(2),D_(3),D_(4),” Supply “],[S_(1),10,0,20,11,15],[S_(2),12,8,9,20,25],[S_(3),0,14,16,18,10],[” Demand “,5,20,15,10,]:}\begin{array}{|l|l|l|l|l||l|} \hline & D_1 & D_2 & D_3 & D_4 & \text { Supply } \\ \hline S_1 & 10 & 0 & 20 & 11 & 15 \\ \hline S_2 & 12 & 8 & 9 & 20 & 25 \\ \hline S_3 & 0 & 14 & 16 & 18 & 10 \\ \hline \hline \text { Demand } & 5 & 20 & 15 & 10 & \\ \hline \end{array}D1D2D3D4 Supply S1100201115S212892025S3014161810 Demand 5201510
Find the initial basic feasible solution of the following transportation problem by Vogel’s approximation method and use it to find the optimal solution and the transportation cost of the problem.
D 1 D 2 D 3 D 4 Supply S 1 10 0 20 11 15 S 2 12 8 9 20 25 S 3 0 14 16 18 10 Demand 5 20 15 10 D 1 D 2 D 3 D 4  Supply  S 1 10 0 20 11 15 S 2 12 8 9 20 25 S 3 0 14 16 18 10  Demand  5 20 15 10 {:[,D_(1),D_(2),D_(3),D_(4),” Supply “],[S_(1),10,0,20,11,15],[S_(2),12,8,9,20,25],[S_(3),0,14,16,18,10],[” Demand “,5,20,15,10,]:}\begin{array}{|l|l|l|l|l||l|} \hline & D_1 & D_2 & D_3 & D_4 & \text { Supply } \\ \hline S_1 & 10 & 0 & 20 & 11 & 15 \\ \hline S_2 & 12 & 8 & 9 & 20 & 25 \\ \hline S_3 & 0 & 14 & 16 & 18 & 10 \\ \hline \hline \text { Demand } & 5 & 20 & 15 & 10 & \\ \hline \end{array}D1D2D3D4 Supply S1100201115S212892025S3014161810 Demand 5201510
Answer:
Initial feasible solution is
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply Row Penalty
S 1 S 1 S_(1)S_1S1 10 0 ( 1 5 ) 0 ( 1 5 ) 0(15)0(\mathbf{1 5})0(15) 20 11 15 10 | 11 | | | | | 10 | 11 | | | | | 10|11|-|-|-|-|10|11|-|-|-|-|10|11|||||
S 2 S 2 S_(2)S_2S2 12 8 ( 5 ) 8 ( 5 ) 8(5)8(5)8(5) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 ( 5 ) 20 ( 5 ) 20(5)20(5)20(5) 25 1 | 1 | 1 | 12 | 20 | | 1 | 1 | 1 | 12 | 20 | | 1|1|1|12|20|–|1|1| 1|12| 20|–|1|1|1|12|20||
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 16 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10 14 | 2 | 2 | 4 | 18 | 18 | 14 | 2 | 2 | 4 | 18 | 18 | 14|2|2|4|18|18|14|2| 2|4| 18|18|14|2|2|4|18|18|
Demand 5 20 15 10
10 8 7 7
Column 8 7 7
Penalty 6 7 2
2
18
D_(1) D_(2) D_(3) D_(4) Supply Row Penalty S_(1) 10 0(15) 20 11 15 10|11|-|-|-|-| S_(2) 12 8(5) 9(15) 20(5) 25 1|1|1|12|20|–| S_(3) 0(5) 14 16 18(5) 10 14|2|2|4|18|18| Demand 5 20 15 10 10 8 7 7 Column — 8 7 7 Penalty — 6 7 2 — — — 2 — — – 18 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | Row Penalty | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $S_1$ | 10 | $0(\mathbf{1 5})$ | 20 | 11 | 15 | $10\|11\|-\|-\|-\|-\|$ | | $S_2$ | 12 | $8(5)$ | $9(15)$ | $20(5)$ | 25 | $1\|1\| 1\|12\| 20\|–\|$ | | $S_3$ | $0(5)$ | 14 | 16 | $18(5)$ | 10 | $14\|2\| 2\|4\| 18\|18\|$ | | Demand | 5 | 20 | 15 | 10 | | | | | 10 | 8 | 7 | 7 | | | | Column | — | 8 | 7 | 7 | | | | Penalty | — | 6 | 7 | 2 | | | | | — | — | — | 2 | | | | | — | — | – | 18 | | |
The minimum total transportation cost = 0 × 15 + 8 × 5 + 9 × 15 + 20 × 5 + 0 × 5 + 18 × 5 = 365 = 0 × 15 + 8 × 5 + 9 × 15 + 20 × 5 + 0 × 5 + 18 × 5 = 365 =0xx15+8xx5+9xx15+20 xx5+0xx5+18 xx5=365=0 \times 15+8 \times 5+9 \times 15+20 \times 5+0 \times 5+18 \times 5=365=0×15+8×5+9×15+20×5+0×5+18×5=365
Here, the number of allocated cells = 6 = 6 =6=6=6 is equal to m + n 1 = 3 + 4 1 = 6 m + n 1 = 3 + 4 1 = 6 m+n-1=3+4-1=6m+n-1=3+4-1=6m+n1=3+41=6
:.\therefore This solution is non-degenerate
Optimality test using modi method…
Allocation Table is
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply
S 1 S 1 S_(1)S_1S1 10 0 ( 15 ) 0 ( 15 ) 0(15)0(15)0(15) 20 11 15
S 2 S 2 S_(2)S_2S2 12 8 ( 5 ) 8 ( 5 ) 8(5)8(5)8(5) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 ( 5 ) 20 ( 5 ) 20(5)20(5)20(5) 25
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 16 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10
Demand 5 20 15 10
D_(1) D_(2) D_(3) D_(4) Supply S_(1) 10 0(15) 20 11 15 S_(2) 12 8(5) 9(15) 20(5) 25 S_(3) 0(5) 14 16 18(5) 10 Demand 5 20 15 10 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | | :— | :— | :— | :— | :— | :— | | $S_1$ | 10 | $0(15)$ | 20 | 11 | 15 | | $S_2$ | 12 | $8(5)$ | $9(15)$ | $20(5)$ | 25 | | $S_3$ | $0(5)$ | 14 | 16 | $18(5)$ | 10 | | Demand | 5 | 20 | 15 | 10 | |
Iteration-1 of optimality test
  1. Find u i u i u_(i)u_iui and v j v j v_(j)v_jvj for all occupied cells ( i , j ) ( i , j ) (i,j)(\mathrm{i}, \mathrm{j})(i,j), where c i j = u i + v j c i j = u i + v j c_(ij)=u_(i)+v_(j)c_{i j}=u_i+v_jcij=ui+vj
  2. Substituting, u 2 = 0 u 2 = 0 u_(2)=0u_2=0u2=0, we get
  3. c 22 = u 2 + v 2 v 2 = c 22 u 2 v 2 = 8 0 v 2 = 8 c 22 = u 2 + v 2 v 2 = c 22 u 2 v 2 = 8 0 v 2 = 8 c_(22)=u_(2)+v_(2)=>v_(2)=c_(22)-u_(2)=>v_(2)=8-0=>v_(2)=8c_{22}=u_2+v_2 \Rightarrow v_2=c_{22}-u_2 \Rightarrow v_2=8-0 \Rightarrow v_2=8c22=u2+v2v2=c22u2v2=80v2=8
  4. c 12 = u 1 + v 2 u 1 = c 12 v 2 u 1 = 0 8 u 1 = 8 c 12 = u 1 + v 2 u 1 = c 12 v 2 u 1 = 0 8 u 1 = 8 c_(12)=u_(1)+v_(2)=>u_(1)=c_(12)-v_(2)=>u_(1)=0-8=>u_(1)=-8c_{12}=u_1+v_2 \Rightarrow u_1=c_{12}-v_2 \Rightarrow u_1=0-8 \Rightarrow u_1=-8c12=u1+v2u1=c12v2u1=08u1=8
  5. c 23 = u 2 + v 3 v 3 = c 23 u 2 v 3 = 9 0 v 3 = 9 c 23 = u 2 + v 3 v 3 = c 23 u 2 v 3 = 9 0 v 3 = 9 c_(23)=u_(2)+v_(3)=>v_(3)=c_(23)-u_(2)=>v_(3)=9-0=>v_(3)=9c_{23}=u_2+v_3 \Rightarrow v_3=c_{23}-u_2 \Rightarrow v_3=9-0 \Rightarrow v_3=9c23=u2+v3v3=c23u2v3=90v3=9
  6. c 24 = u 2 + v 4 v 4 = c 24 u 2 v 4 = 20 0 v 4 = 20 c 24 = u 2 + v 4 v 4 = c 24 u 2 v 4 = 20 0 v 4 = 20 c_(24)=u_(2)+v_(4)=>v_(4)=c_(24)-u_(2)=>v_(4)=20-0=>v_(4)=20c_{24}=u_2+v_4 \Rightarrow v_4=c_{24}-u_2 \Rightarrow v_4=20-0 \Rightarrow v_4=20c24=u2+v4v4=c24u2v4=200v4=20
  7. c 34 = u 3 + v 4 u 3 = c 34 v 4 u 3 = 18 20 u 3 = 2 c 34 = u 3 + v 4 u 3 = c 34 v 4 u 3 = 18 20 u 3 = 2 c_(34)=u_(3)+v_(4)=>u_(3)=c_(34)-v_(4)=>u_(3)=18-20=>u_(3)=-2c_{34}=u_3+v_4 \Rightarrow u_3=c_{34}-v_4 \Rightarrow u_3=18-20 \Rightarrow u_3=-2c34=u3+v4u3=c34v4u3=1820u3=2
  8. c 31 = u 3 + v 1 v 1 = c 31 u 3 v 1 = 0 + 2 v 1 = 2 c 31 = u 3 + v 1 v 1 = c 31 u 3 v 1 = 0 + 2 v 1 = 2 c_(31)=u_(3)+v_(1)=>v_(1)=c_(31)-u_(3)=>v_(1)=0+2=>v_(1)=2c_{31}=u_3+v_1 \Rightarrow v_1=c_{31}-u_3 \Rightarrow v_1=0+2 \Rightarrow v_1=2c31=u3+v1v1=c31u3v1=0+2v1=2
D 1 D 2 D 3 D 4 Supply u i S 1 10 0 ( 1 5 ) 20 11 15 u 1 = 8 S 2 12 8 ( 5 ) 9 ( 1 5 ) 20 ( 5 ) 25 u 2 = 0 S 3 0 ( 5 ) 14 16 18 ( 5 ) 10 u 3 = 2 Demand 5 20 15 10 v j v 1 = 2 v 2 = 8 v 3 = 9 v 4 = 20 D 1 D 2 D 3 D 4  Supply  u i S 1 10 0 ( 1 5 ) 20 11 15 u 1 = 8 S 2 12 8 ( 5 ) 9 ( 1 5 ) 20 ( 5 ) 25 u 2 = 0 S 3 0 ( 5 ) 14 16 18 ( 5 ) 10 u 3 = 2  Demand  5 20 15 10 v j v 1 = 2 v 2 = 8 v 3 = 9 v 4 = 20 {:[,D_(1),D_(2),D_(3),D_(4),” Supply “,u_(i)],[S_(1),10,0(15),20,11,15,u_(1)=-8],[S_(2),12,8(5),9(15),20(5),25,u_(2)=0],[S_(3),0(5),14,16,18(5),10,u_(3)=-2],[” Demand “,5,20,15,10,,],[v_(j),v_(1)=2,v_(2)=8,v_(3)=9,v_(4)=20,,]:}\begin{array}{|l|l|l|l|l||l|l|} \hline & D_1 & D_2 & D_3 & D_4 & \text { Supply } & u_i \\ \hline S_1 & 10 & 0(\mathbf{1 5 )} & 20 & 11 & 15 & u_1=-8 \\ \hline S_2 & 12 & 8(5) & 9(\mathbf{1 5 )} & 20(5) & 25 & u_2=0 \\ \hline S_3 & 0(5) & 14 & 16 & 18(5) & 10 & u_3=-2 \\ \hline \hline \text { Demand } & 5 & 20 & 15 & 10 & & \\ \hline v_j & v_1=2 & v_2=8 & v_3=9 & v_4=20 & & \\ \hline \end{array}D1D2D3D4 Supply uiS1100(15)201115u1=8S2128(5)9(15)20(5)25u2=0S30(5)141618(5)10u3=2 Demand 5201510vjv1=2v2=8v3=9v4=20
  1. Find d i j d i j d_(ij)d_{i j}dij for all unoccupied cells(i,j), where d i j = c i j ( u i + v j ) d i j = c i j u i + v j d_(ij)=c_(ij)-(u_(i)+v_(j))d_{i j}=c_{i j}-\left(u_i+v_j\right)dij=cij(ui+vj)
  2. d 11 = c 11 ( u 1 + v 1 ) = 10 ( 8 + 2 ) = 16 d 11 = c 11 u 1 + v 1 = 10 ( 8 + 2 ) = 16 d_(11)=c_(11)-(u_(1)+v_(1))=10-(-8+2)=16d_{11}=c_{11}-\left(u_1+v_1\right)=10-(-8+2)=16d11=c11(u1+v1)=10(8+2)=16
  3. d 13 = c 13 ( u 1 + v 3 ) = 20 ( 8 + 9 ) = 19 d 13 = c 13 u 1 + v 3 = 20 ( 8 + 9 ) = 19 d_(13)=c_(13)-(u_(1)+v_(3))=20-(-8+9)=19d_{13}=c_{13}-\left(u_1+v_3\right)=20-(-8+9)=19d13=c13(u1+v3)=20(8+9)=19
  4. d 14 = c 14 ( u 1 + v 4 ) = 11 ( 8 + 20 ) = 1 d 14 = c 14 u 1 + v 4 = 11 ( 8 + 20 ) = 1 d_(14)=c_(14)-(u_(1)+v_(4))=11-(-8+20)=-1d_{14}=c_{14}-\left(u_1+v_4\right)=11-(-8+20)=-1d14=c14(u1+v4)=11(8+20)=1
  5. d 21 = c 21 ( u 2 + v 1 ) = 12 ( 0 + 2 ) = 10 d 21 = c 21 u 2 + v 1 = 12 ( 0 + 2 ) = 10 d_(21)=c_(21)-(u_(2)+v_(1))=12-(0+2)=10d_{21}=c_{21}-\left(u_2+v_1\right)=12-(0+2)=10d21=c21(u2+v1)=12(0+2)=10
  6. d 32 = c 32 ( u 3 + v 2 ) = 14 ( 2 + 8 ) = 8 d 32 = c 32 u 3 + v 2 = 14 ( 2 + 8 ) = 8 d_(32)=c_(32)-(u_(3)+v_(2))=14-(-2+8)=8d_{32}=c_{32}-\left(u_3+v_2\right)=14-(-2+8)=8d32=c32(u3+v2)=14(2+8)=8
  7. d 33 = c 33 ( u 3 + v 3 ) = 16 ( 2 + 9 ) = 9 d 33 = c 33 u 3 + v 3 = 16 ( 2 + 9 ) = 9 d_(33)=c_(33)-(u_(3)+v_(3))=16-(-2+9)=9d_{33}=c_{33}-\left(u_3+v_3\right)=16-(-2+9)=9d33=c33(u3+v3)=16(2+9)=9
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply u i u i u_(i)u_iui
S 1 S 1 S_(1)S_1S1 10 [ 16 ] 10 [ 16 ] 10[16]10[16]10[16] 0 ( 15 ) 0 ( 15 ) 0(15)0(15)0(15) 20 [ 19 ] 20 [ 19 ] 20[19]20[19]20[19] 11 [ 1 ] 11 [ 1 ] 11[-1]11[-1]11[1] 15 u 1 = 8 u 1 = 8 u_(1)=-8u_1=-8u1=8
S 2 S 2 S_(2)S_2S2 12 [ 10 ] 12 [ 10 ] 12[10]12[10]12[10] 8 ( 5 ) 8 ( 5 ) 8(5)8(5)8(5) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 ( 5 ) 20 ( 5 ) 20(5)20(5)20(5) 25 u 2 = 0 u 2 = 0 u_(2)=0u_2=0u2=0
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 [ 8 ] 14 [ 8 ] 14[8]14[8]14[8] 16 [ 9 ] 16 [ 9 ] 16[9]16[9]16[9] 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10 u 3 = 2 u 3 = 2 u_(3)=-2u_3=-2u3=2
Demand 5 20 15 10
v j v j v_(j)v_jvj v 1 = 2 v 1 = 2 v_(1)=2v_1=2v1=2 v 2 = 8 v 2 = 8 v_(2)=8v_2=8v2=8 v 3 = 9 v 3 = 9 v_(3)=9v_3=9v3=9 v 4 = 20 v 4 = 20 v_(4)=20v_4=20v4=20
D_(1) D_(2) D_(3) D_(4) Supply u_(i) S_(1) 10[16] 0(15) 20[19] 11[-1] 15 u_(1)=-8 S_(2) 12[10] 8(5) 9(15) 20(5) 25 u_(2)=0 S_(3) 0(5) 14[8] 16[9] 18(5) 10 u_(3)=-2 Demand 5 20 15 10 v_(j) v_(1)=2 v_(2)=8 v_(3)=9 v_(4)=20 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | $u_i$ | | :— | :— | :— | :— | :— | :— | :— | | $S_1$ | $10[16]$ | $0(15)$ | $20[19]$ | $11[-1]$ | 15 | $u_1=-8$ | | $S_2$ | $12[10]$ | $8(5)$ | $9(15)$ | $20(5)$ | 25 | $u_2=0$ | | $S_3$ | $0(5)$ | $14[8]$ | $16[9]$ | $18(5)$ | 10 | $u_3=-2$ | | Demand | 5 | 20 | 15 | 10 | | | | $v_j$ | $v_1=2$ | $v_2=8$ | $v_3=9$ | $v_4=20$ | | |
  1. Now choose the minimum negative value from all d i j d i j d_(ij)d_{i j}dij (opportunity cost) = d 14 = [ 1 ] = d 14 = [ 1 ] =d_(14)=[-1]=d_{14}=[-1]=d14=[1] and draw a closed path from S 1 D 4 S 1 D 4 S_(1)D_(4)S_1 D_4S1D4.
    Closed path is S 1 D 4 S 1 D 2 S 2 D 2 S 2 D 4 S 1 D 4 S 1 D 2 S 2 D 2 S 2 D 4 S_(1)D_(4)rarrS_(1)D_(2)rarrS_(2)D_(2)rarrS_(2)D_(4)S_1 D_4 \rightarrow S_1 D_2 \rightarrow S_2 D_2 \rightarrow S_2 D_4S1D4S1D2S2D2S2D4
    Closed path and plus/minus sign allocation…
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply u i u i u_(i)u_iui
S 1 S 1 S_(1)S_1S1 10 [ 16 ] 10 [ 16 ] 10[16]10[16]10[16] 0 ( 15 ) ( ) 0 ( 15 ) ( ) 0(15)(-)0(15)(-)0(15)() 20 [ 19 ] 20 [ 19 ] 20[19]20[19]20[19] 11 [ 1 ] ( + ) 11 [ 1 ] ( + ) 11[-1](+)11[-1](+)11[1](+) 15 u 1 = 8 u 1 = 8 u_(1)=-8u_1=-8u1=8
S 2 S 2 S_(2)S_2S2 12 [ 10 ] 12 [ 10 ] 12[10]12[10]12[10] 8 ( 5 ) ( + ) 8 ( 5 ) ( + ) 8(5)(+)8(5)(+)8(5)(+) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 ( 5 ) ( ) 20 ( 5 ) ( ) 20(5)(-)20(5)(-)20(5)() 25 u 2 = 0 u 2 = 0 u_(2)=0u_2=0u2=0
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 [ 8 ] 14 [ 8 ] 14[8]14[8]14[8] 16 [ 9 ] 16 [ 9 ] 16[9]16[9]16[9] 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10 u 3 = 2 u 3 = 2 u_(3)=-2u_3=-2u3=2
Demand 5 20 15 10
v j v j v_(j)v_jvj v 1 = 2 v 1 = 2 v_(1)=2v_1=2v1=2 v 2 = 8 v 2 = 8 v_(2)=8v_2=8v2=8 v 3 = 9 v 3 = 9 v_(3)=9v_3=9v3=9 v 4 = 20 v 4 = 20 v_(4)=20v_4=20v4=20
D_(1) D_(2) D_(3) D_(4) Supply u_(i) S_(1) 10[16] 0(15)(-) 20[19] 11[-1](+) 15 u_(1)=-8 S_(2) 12[10] 8(5)(+) 9(15) 20(5)(-) 25 u_(2)=0 S_(3) 0(5) 14[8] 16[9] 18(5) 10 u_(3)=-2 Demand 5 20 15 10 v_(j) v_(1)=2 v_(2)=8 v_(3)=9 v_(4)=20 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | $u_i$ | | :— | :— | :— | :— | :— | :— | :— | | $S_1$ | $10[16]$ | $0(15)(-)$ | $20[19]$ | $11[-1](+)$ | 15 | $u_1=-8$ | | $S_2$ | $12[10]$ | $8(5)(+)$ | $9(15)$ | $20(5)(-)$ | 25 | $u_2=0$ | | $S_3$ | $0(5)$ | $14[8]$ | $16[9]$ | $18(5)$ | 10 | $u_3=-2$ | | Demand | 5 | 20 | 15 | 10 | | | | $v_j$ | $v_1=2$ | $v_2=8$ | $v_3=9$ | $v_4=20$ | | |
  1. Minimum allocated value among all negative position (-) on closed path = 5 = 5 =5=5=5 Substract 5 from all (-) and Add it to all (+)
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply
S 1 S 1 S_(1)S_1S1 10 0 ( 10 ) 0 ( 10 ) 0(10)0(10)0(10) 20 11 ( 5 ) 11 ( 5 ) 11(5)11(5)11(5) 15
S 2 S 2 S_(2)S_2S2 12 8 ( 10 ) 8 ( 10 ) 8(10)8(10)8(10) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 25
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 16 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10
Demand 5 20 15 10
D_(1) D_(2) D_(3) D_(4) Supply S_(1) 10 0(10) 20 11(5) 15 S_(2) 12 8(10) 9(15) 20 25 S_(3) 0(5) 14 16 18(5) 10 Demand 5 20 15 10 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | | :— | :— | :— | :— | :— | :— | | $S_1$ | 10 | $0(10)$ | 20 | $11(5)$ | 15 | | $S_2$ | 12 | $8(10)$ | $9(15)$ | 20 | 25 | | $S_3$ | $0(5)$ | 14 | 16 | $18(5)$ | 10 | | Demand | 5 | 20 | 15 | 10 | |
