Free UPSC Mathematics Optional Paper-2 2021 Solutions: View Online | UPSC Maths Solution | IAS Maths Solution

खण्ड-A / SECTION-A
  1. (a) मान लीजिए कि m 1 , m 2 , , m k m 1 , m 2 , , m k m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_km1,m2,,mk धनात्मक पूर्णांक हैं तथा d > 0 , m 1 , m 2 , , m k d > 0 , m 1 , m 2 , , m k d > 0,m_(1),m_(2),cdots,m_(k)d>0, m_1, m_2, \cdots, m_kd>0,m1,m2,,mk का महत्तम समापवर्तक है। दर्शाइए कि ऐसे पूर्णांक x 1 , x 2 , , x k x 1 , x 2 , , x k x_(1),x_(2),cdots,x_(k)x_1, x_2, \cdots, x_kx1,x2,,xk अस्तित्व में हैं ताकि
d = x 1 m 1 + x 2 m 2 + + x k m k d = x 1 m 1 + x 2 m 2 + + x k m k d=x_(1)m_(1)+x_(2)m_(2)+cdots+x_(k)m_(k)d=x_1 m_1+x_2 m_2+\cdots+x_k m_kd=x1m1+x2m2++xkmk
Let m 1 , m 2 , , m k m 1 , m 2 , , m k m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_km1,m2,,mk be positive integers and d > 0 d > 0 d > 0d>0d>0 the greatest common divisor of m 1 , m 2 , , m k m 1 , m 2 , , m k m_(1),m_(2),cdots,m_(k)m_1, m_2, \cdots, m_km1,m2,,mk. Show that there exist integers x 1 , x 2 , , x k x 1 , x 2 , , x k x_(1),x_(2),cdots,x_(k)x_1, x_2, \cdots, x_kx1,x2,,xk such that
d = x 1 m 1 + x 2 m 2 + + x k m k d = x 1 m 1 + x 2 m 2 + + x k m k d=x_(1)m_(1)+x_(2)m_(2)+cdots+x_(k)m_(k)d=x_1 m_1+x_2 m_2+\cdots+x_k m_kd=x1m1+x2m2++xkmk
Answer:
Step 1: Defining a Set S
Let s = { a u + b v | u , v s = { a u + b v | u , v s={au+bv|u,vs=\{a u+b v \,|\, u, vs={au+bv|u,v are integers and a u + b v > 0 } a u + b v > 0 } au+bv > 0}a u+b v>0\}au+bv>0}
Step 2: Investigating Cases for a a aaa and b b bbb
If a > 0 a > 0 a > 0a>0a>0, then a = a 1 + b ( 0 ) > 0 a = a 1 + b ( 0 ) > 0 a=a1+b(0) > 0a=a 1+b(0)>0a=a1+b(0)>0, which implies that a > 0 a > 0 a > 0a>0a>0.
If a < 0 a < 0 a < 0a<0a<0, then a = a ( 1 ) + b ( 0 ) > 0 a = a ( 1 ) + b ( 0 ) > 0 -a=a(-1)+b(0) > 0-a=a(-1)+b(0)>0a=a(1)+b(0)>0, which implies that a S a S -a in S-a \in SaS.
Similarly, if b > 0 b > 0 b > 0b>0b>0, then b S b S b in Sb \in SbS.
If b < 0 b < 0 b < 0b<0b<0, then b S b S -b in S-b \in SbS.
Therefore, S ϕ S ϕ S!=phiS \neq \phiSϕ and S S SSS contains positive integers.
By the well-ordering principle, S S SSS has a least element, say d d ddd.
Step 3: Proving that d d ddd is the GCD of a a aaa and b b bbb
Now we have d S d S d in Sd \in SdS such that d = a x + b y ( 1 ) d = a x + b y ( 1 ) d=ax+by—-(1)d=a x+b y—-(1)d=ax+by(1) for some integers x , y x , y x,yx, yx,y.
Also, d > 0 d > 0 d > 0d>0d>0.
To prove that d d ddd is the greatest common divisor (GCD) of a a aaa and b b bbb, consider the following:
Let a = d q + r ( 2 ) a = d q + r ( 2 ) a=dq+r—-(2)a=\mathbf{d} q+r—-(2)a=dq+r(2) (where 0 r < d 0 r < d 0 <= r < d0 \leqslant r < d0r<d) be a division of a a aaa by d d ddd.
If r 0 r 0 r!=0r \neq 0r0, then r = a d q r = a d q r=a-dqr=a-\mathbf{d} qr=adq.
= a ( a x + b y ) q (as d = a x + b y ) = a ( 1 λ q ) + b ( y z ) > 0 (since 1 λ q , y q are integers ) r > 0 , r S if r < d and r S = a ( a x + b y ) q (as  d = a x + b y ) = a ( 1 λ q ) + b ( y z ) > 0 (since  1 λ q , y q  are integers ) r > 0 , r S  if  r < d  and  r S {:[=a-(ax+by)q quad(as d=ax+by”)”],[=a(1-lambda q)+b(-yz) > 0quad(since 1-lambda q”,”-yq” are integers”)],[r > 0″,”r in S” if “r < d” and “r in S]:}\begin{aligned} &=a-(a x+b y) q \quad \text{(as } d=a x+b y\text{)} \\ &=a(1-\lambda q)+b(-y z)>0 \quad \text{(since } 1-\lambda q, -yq\text{ are integers}) \\ &r>0, r \in S \text{ if } r<d \text{ and } r \in S \end{aligned}=a(ax+by)q(as d=ax+by)=a(1λq)+b(yz)>0(since 1λq,yq are integers)r>0,rS if r<d and rS
This leads to a contradiction since d d ddd is the least element of S S SSS.
Therefore, r = 0 r = 0 r=0r=0r=0, and we have a = d q a = d q a=dqa=\mathbf{d} qa=dq.
This implies that a d = q a d = q (a)/(d)=q\frac{a}{d}=qad=q and d a d a (d)/(a)\frac{d}{a}da are integers.
Similarly, d b d b (d)/(b)\frac{d}{b}db is also an integer.
Step 4: Proving Uniqueness of GCD
Suppose C c , c b c a x + b y c d C c , c b c a x + b y c d (C)/(c),(c)/(b)=>(c)/(ax+by)=>(c)/(d)\frac{C}{c}, \frac{c}{b} \Rightarrow \frac{c}{a x+b y} \Rightarrow \frac{c}{d}Cc,cbcax+bycd
Therefore d a , d b d a , d b (d)/(a),(d)/(b)\frac{\mathbf{d}}{a}, \frac{d}{b}da,db also if c a , c b c d c a , c b c d (c)/(a),(c)/(b)=>(c)/(d)\frac{c}{a}, \frac{c}{b} \Rightarrow \frac{c}{d}ca,cbcd
d d ddd is gcd of a a aaa and b b bbb
If possible d d d^(‘)d’d is also gcd of a a aaa and b b bbb
Then d a , d b d d d a , d b d d (d^(‘))/(a),(d^(‘))/(b)=>(d)/(d^(‘))rarr\frac{d^{\prime}}{a}, \frac{d^{\prime}}{b} \Rightarrow \frac{d}{d^{\prime}} \rightarrowda,dbdd (3)
Similarly, d c , d b d d d c , d b d d (d)/(c),(d)/(b)=>(d^(‘))/(d)rarr\frac{\mathbf{d}}{c}, \frac{d}{b} \Rightarrow \frac{d^{\prime}}{d} \rightarrowdc,dbdd (4)
This implies d d d d (d)/(d^(‘))\frac{d}{d^{\prime}}dd (from the divisibility relation) which, in turn, implies d = d d = d d=d^(‘)d=d^{\prime}d=d (from the uniqueness of GCD).
Step 5: Extending the Argument
The above argument can be extended to more than two integers.
If d = gcd ( m 1 , m 2 , , m k ) d = gcd m 1 , m 2 , , m k d=gcd(m_(1),m_(2),dots,m_(k))d=\operatorname{gcd}\left(m_1, m_2, \ldots, m_k\right)d=gcd(m1,m2,,mk), there exist integers λ 1 , λ 2 , , λ k λ 1 , λ 2 , , λ k lambda_(1),lambda_(2),dots,lambda _(k)\lambda_1, \lambda_2, \ldots, \lambda_kλ1,λ2,,λk such that
d = λ 1 m 1 + λ 2 m 2 + + m k λ k d = λ 1 m 1 + λ 2 m 2 + + λ k m k d = λ 1 m 1 + λ 2 m 2 + + m k λ k d = λ 1 m 1 + λ 2 m 2 + + λ k m k {:[d=lambda_(1)m_(1)+lambda_(2)m_(2)+dots+m_(k)lambda _(k)],[=>d=lambda_(1)m_(1)+lambda_(2)m_(2)+dots+lambda _(k)m_(k)]:}\begin{aligned} & d=\lambda_1 m_1+\lambda_2 m_2+\ldots+m_k \lambda_k \\ & \Rightarrow d=\lambda_1 m_1+\lambda_2 m_2+\ldots+\lambda_k m_k \end{aligned}d=λ1m1+λ2m2++mkλkd=λ1m1+λ2m2++λkmk
This concludes the proof.
(b) श्रेणी
x 4 + x 4 1 + x 4 + x 4 ( 1 + x 4 ) 2 + x 4 ( 1 + x 4 ) 3 + x 4 + x 4 1 + x 4 + x 4 1 + x 4 2 + x 4 1 + x 4 3 + x^(4)+(x^(4))/(1+x^(4))+(x^(4))/((1+x^(4))^(2))+(x^(4))/((1+x^(4))^(3))+cdotsx^4+\frac{x^4}{1+x^4}+\frac{x^4}{\left(1+x^4\right)^2}+\frac{x^4}{\left(1+x^4\right)^3}+\cdotsx4+x41+x4+x4(1+x4)2+x4(1+x4)3+
के [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] पर एकसमान अभिसरण की जाँच कीजिए।
Test the uniform convergence of the series
x 4 + x 4 1 + x 4 + x 4 ( 1 + x 4 ) 2 + x 4 ( 1 + x 4 ) 3 + x 4 + x 4 1 + x 4 + x 4 1 + x 4 2 + x 4 1 + x 4 3 + x^(4)+(x^(4))/(1+x^(4))+(x^(4))/((1+x^(4))^(2))+(x^(4))/((1+x^(4))^(3))+cdotsx^4+\frac{x^4}{1+x^4}+\frac{x^4}{\left(1+x^4\right)^2}+\frac{x^4}{\left(1+x^4\right)^3}+\cdotsx4+x41+x4+x4(1+x4)2+x4(1+x4)3+
on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1].
Answer:

Preliminaries

Definition: Uniform Convergence

A series n = 0 f n ( x ) n = 0 f n ( x ) sum_(n=0)^(oo)f_(n)(x)\sum_{n=0}^{\infty} f_n(x)n=0fn(x) is said to be uniformly convergent on a set S S SSS if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists an N N N N N inNN \in \mathbb{N}NN such that for all m > N m > N m > Nm > Nm>N and for all x S x S x in Sx \in SxS,
| n = m + 1 f n ( x ) | < ϵ n = m + 1 f n ( x ) < ϵ |sum_(n=m+1)^(oo)f_(n)(x)| < epsilon\left| \sum_{n=m+1}^{\infty} f_n(x) \right| < \epsilon|n=m+1fn(x)|<ϵ

Approach

Step 1: Recognize the Series as a Geometric Series

Explanation

For each fixed x x xxx, the series is a geometric series. A geometric series is a series of the form n = 0 a r n n = 0 a r n sum_(n=0)^(oo)a*r^(n)\sum_{n=0}^{\infty} a \cdot r^nn=0arn, where a a aaa is the first term and r r rrr is the common ratio.

Application to Our Series

In our case, the first term a = x 4 a = x 4 a=x^(4)a = x^4a=x4 and the common ratio r = 1 1 + x 4 r = 1 1 + x 4 r=(1)/(1+x^(4))r = \frac{1}{1+x^4}r=11+x4.

Step 2: Find the n t h n t h n^(th)n^{th}nth Partial Sum s n ( x ) s n ( x ) s_(n)(x)s_n(x)sn(x)

Explanation

The n t h n t h n^(th)n^{th}nth partial sum of a geometric series is given by:
s n = a ( 1 r n ) 1 r s n = a ( 1 r n ) 1 r s_(n)=(a(1-r^(n)))/(1-r)s_n = \frac{a(1 – r^n)}{1 – r}sn=a(1rn)1r
if r 1 r 1 r!=1r \neq 1r1.

Application to Our Series

For our series, the n t h n t h n^(th)n^{th}nth partial sum s n ( x ) s n ( x ) s_(n)(x)s_n(x)sn(x) becomes:
s n ( x ) = x 4 ( 1 ( 1 1 + x 4 ) n ) 1 1 1 + x 4 = 1 + x 4 1 ( 1 + x 4 ) n 1 s n ( x ) = x 4 ( 1 1 1 + x 4 n ) 1 1 1 + x 4 = 1 + x 4 1 ( 1 + x 4 ) n 1 s_(n)(x)=(x^(4)(1-((1)/(1+x^(4)))^(n)))/(1-(1)/(1+x^(4)))=1+x^(4)-(1)/((1+x^(4))^(n-1))s_n(x) = \frac{x^4(1 – \left(\frac{1}{1+x^4}\right)^n)}{1 – \frac{1}{1+x^4}} = 1+x^4-\frac{1}{(1+x^4)^{n-1}}sn(x)=x4(1(11+x4)n)111+x4=1+x41(1+x4)n1

Step 3: Determine the Limit Function S ( x ) S ( x ) S(x)S(x)S(x)

Explanation

The limit function S ( x ) S ( x ) S(x)S(x)S(x) is defined as:
S ( x ) = lim n s n ( x ) S ( x ) = lim n s n ( x ) S(x)=lim_(n rarr oo)s_(n)(x)S(x) = \lim_{n \rightarrow \infty} s_n(x)S(x)=limnsn(x)

Application to Our Series

As n n n rarr oon \to \inftyn, s n ( x ) s n ( x ) s_(n)(x)s_n(x)sn(x) approaches:
S ( x ) = { 1 + x 4 , if x 0 0 , if x = 0 S ( x ) = 1 + x 4 ,      if  x 0 0 ,      if  x = 0 S(x)={[1+x^(4)”,”,”if “x!=0],[0″,”,”if “x=0]:}S(x) = \begin{cases} 1+x^4, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}S(x)={1+x4,if x00,if x=0

Step 4: Check for Discontinuity

Explanation

A uniformly convergent series of continuous functions must converge to a continuous limit function.

Application to Our Series

The limit function S ( x ) S ( x ) S(x)S(x)S(x) is discontinuous at x = 0 x = 0 x=0x = 0x=0. This implies that the original series cannot be uniformly convergent, as a uniformly convergent series of continuous functions would converge to a continuous function.

Conclusion

By the definition of uniform convergence and the properties of geometric series, we conclude that the series n = 0 x 4 ( 1 + x 4 ) n n = 0 x 4 ( 1 + x 4 ) n sum_(n=0)^(oo)(x^(4))/((1+x^(4))^(n))\sum_{n=0}^{\infty} \frac{x^4}{(1+x^4)^n}n=0x4(1+x4)n is not uniformly convergent on the interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1] because its limit function S ( x ) S ( x ) S(x)S(x)S(x) is discontinuous at x = 0 x = 0 x=0x = 0x=0.
(c) यदि एक फलन f f fff, अन्तराल [ a , b ] [ a , b ] [a,b][a, b][a,b] में एकदिष्ट है, तब सिद्ध कीजिए कि f , [ a , b ] f , [ a , b ] f,[a,b]f,[a, b]f,[a,b] में रीमान समाकलनीय है।
If a function f f fff is monotonic in the interval [ a , b ] [ a , b ] [a,b][a, b][a,b], then prove that f f fff is Riemann integrable in [ a , b ] [ a , b ] [a,b][a, b][a,b].
Answer:
To prove that a monotonic function f f fff is Riemann integrable on the interval [ a , b ] [ a , b ] [a,b][a, b][a,b], we need to show that for any given ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a partition P P PPP of [ a , b ] [ a , b ] [a,b][a, b][a,b] such that the upper sum U ( f , P ) U ( f , P ) U(f,P)U(f, P)U(f,P) and the lower sum L ( f , P ) L ( f , P ) L(f,P)L(f, P)L(f,P) satisfy:
U ( f , P ) L ( f , P ) < ϵ . U ( f , P ) L ( f , P ) < ϵ . U(f,P)-L(f,P) < epsilon.U(f, P) – L(f, P) < \epsilon.U(f,P)L(f,P)<ϵ.

Definitions:

  1. Monotonic Function: A function f f fff is said to be monotonic on [ a , b ] [ a , b ] [a,b][a, b][a,b] if it is either non-decreasing or non-increasing on that interval.
  2. Partition P P PPP: A partition P P PPP of [ a , b ] [ a , b ] [a,b][a, b][a,b] is a finite sequence a = x 0 < x 1 < < x n = b a = x 0 < x 1 < < x n = b a=x_(0) < x_(1) < dots < x_(n)=ba = x_0 < x_1 < \ldots < x_n = ba=x0<x1<<xn=b.
  3. Upper Sum U ( f , P ) U ( f , P ) U(f,P)U(f, P)U(f,P): Given a partition P P PPP, the upper sum is defined as:
U ( f , P ) = i = 1 n M i Δ x i , U ( f , P ) = i = 1 n M i Δ x i , U(f,P)=sum_(i=1)^(n)M_(i)Deltax_(i),U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i,U(f,P)=i=1nMiΔxi,
where M i = sup { f ( x ) : x [ x i 1 , x i ] } M i = sup { f ( x ) : x [ x i 1 , x i ] } M_(i)=s u p{f(x):x in[x_(i-1),x_(i)]}M_i = \sup \{ f(x) : x \in [x_{i-1}, x_i] \}Mi=sup{f(x):x[xi1,xi]} and Δ x i = x i x i 1 Δ x i = x i x i 1 Deltax_(i)=x_(i)-x_(i-1)\Delta x_i = x_i – x_{i-1}Δxi=xixi1.
  1. Lower Sum L ( f , P ) L ( f , P ) L(f,P)L(f, P)L(f,P): Given a partition P P PPP, the lower sum is defined as:
L ( f , P ) = i = 1 n m i Δ x i , L ( f , P ) = i = 1 n m i Δ x i , L(f,P)=sum_(i=1)^(n)m_(i)Deltax_(i),L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i,L(f,P)=i=1nmiΔxi,
where m i = inf { f ( x ) : x [ x i 1 , x i ] } m i = inf { f ( x ) : x [ x i 1 , x i ] } m_(i)=i n f{f(x):x in[x_(i-1),x_(i)]}m_i = \inf \{ f(x) : x \in [x_{i-1}, x_i] \}mi=inf{f(x):x[xi1,xi]} and Δ x i = x i x i 1 Δ x i = x i x i 1 Deltax_(i)=x_(i)-x_(i-1)\Delta x_i = x_i – x_{i-1}Δxi=xixi1.

Proof:

  1. Choose ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0: Let ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0 be given.
  2. Partition Size: Since f f fff is monotonic, it is bounded on [ a , b ] [ a , b ] [a,b][a, b][a,b]. Let M M MMM and m m mmm be the upper and lower bounds of f f fff on [ a , b ] [ a , b ] [a,b][a, b][a,b], respectively. Choose a partition size Δ x Δ x Delta x\Delta xΔx such that:
Δ x < ϵ M m . Δ x < ϵ M m . Delta x < (epsilon)/(M-m).\Delta x < \frac{\epsilon}{M – m}.Δx<ϵMm.
  1. Construct the Partition P P PPP: Divide the interval [ a , b ] [ a , b ] [a,b][a, b][a,b] into subintervals of length Δ x Δ x Delta x\Delta xΔx (the last interval may be smaller if [ b a ] [ b a ] [b-a][b-a][ba] is not a multiple of Δ x Δ x Delta x\Delta xΔx).
  2. Upper and Lower Sums: For each subinterval [ x i 1 , x i ] [ x i 1 , x i ] [x_(i-1),x_(i)][x_{i-1}, x_i][xi1,xi], the function f f fff will attain its maximum and minimum at the endpoints x i 1 x i 1 x_(i-1)x_{i-1}xi1 and x i x i x_(i)x_ixi (or vice versa) because f f fff is monotonic. Therefore, M i m i = f ( x i ) f ( x i 1 ) M i m i = f ( x i ) f ( x i 1 ) M_(i)-m_(i)=f(x_(i))-f(x_(i-1))M_i – m_i = f(x_i) – f(x_{i-1})Mimi=f(xi)f(xi1).
  3. Difference Between Upper and Lower Sums:
U ( f , P ) L ( f , P ) = i = 1 n ( M i m i ) Δ x i = i = 1 n ( f ( x i ) f ( x i 1 ) ) Δ x i = ( M m ) Δ x < ϵ . U ( f , P ) L ( f , P ) = i = 1 n ( M i m i ) Δ x i = i = 1 n ( f ( x i ) f ( x i 1 ) ) Δ x i = ( M m ) Δ x < ϵ . {:[U(f”,”P)-L(f”,”P)=sum_(i=1)^(n)(M_(i)-m_(i))Deltax_(i)],[=sum_(i=1)^(n)(f(x_(i))-f(x_(i-1)))Deltax_(i)],[=(M-m)Delta x],[ < epsilon.]:}\begin{aligned} U(f, P) – L(f, P) &= \sum_{i=1}^{n} (M_i – m_i) \Delta x_i \\ &= \sum_{i=1}^{n} (f(x_i) – f(x_{i-1})) \Delta x_i \\ &= (M – m) \Delta x \\ &< \epsilon. \end{aligned}U(f,P)L(f,P)=i=1n(Mimi)Δxi=i=1n(f(xi)f(xi1))Δxi=(Mm)Δx<ϵ.

Conclusion:

Since we can find a partition P P PPP such that U ( f , P ) L ( f , P ) < ϵ U ( f , P ) L ( f , P ) < ϵ U(f,P)-L(f,P) < epsilonU(f, P) – L(f, P) < \epsilonU(f,P)L(f,P)<ϵ for any given ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, the function f f fff is Riemann integrable on [ a , b ] [ a , b ] [a,b][a, b][a,b].
This completes the proof.
(d) मान लीजिए कि c : [ 0 , 1 ] C , c ( t ) = e 4 π i t , 0 t 1 c : [ 0 , 1 ] C , c ( t ) = e 4 π i t , 0 t 1 c:[0,1]rarrC,c(t)=e^(4pi it),0 <= t <= 1c:[0,1] \rightarrow \mathbb{C}, c(t)=e^{4 \pi i t}, 0 \leq t \leq 1c:[0,1]C,c(t)=e4πit,0t1 के द्वारा परिभाषित एक वक्र है। कन्दूर समाकल c d z 2 z 2 5 z + 2 c d z 2 z 2 5 z + 2 int _(c)(dz)/(2z^(2)-5z+2)\int_c \frac{d z}{2 z^2-5 z+2}cdz2z25z+2 का मान निकालिए।
Let c : [ 0 , 1 ] C c : [ 0 , 1 ] C c:[0,1]rarrCc:[0,1] \rightarrow \mathbb{C}c:[0,1]C be the curve, where c ( t ) = e 4 π i t , 0 t 1 c ( t ) = e 4 π i t , 0 t 1 c(t)=e^(4pi it),0 <= t <= 1c(t)=e^{4 \pi i t}, 0 \leq t \leq 1c(t)=e4πit,0t1. Evaluate the contour integral c d z 2 z 2 5 z + 2 c d z 2 z 2 5 z + 2 int _(c)(dz)/(2z^(2)-5z+2)\int_c \frac{d z}{2 z^2-5 z+2}cdz2z25z+2.
Answer:
Given Function and Circle
Let z ( t ) = e 4 π i t , 0 t 1 z ( t ) = e 4 π i t , 0 t 1 z(t)=e^(4pi it),0 <= t <= 1z(t)=e^{4\pi it}, 0 \leqslant t \leqslant 1z(t)=e4πit,0t1. Then, | Z ( t ) | = 1 | Z ( t ) | = 1 |Z(t)|=1|Z(t)| = 1|Z(t)|=1. Therefore, the curve C C CCC can be defined as the circle with the equation | z 0 | = 1 | z 0 | = 1 |z-0|=1|z – 0| = 1|z0|=1. This means that C C CCC is a circle of unit radius with its center at the origin ( 0 , 0 ) ( 0 , 0 ) (0,0)(0,0)(0,0) denoted as O O OOO.
Integral Setup
Let’s find the integral:
C : | z 0 | = 1 1 2 z 2 5 z + 2 d z = C : | z | = 1 f ( z ) d z C : | z 0 | = 1 1 2 z 2 5 z + 2 d z = C : | z | = 1 f ( z ) d z int_(C:|z-0|=1)(1)/(2z^(2)-5z+2)dz=int_(C:|z|=1)f(z)dz\int_{C:|z-0|=1} \frac{1}{2z^2-5z+2} \, dz = \int_{C:|z|=1} f(z) \, dzC:|z0|=112z25z+2dz=C:|z|=1f(z)dz
Here, f ( z ) = 1 2 z 2 5 z + 2 f ( z ) = 1 2 z 2 5 z + 2 f(z)=(1)/(2z^(2)-5z+2)f(z) = \frac{1}{2z^2-5z+2}f(z)=12z25z+2.
Partial Fraction Decomposition
We can perform partial fraction decomposition to simplify f ( z ) f ( z ) f(z)f(z)f(z):
= 1 ( 2 z 1 ) ( z 2 ) = 1 2 ( z 1 2 ) ( z 2 ) = 1 ( 2 z 1 ) ( z 2 ) = 1 2 z 1 2 ( z 2 ) {:[=(1)/((2z-1)(z-2))],[=(1)/(2(z-(1)/(2))(z-2))]:}\begin{aligned} & = \frac{1}{(2z-1)(z-2)} \\ & = \frac{1}{2\left(z-\frac{1}{2}\right)(z-2)} \end{aligned}=1(2z1)(z2)=12(z12)(z2)
Clearly, z = 1 2 z = 1 2 z=(1)/(2)z = \frac{1}{2}z=12 lies on the curve | z | = 1 | z | = 1 |z|=1|z| = 1|z|=1.
Residue Integration
Now, we can proceed with the integral:
C : | z 0 | = 1 f ( z ) d z = C 1 2 ( z 2 ) ( z 1 2 ) d z = C f ( z ) z 1 2 d z (2) C : | z 0 | = 1 f ( z ) d z = C 1 2 ( z 2 ) z 1 2 d z = C f ( z ) z 1 2 d z (2) {:[int_(C:|z-0|=1)f(z)dz=int _(C)((1)/(2(z-2)))/((z-(1)/(2)))dz],[=int _(C)(f(z))/(z-(1)/(2))dz quad(2)]:}\begin{aligned} & \int_{C:|z-0|=1} f(z) \, dz = \int_C \frac{\frac{1}{2(z-2)}}{\left(z-\frac{1}{2}\right)} \, dz \\ & = \int_C \frac{f(z)}{z-\frac{1}{2}} \, dz \quad \text{(2)} \end{aligned}C:|z0|=1f(z)dz=C12(z2)(z12)dz=Cf(z)z12dz(2)
Where f 1 ( z ) = 1 2 ( z 2 ) f 1 ( z ) = 1 2 ( z 2 ) f_(1)(z)=(1)/(2(z-2))f_1(z) = \frac{1}{2(z-2)}f1(z)=12(z2).
By Cauchy’s First Integral Formula,
C f 1 ( z ) z 1 2 d z = 2 π i f 1 ( 1 2 ) C 1 2 ( z 2 ) z 1 2 d z = 2 π i [ 1 2 ( 1 2 2 ) ] = π i 1 4 2 = 2 π i 3 = 2 π i 3 C f ( z ) d z = 2 π i 3 C f 1 ( z ) z 1 2 d z = 2 π i f 1 1 2 C 1 2 ( z 2 ) z 1 2 d z = 2 π i 1 2 1 2 2 = π i 1 4 2 = 2 π i 3 = 2 π i 3 C f ( z ) d z = 2 π i 3 {:[int _(C)(f_(1)(z))/(z-(1)/(2))dz=2pi if_(1)((1)/(2))],[=>int _(C)((1)/(2(z-2)))/(z-(1)/(2))dz=2pi i[(1)/(2((1)/(2)-2))]=((pi i)/(1-4))/(2)=(2pi i)/(-3)=-(2pi i)/(3)],[int _(C)f(z)dz=-(2pi i)/(3)]:}\begin{aligned} & \int_C \frac{f_1(z)}{z-\frac{1}{2}} \, dz = 2\pi if_1\left(\frac{1}{2}\right) \\ & \Rightarrow \int_C \frac{\frac{1}{2(z-2)}}{z-\frac{1}{2}} \, dz = 2\pi i\left[\frac{1}{2\left(\frac{1}{2}-2\right)}\right] = \frac{\frac{\pi i}{1-4}}{2} = \frac{2\pi i}{-3} = -\frac{2\pi i}{3} \\ & \int_C f(z) \, dz = -\frac{2\pi i}{3} \end{aligned}Cf1(z)z12dz=2πif1(12)C12(z2)z12dz=2πi[12(122)]=πi142=2πi3=2πi3Cf(z)dz=2πi3
Winding Number Calculation
Since C ( t ) = e 4 π t , 0 t 1 C ( t ) = e 4 π t , 0 t 1 C(t)=e^(4pi t),0 <= t <= 1C(t) = e^{4\pi t}, 0 \leqslant t \leqslant 1C(t)=e4πt,0t1, it is clear that curve C C CCC winds up two times about the origin with unit radius.
Therefore, the final result is:
C f ( z ) d z = 4 π i 3 C f ( z ) d z = 4 π i 3 int _(C)f(z)dz=-(4pi i)/(3)\int_C f(z) \, dz = -\frac{4\pi i}{3}Cf(z)dz=4πi3
(e) एक कम्पनी के एक विभाग के पाँच कर्मचारियों को पाँच कार्य सम्पन्न करने हैं। जितना समय (घंटों में) एक व्यक्ति एक कार्य को सम्पन्न करने के लिए लेता है, वह प्रभाविता आव्यूह में दिया गया है। इन पाँच कर्मचारियों को इन सभी कार्यों को इस तरह निर्धारित कीजिए जिससे कि समस्त कार्य सम्पन्न करने का समय न्यूनतम हो :
A department of a company has five employees with five jobs to be performed. The time (in hours) that each man takes to perform each job is given in the effectiveness matrix. Assign all the jobs to these five employees to minimize the total processing time :
1 2 3 4 5 A 10 5 13 15 16 B 3 9 18 13 6 C 10 7 2 2 2 D 7 11 9 7 12 E 7 9 10 4 12 1 2 3 4 5 A 10 5 13 15 16 B 3 9 18 13 6 C 10 7 2 2 2 D 7 11 9 7 12 E 7 9 10 4 12 {:[,1,2,3,4,5,],[A,10,5,13,15,16,],[B,3,9,18,13,6,],[C,10,7,2,2,2,],[D,7,11,9,7,12,],[E,7,9,10,4,12,],[,,,,,,]:}\begin{array}{|c|c|c|c|c|c|c|} \hline & 1 & 2 & 3 & 4 & 5 & \\ \hline A & 10 & 5 & 13 & 15 & 16 & \\ \hline B & 3 & 9 & 18 & 13 & 6 & \\ \hline C & 10 & 7 & 2 & 2 & 2 & \\ \hline D & 7 & 11 & 9 & 7 & 12 & \\ \hline E & 7 & 9 & 10 & 4 & 12 & \\ \hline & & & & & & \\ \hline \end{array}12345A105131516B3918136C107222D7119712E7910412
Answer:
Step 1: Original Cost Matrix
This is the original cost matrix:
1 2 3 4 5 A 10 5 13 15 16 B 3 9 18 13 6 C 10 7 2 2 2 D 7 11 9 7 12 E 7 9 10 4 12 1 2 3 4 5 A 10 5 13 15 16 B 3 9 18 13 6 C 10 7 2 2 2 D 7 11 9 7 12 E 7 9 10 4 12 {:[,1,2,3,4,5,],[A,10,5,13,15,16,],[B,3,9,18,13,6,],[C,10,7,2,2,2,],[D,7,11,9,7,12,],[E,7,9,10,4,12,],[,,,,,,]:}\begin{array}{|c|c|c|c|c|c|c|} \hline & 1 & 2 & 3 & 4 & 5 & \\ \hline A & 10 & 5 & 13 & 15 & 16 & \\ \hline B & 3 & 9 & 18 & 13 & 6 & \\ \hline C & 10 & 7 & 2 & 2 & 2 & \\ \hline D & 7 & 11 & 9 & 7 & 12 & \\ \hline E & 7 & 9 & 10 & 4 & 12 & \\ \hline & & & & & & \\ \hline \end{array}12345A105131516B3918136C107222D7119712E7910412
Step 2: Subtract Row Minima
Subtract the row minimum from each row:
5 0 8 10 11 ( 5 ) 0 6 15 10 3 ( 3 ) 8 5 0 0 0 ( 2 ) 0 4 2 0 5 ( 7 ) 3 5 6 0 8 ( 4 ) 5      0      8      10      11      ( 5 ) 0      6      15      10      3      ( 3 ) 8      5      0      0      0      ( 2 ) 0      4      2      0      5      ( 7 ) 3      5      6      0      8      ( 4 ) {:[5,0,8,10,11,(-5)],[0,6,15,10,3,(-3)],[8,5,0,0,0,(-2)],[0,4,2,0,5,(-7)],[3,5,6,0,8,(-4)]:}\begin{array}{rrrrrr} 5 & 0 & 8 & 10 & 11 & (-5) \\ 0 & 6 & 15 & 10 & 3 & (-3) \\ 8 & 5 & 0 & 0 & 0 & (-2) \\ 0 & 4 & 2 & 0 & 5 & (-7) \\ 3 & 5 & 6 & 0 & 8 & (-4) \end{array}5081011(5)0615103(3)85000(2)04205(7)35608(4)
Step 3: Subtract Column Minima
Because each column contains a zero, subtracting column minima has no effect.
Step 4: Cover All Zeros with Lines
To cover all zeros, we need 4 lines:
5 0 8 10 11 ( x ) 0 6 15 10 3 8 5 0 0 0 ( x ) 0 4 2 0 5 3 5 6 0 8 ( x ) x x 5      0      8      10      11      ( x ) 0      6      15      10      3      8      5      0      0      0      ( x ) 0      4      2      0      5      3      5      6      0      8      ( x ) x                x           {:[5,0,8,10,11,(x)],[0,6,15,10,3,],[8,5,0,0,0,(x)],[0,4,2,0,5,],[3,5,6,0,8,(x)],[x,,,x,,]:}\begin{array}{rrrrrr} \mathbf{5} & \mathbf{0} & \mathbf{8} & \mathbf{10} & \mathbf{11} & (\mathbf{x}) \\ \mathbf{0} & 6 & 15 & \mathbf{10} & 3 & \\ \mathbf{8} & \mathbf{5} & \mathbf{0} & \mathbf{0} & \mathbf{0} & (\mathbf{x}) \\ \mathbf{0} & 4 & 2 & \mathbf{0} & 5 & \\ \mathbf{3} & 5 & 6 & \mathbf{0} & 8 & (\mathbf{x}) \\ \mathbf{x} & & & \mathbf{x} & & \end{array}5081011(x)061510385000(x)0420535608(x)xx
Step 5: Create Additional Zeros
The number of lines is smaller than 5, and the smallest uncovered number is 2. Subtract this number from all uncovered elements and add it to all elements that are covered twice:
7 0 8 12 11 0 4 13 10 1 10 5 0 2 0 0 2 0 0 3 3 3 4 0 6 7      0      8      12      11 0      4      13      10      1 10      5      0      2      0 0      2      0      0      3 3      3      4      0      6 {:[7,0,8,12,11],[0,4,13,10,1],[10,5,0,2,0],[0,2,0,0,3],[3,3,4,0,6]:}\begin{array}{rrrrr} 7 & 0 & 8 & 12 & 11 \\ 0 & 4 & 13 & 10 & 1 \\ 10 & 5 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 & 3 \\ 3 & 3 & 4 & 0 & 6 \end{array}708121104131011050200200333406
Step 6: Cover All Zeros with Lines Again
Now, 5 lines are required to cover all zeros:
7 0 8 12 11 0 4 13 10 1 10 5 0 2 0 0 2 0 0 3 3 3 4 0 6 7 0 8 12 11 0 4 13 10 1 10 5 0 2 0 0 2 0 0 3 3 3 4 0 6 {:[7,0,8,12,11],[0,4,13,10,1],[10,5,0,2,0],[0,2,0,0,3],[3,3,4,0,6]:}\begin{array}{|c|c|c|c|c|} \hline 7 & 0 & 8 & 12 & 11 \\ \hline 0 & 4 & 13 & 10 & 1 \\ \hline 10 & 5 & 0 & 2 & 0 \\ \hline \mathbf{0} & 2 & \mathbf{0} & \mathbf{0} & 3 \\ \hline 3 & 3 & 4 & \mathbf{0} & 6 \\ \hline \end{array}708121104131011050200200333406
Step 7: The Optimal Assignment
Because there are 5 lines required, the zeros cover an optimal assignment:
7 0 8 12 11 0 4 13 10 1 10 5 0 2 0 0 2 0 0 3 3 3 4 0 6 7      0      8      12      11 0      4      13      10      1 10      5      0      2      0 0      2      0      0      3 3      3      4      0      6 [7,0,8,12,11],[0,4,13,10,1],[10,5,0,2,0],[0,2,0,0,3],[3,3,4,0,6]]\begin{array}{rrrrr|} 7 & \mathbf{0} & 8 & 12 & 11 \\ \mathbf{0} & 4 & 13 & 10 & 1 \\ 10 & 5 & 0 & 2 & \mathbf{0} \\ 0 & 2 & \mathbf{0} & 0 & 3 \\ 3 & 3 & 4 & \mathbf{0} & 6 \\ \end{array}708121104131011050200200333406
This corresponds to the following optimal assignment in the original cost matrix:
10 5 13 15 16 3 9 18 13 6 10 7 2 2 2 7 11 9 7 12 7 9 10 4 12 10 5 13 15 16 3 9 18 13 6 10 7 2 2 2 7 11 9 7 12 7 9 10 4 12 {:[10,5,13,15,16],[3,9,18,13,6],[10,7,2,2,2],[7,11,9,7,12],[7,9,10,4,12]:}\begin{array}{|c|c|c|c|c|} \hline 10 & \mathbf{5} & 13 & 15 & 16 \\ \hline \mathbf{3} & 9 & 18 & 13 & 6 \\ \hline 10 & 7 & 2 & 2 & \mathbf{2} \\ \hline 7 & 11 & \mathbf{9} & 7 & 12 \\ \hline 7 & 9 & 10 & \mathbf{4} & 12 \\ \hline \end{array}105131516391813610722271197127910412
Step 8: Optimal Value
The optimal value equals 23.
Conclusion:
In this optimization problem, we aimed to assign five jobs to five employees in a department of a company in a way that minimizes the total processing time. We began with an original cost matrix representing the time each employee takes to perform each job. Through a series of steps involving the subtraction of row minima, column minima, and the creation of additional zeros, we arrived at an optimal assignment.
The optimal assignment, shown in the original cost matrix, assigns each job to an employee in such a way that the total processing time is minimized. The optimal value for this assignment is 23 hours.
This optimized job assignment can help the department efficiently utilize its workforce and minimize the time required to complete the tasks, ultimately leading to increased productivity and cost savings.
  1. (a) f ( x ) = x 3 9 x 2 + 26 x 24 f ( x ) = x 3 9 x 2 + 26 x 24 f(x)=x^(3)-9x^(2)+26 x-24f(x)=x^3-9 x^2+26 x-24f(x)=x39x2+26x24 का, 0 x 1 0 x 1 0 <= x <= 10 \leq x \leq 10x1 के लिए, अधिकतम तथा न्यूनतम मान निकालिए।
Find the maximum and minimum values of f ( x ) = x 3 9 x 2 + 26 x 24 f ( x ) = x 3 9 x 2 + 26 x 24 f(x)=x^(3)-9x^(2)+26 x-24f(x)=x^3-9 x^2+26 x-24f(x)=x39x2+26x24 for 0 x 1 0 x 1 0 <= x <= 10 \leq x \leq 10x1
Answer:
Step 1: Objective Function
Given the function f ( x ) = x 3 9 x 2 + 26 x 24 f ( x ) = x 3 9 x 2 + 26 x 24 f(x)=x^(3)-9x^(2)+26 x-24f(x) = x^3 – 9x^2 + 26x – 24f(x)=x39x2+26x24 for 0 x 1 0 x 1 0 <= x <= 10 \leq x \leq 10x1:
f ( x ) = x 3 9 x 2 + 26 x 24 for x [ 0 , 1 ] (1) f ( x ) = x 3 9 x 2 + 26 x 24 for x [ 0 , 1 ] (1) f(x)=x^(3)-9x^(2)+26 x-24quad”for”quad AA x in[0,1]quad(1)f(x) = x^3 – 9x^2 + 26x – 24 \quad \text{for} \quad \forall x \in [0, 1] \quad \text{(1)}f(x)=x39x2+26x24forx[0,1](1)
Step 2: Calculate the Derivative
Calculate the derivative of f ( x ) f ( x ) f(x)f(x)f(x):
f ( x ) = 3 x 2 18 x + 26 (2) f ( x ) = 3 x 2 18 x + 26 (2) f^(‘)(x)=3x^(2)-18 x+26quad(2)f'(x) = 3x^2 – 18x + 26 \quad \text{(2)}f(x)=3x218x+26(2)
Step 3: Find Critical Points
To find critical points, set f ( x ) = 0 f ( x ) = 0 f^(‘)(x)=0f'(x) = 0f(x)=0:
3 x 2 18 x + 26 = 0 3 x 2 18 x + 26 = 0 3x^(2)-18 x+26=03x^2 – 18x + 26 = 03x218x+26=0
Solving for x x xxx:
x = 18 ± 324 4 ( 3 ) ( 26 ) 6 = 18 ± 12 6 = 9 ± 3 3 x = 18 ± 324 4 ( 3 ) ( 26 ) 6 = 18 ± 12 6 = 9 ± 3 3 x=(18+-sqrt(324-4(3)(26)))/(6)=(18+-sqrt12)/(6)=(9+-sqrt3)/(3)x = \frac{18 \pm \sqrt{324 – 4(3)(26)}}{6} = \frac{18 \pm \sqrt{12}}{6} = \frac{9 \pm \sqrt{3}}{3}x=18±3244(3)(26)6=18±126=9±33
These critical points do not fall within the interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1].
Step 4: Determine Monotonicity
Check if f ( x ) f ( x ) f(x)f(x)f(x) is monotonically increasing or decreasing on [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1].
We have:
f ( 0 ) = 3 ( 0 ) 2 18 ( 0 ) + 26 = 26 > 0 f ( 0 ) = 3 ( 0 ) 2 18 ( 0 ) + 26 = 26 > 0 f^(‘)(0)=3(0)^(2)-18(0)+26=26 > 0f'(0) = 3(0)^2 – 18(0) + 26 = 26 > 0f(0)=3(0)218(0)+26=26>0
and
f ( 1 ) = 3 ( 1 ) 2 18 ( 1 ) + 26 = 11 > 0 f ( 1 ) = 3 ( 1 ) 2 18 ( 1 ) + 26 = 11 > 0 f^(‘)(1)=3(1)^(2)-18(1)+26=11 > 0f'(1) = 3(1)^2 – 18(1) + 26 = 11 > 0f(1)=3(1)218(1)+26=11>0
Therefore, f ( x ) > 0 f ( x ) > 0 f^(‘)(x) > 0f'(x) > 0f(x)>0 for all x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in [0, 1]x[0,1], indicating that f ( x ) f ( x ) f(x)f(x)f(x) is monotonically increasing on [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1].
Step 5: Find Maximum and Minimum Values
Calculate the maximum and minimum values of f ( x ) f ( x ) f(x)f(x)f(x) within the given interval:
f max = f ( x ) | x = 1 = 1 9 + 26 24 = 6 f max = 6 at x = 1 f min = f ( x ) | x = 0 = 0 0 + 0 24 = 24 f min ( 0 ) = 24 ; f max ( 1 ) = 6 f max = f ( x ) x = 1 = 1 9 + 26 24 = 6 f max = 6  at  x = 1 f min = f ( x ) x = 0 = 0 0 + 0 24 = 24 f min ( 0 ) = 24 ; f max ( 1 ) = 6 {:[f_(max)=f(x)|_(x=1)=1-9+26-24=-6],[f_(max)=-6″ at “x=1],[f_(min)=f(x)|_(x=0)=0-0+0-24=-24],[f_(min)(0)=-24;f_(max)(1)=-6]:}\begin{aligned} & f_{\max} = \left.f(x)\right|_{x=1} = 1 – 9 + 26 – 24 = -6 \\ & f_{\max} = -6 \text{ at } x = 1 \\ & f_{\min} = \left.f(x)\right|_{x=0} = 0 – 0 + 0 – 24 = -24 \\ & f_{\min}(0) = -24 ; f_{\max}(1) = -6 \end{aligned}fmax=f(x)|x=1=19+2624=6fmax=6 at x=1fmin=f(x)|x=0=00+024=24fmin(0)=24;fmax(1)=6
Step 6: Conclusion
In the given interval [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1], the function f ( x ) = x 3 9 x 2 + 26 x 24 f ( x ) = x 3 9 x 2 + 26 x 24 f(x)=x^(3)-9x^(2)+26 x-24f(x) = x^3 – 9x^2 + 26x – 24f(x)=x39x2+26x24 reaches its maximum value of -6 at x = 1 x = 1 x=1x = 1x=1 and its minimum value of -24 at x = 0 x = 0 x=0x = 0x=0.
(b) मान लीजिए कि F F FFF एक क्षेत्र है तथा f ( x ) F [ x ] f ( x ) F [ x ] f(x)in F[x]f(x) \in F[x]f(x)F[x], क्षेत्र F F FFF के ऊपर घात > 0 > 0 > 0>0>0 का एक बहुपद है। दर्शाइए कि एक क्षेत्र F F F^(‘)F^{\prime}F तथा एक अंतःस्थापन q : F F q : F F q:F rarrF^(‘)q: F \rightarrow F^{\prime}q:FF इस प्रकार से अस्तित्व में हैं कि बहुपद f q F [ x ] f q F [ x ] f^(q)inF^(‘)[x]f^q \in F^{\prime}[x]fqF[x] का एक मूल F F F^(‘)F^{\prime}F में है, जहाँ f q , f f q , f f^(q),ff^q, ffq,f के प्रत्येक गुणांक a a aaa को q ( a ) q ( a ) q(a)q(a)q(a) द्वारा प्रतिस्थापित करने से प्राप्त होता है।
Let F F FFF be a field and f ( x ) F [ x ] f ( x ) F [ x ] f(x)in F[x]f(x) \in F[x]f(x)F[x] a polynomial of degree > 0 > 0 > 0>0>0 over F F FFF. Show that there is a field F F F^(‘)F^{\prime}F and an imbedding q : F F q : F F q:F rarrF^(‘)q: F \rightarrow F^{\prime}q:FF s.t. the polynomial f q F [ x ] f q F [ x ] f^(q)inF^(‘)[x]f^q \in F^{\prime}[x]fqF[x] has a root in F F F^(‘)F^{\prime}F, where f q f q f^(q)f^qfq is obtained by replacing each coefficient a a aaa of f f fff by q ( a ) q ( a ) q(a)q(a)q(a).
Answer:
Step 1: Problem Statement
We are given a field F F FFF and a polynomial f ( x ) F [ x ] f ( x ) F [ x ] f(x)in F[x]f(x) \in F[x]f(x)F[x] of degree greater than 0. The goal is to show the existence of a field F F F^(‘)F^{\prime}F and an embedding q : F F q : F F q:F rarrF^(‘)q: F \rightarrow F^{\prime}q:FF such that the polynomial f q F [ x ] f q F [ x ] f^(q)inF^(‘)[x]f^q \in F^{\prime}[x]fqF[x] has a root in F F F^(‘)F^{\prime}F. Here, f q f q f^(q)f^qfq is obtained by replacing each coefficient a a aaa of f f fff by q ( a ) q ( a ) q(a)q(a)q(a).
Step 2: Maximal Ideal and Field Extension
Suppose f ( x ) F [ x ] f ( x ) F [ x ] f(x)in F[x]f(x) \in F[x]f(x)F[x] is a polynomial of degree greater than 0 over a field F F FFF. We consider the ideal M = f ( x ) M = f ( x ) M=(:f(x):)M = \langle f(x) \rangleM=f(x) in F [ x ] F [ x ] F[x]F[x]F[x]. Since f ( x ) f ( x ) f(x)f(x)f(x) is irreducible, M M MMM is a maximal ideal in F [ x ] F [ x ] F[x]F[x]F[x].
Step 3: Field Extension
We create a field extension by taking F F FFF modulo this maximal ideal, denoted as F [ x ] M F [ x ] M (F[x])/(M)\frac{F[x]}{M}F[x]M, which is itself a field.
Step 4: Define Embedding q q qqq
Define the embedding q : F F [ x ] M q : F F [ x ] M q:F rarr(F[x])/(M)q: F \rightarrow \frac{F[x]}{M}q:FF[x]M as q ( a ) = a + M q ( a ) = a + M q(a)=a+Mq(a) = a + Mq(a)=a+M. This embedding q q qqq is a homomorphism.
Step 5: Ker q q qqq and Injectiveness
We consider the kernel of q q qqq, i.e., elements a F a F a in Fa \in FaF such that q ( a ) = 0 + M q ( a ) = 0 + M q(a)=0+Mq(a) = 0 + Mq(a)=0+M. This implies a + M = M a + M = M a+M=Ma + M = Ma+M=M, which further implies a M = f ( x ) a M = f ( x ) a in M=(:f(x):)a \in M = \langle f(x) \rangleaM=f(x). Therefore, a = f ( x ) q ( x ) a = f ( x ) q ( x ) a=f(x)q(x)a = f(x)q(x)a=f(x)q(x) for some q ( x ) F [ x ] q ( x ) F [ x ] q(x)in F[x]q(x) \in F[x]q(x)F[x]. Since f ( x ) f ( x ) f(x)f(x)f(x) is irreducible and a a aaa is a polynomial of degree greater than 0, this relation holds only when a = 0 a = 0 a=0a = 0a=0. Consequently, ker q = { 0 } ker  q = { 0 } “ker “q={0}\text{ker } q = \{0\}ker q={0} or q q qqq is injective.
Step 6: Isomorphism and Subfield
Hence, F F FFF is isomorphic to q ( F ) q ( F ) q(F)q(F)q(F). We can view F F F^(‘)F^{\prime}F as containing F F FFF by identifying a F a F a in Fa \in FaF with q ( a ) q ( a ) q(a)q(a)q(a) and vice versa.
Step 7: Construct Ψ Ψ Psi\PsiΨ
Define Ψ : F [ x ] F [ x ] M Ψ : F [ x ] F [ x ] M Psi:F[x]rarr(F[x])/(M)\Psi: F[x] \rightarrow \frac{F[x]}{M}Ψ:F[x]F[x]M such that Ψ ( f ( x ) ) = f ( x ) + M Ψ ( f ( x ) ) = f ( x ) + M Psi(f(x))=f(x)+M\Psi(f(x)) = f(x) + MΨ(f(x))=f(x)+M. Ψ Ψ Psi\PsiΨ is a natural homomorphism.
Step 8: Show α α alpha\alphaα as a Root
Let α = Ψ ( x ) = x + M α = Ψ ( x ) = x + M alpha=Psi(x)=x+M\alpha = \Psi(x) = x + Mα=Ψ(x)=x+M. We claim that α α alpha\alphaα is a root of f q f q f^(q)f^qfq in F F FFF.
Step 9: Evaluate f q f q f^(q)f^qfq
Evaluate f q f q f^(q)f^qfq as follows:
Ψ ( f q ) = Ψ ( α 0 + α 1 x + α 2 x 2 + + α n x n ) = Ψ ( α 0 ) + Ψ ( α 1 ) Ψ ( x ) + + Ψ ( α n ) Ψ ( x n ) Ψ ( f q ) = Ψ ( α 0 + α 1 x + α 2 x 2 + + α n x n ) = Ψ ( α 0 ) + Ψ ( α 1 ) Ψ ( x ) + + Ψ ( α n ) Ψ ( x n ) {:[Psi(f^(q))=Psi(alpha_(0)+alpha_(1)x+alpha_(2)x^(2)+dots+alpha _(n)x^(n))],[=Psi(alpha_(0))+Psi(alpha_(1))Psi(x)+dots+Psi(alpha _(n))Psi(x^(n))]:}\begin{aligned} \Psi(f^q) &= \Psi(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_n x^n) \\ &= \Psi(\alpha_0) + \Psi(\alpha_1)\Psi(x) + \ldots + \Psi(\alpha_n)\Psi(x^n) \end{aligned}Ψ(fq)=Ψ(α0+α1x+α2x2++αnxn)=Ψ(α0)+Ψ(α1)Ψ(x)++Ψ(αn)Ψ(xn)
Step 10: Use p ( x ) p ( x ) p^((x))p^{(x)}p(x)
Note that Ψ ( p ( x ) ) = p ( x ) + M = p ( x ) + p ( x ) = M = Ψ ( p ( x ) ) = p ( x ) + M = p ( x ) + p ( x ) = M = Psi(p^((x)))=p^((x))+M=p^((x))+(:p^((x)):)=M=\Psi(p^{(x)}) = p^{(x)} + M = p^{(x)} + \langle p^{(x)} \rangle = M =Ψ(p(x))=p(x)+M=p(x)+p(x)=M= zero of F F FFF.
Step 11: Zero of F F F^(‘)F^{\prime}F
Thus, the zero of F F F^(‘)F^{\prime}F is:
Zero of F = Ψ ( α 0 ) + Ψ ( α 1 ) Ψ ( x ) + + Ψ ( α n ) Ψ ( x n ) = q ( a 0 ) + q ( a 1 ) Ψ ( x ) + + q ( a n ) Ψ ( x n ) Zero of  F = Ψ ( α 0 ) + Ψ ( α 1 ) Ψ ( x ) + + Ψ ( α n ) Ψ ( x n ) = q ( a 0 ) + q ( a 1 ) Ψ ( x ) + + q ( a n ) Ψ ( x n ) {:[“Zero of “F^(‘)=Psi(alpha_(0))+Psi(alpha_(1))Psi(x)+dots+Psi(alpha _(n))Psi(x^(n))],[=q(a_(0))+q(a_(1))Psi(x)+dots+q(a_(n))Psi(x^(n))]:}\begin{aligned} & \text{Zero of } F^{\prime} = \Psi(\alpha_0) + \Psi(\alpha_1)\Psi(x) + \ldots + \Psi(\alpha_n)\Psi(x^n) \\ & = q(a_0) + q(a_1)\Psi(x) + \ldots + q(a_n)\Psi(x^n) \end{aligned}Zero of F=Ψ(α0)+Ψ(α1)Ψ(x)++Ψ(αn)Ψ(xn)=q(a0)+q(a1)Ψ(x)++q(an)Ψ(xn)
Step 12: Zero is a Root