  1. Repeat the step 1 to 4 , until an optimal solution is obtained.
Iteration-2 of optimality test
Find u i u i u_(i)u_iui and v j v j v_(j)v_jvj for all occupied cells ( i , j ) ( i , j ) (i,j)(\mathrm{i}, \mathrm{j})(i,j), where c i j = u i + v j c i j = u i + v j c_(ij)=u_(i)+v_(j)c_{i j}=u_i+v_jcij=ui+vj
  1. Substituting, u 1 = 0 u 1 = 0 u_(1)=0u_1=0u1=0, we get
  2. c 12 = u 1 + v 2 v 2 = c 12 u 1 v 2 = 0 0 v 2 = 0 c 12 = u 1 + v 2 v 2 = c 12 u 1 v 2 = 0 0 v 2 = 0 c_(12)=u_(1)+v_(2)=>v_(2)=c_(12)-u_(1)=>v_(2)=0-0=>v_(2)=0c_{12}=u_1+v_2 \Rightarrow v_2=c_{12}-u_1 \Rightarrow v_2=0-0 \Rightarrow v_2=0c12=u1+v2v2=c12u1v2=00v2=0
  3. c 22 = u 2 + v 2 u 2 = c 22 v 2 u 2 = 8 0 u 2 = 8 c 22 = u 2 + v 2 u 2 = c 22 v 2 u 2 = 8 0 u 2 = 8 c_(22)=u_(2)+v_(2)=>u_(2)=c_(22)-v_(2)=>u_(2)=8-0=>u_(2)=8c_{22}=u_2+v_2 \Rightarrow u_2=c_{22}-v_2 \Rightarrow u_2=8-0 \Rightarrow u_2=8c22=u2+v2u2=c22v2u2=80u2=8
  4. c 23 = u 2 + v 3 v 3 = c 23 u 2 v 3 = 9 8 v 3 = 1 c 23 = u 2 + v 3 v 3 = c 23 u 2 v 3 = 9 8 v 3 = 1 c_(23)=u_(2)+v_(3)=>v_(3)=c_(23)-u_(2)=>v_(3)=9-8=>v_(3)=1c_{23}=u_2+v_3 \Rightarrow v_3=c_{23}-u_2 \Rightarrow v_3=9-8 \Rightarrow v_3=1c23=u2+v3v3=c23u2v3=98v3=1
  5. c 14 = u 1 + v 4 v 4 = c 14 u 1 v 4 = 11 0 v 4 = 11 c 14 = u 1 + v 4 v 4 = c 14 u 1 v 4 = 11 0 v 4 = 11 c_(14)=u_(1)+v_(4)=>v_(4)=c_(14)-u_(1)=>v_(4)=11-0=>v_(4)=11c_{14}=u_1+v_4 \Rightarrow v_4=c_{14}-u_1 \Rightarrow v_4=11-0 \Rightarrow v_4=11c14=u1+v4v4=c14u1v4=110v4=11
  6. c 34 = u 3 + v 4 u 3 = c 34 v 4 u 3 = 18 11 u 3 = 7 c 34 = u 3 + v 4 u 3 = c 34 v 4 u 3 = 18 11 u 3 = 7 c_(34)=u_(3)+v_(4)=>u_(3)=c_(34)-v_(4)=>u_(3)=18-11=>u_(3)=7c_{34}=u_3+v_4 \Rightarrow u_3=c_{34}-v_4 \Rightarrow u_3=18-11 \Rightarrow u_3=7c34=u3+v4u3=c34v4u3=1811u3=7
  7. c 31 = u 3 + v 1 v 1 = c 31 u 3 v 1 = 0 7 v 1 = 7 c 31 = u 3 + v 1 v 1 = c 31 u 3 v 1 = 0 7 v 1 = 7 c_(31)=u_(3)+v_(1)=>v_(1)=c_(31)-u_(3)=>v_(1)=0-7=>v_(1)=-7c_{31}=u_3+v_1 \Rightarrow v_1=c_{31}-u_3 \Rightarrow v_1=0-7 \Rightarrow v_1=-7c31=u3+v1v1=c31u3v1=07v1=7
D 1 D 2 D 3 D 4 Supply u i S 1 10 0 ( 10 ) 20 11 ( 5 ) 15 u 1 = 0 S 2 12 8 ( 10 ) 9 ( 15 ) 20 25 u 2 = 8 S 3 0 ( 5 ) 14 16 18 ( 5 ) 10 u 3 = 7 Demand 5 20 15 10 v j v 1 = 7 v 2 = 0 v 3 = 1 v 4 = 11 D 1 D 2 D 3 D 4  Supply  u i S 1 10 0 ( 10 ) 20 11 ( 5 ) 15 u 1 = 0 S 2 12 8 ( 10 ) 9 ( 15 ) 20 25 u 2 = 8 S 3 0 ( 5 ) 14 16 18 ( 5 ) 10 u 3 = 7  Demand  5 20 15 10 v j v 1 = 7 v 2 = 0 v 3 = 1 v 4 = 11 {:[,D_(1),D_(2),D_(3),D_(4),” Supply “,u_(i)],[S_(1),10,0(10),20,11(5),15,u_(1)=0],[S_(2),12,8(10),9(15),20,25,u_(2)=8],[S_(3),0(5),14,16,18(5),10,u_(3)=7],[” Demand “,5,20,15,10,,],[v_(j),v_(1)=-7,v_(2)=0,v_(3)=1,v_(4)=11,,]:}\begin{array}{|l|l|l|l|l||l|l|} \hline & D_1 & D_2 & D_3 & D_4 & \text { Supply } & u_i \\ \hline S_1 & 10 & 0(10) & 20 & 11(5) & 15 & u_1=0 \\ \hline S_2 & 12 & 8(10) & 9(15) & 20 & 25 & u_2=8 \\ \hline S_3 & 0(5) & 14 & 16 & 18(5) & 10 & u_3=7 \\ \hline \hline \text { Demand } & 5 & 20 & 15 & 10 & & \\ \hline v_j & v_1=-7 & v_2=0 & v_3=1 & v_4=11 & & \\ \hline \end{array}D1D2D3D4 Supply uiS1100(10)2011(5)15u1=0S2128(10)9(15)2025u2=8S30(5)141618(5)10u3=7 Demand 5201510vjv1=7v2=0v3=1v4=11
  1. Find d i j d i j d_(ij)d_{i j}dij for all unoccupied cells ( i , j ) ( i , j ) (i,j)(\mathrm{i}, \mathrm{j})(i,j), where d i j = c i j ( u i + v j ) d i j = c i j u i + v j d_(ij)=c_(ij)-(u_(i)+v_(j))d_{i j}=c_{i j}-\left(u_i+v_j\right)dij=cij(ui+vj)

  1. d 11 = c 11 ( u 1 + v 1 ) = 10 ( 0 7 ) = 17 d 11 = c 11 u 1 + v 1 = 10 ( 0 7 ) = 17 d_(11)=c_(11)-(u_(1)+v_(1))=10-(0-7)=17d_{11}=c_{11}-\left(u_1+v_1\right)=10-(0-7)=17d11=c11(u1+v1)=10(07)=17
  2. d 13 = c 13 ( u 1 + v 3 ) = 20 ( 0 + 1 ) = 19 d 13 = c 13 u 1 + v 3 = 20 ( 0 + 1 ) = 19 d_(13)=c_(13)-(u_(1)+v_(3))=20-(0+1)=19d_{13}=c_{13}-\left(u_1+v_3\right)=20-(0+1)=19d13=c13(u1+v3)=20(0+1)=19
  3. d 21 = c 21 ( u 2 + v 1 ) = 12 ( 8 7 ) = 11 d 21 = c 21 u 2 + v 1 = 12 ( 8 7 ) = 11 d_(21)=c_(21)-(u_(2)+v_(1))=12-(8-7)=11d_{21}=c_{21}-\left(u_2+v_1\right)=12-(8-7)=11d21=c21(u2+v1)=12(87)=11
  4. d 24 = c 24 ( u 2 + v 4 ) = 20 ( 8 + 11 ) = 1 d 24 = c 24 u 2 + v 4 = 20 ( 8 + 11 ) = 1 d_(24)=c_(24)-(u_(2)+v_(4))=20-(8+11)=1d_{24}=c_{24}-\left(u_2+v_4\right)=20-(8+11)=1d24=c24(u2+v4)=20(8+11)=1
  5. d 32 = c 32 ( u 3 + v 2 ) = 14 ( 7 + 0 ) = 7 d 32 = c 32 u 3 + v 2 = 14 ( 7 + 0 ) = 7 d_(32)=c_(32)-(u_(3)+v_(2))=14-(7+0)=7d_{32}=c_{32}-\left(u_3+v_2\right)=14-(7+0)=7d32=c32(u3+v2)=14(7+0)=7
  6. d 33 = c 33 ( u 3 + v 3 ) = 16 ( 7 + 1 ) = 8 d 33 = c 33 u 3 + v 3 = 16 ( 7 + 1 ) = 8 d_(33)=c_(33)-(u_(3)+v_(3))=16-(7+1)=8d_{33}=c_{33}-\left(u_3+v_3\right)=16-(7+1)=8d33=c33(u3+v3)=16(7+1)=8
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply u i u i u_(i)u_iui
S 1 S 1 S_(1)S_1S1 10 [ 17 ] 10 [ 17 ] 10[17]10[17]10[17] 0 ( 10 ) 0 ( 10 ) 0(10)0(10)0(10) 20 [ 19 ] 20 [ 19 ] 20[19]20[19]20[19] 11 ( 5 ) 11 ( 5 ) 11(5)11(5)11(5) 15 u 1 = 0 u 1 = 0 u_(1)=0u_1=0u1=0
S 2 S 2 S_(2)S_2S2 12 [ 11 ] 12 [ 11 ] 12[11]12[11]12[11] 8 ( 10 ) 8 ( 10 ) 8(10)8(10)8(10) 9 ( 15 ) 9 ( 15 ) 9(15)9(15)9(15) 20 [ 1 ] 20 [ 1 ] 20[1]20[1]20[1] 25 u 2 = 8 u 2 = 8 u_(2)=8u_2=8u2=8
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 [ 7 ] 14 [ 7 ] 14[7]14[7]14[7] 16 [ 8 ] 16 [ 8 ] 16[8]16[8]16[8] 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10 u 3 = 7 u 3 = 7 u_(3)=7u_3=7u3=7
Demand 5 20 15 10
v j v j v_(j)v_jvj v 1 = 7 v 1 = 7 v_(1)=-7v_1=-7v1=7 v 2 = 0 v 2 = 0 v_(2)=0v_2=0v2=0 v 3 = 1 v 3 = 1 v_(3)=1v_3=1v3=1 v 4 = 11 v 4 = 11 v_(4)=11v_4=11v4=11
D_(1) D_(2) D_(3) D_(4) Supply u_(i) S_(1) 10[17] 0(10) 20[19] 11(5) 15 u_(1)=0 S_(2) 12[11] 8(10) 9(15) 20[1] 25 u_(2)=8 S_(3) 0(5) 14[7] 16[8] 18(5) 10 u_(3)=7 Demand 5 20 15 10 v_(j) v_(1)=-7 v_(2)=0 v_(3)=1 v_(4)=11 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | $u_i$ | | :— | :— | :— | :— | :— | :— | :— | | $S_1$ | $10[17]$ | $0(10)$ | $20[19]$ | $11(5)$ | 15 | $u_1=0$ | | $S_2$ | $12[11]$ | $8(10)$ | $9(15)$ | $20[1]$ | 25 | $u_2=8$ | | $S_3$ | $0(5)$ | $14[7]$ | $16[8]$ | $18(5)$ | 10 | $u_3=7$ | | Demand | 5 | 20 | 15 | 10 | | | | $v_j$ | $v_1=-7$ | $v_2=0$ | $v_3=1$ | $v_4=11$ | | |
Since all d i j 0 d i j 0 d_(ij) >= 0d_{i j} \geq 0dij0.
So final optimal solution is arrived.
D 1 D 1 D_(1)D_1D1 D 2 D 2 D_(2)D_2D2 D 3 D 3 D_(3)D_3D3 D 4 D 4 D_(4)D_4D4 Supply
S 1 S 1 S_(1)S_1S1 10 0 ( 1 0 ) 0 ( 1 0 ) 0(10)0(\mathbf{1 0 )}0(10) 20 11 ( 5 ) 11 ( 5 ) 11(5)11(5)11(5) 15
S 2 S 2 S_(2)S_2S2 12 8 ( 10 ) 8 ( 10 ) 8(10)8(10)8(10) 9 ( 1 5 ) 9 ( 1 5 ) 9(15)9(\mathbf{1 5 )}9(15) 20 25
S 3 S 3 S_(3)S_3S3 0 ( 5 ) 0 ( 5 ) 0(5)0(5)0(5) 14 16 18 ( 5 ) 18 ( 5 ) 18(5)18(5)18(5) 10
Demand 5 20 15 10
D_(1) D_(2) D_(3) D_(4) Supply S_(1) 10 0(10) 20 11(5) 15 S_(2) 12 8(10) 9(15) 20 25 S_(3) 0(5) 14 16 18(5) 10 Demand 5 20 15 10 | | $D_1$ | $D_2$ | $D_3$ | $D_4$ | Supply | | :— | :— | :— | :— | :— | :— | | $S_1$ | 10 | $0(\mathbf{1 0 )}$ | 20 | $11(5)$ | 15 | | $S_2$ | 12 | $8(10)$ | $9(\mathbf{1 5 )}$ | 20 | 25 | | $S_3$ | $0(5)$ | 14 | 16 | $18(5)$ | 10 | | Demand | 5 | 20 | 15 | 10 | |
The minimum total transportation cost = 0 × 10 + 11 × 5 + 8 × 10 + 9 × 15 + 0 × 5 + 18 × 5 = 360  The minimum total transportation cost  = 0 × 10 + 11 × 5 + 8 × 10 + 9 × 15 + 0 × 5 + 18 × 5 = 360 ” The minimum total transportation cost “=0xx10+11 xx5+8xx10+9xx15+0xx5+18 xx5=360\text { The minimum total transportation cost }=0 \times 10+11 \times 5+8 \times 10+9 \times 15+0 \times 5+18 \times 5=360 The minimum total transportation cost =0×10+11×5+8×10+9×15+0×5+18×5=360
खण्ड ‘B’ SECTION ‘B’
5.(a) z = y f ( x ) + x g ( y ) z = y f ( x ) + x g ( y ) z=yf(x)+xg(y)z=y f(x)+x g(y)z=yf(x)+xg(y) से स्वैच्छिक फलनों f ( x ) f ( x ) f(x)f(x)f(x) g ( y ) g ( y ) g(y)g(y)g(y) का विलोपन कर आंशिक अवकल समीकरण बनाइए तथा इसकी प्रकृति (दीर्घवृत्तीय, अतिपरवलीय या परवलीय) x > 0 , y > 0 x > 0 , y > 0 x > 0,y > 0x>0, y>0x>0,y>0 क्षेत्र में इंगित कीजिए ।
Form a partial differential equation by eliminating the arbitrary functions f ( x ) f ( x ) f(x)f(x)f(x) and g ( y ) g ( y ) g(y)g(y)g(y) from z = y f ( x ) + x g ( y ) z = y f ( x ) + x g ( y ) z=yf(x)+xg(y)z=y f(x)+x g(y)z=yf(x)+xg(y) and specify its nature (elliptic, hyperbolic or parabolic) in the region x > 0 , y > 0 x > 0 , y > 0 x > 0,y > 0x>0, y>0x>0,y>0.
Answer:
Introduction:
The problem requires forming a partial differential equation by eliminating the arbitrary functions f ( x ) f ( x ) f(x)f(x)f(x) and g ( y ) g ( y ) g(y)g(y)g(y) from the given equation z = y f ( x ) + x g ( y ) z = y f ( x ) + x g ( y ) z=yf(x)+xg(y)z=yf(x)+xg(y)z=yf(x)+xg(y). Additionally, it asks for specifying the nature of this equation in the region x > 0 , y > 0 x > 0 , y > 0 x > 0,y > 0x>0, y>0x>0,y>0.
Solution:
Step 1: Given Equation
We are given the equation:
z = y f ( x ) + x g ( y ) ( 1 ) z = y f ( x ) + x g ( y ) ( 1 ) z=yf(x)+xg(y)(1)z = yf(x) + xg(y)\ \ \ \ \ \ \ \ \ (1)z=yf(x)+xg(y)         (1)
Step 2: Partial Differentiation
We differentiate equation (1) partially with respect to x x xxx and y y yyy:
z x = y f ( x ) + g ( y ) ( 2 ) z y = f ( x ) + x g ( y ) ( 3 ) z x = y f ( x ) + g ( y ) ( 2 ) z y = f ( x ) + x g ( y ) ( 3 ) {:[(del z)/(del x)=yf^(‘)(x)+g(y)(2)],[(del z)/(del y)=f(x)+xg^(‘)(y)(3)]:}\begin{aligned} &\frac{\partial z}{\partial x} = yf'(x) + g(y)\ \ \ \ \ \ \ \ \ (2) \\ &\frac{\partial z}{\partial y} = f(x) + xg'(y)\ \ \ \ \ \ \ \ \ (3) \end{aligned}zx=yf(x)+g(y)         (2)zy=f(x)+xg(y)         (3)
Step 3: Second Partial Differentiation
We differentiate equation (3) with respect to x x xxx:
2 z x y = f ( x ) + g ( y ) ( 4 ) 2 z x y = f ( x ) + g ( y ) ( 4 ) (del^(2)z)/(del x del y)=f^(‘)(x)+g^(‘)(y)(4)\frac{\partial^2 z}{\partial x \partial y} = f'(x) + g'(y)\ \ \ \ \ \ \ \ \ (4)2zxy=f(x)+g(y)         (4)
Step 4: Expressing f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) and g ( y ) g ( y ) g^(‘)(y)g'(y)g(y)
From equations (2) and (3), we express f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) and g ( y ) g ( y ) g^(‘)(y)g'(y)g(y) as follows:
f ( x ) = 1 y ( z x g ( y ) ) g ( y ) = 1 x ( z y f ( x ) ) f ( x ) = 1 y z x g ( y ) g ( y ) = 1 x z y f ( x ) {:[f^(‘)(x)=(1)/(y)((del z)/(del x)-g(y))],[g^(‘)(y)=(1)/(x)((del z)/(del y)-f(x))]:}\begin{aligned} f'(x) &= \frac{1}{y}\left(\frac{\partial z}{\partial x} – g(y)\right) \\ g'(y) &= \frac{1}{x}\left(\frac{\partial z}{\partial y} – f(x)\right) \end{aligned}f(x)=1y(zxg(y))g(y)=1x(zyf(x))
Step 5: Substituting into Equation (4)
Substituting the expressions for f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) and g ( y ) g ( y ) g^(‘)(y)g'(y)g(y) into equation (4), we obtain:
2 z x y = 1 y ( z x g ( y ) ) + 1 x ( z y f ( x ) ) x y 2 z x y = x z x + y z y { x g ( y ) + y f ( x ) } x y 2 z x y = x z x + y z y z x y 2 z x y x z x y z y + z = 0 2 z x y = 1 y z x g ( y ) + 1 x z y f ( x ) x y 2 z x y = x z x + y z y { x g ( y ) + y f ( x ) } x y 2 z x y = x z x + y z y z x y 2 z x y x z x y z y + z = 0 {:[(del^(2)z)/(del x del y)=(1)/(y)((del z)/(del x)-g(y))+(1)/(x)((del z)/(del y)-f(x))],[=>xy(del^(2)z)/(del x del y)=x(del z)/(del x)+y(del z)/(del y)-{xg(y)+yf(x)}],[=>xy(del^(2)z)/(del x del y)=x(del z)/(del x)+y(del z)/(del y)-z],[xy(del^(2)z)/(del x del y)-x(del z)/(del x)-y(del z)/(del y)+z=0]:}\begin{aligned} &\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{y}\left(\frac{\partial z}{\partial x} – g(y)\right) + \frac{1}{x}\left(\frac{\partial z}{\partial y} – f(x)\right) \\ &\Rightarrow x y \frac{\partial^2 z}{\partial x \partial y} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} – \{xg(y) + yf(x)\} \\ &\Rightarrow x y \frac{\partial^2 z}{\partial x \partial y} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} – z \\ & x y \frac{\partial^2 z}{\partial x \partial y} – x \frac{\partial z}{\partial x} – y \frac{\partial z}{\partial y} + z = 0 \end{aligned}2zxy=1y(zxg(y))+1x(zyf(x))xy2zxy=xzx+yzy{xg(y)+yf(x)}xy2zxy=xzx+yzyzxy2zxyxzxyzy+z=0
Step 6: Compare with General Form
Comparing the obtained equation with the general form R r + S s + T t + f ( x , y , z ) = 0 R r + S s + T t + f ( x , y , z ) = 0 R_(r)+S_(s)+T_(t)+f(x,y,z)=0R_r + S_s + T_t + f(x, y, z) = 0Rr+Ss+Tt+f(x,y,z)=0, we have:
R = 0 S = x y T = 0 R = 0 S = x y T = 0 {:[R=0],[S=xy],[T=0]:}\begin{aligned} R &= 0 \\ S &= xy \\ T &= 0 \end{aligned}R=0S=xyT=0
Step 7: Nature of the Equation
The discriminant of the equation is given by S 2 4 R T = x 2 y 2 > 0 S 2 4 R T = x 2 y 2 > 0 S^(2)-4RT=x^(2)y^(2) > 0S^2 – 4RT = x^2y^2 > 0S24RT=x2y2>0, indicating that it is a hyperbolic partial differential equation.
Conclusion:
The partial differential equation obtained from eliminating the arbitrary functions f ( x ) f ( x ) f(x)f(x)f(x) and g ( y ) g ( y ) g(y)g(y)g(y) from z = y f ( x ) + x g ( y ) z = y f ( x ) + x g ( y ) z=yf(x)+xg(y)z=yf(x)+xg(y)z=yf(x)+xg(y) is hyperbolic in the region x > 0 , y > 0 x > 0 , y > 0 x > 0,y > 0x>0, y>0x>0,y>0.
5.(b) दर्शाइए कि समीकरण : f ( x ) = cos π ( x + 1 ) 8 + 0 148 x 0 9062 = 0 f ( x ) = cos π ( x + 1 ) 8 + 0 148 x 0 9062 = 0 f(x)=cos((pi(x+1))/(8))+0*148 x-0*9062=0f(x)=\cos \frac{\pi(x+1)}{8}+0 \cdot 148 x-0 \cdot 9062=0f(x)=cosπ(x+1)8+0148x09062=0
का एक मूल अन्तराल ( 1 , 0 ) ( 1 , 0 ) (-1,0)(-1,0)(1,0) में तथा एक मूल ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1) में है । ऋणात्मक मूल की न्यूटन-रॉफसन विधि से दशमलव के चार स्थान तक सही गणना कीजिए।
Show that the equation: f ( x ) = cos π ( x + 1 ) 8 + 0 148 x 0 9062 = 0 f ( x ) = cos π ( x + 1 ) 8 + 0 148 x 0 9062 = 0 f(x)=cos((pi(x+1))/(8))+0*148 x-0*9062=0f(x)=\cos \frac{\pi(x+1)}{8}+0 \cdot 148 x-0 \cdot 9062=0f(x)=cosπ(x+1)8+0148x09062=0
has one root in the interval ( 1 , 0 ) ( 1 , 0 ) (-1,0)(-1,0)(1,0) and one in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1). Calculate the negative root correct to four decimal places using Newton-Raphson method.
Answer:
Introduction:
The problem involves showing that the equation f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 = 0 f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 = 0 f(x)=cos((pi(x+1))/(8))+0.148 x-0.9062=0f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x – 0.9062 = 0f(x)=cosπ(x+1)8+0.148x0.9062=0 has one root in the interval ( 1 , 0 ) ( 1 , 0 ) (-1,0)(-1,0)(1,0) and one in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1). The task is to calculate the negative root accurate to four decimal places using the Newton-Raphson method.
Step 1: Given Equation
We are given the equation:
f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 f(x)=cos((pi(x+1))/(8))+0.148 x-0.9062f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x – 0.9062f(x)=cosπ(x+1)8+0.148x0.9062
Step 2: Calculate Derivative
Calculate the derivative of f ( x ) f ( x ) f(x)f(x)f(x) with respect to x x xxx:
f ( x ) = π 8 sin ( π ( x + 1 ) 8 ) + 0.148 f ( x ) = π 8 sin π ( x + 1 ) 8 + 0.148 f^(‘)(x)=-(pi)/(8)sin((pi(x+1))/(8))+0.148f'(x) = -\frac{\pi}{8} \sin \left(\frac{\pi(x+1)}{8}\right) + 0.148f(x)=π8sin(π(x+1)8)+0.148
Step 3: Continuity of f ( x ) f ( x ) f(x)f(x)f(x) and f ( x ) f ( x ) f^(‘)(x)f'(x)f(x)
It’s evident that f ( x ) f ( x ) f(x)f(x)f(x) and f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) are continuous everywhere.
Step 4: Evaluate f ( 1 ) f ( 1 ) f(-1)f(-1)f(1), f ( 0 ) f ( 0 ) f(0)f(0)f(0), and f ( 1 ) f ( 1 ) f(1)f(1)f(1)
Calculate the values of f f fff at x = 1 x = 1 x=-1x = -1x=1, x = 0 x = 0 x=0x = 0x=0, and x = 1 x = 1 x=1x = 1x=1:
f ( 1 ) = 0.0542 f ( 0 ) = 0.01768 f ( 1 ) = 0.05109 f ( 1 ) = 0.0542 f ( 0 ) = 0.01768 f ( 1 ) = 0.05109 {:[f(-1)=-0.0542],[f(0)=0.01768],[f(1)=-0.05109]:}\begin{aligned} & f(-1) = -0.0542 \\ & f(0) = 0.01768 \\ & f(1) = -0.05109 \end{aligned}f(1)=0.0542f(0)=0.01768f(1)=0.05109
Since f ( 1 ) f ( 0 ) < 0 f ( 1 ) f ( 0 ) < 0 f(-1)*f(0) < 0f(-1) \cdot f(0) < 0f(1)f(0)<0, it implies that a root lies between ( 1 , 0 ) ( 1 , 0 ) (-1,0)(-1,0)(1,0). Similarly, f ( 0 ) f ( 1 ) < 0 f ( 0 ) f ( 1 ) < 0 f(0)*f(1) < 0f(0) \cdot f(1) < 0f(0)f(1)<0, indicating that another root lies between ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1).
Step 5: Newton-Raphson Iteration
To calculate the negative root using the Newton-Raphson method, we start with an initial approximation x 0 = 0.5 x 0 = 0.5 x_(0)=-0.5x_0 = -0.5x0=0.5. The Newton’s iteration formula is given by:
x n + 1 = x n f ( x n ) f ( x n ) ( 1 ) , n = 0 , 1 , 2 , x n + 1 = x n f ( x n ) f ( x n ) ( 1 ) , n = 0 , 1 , 2 , x_(n+1)=x_(n)-(f(x_(n)))/(f^(‘)(x_(n)))(1),n=0,1,2,dotsx_{n+1} = x_n – \frac{f(x_n)}{f'(x_n)}\ \ \ \ \ \ (1),\ \ \ n = 0,1,2, \ldotsxn+1=xnf(xn)f(xn)      (1),   n=0,1,2,
Now, let’s calculate the iterations:
  • n = 0 n = 0 n=0n = 0n=0:
    x 1 = x 0 f ( x 0 ) f ( x 0 ) = 0.5 f ( 0.5 ) f ( 0.5 ) = 0.5138 x 1 = x 0 f ( x 0 ) f ( x 0 ) = 0.5 f ( 0.5 ) f ( 0.5 ) = 0.5138 x_(1)=x_(0)-(f(x_(0)))/(f^(‘)(x_(0)))=-0.5-(f(-0.5))/(f^(‘)(-0.5))=-0.5138x_1 = x_0 – \frac{f(x_0)}{f'(x_0)} = -0.5 – \frac{f(-0.5)}{f'(-0.5)} = -0.5138x1=x0f(x0)f(x0)=0.5f(0.5)f(0.5)=0.5138
  • n = 1 n = 1 n=1n = 1n=1:
    x 2 = 0.5138 f ( 0.5138 ) f ( 0.5138 ) = 0.5046 x 2 = 0.5138 f ( 0.5138 ) f ( 0.5138 ) = 0.5046 x_(2)=-0.5138-(f(-0.5138))/(f^(‘)(-0.5138))=-0.5046x_2 = -0.5138 – \frac{f(-0.5138)}{f'(-0.5138)} = -0.5046x2=0.5138f(0.5138)f(0.5138)=0.5046
  • n = 2 n = 2 n=2n = 2n=2:
    x 3 = 0.5022 x 3 = 0.5022 x_(3)=-0.5022x_3 = -0.5022x3=0.5022
Therefore, x = 0.5022 x = 0.5022 x=-0.5022x = -0.5022x=0.5022 is the required root, accurate to four decimal places.
Conclusion:
The equation f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 = 0 f ( x ) = cos π ( x + 1 ) 8 + 0.148 x 0.9062 = 0 f(x)=cos((pi(x+1))/(8))+0.148 x-0.9062=0f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x – 0.9062 = 0f(x)=cosπ(x+1)8+0.148x0.9062=0 has one root in the interval ( 1 , 0 ) ( 1 , 0 ) (-1,0)(-1,0)(1,0) and one in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1). The negative root has been calculated to be x = 0.5022 x = 0.5022 x=-0.5022x = -0.5022x=0.5022 with an accuracy of four decimal places using the Newton-Raphson method.
  1. (c) मान लीजिए g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) g(w,x,y,z)=(w+x+y)(x+ bar(y)+z)(w+ bar(y))g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y})g(w,x,y,z)=(w+x+y)(x+y¯+z)(w+y¯) एक बूलीय-फलन है । g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) का योगात्मक प्रसामान्य स्वरूप (कन्जंकटिव नार्मल फॉर्म) प्राप्त कीजिए । g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) को उच्च-पदों (मैक्स टर्म्स) के गुणन के रूप में भी व्यक्त कीजिए ।
Let g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) g(w,x,y,z)=(w+x+y)(x+ bar(y)+z)(w+ bar(y))g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y})g(w,x,y,z)=(w+x+y)(x+y¯+z)(w+y¯) be a Boolean function. Obtain the conjunctive normal form for g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z). Also express g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) as a product of maxterms.
Answer:
Introduction:
In this problem, we are given the conjunctive normal form of a boolean function g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) and asked to create its truth table. The given function is represented as a product of its max terms.
Step 1: Expressing g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z)
We are given the conjunctive normal form of g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) as follows:
g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) = ( w + x + y + z z ¯ ) ( w a + x + y ¯ + z ) ( w + x x ¯ + y ¯ + z z ¯ ) = ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) g = ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) g ( w , x , y , z ) = ( w + x + y ) ( x + y ¯ + z ) ( w + y ¯ ) = ( w + x + y + z z ¯ ) ( w a + x + y ¯ + z ) ( w + x x ¯ + y ¯ + z z ¯ ) = ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) g = ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) {:[g(w”,”x”,”y”,”z)=(w+x+y)(x+ bar(y)+z)(w+ bar(y))],[=(w+x+y+z bar(z))(wa+x+ bar(y)+z)(w+x bar(x)+ bar(y)+z bar(z))],[=(w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+z)(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))],[g=(w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))]:}\begin{aligned} & g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y}) \\ & =(w+x+y+z \bar{z})(w a+x+\bar{y}+z)(w+x \bar{x}+\bar{y}+z \bar{z}) \\ & =(w+x+y+z)(w+x+y+\bar{z})(w+x+\bar{y}+z)(w+x+\bar{y}+z)(w+x+\bar{y}+z)(w+x+\bar{y}+\bar{z})(w+\bar{x}+\bar{y}+z)(w+\bar{x}+\bar{y}+\bar{z}) \\ & g=(w+x+y+z)(w+x+y+\bar{z})(w+x+\bar{y}+z)(w+x+\bar{y}+z)(w+x+\bar{y}+\bar{z})(w+\bar{x}+\bar{y}+z)(w+\bar{x}+\bar{y}+\bar{z}) \end{aligned}g(w,x,y,z)=(w+x+y)(x+y¯+z)(w+y¯)=(w+x+y+zz¯)(wa+x+y¯+z)(w+xx¯+y¯+zz¯)=(w+x+y+z)(w+x+y+z¯)(w+x+y¯+z)(w+x+y¯+z)(w+x+y¯+z)(w+x+y¯+z¯)(w+x¯+y¯+z)(w+x¯+y¯+z¯)g=(w+x+y+z)(w+x+y+z¯)(w+x+y¯+z)(w+x+y¯+z)(w+x+y¯+z¯)(w+x¯+y¯+z)(w+x¯+y¯+z¯)

Step 2: Finding the Maxterms

A maxterm is a term that is an OR of all the variables or their complements. The maxterm is 1 when the function is 0. To express g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) as a product of maxterms, we need to find the terms that make g ( w , x , y , z ) = 0 g ( w , x , y , z ) = 0 g(w,x,y,z)=0g(w, x, y, z) = 0g(w,x,y,z)=0.