Since F q ( F ) F q ( F ) F~=q(F)F \cong q(F)Fq(F), the zero is also a 0 + a 1 α + a 2 α 2 + + a n α n a 0 + a 1 α + a 2 α 2 + + a n α n a_(0)+a_(1)alpha+a_(2)alpha^(2)+dots+a_(n)alpha ^(n)a_0 + a_1\alpha + a_2\alpha^2 + \ldots + a_n\alpha^na0+a1α+a2α2++anαn, which is equal to f ( a ) = f q f ( a ) = f q f(a)=f^(q)f(a) = f^qf(a)=fq.
Step 13: Conclusion
Hence, a a aaa is a root of f ( a ) f ( a ) f(a)f(a)f(a) in F F FFF. By replacing each coefficient a a aaa of f f fff by q ( a ) q ( a ) q(a)q(a)q(a), we obtain f q f q f^(q)f^qfq.
Therefore, there exists a field F F F^(‘)F^{\prime}F and an embedding q : F F q : F F q:F rarrF^(‘)q: F \rightarrow F^{\prime}q:FF such that the polynomial f q F [ x ] f q F [ x ] f^(q)inF^(‘)[x]f^q \in F^{\prime}[x]fqF[x] has a root in F F F^(‘)F^{\prime}F, where f q f q f^(q)f^qfq is obtained by replacing each coefficient a a aaa of f f fff by q ( a ) q ( a ) q(a)q(a)q(a).
(c) क्षेत्र | z + 1 | > 3 | z + 1 | > 3 |z+1| > 3|z+1|>3|z+1|>3 में f ( z ) = z 2 z + 1 z ( z 2 3 z + 2 ) f ( z ) = z 2 z + 1 z z 2 3 z + 2 f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)}f(z)=z2z+1z(z23z+2) का लौराँ श्रेणी प्रसार, ( z + 1 ) ( z + 1 ) (z+1)(z+1)(z+1) की घातों में ज्ञात कीजिए।
Find the Laurent series expansion of f ( z ) = z 2 z + 1 z ( z 2 3 z + 2 ) f ( z ) = z 2 z + 1 z z 2 3 z + 2 f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)}f(z)=z2z+1z(z23z+2) in the powers of ( z + 1 ) ( z + 1 ) (z+1)(z+1)(z+1) in the region | z + 1 | > 3 | z + 1 | > 3 |z+1| > 3|z+1|>3|z+1|>3
Answer:
Step 1: Problem Statement
Find the Laurent series expansion of f ( z ) = z 2 z + 1 z ( z 2 3 z + 2 ) f ( z ) = z 2 z + 1 z z 2 3 z + 2 f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)}f(z)=z2z+1z(z23z+2) in the powers of ( z + 1 ) ( z + 1 ) (z+1)(z+1)(z+1) in the region | z + 1 | > 3 | z + 1 | > 3 |z+1| > 3|z+1|>3|z+1|>3.
Step 2: Rewrite f ( z ) f ( z ) f(z)f(z)f(z) in terms of u u uuu
Let f ( z ) = z 2 z + 1 z ( z 2 3 z + 2 ) f ( z ) = z 2 z + 1 z z 2 3 z + 2 f(z)=(z^(2)-z+1)/(z(z^(2)-3z+2))f(z)=\frac{z^2-z+1}{z\left(z^2-3 z+2\right)}f(z)=z2z+1z(z23z+2). Now, let z + 1 = u z + 1 = u z+1=uz+1=uz+1=u, which implies z = u 1 z = u 1 z=u-1z=u-1z=u1.
f ( u ) = ( u 1 ) 2 ( u 1 ) + 1 ( u 1 ) [ ( u 1 ) 2 3 ( u 1 ) + 2 ] f ( u ) = u 2 + 1 2 u u + 1 + 1 ( u 1 ) [ u 2 + 1 2 u 3 u + 3 + 2 ] f ( u ) = u 2 3 u + 3 ( u 1 ) ( u 2 5 u + 6 ) f ( u ) = u 2 3 u + 3 ( u 1 ) ( u 2 ) ( u 3 ) = A u 1 + B u 2 + C u 3 ( 1 ) u 2 3 u + 3 = A ( u 2 ) ( u 3 ) + B ( u 1 ) ( u 3 ) + C ( u 1 ) ( u 2 ) f ( u ) = ( u 1 ) 2 ( u 1 ) + 1 ( u 1 ) ( u 1 ) 2 3 ( u 1 ) + 2 f ( u ) = u 2 + 1 2 u u + 1 + 1 ( u 1 ) u 2 + 1 2 u 3 u + 3 + 2 f ( u ) = u 2 3 u + 3 ( u 1 ) u 2 5 u + 6 f ( u ) = u 2 3 u + 3 ( u 1 ) ( u 2 ) ( u 3 ) = A u 1 + B u 2 + C u 3 ( 1 ) u 2 3 u + 3 = A ( u 2 ) ( u 3 ) + B ( u 1 ) ( u 3 ) + C ( u 1 ) ( u 2 ) {:[f(u)=((u-1)^(2)-(u-1)+1)/((u-1)[(u-1)^(2)-3(u-1)+2])],[=>f(u)=(u^(2)+1-2u-u+1+1)/((u-1)[u^(2)+1-2u-3u+3+2])],[=>f(u)=(u^(2)-3u+3)/((u-1)(u^(2)-5u+6))],[f(u)=(u^(2)-3u+3)/((u-1)(u-2)(u-3))],[=(A)/(u-1)+(B)/(u-2)+(C)/(u-3)rarr(1)],[=>u^(2)-3u+3=A(u-2)(u-3)+B(u-1)(u-3)+C(u-1)(u-2)]:}\begin{aligned} & f(u)=\frac{(u-1)^2-(u-1)+1}{(u-1)\left[(u-1)^2-3(u-1)+2\right]} \\ & \Rightarrow f(u)=\frac{u^2+1-2 u-u+1+1}{(u-1)\left[u^2+1-2 u-3 u+3+2\right]} \\ & \Rightarrow f(u)=\frac{u^2-3 u+3}{(u-1)\left(u^2-5 u+6\right)} \\ & f(u)=\frac{u^2-3 u+3}{(u-1)(u-2)(u-3)} \\ & =\frac{A}{u-1}+\frac{B}{u-2}+\frac{C}{u-3} \rightarrow(1) \\ & \Rightarrow u^2-3 u+3=A(u-2)(u-3)+B(u-1)(u-3)+C(u-1)(u-2) \end{aligned}f(u)=(u1)2(u1)+1(u1)[(u1)23(u1)+2]f(u)=u2+12uu+1+1(u1)[u2+12u3u+3+2]f(u)=u23u+3(u1)(u25u+6)f(u)=u23u+3(u1)(u2)(u3)=Au1+Bu2+Cu3(1)u23u+3=A(u2)(u3)+B(u1)(u3)+C(u1)(u2)
Step 3: Solve for Constants A A AAA, B B BBB, and C C CCC
If u = 2 u = 2 u=2u=2u=2 then
4 6 + 3 = B ( 1 ) ( 1 ) B = 1 4 6 + 3 = B ( 1 ) ( 1 ) B = 1 4-6+3=B(1)(-1)=>B=-14-6+3=B(1)(-1) \Rightarrow B=-146+3=B(1)(1)B=1
If u = 2 u = 2 u=2u=2u=2 then
1 3 + 3 = A ( 1 ) ( 2 ) A = 1 2 1 3 + 3 = A ( 1 ) ( 2 ) A = 1 2 1-3+3=A(-1)(-2)=>A=(1)/(2)1-3+3=A(-1)(-2) \Rightarrow A=\frac{1}{2}13+3=A(1)(2)A=12
If u = 3 u = 3 u=3u=3u=3 then
9 9 + 3 = C ( 2 ) ( 1 ) C = 3 2 9 9 + 3 = C ( 2 ) ( 1 ) C = 3 2 9-9+3=C(2)(1)=>C=(3)/(2)9-9+3=C(2)(1) \Rightarrow C=\frac{3}{2}99+3=C(2)(1)C=32
Step 4: Rewrite f ( u ) f ( u ) f(u)f(u)f(u) in Partial Fractions
From (1), we have:
f ( u ) = 1 2 u 1 + 1 u 2 + 3 2 u 3 f ( u ) = 1 2 u 1 + 1 u 2 + 3 2 u 3 f(u)=((1)/(2))/(u-1)+(1)/(u-2)+((3)/(2))/(u-3)f(u)=\frac{\frac{1}{2}}{u-1}+\frac{1}{u-2}+\frac{\frac{3}{2}}{u-3}f(u)=12u1+1u2+32u3
Step 5: Express Fractions in Terms of u u uuu
To express 1 u 1 1 u 1 (1)/(u-1)\frac{1}{u-1}1u1:
1 u 1 = 1 u ( 1 1 u ) 1 = 1 u ( 1 + 1 u + 1 u 2 + ) 1 u 1 = 1 u 1 1 u 1 = 1 u 1 + 1 u + 1 u 2 + (1)/(u-1)=(1)/(u)(1-(1)/(u))^(-1)=(1)/(u)(1+(1)/(u)+(1)/(u^(2))+dots)\frac{1}{u-1}=\frac{1}{u}\left(1-\frac{1}{u}\right)^{-1}=\frac{1}{u}\left(1+\frac{1}{u}+\frac{1}{u^2}+\ldots\right)1u1=1u(11u)1=1u(1+1u+1u2+)
This is valid for | 1 u | < 1 1 u < 1 |(1)/(u)| < 1\left|\frac{1}{u}\right|<1|1u|<1 and | u | > 0 | u | > 0 |u| > 0|u|>0|u|>0.
1 u 1 = 1 u + 1 u 2 + 1 u 3 + 1 u 1 = 1 u + 1 u 2 + 1 u 3 + (1)/(u-1)=(1)/(u)+(1)/(u^(2))+(1)/(u^(3))+dots\frac{1}{u-1}=\frac{1}{u}+\frac{1}{u^2}+\frac{1}{u^3}+\ldots1u1=1u+1u2+1u3+ is valid for | u | > 1 | u | > 1 |u| > 1|u|>1|u|>1 (2).
Step 6: Express 1 u 2 1 u 2 (1)/(u-2)\frac{1}{u-2}1u2
To express 1 u 2 1 u 2 (1)/(u-2)\frac{1}{u-2}1u2:
1 u 2 = 1 u ( 1 2 u ) 1 = 1 u ( 1 + 2 4 + 4 u 2 + ) 1 u 2 = 1 u 1 2 u 1 = 1 u 1 + 2 4 + 4 u 2 + (1)/(u-2)=(1)/(u)(1-(2)/(u))^(-1)=(1)/(u)(1+(2)/(4)+(4)/(u^(2))+dots)\frac{1}{u-2}=\frac{1}{u}\left(1-\frac{2}{u}\right)^{-1}=\frac{1}{u}\left(1+\frac{2}{4}+\frac{4}{u^2}+\ldots\right)1u2=1u(12u)1=1u(1+24+4u2+)
This is valid for | 2 u | < 1 2 u < 1 |(2)/(u)| < 1\left|\frac{2}{u}\right|<1|2u|<1 and | u | > 0 | u | > 0 |u| > 0|u|>0|u|>0.
1 u 2 = 1 4 + 2 u 2 + 4 u 3 + 1 u 2 = 1 4 + 2 u 2 + 4 u 3 + (1)/(u-2)=(1)/(4)+(2)/(u^(2))+(4)/(u^(3))+dots\frac{1}{u-2}=\frac{1}{4}+\frac{2}{u^2}+\frac{4}{u^3}+\ldots1u2=14+2u2+4u3+ is valid for | u | > 2 | u | > 2 |u| > 2|u|>2|u|>2 (3).
Step 7: Express 1 u 3 1 u 3 (1)/(u-3)\frac{1}{u-3}1u3
To express 1 u 3 1 u 3 (1)/(u-3)\frac{1}{u-3}1u3:
1 u 3 = 1 u ( 1 3 u ) 1 = 1 u ( 1 + 3 u + 9 u 2 + ) 1 u 3 = 1 u 1 3 u 1 = 1 u 1 + 3 u + 9 u 2 + (1)/(u-3)=(1)/(u)(1-(3)/(u))^(-1)=(1)/(u)(1+(3)/(u)+(9)/(u^(2))+dots)\frac{1}{u-3}=\frac{1}{u}\left(1-\frac{3}{u}\right)^{-1}=\frac{1}{u}\left(1+\frac{3}{u}+\frac{9}{u^2}+\ldots\right)1u3=1u(13u)1=1u(1+3u+9u2+)
This is valid for | u | > 0 | u | > 0 |u| > 0|u|>0|u|>0 and | 3 u | < 1 3 u < 1 |(3)/(u)| < 1\left|\frac{3}{u}\right|<1|3u|<1.
1 u 3 = 1 u + 3 u 2 + 9 u 3 + 1 u 3 = 1 u + 3 u 2 + 9 u 3 + (1)/(u-3)=(1)/(u)+(3)/(u^(2))+(9)/(u^(3))+dots\frac{1}{u-3}=\frac{1}{u}+\frac{3}{u^2}+\frac{9}{u^3}+\ldots1u3=1u+3u2+9u3+ is valid for | u | > 3 | u | > 3 |u| > 3|u|>3|u|>3 (4).
Step 8: Combine Expressions for f ( u ) f ( u ) f(u)f(u)f(u)
From (2), we have:
f ( u ) = 1 2 ( 1 u + 1 u 2 + 1 u 3 + ) ( 1 u + 2 u 2 + 4 u 3 + ) + 3 2 ( 1 u + 3 u 2 + 9 u 3 + ) f ( u ) = 1 2 1 u + 1 u 2 + 1 u 3 + 1 u + 2 u 2 + 4 u 3 + + 3 2 1 u + 3 u 2 + 9 u 3 + f(u)=(1)/(2)((1)/(u)+(1)/(u^(2))+(1)/(u^(3))+dots)-((1)/(u)+(2)/(u^(2))+(4)/(u^(3))+dots)+(3)/(2)((1)/(u)+(3)/(u^(2))+(9)/(u^(3))+dots)f(u)=\frac{1}{2}\left(\frac{1}{u}+\frac{1}{u^2}+\frac{1}{u^3}+\ldots\right)-\left(\frac{1}{u}+\frac{2}{u^2}+\frac{4}{u^3}+\ldots\right)+\frac{3}{2}\left(\frac{1}{u}+\frac{3}{u^2}+\frac{9}{u^3}+\ldots\right)f(u)=12(1u+1u2+1u3+)(1u+2u2+4u3+)+32(1u+3u2+9u3+)
This is valid for | u | > 3 | u | > 3 |u| > 3|u|>3|u|>3.
Step 9: Simplify the Expression
Simplifying the expression gives:
f ( u ) = 1 u + 3 u 2 + 11 u 3 + f ( u ) = 1 u + 3 u 2 + 11 u 3 + f(u)=(1)/(u)+(3)/(u^(2))+(11)/(u^(3))+dotsf(u)=\frac{1}{u}+\frac{3}{u^2}+\frac{11}{u^3}+\ldotsf(u)=1u+3u2+11u3+
This is valid for | u | > 3 | u | > 3 |u| > 3|u|>3|u|>3.
Step 10: Substitute Back for z z zzz
Therefore, f ( z ) = 1 z + 1 + 3 ( z + 1 ) 2 + 11 ( z + 1 ) 3 + f ( z ) = 1 z + 1 + 3 ( z + 1 ) 2 + 11 ( z + 1 ) 3 + f(z)=(1)/(z+1)+(3)/((z+1)^(2))+(11)/((z+1)^(3))+dotsf(z)=\frac{1}{z+1}+\frac{3}{(z+1)^2}+\frac{11}{(z+1)^3}+\ldotsf(z)=1z+1+3(z+1)2+11(z+1)3+ is valid for | z + 1 | > 3 | z + 1 | > 3 |z+1| > 3|z+1|>3|z+1|>3.
  1. (a) मान लीजिए कि f f fff एक सर्वत्र वैश्लेषिक फलन है जिसके केन्द्र z = 0 z = 0 z=0z=0z=0 पर टेलर श्रेणी प्रसार में अपरिमित रूप से अनेक पद हैं। दर्शाइए कि f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z) की z = 0 z = 0 z=0z=0z=0 एक अनिवार्य विचित्रता है।
Let f f fff be an entire function whose Taylor series expansion with centre z = 0 z = 0 z=0z=0z=0 has infinitely many terms. Show that z = 0 z = 0 z=0z=0z=0 is an essential singularity of ( f ( 1 z ) ) f 1 z ) f((1)/(z)))f\left(\frac{1}{z}\right))f(1z)) .
Answer:
Step 1: Problem Statement
Show that z = 0 z = 0 z=0z=0z=0 is an essential singularity of ( f ( 1 z ) ) f 1 z (f((1)/(z)))\left(f\left(\frac{1}{z}\right)\right)(f(1z)), where f f fff is an entire function with a Taylor series expansion centered at z = 0 z = 0 z=0z=0z=0 containing infinitely many terms.
Step 2: Introduction
Let f ( z ) f ( z ) f(z)f(z)f(z) be an entire function with a Taylor series expansion centered at z = 0 z = 0 z=0z=0z=0 that contains infinitely many terms.
Step 3: Example Function
Consider the example function f ( z ) = e z f ( z ) = e z f(z)=e^(z)f(z) = e^zf(z)=ez, which is an entire function. Its Taylor series expansion centered at z = 0 z = 0 z=0z=0z=0 is given by:
f ( z ) = e z = 1 + z + z 2 2 ! + z 3 3 ! + f ( z ) = e z = 1 + z + z 2 2 ! + z 3 3 ! + f(z)=e^(z)=1+z+(z^(2))/(2!)+(z^(3))/(3!)+dotsf(z) = e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \ldotsf(z)=ez=1+z+z22!+z33!+
Step 4: Transformation f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z)
Now, let’s consider the function f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z).
f ( 1 z ) = 1 + 1 z + 1 2 ! 1 z 2 + 1 3 ! 1 z 3 + f 1 z = 1 + 1 z + 1 2 ! 1 z 2 + 1 3 ! 1 z 3 + f((1)/(z))=1+(1)/(z)+(1)/(2!)(1)/(z^(2))+(1)/(3!)(1)/(z^(3))+dotsf\left(\frac{1}{z}\right) = 1 + \frac{1}{z} + \frac{1}{2!} \frac{1}{z^2} + \frac{1}{3!} \frac{1}{z^3} + \ldotsf(1z)=1+1z+12!1z2+13!1z3+
Step 5: Principal Part of Laurent Series
Notice that the Laurent series of f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z) contains infinitely many terms in the principal part.
Step 6: Conclusion
Since the Laurent series expansion of f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z) contains infinitely many terms in the principal part, it implies that z = 0 z = 0 z=0z=0z=0 is an essential singular point for f ( 1 z ) f 1 z f((1)/(z))f\left(\frac{1}{z}\right)f(1z).
Therefore, z = 0 z = 0 z=0z=0z=0 is indeed an essential singularity of ( f ( 1 z ) ) f 1 z (f((1)/(z)))\left(f\left(\frac{1}{z}\right)\right)(f(1z)).
(b) शर्तों a x 2 + b y 2 + c z 2 = 1 a x 2 + b y 2 + c z 2 = 1 ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1ax2+by2+cz2=1 तथा l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0 से प्रतिबन्धित x 2 + y 2 + z 2 x 2 + y 2 + z 2 x^(2)+y^(2)+z^(2)x^2+y^2+z^2x2+y2+z2 के स्तब्ध (अचर) मान निकालिए। परिणाम की ज्यामितीय व्याख्या कीजिए।
Find the stationary values of x 2 + y 2 + z 2 x 2 + y 2 + z 2 x^(2)+y^(2)+z^(2)x^2+y^2+z^2x2+y2+z2 subject to the conditions a x 2 + b y 2 + c z 2 = 1 a x 2 + b y 2 + c z 2 = 1 ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1ax2+by2+cz2=1 and l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0. Interpret the result.
Answer:
Step 1: Introduction
Let’s define a function F F F\mathrm{F}F as follows:
F = x 2 + y 2 + z 2 + λ 1 ( a x 2 + b y 2 + c z 2 1 ) + λ 2 ( l x + m y + n z ) ( 1 ) F = x 2 + y 2 + z 2 + λ 1 a x 2 + b y 2 + c z 2 1 + λ 2 ( l x + m y + n z ) ( 1 ) F=x^(2)+y^(2)+z^(2)+lambda_(1)(ax^(2)+by^(2)+cz^(2)-1)+lambda_(2)(lx+my+nz)—-(1)\mathrm{F}=x^2+y^2+z^2+\lambda_1\left(a x^2+b y^2+c z^2-1\right)+\lambda_2(l x+m y+n z)—-(1)F=x2+y2+z2+λ1(ax2+by2+cz21)+λ2(lx+my+nz)(1)
This function represents the problem statement and incorporates Lagrange multipliers λ 1 λ 1 lambda_(1)\lambda_1λ1 and λ 2 λ 2 lambda_(2)\lambda_2λ2 for the given constraints.
Step 2: Deriving Stationary Conditions
For the maxima and minima of F F F\mathrm{F}F, we need to find the stationary points. We calculate the partial derivatives with respect to x x xxx, y y yyy, and z z zzz and set them to zero:
F x = 2 x + 2 a x λ 1 + l λ 2 = 0 ( 2 ) F y = 2 y + 2 b y λ 1 + m λ 2 = 0 ( 3 ) F z = 2 z + 2 c z λ 1 + n λ 2 = 0 ( 4 ) F x = 2 x + 2 a x λ 1 + l λ 2 = 0 ( 2 ) F y = 2 y + 2 b y λ 1 + m λ 2 = 0 ( 3 ) F z = 2 z + 2 c z λ 1 + n λ 2 = 0 ( 4 ) {:[(delF)/(del x)=2x+2axlambda_(1)+llambda_(2)=0—-(2)],[(delF)/(del y)=2y+2bylambda_(1)+mlambda_(2)=0—-(3)],[(delF)/(del z)=2z+2czlambda_(1)+nlambda_(2)=0—-(4)]:}\begin{aligned} & \frac{\partial \mathrm{F}}{\partial x}=2 x+2 a x \lambda_1+l \lambda_2=0—-(2) \\ & \frac{\partial \mathrm{F}}{\partial y}=2 y+2 b y \lambda_1+m \lambda_2=0—-(3) \\ & \frac{\partial \mathrm{F}}{\partial z}=2 z+2 c z \lambda_1+n \lambda_2=0—-(4) \end{aligned}Fx=2x+2axλ1+lλ2=0(2)Fy=2y+2byλ1+mλ2=0(3)Fz=2z+2czλ1+nλ2=0(4)
Step 3: Combining Equations
Multiply equations (2), (3), and (4) by x x xxx, y y yyy, and z z zzz respectively and then add them together:
2 ( x 2 + y 2 + z 2 ) + 2 λ 1 ( a x 2 + b y 2 + c z 2 ) + λ 2 ( l x + m y + n z ) = 0 2 x 2 + y 2 + z 2 + 2 λ 1 a x 2 + b y 2 + c z 2 + λ 2 ( l x + m y + n z ) = 0 2(x^(2)+y^(2)+z^(2))+2lambda_(1)(ax^(2)+by^(2)+cz^(2))+lambda_(2)(lx+my+nz)=02\left(x^2+y^2+z^2\right)+2 \lambda_1\left(a x^2+b y^2+c z^2\right)+\lambda_2(l x+m y+n z)=02(x2+y2+z2)+2λ1(ax2+by2+cz2)+λ2(lx+my+nz)=0
Step 4: Solving for λ 1 λ 1 lambda_(1)\lambda_1λ1
From the equation above, we can solve for λ 1 λ 1 lambda_(1)\lambda_1λ1:
2 u + 2 λ 1 = 0 λ 1 = u 2 u + 2 λ 1 = 0 λ 1 = u =>2u+2lambda_(1)=0=>lambda_(1)=-u\Rightarrow 2 u+2 \lambda_1=0 \Rightarrow \lambda_1=-u2u+2λ1=0λ1=u
Step 5: Expressing x , y , z x , y , z x,y,zx, y, zx,y,z in Terms of λ 2 λ 2 lambda_(2)\lambda_2λ2
Using the values of λ 1 λ 1 lambda_(1)\lambda_1λ1 obtained, we can express x x xxx, y y yyy, and z z zzz in terms of λ 2 λ 2 lambda_(2)\lambda_2λ2:
x = l λ 2 2 ( a u 1 ) , y = m λ 2 2 ( b u 1 ) , z = n λ 2 2 ( c u 1 ) x = l λ 2 2 ( a u 1 ) , y = m λ 2 2 ( b u 1 ) , z = n λ 2 2 ( c u 1 ) x=(llambda_(2))/(2(au-1)),quad y=(mlambda_(2))/(2(bu-1)),quad z=(nlambda_(2))/(2(cu-1))x=\frac{l \lambda_2}{2(a u-1)}, \quad y=\frac{m \lambda_2}{2(b u-1)}, \quad z=\frac{n \lambda_2}{2(c u-1)}x=lλ22(au1),y=mλ22(bu1),z=nλ22(cu1)
Step 6: Substituting into Constraint Equation
Substituting these expressions for x , y , z x , y , z x,y,zx, y, zx,y,z into the constraint equation l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0, we get:
l l λ 2 2 ( a u 1 ) + m m λ 2 2 ( b u 1 ) + n n λ 2 2 ( c u 1 ) = 0 l l λ 2 2 ( a u 1 ) + m m λ 2 2 ( b u 1 ) + n n λ 2 2 ( c u 1 ) = 0 l*(llambda_(2))/(2(au-1))+m*(mlambda_(2))/(2(bu-1))+n*(nlambda_(2))/(2(cu-1))=0l \cdot \frac{l \lambda_2}{2(a u-1)}+m \cdot \frac{m \lambda_2}{2(b u-1)}+n \cdot \frac{n \lambda_2}{2(c u-1)}=0llλ22(au1)+mmλ22(bu1)+nnλ22(cu1)=0
l 2 a u 1 + m 2 b u 1 + n 2 c u 1 = 0 l 2 a u 1 + m 2 b u 1 + n 2 c u 1 = 0 =>quad(l^(2))/(au-1)+(m^(2))/(bu-1)+(n^(2))/(cu-1)=0\Rightarrow \quad \frac{l^2}{a u-1}+\frac{m^2}{b u-1}+\frac{n^2}{c u-1}=0l2au1+m2bu1+n2cu1=0
Stationary Values:
The stationary values of u u uuu are the solutions to the above equation. These values represent the square of the distance from the origin to the points on the conicoid a x 2 + b y 2 + c z 2 = 1 a x 2 + b y 2 + c z 2 = 1 ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1ax2+by2+cz2=1 that also lie on the plane l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0.
Geometrical Interpretation
x 2 + y 2 + z 2 x 2 + y 2 + z 2 x^(2)+y^(2)+z^(2)x^2+y^2+z^2x2+y2+z2 is the square of the distance of any point ( x , y , z ) ( x , y , z ) (x,y,z)(x, y, z)(x,y,z) from the origin ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0). Hence in this problem, we have found the maximum and minimum values of the square of distance of the origin from the point of intersection of the central conicoid a x 2 + b y 2 + c z 2 = 1 a x 2 + b y 2 + c z 2 = 1 ax^(2)+by^(2)+cz^(2)=1a x^2+b y^2+c z^2=1ax2+by2+cz2=1 by the central plane l x + m y + n z = 0 l x + m y + n z = 0 lx+my+nz=0l x+m y+n z=0lx+my+nz=0.
(c) निम्न रैखिक प्रोग्रामन समस्या को द्वैती रैखिक प्रोग्रामन सम न्यूनतमीकरण कीजिए Z = x 1 3 x 2 2 x 3 Z = x 1 3 x 2 2 x 3 Z=x_(1)-3x_(2)-2x_(3)Z=x_1-3 x_2-2 x_3Z=x13x22x3
बशर्ते कि
3 x 1 x 2 + 2 x 3 7 2 x 1 4 x 2 12 4 x 1 + 3 x 2 + 8 x 3 = 10 3 x 1 x 2 + 2 x 3 7 2 x 1 4 x 2 12 4 x 1 + 3 x 2 + 8 x 3 = 10 {:[3x_(1)-x_(2)+2x_(3) <= 7],[2x_(1)-4x_(2) >= 12],[-4x_(1)+3x_(2)+8x_(3)=10]:}\begin{aligned} 3 x_1-x_2+2 x_3 & \leq 7 \\ 2 x_1-4 x_2 & \geq 12 \\ -4 x_1+3 x_2+8 x_3 &=10 \end{aligned}3x1x2+2x372x14x2124x1+3x2+8x3=10
जहाँ x 1 , x 2 0 x 1 , x 2 0 x_(1),x_(2) >= 0x_1, x_2 \geq 0x1,x20 तथा x 3 x 3 x_(3)x_3x3 का चिह्न अप्रतिबंधित है।
Convert the following LPP into dual LPP :
Minimize Z = x 1 3 x 2 2 x 3 Z = x 1 3 x 2 2 x 3 quad Z=x_(1)-3x_(2)-2x_(3)\quad Z=x_1-3 x_2-2 x_3Z=x13x22x3
subject to
3 x 1 x 2 + 2 x 3 7 2 x 1 4 x 2 12 4 x 1 + 3 x 2 + 8 x 3 = 10 3 x 1 x 2 + 2 x 3 7 2 x 1 4 x 2 12 4 x 1 + 3 x 2 + 8 x 3 = 10 {:[3x_(1)-x_(2)+2x_(3) <= 7],[2x_(1)-4x_(2) >= 12],[-4x_(1)+3x_(2)+8x_(3)=10]:}\begin{aligned} 3 x_1-x_2+2 x_3 & \leq 7 \\ 2 x_1-4 x_2 & \geq 12 \\ -4 x_1+3 x_2+8 x_3 &=10 \end{aligned}3x1x2+2x372x14x2124x1+3x2+8x3=10
where x 1 , x 2 0 x 1 , x 2 0 x_(1),x_(2) >= 0x_1, x_2 \geq 0x1,x20 and x 3 x 3 x_(3)x_3x3 is unrestricted in sign.
Answer:
Step 1: Formulating the Primal Linear Programming Problem (LPP)
The primal LPP is defined as follows:
Minimize Z x = x 1 3 x 2 2 x 3 Z x = x 1 3 x 2 2 x 3 Z_(x)=x_(1)-3x_(2)-2x_(3)Z_x = x_1 – 3x_2 – 2x_3Zx=x13x22x3
Subject to:
  1. 3 x 1 x 2 + 2 x 3 7 3 x 1 x 2 + 2 x 3 7 3x_(1)-x_(2)+2x_(3) <= 73x_1 – x_2 + 2x_3 \leq 73x1x2+2x37
  2. 2 x 1 4 x 2 12 2 x 1 4 x 2 12 2x_(1)-4x_(2) >= 122x_1 – 4x_2 \geq 122x14x212
  3. 4 x 1 + 3 x 2 + 8 x 3 = 10 4 x 1 + 3 x 2 + 8 x 3 = 10 -4x_(1)+3x_(2)+8x_(3)=10-4x_1 + 3x_2 + 8x_3 = 104x1+3x2+8x3=10
  4. x 1 , x 2 0 x 1 , x 2 0 x_(1),x_(2) >= 0x_1, x_2 \geq 0x1,x20
  5. x 3 x 3 x_(3)x_3x3 is unrestricted in sign.
Step 2: Converting Primal Constraints
In this step, the answer converts the primal constraints from <=\leq type to >=\geq type because the primal objective function is minimizing. This leads to the following primal LPP:
Minimize Z x = x 1 3 x 2 2 x 3 Z x = x 1 3 x 2 2 x 3 Z_(x)=x_(1)-3x_(2)-2x_(3)Z_x = x_1 – 3x_2 – 2x_3Zx=x13x22x3
Subject to:
  1. 3 x 1 + x 2 2 x 3 7 3 x 1 + x 2 2 x 3 7 -3x_(1)+x_(2)-2x_(3) >= -7-3x_1 + x_2 – 2x_3 \geq -73x1+x22x37
  2. 2 x 1 4 x 2 12 2 x 1 4 x 2 12 2x_(1)-4x_(2) >= 122x_1 – 4x_2 \geq 122x14x212
  3. 4 x 1 + 3 x 2 + 8 x 3 = 10 4 x 1 + 3 x 2 + 8 x 3 = 10 -4x_(1)+3x_(2)+8x_(3)=10-4x_1 + 3x_2 + 8x_3 = 104x1+3x2+8x3=10
  4. x 1 , x 2 0 x 1 , x 2 0 x_(1),x_(2) >= 0x_1, x_2 \geq 0x1,x20
  5. x 3 x 3 x_(3)x_3x3 is unrestricted in sign.
Step 3: Identifying Dual Problem Characteristics
Here, the answer identifies the characteristics of the dual problem based on the properties of the primal problem:
  • There must be 3 constraints and 3 variables in the dual problem.
  • The coefficients of the objective function in the primal ( c 1 = 1 , c 2 = 3 , c 3 = 2 c 1 = 1 , c 2 = 3 , c 3 = 2 c_(1)=1,c_(2)=-3,c_(3)=-2c_1 = 1, c_2 = -3, c_3 = -2c1=1,c2=3,c3=2) become the right-hand side constants in the dual.
  • The right-hand side constants in the primal ( b 1 = 7 , b 2 = 12 , b 3 = 10 b 1 = 7 , b 2 = 12 , b 3 = 10 b_(1)=-7,b_(2)=12,b_(3)=10b_1 = -7, b_2 = 12, b_3 = 10b1=7,b2=12,b3=10) become the coefficients of the objective function in the dual.
  • Since the primal is a minimization problem, the dual must be a maximization problem.
  • The presence of an unrestricted variable ( x 3 x 3 x_(3)x_3x3) in the primal results in an equality constraint in the dual, and the corresponding dual variable ( y 3 y 3 y_(3)y_3y3) is unrestricted.
Step 4: Formulating the Dual Linear Programming Problem (LPP)
Based on the characteristics identified in Step 3, the dual LPP is formulated as follows:
Maximize Z y = 7 y 1 + 12 y 2 + 10 y 3 Z y = 7 y 1 + 12 y 2 + 10 y 3 Z_(y)=-7y_(1)+12y_(2)+10y_(3)Z_y = -7y_1 + 12y_2 + 10y_3Zy=7y1+12y2+10y3
Subject to:
  1. 3 y 1 + 2 y 2 4 y 3 1 3 y 1 + 2 y 2 4 y 3 1 -3y_(1)+2y_(2)-4y_(3) <= 1-3y_1 + 2y_2 – 4y_3 \leq 13y1+2y24y31
  2. y 1 4 y 2 + 3 y 3 3 y 1 4 y 2 + 3 y 3 3 y_(1)-4y_(2)+3y_(3) <= -3y_1 – 4y_2 + 3y_3 \leq -3y14y2+3y33
  3. 2 y 1 + 8 y 3 = 2 2 y 1 + 8 y 3 = 2 -2y_(1)+8y_(3)=-2-2y_1 + 8y_3 = -22y1+8y3=2
  4. y 1 , y 2 0 y 1 , y 2 0 y_(1),y_(2) >= 0y_1, y_2 \geq 0y1,y20
  5. y 3 y 3 y_(3)y_3y3 is unrestricted in sign.
  1. (a) दर्शाइए कि परिमेय संख्याओं के योज्य समूह Q Q Q\mathbb{Q}Q के अपरिमित रूप से अनेक उपसमूह हैं।
Show that there are infinitely many subgroups of the additive group Q Q Q\mathbb{Q}Q of rational numbers.
Answer:
The additive group of rational numbers, denoted by Q Q Q\mathbb{Q}Q, consists of all rational numbers under the operation of addition. To show that there are infinitely many subgroups of Q Q Q\mathbb{Q}Q, we can construct an infinite family of subgroups.