From the expanded form, we can see that g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) will be zero when all the terms are zero. This happens when:
  1. w = 0 , x = 0 , y = 0 , z = 0 w = 0 , x = 0 , y = 0 , z = 0 w=0,x=0,y=0,z=0w = 0, x = 0, y = 0, z = 0w=0,x=0,y=0,z=0
  2. w = 0 , x = 0 , y = 0 , z = 1 w = 0 , x = 0 , y = 0 , z = 1 w=0,x=0,y=0,z=1w = 0, x = 0, y = 0, z = 1w=0,x=0,y=0,z=1
  3. w = 0 , x = 0 , y = 1 , z = 0 w = 0 , x = 0 , y = 1 , z = 0 w=0,x=0,y=1,z=0w = 0, x = 0, y = 1, z = 0w=0,x=0,y=1,z=0
  4. w = 0 , x = 0 , y = 1 , z = 1 w = 0 , x = 0 , y = 1 , z = 1 w=0,x=0,y=1,z=1w = 0, x = 0, y = 1, z = 1w=0,x=0,y=1,z=1
  5. w = 0 , x = 1 , y = 0 , z = 0 w = 0 , x = 1 , y = 0 , z = 0 w=0,x=1,y=0,z=0w = 0, x = 1, y = 0, z = 0w=0,x=1,y=0,z=0
  6. w = 0 , x = 1 , y = 0 , z = 1 w = 0 , x = 1 , y = 0 , z = 1 w=0,x=1,y=0,z=1w = 0, x = 1, y = 0, z = 1w=0,x=1,y=0,z=1
  7. w = 0 , x = 1 , y = 1 , z = 0 w = 0 , x = 1 , y = 1 , z = 0 w=0,x=1,y=1,z=0w = 0, x = 1, y = 1, z = 0w=0,x=1,y=1,z=0
So, the maxterms corresponding to these conditions are:
  1. ( w + x + y + z ) ( w + x + y + z ) (w+x+y+z)(w + x + y + z)(w+x+y+z)
  2. ( w + x + y + z ¯ ) ( w + x + y + z ¯ ) (w+x+y+ bar(z))(w + x + y + \bar{z})(w+x+y+z¯)
  3. ( w + x + y ¯ + z ) ( w + x + y ¯ + z ) (w+x+ bar(y)+z)(w + x + \bar{y} + z)(w+x+y¯+z)
  4. ( w + x + y ¯ + z ¯ ) ( w + x + y ¯ + z ¯ ) (w+x+ bar(y)+ bar(z))(w + x + \bar{y} + \bar{z})(w+x+y¯+z¯)
  5. ( w + x ¯ + y + z ) ( w + x ¯ + y + z ) (w+ bar(x)+y+z)(w + \bar{x} + y + z)(w+x¯+y+z)
  6. ( w + x ¯ + y + z ¯ ) ( w + x ¯ + y + z ¯ ) (w+ bar(x)+y+ bar(z))(w + \bar{x} + y + \bar{z})(w+x¯+y+z¯)
  7. ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ) (w+ bar(x)+ bar(y)+z)(w + \bar{x} + \bar{y} + z)(w+x¯+y¯+z)
  8. ( w + x ¯ + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ¯ ) (w+ bar(x)+ bar(y)+ bar(z))(w + \bar{x} + \bar{y} + \bar{z})(w+x¯+y¯+z¯)

Conclusion

The Conjunctive Normal Form (CNF) of g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) is ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) (w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))(w+x+y+z)(w+x+y+\bar{z})(w+x+\bar{y}+z)(w+x+\bar{y}+\bar{z})(w+\bar{x}+\bar{y}+z)(w+\bar{x}+\bar{y}+\bar{z})(w+x+y+z)(w+x+y+z¯)(w+x+y¯+z)(w+x+y¯+z¯)(w+x¯+y¯+z)(w+x¯+y¯+z¯).
The function g ( w , x , y , z ) g ( w , x , y , z ) g(w,x,y,z)g(w, x, y, z)g(w,x,y,z) can be expressed as a product of the maxterms ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y + z ) ( w + x ¯ + y + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) ( w + x + y + z ) ( w + x + y + z ¯ ) ( w + x + y ¯ + z ) ( w + x + y ¯ + z ¯ ) ( w + x ¯ + y + z ) ( w + x ¯ + y + z ¯ ) ( w + x ¯ + y ¯ + z ) ( w + x ¯ + y ¯ + z ¯ ) (w+x+y+z)(w+x+y+ bar(z))(w+x+ bar(y)+z)(w+x+ bar(y)+ bar(z))(w+ bar(x)+y+z)(w+ bar(x)+y+ bar(z))(w+ bar(x)+ bar(y)+z)(w+ bar(x)+ bar(y)+ bar(z))(w + x + y + z)(w + x + y + \bar{z})(w + x + \bar{y} + z)(w + x + \bar{y} + \bar{z})(w + \bar{x} + y + z)(w + \bar{x} + y + \bar{z})(w + \bar{x} + \bar{y} + z)(w + \bar{x} + \bar{y} + \bar{z})(w+x+y+z)(w+x+y+z¯)(w+x+y¯+z)(w+x+y¯+z¯)(w+x¯+y+z)(w+x¯+y+z¯)(w+x¯+y¯+z)(w+x¯+y¯+z¯).
5.(d) आंशिक अवकल समीकरण :
( D 3 2 D 2 D D D 2 + 2 D 3 ) z = e 2 x + y + sin ( x 2 y ) D 3 2 D 2 D D D 2 + 2 D 3 z = e 2 x + y + sin ( x 2 y ) (D^(3)-2D^(2)D^(‘)-DD^(‘2)+2D^(‘3))z=e^(2x+y^(‘))+sin(x-2y)\left(D^3-2 D^2 D^{\prime}-D D^{\prime 2}+2 D^{\prime 3}\right) z=e^{2 x+y^{\prime}}+\sin (x-2 y)(D32D2DDD2+2D3)z=e2x+y+sin(x2y)
D x , D y D x , D y D-=(del)/(del x),quadD^(‘)-=(del)/(del y)D \equiv \frac{\partial}{\partial x}, \quad D^{\prime} \equiv \frac{\partial}{\partial y}Dx,Dy
को हल कीजिए ।
Solve the partial differential equation :
( D 3 2 D 2 D D D 2 + 2 D 3 ) z = e 2 x + y + sin ( x 2 y ) D 3 2 D 2 D D D 2 + 2 D 3 z = e 2 x + y + sin ( x 2 y ) (D^(3)-2D^(2)D^(‘)-DD^(‘2)+2D^(‘3))z=e^(2x+y)+sin(x-2y)\left(D^3-2 D^2 D^{\prime}-D D^{\prime 2}+2 D^{\prime 3}\right) z=e^{2 x+y}+\sin (x-2 y)(D32D2DDD2+2D3)z=e2x+y+sin(x2y)
D x , D y D x , D y D-=(del)/(del x),quadD^(‘)-=(del)/(del y)D \equiv \frac{\partial}{\partial x}, \quad D^{\prime} \equiv \frac{\partial}{\partial y}Dx,Dy
Answer:
Introduction:
The problem involves solving the partial differential equation:
( D 3 2 D 2 D D D 2 + 2 D 3 ) z = e 2 x + y + sin ( x 2 y ) D 3 2 D 2 D D D 2 + 2 D 3 z = e 2 x + y + sin ( x 2 y ) (D^(3)-2D^(2)D^(‘)-DD^(‘2)+2D^(‘3))z=e^(2x+y)+sin(x-2y)\left(D^3-2 D^2 D^{\prime}-D D^{\prime 2}+2 D^{\prime 3}\right) z=e^{2 x+y}+\sin (x-2 y)(D32D2DDD2+2D3)z=e2x+y+sin(x2y)
where D D DDD represents the partial derivative with respect to x x xxx, and D D D^(‘)D^{\prime}D represents the partial derivative with respect to y y yyy.
Step 1: Auxiliary Equation
To solve the differential equation, we first find the auxiliary equation. The auxiliary equation is given by:
m 3 2 m 2 m + 2 = 0 m 3 2 m 2 m + 2 = 0 m^(3)-2m^(2)-m+2=0m^3-2 m^2-m+2=0m32m2m+2=0
Solving this equation, we find the roots m = 2 m = 2 m=2m = 2m=2, m = 1 m = 1 m=1m = 1m=1, and m = 1 m = 1 m=-1m = -1m=1.
Step 2: Complementary Function (C.F.)
The complementary function is given by:
C . F = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) ( 1 ) C . F = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) ( 1 ) C.F=phi_(1)(y+2x)+phi_(2)(y+x)+phi_(3)(y-x)(1)C.F=\phi_1(y+2 x)+\phi_2(y+x)+\phi_3(y-x) \ \ \ (1)C.F=ϕ1(y+2x)+ϕ2(y+x)+ϕ3(yx)   (1)
Step 3: Particular Integral (P.I.)
To find the particular integral, we need to solve for P . I P . I P.IP.IP.I in the equation:
P . I = e 2 x + y ( D 3 2 D 2 D D D 2 + 2 D 3 ) + sin ( x 2 y ) ( D D ) ( D + D ) ( D 2 D ) P . I = e 2 x + y D 3 2 D 2 D D D 2 + 2 D 3 + sin ( x 2 y ) D D D + D D 2 D P.I=(e^(2x+y))/((D^(3)-2D^(2)D^(‘)-DD^(‘)2+2D^(‘)3))+(sin(x-2y))/((D-D^(‘))(D+D^(‘))(D-2D^(‘)))P.I=\frac{e^{2 x+y}}{\left(D^3-2 D^2 D^{\prime}-D D^{\prime} 2+2 D^{\prime} 3\right)}+\frac{\sin (x-2 y)}{\left(D-D^{\prime}\right)\left(D+D^{\prime}\right)\left(D-2 D^{\prime}\right)}P.I=e2x+y(D32D2DDD2+2D3)+sin(x2y)(DD)(D+D)(D2D)
Simplify this expression:
For P . I = e 2 x + y D 3 2 D 2 D D D 2 + 2 D 3 + sin ( x 2 y ) ( D D ) ( D + D ) ( D 2 D ) = e 2 x + y ( D D ) ( D + D ) ( D 2 D ) + sin ( x 2 y ) ( D D ) ( D + D ) ( D 2 D ) = e 2 x + y ( 2 1 ) ( 2 + 1 ) ( D 2 D ) + 1 D 2 D × 1 D + D × 1 3 sin v d v = e 2 x + y 3 ( D 2 D ) 1 3 1 D 2 D cos ( x 2 y ) D + D = e 2 x + y 3 ( D 2 D ) 1 3 ( D 2 D ) × 1 1 2 cos v d v = e 2 x + y 3 ( D 2 D ) + sin ( x 2 y ) 3 ( D 2 D ) = e 2 x + y 3 ( D 2 D ) + 1 3 × 1 1 + 4 sin v d v = e 2 x + y 3 ( D 2 D ) cos ( x 2 y ) 15 = e 2 x + y 3 x 1.1 ! cos ( x 2 y ) 15 = x e 2 x + y 3 cos ( x 2 y ) 15  For  P . I = e 2 x + y D 3 2 D 2 D D D 2 + 2 D 3 + sin ( x 2 y ) D D D + D D 2 D = e 2 x + y D D D + D D 2 D + sin ( x 2 y ) D D D + D D 2 D = e 2 x + y ( 2 1 ) ( 2 + 1 ) D 2 D + 1 D 2 D × 1 D + D × 1 3 sin v d v = e 2 x + y 3 D 2 D 1 3 1 D 2 D cos ( x 2 y ) D + D = e 2 x + y 3 D 2 D 1 3 D 2 D × 1 1 2 cos v d v = e 2 x + y 3 D 2 D + sin ( x 2 y ) 3 D 2 D = e 2 x + y 3 D 2 D + 1 3 × 1 1 + 4 sin v d v = e 2 x + y 3 D 2 D cos ( x 2 y ) 15 = e 2 x + y 3 x 1.1 ! cos ( x 2 y ) 15 = x e 2 x + y 3 cos ( x 2 y ) 15 {:[” For “P.I=(e^(2x+y))/(D^(3)-2D^(2)D^(‘)-DD^(‘)2+2D^(‘)3)+(sin(x-2y))/((D-D^(‘))(D+D^(‘))(D-2D^(‘)))],[=(e^(2x+y))/((D-D^(‘))(D+D^(‘))(D-2D^(‘)))+(sin(x-2y))/((D-D^(‘))(D+D^(‘))(D-2D^(‘)))],[=(e^(2x+y))/((2-1)(2+1)(D-2D^(‘)))+(1)/(D-2D^(‘))xx(1)/(D+D^(‘))xx(1)/(3)int sin vdv],[=(e^(2x+y))/(3(D-2D^(‘)))-(1)/(3)(1)/(D-2D^(‘))*(cos(x-2y))/(D+D^(‘))],[=(e^(2x+y))/(3(D-2D^(‘)))-(1)/(3(D-2D^(‘)))xx(1)/(1-2)int cos vdv],[=(e^(2x+y))/(3(D-2D^(‘)))+(sin(x-2y))/(3(D-2D^(‘)))],[=(e^(2x+y))/(3(D-2D^(‘)))+(1)/(3)xx(1)/(1+4)int sin vdv],[=(e^(2x+y))/(3(D-2D^(‘)))-(cos(x-2y))/(15)],[=(e^(2x+y))/(3)*(x^(‘))/(1.1!)-(cos(x-2y))/(15)],[=(xe^(2x+y))/(3)-(cos(x-2y))/(15)]:}\begin{aligned} & \text { For } P . I=\frac{e^{2 x+y}}{D^3-2 D^2 D^{\prime}-D D^{\prime} 2+2 D^{\prime} 3}+\frac{\sin (x-2 y)}{\left(D-D^{\prime}\right)\left(D+D^{\prime}\right)\left(D-2 D^{\prime}\right)} \\ & =\frac{e^{2 x+y}}{\left(D-D^{\prime}\right)\left(D+D^{\prime}\right)\left(D-2 D^{\prime}\right)}+\frac{\sin (x-2 y)}{\left(D-D^{\prime}\right)\left(D+D^{\prime}\right)\left(D-2 D^{\prime}\right)} \\ & =\frac{e^{2 x+y}}{(2-1)(2+1)\left(D-2 D^{\prime}\right)}+\frac{1}{D-2 D^{\prime}} \times \frac{1}{D+D^{\prime}} \times \frac{1}{3} \int \sin v \mathbf{d} v \\ & =\frac{e^{2 x+y}}{3\left(D-2 D^{\prime}\right)}-\frac{1}{3} \frac{1}{D-2 D^{\prime}} \cdot \frac{\cos (x-2 y)}{D+D^{\prime}} \\ & =\frac{e^{2 x+y}}{3\left(D-2 D^{\prime}\right)}-\frac{1}{3\left(D-2 D^{\prime}\right)} \times \frac{1}{1-2} \int \cos v \mathbf{d} v \\ & =\frac{e^{2 x+y}}{3\left(D-2 D^{\prime}\right)}+\frac{\sin (x-2 y)}{3\left(D-2 D^{\prime}\right)} \\ & =\frac{e^{2 x+y}}{3\left(D-2 D^{\prime}\right)}+\frac{1}{3} \times \frac{1}{1+4} \int \sin v \mathbf{d} v \\ & =\frac{e^{2 x+y}}{3\left(D-2 D^{\prime}\right)}-\frac{\cos (x-2 y)}{15} \\ & =\frac{e^{2 x+y}}{3} \cdot \frac{x^{\prime}}{1.1 !}-\frac{\cos (x-2 y)}{15} \\ & =\frac{x e^{2 x+y}}{3}-\frac{\cos (x-2 y)}{15}\end{aligned} For P.I=e2x+yD32D2DDD2+2D3+sin(x2y)(DD)(D+D)(D2D)=e2x+y(DD)(D+D)(D2D)+sin(x2y)(DD)(D+D)(D2D)=e2x+y(21)(2+1)(D2D)+1D2D×1D+D×13sinvdv=e2x+y3(D2D)131D2Dcos(x2y)D+D=e2x+y3(D2D)13(D2D)×112cosvdv=e2x+y3(D2D)+sin(x2y)3(D2D)=e2x+y3(D2D)+13×11+4sinvdv=e2x+y3(D2D)cos(x2y)15=e2x+y3x1.1!cos(x2y)15=xe2x+y3cos(x2y)15
Step 4: Final Solution
Now, we combine the Complementary Function (C.F.) and the Particular Integral (P.I.) to find the final solution:
z = C . F + P . I z = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) + x 3 e 2 x + y cos ( x 2 y ) 15 z = C . F + P . I z = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) + x 3 e 2 x + y cos ( x 2 y ) 15 {:[],[z=C.F+P.I],[z=phi_(1)(y+2x)+phi_(2)(y+x)+phi_(3)(y-x)+(x)/(3)e^(2x+y)-(cos(x-2y))/(15)]:}\begin{aligned} \\ & z=C . F+P . I \\ & z=\phi_1(y+2 x)+\phi_2(y+x)+\phi_3(y-x)+\frac{x}{3} e^{2 x+y}-\frac{\cos (x-2 y)}{15} \end{aligned}z=C.F+P.Iz=ϕ1(y+2x)+ϕ2(y+x)+ϕ3(yx)+x3e2x+ycos(x2y)15
Conclusion:
The solution to the partial differential equation is given by:
z = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) + x 3 e 2 x + y cos ( x 2 y ) 15 z = ϕ 1 ( y + 2 x ) + ϕ 2 ( y + x ) + ϕ 3 ( y x ) + x 3 e 2 x + y cos ( x 2 y ) 15 z=phi_(1)(y+2x)+phi_(2)(y+x)+phi_(3)(y-x)+(x)/(3)e^(2x+y)-(cos(x-2y))/(15)z=\phi_1(y+2 x)+\phi_2(y+x)+\phi_3(y-x)+\frac{x}{3} e^{2 x+y}-\frac{\cos (x-2 y)}{15}z=ϕ1(y+2x)+ϕ2(y+x)+ϕ3(yx)+x3e2x+ycos(x2y)15
5.(e) सिद्ध कीजिए कि त्रिभुजाकार पटल A B C A B C ABCA B CABC का इसके तल में A A AAA से होकर जाने वाली किसी भी अक्ष के सापेक्ष जड़त्व-आघूर्ण
M 6 ( β 2 + β γ + γ 2 ) M 6 β 2 + β γ + γ 2 (M)/(6)(beta^(2)+beta gamma+gamma^(2))\frac{M}{6}\left(\beta^2+\beta \gamma+\gamma^2\right)M6(β2+βγ+γ2)
है, जहाँ पर M M MMM पटल की संहति तथा β β beta\betaβ γ γ gamma\gammaγ क्रमशः B B BBB C C CCC से अक्ष पर डाले गये लम्बों की लम्बाइयां हैं।
Prove that the moment of inertia of a triangular lamina A B C A B C ABCA B CABC about any axis through A A AAA in its plane is
M 6 ( β 2 + β γ + γ 2 ) M 6 β 2 + β γ + γ 2 (M)/(6)(beta^(2)+beta gamma+gamma^(2))\frac{M}{6}\left(\beta^2+\beta \gamma+\gamma^2\right)M6(β2+βγ+γ2)
where M M MMM is the mass of the lamina and β , γ β , γ beta,gamma\beta, \gammaβ,γ are respectively the length of perpendiculars from B B BBB and C C CCC on the axis.
Answer:
Introduction:
In this problem, we are tasked with proving the moment of inertia of a triangular lamina A B C A B C ABCABCABC about any axis through point A A AAA in its plane. The formula to be proven is:
M 6 ( β 2 + β γ + γ 2 ) M 6 β 2 + β γ + γ 2 (M)/(6)(beta^(2)+beta gamma+gamma^(2))\frac{M}{6}\left(\beta^2+\beta \gamma+\gamma^2\right)M6(β2+βγ+γ2)
Where M M MMM is the mass of the lamina, and β β beta\betaβ and γ γ gamma\gammaγ represent the lengths of perpendiculars from points B B BBB and C C CCC to the axis, respectively.
Step 1: Mass Distribution
Let m m mmm be the mass of the triangle A B C A B C ABCABCABC. We consider the triangle as being equipotential to three particles, each with mass m 3 m 3 (m)/(3)\frac{m}{3}m3, placed at the midpoints D , E , F D , E , F D,E,FD, E, FD,E,F of its sides.
Step 2: Perpendicular Distances
Now, let L M L M LMLMLM be any line through vertex A A AAA and within the plane of triangle A B C A B C ABCABCABC. We define β β beta\betaβ as the distance from vertex B B BBB to line L M L M LMLMLM (i.e., B T = β B T = β BT=betaBT = \betaBT=β), and γ γ gamma\gammaγ as the distance from vertex C C CCC to line L M L M LMLMLM (i.e., C K = γ C K = γ CK=gammaCK = \gammaCK=γ). Therefore, the perpendicular distances of points D , E , F D , E , F D,E,FD, E, FD,E,F from line L M L M LMLMLM are as follows:
D M = 1 2 ( β + γ ) , E N = 1 2 γ , and F P = 1 2 β D M = 1 2 ( β + γ ) , E N = 1 2 γ , and F P = 1 2 β DM=(1)/(2)(beta+gamma),EN=(1)/(2)gamma,”and”FP=(1)/(2)betaDM = \frac{1}{2}(\beta+\gamma),\ EN = \frac{1}{2}\gamma,\ \text{and}\ FP = \frac{1}{2}\betaDM=12(β+γ), EN=12γ, and FP=12β
Step 3: Moment of Inertia Calculation
The moment of inertia ( M . I . M . I . M.I.M.I.M.I.) of triangle A B C A B C ABCABCABC about line L M L M LMLMLM can be calculated as the sum of the moment of inertia of the masses m 3 m 3 (m)/(3)\frac{m}{3}m3 at points D , E , F D , E , F D,E,FD, E, FD,E,F about line L M L M LMLMLM. Using the formula for M . I . M . I . M.I.M.I.M.I. of a point mass about an axis, which is I = m r 2 I = m r 2 I=m*r^(2)I = m \cdot r^2I=mr2, we have:
M . I . = Sum of M. I of the masses m 3 each at D, E, F about LM = m 3 D M 2 + m 3 E N 2 + m 3 F P 2 = m 3 [ 1 4 ( β + γ ) 2 + 1 4 γ 2 + 1 4 β 2 ] = m 6 ( β 2 + γ 2 + β γ ) M . I . =  Sum of M. I of the masses  m 3  each at D, E, F about LM  = m 3 D M 2 + m 3 E N 2 + m 3 F P 2 = m 3 1 4 ( β + γ ) 2 + 1 4 γ 2 + 1 4 β 2 = m 6 β 2 + γ 2 + β γ {:[M.I.=” Sum of M. I of the masses “(m)/(3)” each at D, E, F about LM “],[=(m)/(3)*DM^(2)+(m)/(3)*EN^(2)+(m)/(3)*FP^(2)],[=(m)/(3)[(1)/(4)(beta+gamma)^(2)+(1)/(4)gamma^(2)+(1)/(4)beta^(2)]],[=(m)/(6)(beta^(2)+gamma^(2)+beta gamma)]:}\begin{aligned} M.I. & =\text { Sum of M. I of the masses } \frac{m}{3} \text { each at D, E, F about LM } \\ &=\frac{m}{3} \cdot DM^2 + \frac{m}{3} \cdot EN^2 + \frac{m}{3} \cdot FP^2 \\ &= \frac{m}{3} \left[\frac{1}{4}(\beta+\gamma)^2 + \frac{1}{4}\gamma^2 + \frac{1}{4}\beta^2\right] \\ &= \frac{m}{6}\left(\beta^2+\gamma^2+\beta\gamma\right) \end{aligned}M.I.= Sum of M. I of the masses m3 each at D, E, F about LM =m3DM2+m3EN2+m3FP2=m3[14(β+γ)2+14γ2+14β2]=m6(β2+γ2+βγ)
Conclusion:
The moment of inertia of the triangular lamina A B C A B C ABCABCABC about any axis passing through point A A AAA in its plane is given by the formula:
M 6 ( β 2 + β γ + γ 2 ) M 6 β 2 + β γ + γ 2 (M)/(6)(beta^(2)+beta gamma+gamma^(2))\frac{M}{6}\left(\beta^2+\beta \gamma+\gamma^2\right)M6(β2+βγ+γ2)
Where M M MMM represents the mass of the lamina, and β β beta\betaβ and γ γ gamma\gammaγ are the lengths of perpendiculars from points B B BBB and C C CCC to the axis, respectively.
6.(a) आंशिक अवकल समीकरण :
( x y ) y 2 z x + ( y x ) x 2 z y = ( x 2 + y 2 ) z ( x y ) y 2 z x + ( y x ) x 2 z y = x 2 + y 2 z (x-y)y^(2)(del z)/(del x)+(y-x)x^(2)(del z)/(del y)=(x^(2)+y^(2))z(x-y) y^2 \frac{\partial z}{\partial x}+(y-x) x^2 \frac{\partial z}{\partial y}=\left(x^2+y^2\right) z(xy)y2zx+(yx)x2zy=(x2+y2)z
के वक्र : x z = a 3 , y = 0 x z = a 3 , y = 0 xz=a^(3),y=0x z=a^3, y=0xz=a3,y=0 को अपने ऊपर समाहित करने वाले समाकल पृष्ठ को ज्ञात कीजिए ।
Find the integral surface of the partial differential equation :
( x y ) y 2 z x + ( y x ) x 2 z y = ( x 2 + y 2 ) z ( x y ) y 2 z x + ( y x ) x 2 z y = x 2 + y 2 z (x-y)y^(2)(del z)/(del x)+(y-x)x^(2)(del z)/(del y)=(x^(2)+y^(2))z(x-y) y^2 \frac{\partial z}{\partial x}+(y-x) x^2 \frac{\partial z}{\partial y}=\left(x^2+y^2\right) z(xy)y2zx+(yx)x2zy=(x2+y2)z
that contains the curve : x z = a 3 , y = 0 x z = a 3 , y = 0 xz=a^(3),y=0x z=a^3, y=0xz=a3,y=0 on it.
Answer:
Introduction:
We are given a partial differential equation:
( x y ) y 2 z x + ( y x ) x 2 z y = ( x 2 + y 2 ) z ( x y ) y 2 z x + ( y x ) x 2 z y = x 2 + y 2 z (x-y)y^(2)(del z)/(del x)+(y-x)x^(2)(del z)/(del y)=(x^(2)+y^(2))z(x-y) y^2 \frac{\partial z}{\partial x} + (y-x) x^2 \frac{\partial z}{\partial y} = \left(x^2+y^2\right) z(xy)y2zx+(yx)x2zy=(x2+y2)z
and we need to find the integral surface of this equation that contains the curve x z = a 3 x z = a 3 xz=a^(3)x z = a^3xz=a3 and y = 0 y = 0 y=0y = 0y=0.
Step 1: Initial Equation and Curve
Given equation (1) is:
( x y ) y 2 z x + ( y x ) x 2 z y = ( x 2 + y 2 ) z ( x y ) y 2 z x + ( y x ) x 2 z y = x 2 + y 2 z (x-y)y^(2)(del z)/(del x)+(y-x)x^(2)(del z)/(del y)=(x^(2)+y^(2))z(x-y) y^2 \frac{\partial z}{\partial x} + (y-x) x^2 \frac{\partial z}{\partial y} = \left(x^2+y^2\right) z(xy)y2zx+(yx)x2zy=(x2+y2)z
and the given curve (2) is x z = a 3 x z = a 3 xz=a^(3)x z = a^3xz=a3 and y = 0 y = 0 y=0y = 0y=0.
Step 2: Lagrange’s Auxiliary Equation
We apply Lagrange’s auxiliary equations to equation (1):
d x ( x y ) y 2 = d y ( y x ) x 2 = d z ( x 2 + y 2 ) z d x ( x y ) y 2 = d y ( y x ) x 2 = d z x 2 + y 2 z (dx)/((x-y)y^(2))=(dy)/((y-x)x^(2))=(dz)/((x^(2)+y^(2))z)\frac{\mathbf{d} x}{(x-y) y^2} = \frac{\mathbf{d} y}{(y-x) x^2} = \frac{\mathbf{d} z}{\left(x^2+y^2\right) z}dx(xy)y2=dy(yx)x2=dz(x2+y2)z
This results in equation (3).
Step 3: Integration of Auxiliary Equations
For each fraction of equation (3), we get:
d x d y ( x y ) ( y 2 + x 2 ) = d z ( x 2 + y 2 ) z d x d y ( x y ) ( y 2 + x 2 ) = d z x 2 + y 2 z (dx-dy)/((x-y)(y^(2)+x^(2)))=(dz)/((x^(2)+y^(2))z)\frac{\mathbf{d} x – \mathbf{d} y}{(x-y)(y^2+x^2)} = \frac{\mathbf{d} z}{\left(x^2+y^2\right) z}dxdy(xy)(y2+x2)=dz(x2+y2)z
This simplifies to d ( x y ) x y d z z = 0 d ( x y ) x y d z z = 0 (d(x-y))/(x-y)-(dz)/(z)=0\frac{\mathbf{d}(x-y)}{x-y} – \frac{\mathbf{d} z}{z} = 0d(xy)xydzz=0.
Integrating this equation, we arrive at:
x y z = C 1 x y z = C 1 (x-y)/(z)=C_(1)\frac{x-y}{z} = C_1xyz=C1
This is equation (4).
Step 4: Integration of First Two Fractions
Taking the first two fractions from equation (3), we obtain:
3 x 2 d x + 3 y 2 d y = 0 3 x 2 d x + 3 y 2 d y = 0 3x^(2)dx+3y^(2)dy=03x^2 \mathbf{d} x + 3y^2 \mathbf{d} y = 03x2dx+3y2dy=0
Integrating this equation leads to:
x 3 + y 3 = C 2 x 3 + y 3 = C 2 x^(3)+y^(3)=C_(2)x^3 + y^3 = C_2x3+y3=C2
This is equation (5).
Step 5: Parametric Form of the Curve
The parametric form of the given curve (2) is:
z = t , x = a 3 t , y = 0 z = t , x = a 3 t , y = 0 z=t,quad x=(a^(3))/(t),quad y=0z = t, \quad x = \frac{a^3}{t}, \quad y = 0z=t,x=a3t,y=0
This is equation (6).
Step 6: Substituting Parametric Form into Equations
Substituting the values from equation (6) into equations (4) and (5), we get:
a 3 t 2 = C 1 and t 3 = a 9 C 2 a 3 t 2 = C 1 and t 3 = a 9 C 2 (a^(3))/(t^(2))=C_(1)quad”and”quadt^(3)=(a^(9))/(C_(2))\frac{a^3}{t^2} = C_1 \quad \text{and} \quad t^3 = \frac{a^9}{C_2}a3t2=C1andt3=a9C2
Squaring both sides of the second equation, we have:
t 6 = a 18 C 2 2 t 6 = a 18 C 2 2 t^(6)=(a^(18))/(C_(2)^(2))t^6 = \frac{a^{18}}{C_2^2}t6=a18C22
Equating these expressions, we obtain:
a 9 C 1 3 = a 18 C 2 2 or C 2 2 = a 9 C 1 3 a 9 C 1 3 = a 18 C 2 2 or C 2 2 = a 9 C 1 3 (a^(9))/(C_(1)^(3))=(a^(18))/(C_(2)^(2))quad”or”quadC_(2)^(2)=a^(9)C_(1)^(3)\frac{a^9}{C_1^3} = \frac{a^{18}}{C_2^2} \quad \text{or} \quad C_2^2 = a^9 C_1^3a9C13=a18C22orC22=a9C13
This is equation (9).
Step 7: Finding the Integral Surface
Substituting the values of C 1 C 1 C_(1)C_1C1 and C 2 C 2 C_(2)C_2C2 from equations (4) and (5) into equation (9), we arrive at the required integral surface g ( 1 ) g ( 1 ) g(1)g(1)g(1):
( x 3 + y 3 ) 2 = a 9 ( x y ) 3 z 3 x 3 + y 3 2 = a 9 ( x y ) 3 z 3 (x^(3)+y^(3))^(2)=(a^(9)(x-y)^(3))/(z^(3))\left(x^3+y^3\right)^2 = \frac{a^9(x-y)^3}{z^3}(x3+y3)2=a9(xy)3z3
Conclusion:
The integral surface of the partial differential equation:
( x y ) y 2 z x + ( y x ) x 2 z y = ( x 2 + y 2 ) z ( x y ) y 2 z x + ( y x ) x 2 z y = x 2 + y 2 z (x-y)y^(2)(del z)/(del x)+(y-x)x^(2)(del z)/(del y)=(x^(2)+y^(2))z(x-y) y^2 \frac{\partial z}{\partial x} + (y-x) x^2 \frac{\partial z}{\partial y} = \left(x^2+y^2\right) z(xy)y2zx+(yx)x2zy=(x2+y2)z
that contains the curve x z = a 3 x z = a 3 xz=a^(3)x z = a^3xz=a3 and y = 0 y = 0 y=0y = 0y=0 is given by the equation:
( x 3 + y 3 ) 2 = a 9 ( x y ) 3 z 3 x 3 + y 3 2 = a 9 ( x y ) 3 z 3 (x^(3)+y^(3))^(2)=(a^(9)(x-y)^(3))/(z^(3))\left(x^3+y^3\right)^2 = \frac{a^9(x-y)^3}{z^3}(x3+y3)2=a9(xy)3z3
6.(b) समीकरण निकाय : 4 x + y + 2 z = 4 4 x + y + 2 z = 4 4x+y+2z=44 x+y+2 z=44x+y+2z=4 3 x + 5 y + z = 7 3 x + 5 y + z = 7 3x+5y+z=73 x+5 y+z=73x+5y+z=7 x + y + 3 z = 3 x + y + 3 z = 3 x+y+3z=3x+y+3 z=3x+y+3z=3
के हल के लिए गाउस-सीडल पुनरावर्ती क्रिया-विधि निर्धारित कीजिए तथा आरंभिक सदिश X ( 0 ) = 0 X ( 0 ) = 0 X^((0))=0X^{(0)}=0X(0)=0 से प्रारंभ करके तीन बार पुनरावर्त कीजिए । यथातथ (बिल्कुल ठीक) हल भी निकालिए और पुनरावर्त हलों से तुलना कीजिए।
For the solution of the system of equations : 4 x + y + 2 z = 4 4 x + y + 2 z = 4 4x+y+2z=44 x+y+2 z=44x+y+2z=4
3 x + 5 y + z = 7 x + y + 3 z = 3 3 x + 5 y + z = 7 x + y + 3 z = 3 {:[3x+5y+z=7],[x+y+3z=3]:}\begin{aligned} &3 x+5 y+z=7 \\ &x+y+3 z=3 \end{aligned}3x+5y+z=7x+y+3z=3
set up the Gauss-Seidel iterative scheme and iterate three times starting with the initial vector X ( 0 ) = 0 X ( 0 ) = 0 X^((0))=0X^{(0)}=0X(0)=0. Also find the exact solutions and compare with the iterated solutions.
Answer:

Introduction:

We were given a system of three linear equations and tasked with solving it using the Gauss-Seidel iterative method. We started with an initial guess X ( 0 ) = ( 0 , 0 , 0 ) X ( 0 ) = ( 0 , 0 , 0 ) X^((0))=(0,0,0)X^{(0)} = (0, 0, 0)X(0)=(0,0,0) and performed three iterations to find approximate solutions for x x xxx, y y yyy, and z z zzz. To check the accuracy of our approximations, we also solved the system exactly using Cramer’s Rule.
Total Equations are 3
4 x + y + 2 z = 4 3 x + 5 y + z = 7 x + y + 3 z = 3 4 x + y + 2 z = 4 3 x + 5 y + z = 7 x + y + 3 z = 3 {:[4x+y+2z=4],[3x+5y+z=7],[x+y+3z=3]:}\begin{aligned} & 4 x+y+2 z=4 \\ & 3 x+5 y+z=7 \\ & x+y+3 z=3 \end{aligned}4x+y+2z=43x+5y+z=7x+y+3z=3
From the above equations
x k + 1 = 1 4 ( 4 y k 2 z k ) x k + 1 = 1 4 4 y k 2 z k x_(k+1)=(1)/(4)(4-y_(k)-2z_(k))x_{k+1}=\frac{1}{4}\left(4-y_k-2 z_k\right)xk+1=14(4yk2zk)
y k + 1 = 1 5 ( 7 3 x k + 1 z k ) y k + 1 = 1 5 7 3 x k + 1 z k y_(k+1)=(1)/(5)(7-3x_(k+1)-z_(k))y_{k+1}=\frac{1}{5}\left(7-3 x_{k+1}-z_k\right)yk+1=15(73xk+1zk)
z k + 1 = 1 3 ( 3 x k + 1 y k + 1 ) z k + 1 = 1 3 3 x k + 1 y k + 1 z_(k+1)=(1)/(3)(3-x_(k+1)-y_(k+1))z_{k+1}=\frac{1}{3}\left(3-x_{k+1}-y_{k+1}\right)zk+1=13(3xk+1yk+1)
Initial gauss ( x , y , z ) = ( 0 , 0 , 0 ) ( x , y , z ) = ( 0 , 0 , 0 ) (x,y,z)=(0,0,0)(x, y, z)=(0,0,0)(x,y,z)=(0,0,0)
Solution steps are 1 st 1 st  1^(“st “)1^{\text {st }}1st  Approximation
x 1 = 1 4 [ 4 ( 0 ) 2 ( 0 ) ] = 1 4 [ 4 ] = 1 x 1 = 1 4 [ 4 ( 0 ) 2 ( 0 ) ] = 1 4 [ 4 ] = 1 x_(1)=(1)/(4)[4-(0)-2(0)]=(1)/(4)[4]=1x_1=\frac{1}{4}[4-(0)-2(0)]=\frac{1}{4}[4]=1x1=14[4(0)2(0)]=14[4]=1
y 1 = 1 5 [ 7 3 ( 1 ) ( 0 ) ] = 1 5 [ 4 ] = 0.8 z 1 = 1 3 [ 3 ( 1 ) ( 0.8 ) ] = 1 3 [ 1.2 ] = 0.4 y 1 = 1 5 [ 7 3 ( 1 ) ( 0 ) ] = 1 5 [ 4 ] = 0.8 z 1 = 1 3 [ 3 ( 1 ) ( 0.8 ) ] = 1 3 [ 1.2 ] = 0.4 {:[y_(1)=(1)/(5)[7-3(1)-(0)]=(1)/(5)[4]=0.8],[z_(1)=(1)/(3)[3-(1)-(0.8)]=(1)/(3)[1.2]=0.4]:}\begin{aligned} & y_1=\frac{1}{5}[7-3(1)-(0)]=\frac{1}{5}[4]=0.8 \\ & z_1=\frac{1}{3}[3-(1)-(0.8)]=\frac{1}{3}[1.2]=0.4 \end{aligned}y1=15[73(1)(0)]=15[4]=0.8z1=13[3(1)(0.8)]=13[1.2]=0.4
2 nd 2 nd  2^(“nd “)2^{\text {nd }}2nd  Approximation
x 2 = 1 4 [ 4 ( 0.8 ) 2 ( 0.4 ) ] = 1 4 [ 2.4 ] = 0.6 x 2 = 1 4 [ 4 ( 0.8 ) 2 ( 0.4 ) ] = 1 4 [ 2.4 ] = 0.6 x_(2)=(1)/(4)[4-(0.8)-2(0.4)]=(1)/(4)[2.4]=0.6x_2=\frac{1}{4}[4-(0.8)-2(0.4)]=\frac{1}{4}[2.4]=0.6x2=14[4(0.8)2(0.4)]=14[2.4]=0.6
y 2 = 1 5 [ 7 3 ( 0.6 ) ( 0.4 ) ] = 1 5 [ 4.8 ] = 0.96 y 2 = 1 5 [ 7 3 ( 0.6 ) ( 0.4 ) ] = 1 5 [ 4.8 ] = 0.96 y_(2)=(1)/(5)[7-3(0.6)-(0.4)]=(1)/(5)[4.8]=0.96y_2=\frac{1}{5}[7-3(0.6)-(0.4)]=\frac{1}{5}[4.8]=0.96y2=15[73(0.6)(0.4)]=15[4.8]=0.96
z 2 = 1 3 [ 3 ( 0.6 ) ( 0.96 ) ] = 1 3 [ 1.44 ] = 0.48 z 2 = 1 3 [ 3 ( 0.6 ) ( 0.96 ) ] = 1 3 [ 1.44 ] = 0.48 z_(2)=(1)/(3)[3-(0.6)-(0.96)]=(1)/(3)[1.44]=0.48z_2=\frac{1}{3}[3-(0.6)-(0.96)]=\frac{1}{3}[1.44]=0.48z2=13[3(0.6)(0.96)]=13[1.44]=0.48
3 r d 3 r d 3^(rd)3^{r d}3rd Approximation
x 3 = 1 4 [ 4 ( 0.96 ) 2 ( 0.48 ) ] = 1 4 [ 2.08 ] = 0.52 y 3 = 1 5 [ 7 3 ( 0.52 ) ( 0.48 ) ] = 1 5 [ 4.96 ] = 0.992 z 3 = 1 3 [ 3 ( 0.52 ) ( 0.992 ) ] = 1 3 [ 1.488 ] = 0.496 x 3 = 1 4 [ 4 ( 0.96 ) 2 ( 0.48 ) ] = 1 4 [ 2.08 ] = 0.52 y 3 = 1 5 [ 7 3 ( 0.52 ) ( 0.48 ) ] = 1 5 [ 4.96 ] = 0.992 z 3 = 1 3 [ 3 ( 0.52 ) ( 0.992 ) ] = 1 3 [ 1.488 ] = 0.496 {:[x_(3)=(1)/(4)[4-(0.96)-2(0.48)]=(1)/(4)[2.08]=0.52],[y_(3)=(1)/(5)[7-3(0.52)-(0.48)]=(1)/(5)[4.96]=0.992],[z_(3)=(1)/(3)[3-(0.52)-(0.992)]=(1)/(3)[1.488]=0.496]:}\begin{aligned} & x_3=\frac{1}{4}[4-(0.96)-2(0.48)]=\frac{1}{4}[2.08]=0.52 \\ & y_3=\frac{1}{5}[7-3(0.52)-(0.48)]=\frac{1}{5}[4.96]=0.992 \\ & z_3=\frac{1}{3}[3-(0.52)-(0.992)]=\frac{1}{3}[1.488]=0.496 \end{aligned}x3=14[4(0.96)2(0.48)]=14[2.08]=0.52y3=15[73(0.52)(0.48)]=15[4.96]=0.992z3=13[3(0.52)(0.992)]=13[1.488]=0.496
Iterations are tabulated as below
Iteration x x x\mathbf{x}x y y y\mathbf{y}y z z z\mathbf{z}z
1 1 0.8 0.4
2 0.6 0.96 0.48
3 0.52 0.992 0.496
Iteration x y z 1 1 0.8 0.4 2 0.6 0.96 0.48 3 0.52 0.992 0.496| Iteration | $\mathbf{x}$ | $\mathbf{y}$ | $\mathbf{z}$ | | :—: | :—: | :—: | :—: | | 1 | 1 | 0.8 | 0.4 | | 2 | 0.6 | 0.96 | 0.48 | | 3 | 0.52 | 0.992 | 0.496 |
Exact solutions using Cramer’s Rule:
Use Cramer’s Rule to find the values of x , y , z x , y , z x,y,zx, y, zx,y,z.
x D x = y D y = z D z = 1 D D x = | 1 2 4 5 1 7 1 3 3 | = 1 × | 1 7 3 3 | 2 × | 5 7 1 3 | 4 × | 5 1 1 3 | = 1 × ( 1 × ( 3 ) ( 7 ) × 3 ) 2 × ( 5 × ( 3 ) ( 7 ) × 1 ) 4 × ( 5 × 3 1 × 1 ) = 1 × ( 3 + 21 ) 2 × ( 15 + 7 ) 4 × ( 15 1 ) = 1 × ( 18 ) 2 × ( 8 ) 4 × ( 14 ) = 18 + 16 56 = 22 x D x = y D y = z D z = 1 D D x = 1 2 4 5 1 7 1 3 3 = 1 × 1 7 3 3 2 × 5 7 1 3 4 × 5 1 1 3 = 1 × ( 1 × ( 3 ) ( 7 ) × 3 ) 2 × ( 5 × ( 3 ) ( 7 ) × 1 ) 4 × ( 5 × 3 1 × 1 ) = 1 × ( 3 + 21 ) 2 × ( 15 + 7 ) 4 × ( 15 1 ) = 1 × ( 18 ) 2 × ( 8 ) 4 × ( 14 ) = 18 + 16 56 = 22 {:[(x)/(D_(x))=(-y)/(D_(y))=(z)/(D_(z))=(-1)/(D)],[D_(x)=|[1,2,-4],[5,1,-7],[1,3,-3]|],[=1xx|[1,-7],[3,-3]|-2xx|[5,-7],[1,-3]|-4xx|[5,1],[1,3]|],[=1xx(1xx(-3)-(-7)xx3)-2xx(5xx(-3)-(-7)xx1)-4xx(5xx3-1xx1)],[=1xx(-3+21)-2xx(-15+7)-4xx(15-1)],[=1xx(18)-2xx(-8)-4xx(14)],[=18+16-56],[=-22]:}\begin{aligned} & \frac{x}{D_x}=\frac{-y}{D_y}=\frac{z}{D_z}=\frac{-1}{D} \\ & D_x=\left|\begin{array}{lll} 1 & 2 & -4 \\ 5 & 1 & -7 \\ 1 & 3 & -3 \end{array}\right| \\ & =1 \times\left|\begin{array}{ll} 1 & -7 \\ 3 & -3 \end{array}\right|-2 \times\left|\begin{array}{cc} 5 & -7 \\ 1 & -3 \end{array}\right|-4 \times\left|\begin{array}{cc} 5 & 1 \\ 1 & 3 \end{array}\right| \\ & =1 \times(1 \times(-3)-(-7) \times 3)-2 \times(5 \times(-3)-(-7) \times 1)-4 \times(5 \times 3-1 \times 1) \\ & =1 \times(-3+21)-2 \times(-15+7)-4 \times(15-1) \\ & =1 \times(18)-2 \times(-8)-4 \times(14) \\ & =18+16-56 \\ & =-22 \end{aligned}xDx=yDy=zDz=1DDx=|124517133|=1×|1733|2×|5713|4×|5113|=1×(1×(3)(7)×3)2×(5×(3)(7)×1)4×(5×31×1)=1×(3+21)2×(15+7)4×(151)=1×(18)2×(8)4×(14)=18+1656=22
D y = | 4 2 4 3 1 7 1 3 3 | = 4 × | 1 7 3 3 | 2 × | 3 7 1 3 | 4 × | 3 1 1 3 | = 4 × ( 1 × ( 3 ) ( 7 ) × 3 ) 2 × ( 3 × ( 3 ) ( 7 ) × 1 ) 4 × ( 3 × 3 1 × 1 ) = 4 × ( 3 + 21 ) 2 × ( 9 + 7 ) 4 × ( 9 1 ) = 4 × ( 18 ) 2 × ( 2 ) 4 × ( 8 ) = 72 + 4 32 = 44 D y = 4 2 4 3 1 7 1 3 3 = 4 × 1 7 3 3 2 × 3 7 1 3 4 × 3 1 1 3 = 4 × ( 1 × ( 3 ) ( 7 ) × 3 ) 2 × ( 3 × ( 3 ) ( 7 ) × 1 ) 4 × ( 3 × 3 1 × 1 ) = 4 × ( 3 + 21 ) 2 × ( 9 + 7 ) 4 × ( 9 1 ) = 4 × ( 18 ) 2 × ( 2 ) 4 × ( 8 ) = 72 + 4 32 = 44 {:[D_(y)=|[4,2,-4],[3,1,-7],[1,3,-3]|],[=4xx|[1,-7],[3,-3]|-2xx|[3,-7],[1,-3]|-4xx|[3,1],[1,3]|],[=4xx(1xx(-3)-(-7)xx3)-2xx(3xx(-3)-(-7)xx1)-4xx(3xx3-1xx1)],[=4xx(-3+21)-2xx(-9+7)-4xx(9-1)],[=4xx(18)-2xx(-2)-4xx(8)],[=72+4-32],[=44]:}\begin{aligned} & D_y=\left|\begin{array}{lll} 4 & 2 & -4 \\ 3 & 1 & -7 \\ 1 & 3 & -3 \end{array}\right| \\ & =4 \times\left|\begin{array}{ll} 1 & -7 \\ 3 & -3 \end{array}\right|-2 \times\left|\begin{array}{cc} 3 & -7 \\ 1 & -3 \end{array}\right|-4 \times\left|\begin{array}{ll} 3 & 1 \\ 1 & 3 \end{array}\right| \\ & =4 \times(1 \times(-3)-(-7) \times 3)-2 \times(3 \times(-3)-(-7) \times 1)-4 \times(3 \times 3-1 \times 1) \\ & =4 \times(-3+21)-2 \times(-9+7)-4 \times(9-1) \\ & =4 \times(18)-2 \times(-2)-4 \times(8) \\ & =72+4-32 \\ & =44 \end{aligned}Dy=|424317133|=4×|1733|2×|3713|4×|3113|=4×(1×(3)(7)×3)2×(3×(3)(7)×1)4×(3×31×1)=4×(3+21)2×(9+7)4×(91)=4×(18)2×(2)4×(8)=72+432=44
D z = | 4 1 4 3 5 7 1 1 3 | = 4 × | 5 7 1 3 | 1 × | 3 7 1 3 | 4 × | 3 5 1 1 | = 4 × ( 5 × ( 3 ) ( 7 ) × 1 ) 1 × ( 3 × ( 3 ) ( 7 ) × 1 ) 4 × ( 3 × 1 5 × 1 ) = 4 × ( 15 + 7 ) 1 × ( 9 + 7 ) 4 × ( 3 5 ) = 4 × ( 8 ) 1 × ( 2 ) 4 × ( 2 ) = 32 + 2 + 8 = 22 D z = 4 1 4 3 5 7 1 1 3 = 4 × 5 7 1 3 1 × 3 7 1 3 4 × 3 5 1 1 = 4 × ( 5 × ( 3 ) ( 7 ) × 1 ) 1 × ( 3 × ( 3 ) ( 7 ) × 1 ) 4 × ( 3 × 1 5 × 1 ) = 4 × ( 15 + 7 ) 1 × ( 9 + 7 ) 4 × ( 3 5 ) = 4 × ( 8 ) 1 × ( 2 ) 4 × ( 2 ) = 32 + 2 + 8 = 22 {:[D_(z)=|[4,1,-4],[3,5,-7],[1,1,-3]|],[=4xx|[5,-7],[1,-3]|-1xx|[3,-7],[1,-3]|-4xx|[3,5],[1,1]|],[=4xx(5xx(-3)-(-7)xx1)-1xx(3xx(-3)-(-7)xx1)-4xx(3xx1-5xx1)],[=4xx(-15+7)-1xx(-9+7)-4xx(3-5)],[=4xx(-8)-1xx(-2)-4xx(-2)],[=-32+2+8],[=-22]:}\begin{aligned} & D_z=\left|\begin{array}{lll} 4 & 1 & -4 \\ 3 & 5 & -7 \\ 1 & 1 & -3 \end{array}\right| \\ & =4 \times\left|\begin{array}{ll} 5 & -7 \\ 1 & -3 \end{array}\right|-1 \times\left|\begin{array}{ll} 3 & -7 \\ 1 & -3 \end{array}\right|-4 \times\left|\begin{array}{cc} 3 & 5 \\ 1 & 1 \end{array}\right| \\ & =4 \times(5 \times(-3)-(-7) \times 1)-1 \times(3 \times(-3)-(-7) \times 1)-4 \times(3 \times 1-5 \times 1) \\ & =4 \times(-15+7)-1 \times(-9+7)-4 \times(3-5) \\ & =4 \times(-8)-1 \times(-2)-4 \times(-2) \\ & =-32+2+8 \\ & =-22 \end{aligned}Dz=|414357113|=4×|5713|1×|3713|4×|3511|=4×(5×(3)(7)×1)1×(3×(3)(7)×1)4×(3×15×1)=4×(15+7)1×(9+7)4×(35)=4×(8)1×(2)4×(2)=32+2+8=22
D = | 4 1 2 3 5 1 1 1 3 | = 4 × | 5 1 1 3 | 1 × | 3 1 1 3 | + 2 × | 3 5 1 1 | = 4 × ( 5 × 3 1 × 1 ) 1 × ( 3 × 3 1 × 1 ) + 2 × ( 3 × 1 5 × 1 ) = 4 × ( 15 1 ) 1 × ( 9 1 ) + 2 × ( 3 5 ) = 4 × ( 14 ) 1 × ( 8 ) + 2 × ( 2 ) = 56 8 4 = 44 D = 4 1 2 3 5 1 1 1 3 = 4 × 5 1 1 3 1 × 3 1 1 3 + 2 × 3 5 1 1 = 4 × ( 5 × 3 1 × 1 ) 1 × ( 3 × 3 1 × 1 ) + 2 × ( 3 × 1 5 × 1 ) = 4 × ( 15 1 ) 1 × ( 9 1 ) + 2 × ( 3 5 ) = 4 × ( 14 ) 1 × ( 8 ) + 2 × ( 2 ) = 56 8 4 = 44 {:[D=|[4,1,2],[3,5,1],[1,1,3]|],[=4xx|[5,1],[1,3]|-1xx|[3,1],[1,3]|+2xx|[3,5],[1,1]|],[=4xx(5xx3-1xx1)-1xx(3xx3-1xx1)+2xx(3xx1-5xx1)],[=4xx(15-1)-1xx(9-1)+2xx(3-5)],[=4xx(14)-1xx(8)+2xx(-2)],[=56-8-4],[=44]:}\begin{aligned} & D=\left|\begin{array}{lll}4 & 1 & 2 \\ 3 & 5 & 1 \\ 1 & 1 & 3\end{array}\right| \\ & =4 \times\left|\begin{array}{ll}5 & 1 \\ 1 & 3\end{array}\right|-1 \times\left|\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right|+2 \times\left|\begin{array}{ll}3 & 5 \\ 1 & 1\end{array}\right| \\ & =4 \times(5 \times 3-1 \times 1)-1 \times(3 \times 3-1 \times 1)+2 \times(3 \times 1-5 \times 1) \\ & =4 \times(15-1)-1 \times(9-1)+2 \times(3-5) \\ & =4 \times(14)-1 \times(8)+2 \times(-2) \\ & =56-8-4 \\ & =44\end{aligned}D=|412351113|=4×|5113|1×|3113|+2×|3511|=4×(5×31×1)1×(3×31×1)+2×(3×15×1)=4×(151)1×(91)+2×(35)=4×(14)1×(8)+2×(2)=5684=44
x D x = y D y = z D z = 1 D x 22 = y 44 = z 22 = 1 44 x 22 = 1 44 , y 44 = 1 44 , z 22 = 1 44 x = 22 44 , y = 44 44 , z = 22 44 x = 1 2 , y = 1 , z = 1 2 x D x = y D y = z D z = 1 D x 22 = y 44 = z 22 = 1 44 x 22 = 1 44 , y 44 = 1 44 , z 22 = 1 44 x = 22 44 , y = 44 44 , z = 22 44 x = 1 2 , y = 1 , z = 1 2 {:[(x)/(D_(x))=(-y)/(D_(y))=(z)/(D_(z))=(-1)/(D)],[:.(x)/(-22)=(-y)/(44)=(z)/(-22)=(-1)/(44)],[:.(x)/(-22)=(-1)/(44)”,”(-y)/(44)=(-1)/(44)”,”(z)/(-22)=(-1)/(44)],[:.x=(22)/(44)”,”y=(44)/(44)”,”z=(22)/(44)],[:.x=(1)/(2)”,”y=1″,”z=(1)/(2)]:}\begin{aligned} & \frac{x}{D_x}=\frac{-y}{D_y}=\frac{z}{D_z}=\frac{-1}{D} \\ & \therefore \frac{x}{-22}=\frac{-y}{44}=\frac{z}{-22}=\frac{-1}{44} \\ & \therefore \frac{x}{-22}=\frac{-1}{44}, \frac{-y}{44}=\frac{-1}{44}, \frac{z}{-22}=\frac{-1}{44} \\ & \therefore x=\frac{22}{44}, y=\frac{44}{44}, z=\frac{22}{44} \\ & \therefore x=\frac{1}{2}, y=1, z=\frac{1}{2} \end{aligned}xDx=yDy=zDz=1Dx22=y44=z22=144x22=144,y44=144,z22=144x=2244,y=4444,z=2244x=12,y=1,z=12

Comparison:

After doing three iterations with the Gauss-Seidel method, we got the approximate solutions as x 3 = 0.52 x 3 = 0.52 x_(3)=0.52x_3 = 0.52x3=0.52, y 3 = 0.992 y 3 = 0.992 y_(3)=0.992y_3 = 0.992y3=0.992, and z 3 = 0.496 z 3 = 0.496 z_(3)=0.496z_3 = 0.496z3=0.496.
Then, we used Cramer’s Rule to find the exact solutions, which turned out to be x = 1 2 x = 1 2 x=(1)/(2)x = \frac{1}{2}x=12, y = 1 y = 1 y=1y = 1y=1, and z = 1 2 z = 1 2 z=(1)/(2)z = \frac{1}{2}z=12.
When we compared the two sets of solutions, we noticed that the approximate solutions were really close to the exact ones. Specifically, x 3 x 3 x_(3)x_3x3 was almost 1 2 1 2 (1)/(2)\frac{1}{2}12, y 3 y 3 y_(3)y_3y3 was nearly 1 1 111, and z 3 z 3 z_(3)z_3z3 was close to 1 2 1 2 (1)/(2)\frac{1}{2}12.