Construction of Subgroups:

Consider the set n Q n Q nQn\mathbb{Q}nQ, where n n nnn is any positive integer. This set consists of all rational numbers that can be written in the form n q n q nqnqnq, where q q qqq is any rational number. Formally, n Q = { n q q Q } n Q = { n q q Q } nQ={nq∣q inQ}n\mathbb{Q} = \{nq \mid q \in \mathbb{Q}\}nQ={nqqQ}.

Properties:

  1. Identity Element: 0 0 000 is in n Q n Q nQn\mathbb{Q}nQ because 0 = n × 0 0 = n × 0 0=n xx00 = n \times 00=n×0.
  2. Closure under Addition: If a , b n Q a , b n Q a,b in nQa, b \in n\mathbb{Q}a,bnQ, then a + b = n q 1 + n q 2 = n ( q 1 + q 2 ) a + b = n q 1 + n q 2 = n ( q 1 + q 2 ) a+b=nq_(1)+nq_(2)=n(q_(1)+q_(2))a + b = nq_1 + nq_2 = n(q_1 + q_2)a+b=nq1+nq2=n(q1+q2) is also in n Q n Q nQn\mathbb{Q}nQ.
  3. Closure under Inverse: If a n Q a n Q a in nQa \in n\mathbb{Q}anQ, then a = n q = n ( q ) a = n q = n ( q ) -a=-nq=n(-q)-a = -nq = n(-q)a=nq=n(q) is also in n Q n Q nQn\mathbb{Q}nQ.
Therefore, n Q n Q nQn\mathbb{Q}nQ is a subgroup of Q Q Q\mathbb{Q}Q for each positive integer n n nnn.

Infinitude of Subgroups:

Since n n nnn can be any positive integer, and there are infinitely many positive integers, we have constructed an infinite family of subgroups n Q n Q nQn\mathbb{Q}nQ of Q Q Q\mathbb{Q}Q.

Conclusion:

Hence, we have shown that there are infinitely many subgroups of the additive group Q Q Q\mathbb{Q}Q of rational numbers.
(b) कन्टूर समाकलन का उपयोग कर समाकल sin x d x x ( x 2 + a 2 ) , a > 0 sin x d x x x 2 + a 2 , a > 0 int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2))),a > 0\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^2+a^2\right)}, a>0sinxdxx(x2+a2),a>0 का मान ज्ञात कीजिए।
Using contour integration, evaluate the integral sin x d x x ( x 2 + a 2 ) , a > 0 sin x d x x x 2 + a 2 , a > 0 int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2))),a > 0\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^2+a^2\right)}, a>0sinxdxx(x2+a2),a>0
Answer:
Introduction:
We aim to evaluate the integral
sin x d x x ( x 2 + a 2 ) sin x d x x ( x 2 + a 2 ) int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2)))\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2+a^2)}sinxdxx(x2+a2)
using contour integration techniques. Here, a a aaa is a positive constant.
Contour Integration Approach:
Consider the integral
e i z d z z ( z 2 + a 2 ) e i z d z z ( z 2 + a 2 ) int_(-oo)^(oo)e^(iz)(dz)/(z(z^(2)+a^(2)))\int_{-\infty}^{\infty} e^{iz} \frac{dz}{z(z^2+a^2)}eizdzz(z2+a2)
taken around a contour C C CCC consisting of the following segments:
i. The real axis from point P P PPP to R R RRR.
ii. A large semi-circle T T TTT in the upper half plane defined by | z | = R | z | = R |z|=R|z|=R|z|=R.
iii. The real axis from R R -R-RR to P P -P-PP.
iv. A small semi-circle γ γ gamma\gammaγ defined by | z | = P | z | = P |z|=P|z|=P|z|=P.
Now, the function f ( z ) f ( z ) f(z)f(z)f(z) has simple poles at z = 0 , ± a i z = 0 , ± a i z=0,+-aiz=0, \pm aiz=0,±ai, but only z = a i z = a i z=aiz=aiz=ai lies within the contour C C CCC.
The residue of f ( z ) f ( z ) f(z)f(z)f(z) at z = a i z = a i z=aiz=aiz=ai is given by
lim z a i ( z a i ) f ( z ) = lim z a i e i z z ( z + a i ) = e a 2 a 2 lim z a i ( z a i ) f ( z ) = lim z a i e i z z ( z + a i ) = e a 2 a 2 lim_(z rarr ai)(z-ai)f(z)=lim_(z rarr ai)(e^(iz))/(z(z+ai))=(e^(-a))/(-2a^(2))\lim_{z \rightarrow ai} (z-ai) f(z) = \lim_{z \rightarrow ai} \frac{e^{iz}}{z(z+ai)} = \frac{e^{-a}}{-2a^2}limzai(zai)f(z)=limzaieizz(z+ai)=ea2a2
By the residue theorem, we have
C f ( z ) d z = μ R f ( z ) d z + T f ( z ) d z + R P f ( z ) d z + γ f ( z ) d z = 2 π i e a 2 a 2 = π i a 2 e a (1) C f ( z ) d z = μ R f ( z ) d z + T f ( z ) d z + R P f ( z ) d z + γ f ( z ) d z = 2 π i e a 2 a 2 = π i a 2 e a (1) {:[int _(C)f(z)dz=int_(mu)^(R)f(z)dz+int _(T)f(z)dz+int_(-R)^(-P)f(z)dz+int _(gamma)f(z)dz],[=2pi i*(e^(-a))/(-2a^(2))=-(pi i)/(a^(2))e^(-a)quad(1)]:}\begin{aligned} & \int_C f(z) dz = \int_{\mu}^{R} f(z) dz + \int_T f(z) dz + \int_{-R}^{-P} f(z) dz + \int_\gamma f(z) dz \\ & = 2\pi i \cdot \frac{e^{-a}}{-2a^2} = -\frac{\pi i}{a^2} e^{-a} \quad \text{(1)} \end{aligned}Cf(z)dz=μRf(z)dz+Tf(z)dz+RPf(z)dz+γf(z)dz=2πiea2a2=πia2ea(1)
Using Jordan’s lemma, we can show that
lim R T f ( z ) d z = 0 lim R T f ( z ) d z = 0 lim_(R rarr oo)int _(T)f(z)dz=0\lim_{R \rightarrow \infty} \int_T f(z) dz = 0limRTf(z)dz=0
Also, since lim z 0 z f ( z ) = lim z 0 e i z z 2 + a 2 = 1 a 2 lim z 0 z f ( z ) = lim z 0 e i z z 2 + a 2 = 1 a 2 lim_(z rarr0)zf(z)=lim_(z rarr0)(e^(iz))/(z^(2)+a^(2))=(1)/(a^(2))\lim_{z \rightarrow 0} zf(z) = \lim_{z \rightarrow 0} \frac{e^{iz}}{z^2+a^2} = \frac{1}{a^2}limz0zf(z)=limz0eizz2+a2=1a2, we have
γ f ( z ) d z = i a 2 ( 0 π ) = π i a 2 γ f ( z ) d z = i a 2 ( 0 π ) = π i a 2 int _(gamma)f(z)dz=(i)/(a^(2))(0-pi)=-(pi i)/(a^(2))\int_\gamma f(z) dz = \frac{i}{a^2}(0-\pi) = -\frac{\pi i}{a^2}γf(z)dz=ia2(0π)=πia2
As P P PPP approaches 0 and R R RRR approaches infinity, we can derive from equation (1):
0 f ( x ) d x + 0 f ( x ) d x π i a 2 = π i a 2 e a 0 f ( x ) d x + 0 f ( x ) d x π i a 2 = π i a 2 e a int_(0)^(oo)f(x)dx+int_(-oo)^(0)f(x)dx-(pi i)/(a^(2))=-(pi i)/(a^(2))e^(-a)\int_0^{\infty} f(x) dx + \int_{-\infty}^{0} f(x) dx – \frac{\pi i}{a^2} = -\frac{\pi i}{a^2} e^{-a}0f(x)dx+0f(x)dxπia2=πia2ea
Conclusion:
Equating the imaginary parts, we obtain the final result:
sin x d x x ( x 2 + a 2 ) = π a 2 ( 1 e a ) sin x d x x ( x 2 + a 2 ) = π a 2 ( 1 e a ) int_(-oo)^(oo)(sin xdx)/(x(x^(2)+a^(2)))=(pi)/(a^(2))(1-e^(-a))\int_{-\infty}^{\infty} \frac{\sin x dx}{x(x^2+a^2)} = \frac{\pi}{a^2} (1 – e^{-a})sinxdxx(x2+a2)=πa2(1ea)
This is the value of the given integral using contour integration.
(c) बड़ा M M MMM (बिग M M MMM ) विधि का उपयोग करके निम्नलिखित रैखिक प्रोग्रामन समस्या को हल कीजिए :
अधिकतमीकरण कीजिए Z = 4 x 1 + 5 x 2 + 2 x 3 Z = 4 x 1 + 5 x 2 + 2 x 3 Z=4x_(1)+5x_(2)+2x_(3)Z=4 x_1+5 x_2+2 x_3Z=4x1+5x2+2x3
बशर्ते कि
2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6 x 1 , x 2 , x 3 0 2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6 x 1 , x 2 , x 3 0 {:[2x_(1)+x_(2)+x_(3) >= 10],[x_(1)+3x_(2)+x_(3) <= 12],[x_(1)+x_(2)+x_(3)=6],[x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{aligned} 2 x_1+x_2+x_3 & \geq 10 \\ x_1+3 x_2+x_3 & \leq 12 \\ x_1+x_2+x_3 &=6 \\ x_1, x_2, x_3 & \geq 0 \end{aligned}2x1+x2+x310x1+3x2+x312x1+x2+x3=6x1,x2,x30
Solve the following linear programming problem using Big M method :
Maximize Z = 4 x 1 + 5 x 2 + 2 x 3 Z = 4 x 1 + 5 x 2 + 2 x 3 quad Z=4x_(1)+5x_(2)+2x_(3)\quad Z=4 x_1+5 x_2+2 x_3Z=4x1+5x2+2x3
subject to
2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6 x 1 , x 2 , x 3 0 2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6 x 1 , x 2 , x 3 0 {:[2x_(1)+x_(2)+x_(3) >= 10],[x_(1)+3x_(2)+x_(3) <= 12],[x_(1)+x_(2)+x_(3)=6],[x_(1)”,”x_(2)”,”x_(3) >= 0]:}\begin{aligned} 2 x_1+x_2+x_3 & \geq 10 \\ x_1+3 x_2+x_3 & \leq 12 \\ x_1+x_2+x_3 &=6 \\ x_1, x_2, x_3 & \geq 0 \end{aligned}2x1+x2+x310x1+3x2+x312x1+x2+x3=6x1,x2,x30
Answer:
Problem is
Max Z = 4 x 1 + 5 x 2 + 2 x 3 subject to 2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6 and x 1 , x 2 , x 3 0 ;  Max  Z = 4 x 1 + 5 x 2 + 2 x 3  subject to  2 x 1 + x 2 + x 3 10 x 1 + 3 x 2 + x 3 12 x 1 + x 2 + x 3 = 6  and  x 1 , x 2 , x 3 0 ; {:[” Max “Z=4x_(1)+5x_(2)+2x_(3)],[” subject to “],[{:[2x_(1)+x_(2)+x_(3) >= 10],[x_(1)+3x_(2)+x_(3) <= 12],[x_(1)+x_(2)+x_(3)=6]:}],[” and “x_(1)”,”x_(2)”,”x_(3) >= 0;]:}\begin{aligned} & \text { Max } Z=4 x_1+5 x_2+2 x_3 \\ & \text { subject to } \\ & \begin{array}{c} 2 x_1+x_2+x_3 \geq 10 \\ x_1+3 x_2+x_3 \leq 12 \\ x_1+x_2+x_3=6 \end{array} \\ & \text { and } x_1, x_2, x_3 \geq 0 ; \end{aligned} Max Z=4x1+5x2+2x3 subject to 2x1+x2+x310x1+3x2+x312x1+x2+x3=6 and x1,x2,x30;
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
  1. As the constraint-1 is of type ‘ >=\geq ‘ we should subtract surplus variable S 1 S 1 S_(1)S_1S1 and add artificial variable A 1 A 1 A_(1)A_1A1
  2. As the constraint-2 is of type ‘ <=\leq ‘ we should add slack variable S 2 S 2 S_(2)S_2S2
  3. As the constraint- 3 is of type ‘ = = === ‘ we should add artificial variable A 2 A 2 A_(2)A_2A2
After introducing slack,surplus, artificial variables
Max Z = 4 x 1 + 5 x 2 + 2 x 3 + 0 S 1 + 0 S 2 M A 1 M A 2 Max Z = 4 x 1 + 5 x 2 + 2 x 3 + 0 S 1 + 0 S 2 M A 1 M A 2 Max Z=4x_(1)+5x_(2)+2x_(3)+0S_(1)+0S_(2)-MA_(1)-MA_(2)\operatorname{Max} Z=4 x_1+5 x_2+2 x_3+0 S_1+0 S_2-M A_1-M A_2MaxZ=4x1+5x2+2x3+0S1+0S2MA1MA2
subject to
2 x 1 + x 2 + x 3 S 1 + A 1 = 10 x 1 + 3 x 2 + x 3 + S 2 = 12 x 1 + x 2 + x 3 + A 2 = 6 and x 1 , x 2 , x 3 , S 1 , S 2 , A 1 , A 2 0 2 x 1 + x 2 + x 3 S 1 + A 1 = 10 x 1 + 3 x 2 + x 3 + S 2 = 12 x 1 + x 2 + x 3 + A 2 = 6  and  x 1 , x 2 , x 3 , S 1 , S 2 , A 1 , A 2 0 {:[2x_(1)+x_(2)+x_(3)-S_(1)+A_(1)=10],[x_(1)+3x_(2)+x_(3)+S_(2)=12],[x_(1)+x_(2)+x_(3)+A_(2)=6],[” and “x_(1)”,”x_(2)”,”x_(3)”,”S_(1)”,”S_(2)”,”A_(1)”,”A_(2) >= 0]:}\begin{aligned} 2 x_1+x_2+x_3-S_1+A_1 & =10 \\ x_1+3 x_2+x_3+S_2 & =12 \\ x_1+x_2+x_3 & +A_2=6 \\ \text { and } x_1, x_2, x_3, S_1, S_2, A_1, A_2 \geq 0 & \end{aligned}2x1+x2+x3S1+A1=10x1+3x2+x3+S2=12x1+x2+x3+A2=6 and x1,x2,x3,S1,S2,A1,A20
Iteration-1 C j C j C_(j)C_jCj 4 5 2 0 0 M M -M-MM M M -M-MM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 s 1 s 1 s_(1)s_1s1 S 2 S 2 S_(2)S_2S2 A 1 A 1 A_(1)A_1A1 A 2 A 2 A_(2)A_2A2 MinRatio X B x 1  MinRatio  X B x 1 {:[” MinRatio “],[(X_(B))/(x_(1))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array} MinRatio XBx1
A 1 A 1 A_(1)A_1A1 M M -M-MM 10 (2) 1 1 -1 0 1 0 10 2 = 5 10 2 = 5 (10)/(2)=5rarr\frac{10}{2}=5 \rightarrow102=5
S 2 S 2 S_(2)S_2S2 0 12 1 3 1 0 1 0 0 12 1 = 12 12 1 = 12 (12)/(1)=12\frac{12}{1}=12121=12
A 2 A 2 A_(2)A_2A2 M M -M-MM 6 1 1 1 0 0 0 1 6 1 = 6 6 1 = 6 (6)/(1)=6\frac{6}{1}=661=6
Z = 16 M Z = 16 M Z=-16 MZ=-16 MZ=16M Z j Z j Z_(j)Z_jZj 3 M 3 M -3M-3 M3M 2 M 2 M -2M-2 M2M 2 M 2 M -2M-2 M2M M M MMM 0 M M -M-MM M M -M-MM
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 3 M + 4 3 M + 4 3M+4uarr3 M+4 \uparrow3M+4 2 M + 5 2 M + 5 2M+52 M+52M+5 2 M + 2 2 M + 2 2M+22 M+22M+2 M M -M-MM 0 0 0
Iteration-1 C_(j) 4 5 2 0 0 -M -M B C_(B) X_(B) x_(1) x_(2) x_(3) s_(1) S_(2) A_(1) A_(2) ” MinRatio (X_(B))/(x_(1))” A_(1) -M 10 (2) 1 1 -1 0 1 0 (10)/(2)=5rarr S_(2) 0 12 1 3 1 0 1 0 0 (12)/(1)=12 A_(2) -M 6 1 1 1 0 0 0 1 (6)/(1)=6 Z=-16 M Z_(j) -3M -2M -2M M 0 -M -M C_(j)-Z_(j) 3M+4uarr 2M+5 2M+2 -M 0 0 0 | Iteration-1 | | $C_j$ | 4 | 5 | 2 | 0 | 0 | $-M$ | $-M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $S_2$ | $A_1$ | $A_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_1}\end{array}$ | | $A_1$ | $-M$ | 10 | (2) | 1 | 1 | -1 | 0 | 1 | 0 | $\frac{10}{2}=5 \rightarrow$ | | $S_2$ | 0 | 12 | 1 | 3 | 1 | 0 | 1 | 0 | 0 | $\frac{12}{1}=12$ | | $A_2$ | $-M$ | 6 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | $\frac{6}{1}=6$ | | $Z=-16 M$ | | $Z_j$ | $-3 M$ | $-2 M$ | $-2 M$ | $M$ | 0 | $-M$ | $-M$ | | | | | $C_j-Z_j$ | $3 M+4 \uparrow$ | $2 M+5$ | $2 M+2$ | $-M$ | 0 | 0 | 0 | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 3 M + 4 3 M + 4 3M+43 M+43M+4 and its column index is 1 . So, the entering variable is x 1 x 1 x_(1)x_1x1.
Minimum ratio is 5 and its row index is 1 . So, the leaving basis variable is A 1 A 1 A_(1)A_1A1.
:.\therefore The pivot element is 2 .
Entering = x 1 = x 1 =x_(1)=x_1=x1, Departing = A 1 = A 1 =A_(1)=A_1=A1, Key Element = 2 = 2 =2=2=2
R 1 ( new ) = R 1 ( old ) ÷ 2 R 2 ( new ) = R 2 (old ) R 1 ( new ) R 3 ( new ) = R 3 (old ) R 1 ( new ) R 1 (  new  ) = R 1 (  old  ) ÷ 2 R 2 (  new  ) = R 2  (old  R 1 (  new  ) R 3 (  new  ) = R 3  (old  R 1 (  new  ) {:[R_(1)(” new “)=R_(1)(” old “)-:2],[{:R_(2)(” new “)=R_(2)” (old “)-R_(1)(” new “)],[{:R_(3)(” new “)=R_(3)” (old “)-R_(1)(” new “)]:}\begin{aligned} & R_1(\text { new })=R_1(\text { old }) \div 2 \\ & \left.R_2(\text { new })=R_2 \text { (old }\right)-R_1(\text { new }) \\ & \left.R_3(\text { new })=R_3 \text { (old }\right)-R_1(\text { new }) \end{aligned}R1( new )=R1( old )÷2R2( new )=R2 (old )R1( new )R3( new )=R3 (old )R1( new )
Iteration-2 C j C j C_(j)C_jCj 4 5 2 0 0 M M -M-MM
B B BBB C B C B C_(B)C_BCB X B X B X_(B)X_BXB x 1 x 1 x_(1)x_1x1 x 2 x 2 x_(2)x_2x2 x 3 x 3 x_(3)x_3x3 s 1 s 1 s_(1)s_1s1 S 2 S 2 S_(2)S_2S2 A 2 A 2 A_(2)A_2A2 MinRatio X B x 2  MinRatio  X B x 2 {:[” MinRatio “],[(X_(B))/(x_(2))]:}\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array} MinRatio XBx2
x 1 x 1 x_(1)x_1x1 4 5 1 0.5 0.5 -0.5 0 0 5 0.5 = 10 5 0.5 = 10 (5)/(0.5)=10\frac{5}{0.5}=1050.5=10
S 2 S 2 S_(2)S_2S2 0 7 0 2.5 0.5 0.5 1 0 7 2.5 = 2.8 7 2.5 = 2.8 (7)/(2.5)=2.8\frac{7}{2.5}=2.872.5=2.8
A 2 A 2 A_(2)A_2A2 M M -M-MM 1 0 ( 0.5 ) ( 0.5 ) (0.5)(0.5)(0.5) 0.5 0.5 0 1 1 0.5 = 2 1 0.5 = 2 (1)/(0.5)=2rarr\frac{1}{0.5}=2 \rightarrow10.5=2
Z = M + 20 Z = M + 20 Z=-M+20Z=-M+20Z=M+20 Z j Z j Z_(j)Z_jZj 4 0.5 M + 2 0.5 M + 2 -0.5 M+2-0.5 M+20.5M+2 0.5 M + 2 0.5 M + 2 -0.5 M+2-0.5 M+20.5M+2 0.5 M 2 0.5 M 2 -0.5 M-2-0.5 M-20.5M2 0 M M -M-MM
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0.5 M + 3 0.5 M + 3 0.5 M+3uarr0.5 M+3 \uparrow0.5M+3 0.5 M 0.5 M 0.5 M0.5 M0.5M 0.5 M + 2 0.5 M + 2 0.5 M+20.5 M+20.5M+2 0 0
Iteration-2 C_(j) 4 5 2 0 0 -M B C_(B) X_(B) x_(1) x_(2) x_(3) s_(1) S_(2) A_(2) ” MinRatio (X_(B))/(x_(2))” x_(1) 4 5 1 0.5 0.5 -0.5 0 0 (5)/(0.5)=10 S_(2) 0 7 0 2.5 0.5 0.5 1 0 (7)/(2.5)=2.8 A_(2) -M 1 0 (0.5) 0.5 0.5 0 1 (1)/(0.5)=2rarr Z=-M+20 Z_(j) 4 -0.5 M+2 -0.5 M+2 -0.5 M-2 0 -M C_(j)-Z_(j) 0 0.5 M+3uarr 0.5 M 0.5 M+2 0 0 | Iteration-2 | | $C_j$ | 4 | 5 | 2 | 0 | 0 | $-M$ | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $B$ | $C_B$ | $X_B$ | $x_1$ | $x_2$ | $x_3$ | $s_1$ | $S_2$ | $A_2$ | $\begin{array}{c}\text { MinRatio } \\ \frac{X_B}{x_2}\end{array}$ | | $x_1$ | 4 | 5 | 1 | 0.5 | 0.5 | -0.5 | 0 | 0 | $\frac{5}{0.5}=10$ | | $S_2$ | 0 | 7 | 0 | 2.5 | 0.5 | 0.5 | 1 | 0 | $\frac{7}{2.5}=2.8$ | | $A_2$ | $-M$ | 1 | 0 | $(0.5)$ | 0.5 | 0.5 | 0 | 1 | $\frac{1}{0.5}=2 \rightarrow$ | | $Z=-M+20$ | | $Z_j$ | 4 | $-0.5 M+2$ | $-0.5 M+2$ | $-0.5 M-2$ | 0 | $-M$ | | | | | $C_j-Z_j$ | 0 | $0.5 M+3 \uparrow$ | $0.5 M$ | $0.5 M+2$ | 0 | 0 | |
Positive maximum C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj is 0.5 M + 3 0.5 M + 3 0.5 M+30.5 M+30.5M+3 and its column index is 2 . So, the entering variable is x 2 x 2 x_(2)x_2x2.
Minimum ratio is 2 and its row index is 3 . So, the leaving basis variable is A 2 A 2 A_(2)A_2A2.
:.\therefore The pivot element is 0.5 .
Entering = x 2 = x 2 =x_(2)=x_2=x2, Departing = A 2 = A 2 =A_(2)=A_2=A2, Key Element = 0.5 = 0.5 =0.5=0.5=0.5
R 3 ( R 3 ( R_(3)(R_3(R3( new ) = R 3 ) = R 3 )=R_(3))=R_3)=R3 (old) ÷ 0.5 ÷ 0.5 -:0.5\div 0.5÷0.5
R 1 ( R 1 ( R_(1)(R_1(R1( new ) = R 1 ( ) = R 1 ( )=R_(1)()=R_1()=R1( old ) 0.5 R 3 ) 0.5 R 3 )-0.5R_(3))-0.5 R_3)0.5R3 (new)
R 2 ( R 2 ( R_(2)(R_2(R2( new ) = R 2 ( ) = R 2 ( )=R_(2)()=R_2()=R2( old ) 2.5 R 3 ( ) 2.5 R 3 ( )-2.5R_(3)()-2.5 R_3()2.5R3( new ) ) )))
Iteration-3 C j C j C_(j)C_jCj 4 5 2 0 0
B B B\boldsymbol{B}B C B C B C_(B)\boldsymbol{C}_{\boldsymbol{B}}CB X B X B X_(B)\boldsymbol{X}_{\boldsymbol{B}}XB x 1 x 1 x_(1)\boldsymbol{x}_{\mathbf{1}}x1 x 2 x 2 x_(2)\boldsymbol{x}_{\mathbf{2}}x2 x 3 x 3 x_(3)\boldsymbol{x}_{\mathbf{3}}x3 S 1 S 1 S_(1)\boldsymbol{S}_{\mathbf{1}}S1 S 2 S 2 S_(2)\boldsymbol{S}_{\mathbf{2}}S2 MinRatio
x 1 x 1 x_(1)x_1x1 4 4 1 0 0 -1 0
S 2 S 2 S_(2)S_2S2 0 2 0 0 -2 -2 1
x 2 x 2 x_(2)x_2x2 5 2 0 1 1 1 0
Z = 2 6 Z = 2 6 Z=26\boldsymbol{Z}=\mathbf{2 6}Z=26 Z j Z j Z_(j)\boldsymbol{Z}_{\boldsymbol{j}}Zj 4 4 4\mathbf{4}4 5 5 5\mathbf{5}5 5 5 5\mathbf{5}5 1 1 1\mathbf{1}1 0 0 0\mathbf{0}0
C j Z j C j Z j C_(j)-Z_(j)C_j-Z_jCjZj 0 0 -3 -1 0
Iteration-3 C_(j) 4 5 2 0 0 B C_(B) X_(B) x_(1) x_(2) x_(3) S_(1) S_(2) MinRatio x_(1) 4 4 1 0 0 -1 0 S_(2) 0 2 0 0 -2 -2 1 x_(2) 5 2 0 1 1 1 0 Z=26 Z_(j) 4 5 5 1 0 C_(j)-Z_(j) 0 0 -3 -1 0 | Iteration-3 | | $C_j$ | 4 | 5 | 2 | 0 | 0 | | | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | :—: | | $\boldsymbol{B}$ | $\boldsymbol{C}_{\boldsymbol{B}}$ | $\boldsymbol{X}_{\boldsymbol{B}}$ | $\boldsymbol{x}_{\mathbf{1}}$ | $\boldsymbol{x}_{\mathbf{2}}$ | $\boldsymbol{x}_{\mathbf{3}}$ | $\boldsymbol{S}_{\mathbf{1}}$ | $\boldsymbol{S}_{\mathbf{2}}$ | MinRatio | | $x_1$ | 4 | 4 | 1 | 0 | 0 | -1 | 0 | | | $S_2$ | 0 | 2 | 0 | 0 | -2 | -2 | 1 | | | $x_2$ | 5 | 2 | 0 | 1 | 1 | 1 | 0 | | | $\boldsymbol{Z}=\mathbf{2 6}$ | | $\boldsymbol{Z}_{\boldsymbol{j}}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{5}$ | $\mathbf{1}$ | $\mathbf{0}$ | | | | | $C_j-Z_j$ | 0 | 0 | -3 | -1 | 0 | |
Since all C j Z j 0 C j Z j 0 C_(j)-Z_(j) <= 0C_j-Z_j \leq 0CjZj0
Hence, optimal solution is arrived with value of variables as :
x 1 = 4 , x 2 = 2 , x 3 = 0 x 1 = 4 , x 2 = 2 , x 3 = 0 x_(1)=4,x_(2)=2,x_(3)=0x_1=4, x_2=2, x_3=0x1=4,x2=2,x3=0
Max Z = 26 Max Z = 26 Max Z=26\operatorname{Max} Z=26MaxZ=26
खण्ड-B / SECTION-B
  1. (a) समीकरण f ( x + y + z , x 2 + y 2 + z 2 ) = 0 f x + y + z , x 2 + y 2 + z 2 = 0 f(x+y+z,x^(2)+y^(2)+z^(2))=0f\left(x+y+z, x^2+y^2+z^2\right)=0f(x+y+z,x2+y2+z2)=0 से स्वैच्छिक फलन f f fff का विलोपन कर आंशिक अवकल समीकरण को प्राप्त कीजिए।
Obtain the partial differential equation by eliminating arbitrary function f f fff from the equation f ( x + y + z , x 2 + y 2 + z 2 ) = 0 f x + y + z , x 2 + y 2 + z 2 = 0 f(x+y+z,x^(2)+y^(2)+z^(2))=0f\left(x+y+z, x^2+y^2+z^2\right)=0f(x+y+z,x2+y2+z2)=0.
Answer:
Introduction:
The objective is to obtain a partial differential equation (PDE) by eliminating the arbitrary function f f fff from the given equation:
f ( x + y + z , x 2 + y 2 + z 2 ) = 0 ( 1 ) f x + y + z , x 2 + y 2 + z 2 = 0 ( 1 ) f(x+y+z,x^(2)+y^(2)+z^(2))=0quad rarr(1)f\left(x+y+z, x^2+y^2+z^2\right) = 0 \quad \rightarrow (1)f(x+y+z,x2+y2+z2)=0(1)
Elimination of Arbitrary Function:
Let’s proceed to eliminate f f fff by introducing new variables u u uuu and v v vvv as follows:
u = x + y + z , v = x 2 + y 2 + z 2 ( 2 ) u = x + y + z , v = x 2 + y 2 + z 2 ( 2 ) u=x+y+z,quad v=x^(2)+y^(2)+z^(2)quad rarr(2)u = x+y+z, \quad v = x^2+y^2+z^2 \quad \rightarrow (2)u=x+y+z,v=x2+y2+z2(2)
The equation (1) can now be expressed as:
ϕ ( u , v ) = 0 ( 3 ) ϕ ( u , v ) = 0 ( 3 ) phi(u,v)=0quad rarr(3)\phi(u, v) = 0 \quad \rightarrow (3)ϕ(u,v)=0(3)
Partial Differentiation:
Now, we will differentiate equation (3) with respect to x x xxx partially:
ϕ u ( u x + P u z ) + ϕ v ( v x + p v z ) = 0 (4) ϕ u u x + P u z + ϕ v v x + p v z = 0  (4)  (del phi)/(del u)((del u)/(del x)+P(del u)/(del z))+(del phi)/(del v)((del v)/(del x)+p(del v)/(del z))=0quad rarr” (4) “\frac{\partial \phi}{\partial u}\left(\frac{\partial u}{\partial x}+P \frac{\partial u}{\partial z}\right)+\frac{\partial \phi}{\partial v}\left(\frac{\partial v}{\partial x}+p \frac{\partial v}{\partial z}\right)=0 \quad \rightarrow \text { (4) }ϕu(ux+Puz)+ϕv(vx+pvz)=0 (4) 
From the relationships in equation (2), we have:
u x = 1 , u z = 1 , v x = 2 x , v z = 2 z , u y = 1 , v y = 2 y (5) u x = 1 , u z = 1 , v x = 2 x , v z = 2 z , u y = 1 , v y = 2 y  (5)  (del u)/(del x)=1,quad(del u)/(del z)=1,quad(del v)/(del x)=2x,quad(del v)/(del z)=2z,quad(del u)/(del y)=1,quad(del v)/(del y)=2y quad rarr” (5) “\frac{\partial u}{\partial x}=1, \quad \frac{\partial u}{\partial z}=1, \quad \frac{\partial v}{\partial x}=2x, \quad \frac{\partial v}{\partial z}=2z, \quad \frac{\partial u}{\partial y}=1, \quad \frac{\partial v}{\partial y}=2y \quad \rightarrow \text { (5) }ux=1,uz=1,vx=2x,vz=2z,uy=1,vy=2y (5) 
Using equations (4) and (5), we can simplify as follows:
ϕ u ( 1 + p ) + 2 ϕ v ( x + p z ) = 0 ϕ u ϕ v = 2 ( x + p z ) 1 + p ( 6 ) ϕ u ( 1 + p ) + 2 ϕ v ( x + p z ) = 0 ϕ u ϕ v = 2 ( x + p z ) 1 + p ( 6 ) {:[(del phi)/(del u)(1+p)+2(del phi)/(del v)(x+pz)=0],[=>((del phi)/(del u))/((del phi)/(del v))=-(2(x+pz))/(1+p)quad rarr(6)]:}\begin{aligned} & \frac{\partial \phi}{\partial u}(1+p)+2 \frac{\partial \phi}{\partial v}(x+pz)=0 \\ & \Rightarrow \frac{\frac{\partial \phi}{\partial u}}{\frac{\partial \phi}{\partial v}}=-\frac{2(x+pz)}{1+p} \quad \rightarrow (6) \end{aligned}ϕu(1+p)+2ϕv(x+pz)=0ϕuϕv=2(x+pz)1+p(6)
Partial Differentiation (w.r.t. y y yyy):
Next, we differentiate equation (3) partially with respect to y y yyy:
ϕ u ( u y + q u z ) + ϕ v ( v y + q v z ) = 0 ϕ u ( 1 + q ) + 2 ϕ v ( y + z q ) = 0 ϕ u ϕ v = 2 ( y + z q ) 1 + q (7) ϕ u u y + q u z + ϕ v v y + q v z = 0 ϕ u ( 1 + q ) + 2 ϕ v ( y + z q ) = 0 ϕ u ϕ v = 2 ( y + z q ) 1 + q  (7)  {:[(del phi)/(del u)((del u)/(del y)+q(del u)/(del z))+(del phi)/(del v)((del v)/(del y)+q(del v)/(del z))=0],[=>(del phi)/(del u)(1+q)+2(del phi)/(del v)(y+zq)=0],[=>((del phi)/(del u))/((del phi)/(del v))=-(2(y+zq))/(1+q)quad rarr” (7) “]:}\begin{aligned} & \frac{\partial \phi}{\partial u}\left(\frac{\partial u}{\partial y}+q \frac{\partial u}{\partial z}\right)+\frac{\partial \phi}{\partial v}\left(\frac{\partial v}{\partial y}+q \frac{\partial v}{\partial z}\right)=0 \\ & \Rightarrow \frac{\partial \phi}{\partial u}(1+q)+2 \frac{\partial \phi}{\partial v}(y+zq)=0 \\ & \Rightarrow \frac{\frac{\partial \phi}{\partial u}}{\frac{\partial \phi}{\partial v}}=-\frac{2(y+zq)}{1+q} \quad \rightarrow \text { (7) } \end{aligned}ϕu(uy+quz)+ϕv(vy+qvz)=0ϕu(1+q)+2ϕv(y+zq)=0ϕuϕv=2(y+zq)1+q (7) 
Eliminating ϕ ϕ phi\phiϕ:
Now, by eliminating ϕ ϕ phi\phiϕ from equations (6) and (7), we obtain:
x + p z 1 + p = y + q z 1 + q ( 1 + q ) ( x + p z ) = ( 1 + p ) ( y + q z ) x + p z + q x + p q z = y + q z + p y + p q z x y = p ( y z ) + q ( z x ) ( y z ) p + ( z x ) q = x y x + p z 1 + p = y + q z 1 + q ( 1 + q ) ( x + p z ) = ( 1 + p ) ( y + q z ) x + p z + q x + p q z = y + q z + p y + p q z x y = p ( y z ) + q ( z x ) ( y z ) p + ( z x ) q = x y {:[(x+pz)/(1+p)=(y+qz)/(1+q)],[=>(1+q)(x+pz)=(1+p)(y+qz)],[=>x+pz+qx+pqz=y+qz+py+pqz],[=>x-y=p(y-z)+q(z-x)],[=>(y-z)p+(z-x)q=x-y]:}\begin{aligned} & \frac{x+pz}{1+p}=\frac{y+qz}{1+q} \\ & \Rightarrow (1+q)(x+pz)=(1+p)(y+qz) \\ & \Rightarrow x+pz+qx+pqz=y+qz+py+pqz \\ & \Rightarrow x-y=p(y-z)+q(z-x) \\ & \Rightarrow (y-z)p+(z-x)q=x-y \end{aligned}x+pz1+p=y+qz1+q(1+q)(x+pz)=(1+p)(y+qz)x+pz+qx+pqz=y+qz+py+pqzxy=p(yz)+q(zx)(yz)p+(zx)q=xy
This final expression represents the desired partial differential equation (PDE) of the first order.
Conclusion:
The elimination of the arbitrary function f f fff from the given equation results in the first-order PDE:
( y z ) p + ( z x ) q = x y ( y z ) p + ( z x ) q = x y (y-z)p+(z-x)q=x-y(y-z)p+(z-x)q=x-y(yz)p+(zx)q=xy
This is the partial differential equation obtained by eliminating f f fff from the initial equation.
(b) प्रारंभिक मानों 0 , π 2 0 , π 2 0,(pi)/(2)0, \frac{\pi}{2}0,π2 का उपयोग करके एक संख्यात्मक तकनीक के द्वारा समीकरण 3 x = 1 + cos x 3 x = 1 + cos x 3x=1+cos x3 x=1+\cos x3x=1+cosx का एक धनात्मक मूल ज्ञात कीजिए, तथा न्यूटन-राफ्सन विधि के द्वारा परिणाम को 8 सार्थक अंकों तक और शुद्ध मान के निकट लाइए।
Find a positive root of the equation 3 x = 1 + cos x 3 x = 1 + cos x 3x=1+cos x3 x=1+\cos x3x=1+cosx by a numerical technique using initial values 0 , π 2 0 , π 2 0,(pi)/(2)0, \frac{\pi}{2}0,π2; and further improve the result using Newton-Raphson method correct to 8 significant figures.
Answer:
Introduction:
The goal is to find a positive root of the equation 3 x = 1 + cos ( x ) 3 x = 1 + cos ( x ) 3x=1+cos(x)3x = 1 + \cos(x)3x=1+cos(x) using a numerical technique. Initially, we use the interval [ 0 , π 2 ] [ 0 , π 2 ] [0,(pi)/(2)][0, \frac{\pi}{2}][0,π2] as our guess range, and then we further improve the result using the Newton-Raphson method with an accuracy of 8 significant figures.
Finding Initial Interval:
Given the equation 3 x = 1 + cos ( x ) 3 x = 1 + cos ( x ) 3x=1+cos(x)3x = 1 + \cos(x)3x=1+cos(x), we can rearrange it as:
3 x cos ( x ) 1 = 0 3 x cos ( x ) 1 = 0 3x-cos(x)-1=03x – \cos(x) – 1 = 03xcos(x)1=0
Now, let f ( x ) = 3 x cos ( x ) 1 f ( x ) = 3 x cos ( x ) 1 f(x)=3x-cos(x)-1f(x) = 3x – \cos(x) – 1f(x)=3xcos(x)1.
We also find the derivative of f ( x ) f ( x ) f(x)f(x)f(x):
f ( x ) = 3 + sin ( x ) f ( x ) = 3 + sin ( x ) f^(‘)(x)=3+sin(x)f'(x) = 3 + \sin(x)f(x)=3+sin(x)
Now, we evaluate f ( x ) f ( x ) f(x)f(x)f(x) and f ( x ) f ( x ) f^(‘)(x)f'(x)f(x) at two points: x = 0 x = 0 x=0x = 0x=0 and x = 1 x = 1 x=1x = 1x=1.
x x xxx 0 1
f ( x ) f ( x ) f(x)f(x)f(x) -2 1.45969769
x 0 1 f(x) -2 1.45969769| $x$ | 0 | 1 | | :—: | :—: | :—: | | $f(x)$ | -2 | 1.45969769 |
From the values, we see that f ( 0 ) < 0 f ( 0 ) < 0 f(0) < 0f(0) < 0f(0)<0 and f ( 1 ) > 0 f ( 1 ) > 0 f(1) > 0f(1) > 0f(1)>0. Hence, the root lies between 0 and 1.
Let’s start with an initial guess, x 0 = 0 + 1 2 = 0.5 x 0 = 0 + 1 2 = 0.5 x_(0)=(0+1)/(2)=0.5x_0 = \frac{0 + 1}{2} = 0.5x0=0+12=0.5.
Newton-Raphson Method:
1st iteration:
Evaluate f ( x 0 ) f ( x 0 ) f(x_(0))f(x_0)f(x0) and f ( x 0 ) f ( x 0 ) f^(‘)(x_(0))f'(x_0)f(x0):
f ( x 0 ) = f ( 0.5 ) = 3 0.5 cos ( 0.5 ) 1 = 0.37758256 f ( x 0 ) = f ( 0.5 ) = 3 + sin ( 0.5 ) = 3.47942554 f ( x 0 ) = f ( 0.5 ) = 3 0.5 cos ( 0.5 ) 1 = 0.37758256 f ( x 0 ) = f ( 0.5 ) = 3 + sin ( 0.5 ) = 3.47942554 {:[f(x_(0))=f(0.5)=3*0.5-cos(0.5)-1=-0.37758256],[f^(‘)(x_(0))=f^(‘)(0.5)=3+sin(0.5)=3.47942554]:}\begin{aligned} & f(x_0) = f(0.5) = 3 \cdot 0.5 – \cos(0.5) – 1 = -0.37758256 \\ & f'(x_0) = f'(0.5) = 3 + \sin(0.5) = 3.47942554 \end{aligned}f(x0)=f(0.5)=30.5cos(0.5)1=0.37758256f(x0)=f(0.5)=3+sin(0.5)=3.47942554
Now, update x 1 x 1 x_(1)x_1x1:
x 1 = x 0 f ( x 0 ) f ( x 0 ) = 0.5 0.37758256 3.47942554 = 0.60851865 x 1 = x 0 f ( x 0 ) f ( x 0 ) = 0.5 0.37758256 3.47942554 = 0.60851865 x_(1)=x_(0)-(f(x_(0)))/(f^(‘)(x_(0)))=0.5-(-0.37758256)/(3.47942554)=0.60851865x_1 = x_0 – \frac{f(x_0)}{f'(x_0)} = 0.5 – \frac{-0.37758256}{3.47942554} = 0.60851865x1=x0f(x0)f(x0)=0.50.377582563.47942554=0.60851865
2nd iteration:
Evaluate f ( x 1 ) f ( x 1 ) f(x_(1))f(x_1)f(x1) and f ( x 1 ) f ( x 1 ) f^(‘)(x_(1))f'(x_1)f(x1):
f ( x 1 ) = f ( 0.60851865 ) = 3 0.60851865 cos ( 0.60851865 ) 1 = 0.00506021 f ( x 1 ) = f ( 0.60851865 ) = 3 + sin ( 0.60851865 ) = 3.57165265 f ( x 1 ) = f ( 0.60851865 ) = 3 0.60851865 cos ( 0.60851865 ) 1 = 0.00506021 f ( x 1 ) = f ( 0.60851865 ) = 3 + sin ( 0.60851865 ) = 3.57165265 {:[f(x_(1))=f(0.60851865)=3*0.60851865-cos(0.60851865)-1=0.00506021],[f^(‘)(x_(1))=f^(‘)(0.60851865)=3+sin(0.60851865)=3.57165265]:}\begin{aligned} & f(x_1) = f(0.60851865) = 3 \cdot 0.60851865 – \cos(0.60851865) – 1 = 0.00506021 \\ & f'(x_1) = f'(0.60851865) = 3 + \sin(0.60851865) = 3.57165265 \end{aligned}f(x1)=f(0.60851865)=30.60851865cos(0.60851865)1=0.00506021f(x1)=f(0.60851865)=3+sin(0.60851865)=3.57165265
Now, update x 2 x 2 x_(2)x_2x2:
x 2 = x 1 f ( x 1 ) f ( x 1 ) = 0.60851865 0.00506021 3.57165265 = 0.60710188 x 2 = x 1 f ( x 1 ) f ( x 1 ) = 0.60851865 0.00506021 3.57165265 = 0.60710188 x_(2)=x_(1)-(f(x_(1)))/(f^(‘)(x_(1)))=0.60851865-(0.00506021)/(3.57165265)=0.60710188x_2 = x_1 – \frac{f(x_1)}{f'(x_1)} = 0.60851865 – \frac{0.00506021}{3.57165265} = 0.60710188x2=x1f(x1)f(x1)=0.608518650.005060213.57165265=0.60710188
3rd iteration:
Evaluate f ( x 2 ) f ( x 2 ) f(x_(2))f(x_2)f(x2) and f ( x 2 ) f ( x 2 ) f^(‘)(x_(2))f'(x_2)f(x2):
f ( x 2 ) = f ( 0.60710188 ) = 3 0.60710188 cos ( 0.60710188 ) 1 = 0.00000082 f ( x 2 ) = f ( 0.60710188 ) = 3 + sin ( 0.60710188 ) = 3.57048962 f ( x 2 ) = f ( 0.60710188 ) = 3 0.60710188 cos ( 0.60710188 ) 1 = 0.00000082 f ( x 2 ) = f ( 0.60710188 ) = 3 + sin ( 0.60710188 ) = 3.57048962 {:[f(x_(2))=f(0.60710188)=3*0.60710188-cos(0.60710188)-1=0.00000082],[f^(‘)(x_(2))=f^(‘)(0.60710188)=3+sin(0.60710188)=3.57048962]:}\begin{aligned} & f(x_2) = f(0.60710188) = 3 \cdot 0.60710188 – \cos(0.60710188) – 1 = 0.00000082 \\ & f'(x_2) = f'(0.60710188) = 3 + \sin(0.60710188) = 3.57048962 \end{aligned}f(x2)=f(0.60710188)=30.60710188cos(0.60710188)1=0.00000082f(x2)=f(0.60710188)=3+sin(0.60710188)=3.57048962
Now, update x 3 x 3 x_(3)x_3x3:
x 3 = x 2 f ( x 2 ) f ( x 2 ) = 0.60710188 0.00000082 3.57048962 = 0.60710165 x 3 = x 2 f ( x 2 ) f ( x 2 ) = 0.60710188 0.00000082 3.57048962 = 0.60710165 x_(3)=x_(2)-(f(x_(2)))/(f^(‘)(x_(2)))=0.60710188-(0.00000082)/(3.57048962)=0.60710165x_3 = x_2 – \frac{f(x_2)}{f'(x_2)} = 0.60710188 – \frac{0.00000082}{3.57048962} = 0.60710165x3=x2f(x2)f(x2)=0.607101880.000000823.57048962=0.60710165
4th iteration:
Evaluate f ( x 3 ) f ( x 3 ) f(x_(3))f(x_3)f(x3) and f ( x 3 ) f ( x 3 ) f^(‘)(x_(3))f'(x_3)f(x3):
f ( x 3 ) = f ( 0.60710165 ) = 3 0.60710165 cos ( 0.60710165 ) 1 = 0 f ( x 3 ) = f ( 0.60710165 ) = 3 + sin ( 0.60710165 ) = 3.57048943 f ( x 3 ) = f ( 0.60710165 ) = 3 0.60710165 cos ( 0.60710165 ) 1 = 0 f ( x 3 ) = f ( 0.60710165 ) = 3 + sin ( 0.60710165 ) = 3.57048943 {:[f(x_(3))=f(0.60710165)=3*0.60710165-cos(0.60710165)-1=0],[f^(‘)(x_(3))=f^(‘)(0.60710165)=3+sin(0.60710165)=3.57048943]:}\begin{aligned} & f(x_3) = f(0.60710165) = 3 \cdot 0.60710165 – \cos(0.60710165) – 1 = 0 \\ & f'(x_3) = f'(0.60710165) = 3 + \sin(0.60710165) = 3.57048943 \end{aligned}f(x3)=f(0.60710165)=30.60710165cos(0.60710165)1=0f(x3)=f(0.60710165)=3+sin(0.60710165)=3.57048943
Now, update x 4 x 4 x_(4)x_4x4:
x 4 = x 3 f ( x 3 ) f ( x 3 ) = 0.60710165 0 3.57048943 = 0.60710165 x 4 = x 3 f ( x 3 ) f ( x 3 ) = 0.60710165 0 3.57048943 = 0.60710165 x_(4)=x_(3)-(f(x_(3)))/(f^(‘)(x_(3)))=0.60710165-(0)/(3.57048943)=0.60710165x_4 = x_3 – \frac{f(x_3)}{f'(x_3)} = 0.60710165 – \frac{0}{3.57048943} = 0.60710165x4=x3f(x3)f(x3)=0.6071016503.57048943=0.60710165
n x 0 f ( x 0 ) f ( x 0 ) x 1 Update 1 0.5 0.37758256 3.47942554 0.60851865 x 0 = x 1 2 0.60851865 0.00506021 3.57165265 0.60710188 x 0 = x 1 3 0.60710188 0.00000082 3.57048962 0.60710165 x 0 = x 1 4 0.60710165 0 3.57048943 0.60710165 x 0 = x 1 n x 0 f x 0 f x 0 x 1  Update  1 0.5 0.37758256 3.47942554 0.60851865 x 0 = x 1 2 0.60851865 0.00506021 3.57165265 0.60710188 x 0 = x 1 3 0.60710188 0.00000082 3.57048962 0.60710165 x 0 = x 1 4 0.60710165 0 3.57048943 0.60710165 x 0 = x 1 {:[n,x_(0),f(x_(0)),f^(‘)(x_(0)),x_(1),” Update “],[1,0.5,-0.37758256,3.47942554,0.60851865,x_(0)=x_(1)],[2,0.60851865,0.00506021,3.57165265,0.60710188,x_(0)=x_(1)],[3,0.60710188,0.00000082,3.57048962,0.60710165,x_(0)=x_(1)],[4,0.60710165,0,3.57048943,0.60710165,x_(0)=x_(1)]:}\begin{array}{|c|c|c|c|c|c|} \hline \boldsymbol{n} & \boldsymbol{x}_{\mathbf{0}} & \boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right) & \boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{0}}\right) & \boldsymbol{x}_{\mathbf{1}} & \text { Update } \\ \hline 1 & 0.5 & -0.37758256 & 3.47942554 & 0.60851865 & x_0=x_1 \\ \hline 2 & 0.60851865 & 0.00506021 & 3.57165265 & 0.60710188 & x_0=x_1 \\ \hline 3 & 0.60710188 & 0.00000082 & 3.57048962 & 0.60710165 & x_0=x_1 \\ \hline 4 & 0.60710165 & 0 & 3.57048943 & 0.60710165 & x_0=x_1 \\ \hline \end{array}nx0f(x0)f(x0)x1 Update 10.50.377582563.479425540.60851865x0=x120.608518650.005060213.571652650.60710188x0=x130.607101880.000000823.570489620.60710165x0=x140.6071016503.570489430.60710165x0=x1
Conclusion:
The approximate root of the equation 3 x cos ( x ) 1 = 0 3 x cos ( x ) 1 = 0 3x-cos(x)-1=03x – \cos(x) – 1 = 03xcos(x)1=0 obtained using the Newton-Raphson method after 4 iterations is x 0.60710165 x 0.60710165 x~~0.60710165x \approx 0.60710165x0.60710165 (correct to 8 significant figures).
(c) (i) ( 3798 3875 ) 10 ( 3798 3875 ) 10 (3798*3875)_(10)(3798 \cdot 3875)_{10}(37983875)10 को अष्टधारी तथा षोडशाधारी तुल्यमानों में बदलिए।
(ii) (\rceil P R ) ( Q P ) P R ) ( Q P ) P rarr R)^^(Q⇄P)P \rightarrow R) \wedge(Q \rightleftarrows P)PR)(QP) का मुख्य संयोजक सामान्य रूप (प्रिंसिपल कंजंक्टिव नॉर्मल फॉर्म) प्राप्त कीजिए।
(i) Convert ( 3798 3875 ) 10 ( 3798 3875 ) 10 (3798*3875)_(10)(3798 \cdot 3875)_{10}(37983875)10 into octal and hexadecimal equivalents.
Answer:
Introduction:
We are tasked with converting the decimal number ( 3798 3875 ) 10 ( 3798 3875 ) 10 (3798*3875)_(10)(3798 \cdot 3875)_{10}(37983875)10 into its octal and hexadecimal equivalents.
Conversion to Octal:
To convert ( 3798 ) 10 ( 3798 ) 10 (3798)_(10)(3798)_{10}(3798)10 into octal, we perform successive divisions by 8, recording remainders at each step until the quotient becomes zero.
  • Divide 3798 by 8: Quotient = 474, Remainder = 6.
  • Divide 474 by 8: Quotient = 59, Remainder = 2.
  • Divide 59 by 8: Quotient = 7, Remainder = 3.
  • Divide 7 by 8: Quotient = 0, Remainder = 7.
The remainders, when read from bottom to top, give us the octal equivalent: ( 3798 ) 10 = ( 7326 ) 8 ( 3798 ) 10 = ( 7326 _ ) 8 (3798)_(10)=(7326 _)_(8)(3798)_{10} = (\underline{7326})_8(3798)10=(7326)8.
Conversion of Decimal Fraction to Octal Fraction:
To convert the decimal fraction ( 0.3875 ) 10 ( 0.3875 ) 10 (0.3875)_(10)(0.3875)_{10}(0.3875)10 into its octal equivalent, we can multiply it by 8 successively, noting the integer parts.
  • 0.3875 × 8 = 3.1000 0.3875 × 8 = 3.1000 0.3875 xx8=3.10000.3875 \times 8 = 3.10000.3875×8=3.1000 (integer part = 3).
  • 0.1000 × 8 = 0.8000 0.1000 × 8 = 0.8000 0.1000 xx8=0.80000.1000 \times 8 = 0.80000.1000×8=0.8000 (integer part = 0).
  • 0.8000 × 8 = 6.4000 0.8000 × 8 = 6.4000 0.8000 xx8=6.40000.8000 \times 8 = 6.40000.8000×8=6.4000 (integer part = 6).
  • 0.4000 × 8 = 3.2000 0.4000 × 8 = 3.2000 0.4000 xx8=3.20000.4000 \times 8 = 3.20000.4000×8=3.2000 (integer part = 3).
  • 0.2000 × 8 = 1.6000 0.2000 × 8 = 1.6000 0.2000 xx8=1.60000.2000 \times 8 = 1.60000.2000×8=1.6000 (integer part = 1).
  • 0.6000 × 8 = 4.8000 0.6000 × 8 = 4.8000 0.6000 xx8=4.80000.6000 \times 8 = 4.80000.6000×8=4.8000 (integer part = 4).
Putting the integer parts together, we get the octal fraction: ( 0.3875 ) 10 = ( . 306314 ) 8 ( 0.3875 ) 10 = ( . 306314 _ ) 8 (0.3875)_(10)=(.306314 _)_(8)(0.3875)_{10} = (.\underline{306314})_8(0.3875)10=(.306314)8.
Octal Representation:
Therefore, ( 3798.3875 ) 10 = ( 7326.306314 ) 8 ( 3798.3875 ) 10 = ( 7326.306314 _ ) 8 (3798.3875)_(10)=(7326.306314 _)_(8)(3798.3875)_{10} = (\underline{7326.306314})_8(3798.3875)10=(7326.306314)8.
Conversion to Hexadecimal:
To convert ( 3798 ) 10 ( 3798 ) 10 (3798)_(10)(3798)_{10}(3798)10 into hexadecimal, we perform successive divisions by 16, recording remainders at each step until the quotient becomes zero.
  • Divide 3798 by 16: Quotient = 237, Remainder = 6.
  • Divide 237 by 16: Quotient = 14, Remainder = D (in hexadecimal).
  • Divide 14 by 16: Quotient = 0, Remainder = E (in hexadecimal).
The remainders, when read from bottom to top, give us the hexadecimal equivalent: ( 3798 ) 10 = ( E D 6 ) 16 ( 3798 ) 10 = ( E D 6 _ ) 16 (3798)_(10)=(ED6_)_(16)(3798)_{10} = (\underline{ED6})_{16}(3798)10=(ED6)16.
Conversion of Decimal Fraction to Hexadecimal Fraction:
To convert the decimal fraction ( 0.3875 ) 10 ( 0.3875 ) 10 (0.3875)_(10)(0.3875)_{10}(0.3875)10 into its hexadecimal equivalent, we can multiply it by 16 successively, noting the integer parts.
  • 0.3875 × 16 = 6.2000 0.3875 × 16 = 6.2000 0.3875 xx16=6.20000.3875 \times 16 = 6.20000.3875×16=6.2000 (integer part = 6).
  • 0.2000 × 16 = 3.2000 0.2000 × 16 = 3.2000 0.2000 xx16=3.20000.2000 \times 16 = 3.20000.2000×16=3.2000 (integer part = 3).
  • 0.2000 × 16 = 3.2000 0.2000 × 16 = 3.2000 0.2000 xx16=3.20000.2000 \times 16 = 3.20000.2000×16=3.2000 (integer part = 3).
  • 0.2000 × 16 = 3.2000 0.2000 × 16 = 3.2000 0.2000 xx16=3.20000.2000 \times 16 = 3.20000.2000×16=3.2000 (integer part = 3).
  • 0.2000 × 16 = 3.2000 0.2000 × 16 = 3.2000 0.2000 xx16=3.20000.2000 \times 16 = 3.20000.2000×16=3.2000 (integer part = 3).
  • 0.2000 × 16 = 3.2000 0.2000 × 16 = 3.2000 0.2000 xx16=3.20000.2000 \times 16 = 3.20000.2000×16=3.2000 (integer part = 3).
Putting the integer parts together, we get the hexadecimal fraction: ( 0.3875 ) 10 = ( . 633333 ) 16 ( 0.3875 ) 10 = ( . 633333 _ ) 16 (0.3875)_(10)=(.633333 _)_(16)(0.3875)_{10} = (.\underline{633333})_{16}(0.3875)10=(.633333)16.
Hexadecimal Representation:
Therefore, ( 3798.3875 ) 10 = ( E D 6.633333 ) 16 ( 3798.3875 ) 10 = ( E D 6.633333 _ ) 16 (3798.3875)_(10)=(ED 6.633333_)_(16)(3798.3875)_{10} = (\underline{ED6.633333})_{16}(3798.3875)10=(ED6.633333)16.
Conclusion:
The octal equivalent of ( 3798 3875 ) 10 ( 3798 3875 ) 10 (3798*3875)_(10)(3798 \cdot 3875)_{10}(37983875)10 is ( 7326.306314 ) 8 ( 7326.306314 ) 8 (7326.306314)_(8)(7326.306314)_8(7326.306314)8, and the hexadecimal equivalent is ( E D 6.633333 ) 16 ( E D 6.633333 ) 16 (ED 6.633333)_(16)(ED6.633333)_{16}(ED6.633333)16.
(ii) Obtain the principal conjunctive normal form of
( ד P R ) ( Q P = X Y ) ( ד P R ) Q P = X Y (דP rarr R)^^(Q⇋P=X^(Y))(ד P \rightarrow R) \wedge\left(Q \leftrightharpoons P=X^Y\right)(דPR)(QP=XY)
Answer:
Introduction:
We are tasked with obtaining the principal conjunctive normal form (PCNF) of the given logical expression:
( ¬ P R ) ( Q P = X Y ) ( ¬ P R ) ( Q P = X Y ) (not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y)(¬PR)(QP=XY)
Conversion Steps:
  1. Transform the Expression:
    Consider the expression ( ¬ P R ) ( Q P = X Y ) ( ¬ P R ) ( Q P = X Y ) (not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y)(¬PR)(QP=XY) and convert it to its equivalent form with negations and biconditionals expanded.
  2. Create the Truth Table:
    Build a truth table for the given expression with all relevant variables (P, Q, R, X, Y) and their respective negations.
  3. Calculate Intermediate Results:
    Calculate intermediate results for the implications and biconditionals in the truth table.
  4. Identify False Rows:
    Identify the rows in the truth table where the final result is false. These rows represent cases where the original expression is false.
  5. Apply PCNF:
    Use the rows identified in step 4 to construct the PCNF by combining the variables and their negations using disjunction (OR) to ensure that each row with a false result is included.
Truth Table:
Here’s the truth table for the given expression:
P P P\mathrm{P}P Q Q Q\mathrm{Q}Q R R R\mathrm{R}R P P ∼P\sim \mathrm{P}P P R P R ∼Prarr R\sim \mathrm{P} \rightarrow RPR Q P Q P Q⇋P\mathrm{Q} \leftrightharpoons PQP X Y X Y X^^YX \wedge YXY
T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T F F F\mathrm{F}F T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T
T T T\mathrm{T}T T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T
T T T\mathrm{T}T F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F
T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F
F F F\mathrm{F}F T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F
F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F F F F\mathrm{F}F F F F\mathrm{F}F
F F F\mathrm{F}F F F F\mathrm{F}F T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T T T T\mathrm{T}T
F F F\mathrm{F}F F F F\mathrm{F}F F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F T T T\mathrm{T}T F F F\mathrm{F}F
P Q R ∼P ∼Prarr R Q⇋P X^^Y T T T F T T T T T F F T T T T F T F T F F T F F F T F F F T T T T F F F T F T F F F F F T T T T T F F F T F T F| $\mathrm{P}$ | $\mathrm{Q}$ | $\mathrm{R}$ | $\sim \mathrm{P}$ | $\sim \mathrm{P} \rightarrow R$ | $\mathrm{Q} \leftrightharpoons P$ | $X \wedge Y$ | | :— | :— | :— | :— | :— | :— | :— | | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ | | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | $\mathrm{T}$ | | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ | $\mathrm{T}$ | $\mathrm{F}$ |
Identify False Rows:
The rows with a false result are:
  • Row 6
  • Row 8
Apply PCNF:
Using the false rows identified above, we construct the PCNF by combining the variables and their negations using disjunction (OR):
( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) (∼P vv Q vv∼R)^^(∼P vv∼Q vv R)^^(P vv∼Q vv∼R)^^(P vv∼Q vv R)^^(P vv Q vv R)(\sim P \vee Q \vee \sim R) \wedge (\sim P \vee \sim Q \vee R) \wedge (P \vee \sim Q \vee \sim R) \wedge (P \vee \sim Q \vee R) \wedge (P \vee Q \vee R)(PQR)(PQR)(PQR)(PQR)(PQR)
Conclusion:
The principal conjunctive normal form (PCNF) of the given expression ( ¬ P R ) ( Q P = X Y ) ( ¬ P R ) ( Q P = X Y ) (not P rarr R)^^(Q⇋P=X^(Y))(\neg P \rightarrow R) \wedge (Q \leftrightharpoons P = X^Y)(¬PR)(QP=XY) is:
( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R ) (∼P vv Q vv∼R)^^(∼P vv∼Q vv R)^^(P vv∼Q vv∼R)^^(P vv∼Q vv R)^^(P vv Q vv R)(\sim P \vee Q \vee \sim R) \wedge (\sim P \vee \sim Q \vee R) \wedge (P \vee \sim Q \vee \sim R) \wedge (P \vee \sim Q \vee R) \wedge (P \vee Q \vee R)(PQR)(PQR)(PQR)(PQR)(PQR)
(d) ऊर्ध्वर्धर x y x y xyx yxy-तल में स्थित एक वृत्त के अनुदिश एक कण गति के लिए व्यवरुद्ध है। डी’एलम्बर्ट के नियम की सहायता से दर्शाइए कि इसकी गति का समीकरण x ¨ y y ¨ x g x = 0 x ¨ y y ¨ x g x = 0 x^(¨)y-y^(¨)x-gx=0\ddot{x} y-\ddot{y} x-g x=0x¨yy¨xgx=0 है, जहाँ g g ggg गुरुत्वीय त्वरण है।
A particle is constrained to move along a circle lying in the vertical x y x y xyx yxy-plane. With the help of the D’Alembert’s principle, show that its equation of motion is x ¨ y y ¨ x g x = 0 x ¨ y y ¨ x g x = 0 x^(¨)y-y^(¨)x-gx=0\ddot{x} y-\ddot{y} x-g x=0x¨yy¨xgx=0, where g g ggg is the acceleration due to gravity.
Answer:
Introduction:
In this problem, we are considering a particle constrained to move along a circle lying in the vertical XY-plane. We need to show, with the help of D’Alembert’s principle, that its equation of motion is x ¨ y y ¨ x g x = 0 x ¨ y y ¨ x g x = 0 x^(¨)y-y^(¨)x-gx=0\ddot{x}y – \ddot{y}x – gx = 0x¨yy¨xgx=0, where g g ggg is the acceleration due to gravity.
Solution Steps:
  1. Particle on a Circular Path:
    Consider a particle of mass m m mmm moving along a circle of radius r r rrr in the XY-plane. Let ( x , y ) ( x , y ) (x,y)(x, y)(x,y) represent the position of the particle at any instant t t ttt with respect to the fixed point O O OOO. The constraint on the motion of the particle is that its position coordinates always lie on the circle. Hence, the equation of the constraint is given by:
    x 2 + y 2 = r 2 (1) x 2 + y 2 = r 2 (1) x^(2)+y^(2)=r^(2)quad(1)x^2 + y^2 = r^2 \quad \text{(1)}x2+y2=r2(1)
  2. Deriving Displacement Relations:
    Differentiate equation (1) to obtain:
    2 x d x + 2 y d y = 0 (2) 2 x d x + 2 y d y = 0 (2) 2xdx+2ydy=0quad(2)2x\,dx + 2y\,dy = 0 \quad \text{(2)}2xdx+2ydy=0(2)
    From equation (2), we derive the relation δ x = y x δ y δ x = y x δ y delta x=-(y)/(x)delta y\delta x = -\frac{y}{x}\delta yδx=yxδy, where δ x δ x delta x\delta xδx and δ y δ y delta y\delta yδy are displacements in x x xxx and y y yyy respectively.
  3. D’Alembert’s Principle:
    Using D’Alembert’s principle, we have:
    ( F m r ¨ ) δ r = 0 ( F m r ¨ ) δ r = 0 (F-mr^(¨))delta r=0(F – m\ddot{r})\delta r = 0(Fmr¨)δr=0
    In component form, this equation is:
    ( F x m x ¨ ) δ x + ( F y m y ¨ ) δ y = 0 (3) ( F x m x ¨ ) δ x + ( F y m y ¨ ) δ y = 0 (3) (F_(x)-mx^(¨))delta x+(F_(y)-my^(¨))delta y=0quad(3)(F_x – m\ddot{x})\delta x + (F_y – m\ddot{y})\delta y = 0 \quad \text{(3)}(Fxmx¨)δx+(Fymy¨)δy=0(3)
  4. Force Analysis:
    The only force acting on the particle at any instant t t ttt is its weight mg mg mg\mathrm{mg}mg in the downward direction. We can resolve this force into horizontal and vertical components:
    • F x = 0 F x = 0 F_(x)=0F_x = 0Fx=0 (horizontal component)
    • F y = m g F y = m g F_(y)=-mgF_y = -mgFy=mg (vertical component)
  5. Substitute Forces into Equation (3):
    Substituting the expressions for F x F x F_(x)F_xFx and F y F y F_(y)F_yFy into equation (3), we get:
    m x ¨ δ x ( m g + m y ¨ ) δ y = 0 m x ¨ δ x ( m g + m y ¨ ) δ y = 0 -mx^(¨)delta x-(mg+my^(¨))delta y=0-m\ddot{x}\delta x – (mg + m\ddot{y})\delta y = 0mx¨δx(mg+my¨)δy=0
  6. Substitute Displacement Relation (2):
    Substituting the displacement relation δ x = y x δ y δ x = y x δ y delta x=-(y)/(x)delta y\delta x = -\frac{y}{x}\delta yδx=yxδy from step 2 into the equation, we have:
    m ( x ¨ y + y ¨ x + g x ) δ x = 0 m ( x ¨ y + y ¨ x + g x ) δ x = 0 m(-x^(¨)y+y^(¨)x+gx)delta x=0m(-\ddot{x}y + \ddot{y}x + gx)\delta x = 0m(x¨y+y¨x+gx)δx=0
  7. Final Equation of Motion:
    For δ x 0 δ x 0 delta x!=0\delta x \neq 0δx0 and m 0 m 0 m!=0m \neq 0m0, the equation simplifies to:
    x ¨ y y ¨ x g x = 0 (4) x ¨ y y ¨ x g x = 0 (4) x^(¨)y-y^(¨)x-gx=0quad(4)\ddot{x}y – \ddot{y}x – gx = 0 \quad \text{(4)}x¨yy¨xgx=0(4)
Conclusion:
The equation of motion for the particle constrained to move along a circular path in the vertical XY-plane is x ¨ y y ¨ x g x = 0 x ¨ y y ¨ x g x = 0 x^(¨)y-y^(¨)x-gx=0\ddot{x}y – \ddot{y}x – gx = 0x¨yy¨xgx=0, where g g ggg represents the acceleration due to gravity.
(e) उद्गमों (स्रोतों) व अभिगमों (सिंकों) के किस विन्यास से वेग विभव w = log e ( z a 2 z ) w = log e z a 2 z w=log _(e)(z-(a^(2))/(z))w=\log _e\left(z-\frac{a^2}{z}\right)w=loge(za2z) हो सकता है? संगत धारा-रेखाओं का ख़ाका खींचिए और सिद्ध कीजिए कि उनमें से दो, वृत्त r = a r = a r=ar=ar=a तथा y y yyy-अक्ष में प्रविभाजित होती हैं।
What arrangements of sources and sinks can have the velocity potential w = log e ( z a 2 z ) w = log e z a 2 z w=log _(e)(z-(a^(2))/(z))w=\log _e\left(z-\frac{a^2}{z}\right)w=loge(za2z) ? Draw the corresponding sketch of the streamlines and prove that two of them subdivide into the circle r = a r = a r=ar=ar=a and the axis of y y yyy.
Answer:

Introduction

The problem asks us to determine the arrangements of sources and sinks that can produce the given velocity potential function w = log e ( z a 2 z ) w = log e z a 2 z w=log _(e)(z-(a^(2))/(z))w = \log_e\left(z – \frac{a^2}{z}\right)w=loge(za2z). Additionally, we are tasked with drawing the corresponding streamlines and proving that two of these streamlines subdivide into a circle with radius r = a r = a r=ar=ar=a and the y y yyy-axis.

Analysis and Solution

Complex Potential Decomposition

The complex potential is given by the equation:
w = log e ( z a 2 z ) = log e { ( z a ) ( z + a ) z } w = log e z a 2 z = log e ( z a ) ( z + a ) z w=log _(e)(z-(a^(2))/(z))=log _(e){((z-a)(z+a))/(z)}w = \log_e\left(z – \frac{a^2}{z}\right) = \log_e\left\{\frac{(z-a)(z+a)}{z}\right\}w=loge(za2z)=loge{(za)(z+a)z}
We can decompose this expression as follows:
w = log e ( z a ) + log e ( z + a ) log e ( z ) ( 1 ) w = log e ( z a ) + log e ( z + a ) log e ( z ) ( 1 ) w=log _(e)(z-a)+log _(e)(z+a)-log _(e)(z)—-(1)w = \log_e(z-a) + \log_e(z+a) – \log_e(z) —-(1)w=loge(za)+loge(z+a)loge(z)(1)
This decomposition reveals that there are two sinks of unit strength located at distances z = a z = a z=az=az=a and z = a z = a z=-az=-az=a, and a source of unit strength at the origin.

Complex Potential in Terms of Real and Imaginary Parts

We can express equation (1) in terms of the real and imaginary parts ϕ ϕ phi\phiϕ and Ψ Ψ Psi\PsiΨ as follows:
ϕ + i Ψ = log { ( x a ) + i y } + log { ( x + a ) + i y } log ( x + i y ) ϕ + i Ψ = log { ( x a ) + i y } + log { ( x + a ) + i y } log ( x + i y ) phi+i Psi=log{(x-a)+iy}+log{(x+a)+iy}-log(x+iy)\phi + i\Psi = \log\{(x-a) + iy\} + \log\{(x+a) + iy\} – \log(x + iy)ϕ+iΨ=log{(xa)+iy}+log{(x+a)+iy}log(x+iy)
Equating the imaginary parts, we obtain:
Ψ = tan 1 y x a + tan 1 y x + a tan 1 y x Ψ = tan 1 y x a + tan 1 y x + a tan 1 y x Psi=tan^(-1)((y)/(x-a))+tan^(-1)((y)/(x+a))-tan^(-1)((y)/(x))\Psi = \tan^{-1}\frac{y}{x-a} + \tan^{-1}\frac{y}{x+a} – \tan^{-1}\frac{y}{x}Ψ=tan1yxa+tan1yx+atan1yx
Simplifying further:
Ψ = tan 1 ( 2 x y x 2 y 2 a 2 ) tan 1 y x Ψ = tan 1 2 x y x 2 y 2 a 2 tan 1 y x Psi=tan^(-1)((2xy)/(x^(2)-y^(2)-a^(2)))-tan^(-1)((y)/(x))\Psi = \tan^{-1}\left(\frac{2xy}{x^2-y^2-a^2}\right) – \tan^{-1}\frac{y}{x}Ψ=tan1(2xyx2y2a2)tan1yx
And finally:
Ψ = tan 1 ( 2 x y x 2 y 2 a 2 y x 1 + 2 x y x 2 y 2 a 1 y x ) Ψ = tan 1 2 x y x 2 y 2 a 2 y x 1 + 2 x y x 2 y 2 a 1 y x Psi=tan^(-1)(((2xy)/(x^(2)-y^(2)-a^(2))-(y)/(x))/(1+(2xy)/(x^(2)-y^(2)-a^(1))(y)/(x)))\Psi = \tan^{-1}\left(\frac{\frac{2xy}{x^2-y^2-a^2}-\frac{y}{x}}{1+\frac{2xy}{x^2-y^2-a^1}\frac{y}{x}}\right)Ψ=tan1(2xyx2y2a2yx1+2xyx2y2a1yx)

Streamlines

The streamlines are given by Ψ = Ψ = Psi=\Psi =Ψ= constant. Therefore, we have the equation:
y ( x 2 + y 2 + a 2 ) x ( x 2 + y 2 a 2 ) = k ( 2 ) y ( x 2 + y 2 + a 2 ) x ( x 2 + y 2 a 2 ) = k ( 2 ) (y(x^(2)+y^(2)+a^(2)))/(x(x^(2)+y^(2)-a^(2)))=k—-(2)\frac{y(x^2+y^2+a^2)}{x(x^2+y^2-a^2)} = k —-(2)y(x2+y2+a2)x(x2+y2a2)=k(2)

Case 1: When k k kkk is infinite

If the constant k k kkk is infinite, then:
y ( x 2 + y 2 + a 2 ) x ( x 2 + y 2 a 2 ) = y ( x 2 + y 2 + a 2 ) x ( x 2 + y 2 a 2 ) = (y(x^(2)+y^(2)+a^(2)))/(x(x^(2)+y^(2)-a^(2)))=oo\frac{y(x^2+y^2+a^2)}{x(x^2+y^2-a^2)} = \inftyy(x2+y2+a2)x(x2+y2a2)=
This implies:
x ( x 2 + y 2 a 2 ) = 0 x = 0 and x 2 + y 2 = a 2 x ( x 2 + y 2 a 2 ) = 0 x = 0  and  x 2 + y 2 = a 2 x(x^(2)+y^(2)-a^(2))=0=>x=0″ and “x^(2)+y^(2)=a^(2)x(x^2+y^2-a^2) = 0 \Rightarrow x=0 \text{ and } x^2+y^2=a^2x(x2+y2a2)=0x=0 and x2+y2=a2
Hence, x = 0 x = 0 x=0x=0x=0 shows that the y y yyy-axis is a streamline, and the equation x 2 + y 2 = a 2 x 2 + y 2 = a 2 x^(2)+y^(2)=a^(2)x^2+y^2=a^2x2+y2=a2 represents a circle with radius r = a r = a r=ar=ar=a centered at the origin.

Case 2: When k k kkk is zero

If the constant k k kkk is zero, then y = 0 y = 0 y=0y=0y=0, which implies that the axis of x x xxx is a streamline.
Therefore, the rough sketch of the lines consists of a source of unit strength at the origin O ( 0 , 0 ) O ( 0 , 0 ) O(0,0)O(0,0)O(0,0) and two sinks of unit strength at A ( a , 0 ) A ( a , 0 ) A(a,0)A(a, 0)A(a,0) and B ( a , 0 B ( a , 0 B(-a,0B(-a, 0B(a,0).

Sketch

In the sketch, we would draw:
  1. A source at z = a z = a z=az=az=a and a sink at z = a z = a z=-az=-az=a.
  2. A circle of radius a a aaa centered at the origin, representing the streamline r = a r = a r=ar=ar=a.
  3. The y y yyy-axis, representing another streamline.
The fluid would flow from the source to the sink, and the circle r = a r = a r=ar=ar=a and the y y yyy-axis would act as barriers that the fluid cannot cross.
Streamline Sketch