  1. (c) एक कण जिसकी संहति m m mmm है, x 2 + y 2 = R 2 x 2 + y 2 = R 2 x^(2)+y^(2)=R^(2)x^2+y^2=R^2x2+y2=R2, जहाँ पर R R RRR अचर है, द्वारा परिभाषित बेलन पर गति के लिए व्यवरोधित है। कण मूल बिन्दु की ओर लगे बल जो कण की मूल बिन्दु से दूरी r r rrr के अनुपाती है, से प्रतिबन्धित है । बल F = k r F = k r vec(F)=-k vec(r)\vec{F}=-k \vec{r}F=kr, जहाँ पर k k kkk अचर है, से दिया गया है ।
By writing down the Hamiltonian, find the equations of motion of a particle of mass m m mmm constrained to move on the surface of a cylinder defined by x 2 + y 2 = R 2 x 2 + y 2 = R 2 x^(2)+y^(2)=R^(2)x^2+y^2=R^2x2+y2=R2, R R RRR is a constant. The particle is subject to a force directed towards the origin and proportional to the distance r r rrr of the particle from the origin given by F = k r , k F = k r , k vec(F)=-k vec(r),k\vec{F}=-k \vec{r}, kF=kr,k is a constant.
Answer:
Introduction:
We are tasked with finding the equations of motion for a particle of mass m m mmm constrained to move on the surface of a cylinder defined by x 2 + y 2 = R 2 x 2 + y 2 = R 2 x^(2)+y^(2)=R^(2)x^2 + y^2 = R^2x2+y2=R2, where R R RRR is a constant. The particle is subject to a force F = k r F = k r vec(F)=-k vec(r)\vec{F} = -k \vec{r}F=kr, where k k kkk is a constant.
Step 1: Finding Potential Energy
Given the force F = k r F = k r vec(F)=-k vec(r)\vec{F} = -k \vec{r}F=kr, we can find the potential energy V V VVV as follows:
F = V r , V = k r 2 2 F = V r , V = k r 2 2 F=-(del V)/(del r),quad V=(kr^(2))/(2)F = -\frac{\partial V}{\partial r}, \quad V = \frac{k r^2}{2}F=Vr,V=kr22
Step 2: Coordinate Transformation
Let’s consider the coordinates x = ρ cos ϕ x = ρ cos ϕ x=rho cos phix = \rho \cos \phix=ρcosϕ, y = ρ sin ϕ y = ρ sin ϕ y=rho sin phiy = \rho \sin \phiy=ρsinϕ, and z = z z = z z=zz = zz=z. Now, differentiate these coordinates with respect to time:
x ˙ = ρ ˙ cos ϕ ρ sin ϕ ϕ ˙ ; y ˙ = ρ ˙ sin ϕ + ρ cos ϕ ϕ ˙ ; z ˙ = z ˙ x ˙ = ρ ˙ cos ϕ ρ sin ϕ ϕ ˙ ; y ˙ = ρ ˙ sin ϕ + ρ cos ϕ ϕ ˙ ; z ˙ = z ˙ x^(˙)=rho^(˙)cos phi-rho sin phiphi^(˙);quady^(˙)=rho^(˙)sin phi+rho cos phiphi^(˙);quadz^(˙)=z^(˙)\dot{x} = \dot{\rho} \cos \phi – \rho \sin \phi \dot{\phi}; \quad \dot{y} = \dot{\rho} \sin \phi + \rho \cos \phi \dot{\phi}; \quad \dot{z} = \dot{z}x˙=ρ˙cosϕρsinϕϕ˙;y˙=ρ˙sinϕ+ρcosϕϕ˙;z˙=z˙
We can also find the velocity squared v 2 v 2 v^(2)v^2v2:
v 2 = x ˙ 2 + y ˙ 2 + z ˙ 2 ( ρ ˙ 2 + ρ 2 ϕ ˙ 2 + z ˙ 2 ) v 2 = x ˙ 2 + y ˙ 2 + z ˙ 2 ρ ˙ 2 + ρ 2 ϕ ˙ 2 + z ˙ 2 v^(2)=x^(˙)^(2)+y^(˙)^(2)+z^(˙)^(2)-(rho^(˙)^(2)+rho^(2)phi^(˙)^(2)+z^(˙)^(2))v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 – \left(\dot{\rho}^2 + \rho^2 \dot{\phi}^2 + \dot{z}^2\right)v2=x˙2+y˙2+z˙2(ρ˙2+ρ2ϕ˙2+z˙2)
Step 3: Kinetic Energy
Next, let’s find the kinetic energy T T TTT:
T = 1 2 m v 2 = 1 2 m ( ρ ˙ 2 + ρ 2 ϕ ˙ 2 + z ˙ 2 ) T = 1 2 m v 2 = 1 2 m ρ ˙ 2 + ρ 2 ϕ ˙ 2 + z ˙ 2 T=(1)/(2)mv^(2)=(1)/(2)m(rho^(˙)^(2)+rho^(2)phi^(˙)^(2)+z^(˙)^(2))T = \frac{1}{2} m v^2 = \frac{1}{2} m\left(\dot{\rho}^2 + \rho^2 \dot{\phi}^2 + \dot{z}^2\right)T=12mv2=12m(ρ˙2+ρ2ϕ˙2+z˙2)
Step 4: Constraints
We have the constraint x 2 + y 2 = R 2 x 2 + y 2 = R 2 x^(2)+y^(2)=R^(2)x^2 + y^2 = R^2x2+y2=R2, which implies ρ = R ρ = R rho=R\rho = Rρ=R and ρ ˙ = 0 ρ ˙ = 0 rho^(˙)=0\dot{\rho} = 0ρ˙=0. Substituting these values, we get v v vvv and T T TTT in terms of z z zzz:
v = k 2 ( R 2 + z 2 ) ; T = 1 2 m ( R 2 ϕ ˙ 2 + z 2 ) v = k 2 R 2 + z 2 ; T = 1 2 m R 2 ϕ ˙ 2 + z 2 v=(k)/(2)(R^(2)+z^(2));quad T=(1)/(2)m(R^(2)phi^(˙)^(2)+z^(2))v = \frac{k}{2}\left(R^2 + z^2\right); \quad T = \frac{1}{2} m\left(R^2 \dot{\phi}^2 + z^2\right)v=k2(R2+z2);T=12m(R2ϕ˙2+z2)
Step 5: Lagrangian
Now, let’s find the Lagrangian L L LLL, which is the difference between kinetic and potential energy:
L = T V = 1 2 m ( R 2 ϕ ˙ 2 + z 2 ) k 2 ( R 2 + z 2 ) L = T V = 1 2 m R 2 ϕ ˙ 2 + z 2 k 2 R 2 + z 2 L=T-V=(1)/(2)m(R^(2)phi^(˙)^(2)+z^(2))-(k)/(2)(R^(2)+z^(2))L = T – V = \frac{1}{2} m\left(R^2 \dot{\phi}^2 + z^2\right) – \frac{k}{2}\left(R^2 + z^2\right)L=TV=12m(R2ϕ˙2+z2)k2(R2+z2)
Importantly, the Lagrangian explicitly does not depend on time t t ttt.
Step 6: Hamiltonian
We need to find the Hamiltonian H H HHH with the help of the generalized coordinates and momenta:
H = T + V = 1 2 m ( R 2 ϕ ˙ 2 + z 2 ) + k 2 ( R 2 + z 2 ) H = T + V = 1 2 m R 2 ϕ ˙ 2 + z 2 + k 2 R 2 + z 2 H=T+V=(1)/(2)m(R^(2)phi^(˙)^(2)+z^(2))+(k)/(2)(R^(2)+z^(2))H = T + V = \frac{1}{2} m\left(R^2 \dot{\phi}^2 + z^2\right) + \frac{k}{2}\left(R^2 + z^2\right)H=T+V=12m(R2ϕ˙2+z2)+k2(R2+z2)
Step 7: Equations of Motion
To find the equations of motion, we differentiate the Hamiltonian with respect to the generalized coordinates and momenta:
H = T + V = 1 2 m ( R 2 ϕ 2 + y 2 ) + k 2 ( R 2 + z 2 ) p ϕ = L ϕ = m R 2 ϕ ; p z = L z = m z H = 1 2 m ( R 2 ( p ϕ m R 2 ) 2 + ( p z M ) 2 ) + k 2 ( R 2 + z 2 ) H = 1 2 p ϕ 2 m R 2 + 1 2 p z 2 m + k 2 ( R 2 + z 2 ) required Hamiltonian ϕ = H p ϕ = p ϕ m R 2 ; z = H p z = p z m ; p ϕ = H ϕ = 0 ; p z = H z = k z ϕ = p ϕ m R 2 = 0 ; z = p z m = k z m this is the required equation of motion H = T + V = 1 2 m R 2 ϕ 2 + y 2 + k 2 R 2 + z 2 p ϕ = L ϕ = m R 2 ϕ ; p z = L z = m z H = 1 2 m R 2 p ϕ m R 2 2 + p z M 2 + k 2 R 2 + z 2 H = 1 2 p ϕ 2 m R 2 + 1 2 p z 2 m + k 2 R 2 + z 2  required Hamiltonian  ϕ = H p ϕ = p ϕ m R 2 ; z = H p z = p z m ; p ϕ = H ϕ = 0 ; p z = H z = k z ϕ = p ϕ m R 2 = 0 ; z = p z m = k z m  this is the required equation of motion  {:[H=T+V=(1)/(2)m(R^(2)phi^(2)+y^(2))+(k)/(2)(R^(2)+z^(2))],[p phi=(del L)/(del phi)=mR^(2)phi;pz=(del L)/(del z)=mz],[H=(1)/(2)m(R^(2)((p phi)/(mR^(2)))^(2)+((pz)/(M))^(2))+(k)/(2)(R^(2)+z^(2))],[H=(1)/(2)(pphi^(2))/(mR^(2))+(1)/(2)(pz^(2))/(m)+(k)/(2)(R^(2)+z^(2))” required Hamiltonian “],[phi=(del H)/(delp_( phi))=(p phi)/(mR^(2));z=(del H)/(delp_(z))=(pz)/(m);p phi=-(del H)/(del phi)=0;pz=-(del H)/(del z)=-kz],[phi=(p phi)/(mR^(2))=0;z=(pz)/(m)=-(kz)/(m)” this is the required equation of motion “]:}\begin{aligned} H & =T+V=\frac{1}{2} m\left(R^2 \phi^2+y^2\right)+\frac{k}{2}\left(R^2+z^2\right) \\ p \phi & =\frac{\partial L}{\partial \phi}=m R^2 \phi ; p z=\frac{\partial L}{\partial z}=m z \\ H & =\frac{1}{2} m\left(R^2\left(\frac{p \phi}{m R^2}\right)^2+\left(\frac{p z}{M}\right)^2\right)+\frac{k}{2}\left(R^2+z^2\right) \\ H & =\frac{1}{2} \frac{p \phi^2}{m R^2}+\frac{1}{2} \frac{p z^2}{m}+\frac{k}{2}\left(R^2+z^2\right) \text { required Hamiltonian } \\ \phi=\frac{\partial H}{\partial p_\phi} & =\frac{p \phi}{m R^2} ; z=\frac{\partial H}{\partial p_z}=\frac{p z}{m} ; p \phi=-\frac{\partial H}{\partial \phi}=0 ; p z=-\frac{\partial H}{\partial z}=-k z \\ \phi=\frac{p \phi}{m R^2} & =0 ; z=\frac{p z}{m}=-\frac{k z}{m} \text { this is the required equation of motion } \end{aligned}H=T+V=12m(R2ϕ2+y2)+k2(R2+z2)pϕ=Lϕ=mR2ϕ;pz=Lz=mzH=12m(R2(pϕmR2)2+(pzM)2)+k2(R2+z2)H=12pϕ2mR2+12pz2m+k2(R2+z2) required Hamiltonian ϕ=Hpϕ=pϕmR2;z=Hpz=pzm;pϕ=Hϕ=0;pz=Hz=kzϕ=pϕmR2=0;z=pzm=kzm this is the required equation of motion 
Conclusion:
The equations of motion for a particle of mass m m mmm constrained to move on the surface of a cylinder, subject to the force F = k r F = k r vec(F)=-k vec(r)\vec{F} = -k \vec{r}F=kr, are given by:
ϕ = 0 ; z = k z m ϕ = 0 ; z = k z m phi=0;quad z=-(kz)/(m)\phi = 0; \quad z = -\frac{kz}{m}ϕ=0;z=kzm
These equations describe the motion of the particle in the ϕ ϕ phi\phiϕ and z z zzz directions.
7.(a) आंशिक अवकल समीकरण :
z = 1 2 ( p 2 + q 2 ) + ( p x ) ( q y ) ; p z x , q z y z = 1 2 p 2 + q 2 + ( p x ) ( q y ) ; p z x , q z y z=(1)/(2)(p^(2)+q^(2))+(p-x)(q-y);quad p-=(del z)/(del x),q-=(del z)/(del y)z=\frac{1}{2}\left(p^2+q^2\right)+(p-x)(q-y) ; \quad p \equiv \frac{\partial z}{\partial x}, q \equiv \frac{\partial z}{\partial y}z=12(p2+q2)+(px)(qy);pzx,qzy
का हल ज्ञात कीजिये जो कि x x xxx-अक्ष से गुजरता हो ।
Find the solution of the partial differential equation:
z = 1 2 ( p 2 + q 2 ) + ( p x ) ( q y ) ; p z x , q z y z = 1 2 p 2 + q 2 + ( p x ) ( q y ) ; p z x , q z y z=(1)/(2)(p^(2)+q^(2))+(p-x)(q-y);quad p-=(del z)/(del x),q-=(del z)/(del y)z=\frac{1}{2}\left(p^2+q^2\right)+(p-x)(q-y) ; \quad p \equiv \frac{\partial z}{\partial x}, q \equiv \frac{\partial z}{\partial y}z=12(p2+q2)+(px)(qy);pzx,qzy
which passes through the x x xxx-axis.
Answer:
Introduction:
In this problem, we are tasked with finding the solution to the partial differential equation:
z = 1 2 ( p 2 + q 2 ) + ( p x ) ( q y ) z = 1 2 p 2 + q 2 + ( p x ) ( q y ) z=(1)/(2)(p^(2)+q^(2))+(p-x)(q-y)z = \frac{1}{2}\left(p^2 + q^2\right) + (p – x)(q – y)z=12(p2+q2)+(px)(qy)
where p p ppp is defined as z x z x (del z)/(del x)\frac{\partial z}{\partial x}zx and q q qqq as z y z y (del z)/(del y)\frac{\partial z}{\partial y}zy. We are looking for an integral surface of this equation that passes through the x x xxx-axis.
Solution:
Step 1: Given Equation
The given equation is:
z = 1 2 ( p 2 + q 2 ) + ( p x ) ( q y ) (1) z = 1 2 p 2 + q 2 + ( p x ) ( q y ) (1) z=(1)/(2)(p^(2)+q^(2))+(p-x)(q-y)quad(1)z = \frac{1}{2}\left(p^2 + q^2\right) + (p – x)(q – y) \quad \text{(1)}z=12(p2+q2)+(px)(qy)(1)
We want to find an integral surface that satisfies this equation and passes through the x x xxx-axis, which is defined by y = 0 y = 0 y=0y = 0y=0 and z = 0 z = 0 z=0z = 0z=0.
Step 2: Parametric Form
Rewrite the conditions y = 0 y = 0 y=0y = 0y=0 and z = 0 z = 0 z=0z = 0z=0 in parametric form:
x = λ , y = 0 , z = 0 , where λ is the parameter (3) x = λ , y = 0 , z = 0 , where λ  is the parameter (3) x=lambda,quad y=0,quad z=0,quad”where”quad lambda” is the parameter”quad(3)x = \lambda, \quad y = 0, \quad z = 0, \quad \text{where} \quad \lambda \text{ is the parameter} \quad \text{(3)}x=λ,y=0,z=0,whereλ is the parameter(3)
Step 3: Initial Values
Let the initial values x 0 , y 0 , z 0 , p 0 , q 0 x 0 , y 0 , z 0 , p 0 , q 0 x_(0),y_(0),z_(0),p_(0),q_(0)x_0, y_0, z_0, p_0, q_0x0,y0,z0,p0,q0 of x , y , z , p , q x , y , z , p , q x,y,z,p,qx, y, z, p, qx,y,z,p,q be taken as:
x 0 = x 0 ( λ ) = λ , y 0 = y 0 ( λ ) = 0 , z 0 = z 0 ( λ ) = 0 (4) x 0 = x 0 ( λ ) = λ , y 0 = y 0 ( λ ) = 0 , z 0 = z 0 ( λ ) = 0 (4) x_(0)=x_(0)(lambda)=lambda,quady_(0)=y_(0)(lambda)=0,quadz_(0)=z_(0)(lambda)=0quad(4)x_0 = x_0(\lambda) = \lambda, \quad y_0 = y_0(\lambda) = 0, \quad z_0 = z_0(\lambda) = 0 \quad \text{(4)}x0=x0(λ)=λ,y0=y0(λ)=0,z0=z0(λ)=0(4)
Let p 0 , q 0 p 0 , q 0 p_(0),q_(0)p_0, q_0p0,q0 be the initial values of p p ppp and q q qqq corresponding to the initial values x 0 , y 0 , z 0 x 0 , y 0 , z 0 x_(0),y_(0),z_(0)x_0, y_0, z_0x0,y0,z0. Since the initial values ( x 0 , y 0 , z 0 , p 0 , q 0 ) ( x 0 , y 0 , z 0 , p 0 , q 0 ) (x_(0),y_(0),z_(0),p_(0),q_(0))(x_0, y_0, z_0, p_0, q_0)(x0,y0,z0,p0,q0) satisfy equation (1), we have:
z 0 = 1 2 ( p 0 2 + q 0 2 ) + ( p 0 λ ) ( q 0 0 ) 0 = 1 2 ( p 0 2 + q 0 2 ) + q 0 ( p 0 λ ) (5) z 0 = 1 2 p 0 2 + q 0 2 + p 0 λ q 0 0 0 = 1 2 p 0 2 + q 0 2 + q 0 p 0 λ (5) {:[z_(0)=(1)/(2)(p_(0)^(2)+q_(0)^(2))+(p_(0)-lambda)(q_(0)-0)],[0=(1)/(2)(p_(0)^(2)+q_(0)^(2))+q_(0)(p_(0)-lambda)quad(5)]:}\begin{aligned} z_0 &= \frac{1}{2}\left(p_0^2 + q_0^2\right) + \left(p_0 – \lambda\right)\left(q_0 – 0\right) \\ 0 &= \frac{1}{2}\left(p_0^2 + q_0^2\right) + q_0\left(p_0 – \lambda\right) \quad \text{(5)} \end{aligned}z0=12(p02+q02)+(p0λ)(q00)0=12(p02+q02)+q0(p0λ)(5)
Step 4: Solving for p 0 p 0 p_(0)p_0p0 and q 0 q 0 q_(0)q_0q0
We can solve equations (5) for p 0 p 0 p_(0)p_0p0 and q 0 q 0 q_(0)q_0q0:
p 0 2 + q 0 2 + 2 q 0 p 0 2 q 0 λ = 0 (5) p 0 = 0 (6) p 0 2 + q 0 2 + 2 q 0 p 0 2 q 0 λ = 0 (5) p 0 = 0 (6) {:[p_(0)^(2)+q_(0)^(2)+2q_(0)p_(0)-2q_(0)lambda=0quad(5)],[p_(0)=0quad(6)]:}\begin{aligned} p_0^2 + q_0^2 + 2q_0p_0 – 2q_0\lambda &= 0 \quad \text{(5)} \\ p_0 &= 0 \quad \text{(6)} \end{aligned}p02+q02+2q0p02q0λ=0(5)p0=0(6)
Solving (5) and (6) p 0 = 0 p 0 = 0 p_(0)=0p_0=0p0=0 and q 0 = 2 λ ( 4 A ) q 0 = 2 λ ( 4 A ) q_(0)=2lambda rarr(4A)q_0=2 \lambda \rightarrow(4 A)q0=2λ(4A)
Collecting relations (4) and (4A) together, initial value of x 0 , y 0 , z 0 , p 0 , q 0 x 0 , y 0 , z 0 , p 0 , q 0 x_(0),y_(0),z_(0),p_(0),q_(0)x_0, y_0, z_0, p_0, q_0x0,y0,z0,p0,q0 are given by
x 0 = λ , y 0 = 0 , z 0 = 0 , p 0 = 0 , q 0 = 2 λ where t = t 0 = 0 ( 7 ) x 0 = λ , y 0 = 0 , z 0 = 0 , p 0 = 0 , q 0 = 2 λ  where  t = t 0 = 0 ( 7 ) x_(0)=lambda,y_(0)=0,z_(0)=0,p_(0)=0,q_(0)=2lambda” where “t=t_(0)=0rarr(7)x_0=\lambda, y_0=0, z_0=0, p_0=0, q_0=2 \lambda \text { where } t=t_0=0 \rightarrow(7)x0=λ,y0=0,z0=0,p0=0,q0=2λ where t=t0=0(7)
Let f ( x , y , z , p , q ) = 1 2 ( p 2 + q 2 ) p q p y q x + x y z = 0 f ( x , y , z , p , q ) = 1 2 p 2 + q 2 p q p y q x + x y z = 0 f(x,y,z,p,q)=(1)/(2)(p^(2)+q^(2))-pq-py-qx+xy-z=0rarrf(x, y, z, p, q)=\frac{1}{2}\left(p^2+q^2\right)-p q-p y-q x+x y-z=0 \rightarrowf(x,y,z,p,q)=12(p2+q2)pqpyqx+xyz=0 (8)
The usual characteristic equations of (8) are given by
d x d t = d f d p = p + q y ( 9 ) d y d t = d f d q = q + p x ( 10 ) d z d t = p ( f p ) + q ( f q ) = p ( p + q y ) + q ( q + p x ) ( 11 ) d p d t = ( f x ) p ( f z ) = p + q y ( 12 ) d x d t = d f d p = p + q y ( 9 ) d y d t = d f d q = q + p x ( 10 ) d z d t = p f p + q f q = p ( p + q y ) + q ( q + p x ) ( 11 ) d p d t = f x p f z = p + q y ( 12 ) {:[(dx)/(dt)=(df)/(dp)=p+q-y rarr(9)],[(dy)/(dt)=(df)/(dq)=q+p-x rarr(10)],[(dz)/(dt)=p((del f)/(del p))+q((del f)/(del q))=p(p+q-y)+q(q+p-x)rarr(11)],[(dp)/(dt)=-((del f)/(del x))-p((del f)/(del z))=p+q-y rarr(12)]:}\begin{aligned} & \frac{\mathbf{d} x}{\mathbf{d} t}=\frac{\mathbf{d} f}{\mathbf{d} p}=p+q-y \rightarrow(9) \\ & \frac{\mathbf{d} y}{\mathbf{d} t}=\frac{\mathbf{d} f}{\mathbf{d} q}=q+p-x \rightarrow(10) \\ & \frac{\mathbf{d} z}{\mathbf{d} t}=p\left(\frac{\partial f}{\partial p}\right)+q\left(\frac{\partial f}{\partial q}\right)=p(p+q-y)+q(q+p-x) \rightarrow(11) \\ & \frac{\mathbf{d} p}{\mathbf{d} t}=-\left(\frac{\partial f}{\partial x}\right)-p\left(\frac{\partial f}{\partial z}\right)=p+q-y \rightarrow(12) \end{aligned}dxdt=dfdp=p+qy(9)dydt=dfdq=q+px(10)dzdt=p(fp)+q(fq)=p(p+qy)+q(q+px)(11)dpdt=(fx)p(fz)=p+qy(12)
And d q d t = ( f y ) q ( f z ) = p + q x d q d t = f y q f z = p + q x (dq)/(dt)=-((del f)/(del y))-q((del f)/(del z))=p+q-x rarr\frac{\mathbf{d} q}{\mathbf{d} t}=-\left(\frac{\partial f}{\partial y}\right)-q\left(\frac{\partial f}{\partial z}\right)=p+q-x \rightarrowdqdt=(fy)q(fz)=p+qx (3)
From (9) and (12), ( d x d t ) ( d p d t ) = 0 d x d t d p d t = 0 {:(dx)/(dt))-((dp)/(dt))=0\left.\frac{\mathbf{d} x}{\mathbf{d} t}\right)-\left(\frac{\mathbf{d} p}{\mathbf{d} t}\right)=0dxdt)(dpdt)=0 so that x p = C 1 x p = C 1 x-p=C_(1)rarrx-p=C_1 \rightarrowxp=C1 (14)
Where C 1 C 1 C_(1)C_1C1 is an arbitrary constant. Using initial conditions (7), (14) gives
λ 0 = C 1 C 1 = λ . λ 0 = C 1 C 1 = λ lambda-0=C_(1)=>C_(1)=lambda”. “\lambda-0=C_1 \Rightarrow C_1=\lambda \text {. }λ0=C1C1=λ
Hence (14) reduces to
x p = λ x = p + λ ( 15 ) x p = λ x = p + λ ( 15 ) x-p=lambda=>x=p+lambda rarr(15)x-p=\lambda \Rightarrow x=p+\lambda \rightarrow(15)xp=λx=p+λ(15)
From (10) and (13),
d y d t d q d t = 0 so that y q = C 2 (16) d y d t d q d t = 0  so that  y q = C 2  (16)  (dy)/(dt)-(dq)/(dt)=0″ so that “y-q=C_(2)rarr” (16) “\frac{\mathbf{d} y}{\mathbf{d} t}-\frac{\mathbf{d} q}{\mathbf{d} t}=0 \text { so that } y-q=C_2 \rightarrow \text { (16) }dydtdqdt=0 so that yq=C2 (16) 
Where C 2 C 2 C_(2)C_2C2 is an arbitrary constant
Using initial conditions (7), (16) gives
0 2 λ = C 2 C 2 = 2 λ 0 2 λ = C 2 C 2 = 2 λ 0-2lambda=C_(2)=>C_(2)=2lambda0-2 \lambda=C_2 \Rightarrow C_2=2 \lambda02λ=C2C2=2λ
Hence (16), reduces to
y q = 2 λ y = q 2 λ ( 17 ) y q = 2 λ y = q 2 λ ( 17 ) y-q=2lambda=>y=q-2lambda rarr(17)y-q=2 \lambda \Rightarrow y=q-2 \lambda \rightarrow(17)yq=2λy=q2λ(17)
Hence d ( p + q x ) d t = d p d t + d q d t d x d t = p + q y + p + q x ( p + q y ) d ( p + q x ) d t = d p d t + d q d t d x d t = p + q y + p + q x ( p + q y ) (d(p+q-x))/(dt)=(dp)/(dt)+(dq)/(dt)-(dx)/(dt)=p+q-y+p+q-x-(p+q-y)\frac{\mathbf{d}(p+q-x)}{\mathbf{d} t}=\frac{\mathbf{d} p}{\mathbf{d} t}+\frac{\mathbf{d} q}{\mathbf{d} t}-\frac{\mathbf{d} x}{\mathbf{d} t}=p+q-y+p+q-x-(p+q-y)d(p+qx)dt=dpdt+dqdtdxdt=p+qy+p+qx(p+qy) [using (9) , (12) and (13) ]
d ( p + q x ) d t = p + q x d ( p + q x ) p + q x d t d ( p + q x ) d t = p + q x d ( p + q x ) p + q x d t =>(d(p+q-x))/(dt)=p+q-x=>(d(p+q-x))/(p+q-x)dt\Rightarrow \frac{\mathbf{d}(p+q-x)}{\mathbf{d} t}=p+q-x \Rightarrow \frac{\mathbf{d}(p+q-x)}{p+q-x} \mathbf{d} td(p+qx)dt=p+qxd(p+qx)p+qxdt
Integrating, log ( p + q x ) log C 3 = t ( log ( p + q x ) log C 3 = t ( log(p+q-x)-log C_(3)=t(\log (p+q-x)-\log C_3=t(log(p+qx)logC3=t( or ) p + q x = c 3 e t ( 18 ) ) p + q x = c 3 e t ( 18 ) )p+q-x=c_(3)e^(t)rarr(18)) p+q-x=c_3 e^t \rightarrow(18))p+qx=c3et(18)
Where c 3 c 3 c_(3)c_3c3 is an arbitrary constant. Using initial conditions ( 7 ) , ( 18 ) ( 7 ) , ( 18 ) (7),(18)(7),(18)(7),(18) gives
0 + 2 λ λ = c 3 c 3 = λ 0 + 2 λ λ = c 3 c 3 = λ 0+2lambda-lambda=c_(3)=>c_(3)=lambda0+2 \lambda-\lambda=c_3 \Rightarrow c_3=\lambda0+2λλ=c3c3=λ
Hence (18) reduces to p + q x = λ e t p + q x = λ e t p+q-x=lambdae^(t)rarrp+q-x=\lambda e^t \rightarrowp+qx=λet (19)
d ( p + q y ) d t = d p d t + d q d t d y d t = p + q y + p + q x ( q + p x ) d ( p + q y ) d t = d p d t + d q d t d y d t = p + q y + p + q x ( q + p x ) (d(p+q-y))/(dt)=(dp)/(dt)+(dq)/(dt)-(dy)/(dt)=p+q-y+p+q-x-(q+p-x)\frac{\mathbf{d}(p+q-y)}{\mathbf{d} t}=\frac{\mathbf{d} p}{\mathbf{d} t}+\frac{\mathbf{d} q}{\mathbf{d} t}-\frac{\mathbf{d} y}{\mathbf{d} t}=p+q-y+p+q-x-(q+p-x)d(p+qy)dt=dpdt+dqdtdydt=p+qy+p+qx(q+px) [using (10), (12) and (13) ]
d ( p + q y ) d t = p + q y d ( p + q y ) p + q y = d t d ( p + q y ) d t = p + q y d ( p + q y ) p + q y = d t =>(d(p+q-y))/(dt)=p+q-y=>(d(p+q-y))/(p+q-y)=dt\Rightarrow \frac{\mathbf{d}(p+q-y)}{\mathbf{d} t}=p+q-y \Rightarrow \frac{\mathbf{d}(p+q-y)}{p+q-y}=\mathbf{d} td(p+qy)dt=p+qyd(p+qy)p+qy=dt
Integrating,
log ( p + q y ) log C 4 = t p + q y = c 4 e t ( 20 ) log ( p + q y ) log C 4 = t p + q y = c 4 e t ( 20 ) log(p+q-y)-log C_(4)=t=>p+q-y=c_(4)quade^(t)rarr(20)\log (p+q-y)-\log C_4=t \Rightarrow p+q-y=c_4 \quad e^t \rightarrow(20)log(p+qy)logC4=tp+qy=c4et(20)
Where c 4 c 4 c_(4)c_4c4 is an arbitrary constant. Using initial conditions (7), (20) gives
0 + 2 λ 0 = c 4 c 4 = 2 λ , 0 + 2 λ 0 = c 4 c 4 = 2 λ 0+2lambda-0=c_(4)=>c_(4)=2lambda”, “0+2 \lambda-0=c_4 \Rightarrow c_4=2 \lambda \text {, }0+2λ0=c4c4=2λ
Hence (20) reduces to p + q y = 2 λ e t p + q y = 2 λ e t p+q-y=2lambdae^(t)rarrp+q-y=2 \lambda e^t \rightarrowp+qy=2λet (21)
From (9) and (21)
d x d t = 2 λ e t so that x = 2 λ e t + c 5 ( 22 ) d x d t = 2 λ e t  so that  x = 2 λ e t + c 5 ( 22 ) (dx)/(dt)=2lambdae^(t)” so that “x=2lambdae^(t)+c_(5)rarr(22)\frac{\mathbf{d} x}{\mathbf{d} t}=2 \lambda e^t \text { so that } x=2 \lambda e^t+c_5 \rightarrow(22)dxdt=2λet so that x=2λet+c5(22)
Where c 5 c 5 c_(5)c_5c5 is an arbitrary constant. Using initial conditions ( 7 ) , ( 22 ) ( 7 ) , ( 22 ) (7),(22)(7),(22)(7),(22) gives
λ = 2 λ + c 5 c 5 = λ λ = 2 λ + c 5 c 5 = λ lambda=2lambda+c_(5)=>c_(5)=-lambda\lambda=2 \lambda+c_5 \Rightarrow c_5=-\lambdaλ=2λ+c5c5=λ
Hence (22) reduces to
x = 2 λ e t λ x = λ ( 2 e t 1 ) ( 23 ) x = 2 λ e t λ x = λ 2 e t 1 ( 23 ) x=2lambdae^(t)-lambda=>x=lambda(2e^(t)-1)rarr(23)x=2 \lambda e^t-\lambda \Rightarrow x=\lambda\left(2 e^t-1\right) \rightarrow(23)x=2λetλx=λ(2et1)(23)
From (10) and (7),
d y d t = λ e t so that y = λ e t + c 6 ( 24 ) d y d t = λ e t  so that  y = λ e t + c 6 ( 24 ) (dy)/(dt)=lambdae^(t)” so that “y=lambdae^(t)+c_(6)rarr(24)\frac{\mathbf{d} y}{\mathbf{d} t}=\lambda e^t \text { so that } y=\lambda e^t+c_6 \rightarrow(24)dydt=λet so that y=λet+c6(24)
Where c 6 c 6 c_(6)c_6c6 is an arbitrary constant. Using initial conditions (7), (24) gives
0 = λ + c 6 C 6 = λ 0 = λ + c 6 C 6 = λ 0=lambda+c_(6)=>C_(6)=-lambda0=\lambda+c_6 \Rightarrow C_6=-\lambda0=λ+c6C6=λ
Hence (24) reduces to
y = λ e t λ y = λ ( e t 1 ) ( 25 ) y = λ e t λ y = λ e t 1 ( 25 ) y=lambdae^(t)-lambda=>y=lambda(e^(t)-1)rarr(25)y=\lambda e^t-\lambda \Rightarrow y=\lambda\left(e^t-1\right) \rightarrow(25)y=λetλy=λ(et1)(25)
Substituting value of y from (17) in (12), we get
d p d t = p + q ( q 2 λ ) d p d t p = 2 λ ( 26 ) d p d t = p + q ( q 2 λ ) d p d t p = 2 λ ( 26 ) (dp)/(dt)=p+q-(q-2lambda)=>(dp)/(dt)-p=2lambda rarr(26)\frac{\mathbf{d} p}{\mathbf{d} t}=p+q-(q-2 \lambda) \Rightarrow \frac{\mathbf{d} p}{\mathbf{d} t}-p=2 \lambda \rightarrow(26)dpdt=p+q(q2λ)dpdtp=2λ(26)
Whose integrating factor = e ( 1 ) d t = e t = e ( 1 ) d t = e t =e^(int(-1)dt)=e^(-t)=e^{\int(-1) \mathrm{d} t}=e^{-t}=e(1)dt=et and solution is
p e t = ( 2 λ ) e t d t + c 7 = 2 λ e t + c 3 p = 2 λ + c 3 e t ( 27 ) p e t = ( 2 λ ) e t d t + c 7 = 2 λ e t + c 3 p = 2 λ + c 3 e t ( 27 ) {:[pe^(-t)=int(2lambda)e^(-t)dt+c_(7)=-2lambdae^(-t)+c_(3)],[=>p=-2lambda+c_(3)e^(t)rarr(27)]:}\begin{aligned} & p e^{-t}=\int(2 \lambda) e^{-t} \mathbf{d} t+c_7=-2 \lambda e^{-t}+c_3 \\ & \Rightarrow p=-2 \lambda+c_3 e^t \rightarrow(27) \end{aligned}pet=(2λ)etdt+c7=2λet+c3p=2λ+c3et(27)
Where C 7 C 7 C_(7)C_7C7 is an arbitrary constant. Using initial condition (7), (27) gives
0 = 2 λ + c 7 c 7 = 2 λ 0 = 2 λ + c 7 c 7 = 2 λ 0=-2lambda+c_(7)=>c_(7)=2lambda0=-2 \lambda+c_7 \Rightarrow c_7=2 \lambda0=2λ+c7c7=2λ
Hence (27) reduces to
p = 2 λ + 2 λ e t p = 2 λ ( e t 1 ) ( 28 ) p = 2 λ + 2 λ e t p = 2 λ e t 1 ( 28 ) p=-2lambda+2lambdae^(t)=>p=2lambda(e^(t)-1)rarr(28)p=-2 \lambda+2 \lambda e^t \Rightarrow p=2 \lambda\left(e^t-1\right) \rightarrow(28)p=2λ+2λetp=2λ(et1)(28)
Substituting value of x x xxx from (23) in (13), we get
d q d t = p + q ( p + λ ) d q d t q = λ ( 29 ) d q d t = p + q ( p + λ ) d q d t q = λ ( 29 ) {:[(dq)/(dt)=p+q-(p+lambda)],[=>(dq)/(dt)-q=-lambda rarr(29)]:}\begin{aligned} & \frac{\mathbf{d} q}{\mathbf{d} t}=p+q-(p+\lambda) \\ & \Rightarrow \frac{\mathbf{d} q}{\mathbf{d} t}-q=-\lambda \rightarrow(29) \end{aligned}dqdt=p+q(p+λ)dqdtq=λ(29)
Whose integrating factor = e ( 1 ) d t = e t = e ( 1 ) d t = e t =e^(int(-1)dt)=e^(t)=e^{\int(-1) \mathrm{d} t}=e^t=e(1)dt=et and solution is
q e t = ( λ ) e t d t + C 8 = λ e t + c 8 q = λ + c 8 e t ( 30 ) q e t = ( λ ) e t d t + C 8 = λ e t + c 8 q = λ + c 8 e t ( 30 ) qe^(-t)=int(-lambda)e^(-t)dt+C_(8)=lambdae^(-t)+c_(8)=>q=lambda+c_(8)e^(t)rarr(30)q e^{-t}=\int(-\lambda) e^{-t} \mathbf{d} t+C_8=\lambda e^{-t}+c_8 \Rightarrow q=\lambda+c_8 e^t \rightarrow(30)qet=(λ)etdt+C8=λet+c8q=λ+c8et(30)
Where C 8 C 8 C_(8)C_8C8 is an arbitrary constant. Using initial condition (7), (30) gives
2 λ = λ + C 8 C 8 = λ 2 λ = λ + C 8 C 8 = λ 2lambda=lambda+C_(8)=>C_(8)=lambda2 \lambda=\lambda+C_8 \Rightarrow C_8=\lambda2λ=λ+C8C8=λ
Hence (30) reduces to q = λ + λ e t q = λ + λ e t q=lambda+lambdae^(t)q=\lambda+\lambda e^tq=λ+λet
q = λ ( 1 + e t ) ( 31 ) q = λ 1 + e t ( 31 ) =>q=lambda(1+e^(t))rarr(31)\Rightarrow q=\lambda\left(1+e^t\right) \rightarrow(31)q=λ(1+et)(31)
Substitute the values of p + q x p + q x p+q-xp+q-xp+qx and p + q y p + q y p+q-yp+q-yp+qy from (13) and (24) respectively in (1), we have
d z d t = p ( 2 λ e t ) + q ( λ e t ) = 2 λ ( e t 1 ) ( 2 λ e t ) + λ ( 1 + e t ) ( λ e t ) d z d t = p 2 λ e t + q λ e t = 2 λ e t 1 2 λ e t + λ 1 + e t λ e t (dz)/(dt)=p(2lambdae^(t))+q(lambdae^(t))=2lambda(e^(t)-1)(2lambdae^(t))+lambda(1+e^(t))(lambdae^(t))\frac{\mathbf{d} z}{\mathbf{d} t}=p\left(2 \lambda e^t\right)+q\left(\lambda e^t\right)=2 \lambda\left(e^t-1\right)\left(2 \lambda e^t\right)+\lambda\left(1+e^t\right)\left(\lambda e^t\right)dzdt=p(2λet)+q(λet)=2λ(et1)(2λet)+λ(1+et)(λet)
[on putting values of p p ppp and q q qqq with help of (28) and (31) ]
d z d t = 5 λ 2 e 2 t 3 λ 2 e t d z = ( 5 λ 2 e 2 t 3 λ 2 e t ) d t Integrating z = 5 2 λ 2 e 2 t 3 λ 2 e t + C 9 ( 32 ) d z d t = 5 λ 2 e 2 t 3 λ 2 e t d z = 5 λ 2 e 2 t 3 λ 2 e t d t  Integrating  z = 5 2 λ 2 e 2 t 3 λ 2 e t + C 9 ( 32 ) {:[=>(dz)/(dt)=5lambda^(2)e^(2t)-3lambda^(2)e^(t)=>dz=(5lambda^(2)e^(2t)-3lambda^(2)e^(t))dt],[” Integrating “z=(5)/(2)lambda^(2)e^(2t)-3lambda^(2)e^(t)+C_(9)rarr(32)]:}\begin{aligned} & \Rightarrow \frac{\mathbf{d} z}{\mathbf{d} t}=5 \lambda^2 e^{2 t}-3 \lambda^2 e^t \Rightarrow \mathbf{d} z=\left(5 \lambda^2 e^{2 t}-3 \lambda^2 e^t\right) \mathbf{d} t \\ & \text { Integrating } z=\frac{5}{2} \lambda^2 e^{2 t}-3 \lambda^2 e^t+C_9 \rightarrow(32) \end{aligned}dzdt=5λ2e2t3λ2etdz=(5λ2e2t3λ2et)dt Integrating z=52λ2e2t3λ2et+C9(32)
Where C 9 C 9 C_(9)C_9C9 is an arbitrary constant. Using initial conditions (7), namely z = 0 z = 0 z=0z=0z=0, where t = 0 t = 0 t=0t=0t=0, (32) gives
0 = 5 2 λ 2 3 λ 2 + C 9 C 9 = 3 λ 2 5 2 λ 2 0 = 5 2 λ 2 3 λ 2 + C 9 C 9 = 3 λ 2 5 2 λ 2 0=(5)/(2)lambda^(2)-3lambda^(2)+C_(9)=>C_(9)=3lambda^(2)-(5)/(2)lambda^(2)0=\frac{5}{2} \lambda^2-3 \lambda^2+C_9 \Rightarrow C_9=3 \lambda^2-\frac{5}{2} \lambda^20=52λ23λ2+C9C9=3λ252λ2
Hence (32) reduces to z = 5 2 λ 2 ( e 2 t 1 ) 3 λ 2 ( e t 1 ) ( 33 ) z = 5 2 λ 2 e 2 t 1 3 λ 2 e t 1 ( 33 ) z=(5)/(2)lambda^(2)(e^(2t)-1)-3lambda^(2)(e^(t)-1)rarr(33)z=\frac{5}{2} \lambda^2\left(e^{2 t}-1\right)-3 \lambda^2\left(e^t-1\right) \rightarrow(33)z=52λ2(e2t1)3λ2(et1)(33)
Solving (23) and (25) for λ λ lambda\lambdaλ and e t = x y x 2 y e t = x y x 2 y e^(t)=(x-y)/(x-2y)rarre^t=\frac{x-y}{x-2 y} \rightarrowet=xyx2y (34)
Eliminating λ λ lambda\lambdaλ and e t e t e^(t)e^tet from (33) and (34), we have
z = 5 2 ( x 2 y ) 2 { ( x y x 2 y ) 2 1 } 3 ( x 2 y ) 2 ( x y x 2 y 1 ) z = 5 2 { ( x y ) 2 ( x 2 y ) 2 } 3 { ( x 2 y ) ( x y ) ( x 2 y ) 2 } z = 1 2 y ( 4 x 3 y ) z = 5 2 ( x 2 y ) 2 x y x 2 y 2 1 3 ( x 2 y ) 2 x y x 2 y 1 z = 5 2 ( x y ) 2 ( x 2 y ) 2 3 ( x 2 y ) ( x y ) ( x 2 y ) 2 z = 1 2 y ( 4 x 3 y ) {:[z=(5)/(2)(x-2y)^(2){((x-y)/(x-2y))^(2)-1}-3(x-2y)^(2)((x-y)/(x-2y)-1)],[z=(5)/(2){(x-y)^(2)-(x-2y)^(2)}-3{(x-2y)(x-y)-(x-2y)^(2)}],[z=(1)/(2)y(4x-3y)]:}\begin{aligned} & z=\frac{5}{2}(x-2 y)^2\left\{\left(\frac{x-y}{x-2 y}\right)^2-1\right\}-3(x-2 y)^2\left(\frac{x-y}{x-2 y}-1\right) \\ & z=\frac{5}{2}\left\{(x-y)^2-(x-2 y)^2\right\}-3\left\{(x-2 y)(x-y)-(x-2 y)^2\right\} \\ & z=\frac{1}{2} y(4 x-3 y) \end{aligned}z=52(x2y)2{(xyx2y)21}3(x2y)2(xyx2y1)z=52{(xy)2(x2y)2}3{(x2y)(xy)(x2y)2}z=12y(4x3y)
Conclusion:
The solution to the given partial differential equation is:
z = 1 2 y ( 4 x 3 y ) z = 1 2 y ( 4 x 3 y ) z=(1)/(2)y(4x-3y)z = \frac{1}{2}y(4x – 3y)z=12y(4x3y)
This represents the integral surface of the equation that passes through the x x xxx-axis.
7.(b) क्षेत्रकलन के लिए 0 1 f ( x ) d x x ( 1 x ) = α 1 f ( 0 ) + α 2 f ( 1 2 ) + α 3 f ( 1 ) 0 1 f ( x ) d x x ( 1 x ) = α 1 f ( 0 ) + α 2 f 1 2 + α 3 f ( 1 ) int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))=alpha_(1)f(0)+alpha_(2)f((1)/(2))+alpha_(3)f(1)\int_0^1 f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_1 f(0)+\alpha_2 f\left(\frac{1}{2}\right)+\alpha_3 f(1)01f(x)dxx(1x)=α1f(0)+α2f(12)+α3f(1) द्वारा उस सूत्र को ज्ञात कीजिए जो अधिकतम सम्भव घात के बहुपद के लिए यथातथ (बिल्कुल ठीक) हो । सूत्र का उपयोग 0 1 d x x x 3 0 1 d x x x 3 int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{d x}{\sqrt{x-x^3}}01dxxx3 का (दशमलव के तीन स्थानों तक सही) मूल्यांकन के लिए कीजिए ।
Find a quadrature formula 0 1 f ( x ) d x x ( 1 x ) = α 1 f ( 0 ) + α 2 f ( 1 2 ) + α 3 f ( 1 ) 0 1 f ( x ) d x x ( 1 x ) = α 1 f ( 0 ) + α 2 f 1 2 + α 3 f ( 1 ) int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))=alpha_(1)f(0)+alpha_(2)f((1)/(2))+alpha_(3)f(1)\int_0^1 f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_1 f(0)+\alpha_2 f\left(\frac{1}{2}\right)+\alpha_3 f(1)01f(x)dxx(1x)=α1f(0)+α2f(12)+α3f(1)
which is exact for polynomials of highest possible degree. Then use the formula to evaluate 0 1 d x x x 3 0 1 d x x x 3 int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{d x}{\sqrt{x-x^3}}01dxxx3 (correct up to three decimal places).
Answer:
Introduction:
The problem involves finding a quadrature formula to approximate the integral 0 1 f ( x ) d x x ( 1 x ) 0 1 f ( x ) d x x ( 1 x ) int_(0)^(1)f(x)(dx)/(sqrt(x(1-x)))\int_0^1 f(x) \frac{dx}{\sqrt{x(1-x)}}01f(x)dxx(1x), such that it is exact for polynomials of the highest possible degree. Additionally, we will use this formula to evaluate 0 1 d x x x 3 0 1 d x x x 3 int_(0)^(1)(dx)/(sqrt(x-x^(3)))\int_0^1 \frac{dx}{\sqrt{x-x^3}}01dxxx3 up to three decimal places.
Step 1: Exactness for Polynomials
To make the method exact for polynomials of degree up to 2, we derive the following expressions for different functions f ( x ) f ( x ) f(x)f(x)f(x):
For f ( x ) = 1 f ( x ) = 1 f(x)=1f(x)=1f(x)=1:
I 1 = 0 1 d x x ( 1 x ) = α 1 + α 2 + α 3 I 1 = 0 1 d x x ( 1 x ) = α 1 + α 2 + α 3 I_(1)=int_(0)^(1)(dx)/(sqrt(x(1-x)))=alpha_(1)+alpha_(2)+alpha_(3)I_1=\int_0^1 \frac{dx}{\sqrt{x(1-x)}}=\alpha_1+\alpha_2+\alpha_3I1=01dxx(1x)=α1+α2+α3
For f ( x ) = x f ( x ) = x f(x)=xf(x)=xf(x)=x:
I 2 = 0 1 x d x x ( 1 x ) = 1 2 α 1 + α 3 I 2 = 0 1 x d x x ( 1 x ) = 1 2 α 1 + α 3 I_(2)=int_(0)^(1)(xdx)/(sqrt(x(1-x)))=(1)/(2)alpha_(1)+alpha_(3)I_2=\int_0^1 \frac{xdx}{\sqrt{x(1-x)}}=\frac{1}{2}\alpha_1+\alpha_3I2=01xdxx(1x)=12α1+α3
For f ( x ) = x 2 f ( x ) = x 2 f(x)=x^(2)f(x)=x^2f(x)=x2:
I 3 = 0 1 x 2 d x x ( 1 x ) = 1 4 α 2 + α 3 I 3 = 0 1 x 2 d x x ( 1 x ) = 1 4 α 2 + α 3 I_(3)=int_(0)^(1)(x^(2)dx)/(sqrt(x(1-x)))=(1)/(4)alpha_(2)+alpha_(3)I_3=\int_0^1 \frac{x^2dx}{\sqrt{x(1-x)}}=\frac{1}{4}\alpha_2+\alpha_3I3=01x2dxx(1x)=14α2+α3
Step 2: Evaluating I 1 , I 2 , I 3 I 1 , I 2 , I 3 I_(1),I_(2),I_(3)I_1, I_2, I_3I1,I2,I3
We calculate I 1 , I 2 , I 3 I 1 , I 2 , I 3 I_(1),I_(2),I_(3)I_1, I_2, I_3I1,I2,I3 as follows:
For I 1 I 1 I_(1)I_1I1:
I 1 = 2 0 d d x 1 ( 2 x 1 ) 2 = 1 1 d t 1 t 2 = [ sin 1 t ] 1 1 = π I 1 = 2 0 d d x 1 ( 2 x 1 ) 2 = 1 1 d t 1 t 2 = sin 1 t 1 1 = π I_(1)=2int_(0)^(d)(dx)/(sqrt(1-(2x-1)^(2)))=int_(-1)^(1)(dt)/(sqrt(1-t^(2)))=[sin^(-1)t]_(-1)^(1)=piI_1=2\int_0^d \frac{dx}{\sqrt{1-(2x-1)^2}}=\int_{-1}^1 \frac{dt}{\sqrt{1-t^2}}=\left[\sin^{-1} t\right]_{-1}^1=\piI1=20ddx1(2x1)2=11dt1t2=[sin1t]11=π
For I 2 I 2 I_(2)I_2I2:
I 2 = 2 0 d x d x 1 ( 2 x 1 ) 2 = 1 1 ( t + 1 ) 2 1 t 2 d t = 1 2 1 1 t 1 t 2 d t = π 2 I 2 = 2 0 d x d x 1 ( 2 x 1 ) 2 = 1 1 ( t + 1 ) 2 1 t 2 d t = 1 2 1 1 t 1 t 2 d t = π 2 I_(2)=2int_(0)^(d)(xdx)/(sqrt(1-(2x-1)^(2)))=int_(-1)^(1)((t+1))/(2sqrt(1-t^(2)))dt=(1)/(2)int_(-1)^(1)(t)/(sqrt(1-t^(2)))dt=(pi)/(2)I_2=2\int_0^d \frac{xdx}{\sqrt{1-(2x-1)^2}}=\int_{-1}^1 \frac{(t+1)}{2\sqrt{1-t^2}}dt=\frac{1}{2}\int_{-1}^1 \frac{t}{\sqrt{1-t^2}}dt=\frac{\pi}{2}I2=20dxdx1(2x1)2=11(t+1)21t2dt=1211t1t2dt=π2
For I 3 I 3 I_(3)I_3I3:
I 3 = 2 0 d x 2 d x 1 ( 2 x 1 ) 2 = 1 4 1 1 ( t + 1 ) 2 1 t 2 d t = 1 4 1 d t 2 1 t 2 d t + 1 4 α 1 d t 1 t 2 d t + 1 4 1 1 d t 1 t 2 = 3 π 8 I 3 = 2 0 d x 2 d x 1 ( 2 x 1 ) 2 = 1 4 1 1 ( t + 1 ) 2 1 t 2 d t = 1 4 1 d t 2 1 t 2 d t + 1 4 α 1 d t 1 t 2 d t + 1 4 1 1 d t 1 t 2 = 3 π 8 I_(3)=2int_(0)^(d)(x^(2)dx)/(sqrt(1-(2x-1)^(2)))=(1)/(4)int_(-1)^(1)((t+1)^(2))/(sqrt(1-t^(2)))dt=(1)/(4)int_(-1)^(d)(t^(2))/(sqrt(1-t^(2)))dt+(1)/(4alpha)int_(-1)^(d)(t)/(sqrt(1-t^(2)))dt+(1)/(4)int_(-1)^(1)(dt)/(sqrt(1-t^(2)))=(3pi)/(8)I_3=2\int_0^d \frac{x^2dx}{\sqrt{1-(2x-1)^2}}=\frac{1}{4}\int_{-1}^1 \frac{(t+1)^2}{\sqrt{1-t^2}}dt=\frac{1}{4}\int_{-1}^d \frac{t^2}{\sqrt{1-t^2}}dt+\frac{1}{4\alpha}\int_{-1}^d \frac{t}{\sqrt{1-t^2}}dt+\frac{1}{4}\int_{-1}^1 \frac{dt}{\sqrt{1-t^2}}=\frac{3\pi}{8}I3=20dx2dx1(2x1)2=1411(t+1)21t2dt=141dt21t2dt+14α1dt1t2dt+1411dt1t2=3π8
Step 3: Quadrature Formula Equations
Now, we have the equations:
α 1 + α 2 + α 3 = π α 1 + α 2 + α 3 = π alpha_(1)+alpha_(2)+alpha_(3)=pi\alpha_1+\alpha_2+\alpha_3=\piα1+α2+α3=π
1 2 α 1 + α 3 = π 2 1 2 α 1 + α 3 = π 2 (1)/(2)alpha_(1)+alpha_(3)=(pi)/(2)\frac{1}{2}\alpha_1+\alpha_3=\frac{\pi}{2}12α1+α3=π2
1 4 α 2 + α 3 = 3 π 8 1 4 α 2 + α 3 = 3 π 8 (1)/(4)alpha_(2)+alpha_(3)=(3pi)/(8)\frac{1}{4}\alpha_2+\alpha_3=\frac{3\pi}{8}14α2+α3=3π8
Solving these equations, we obtain the quadrature formula:
0 1 f ( x ) d x x ( 1 x ) = π 4 [ f ( 0 ) + 2 f ( 1 2 ) + f ( 1 ) ] 0 1 f ( x ) d x x ( 1 x ) = π 4 f ( 0 ) + 2 f 1 2 + f ( 1 ) int_(0)^(1)(f(x)dx)/(sqrt(x(1-x)))=(pi)/(4)[f(0)+2f((1)/(2))+f(1)]\int_0^1 \frac{f(x)dx}{\sqrt{x(1-x)}}=\frac{\pi}{4}\left[f(0)+2f\left(\frac{1}{2}\right)+f(1)\right]01f(x)dxx(1x)=π4[f(0)+2f(12)+f(1)]
Step 4: Evaluating I I III
Using this formula, we can evaluate:
I = 0 1 d x x x 3 = 0 1 d x 1 + x x ( 1 x ) = 0 1 f ( x ) d x x ( 1 x ) I = 0 1 d x x x 3 = 0 1 d x 1 + x x ( 1 x ) = 0 1 f ( x ) d x x ( 1 x ) I=int_(0)^(1)(dx)/(sqrt(x-x^(3)))=int_(0)^(1)(dx)/(sqrt(1+x)sqrt(x(1-x)))=int_(0)^(1)(f(x)dx)/(sqrt(x(1-x)))I=\int_0^1 \frac{dx}{\sqrt{x-x^3}}=\int_0^1 \frac{dx}{\sqrt{1+x}\sqrt{x(1-x)}}=\int_0^1 \frac{f(x)dx}{\sqrt{x(1-x)}}I=01dxxx3=01dx1+xx(1x)=01f(x)dxx(1x)
Where f ( x ) = 1 1 + x f ( x ) = 1 1 + x f(x)=(1)/(sqrt(1+x))f(x)=\frac{1}{\sqrt{1+x}}f(x)=11+x. Calculating I I III, we get:
I = π 4 [ 1 + 2 2 3 + 2 2 ] 2.62331 I = π 4 1 + 2 2 3 + 2 2 2.62331 I=(pi)/(4)[1+(2sqrt2)/(sqrt3)+(sqrt2)/(2)]~~2.62331I=\frac{\pi}{4}\left[1+\frac{2\sqrt{2}}{\sqrt{3}}+\frac{\sqrt{2}}{2}\right]\approx 2.62331I=π4[1+223+22]2.62331
The exact value is I = 2.622 I = 2.622 I=2.622I=2.622I=2.622.