Conclusion

In conclusion, we have determined the arrangements of sources and sinks that produce the given velocity potential function and shown that two of the resulting streamlines form a circle with radius r = a r = a r=ar=ar=a and the y y yyy-axis. This analysis provides insight into the fluid flow behavior in this configuration.
  1. (a) तरंग समीकरण
a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a^(2)(del^(2)u)/(delx^(2))=(del^(2)u)/(delt^(2)),quad0 < x < L,quad t > 0a^2 \frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial t^2}, \quad 0<x<L, \quad t>0a22ux2=2ut2,0<x<L,t>0
का शर्तों
u ( 0 , t ) = 0 , u ( L , t ) = 0 u ( x , 0 ) = 1 4 x ( L x ) , u t | t = 0 = 0 u ( 0 , t ) = 0 , u ( L , t ) = 0 u ( x , 0 ) = 1 4 x ( L x ) , u t t = 0 = 0 {:[u(0″,”t)=0″,”quad u(L”,”t)=0],[u(x”,”0)=(1)/(4)x(L-x)”,”(del u)/(del t)|_(t=0)=0]:}\begin{gathered} u(0, t)=0, \quad u(L, t)=0 \\ u(x, 0)=\frac{1}{4} x(L-x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \end{gathered}u(0,t)=0,u(L,t)=0u(x,0)=14x(Lx),ut|t=0=0
से प्रतिबन्धित हल ज्ञात कीजिए।
Solve the wave equation
a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a^(2)(del^(2)u)/(delx^(2))=(del^(2)u)/(delt^(2)),quad0 < x < L,quad t > 0a^2 \frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial t^2}, \quad 0<x<L, \quad t>0a22ux2=2ut2,0<x<L,t>0
subject to the conditions
u ( 0 , t ) = 0 , u ( L , t ) = 0 u ( x , 0 ) = 1 4 x ( L x ) , u t | t = 0 = 0 u ( 0 , t ) = 0 , u ( L , t ) = 0 u ( x , 0 ) = 1 4 x ( L x ) , u t t = 0 = 0 {:[u(0″,”t)=0″,”u(L”,”t)=0],[u(x”,”0)=(1)/(4)x(L-x)”,”(del u)/(del t)|_(t=0)=0]:}\begin{gathered} u(0, t)=0, u(L, t)=0 \\ u(x, 0)=\frac{1}{4} x(L-x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \end{gathered}u(0,t)=0,u(L,t)=0u(x,0)=14x(Lx),ut|t=0=0
Answer:
Introduction
In this problem, we are tasked with solving the wave equation with specific boundary and initial conditions. The wave equation is given by:
a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a 2 2 u x 2 = 2 u t 2 , 0 < x < L , t > 0 a^(2)(del^(2)u)/(delx^(2))=(del^(2)u)/(delt^(2)),quad0 < x < L,quad t > 0a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \quad 0 < x < L, \quad t > 0a22ux2=2ut2,0<x<L,t>0
Subject to the following conditions:
u ( 0 , t ) = 0 , u ( L , t ) = 0 , t > 0 u ( 0 , t ) = 0 , u ( L , t ) = 0 , t > 0 u(0,t)=0,quad u(L,t)=0,quad t > 0u(0, t) = 0, \quad u(L, t) = 0, \quad t > 0u(0,t)=0,u(L,t)=0,t>0
u ( x , 0 ) = 1 4 x ( L x ) , u t | t = 0 = 0 , 0 < x < L u ( x , 0 ) = 1 4 x ( L x ) , u t t = 0 = 0 , 0 < x < L u(x,0)=(1)/(4)x(L-x),quad(del u)/(del t)|_(t=0)=0,quad0 < x < Lu(x, 0) = \frac{1}{4} x(L – x), \quad \left. \frac{\partial u}{\partial t} \right|_{t=0} = 0, \quad 0 < x < Lu(x,0)=14x(Lx),ut|t=0=0,0<x<L
We will solve this equation step by step, starting with the separation of variables method.
Step 1: Separation of Variables
We assume a separable solution of the form:
u ( x , t ) = X ( x ) T ( t ) u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)*T(t)u(x, t) = X(x) \cdot T(t)u(x,t)=X(x)T(t)
Substituting this into the wave equation (1) gives:
a 2 X ( x ) T ( t ) = X ( x ) T ( t ) a 2 X ( x ) T ( t ) = X ( x ) T ( t ) a^(2)X(x)T(t)=X(x)T^(″)(t)a^2 X(x) T(t) = X(x) T”(t)a2X(x)T(t)=X(x)T(t)
This leads to two separate ordinary differential equations:
X ( x ) X ( x ) = T ( t ) a 2 T ( t ) = λ X ( x ) X ( x ) = T ( t ) a 2 T ( t ) = λ (X^(″)(x))/(X(x))=(T^(″)(t))/(a^(2)T(t))=-lambda\frac{X”(x)}{X(x)} = \frac{T”(t)}{a^2 T(t)} = -\lambdaX(x)X(x)=T(t)a2T(t)=λ
Step 2: Solve for X(x)
For the spatial part, we have the equation:
X ( x ) + λ X ( x ) = 0 X ( x ) + λ X ( x ) = 0 X^(″)(x)+lambda X(x)=0X”(x) + \lambda X(x) = 0X(x)+λX(x)=0
The solutions to this equation depend on the value of λ λ lambda\lambdaλ.
Case 1: λ = 0 λ = 0 lambda=0\lambda = 0λ=0
For λ = 0 λ = 0 lambda=0\lambda = 0λ=0, the equation becomes:
X ( x ) = 0 X ( x ) = 0 X^(″)(x)=0X”(x) = 0X(x)=0
The general solution is X ( x ) = c 1 x + c 2 X ( x ) = c 1 x + c 2 X(x)=c_(1)x+c_(2)X(x) = c_1 x + c_2X(x)=c1x+c2.
Case 2: λ = α 2 ( α > 0 ) λ = α 2 ( α > 0 ) lambda=-alpha^(2)(alpha > 0)\lambda = -\alpha^2 (\alpha > 0)λ=α2(α>0)
For λ = α 2 λ = α 2 lambda=-alpha^(2)\lambda = -\alpha^2λ=α2, the equation becomes:
X ( x ) α 2 X ( x ) = 0 X ( x ) α 2 X ( x ) = 0 X^(″)(x)-alpha^(2)X(x)=0X”(x) – \alpha^2 X(x) = 0X(x)α2X(x)=0
The general solution is X ( x ) = C 1 cosh ( α x ) + C 2 sinh ( α x ) X ( x ) = C 1 cosh ( α x ) + C 2 sinh ( α x ) X(x)=C_(1)cosh(alpha x)+C_(2)sinh(alpha x)X(x) = C_1 \cosh(\alpha x) + C_2 \sinh(\alpha x)X(x)=C1cosh(αx)+C2sinh(αx).
Step 3: Solve for T(t)
For the temporal part, we have the equation:
T ( t ) + λ a 2 T ( t ) = 0 T ( t ) + λ a 2 T ( t ) = 0 T^(″)(t)+lambdaa^(2)T(t)=0T”(t) + \lambda a^2 T(t) = 0T(t)+λa2T(t)=0
Case 1: λ = 0 λ = 0 lambda=0\lambda = 0λ=0
For λ = 0 λ = 0 lambda=0\lambda = 0λ=0, the equation becomes:
T ( t ) = 0 T ( t ) = 0 T^(″)(t)=0T”(t) = 0T(t)=0
The general solution is T ( t ) = C 3 t + C 4 T ( t ) = C 3 t + C 4 T(t)=C_(3)t+C_(4)T(t) = C_3 t + C_4T(t)=C3t+C4.
Case 2: λ = α 2 ( α > 0 ) λ = α 2 ( α > 0 ) lambda=-alpha^(2)(alpha > 0)\lambda = -\alpha^2 (\alpha > 0)λ=α2(α>0)
For λ = α 2 λ = α 2 lambda=-alpha^(2)\lambda = -\alpha^2λ=α2, the equation becomes:
T ( t ) + α 2 a 2 T ( t ) = 0 T ( t ) + α 2 a 2 T ( t ) = 0 T^(″)(t)+alpha^(2)a^(2)T(t)=0T”(t) + \alpha^2 a^2 T(t) = 0T(t)+α2a2T(t)=0
The general solution is T ( t ) = C 3 cosh ( α a t ) + C 4 sinh ( α a t ) T ( t ) = C 3 cosh ( α a t ) + C 4 sinh ( α a t ) T(t)=C_(3)cosh(alpha at)+C_(4)sinh(alpha at)T(t) = C_3 \cosh(\alpha a t) + C_4 \sinh(\alpha a t)T(t)=C3cosh(αat)+C4sinh(αat).
Step 4: Combine X(x) and T(t)
The general solution for u ( x , t ) u ( x , t ) u(x,t)u(x, t)u(x,t) is a product of the solutions for X(x) and T(t) obtained in steps 2 and 3:
u ( x , t ) = X ( x ) T ( t ) u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)*T(t)u(x, t) = X(x) \cdot T(t)u(x,t)=X(x)T(t)
For λ = 0 λ = 0 lambda=0\lambda = 0λ=0, the solution is:
u ( x , t ) = ( c 1 x + c 2 ) ( C 3 t + C 4 ) u ( x , t ) = ( c 1 x + c 2 ) ( C 3 t + C 4 ) u(x,t)=(c_(1)x+c_(2))(C_(3)t+C_(4))u(x, t) = (c_1 x + c_2)(C_3 t + C_4)u(x,t)=(c1x+c2)(C3t+C4)
However, this leads to the trivial solution u = 0 u = 0 u=0u = 0u=0 due to the boundary conditions.
For λ = α 2 λ = α 2 lambda=-alpha^(2)\lambda = -\alpha^2λ=α2, the solution is:
u ( x , t ) = ( C 1 cosh ( α x ) + C 2 sinh ( α x ) ) ( C 3 cosh ( α a t ) + C 4 sinh ( α a t ) ) u ( x , t ) = ( C 1 cosh ( α x ) + C 2 sinh ( α x ) ) ( C 3 cosh ( α a t ) + C 4 sinh ( α a t ) ) u(x,t)=(C_(1)cosh(alpha x)+C_(2)sinh(alpha x))(C_(3)cosh(alpha at)+C_(4)sinh(alpha at))u(x, t) = (C_1 \cosh(\alpha x) + C_2 \sinh(\alpha x))(C_3 \cosh(\alpha a t) + C_4 \sinh(\alpha a t))u(x,t)=(C1cosh(αx)+C2sinh(αx))(C3cosh(αat)+C4sinh(αat))
Step 5: Apply Boundary Conditions
We apply the boundary conditions u ( 0 , t ) = 0 u ( 0 , t ) = 0 u(0,t)=0u(0, t) = 0u(0,t)=0 and u ( L , t ) = 0 u ( L , t ) = 0 u(L,t)=0u(L, t) = 0u(L,t)=0 to determine the constants C 1 C 1 C_(1)C_1C1 and α α alpha\alphaα:
u ( 0 , t ) = 0 C 1 + 0 = 0 C 1 = 0 u ( 0 , t ) = 0 C 1 + 0 = 0 C 1 = 0 u(0,t)=0LongrightarrowC_(1)+0=0LongrightarrowC_(1)=0u(0, t) = 0 \implies C_1 + 0 = 0 \implies C_1 = 0u(0,t)=0C1+0=0C1=0
u ( L , t ) = 0 C 2 sinh ( α L ) ( C 3 cosh ( α a t ) + C 4 sinh ( α a t ) ) = 0 u ( L , t ) = 0 C 2 sinh ( α L ) ( C 3 cosh ( α a t ) + C 4 sinh ( α a t ) ) = 0 u(L,t)=0LongrightarrowC_(2)sinh(alpha L)(C_(3)cosh(alpha at)+C_(4)sinh(alpha at))=0u(L, t) = 0 \implies C_2 \sinh(\alpha L)(C_3 \cosh(\alpha a t) + C_4 \sinh(\alpha a t)) = 0u(L,t)=0C2sinh(αL)(C3cosh(αat)+C4sinh(αat))=0
For this equation to hold for all t t ttt, we must have C 2 = 0 C 2 = 0 C_(2)=0C_2 = 0C2=0 or sinh ( α L ) = 0 sinh ( α L ) = 0 sinh(alpha L)=0\sinh(\alpha L) = 0sinh(αL)=0. Since sinh ( α L ) = 0 sinh ( α L ) = 0 sinh(alpha L)=0\sinh(\alpha L) = 0sinh(αL)=0 implies α = n π / L α = n π / L alpha=n pi//L\alpha = n \pi / Lα=nπ/L for n n nnn being a positive integer, we have:
α = n π L α = n π L alpha=(n pi)/(L)\alpha = \frac{n \pi}{L}α=nπL
Step 6: Apply Superposition Principle
The solution can now be written as a sum of solutions for different values of n n nnn using the superposition principle:
u ( x , t ) = n = 1 u n u ( x , t ) = n = 1 u n u(x,t)=sum_(n=1)^(oo)u_(n)u(x, t) = \sum_{n=1}^{\infty} u_nu(x,t)=n=1un
u ( x , t ) = n = 1 ( A n cos ( a π n L t ) + B n sin ( a π n L t ) ) sin ( n π L x ) u ( x , t ) = n = 1 A n cos a π n L t + B n sin a π n L t sin n π L x u(x,t)=sum_(n=1)^(oo)(A_(n)cos((a pi n)/(L)t)+B_(n)sin((a pi n)/(L)t))sin((n pi)/(L)x)u(x, t) = \sum_{n=1}^{\infty} \left(A_n \cos\left(\frac{a \pi n}{L} t\right) + B_n \sin\left(\frac{a \pi n}{L} t\right)\right) \sin\left(\frac{n \pi}{L} x\right)u(x,t)=n=1(Ancos(aπnLt)+Bnsin(aπnLt))sin(nπLx)
Step 7: Satisfy Initial Condition
To satisfy the initial condition u ( x , 0 ) = 1 4 x ( L x ) u ( x , 0 ) = 1 4 x ( L x ) u(x,0)=(1)/(4)x(L-x)u(x, 0) = \frac{1}{4}x(L-x)u(x,0)=14x(Lx), we compare it with the series representation:
u ( x , 0 ) = n = 1 A n sin ( n π L x ) u ( x , 0 ) = n = 1 A n sin n π L x u(x,0)=sum_(n=1)^(oo)A_(n)sin((n pi)/(L)x)u(x, 0) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n \pi}{L} x\right)u(x,0)=n=1Ansin(nπLx)
This implies that A n A n A_(n)A_nAn can be evaluated using the integral:
A n = 2 L 0 L 1 4 x ( L x ) sin ( n π L x ) d x A n = 2 L 0 L 1 4 x ( L x ) sin n π L x d x A_(n)=(2)/(L)int_(0)^(L)(1)/(4)x(L-x)sin((n pi)/(L)x)dxA_n = \frac{2}{L} \int_0^L \frac{1}{4} x(L-x) \sin\left(\frac{n \pi}{L} x\right) dxAn=2L0L14x(Lx)sin(nπLx)dx
A n = 2 L 0 L 1 4 x ( L x ) sin n π L x d x = 1 2 L 0 L L x sin ( n π L x ) d x 1 2 L 0 L x 2 sin ( n π L x ) d x = 1 2 L [ L 2 x n π cos n π L x + L 3 n 2 π 2 sin n π L x ] 0 L + 1 2 L [ x 2 L n π cos n π L x ] 0 L 2 L n π 0 L x cos n π L x d x = L 2 2 n π cos n π + L 2 2 n π cos n π 1 n π [ x L n π sin n π L x + L 2 n 2 π 2 cos n π L x ] 0 L = L 2 n 3 π 3 [ cos n π 1 ] = L 2 ( 1 cos n π ) n 3 π 3 = L 2 ( 1 ( 1 ) n ) n 3 π 3 A n = 2 L 0 L 1 4 x ( L x ) sin n π L x d x = 1 2 L 0 L L x sin n π L x d x 1 2 L 0 L x 2 sin n π L x d x = 1 2 L L 2 x n π cos n π L x + L 3 n 2 π 2 sin n π L x 0 L + 1 2 L x 2 L n π cos n π L x 0 L 2 L n π 0 L x cos n π L x d x = L 2 2 n π cos n π + L 2 2 n π cos n π 1 n π x L n π sin n π L x + L 2 n 2 π 2 cos n π L x 0 L = L 2 n 3 π 3 [ cos n π 1 ] = L 2 ( 1 cos n π ) n 3 π 3 = L 2 1 ( 1 ) n n 3 π 3 {:[A_(n)=(2)/(L)int_(0)^(L)(1)/(4)x(L-x)*sin((n pi)/(L)x)dx],[=(1)/(2L)int_(0)^(L)Lx sin((n pi)/(L)x)dx-(1)/(2L)int_(0)^(L)x^(2)sin((n pi)/(L)x)dx],[=(1)/(2L)[-(L^(2)x)/(n pi)cos((n pi)/(L)x)+(L^(3))/(n^(2)pi^(2))sin((n pi)/(L)x)]_(0)^(L)+(1)/(2L)[(x^(2)L)/(n pi)cos((n pi)/(L)x)]_(0)^(L)-(2L)/(n pi)int_(0)^(L)x cos((n pi)/(L)x)dx],[=-(L^(2))/(2n pi)cos n pi+(L^(2))/(2n pi)cos n pi-(1)/(n pi)[(xL)/(n pi)sin((n pi)/(L)x)+(L^(2))/(n^(2)pi^(2))cos((n pi)/(L)x)]_(0)^(L)],[=-(L^(2))/(n^(3)pi^(3))[cos n pi-1]],[=(L^(2)(1-cos n pi))/(n^(3)pi^(3))],[=(L^(2)(1-(-1)^(n)))/(n^(3)pi^(3))]:}\begin{aligned} & A_n=\frac{2}{L} \int_0^L \frac{1}{4} x(L-x) \cdot \sin \frac{n \pi}{L} x \mathbf{d} x \\ & =\frac{1}{2 L} \int_0^L L x \sin \left(\frac{n \pi}{L} x\right) \mathbf{d} x-\frac{1}{2 L} \int_0^L x^2 \sin \left(\frac{n \pi}{L} x\right) \mathbf{d} x \\ & =\frac{1}{2 L}\left[-\frac{L^2 x}{n \pi} \cos \frac{n \pi}{L} x+\frac{L^3}{n^2 \pi^2} \sin \frac{n \pi}{L} x\right]_0^L+\frac{1}{2 L}\left[\frac{x^2 L}{n \pi} \cos \frac{n \pi}{L} x\right]_0^L-\frac{2 L}{n \pi} \int_0^L x \cos \frac{n \pi}{L} x \mathbf{d} x \\ & =-\frac{L^2}{2 n \pi} \cos n \pi+\frac{L^2}{2 n \pi} \cos n \pi-\frac{1}{n \pi}\left[\frac{x L}{n \pi} \sin \frac{n \pi}{L} x+\frac{L^2}{n^2 \pi^2} \cos \frac{n \pi}{L} x\right]_0^L \\ & =-\frac{L^2}{n^3 \pi^3}[\cos n \pi-1] \\ & =\frac{L^2(1-\cos n \pi)}{n^3 \pi^3} \\ & =\frac{L^2\left(1-(-1)^n\right)}{n^3 \pi^3} \end{aligned}An=2L0L14x(Lx)sinnπLxdx=12L0LLxsin(nπLx)dx12L0Lx2sin(nπLx)dx=12L[L2xnπcosnπLx+L3n2π2sinnπLx]0L+12L[x2LnπcosnπLx]0L2Lnπ0LxcosnπLxdx=L22nπcosnπ+L22nπcosnπ1nπ[xLnπsinnπLx+L2n2π2cosnπLx]0L=L2n3π3[cosnπ1]=L2(1cosnπ)n3π3=L2(1(1)n)n3π3
After evaluating the integral, we obtain:
A n = L 2 ( 1 ( 1 ) n ) n 3 π 3 A n = L 2 ( 1 ( 1 ) n ) n 3 π 3 A_(n)=(L^(2)(1-(-1)^(n)))/(n^(3)pi^(3))A_n = \frac{L^2(1 – (-1)^n)}{n^3 \pi^3}An=L2(1(1)n)n3π3
Step 8: Satisfy u t | t = 0 = 0 u t t = 0 = 0 (del u)/(del t)|_(t=0)=0\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0ut|t=0=0
We apply the condition u t | t = 0 = 0 u t t = 0 = 0 (del u)/(del t)|_(t=0)=0\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0ut|t=0=0 to the solution in step 6, which leads to:
0 = n = 1 B n a π n L sin ( n π L x ) 0 = n = 1 B n a π n L sin n π L x 0=sum_(n=1)^(oo)B_(n)(a pi n)/(L)sin((n pi)/(L)x)0 = \sum_{n=1}^{\infty} B_n \frac{a \pi n}{L} \sin\left(\frac{n \pi}{L} x\right)0=n=1BnaπnLsin(nπLx)
This implies that B n = 0 B n = 0 B_(n)=0B_n = 0Bn=0.
Conclusion
The final solution to the wave equation with the given boundary and initial conditions is:
u ( x , t ) = L 2 π 3 n = 1 1 ( 1 ) n n 3 sin ( n π L x ) cos ( a π n L t ) u ( x , t ) = L 2 π 3 n = 1 1 ( 1 ) n n 3 sin n π L x cos a π n L t u(x,t)=(L^(2))/(pi^(3))sum_(n=1)^(oo)(1-(-1)^(n))/(n^(3))sin((n pi)/(L)x)cos((a pi n)/(L)t)u(x, t) = \frac{L^2}{\pi^3} \sum_{n=1}^{\infty} \frac{1 – (-1)^n}{n^3} \sin\left(\frac{n \pi}{L} x\right) \cos\left(\frac{a \pi n}{L} t\right)u(x,t)=L2π3n=11(1)nn3sin(nπLx)cos(aπnLt)
(b) नीचे दी गई सारणी पर आधारित बूलीय फलन F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) को निकालिए और तब F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) को सरल कीजिए तथा उसके अनुरूप GATE परिपथ खींचिए :
x x xxx y y yyy z z zzz F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0
x y z F(x,y,z) 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0| $x$ | $y$ | $z$ | $F(x, y, z)$ | | :—: | :—: | :—: | :—: | | 1 | 1 | 1 | 1 | | 1 | 1 | 0 | 1 | | 1 | 0 | 1 | 1 | | 1 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
Obtain the Boolean function F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) based on the table given below. Then simplify F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) and draw the corresponding GATE network :
x x xxx y y yyy z z zzz F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0
x y z F(x,y,z) 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0| $x$ | $y$ | $z$ | $F(x, y, z)$ | | :—: | :—: | :—: | :—: | | 1 | 1 | 1 | 1 | | 1 | 1 | 0 | 1 | | 1 | 0 | 1 | 1 | | 1 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 0 | | 0 | 0 | 0 | 0 |
Answer:
Introduction
The problem involves obtaining a Boolean function F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) based on the provided truth table and then simplifying this Boolean function. Additionally, the task includes drawing the corresponding GATE network based on the simplified Boolean function.

Step 1: Identify the Rows Where F ( x , y , z ) = 1 F ( x , y , z ) = 1 F(x,y,z)=1F(x, y, z) = 1F(x,y,z)=1

  • ( x , y , z ) = ( 1 , 1 , 1 ) ( x , y , z ) = ( 1 , 1 , 1 ) (x,y,z)=(1,1,1)(x, y, z) = (1, 1, 1)(x,y,z)=(1,1,1)
  • ( x , y , z ) = ( 1 , 1 , 0 ) ( x , y , z ) = ( 1 , 1 , 0 ) (x,y,z)=(1,1,0)(x, y, z) = (1, 1, 0)(x,y,z)=(1,1,0)
  • ( x , y , z ) = ( 1 , 0 , 1 ) ( x , y , z ) = ( 1 , 0 , 1 ) (x,y,z)=(1,0,1)(x, y, z) = (1, 0, 1)(x,y,z)=(1,0,1)
  • ( x , y , z ) = ( 0 , 1 , 1 ) ( x , y , z ) = ( 0 , 1 , 1 ) (x,y,z)=(0,1,1)(x, y, z) = (0, 1, 1)(x,y,z)=(0,1,1)

Step 2: Write the Minterms

  • For ( 1 , 1 , 1 ) ( 1 , 1 , 1 ) (1,1,1)(1, 1, 1)(1,1,1), the minterm is x y z x y z x^^y^^zx \land y \land zxyz
  • For ( 1 , 1 , 0 ) ( 1 , 1 , 0 ) (1,1,0)(1, 1, 0)(1,1,0), the minterm is x y ¬ z x y ¬ z x^^y^^not zx \land y \land \lnot zxy¬z
  • For ( 1 , 0 , 1 ) ( 1 , 0 , 1 ) (1,0,1)(1, 0, 1)(1,0,1), the minterm is x ¬ y z x ¬ y z x^^not y^^zx \land \lnot y \land zx¬yz
  • For ( 0 , 1 , 1 ) ( 0 , 1 , 1 ) (0,1,1)(0, 1, 1)(0,1,1), the minterm is ¬ x y z ¬ x y z not x^^y^^z\lnot x \land y \land z¬xyz

Step 3: Combine the Minterms

Combine all these minterms using the OR operation ( vv\lor) to get the complete Boolean function:
F ( x , y , z ) = ( x y z ) ( x y ¬ z ) ( x ¬ y z ) ( ¬ x y z ) F ( x , y , z ) = ( x y z ) ( x y ¬ z ) ( x ¬ y z ) ( ¬ x y z ) F(x,y,z)=(x^^y^^z)vv(x^^y^^not z)vv(x^^not y^^z)vv(not x^^y^^z)F(x, y, z) = (x \land y \land z) \lor (x \land y \land \lnot z) \lor (x \land \lnot y \land z) \lor (\lnot x \land y \land z)F(x,y,z)=(xyz)(xy¬z)(x¬yz)(¬xyz)
So F ( x , y , z ) = x y z + x y z + x y z + x y z F ( x , y , z ) = x y z + x y z + x y z + x y z F(x,y,z)=xyz+xyz^(‘)+xy^(‘)z+x^(‘)yzF(x, y, z) = x y z + x y z’ + x y’ z + x’ y zF(x,y,z)=xyz+xyz+xyz+xyz

Step 4: Simplification

Now, simplify the obtained Boolean expression:
F ( x , y , z ) = x y z + x y z + x y z + x y z = x y ( z + z ) + x y z + x y z = x y ( 1 ) + x y + x y z = x y z + x y + x y z = x y z + x ( y + y z ) = x y z + x [ ( y + y ) ( y + z ) ] = x y z + x [ 1 ( y + z ) ] = x y z + x y + x z = y ( x z + x ) + x z = y [ ( x + x ) ( z + x ) ] + x z = y [ 1 { x + z } ] + x z = x y + y z + x z F ( x , y , z ) = x y z + x y z + x y z + x y z = x y z + z + x y z + x y z = x y ( 1 ) + x y + x y z = x y z + x y + x y z = x y z + x y + y z = x y z + x y + y ( y + z ) = x y z + x [ 1 ( y + z ) ] = x y z + x y + x z = y x z + x + x z = y x + x ( z + x ) + x z = y [ 1 { x + z } ] + x z = x y + y z + x z {:[F(x”,”y”,”z)=xyz+xyz^(‘)+xy^(‘)z+x^(‘)yz],[=xy(z+z^(‘))+xy^(‘)z+x^(‘)yz],[=xy(1)+xy+xy^(‘)z],[=x^(‘)yz+xy+xy^(‘)z],[=x^(‘)yz+x(y+y^(‘)z)],[=x^(‘)yz+x[(y+y^(‘))(y+z)]],[=x^(‘)yz+x[1(y+z)]],[=x^(‘)yz+xy+xz],[=y(x^(‘)z+x)+xz],[=y[(x^(‘)+x)(z+x)]+xz],[=y[1{x+z}]+xz],[=xy+yz+xz]:}\begin{aligned} & F(x, y, z)=x y z+x y z^{\prime}+x y^{\prime} z+x^{\prime} y z \\ & =x y\left(z+z^{\prime}\right)+x y^{\prime} z+x^{\prime} y z \\ & =x y(1)+x y+x y^{\prime} z \\ & =x^{\prime} y z+x y+x y^{\prime} z \\ & =x^{\prime} y z+x\left(y+y^{\prime} z\right) \\ & =x^{\prime} y z+x\left[\left(y+y^{\prime}\right)(y+z)\right] \\ & =x^{\prime} y z+x[1(y+z)] \\ & =x^{\prime} y z+x y+x z \\ & =y\left(x^{\prime} z+x\right)+x z \\ & =y\left[\left(x^{\prime}+x\right)(z+x)\right]+x z \\ & =y[1\{x+z\}]+x z \\ & =x y+y z+x z \end{aligned}F(x,y,z)=xyz+xyz+xyz+xyz=xy(z+z)+xyz+xyz=xy(1)+xy+xyz=xyz+xy+xyz=xyz+x(y+yz)=xyz+x[(y+y)(y+z)]=xyz+x[1(y+z)]=xyz+xy+xz=y(xz+x)+xz=y[(x+x)(z+x)]+xz=y[1{x+z}]+xz=xy+yz+xz
The simplified Boolean function is F ( x , y , z ) = x y + y z + x z F ( x , y , z ) = x y + y z + x z F(x,y,z)=xy+yz+xzF(x, y, z) = x y+y z+x zF(x,y,z)=xy+yz+xz.

Step 5: Draw the Corresponding GATE Network

The gate network for the simplified Boolean function F ( x , y , z ) = x y + y z + x z F ( x , y , z ) = x y + y z + x z F(x,y,z)=xy+yz+xzF(x, y, z) =x y+y z+x zF(x,y,z)=xy+yz+xz consists of two gates:
  1. OR gate with inputs x x xxx and y y yyy.
  2. AND gate with inputs from the OR gate and z z zzz.
Here is the corresponding gate network:
Gate Network
Conclusion
The Boolean function F ( x , y , z ) F ( x , y , z ) F(x,y,z)F(x, y, z)F(x,y,z) based on the provided truth table is F ( x , y , z ) = x y + y z + x z F ( x , y , z ) = x y + y z + x z F(x,y,z)=xy+yz+xzF(x, y, z) = x y+y z+x zF(x,y,z)=xy+yz+xz, and the corresponding gate network has been successfully drawn.
(c) एक छोटी चिकनी घिरनी के ऊपर से गुजरने वाली एक अवितान्य डोरी के सिरों से बंधे असमान संहति वाले दो कणों के निकाय की गति के लिए लग्रांजी समीकरण ज्ञात कीजिए।
Obtain the Lagrangian equation for the motion of a system of two particles of unequal masses connected by an inextensible string passing over a small smooth pulley.
Answer:
Introduction
The problem involves obtaining the Lagrangian equation for the motion of a system consisting of two particles with unequal masses ( m 1 m 1 m_(1)m_1m1 and m 2 m 2 m_(2)m_2m2) connected by an inextensible string passing over a small, smooth pulley with a radius of R R RRR. The system is subject to gravitational forces, and the goal is to derive the equation of motion for the system.

Step 1: System Configuration and Generalized Coordinate

  • The system consists of two particles with masses m 1 m 1 m_(1)m_1m1 and m 2 m 2 m_(2)m_2m2 connected by an inextensible string.
  • The string passes over a small, smooth pulley with radius R R RRR, and both ends of the string are attached to the masses m 1 m 1 m_(1)m_1m1 and m 2 m 2 m_(2)m_2m2 respectively.
  • Let the length of the string between m 1 m 1 m_(1)m_1m1 and m 2 m 2 m_(2)m_2m2 be l l lll.

Step 2: Generalized Coordinate and Degrees of Freedom

  • The system has only one degree of freedom, and x x xxx is chosen as the generalized coordinate.
  • The instantaneous configuration of the system is specified by q = x q = x q=xq = xq=x.

Step 3: Kinetic Energy

  • Assuming that the cord does not slip, the angular velocity of the pulley is x R x R (x)/(R)\frac{x}{R}xR.
  • The kinetic energy of the system is given by:
T = 1 2 m 1 x ˙ 2 + 1 2 I x 2 R 2 T = 1 2 m 1 x ˙ 2 + 1 2 I x 2 R 2 T=(1)/(2)m_(1)x^(˙)^(2)+(1)/(2)I(x^(2))/(R^(2))T = \frac{1}{2} m_1 \dot{x}^2 + \frac{1}{2} I \frac{x^2}{R^2}T=12m1x˙2+12Ix2R2

Step 4: Potential Energy

  • The potential energy of the system is given by:
V = m 1 g x m 2 g ( l x ) V = m 1 g x m 2 g ( l x ) V=-m_(1)gx-m_(2)g(l-x)V = -m_1 g x – m_2 g (l – x)V=m1gxm2g(lx)

Step 5: Lagrangian

  • The Lagrangian ( L L LLL) is the difference between the kinetic energy ( T T TTT) and potential energy ( V V VVV):
L = T V = 1 2 ( m 1 + m 2 + I R 2 ) x ˙ 2 + ( m 1 m 2 ) g x + m 2 g l L = T V = 1 2 m 1 + m 2 + I R 2 x ˙ 2 + ( m 1 m 2 ) g x + m 2 g l L=T-V=(1)/(2)(m_(1)+m_(2)+(I)/(R^(2)))x^(˙)^(2)+(m_(1)-m_(2))gx+m_(2)glL = T – V = \frac{1}{2} \left(m_1 + m_2 + \frac{I}{R^2}\right) \dot{x}^2 + (m_1 – m_2) g x + m_2 g lL=TV=12(m1+m2+IR2)x˙2+(m1m2)gx+m2gl

Step 6: Partial Derivatives of Lagrangian

  • Calculate the partial derivatives of the Lagrangian with respect to the generalized coordinate x ˙ x ˙ x^(˙)\dot{x}x˙ and x x xxx:
L x ˙ = ( m 1 + m 2 + I R 2 ) x ˙ L x ˙ = m 1 + m 2 + I R 2 x ˙ (del L)/(del(x^(˙)))=(m_(1)+m_(2)+(I)/(R^(2)))x^(˙)\frac{\partial L}{\partial \dot{x}} = \left(m_1 + m_2 + \frac{I}{R^2}\right) \dot{x}Lx˙=(m1+m2+IR2)x˙
L x = ( m 1 m 2 ) g L x = ( m 1 m 2 ) g (del L)/(del x)=(m_(1)-m_(2))g\frac{\partial L}{\partial x} = (m_1 – m_2) gLx=(m1m2)g

Step 7: Lagrange’s Equation of Motion

  • Apply Lagrange’s equation of motion, which is given by:
d d t ( L x ˙ ) L x = 0 d d t L x ˙ L x = 0 (d)/(dt)((del L)/(del(x^(˙))))-(del L)/(del x)=0\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) – \frac{\partial L}{\partial x} = 0ddt(Lx˙)Lx=0
  • Substituting the derivatives and partial derivatives:
d d t [ ( m 1 + m 2 + I R 2 ) x ˙ ] ( m 1 m 2 ) g = 0 d d t m 1 + m 2 + I R 2 x ˙ ( m 1 m 2 ) g = 0 (d)/(dt)[(m_(1)+m_(2)+(I)/(R^(2)))(x^(˙))]-(m_(1)-m_(2))g=0\frac{d}{dt}\left[\left(m_1 + m_2 + \frac{I}{R^2}\right) \dot{x}\right] – (m_1 – m_2) g = 0ddt[(m1+m2+IR2)x˙](m1m2)g=0

Step 8: Solve for Acceleration ( x ¨ x ¨ x^(¨)\ddot{x}x¨)

  • Rearrange the equation to solve for acceleration ( x ¨ x ¨ x^(¨)\ddot{x}x¨):
( m 1 + m 2 + I R 2 ) x ¨ = ( m 1 m 2 ) g m 1 + m 2 + I R 2 x ¨ = ( m 1 m 2 ) g (m_(1)+m_(2)+(I)/(R^(2)))x^(¨)=(m_(1)-m_(2))g\left(m_1 + m_2 + \frac{I}{R^2}\right) \ddot{x} = (m_1 – m_2) g(m1+m2+IR2)x¨=(m1m2)g
x ¨ = ( m 1 m 2 ) g m 1 + m 2 + I R 2 x ¨ = ( m 1 m 2 ) g m 1 + m 2 + I R 2 =>x^(¨)=((m_(1)-m_(2))g)/(m_(1)+m_(2)+(I)/(R^(2)))\Rightarrow \ddot{x} = \frac{(m_1 – m_2) g}{m_1 + m_2 + \frac{I}{R^2}}x¨=(m1m2)gm1+m2+IR2
Conclusion
The Lagrangian equation of motion for the system of two particles of unequal masses connected by an inextensible string passing over a small, smooth pulley is given by:
x ¨ = ( m 1 m 2 ) g m 1 + m 2 + I R 2 x ¨ = ( m 1 m 2 ) g m 1 + m 2 + I R 2 x^(¨)=((m_(1)-m_(2))g)/(m_(1)+m_(2)+(I)/(R^(2)))\ddot{x} = \frac{(m_1 – m_2) g}{m_1 + m_2 + \frac{I}{R^2}}x¨=(m1m2)gm1+m2+IR2
  1. (a) आंशिक अवकल समीकरण
( D 2 D 2 3 D + 3 D ) z = x y + e x + 2 y D 2 D 2 3 D + 3 D z = x y + e x + 2 y (D^(2)-D^(‘2)-3D+3D^(‘))z=xy+e^(x+2y)\left(D^2-D^{\prime 2}-3 D+3 D^{\prime}\right) z=x y+e^{x+2 y}(D2D23D+3D)z=xy+ex+2y
का व्यापक हल ज्ञात कीजिए, जहाँ D x D x D-=(del)/(del x)D \equiv \frac{\partial}{\partial x}Dx तथा D y D y D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y}Dy हैं।
Find the general solution of the partial differential equation
( D 2 D 2 3 D + 3 D ) z = x y + e x + 2 y D 2 D 2 3 D + 3 D z = x y + e x + 2 y (D^(2)-D^(‘2)-3D+3D^(‘))z=xy+e^(x+2y)\left(D^2-D^{\prime 2}-3 D+3 D^{\prime}\right) z=x y+e^{x+2 y}(D2D23D+3D)z=xy+ex+2y
where D x D x D-=(del)/(del x)D \equiv \frac{\partial}{\partial x}Dx and D y D y D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y}Dy.
Answer:
Introduction
The problem involves finding the general solution of the partial differential equation with respect to the given derivatives D D DDD and D D D^(‘)D’D:
( D 2 D 2 3 D + 3 D ) z = x y + e x + 2 y D 2 D 2 3 D + 3 D z = x y + e x + 2 y (D^(2)-D^(‘2)-3D+3D^(‘))z=xy+e^(x+2y)\left(D^2-D^{\prime 2}-3 D+3 D^{\prime}\right) z=x y+e^{x+2 y}(D2D23D+3D)z=xy+ex+2y
Where D x D x D-=(del)/(del x)D \equiv \frac{\partial}{\partial x}Dx and D y D y D^(‘)-=(del)/(del y)D^{\prime} \equiv \frac{\partial}{\partial y}Dy.