Conclusion:
The quadrature formula is successfully used to approximate the integral, yielding an approximate value of 2.62331 2.62331 2.623312.623312.62331 (correct up to three decimal places).
  1. (c) एक द्विविमीय द्रव्य-प्रवाह का वेग विभव ϕ ( x , y ) = x y + x 2 y ˙ 2 ϕ ( x , y ) = x y + x 2 y ˙ 2 phi(x,y)=xy+x^(2)-y^(˙)^(2)\phi(x, y)=x y+x^2-\dot{y}^2ϕ(x,y)=xy+x2y˙2 द्वारा दिया गया है । इस प्रवाह का धारा-फलन ज्ञात कीजिए ।
A velocity potential in a two-dimensional fluid flow is given by ϕ ( x , y ) = x y + x 2 y 2 ϕ ( x , y ) = x y + x 2 y 2 phi(x,y)=xy+x^(2)-y^(2)\phi(x, y)=x y+x^2-y^2ϕ(x,y)=xy+x2y2. Find the stream function for this flow.
Answer:
Introduction:
A velocity potential in a two-dimensional fluid flow is given by ϕ ( x , y ) = x y + x 2 y 2 ϕ ( x , y ) = x y + x 2 y 2 phi(x,y)=xy+x^(2)-y^(2)\phi(x, y)=x y+x^2-y^2ϕ(x,y)=xy+x2y2. In this problem, we are tasked with finding the stream function for this flow.
Step 1: Velocity Components
As given, the velocity components are obtained from the negative gradient of the velocity potential ϕ ϕ phi\phiϕ:
u = ϕ x = [ y + 2 x ] u = ϕ x = [ y + 2 x ] u=-(del phi)/(del x)=-[y+2x]u=-\frac{\partial \phi}{\partial x}=-[y+2x]u=ϕx=[y+2x]
v = ϕ y = [ x 2 y ] v = ϕ y = [ x 2 y ] v=-(del phi)/(del y)=-[x-2y]v=-\frac{\partial \phi}{\partial y}=-[x-2y]v=ϕy=[x2y]
Step 2: Complex Potential and Cauchy-Riemann Equations
Now, we consider the complex potential w = ϕ + Ψ w = ϕ + Ψ w=phi+Psiw=\phi+\Psiw=ϕ+Ψ and recognize that both ϕ ϕ phi\phiϕ and Ψ Ψ Psi\PsiΨ must satisfy the Cauchy-Riemann equations:
ϕ x = Ψ y (2a) ϕ x = Ψ y (2a) (del phi)/(del x)=(del Psi)/(del y)quad(2a)\frac{\partial \phi}{\partial x}=\frac{\partial \Psi}{\partial y} \quad \text{(2a)}ϕx=Ψy(2a)
ϕ y = Ψ x (2b) ϕ y = Ψ x (2b) (del phi)/(del y)=-(del Psi)/(del x)quad(2b)\frac{\partial \phi}{\partial y}=-\frac{\partial \Psi}{\partial x} \quad \text{(2b)}ϕy=Ψx(2b)
Step 3: Solving for Ψ Ψ Psi\PsiΨ
Using equation (2a), we have:
Ψ y = y + 2 x (3) Ψ y = y + 2 x (3) (del Psi)/(del y)=y+2x quad(3)\frac{\partial \Psi}{\partial y}=y+2x \quad \text{(3)}Ψy=y+2x(3)
Integrating with respect to y y yyy, we obtain:
Ψ = y 2 2 + 2 x y + f ( x ) (1) Ψ = y 2 2 + 2 x y + f ( x ) (1) Psi=(y^(2))/(2)+2xy+f(x)quad(1)\Psi=\frac{y^2}{2}+2xy+f(x) \quad \text{(1)}Ψ=y22+2xy+f(x)(1)
Now, using equation (2b), we get:
Ψ x = x + 2 y (4) Ψ x = x + 2 y (4) (del Psi)/(del x)=-x+2y quad(4)\frac{\partial \Psi}{\partial x}=-x+2y \quad \text{(4)}Ψx=x+2y(4)
Step 4: Solving for f ( x ) f ( x ) f(x)f(x)f(x)
Differentiating equation (1) with respect to x x xxx and comparing it with equation (4):
2 y + f ( x ) = x + 2 y 2 y + f ( x ) = x + 2 y 2y+f^(‘)(x)=-x+2y2y+f^{\prime}(x)=-x+2y2y+f(x)=x+2y
This implies:
f ( x ) = x f ( x ) = x f^(‘)(x)=-xf^{\prime}(x)=-xf(x)=x
Integrating f ( x ) f ( x ) f^(‘)(x)f^{\prime}(x)f(x) with respect to x x xxx, we find:
f ( x ) = x 2 2 + c (5) f ( x ) = x 2 2 + c (5) f(x)=-(x^(2))/(2)+c quad(5)f(x)=-\frac{x^2}{2}+c \quad \text{(5)}f(x)=x22+c(5)
Conclusion:
The stream function Ψ Ψ Psi\PsiΨ is determined as follows:
Ψ = y 2 2 + 2 x y x 2 2 + c Ψ = y 2 2 + 2 x y x 2 2 + c Psi=(y^(2))/(2)+2xy-(x^(2))/(2)+c\Psi=\frac{y^2}{2}+2xy-\frac{x^2}{2}+cΨ=y22+2xyx22+c
This completes the solution.
8.(a) लम्बाई l l lll की कसकर खींची गई लचीली-पतली डोरी का एक सिरा मूल बिन्दु पर तथा दूसरा x = l x = l x=lx=lx=l पर बंधा है। आरंभिक अवस्था में इसे x = l 3 x = l 3 x=(l)/(3)x=\frac{l}{3}x=l3 बिन्दु से ऐसे खींचकर छोड़ा जाता है ताकि यह x y x y x-yx-yxy तल में h h hhh ऊँचाई के त्रिभुज का आकार लेता है। किसी भी दूरी x x xxx तथा समय t t ttt, डोरी को विरामावस्था से छोड़ने के बाद, पर विस्थापन y y yyy को ज्ञात कीजिए ।
डोरी में क्षैतिज तनाव डोरी की इकाई लम्बाई की संहति = c 2  क्षैतिज तनाव   डोरी की इकाई लम्बाई की संहति  = c 2 (” क्षैतिज तनाव “)/(” डोरी की इकाई लम्बाई की संहति “)=c^(2)\frac{\text { क्षैतिज तनाव }}{\text { डोरी की इकाई लम्बाई की संहति }}=c^2 क्षैतिज तनाव  डोरी की इकाई लम्बाई की संहति =c2 लीजिए ।
One end of a tightly stretched flexible thin string of length l l lll is fixed at the origin and the other at x = l x = l x=lx=lx=l. It is plucked at x = l 3 x = l 3 x=(l)/(3)x=\frac{l}{3}x=l3 so that it assumes initially the shape of a triangle of height h h hhh in the x y x y x-yx-yxy plane. Find the displacement y y yyy at any distance x x xxx and at any time t t ttt after the string is released from rest. Take, horizontal tension mass per unit length = c 2  horizontal tension   mass per unit length  = c 2 (” horizontal tension “)/(” mass per unit length “)=c^(2)\frac{\text { horizontal tension }}{\text { mass per unit length }}=c^2 horizontal tension  mass per unit length =c2.
Answer:
Introduction:
One end of a tightly stretched flexible thin string of length l l lll is fixed at the origin and the other at x = l x = l x=lx=lx=l. It is plucked at x = l 3 x = l 3 x=(l)/(3)x=\frac{l}{3}x=l3 so that it assumes initially the shape of a triangle of height h h hhh in the x y x y x-yx-yxy plane. Find the displacement y y yyy at any distance x x xxx and at any time t t ttt after the string is released from rest. Take, horizontal tension mass per unit length = c 2  horizontal tension   mass per unit length  = c 2 (” horizontal tension “)/(” mass per unit length “)=c^(2)\frac{\text { horizontal tension }}{\text { mass per unit length }}=c^2 horizontal tension  mass per unit length =c2.
Step 1: The displacement function y ( x , t ) y ( x , t ) y(x,t)y(x, t)y(x,t) is the solution of the wave equation
2 y x 2 = 1 c 2 2 y t 2 ( 1 ) 2 y x 2 = 1 c 2 2 y t 2 ( 1 ) (del^(2)y)/(delx^(2))=(1)/(c^(2))(del^(2)y)/(delt^(2))rarr(1)\frac{\partial^2 y}{\partial x^2}=\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \rightarrow(1)2yx2=1c22yt2(1)
Subject to the boundary conditions
y ( 0 , t ) = y ( l , t ) = 0 t 0 ( 2 ) y ( 0 , t ) = y ( l , t ) = 0 t 0 ( 2 ) y(0,t)=y(l,t)=0AA t >= 0rarr(2)y(0, t)=y(l, t)=0 \forall t \geqslant 0 \rightarrow(2)y(0,t)=y(l,t)=0t0(2)
Step 2: Initial position of the string at t = 0 t = 0 t=0t=0t=0 is made up of two straight line segments OB and BA as shown in the figure and the string is released from rest. The equation of OB OB OB\mathrm{OB}OB is given by
y 0 = h 0 l 3 0 ( x 0 ) y = 3 h x l , 0 x l 3 y 0 = h 0 l 3 0 ( x 0 ) y = 3 h x l , 0 x l 3 y-0=(h-0)/((l)/(3)-0)(x-0)=>y=(3hx)/(l),0 <= x <= (l)/(3)y-0=\frac{h-0}{\frac{l}{3}-0}(x-0) \Rightarrow y=\frac{3 h x}{l}, 0 \leqslant x \leqslant \frac{l}{3}y0=h0l30(x0)y=3hxl,0xl3
The equation of BA is given by
y 0 = h 0 l 3 l ( x l ) y = 3 h ( l x ) 2 l , l 3 x l y 0 = h 0 l 3 l ( x l ) y = 3 h ( l x ) 2 l , l 3 x l y-0=(h-0)/((l)/(3)-l)(x-l)=>y=(3h(l-x))/(2l),(l)/(3) <= x <= ly-0=\frac{h-0}{\frac{l}{3}-l}(x-l) \Rightarrow y=\frac{3 h(l-x)}{2 l}, \frac{l}{3} \leqslant x \leqslant ly0=h0l3l(xl)y=3h(lx)2l,l3xl
Hence the initial displacement is given by
u ( x , 0 ) = f ( x ) = { 3 h x l , 0 x l 3 3 h ( l x ) 2 l , l 3 x l ( 3 ) And the initial velocity = u t I t = 0 = 0 (4) u ( x , 0 ) = f ( x ) = 3 h x l , 0 x l 3 3 h ( l x ) 2 l , l 3 x l ( 3 )  And the initial velocity  = u t I t = 0 = 0  (4)  {:[u(x”,”0)=f(x)={[(3hx)/(l)”,”0 <= x <= (l)/(3)],[(3h(l-x))/(2l)”,”(l)/(3) <= x <= l]rarr(3):}],[” And the initial velocity “=(del u)/(del t)I_(t=0)=0rarr” (4) “]:}\begin{aligned} & u(x, 0)=f(x)=\left\{\begin{array}{c} \frac{3 h x}{l}, 0 \leqslant x \leqslant \frac{l}{3} \\ \frac{3 h(l-x)}{2 l}, \frac{l}{3} \leqslant x \leqslant l \end{array} \rightarrow(3)\right. \\ & \text { And the initial velocity }=\frac{\partial u}{\partial t} \mathrm{I}_{t=0}=0 \rightarrow \text { (4) } \end{aligned}u(x,0)=f(x)={3hxl,0xl33h(lx)2l,l3xl(3) And the initial velocity =utIt=0=0 (4) 
Step 3: Let Y ( x , t ) = X ( x ) T ( t ) ( 5 ) Y ( x , t ) = X ( x ) T ( t ) ( 5 ) Y(x,t)=X(x)T(t)rarr(5)Y(x, t)=X(x) T(t) \rightarrow(5)Y(x,t)=X(x)T(t)(5) is the solution of (1). From (1), we have
X T = 1 c 2 × T X n X = 1 c 2 T 4 T = P ( say ) X PX = 0 and T P c 2 = 0 ( 7 ) X T = 1 c 2 × T X n X = 1 c 2 T 4 T = P (  say  ) X PX = 0  and  T P c 2 = 0 ( 7 ) {:[XT=(1)/(c^(2))xxT^(”)=>(X^(n))/(X)=(1)/(c^(2))(T^(4))/(T)=P(” say “)],[=>X-PX=0” and “T-Pc^(2)=0rarr(7)]:}\begin{aligned} & X T=\frac{1}{c^2} \times T^{\prime \prime} \Rightarrow \frac{X^n}{X}=\frac{1}{c^2} \frac{T^4}{T}=P(\text { say }) \\ & \Rightarrow \mathrm{X}-\mathrm{PX}=0 \text { and } T-P c^2=0 \rightarrow(7) \end{aligned}XT=1c2×TXnX=1c2T4T=P( say )XPX=0 and TPc2=0(7)
Using (2), (5) gives
X ( 0 ) T ( t ) = 0 X ( 0 ) T ( t ) = 0 X(0)T(t)=0X(0) T(t)=0X(0)T(t)=0 and X ( l ) T ( t ) = 0 ( X ( l ) T ( t ) = 0 ( X(l)T(t)=0(X(l) T(t)=0(X(l)T(t)=0( because T ( t ) = 0 T ( t ) = 0 T(t)=0T(t)=0T(t)=0 leads T = 0 t ) T = 0 t ) T=0AA t)T=0 \forall t)T=0t)
X ( 0 ) = 0 and X ( l ) = 0 ( 8 ) X ( 0 ) = 0  and  X ( l ) = 0 ( 8 ) X(0)=0″ and “X(l)=0rarr(8)X(0)=0 \text { and } X(l)=0 \rightarrow(8)X(0)=0 and X(l)=0(8)
Which are boundary condition. We now solve (6) under boundary conditions (8). Three cases arise:
Case (i): Let P = 0 P = 0 P=0P=0P=0
The solution of (6) is X ( n ) = A n + B X ( n ) = A n + B X(n)=An+BX(n)=A n+BX(n)=An+B
Using boundary condition, we get A = 0 , B = 0 A = 0 , B = 0 A=0,B=0A=0, B=0A=0,B=0
X ( x ) = 0 X ( x ) = 0 =>X(x)=0\Rightarrow X(x)=0X(x)=0 which leads to T = 0 T = 0 T=0T=0T=0 which does not satisfy I . C I . C I.CI . CI.C so reject P = 0 P = 0 P=0P=0P=0
Case (ii): Let P = λ 2 , λ 0 P = λ 2 , λ 0 P=lambda^(2),lambda!=0P=\lambda^2, \lambda \neq 0P=λ2,λ0
The solution of (6) is X ( x ) = A e λ x + B e λ x X ( x ) = A e λ x + B e λ x X(x)=Ae^(lambda x)+Be^(-lambda x)X(x)=A e^{\lambda x}+B e^{-\lambda x}X(x)=Aeλx+Beλx
Using boundary condition (8) we get A = 0 , B = 0 A = 0 , B = 0 A=0,B=0A=0, B=0A=0,B=0
X ( x ) = 0 X ( x ) = 0 =>X(x)=0\Rightarrow X(x)=0X(x)=0, which leads to Y = 0 Y = 0 Y=0Y=0Y=0 which does not satisfy (3) and (4)
So reject P = λ 2 P = λ 2 P=lambda^(2)P=\lambda^2P=λ2
Case (iii): Let P = λ 2 , λ 0 P = λ 2 , λ 0 P=-lambda^(2),lambda!=0P=-\lambda^2, \lambda \neq 0P=λ2,λ0
The solution of (6) is X ( x ) = A cos λ x + B sin λ x X ( x ) = A cos λ x + B sin λ x X(x)=A cos lambda x+B sin lambda xX(x)=A \cos \lambda x+B \sin \lambda xX(x)=Acosλx+Bsinλx
Using boundary condition (8), we get
X ( 0 ) = 0 = A ( 1 ) + B ( 0 ) A = 0 X ( 0 ) = 0 = A ( 1 ) + B ( 0 ) A = 0 X(0)=0=A(1)+B(0)=>A=0X(0)=0=A(1)+B(0) \Rightarrow A=0X(0)=0=A(1)+B(0)A=0
And X ( l ) = 0 = 0 + B sin λ l X ( l ) = 0 = 0 + B sin λ l X(l)=0=0+B sin lambda lX(l)=0=0+B \sin \lambda lX(l)=0=0+Bsinλl
B sin λ l = 0 sin λ l = 0 ( B 0 ) λ l = n π λ = n π l , n = 1 , 2 , 3 , X ( l ) = B sin n π x l , n = 1 , 2 , 3 , B sin λ l = 0 sin λ l = 0 ( B 0 ) λ l = n π λ = n π l , n = 1 , 2 , 3 , X ( l ) = B sin n π x l , n = 1 , 2 , 3 , =>B sin lambda l=0=>sin lambda l=0(B!=0)=>lambda l=n pi=>lambda=(n pi)/(l),n=1,2,3,dotsX(l)=B sin((n pi x)/(l)),n=1,2,3,dots\Rightarrow B \sin \lambda l=0 \\ \Rightarrow \sin \lambda l=0(B \neq 0) \\ \Rightarrow \lambda l=n \pi \\ \Rightarrow \lambda=\frac{n \pi}{l}, n=1,2,3, \ldots \\ X(l)=B \sin \frac{n \pi x}{l}, n=1,2,3, \ldotsBsinλl=0sinλl=0(B0)λl=nπλ=nπl,n=1,2,3,X(l)=Bsinnπxl,n=1,2,3,
Hence non-zero solutions of X n ( x ) X n ( x ) X_(n)(x)X_n(x)Xn(x) of (6) are given by X n ( x ) = B n sin n π x l X n ( x ) = B n sin n π x l X_(n)(x)=B_(n)sin((n pi x)/(l))rarrX_n(x)=B_n \sin \frac{n \pi x}{l} \rightarrowXn(x)=Bnsinnπxl (9) From (7),
T μ P C 2 T = 0 T + λ 2 c 2 T = 0 ( P = λ 2 ) T + n 2 π 2 l 2 c 2 T = 0 ( λ = n π l ) T μ P C 2 T = 0 T + λ 2 c 2 T = 0 P = λ 2 T + n 2 π 2 l 2 c 2 T = 0 λ = n π l {:[T^( mu)-PC^(2)T=0],[=>T^(**)+lambda^(2)c^(2)T=0(P=-lambda^(2))],[=>T^(**)+(n^(2)pi^(2))/(l^(2))c^(2)T=0(lambda=(n pi)/(l))]:}\begin{aligned} & T^\mu-P C^2 T=0 \\ & \Rightarrow T^*+\lambda^2 c^2 T=0\left(P=-\lambda^2\right) \\ & \Rightarrow T^*+\frac{n^2 \pi^2}{l^2} c^2 T=0\left(\lambda=\frac{n \pi}{l}\right) \end{aligned}TμPC2T=0T+λ2c2T=0(P=λ2)T+n2π2l2c2T=0(λ=nπl)
Whose general solution is
T n ( t ) = C n cos ( n π c t l ) + D n sin ( n π c t l ) y n ( x , t ) = X n ( x ) T n ( t ) = B n sin ( n π x l ) [ c n cos n π c t l + D n sin n π c t l ] = [ E n cos n π c t l + F n sin n π c t l ] sin ( n π x l ) T n ( t ) = C n cos n π c t l + D n sin n π c t l y n ( x , t ) = X n ( x ) T n ( t ) = B n sin n π x l c n cos n π c t l + D n sin n π c t l = E n cos n π c t l + F n sin n π c t l sin n π x l {:[T_(n)(t)=C_(n)cos((n pi ct)/(l))+D_(n)sin((n pi ct)/(l))],[y_(n)(x”,”t)=X_(n)(x)T_(n)(t)],[=B_(n)sin((n pi x)/(l))[c_(n)cos((n pi ct)/(l))+D_(n)sin((n pi ct)/(l))]],[=[E_(n)cos((n pi ct)/(l))+F_(n)sin((n pi ct)/(l))]sin((n pi x)/(l))]:}\begin{aligned} & T_n(t)=C_n \cos \left(\frac{n \pi c t}{l}\right)+D_n \sin \left(\frac{n \pi c t}{l}\right) \\ & y_n(x, t)=X_n(x) T_n(t) \\ & =B_n \sin \left(\frac{n \pi x}{l}\right)\left[c_n \cos \frac{n \pi c t}{l}+D_n \sin \frac{n \pi c t}{l}\right] \\ & =\left[E_n \cos \frac{n \pi c t}{l}+F_n \sin \frac{n \pi c t}{l}\right] \sin \left(\frac{n \pi x}{l}\right) \end{aligned}Tn(t)=Cncos(nπctl)+Dnsin(nπctl)yn(x,t)=Xn(x)Tn(t)=Bnsin(nπxl)[cncosnπctl+Dnsinnπctl]=[Encosnπctl+Fnsinnπctl]sin(nπxl)
Are solutions of (1) satisfying (2)
Where E n = B n C n E n = B n C n E_(n)=B_(n)C_(n)E_n=B_n C_nEn=BnCn and F n = B n D n F n = B n D n F_(n)=B_(n)D_(n)F_n=B_n D_nFn=BnDn
In order to obtain a solution also satisfying (3) and (4)
We consider more general solution.
y ( x , t ) = n = 1 y n ( x , t ) y ( x , t ) = n = 1 [ E n cos n π c t l + F n sin n π c t l ] sin ( n π x l ) ( 10 ) y t = n = 1 [ E n ( sin π c t l ) n π c l + n π c l F n cos n π c t l ] sin n π r l ( 11 ) = n = 1 n π c l F n sin n π x l b y ( 4 ) y ( x , t ) = n = 1 y n ( x , t ) y ( x , t ) = n = 1 E n cos n π c t l + F n sin n π c t l sin n π x l ( 10 ) y t = n = 1 E n sin π c t l n π c l + n π c l F n cos n π c t l sin n π r l ( 11 ) = n = 1 n π c l F n sin n π x l b y ( 4 ) {:[y(x”,”t)=sum_(n=1)^(oo)y_(n)(x”,”t)],[y(x”,”t)=sum_(n=1)^(oo)[E_(n)cos((n pi ct)/(l))+F_(n)sin((n pi ct)/(l))]sin((n pi x)/(l))rarr(10)],[(del y)/(del t)=sum_(n=1)^(oo)[E_(n)(sin((pi ct)/(l)))(n pi c)/(l)+(n pi c)/(l)F_(n)cos((n pi ct)/(l))]sin((n pi r)/(l))rarr(11)],[=sum_(n=1)^(oo)(n pi c)/(l)F_(n)sin((n pi x)/(l)by)(4)]:}\begin{aligned} & y(x, t)=\sum_{n=1}^{\infty} y_n(x, t) \\ & y(x, t)=\sum_{n=1}^{\infty}\left[E_n \cos \frac{n \pi c t}{l}+F_n \sin \frac{n \pi c t}{l}\right] \sin \left(\frac{n \pi x}{l}\right) \rightarrow(10) \\ & \frac{\partial y}{\partial t}=\sum_{n=1}^{\infty}\left[E_n\left(\sin \frac{\pi c t}{l}\right) \frac{n \pi c}{l}+\frac{n \pi c}{l} F_n \cos \frac{n \pi c t}{l}\right] \sin \frac{n \pi r}{l} \rightarrow(11) \\ & =\sum_{n=1}^{\infty} \frac{n \pi c}{l} F_n \sin \frac{n \pi x}{l} b y(4) \end{aligned}y(x,t)=n=1yn(x,t)y(x,t)=n=1[Encosnπctl+Fnsinnπctl]sin(nπxl)(10)yt=n=1[En(sinπctl)nπcl+nπclFncosnπctl]sinnπrl(11)=n=1nπclFnsinnπxlby(4)
Where F n = 0 0 = 0 F n = 0 0 = 0 F_(n)=__|_(0)0=0\left.F_n=\right\rfloor_0 0=0Fn=00=0
By putting t = 0 t = 0 t=0t=0t=0 in (10), f ( x ) = n = 1 E n sin n π x l f ( x ) = n = 1 E n sin n π x l f(x)=sum_(n=1)^(oo)quadE_(n)sin((n pi x)/(l))f(x)=\sum_{n=1}^{\infty} \quad E_n \sin \frac{n \pi x}{l}f(x)=n=1Ensinnπxl
Where E n = 2 l 0 f ( x ) sin n π x l d x E n = 2 l 0 f ( x ) sin n π x l d x E_(n)=(2)/(l)int_(0)f(x)sin((n pi x)/(l))dxE_n=\frac{2}{l} \int_0 f(x) \sin \frac{n \pi x}{l} \mathbf{d} xEn=2l0f(x)sinnπxldx
E n = 2 l [ 0 l 3 f ( x ) sin n π x l d x + l 3 l f ( x ) sin n π x l d x ] = 2 l [ 0 1 3 3 h x l sin n π x l d x + 1 3 l 3 h ( x ) 2 l sin n π x l d x ] = 6 h l 2 0 1 3 x sin n π x l d x + 3 h 2 l 2 1 3 ( l x ) sin n π x l d x E n = 2 l 0 l 3 f ( x ) sin n π x l d x + l 3 l f ( x ) sin n π x l d x = 2 l 0 1 3 3 h x l sin n π x l d x + 1 3 l 3 h ( x ) 2 l sin n π x l d x = 6 h l 2 0 1 3 x sin n π x l d x + 3 h 2 l 2 1 3 ( l x ) sin n π x l d x {:[=>E_(n)=(2)/(l)[int_(0)^((l)/(3))f(x)sin((n pi x)/(l))dx+int_((l)/(3))^(l)f(x)sin((n pi x)/(l))dx]],[=(2)/(l)[int_(0)^((1)/(3))(3hx)/(l)sin((n pi x)/(l))dx+int_((1)/(3))^(l)(3h(-x))/(2l)sin((n pi x)/(l))dx]],[=(6h)/(l^(2))int_(0)^((1)/(3))x sin((n pi x)/(l))dx+(3h)/(2l^(2))int_((1)/(3))(l-x)sin((n pi x)/(l))dx]:}\begin{aligned} & \Rightarrow E_n=\frac{2}{l}\left[\int_0^{\frac{l}{3}} f(x) \sin \frac{n \pi x}{l} \mathbf{d} x+\int_{\frac{l}{3}}^l f(x) \sin \frac{n \pi x}{l} \mathbf{d} x\right] \\ & =\frac{2}{l}\left[\int_0^{\frac{1}{3}} \frac{3 h x}{l} \sin \frac{n \pi x}{l} \mathbf{d} x+\int_{\frac{1}{3}}^l \frac{3 h(-x)}{2 l} \sin \frac{n \pi x}{l} \mathbf{d} x\right] \\ & =\frac{6 h}{l^2} \int_0^{\frac{1}{3}} x \sin \frac{n \pi x}{l} \mathbf{d} x+\frac{3 h}{2 l^2} \int_{\frac{1}{3}}(l-x) \sin \frac{n \pi x}{l} \mathbf{d} x \end{aligned}En=2l[0l3f(x)sinnπxldx+l3lf(x)sinnπxldx]=2l[0133hxlsinnπxldx+13l3h(x)2lsinnπxldx]=6hl2013xsinnπxldx+3h2l213(lx)sinnπxldx
= 6 h l 2 [ ( x ) ( l n π cos n π x l ) 1 ( l 2 n 2 π 2 sin n π x l ) ] 0 1 3 + 3 h l 2 [ ( l x ) ( l n π cos n π x l ) ( 1 ) ( l 2 n 2 π 2 sin π x l ) ] = 6 h l 2 ( x ) l n π cos n π x l 1 l 2 n 2 π 2 sin n π x l 0 1 3 + 3 h l 2 ( l x ) l n π cos n π x l ( 1 ) l 2 n 2 π 2 sin π x l =(6h)/(l^(2))[(x)(-(l)/(n pi)cos((n pi x)/(l)))-1(-(l^(2))/(n^(2)pi^(2))sin((n pi x)/(l)))]_(0)^((1)/(3))+(3h)/(l^(2))[(l-x)(-(l)/(n pi)cos((n pi x)/(l)))-(-1)(-(l^(2))/(n^(2)pi^(2))sin((pi x)/(l)))]=\frac{6 h}{l^2}\left[(x)\left(-\frac{l}{n \pi} \cos \frac{n \pi x}{l}\right)-1\left(-\frac{l^2}{n^2 \pi^2} \sin \frac{n \pi x}{l}\right)\right]_0^{\frac{1}{3}}+\frac{3 h}{l^2}\left[(l-x)\left(-\frac{l}{n \pi} \cos \frac{n \pi x}{l}\right)-(-1)\left(-\frac{l^2}{n^2 \pi^2} \sin \frac{\pi x}{l}\right)\right]=6hl2[(x)(lnπcosnπxl)1(l2n2π2sinnπxl)]013+3hl2[(lx)(lnπcosnπxl)(1)(l2n2π2sinπxl)]
= 9 h n 2 π 2 sin n π 3 = 9 h n 2 π 2 sin n π 3 =(9h)/(n^(2)pi^(2))sin((n pi)/(3))=\frac{9 h}{n^2 \pi^2} \sin \frac{n \pi}{3}=9hn2π2sinnπ3
(10) implies
y ( x , t ) = n = 1 9 h n 2 π 2 sin n π 3 sin n π x l cos n π c t l y ( x , t ) = n = 1 9 h n 2 π 2 sin n π 3 sin n π x l cos n π c t l y(x,t)=sum_(n=1)^(oo)(9h)/(n^(2)pi^(2))sin((n pi)/(3))*sin((n pi x)/(l))cos((n pi ct)/(l))y(x, t)=\sum_{n=1}^{\infty} \frac{9 h}{n^2 \pi^2} \sin \frac{n \pi}{3} \cdot \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}y(x,t)=n=19hn2π2sinnπ3sinnπxlcosnπctl
Which is the required displacement function
8.(b) बिन्दुओं x 0 , x 0 + ε x 0 , x 0 + ε x_(0),x_(0)+epsix_0, x_0+\varepsilonx0,x0+ε तथा x 1 x 1 x_(1)x_1x1 के सापेक्ष तीन-बिन्दु लेगरान्ज-अन्तर्वेशन बहुपद को लिखिए । तदुपरान्त limit ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0 करने पर निम्नलिखित सम्बन्ध को स्थापित कीजिए :
f ( x ) = ( x 1 x ) ( x + x 1 2 x 0 ) ( x 1 x 0 ) 2 f ( x 0 ) + ( x x 0 ) ( x 1 x ) ( x 1 x 0 ) f ( x 0 ) + ( x x 0 ) 2 ( x 1 x 0 ) f ( x 1 ) + E ( x ) f ( x ) = x 1 x x + x 1 2 x 0 x 1 x 0 2 f x 0 + x x 0 x 1 x x 1 x 0 f x 0 + x x 0 2 x 1 x 0 f x 1 + E ( x ) f(x)=((x_(1)-x)(x+x_(1)-2x_(0)))/((x_(1)-x_(0))^(2))f(x_(0))+((x-x_(0))(x_(1)-x))/((x_(1)-x_(0)))f^(‘)(x_(0))+((x-x_(0))^(2))/((x_(1)-x_(0)))f(x_(1))+E(x)f(x)=\frac{\left(x_1-x\right)\left(x+x_1-2 x_0\right)}{\left(x_1-x_0\right)^2} f\left(x_0\right)+\frac{\left(x-x_0\right)\left(x_1-x\right)}{\left(x_1-x_0\right)} f^{\prime}\left(x_0\right)+\frac{\left(x-x_0\right)^2}{\left(x_1-x_0\right)} f\left(x_1\right)+E(x)f(x)=(x1x)(x+x12x0)(x1x0)2f(x0)+(xx0)(x1x)(x1x0)f(x0)+(xx0)2(x1x0)f(x1)+E(x)
जहाँ पर E ( x ) = 1 6 ( x x 0 ) 2 ( x x 1 ) f ( ξ ) E ( x ) = 1 6 x x 0 2 x x 1 f ( ξ ) E(x)=(1)/(6)(x-x_(0))^(2)(x-x_(1))f^(”’)(xi)E(x)=\frac{1}{6}\left(x-x_0\right)^2\left(x-x_1\right) f^{\prime \prime \prime}(\xi)E(x)=16(xx0)2(xx1)f(ξ) त्रुटि-फलन है और
न्यूनतम ( x 0 , x 0 + ε , x 1 ) < ξ < x 0 , x 0 + ε , x 1 < ξ < (x_(0),x_(0)+epsi,x_(1)) < xi <\left(x_0, x_0+\varepsilon, x_1\right)<\xi<(x0,x0+ε,x1)<ξ< उच्चतम ( x 0 , x 0 + ε , x 1 ) x 0 , x 0 + ε , x 1 (x_(0),x_(0)+epsi,x_(1))\left(x_0, x_0+\varepsilon, x_1\right)(x0,x0+ε,x1)
Write the three point Lagrangian interpolating polynomial relative to the points x 0 , x 0 + ε x 0 , x 0 + ε x_(0),x_(0)+epsix_0, x_0+\varepsilonx0,x0+ε and x 1 x 1 x_(1)x_1x1. Then by taking the limit ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0, establish the relation
f ( x ) = ( x 1 x ) ( x + x 1 2 x 0 ) ( x 1 x 0 ) 2 f ( x 0 ) + ( x x 0 ) ( x 1 x ) ( x 1 x 0 ) f ( x 0 ) + ( x x 0 ) 2 ( x 1 x 0 ) f ( x 1 ) + E ( x ) f ( x ) = x 1 x x + x 1 2 x 0 x 1 x 0 2 f x 0 + x x 0 x 1 x x 1 x 0 f x 0 + x x 0 2 x 1 x 0 f x 1 + E ( x ) f(x)=((x_(1)-x)(x+x_(1)-2x_(0)))/((x_(1)-x_(0))^(2))f(x_(0))+((x-x_(0))(x_(1)-x))/((x_(1)-x_(0)))f^(‘)(x_(0))+((x-x_(0))^(2))/((x_(1)-x_(0)))f(x_(1))+E(x)f(x)=\frac{\left(x_1-x\right)\left(x+x_1-2 x_0\right)}{\left(x_1-x_0\right)^2} f\left(x_0\right)+\frac{\left(x-x_0\right)\left(x_1-x\right)}{\left(x_1-x_0\right)} f^{\prime}\left(x_0\right)+\frac{\left(x-x_0\right)^2}{\left(x_1-x_0\right)} f\left(x_1\right)+E(x)f(x)=(x1x)(x+x12x0)(x1x0)2f(x0)+(xx0)(x1x)(x1x0)f(x0)+(xx0)2(x1x0)f(x1)+E(x)
where E ( x ) = 1 6 ( x x 0 ) 2 ( x x 1 ) f ( ξ ) E ( x ) = 1 6 x x 0 2 x x 1 f ( ξ ) E(x)=(1)/(6)(x-x_(0))^(2)(x-x_(1))f^(”’)(xi)E(x)=\frac{1}{6}\left(x-x_0\right)^2\left(x-x_1\right) f^{\prime \prime \prime}(\xi)E(x)=16(xx0)2(xx1)f(ξ)
is the error function and min. ( x 0 , x 0 + ε , x 1 ) < ξ < max . ( x 0 , x 0 + ε , x 1 ) x 0 , x 0 + ε , x 1 < ξ < max . x 0 , x 0 + ε , x 1 (x_(0),x_(0)+epsi,x_(1)) < xi < max.(x_(0),x_(0)+epsi,x_(1))\left(x_0, x_0+\varepsilon, x_1\right)<\xi<\max .\left(x_0, x_0+\varepsilon, x_1\right)(x0,x0+ε,x1)<ξ<max.(x0,x0+ε,x1)
Answer:
Introduction:
The problem involves writing the three-point Lagrangian interpolating polynomial relative to the points x 0 , x 0 + ε x 0 , x 0 + ε x_(0),x_(0)+epsix_0, x_0+\varepsilonx0,x0+ε and x 1 x 1 x_(1)x_1x1. Then, by taking the limit ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0, we establish the relation for f ( x ) f ( x ) f(x)f(x)f(x) as described in the provided equation.
Step 1: Lagrangian Three-Point Formula
We start with the Lagrangian three-point formula. Given the points x 0 , x 0 + t , x 1 x 0 , x 0 + t , x 1 x_(0),x_(0)+t,x_(1)x_0, x_0+t, x_1x0,x0+t,x1 and corresponding function values f ( x 0 ) , f ( x 0 + t ) , f ( x 1 ) f ( x 0 ) , f ( x 0 + t ) , f ( x 1 ) f(x_(0)),f(x_(0)+t),f(x_(1))f(x_0), f(x_0+t), f(x_1)f(x0),f(x0+t),f(x1), the formula is as follows:
f ( x ) = ( x x 0 t ) ( x x 1 ) ( t ) ( x 0 x 1 ) f ( x 0 ) + ( x x 0 ) ( x x 1 ) ( t ) ( x 0 + t x 1 ) f ( x 0 + t ) + ( x x 0 ) ( x x 0 t ) ( x x 0 ) ( x 1 x 0 t ) f ( x 1 ) + Error ( E ) ( 1 ) f ( x ) = x x 0 t x x 1 ( t ) x 0 x 1 f x 0 + x x 0 x x 1 ( t ) x 0 + t x 1 f x 0 + t + x x 0 x x 0 t x x 0 x 1 x 0 t f x 1 +  Error  ( E ) ( 1 ) f(x)=((x-x_(0)-t)(x-x_(1)))/((-t)(x_(0)-x_(1)))f(x_(0))+((x-x_(0))(x-x_(1)))/((t)(x_(0)+t-x_(1)))f(x_(0)+t)+((x-x_(0))(x-x_(0)-t))/((x-x_(0))(x_(1)-x_(0)-t))f(x_(1))+” Error “(E)rarr(1)f(x)=\frac{\left(x-x_0-t\right)\left(x-x_1\right)}{(-t)\left(x_0-x_1\right)} f\left(x_0\right)+\frac{\left(x-x_0\right)\left(x-x_1\right)}{(t)\left(x_0+t-x_1\right)} f\left(x_0+t\right)+\frac{\left(x-x_0\right)\left(x-x_0-t\right)}{\left(x-x_0\right)\left(x_1-x_0-t\right)} f\left(x_1\right)+\text { Error }(E) \rightarrow(1)f(x)=(xx0t)(xx1)(t)(x0x1)f(x0)+(xx0)(xx1)(t)(x0+tx1)f(x0+t)+(xx0)(xx0t)(xx0)(x1x0t)f(x1)+ Error (E)(1)
Where E = ( x x 0 ) ( x x 0 t ) ( x x 1 ) 3 ! f ( ξ ) E = x x 0 x x 0 t x x 1 3 ! f ( ξ ) E=((x-x_(0))(x-x_(0)-t)(x-x_(1)))/(3!)f^(”)(xi)E=\frac{\left(x-x_0\right)\left(x-x_0-t\right)\left(x-x_1\right)}{3 !} f^{\prime \prime}(\xi)E=(xx0)(xx0t)(xx1)3!f(ξ)
Step 2: Taylor’s Series
By Taylor’s series, we can express f ( x 0 + t ) f ( x 0 + t ) f(x_(0)+t)f(x_0+t)f(x0+t) as follows:
f ( x 0 + t ) = f ( x 0 ) + t f ( x 0 ) + t 2 2 ! f ( x 0 ) + f x 0 + t = f x 0 + t f x 0 + t 2 2 ! f x 0 + f(x_(0)+t)=f(x_(0))+tf^(‘)(x_(0))+(t^(2))/(2!)f^(”)(x_(0))+dotsf\left(x_0+t\right)=f\left(x_0\right)+t f^{\prime}\left(x_0\right)+\frac{t^2}{2 !} f^{\prime \prime}\left(x_0\right)+\ldotsf(x0+t)=f(x0)+tf(x0)+t22!f(x0)+
Step 3: Simplifying Equation (1)
Now, from Equation (1), we simplify it by neglecting higher-order terms of t t ttt and obtain:
f ( x ) = ( x x 0 t ) ( x x 1 ) ( t ) ( x 0 x 1 ) f ( x 0 ) + [ ( x x 0 ) ( x x 1 ) t ( x 0 + t x 1 ) [ f ( x 0 ) + t f ( x 0 ) ] ] + ( x x 0 ) ( x x 0 + t ) ( x 1 x 0 ) ( x 1 x 0 t ) f ( x 1 ) + E = ( x x 1 ) f ( x 0 ) t [ x x 0 t x 0 x 1 + x x 0 x 0 + t x 1 ] + ( x x 0 ) ( x x 1 ) x 0 + t x 1 f ( x 0 ) + ( x x 0 ) ( x x 0 + t ) ( x 1 x 0 ) ( x 1 x 0 t ) f ( x 1 ) + E = ( x x 1 ) f ( x 0 ) t [ x x 0 x 0 x 1 + t x 0 x 1 + x x 0 x 0 + t x 1 ] + ( x x 0 ) ( x x 1 ) x 0 + t x 1 f ( x 0 ) + ( x x 0 ) ( x x 0 + t ) ( x 1 x 0 ) ( x 1 x 0 t ) f ( x 1 ) + E = ( x x 1 ) f ( x 0 ) [ x x 0 ( x 0 x 1 ) ( x 0 + t x 1 ) + 1 x x 1 ] + ( x x 0 ) ( x x 1 ) f ( x 0 ) x 0 + t x 1 + ( x x 0 ) ( x x 0 + t ) ( x 1 x 0 ) ( x 1 x 0 t ) f ( x 1 ) + E f ( x ) = x x 0 t x x 1 ( t ) x 0 x 1 f x 0 + x x 0 x x 1 t x 0 + t x 1 f x 0 + t f x 0 + x x 0 x x 0 + t x 1 x 0 x 1 x 0 t f x 1 + E = x x 1 f x 0 t x x 0 t x 0 x 1 + x x 0 x 0 + t x 1 + x x 0 x x 1 x 0 + t x 1 f x 0 + x x 0 x x 0 + t x 1 x 0 x 1 x 0 t f x 1 + E = x x 1 f x 0 t x x 0 x 0 x 1 + t x 0 x 1 + x x 0 x 0 + t x 1 + x x 0 x x 1 x 0 + t x 1 f x 0 + x x 0 x x 0 + t x 1 x 0 x 1 x 0 t f x 1 + E = x x 1 f x 0 x x 0 x 0 x 1 x 0 + t x 1 + 1 x x 1 + x x 0 x x 1 f x 0 x 0 + t x 1 + x x 0 x x 0 + t x 1 x 0 x 1 x 0 t f x 1 + E {:[f(x)=((x-x_(0)-t)(x-x_(1)))/((-t)(x_(0)-x_(1)))f(x_(0))+[((x-x_(0))(x-x_(1)))/(t(x_(0)+t-x_(1)))[f(x_(0))+tf^(‘)(x_(0))]]+((x-x_(0))(x-x_(0)+t))/((x_(1)-x_(0))(x_(1)-x_(0)-t))f(x_(1))+E],[=(x-x_(1))(f(x_(0)))/(t)[-(x-x_(0)-t)/(x_(0)-x_(1))+(x-x_(0))/(x_(0)+t-x_(1))]+((x-x_(0))(x-x_(1)))/(x_(0)+t-x_(1))f^(‘)(x_(0))+((x-x_(0))(x-x_(0)+t))/((x_(1)-x_(0))(x_(1)-x_(0)-t))f(x_(1))+E],[=(x-x_(1))(f(x_(0)))/(t)[-(x-x_(0))/(x_(0)-x_(1))+(t)/(x_(0)-x_(1))+(x-x_(0))/(x_(0)+t-x_(1))]+((x-x_(0))(x-x_(1)))/(x_(0)+t-x_(1))f^(‘)(x_(0))+((x-x_(0))(x-x_(0)+t))/((x_(1)-x_(0))(x_(1)-x_(0)-t))f(x_(1))+E],[=(x-x_(1))f(x_(0))[(x-x_(0))/((x_(0)-x_(1))(x_(0)+t-x_(1)))+(1)/(x-x_(1))]+(x-x_(0))(x-x_(1))(f^(‘)(x_(0)))/(x_(0)+t-x_(1))+((x-x_(0))(x-x_(0)+t))/((x_(1)-x_(0))(x_(1)-x_(0)-t))f(x_(1))+E]:}\begin{aligned} & f(x)=\frac{\left(x-x_0-t\right)\left(x-x_1\right)}{(-t)\left(x_0-x_1\right)} f\left(x_0\right)+\left[\frac{\left(x-x_0\right)\left(x-x_1\right)}{t\left(x_0+t-x_1\right)}\left[f\left(x_0\right)+t f^{\prime}\left(x_0\right)\right]\right]+\frac{\left(x-x_0\right)\left(x-x_0+t\right)}{\left(x_1-x_0\right)\left(x_1-x_0-t\right)} f\left(x_1\right)+E \\ & =\left(x-x_1\right) \frac{f\left(x_0\right)}{t}\left[-\frac{x-x_0-t}{x_0-x_1}+\frac{x-x_0}{x_0+t-x_1}\right]+\frac{\left(x-x_0\right)\left(x-x_1\right)}{x_0+t-x_1} f^{\prime}\left(x_0\right)+\frac{\left(x-x_0\right)\left(x-x_0+t\right)}{\left(x_1-x_0\right)\left(x_1-x_0-t\right)} f\left(x_1\right)+E \\ & =\left(x-x_1\right) \frac{f\left(x_0\right)}{t}\left[-\frac{x-x_0}{x_0-x_1}+\frac{t}{x_0-x_1}+\frac{x-x_0}{x_0+t-x_1}\right]+\frac{\left(x-x_0\right)\left(x-x_1\right)}{x_0+t-x_1} f^{\prime}\left(x_0\right)+\frac{\left(x-x_0\right)\left(x-x_0+t\right)}{\left(x_1-x_0\right)\left(x_1-x_0-t\right)} f\left(x_1\right)+E \\ & =\left(x-x_1\right) f\left(x_0\right)\left[\frac{x-x_0}{\left(x_0-x_1\right)\left(x_0+t-x_1\right)}+\frac{1}{x-x_1}\right]+\left(x-x_0\right)\left(x-x_1\right) \frac{f^{\prime}\left(x_0\right)}{x_0+t-x_1}+\frac{\left(x-x_0\right)\left(x-x_0+t\right)}{\left(x_1-x_0\right)\left(x_1-x_0-t\right)} f\left(x_1\right)+E \end{aligned}f(x)=(xx0t)(xx1)(t)(x0x1)f(x0)+[(xx0)(xx1)t(x0+tx1)[f(x0)+tf(x0)]]+(xx0)(xx0+t)(x1x0)(x1x0t)f(x1)+E=(xx1)f(x0)t[xx0tx0x1+xx0x0+tx1]+(xx0)(xx1)x0+tx1f(x0)+(xx0)(xx0+t)(x1x0)(x1x0t)f(x1)+E=(xx1)f(x0)t[xx0x0x1+tx0x1+xx0x0+tx1]+(xx0)(xx1)x0+tx1f(x0)+(xx0)(xx0+t)(x1x0)(x1x0t)f(x1)+E=(xx1)f(x0)[xx0(x0x1)(x0+tx1)+1xx1]+(xx0)(xx1)f(x0)x0+tx1+(xx0)(xx0+t)(x1x0)(x1x0t)f(x1)+E
Step 4: Taking the Limit ε 0 ε 0 epsi rarr0\varepsilon \rightarrow 0ε0
As t t ttt tends to 0 0 000, we get the final relation:
f ( x ) = ( x 1 x ) ( x + x 1 2 x 0 ) ( x 1 x 0 ) 2 f ( x 0 ) + ( x x 0 ) ( x 1 x ) ( x 1 x 0 ) f ( x 0 ) + ( x x 0 ) 2 ( x 1 x 0 ) f ( x 1 ) + E f ( x ) = x 1 x x + x 1 2 x 0 x 1 x 0 2 f x 0 + x x 0 x 1 x x 1 x 0 f x 0 + x x 0 2 x 1 x 0 f x 1 + E f(x)=((x_(1)-x)(x+x_(1)-2x_(0)))/((x_(1)-x_(0))^(2))f(x_(0))+((x-x_(0))(x_(1)-x))/((x_(1)-x_(0)))f^(‘)(x_(0))+((x-x_(0))^(2))/((x_(1)-x_(0)))f(x_(1))+Ef(x)=\frac{\left(x_1-x\right)\left(x+x_1-2 x_0\right)}{\left(x_1-x_0\right)^2} f\left(x_0\right)+\frac{\left(x-x_0\right)\left(x_1-x\right)}{\left(x_1-x_0\right)} f^{\prime}\left(x_0\right)+\frac{\left(x-x_0\right)^2}{\left(x_1-x_0\right)} f\left(x_1\right)+Ef(x)=(x1x)(x+x12x0)(x1x0)2f(x0)+(xx0)(x1x)(x1x0)f(x0)+(xx0)2(x1x0)f(x1)+E
Where E = ( x x 0 ) ( x x 1 ) 6 f ( ξ ) E = x x 0 x x 1 6 f ( ξ ) E=((x-x_(0))(x-x_(1)))/(6)f^(”’)(xi)E=\frac{\left(x-x_0\right)\left(x-x_1\right)}{6} f^{\prime \prime \prime}(\xi)E=(xx0)(xx1)6f(ξ) with min ( x 0 , x 0 + ε , x 1 ) < ξ < max ( x 0 , x 0 + ε , x 1 ) min x 0 , x 0 + ε , x 1 < ξ < max x 0 , x 0 + ε , x 1 min(x_(0),x_(0)+epsi,x_(1)) < xi < max(x_(0),x_(0)+epsi,x_(1))\min\left(x_0, x_0+\varepsilon, x_1\right)<\xi<\max\left(x_0, x_0+\varepsilon, x_1\right)min(x0,x0+ε,x1)<ξ<max(x0,x0+ε,x1).
Conclusion:
The desired relation for f ( x ) f ( x ) f(x)f(x)f(x) is established as described, and it includes the error function E ( x ) E ( x ) E(x)E(x)E(x).
  1. (c) m 2 m 2 (m)/(2)\frac{m}{2}m2 शक्ति वाले दो स्रोत, बिन्दुओं ( ± a , 0 ) ( ± a , 0 ) (+-a,0)(\pm a, 0)(±a,0) पर स्थित हैं। दर्शाइए कि वृत x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2 के किसी भी बिन्दु पर वेग y y yyy-अक्ष के समान्तर तथा y y yyy के व्युत्क्रमानुपाती है।
Two sources of strength m 2 m 2 (m)/(2)\frac{m}{2}m2 are placed at the points ( ± a , 0 ) ( ± a , 0 ) (+-a,0)(\pm a, 0)(±a,0). Show that at any point on the circle x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2, the velocity is parallel to the y y yyy-axis and is inversely proportional to y y yyy.
Answer:
Introduction:
The problem involves two sources of strength m 2 m 2 (m)/(2)\frac{m}{2}m2 placed at the points ( ± a , 0 ) ( ± a , 0 ) (+-a,0)(\pm a, 0)(±a,0). The goal is to demonstrate that at any point on the circle x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2, the velocity is parallel to the y y yyy-axis and inversely proportional to y y yyy.
Step 1: Complex Potential Calculation
Given the strength of the source is m 2 m 2 (m)/(2)\frac{m}{2}m2, we can calculate the complex potential as follows:
w = m 2 ln ( z a ) m 2 ln ( z + a ) q = d w d z = m 2 [ 1 z a + 1 z + a ] w = m 2 ln ( z a ) m 2 ln ( z + a ) q = d w d z = m 2 1 z a + 1 z + a {:[w=-(m)/(2)ln(z-a)-(m)/(2)ln(z+a)],[q=(dw)/(dz)=-(m)/(2)[(1)/(z-a)+(1)/(z+a)]]:}\begin{aligned} & w=-\frac{m}{2} \ln (z-a)-\frac{m}{2} \ln (z+a) \\ & q=\frac{\mathbf{d} w}{\mathbf{d} z}=-\frac{m}{2}\left[\frac{1}{z-a}+\frac{1}{z+a}\right] \end{aligned}w=m2ln(za)m2ln(z+a)q=dwdz=m2[1za+1z+a]
Step 2: Simplifying q q qqq
Simplify the expression for q q qqq as follows:
q = m 2 [ z + a + z a ( z a ) ( z + a ) ] = m 2 [ 2 z ( z a ) ( z + a ) ] = m z z 2 a 2 ( 1 ) q = m 2 z + a + z a ( z a ) ( z + a ) = m 2 2 z ( z a ) ( z + a ) = m z z 2 a 2 ( 1 ) q=-(m)/(2)[(z+a+z-a)/((z-a)(z+a))]=-(m)/(2)[(2z)/((z-a)(z+a))]=-(mz)/(z^(2)-a^(2))rarr(1)q=-\frac{m}{2}\left[\frac{z+a+z-a}{(z-a)(z+a)}\right]=-\frac{m}{2}\left[\frac{2 z}{(z-a)(z+a)}\right]=-\frac{m z}{z^2-a^2} \rightarrow(1)q=m2[z+a+za(za)(z+a)]=m2[2z(za)(z+a)]=mzz2a2(1)
Step 3: Parameterize Points on the Circle
We parameterize points on the circle x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2 as follows:
z = x + iy on circle x 2 + y 2 = a 2 x = a cos θ , y = a sin θ z = x + iy on circle  x 2 + y 2 = a 2 x = a cos θ , y = a sin θ z=x+”iy on circle “x^(2)+y^(2)=a^(2)=>x=a cos theta,y=a sin thetaz=x+\text{iy on circle } x^2+y^2=a^2 \Rightarrow x=a \cos \theta, y=a \sin \thetaz=x+iy on circle x2+y2=a2x=acosθ,y=asinθ
Step 4: Express z z zzz in Terms of θ θ theta\thetaθ
Express z z zzz in terms of θ θ theta\thetaθ as follows:
z = a [ cos θ + i sin θ ] = a e i θ z = a [ cos θ + i sin θ ] = a e i θ z=a[cos theta+i sin theta]=ae^(i theta)z=a[\cos \theta+i \sin \theta]=a e^{i \theta}z=a[cosθ+isinθ]=aeiθ
Step 5: Substituting z z zzz into Equation (1)
Substitute z z zzz into Equation (1) as follows:
q = m a e i θ a 2 e 2 i θ a 2 = m a [ e i θ e i θ ] = 2 m a [ e i θ e i θ ] = 2 m 2 a [ e i θ e i θ ] = m 2 a i sin θ ( sin θ = e i θ e i θ 2 i ) q = m a e i θ a 2 e 2 i θ a 2 = m a e i θ e i θ = 2 m a e i θ e i θ = 2 m 2 a e i θ e i θ = m 2 a i sin θ sin θ = e i θ e i θ 2 i q=-(mae^(i theta))/(a^(2)e^(2i theta)-a^(2))=-(m)/(a[e^(i theta)-e^(-i theta)])=-(2m)/(a[e^(i theta)-e^(-i theta)])=-(2m)/(2a[e^(i theta)-e^(-i theta)])=-(m)/(2ai sin theta)(sin theta=(e^(i theta)-e^(i theta))/(2i))q=-\frac{m a e^{i \theta}}{a^2 e^{2 i \theta}-a^2}=-\frac{m}{a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{2 m}{a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{2 m}{2 a\left[e^{i \theta}-e^{-i \theta}\right]}=-\frac{m}{2 a i \sin \theta}\left(\sin \theta=\frac{e^{i \theta}-e^{i \theta}}{2i}\right)q=maeiθa2e2iθa2=ma[eiθeiθ]=2ma[eiθeiθ]=2m2a[eiθeiθ]=m2aisinθ(sinθ=eiθeiθ2i)
q = m y ( q = m y ( q=-(m)/(y)(q=-\frac{m}{ y}(q=my( because y = a sin θ ) y = a sin θ ) y=a sin theta)y=a \sin \theta)y=asinθ)
Step 6: Final Conclusion
Conclude that q α 1 y q α 1 y q alpha(1)/(y)q \alpha \frac{1}{y}qα1y, indicating that the velocity is parallel to the y y yyy-axis and inversely proportional to y y yyy.
Conclusion:
The analysis demonstrates that at any point on the circle x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2, the velocity is indeed parallel to the y y yyy-axis and inversely proportional to y y yyy.
Scroll to Top
Scroll to Top