Step 1: Rearrange the Equation

The given equation is rearranged as follows:
( D D ) ( D + D 3 ) Z = x y + e x + 2 y C . F = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) , D D D + D 3 Z = x y + e x + 2 y C . F = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) , {:[(D-D^(‘))(D+D^(‘)-3)Z=xy+e^(x+2y)],[C.F=phi_(1)(y+x)+e^(3x)phi_(2)(y-x)”,”]:}\begin{aligned} & \left(D-D^{\prime}\right)\left(D+D^{\prime}-3\right) Z=x y+e^{x+2 y} \\ & C . F=\phi_1(y+x)+e^{3 x} \phi_2(y-x), \end{aligned}(DD)(D+D3)Z=xy+ex+2yC.F=ϕ1(y+x)+e3xϕ2(yx),
Here, ϕ 1 ϕ 1 phi_(1)\phi_1ϕ1 and ϕ 2 ϕ 2 phi_(2)\phi_2ϕ2 are arbitrary functions representing the particular integral (P.I.) corresponding to x y x y xyxyxy.

Step 2: Calculate the Coefficients for x y x y xyxyxy Term

= 1 ( D D ) ( D + D 3 ) x y = 1 3 D ( 1 D D ) 1 ( 1 D + D 3 ) 1 x y = 1 3 D ( 1 + D D + ) [ 1 + D + D 3 + ( D + D 3 ) 2 + ] x y = 1 3 D ( 1 + D D + ) ( 1 + D + D 3 + 2 D D 9 + ) x y = 1 3 D ( x y + y 3 + 2 x 3 + 1 D x + 2 9 ) = 1 3 ( x 2 y 2 + x y 2 + x 2 3 + x 3 6 + 2 x 9 ) = 1 D D D + D 3 x y = 1 3 D 1 D D 1 1 D + D 3 1 x y = 1 3 D 1 + D D + 1 + D + D 3 + D + D 3 2 + x y = 1 3 D 1 + D D + 1 + D + D 3 + 2 D D 9 + x y = 1 3 D x y + y 3 + 2 x 3 + 1 D x + 2 9 = 1 3 x 2 y 2 + x y 2 + x 2 3 + x 3 6 + 2 x 9 {:[=(1)/((D-D^(‘))(D+D^(‘)-3))xy],[=-(1)/(3D)(1-(D^(‘))/(D))^(-1)(1-(D+D^(‘))/(3))^(-1)xy],[=-(1)/(3D)(1+(D^(‘))/(D)+dots)[1+(D+D^(‘))/(3)+((D+D^(‘))/(3))^(2)+dots]xy],[=-(1)/(3D)(1+(D^(‘))/(D)+dots)(1+(D+D^(‘))/(3)+(2DD^(‘))/(9)+dots)xy],[=-(1)/(3D)(xy+(y)/(3)+(2x)/(3)+(1)/(D)x+(2)/(9))],[=-(1)/(3)((x^(2)y)/(2)+(xy)/(2)+(x^(2))/(3)+(x^(3))/(6)+(2x)/(9))]:}\begin{aligned} & =\frac{1}{\left(D-D^{\prime}\right)\left(D+D^{\prime}-3\right)} x y \\ & =-\frac{1}{3 D}\left(1-\frac{D^{\prime}}{D}\right)^{-1}\left(1-\frac{D+D^{\prime}}{3}\right)^{-1} x y \\ & =-\frac{1}{3 D}\left(1+\frac{D^{\prime}}{D}+\ldots\right)\left[1+\frac{D+D^{\prime}}{3}+\left(\frac{D+D^{\prime}}{3}\right)^2+\ldots\right] x y \\ & =-\frac{1}{3 D}\left(1+\frac{D^{\prime}}{D}+\ldots\right)\left(1+\frac{D+D^{\prime}}{3}+\frac{2 D D^{\prime}}{9}+\ldots\right) x y \\ & =-\frac{1}{3 D}\left(x y+\frac{y}{3}+\frac{2 x}{3}+\frac{1}{D} x+\frac{2}{9}\right) \\ & =-\frac{1}{3}\left(\frac{x^2 y}{2}+\frac{x y}{2}+\frac{x^2}{3}+\frac{x^3}{6}+\frac{2 x}{9}\right) \end{aligned}=1(DD)(D+D3)xy=13D(1DD)1(1D+D3)1xy=13D(1+DD+)[1+D+D3+(D+D3)2+]xy=13D(1+DD+)(1+D+D3+2DD9+)xy=13D(xy+y3+2x3+1Dx+29)=13(x2y2+xy2+x23+x36+2x9)

Step 3: Calculate the Coefficients for e x + 2 y e x + 2 y e^(x+2y)e^{x+2y}ex+2y Term

P . I . corresponding to e x + 2 y = 1 ( D + D 3 ) ( D D ) e x + 2 y = 1 ( D + D 3 ) 1 ( 1 z ) e x + 2 y = 1 ( D + D 3 ) e x + 2 y 1 = e x + 2 y 1 ( D + 1 ) + ( D + 2 ) 3 1 = e x + 2 y 1 D + D 0.1 = e x + 2 y 1 D ( 1 + D D ) 1 1 = e x + 2 y 1 D ( 1 + ) 1 = x e x + 2 y P . I .  corresponding to  e x + 2 y = 1 D + D 3 D D e x + 2 y = 1 D + D 3 1 ( 1 z ) e x + 2 y = 1 D + D 3 e x + 2 y 1 = e x + 2 y 1 ( D + 1 ) + D + 2 3 1 = e x + 2 y 1 D + D 0.1 = e x + 2 y 1 D 1 + D D 1 1 = e x + 2 y 1 D ( 1 + ) 1 = x e x + 2 y {:[P.I.” corresponding to “e^(x+2y)],[=(1)/((D+D^(‘)-3)(D-D^(‘)))e^(x+2y)],[=(1)/((D+D^(‘)-3))(1)/((1-z))e^(x+2y)],[=-(1)/((D+D^(‘)-3))e^(x+2y)*1],[=-e^(x+2y)(1)/((D+1)+(D^(‘)+2)-3)1],[=-e^(x+2y)(1)/(D+D^(‘))0.1],[=-e^(x+2y)(1)/(D)(1+(D^(‘))/(D))^(-1)*1],[=-e^(x+2y)(1)/(D)(1+dots)*1],[=-xe^(x+2y)]:}\begin{aligned} & P. I. \text{ corresponding to } e^{x+2 y} \\ & =\frac{1}{\left(D+D^{\prime}-3\right)\left(D-D^{\prime}\right)} e^{x+2 y} \\ & =\frac{1}{\left(D+D^{\prime}-3\right)} \frac{1}{(1-z)} e^{x+2 y} \\ & =-\frac{1}{\left(D+D^{\prime}-3\right)} e^{x+2 y} \cdot 1 \\ & =-e^{x+2 y} \frac{1}{(D+1)+\left(D^{\prime}+2\right)-3} 1 \\ & =-e^{x+2 y} \frac{1}{D+D^{\prime}} 0.1 \\ & =-e^{x+2 y} \frac{1}{D}\left(1+\frac{D^{\prime}}{D}\right)^{-1} \cdot 1 \\ & =-e^{x+2 y} \frac{1}{D}(1+\ldots) \cdot 1 \\ & =-x e^{x+2 y} \end{aligned}P.I. corresponding to ex+2y=1(D+D3)(DD)ex+2y=1(D+D3)1(1z)ex+2y=1(D+D3)ex+2y1=ex+2y1(D+1)+(D+2)31=ex+2y1D+D0.1=ex+2y1D(1+DD)11=ex+2y1D(1+)1=xex+2y

Step 4: Combine the Results

The required solution is obtained by combining the coefficients for the x y x y xyxyxy and e x + 2 y e x + 2 y e^(x+2y)e^{x+2y}ex+2y terms:
Z = C . F + P . I Z = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) ( 1 6 ) x 2 y ( 1 6 ) x y ( 1 9 ) x 2 ( 1 18 ) x 3 ( 2 27 ) x x e x + 2 y Z = C . F + P . I Z = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) 1 6 x 2 y 1 6 x y 1 9 x 2 1 18 x 3 2 27 x x e x + 2 y {:[Z=C.F+P.I],[Z=phi_(1)(y+x)+e^(3x)phi_(2)(y-x)-((1)/(6))x^(2)y-((1)/(6))xy-((1)/(9))x^(2)-((1)/(18))x^(3)-((2)/(27))x-xe^(x+2y)]:}\begin{aligned} & Z=C . F+P . I \\ & Z=\phi_1(y+x)+e^{3 x} \phi_2(y-x)-\left(\frac{1}{6}\right) x^2 y-\left(\frac{1}{6}\right) x y-\left(\frac{1}{9}\right) x^2-\left(\frac{1}{18}\right) x^3-\left(\frac{2}{27}\right) x-x e^{x+2 y} \end{aligned}Z=C.F+P.IZ=ϕ1(y+x)+e3xϕ2(yx)(16)x2y(16)xy(19)x2(118)x3(227)xxex+2y
Conclusion
The general solution of the given partial differential equation is:
Z = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) ( 1 6 ) x 2 y ( 1 6 ) x y ( 1 9 ) x 2 ( 1 18 ) x 3 ( 2 27 ) x x e x + 2 y Z = ϕ 1 ( y + x ) + e 3 x ϕ 2 ( y x ) 1 6 x 2 y 1 6 x y 1 9 x 2 1 18 x 3 2 27 x x e x + 2 y Z=phi_(1)(y+x)+e^(3x)phi_(2)(y-x)-((1)/(6))x^(2)y-((1)/(6))xy-((1)/(9))x^(2)-((1)/(18))x^(3)-((2)/(27))x-xe^(x+2y)Z=\phi_1(y+x)+e^{3 x} \phi_2(y-x)-\left(\frac{1}{6}\right) x^2 y-\left(\frac{1}{6}\right) x y-\left(\frac{1}{9}\right) x^2-\left(\frac{1}{18}\right) x^3-\left(\frac{2}{27}\right) x-x e^{x+2 y}Z=ϕ1(y+x)+e3xϕ2(yx)(16)x2y(16)xy(19)x2(118)x3(227)xxex+2y
(b) समीकरणों के निकाय
3 x 1 + 9 x 2 2 x 3 = 11 4 x 1 + 2 x 2 + 13 x 3 = 24 4 x 1 2 x 2 + x 3 = 8 3 x 1 + 9 x 2 2 x 3 = 11 4 x 1 + 2 x 2 + 13 x 3 = 24 4 x 1 2 x 2 + x 3 = 8 {:[3x_(1)+9x_(2)-2x_(3)=11],[4x_(1)+2x_(2)+13x_(3)=24],[4x_(1)-2x_(2)+x_(3)=-8]:}\begin{aligned} 3 x_1+9 x_2-2 x_3 &=11 \\ 4 x_1+2 x_2+13 x_3 &=24 \\ 4 x_1-2 x_2+x_3 &=-8 \end{aligned}3x1+9x22x3=114x1+2x2+13x3=244x12x2+x3=8
का गाउस-सीडल विधि द्वारा 4 सार्थक अंकों तक सही हल ज्ञात कीजिए, यह सत्यापन करने के बाद कि क्या यह विधि आपके द्वारा निकाय के रूपांतरित रूप में अनुप्रयोज्य है।
Solve the system of equations
3 x 1 + 9 x 2 2 x 3 = 11 4 x 1 + 2 x 2 + 13 x 3 = 24 4 x 1 2 x 2 + x 3 = 8 3 x 1 + 9 x 2 2 x 3 = 11 4 x 1 + 2 x 2 + 13 x 3 = 24 4 x 1 2 x 2 + x 3 = 8 {:[3x_(1)+9x_(2)-2x_(3)=11],[4x_(1)+2x_(2)+13x_(3)=24],[4x_(1)-2x_(2)+x_(3)=-8]:}\begin{aligned} 3 x_1+9 x_2-2 x_3 &=11 \\ 4 x_1+2 x_2+13 x_3 &=24 \\ 4 x_1-2 x_2+x_3 &=-8 \end{aligned}3x1+9x22x3=114x1+2x2+13x3=244x12x2+x3=8
correct up to 4 significant figures by using Gauss-Seidel method after verifying whether the method is applicable in your transformed form of the system.
Answer:
We have changed the variables, to a , b , c , a , b , c , a,b,c,dotsa, b, c, \ldotsa,b,c, for calculations.
So new equations are 3 a + 9 b 2 c = 11 , 4 a + 2 b + 13 c = 24 , 4 a 2 b + c = 8 3 a + 9 b 2 c = 11 , 4 a + 2 b + 13 c = 24 , 4 a 2 b + c = 8 3a+9b-2c=11,4a+2b+13 c=24,4a-2b+c=-83 a+9 b-2 c=11,4 a+2 b+13 c=24,4 a-2 b+c=-83a+9b2c=11,4a+2b+13c=24,4a2b+c=8
Total Equations are 3
3 a + 9 b 2 c = 11 4 a + 2 b + 13 c = 24 4 a 2 b + c = 8 3 a + 9 b 2 c = 11 4 a + 2 b + 13 c = 24 4 a 2 b + c = 8 {:[3a+9b-2c=11],[4a+2b+13 c=24],[4a-2b+c=-8]:}\begin{aligned} & 3 a+9 b-2 c=11 \\ & 4 a+2 b+13 c=24 \\ & 4 a-2 b+c=-8 \end{aligned}3a+9b2c=114a+2b+13c=244a2b+c=8
From the above equations
a k + 1 = 1 3 ( 11 9 b k + 2 c k ) a k + 1 = 1 3 11 9 b k + 2 c k a_(k+1)=(1)/(3)(11-9b_(k)+2c_(k))a_{k+1}=\frac{1}{3}\left(11-9 b_k+2 c_k\right)ak+1=13(119bk+2ck)
b k + 1 = 1 2 ( 24 4 a k + 1 13 c k ) b k + 1 = 1 2 24 4 a k + 1 13 c k b_(k+1)=(1)/(2)(24-4a_(k+1)-13c_(k))b_{k+1}=\frac{1}{2}\left(24-4 a_{k+1}-13 c_k\right)bk+1=12(244ak+113ck)
c k + 1 = 1 1 ( 8 4 a k + 1 + 2 b k + 1 ) c k + 1 = 1 1 8 4 a k + 1 + 2 b k + 1 c_(k+1)=(1)/(1)(-8-4a_(k+1)+2b_(k+1))c_{k+1}=\frac{1}{1}\left(-8-4 a_{k+1}+2 b_{k+1}\right)ck+1=11(84ak+1+2bk+1)
Initial gauss ( a , b , c ) = ( 0 , 0 , 0 ) ( a , b , c ) = ( 0 , 0 , 0 ) (a,b,c)=(0,0,0)(a, b, c)=(0,0,0)(a,b,c)=(0,0,0)
Solution steps are
1 st 1 st  1^(“st “)1^{\text {st }}1st  Approximation
a 1 = 1 3 [ 11 9 ( 0 ) + 2 ( 0 ) ] = 1 3 [ 11 ] = 3.6667 a 1 = 1 3 [ 11 9 ( 0 ) + 2 ( 0 ) ] = 1 3 [ 11 ] = 3.6667 a_(1)=(1)/(3)[11-9(0)+2(0)]=(1)/(3)[11]=3.6667a_1=\frac{1}{3}[11-9(0)+2(0)]=\frac{1}{3}[11]=3.6667a1=13[119(0)+2(0)]=13[11]=3.6667
b 1 = 1 2 [ 24 4 ( 3.6667 ) 13 ( 0 ) ] = 1 2 [ 9.3333 ] = 4.6667 b 1 = 1 2 [ 24 4 ( 3.6667 ) 13 ( 0 ) ] = 1 2 [ 9.3333 ] = 4.6667 b_(1)=(1)/(2)[24-4(3.6667)-13(0)]=(1)/(2)[9.3333]=4.6667b_1=\frac{1}{2}[24-4(3.6667)-13(0)]=\frac{1}{2}[9.3333]=4.6667b1=12[244(3.6667)13(0)]=12[9.3333]=4.6667
c 1 = 1 1 [ 8 4 ( 3.6667 ) + 2 ( 4.6667 ) ] = 1 1 [ 13.3333 ] = 13.3333 c 1 = 1 1 [ 8 4 ( 3.6667 ) + 2 ( 4.6667 ) ] = 1 1 [ 13.3333 ] = 13.3333 c_(1)=(1)/(1)[-8-4(3.6667)+2(4.6667)]=(1)/(1)[-13.3333]=-13.3333c_1=\frac{1}{1}[-8-4(3.6667)+2(4.6667)]=\frac{1}{1}[-13.3333]=-13.3333c1=11[84(3.6667)+2(4.6667)]=11[13.3333]=13.3333
2 nd 2 nd  2^(“nd “)2^{\text {nd }}2nd  Approximation
a 2 = 1 3 [ 11 9 ( 4.6667 ) + 2 ( 13.3333 ) ] = 1 3 [ 57.6667 ] = 19.2222 b 2 = 1 2 [ 24 4 ( 19.2222 ) 13 ( 13.3333 ) ] = 1 2 [ 274.2222 ] = 137.1111 a 2 = 1 3 [ 11 9 ( 4.6667 ) + 2 ( 13.3333 ) ] = 1 3 [ 57.6667 ] = 19.2222 b 2 = 1 2 [ 24 4 ( 19.2222 ) 13 ( 13.3333 ) ] = 1 2 [ 274.2222 ] = 137.1111 {:[a_(2)=(1)/(3)[11-9(4.6667)+2(-13.3333)]=(1)/(3)[-57.6667]=-19.2222],[b_(2)=(1)/(2)[24-4(-19.2222)-13(-13.3333)]=(1)/(2)[274.2222]=137.1111]:}\begin{aligned} & a_2=\frac{1}{3}[11-9(4.6667)+2(-13.3333)]=\frac{1}{3}[-57.6667]=-19.2222 \\ & b_2=\frac{1}{2}[24-4(-19.2222)-13(-13.3333)]=\frac{1}{2}[274.2222]=137.1111 \end{aligned}a2=13[119(4.6667)+2(13.3333)]=13[57.6667]=19.2222b2=12[244(19.2222)13(13.3333)]=12[274.2222]=137.1111
c 2 = 1 1 [ 8 4 ( 19.2222 ) + 2 ( 137.1111 ) ] = 1 1 [ 343.1111 ] = 343.1111 c 2 = 1 1 [ 8 4 ( 19.2222 ) + 2 ( 137.1111 ) ] = 1 1 [ 343.1111 ] = 343.1111 c_(2)=(1)/(1)[-8-4(-19.2222)+2(137.1111)]=(1)/(1)[343.1111]=343.1111c_2=\frac{1}{1}[-8-4(-19.2222)+2(137.1111)]=\frac{1}{1}[343.1111]=343.1111c2=11[84(19.2222)+2(137.1111)]=11[343.1111]=343.1111
3 rd 3 rd  3^(“rd “)3^{\text {rd }}3rd  Approximation
a 3 = 1 3 [ 11 9 ( 137.1111 ) + 2 ( 343.1111 ) ] = 1 3 [ 536.7778 ] = 178.9259 a 3 = 1 3 [ 11 9 ( 137.1111 ) + 2 ( 343.1111 ) ] = 1 3 [ 536.7778 ] = 178.9259 a_(3)=(1)/(3)[11-9(137.1111)+2(343.1111)]=(1)/(3)[-536.7778]=-178.9259a_3=\frac{1}{3}[11-9(137.1111)+2(343.1111)]=\frac{1}{3}[-536.7778]=-178.9259a3=13[119(137.1111)+2(343.1111)]=13[536.7778]=178.9259
b 3 = 1 2 [ 24 4 ( 178.9259 ) 13 ( 343.1111 ) ] = 1 2 [ 3720.7407 ] = 1860.3704 c 3 = 1 1 [ 8 4 ( 178.9259 ) + 2 ( 1860.3704 ) ] = 1 1 [ 3013.037 ] = 3013.037 b 3 = 1 2 [ 24 4 ( 178.9259 ) 13 ( 343.1111 ) ] = 1 2 [ 3720.7407 ] = 1860.3704 c 3 = 1 1 [ 8 4 ( 178.9259 ) + 2 ( 1860.3704 ) ] = 1 1 [ 3013.037 ] = 3013.037 {:[b_(3)=(1)/(2)[24-4(-178.9259)-13(343.1111)]=(1)/(2)[-3720.7407]=-1860.3704],[c_(3)=(1)/(1)[-8-4(-178.9259)+2(-1860.3704)]=(1)/(1)[-3013.037]=-3013.037]:}\begin{aligned} & b_3=\frac{1}{2}[24-4(-178.9259)-13(343.1111)]=\frac{1}{2}[-3720.7407]=-1860.3704 \\ & c_3=\frac{1}{1}[-8-4(-178.9259)+2(-1860.3704)]=\frac{1}{1}[-3013.037]=-3013.037 \end{aligned}b3=12[244(178.9259)13(343.1111)]=12[3720.7407]=1860.3704c3=11[84(178.9259)+2(1860.3704)]=11[3013.037]=3013.037
Equations are Divergent…
Iterations are tabulated as below
Iteration a a a\mathbf{a}a b b b\mathbf{b}b c c c\mathbf{c}c
1 3.6667 4.6667 -13.3333
2 -19.2222 137.1111 343.1111
3 -178.9259 -1860.3704 -3013.037
Iteration a b c 1 3.6667 4.6667 -13.3333 2 -19.2222 137.1111 343.1111 3 -178.9259 -1860.3704 -3013.037| Iteration | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | | :—: | :—: | :—: | :—: | | 1 | 3.6667 | 4.6667 | -13.3333 | | 2 | -19.2222 | 137.1111 | 343.1111 | | 3 | -178.9259 | -1860.3704 | -3013.037 |
(c) दर्शाइए कि q = λ ( y i ^ + x j ^ ) x 2 + y 2 , ( λ = q = λ ( y i ^ + x j ^ ) x 2 + y 2 , ( λ = vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2)),(lambda=\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2},(\lambda=q=λ(yi^+xj^)x2+y2,(λ= स्थिरांक) एक संभाव्य असंपीड्य तरल गति है। धारा-रेखाएँ निकालिए। क्या गति का प्रकार विभव है? यदि हाँ, तो वेग विभव निकालिए।
Show that q = λ ( y i ^ + x j ^ ) x 2 + y 2 , ( λ = q = λ ( y i ^ + x j ^ ) x 2 + y 2 , ( λ = vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2)),(lambda=\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2},(\lambda=q=λ(yi^+xj^)x2+y2,(λ= constant ) ) ))) is a possible incompressible fluid motion. Determine the streamlines. Is the kind of the motion potential? If yes, then find the velocity potential.
Answer:
Introduction
In this problem, we are asked to show that the given velocity field q = λ ( y i ^ + x j ^ ) x 2 + y 2 q = λ ( y i ^ + x j ^ ) x 2 + y 2 vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2))\vec{q}=\frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2}q=λ(yi^+xj^)x2+y2 with λ λ lambda\lambdaλ as a constant represents possible incompressible fluid motion. We need to determine the streamlines and check if the motion is potential. If it is potential, we need to find the velocity potential.

Step 1: Check for Incompressibility

We know that for an incompressible fluid motion, q = 0 q = 0 grad* vec(q)=0\nabla \cdot \vec{q} = 0q=0. Let’s verify this:
q = λ { x ( y x 2 + y 2 ) + y ( x x 2 + y 2 ) } q = λ x y x 2 + y 2 + y x x 2 + y 2 grad* vec(q)=lambda{-(del)/(del x)((y)/(x^(2)+y^(2)))+(del)/(del y)((x)/(x^(2)+y^(2)))}\nabla \cdot \vec{q} = \lambda\left\{-\frac{\partial}{\partial x}\left(\frac{y}{x^2+y^2}\right)+\frac{\partial}{\partial y}\left(\frac{x}{x^2+y^2}\right)\right\}q=λ{x(yx2+y2)+y(xx2+y2)}
Simplifying,
λ { 2 x y ( x 2 + y 2 ) 2 2 x y ( x 2 + y 2 ) 2 } = 0 λ 2 x y x 2 + y 2 2 2 x y x 2 + y 2 2 = 0 lambda{(2xy)/((x^(2)+y^(2))^(2))-(2xy)/((x^(2)+y^(2))^(2))}=0\lambda\left\{\frac{2 x y}{\left(x^2+y^2\right)^2}-\frac{2 x y}{\left(x^2+y^2\right)^2}\right\} = 0λ{2xy(x2+y2)22xy(x2+y2)2}=0
Since q = 0 q = 0 grad* vec(q)=0\nabla \cdot \vec{q} = 0q=0, the equation of continuity for an incompressible fluid is satisfied, indicating that it is a possible motion for an incompressible fluid.

Step 2: Determine Streamlines

The equation of streamlines is given by:
d x u = d y v = d z w d x u = d y v = d z w (dx)/(u)=(dy)/(v)=(dz)/(w)\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}dxu=dyv=dzw
For our velocity field q = λ ( y i ^ + x j ^ ) x 2 + y 2 q = λ ( y i ^ + x j ^ ) x 2 + y 2 vec(q)=(lambda(-y( hat(i))+x( hat(j))))/(x^(2)+y^(2))\vec{q} = \frac{\lambda(-y \hat{i}+x \hat{j})}{x^2+y^2}q=λ(yi^+xj^)x2+y2, we have:
d x λ y x 2 + y 2 = d y λ x x 2 + y 2 = d z 0 d x λ y x 2 + y 2 = d y λ x x 2 + y 2 = d z 0 (dx)/(-(lambda y)/(x^(2)+y^(2)))=(dy)/((lambda x)/(x^(2)+y^(2)))=(dz)/(0)\frac{dx}{-\frac{\lambda y}{x^2+y^2}} = \frac{dy}{\frac{\lambda x}{x^2+y^2}} = \frac{dz}{0}dxλyx2+y2=dyλxx2+y2=dz0
Simplifying,
x d x + y d y = 0 , d z = 0 x d x + y d y = 0 , d z = 0 xdx+ydy=0,quad dz=0x \, dx + y \, dy = 0, \quad dz = 0xdx+ydy=0,dz=0
Integrating these equations, we get:
x 2 + y 2 = constant (2) x 2 + y 2 = constant (2) x^(2)+y^(2)=”constant”quad(2)x^2 + y^2 = \text{constant} \quad \text{(2)}x2+y2=constant(2)
and
z = constant (3) z = constant (3) z=”constant”quad(3)z = \text{constant} \quad \text{(3)}z=constant(3)
The streamlines are circular with centers on the Z-axis, and their planes are perpendicular to the axis.

Step 3: Determine if the Motion is Potential

To check if the motion is potential, we calculate × q × q grad xx vec(q)\nabla \times \vec{q}×q. If × q = 0 × q = 0 grad xx vec(q)=0\nabla \times \vec{q} = 0×q=0, the motion is potential.
× q = k λ [ y 2 x 2 ( x 2 + y 2 ) 2 + x 2 y 2 ( x 2 + y 2 ) 2 ] = 0 × q = k λ y 2 x 2 x 2 + y 2 2 + x 2 y 2 x 2 + y 2 2 = 0 grad xx vec(q)=k lambda[(y^(2)-x^(2))/((x^(2)+y^(2))^(2))+(x^(2)-y^(2))/((x^(2)+y^(2))^(2))]=0\nabla \times \vec{q} = k \lambda\left[\frac{y^2-x^2}{\left(x^2+y^2\right)^2}+\frac{x^2-y^2}{\left(x^2+y^2\right)^2}\right] = 0×q=kλ[y2x2(x2+y2)2+x2y2(x2+y2)2]=0
As × q = 0 × q = 0 grad xx vec(q)=0\nabla \times \vec{q} = 0×q=0, the flow is of a potential kind.

Step 4: Find the Velocity Potential

If the flow is potential, we can determine the velocity potential ϕ ( x , y , z ) ϕ ( x , y , z ) phi(x,y,z)\phi(x, y, z)ϕ(x,y,z) such that:
q = ϕ q = ϕ vec(q)=-grad phi\vec{q} = -\nabla \phiq=ϕ
We have the following relations:
ϕ x = u = λ y x 2 + y 2 (4) ϕ y = v = λ x x 2 + y 2 (5) ϕ z = w = 0 (6) ϕ x = u = λ y x 2 + y 2 (4) ϕ y = v = λ x x 2 + y 2 (5) ϕ z = w = 0 (6) {:[(del phi)/(del x)=-u=(lambda y)/(x^(2)+y^(2))quad(4)],[(del phi)/(del y)=-v=-(lambda x)/(x^(2)+y^(2))quad(5)],[(del phi)/(del z)=-w=0quad(6)]:}\begin{align*} & \frac{\partial \phi}{\partial x} = -u = \frac{\lambda y}{x^2+y^2} \quad \text{(4)} \\ & \frac{\partial \phi}{\partial y} = -v = -\frac{\lambda x}{x^2+y^2} \quad \text{(5)} \\ & \frac{\partial \phi}{\partial z} = -w = 0 \quad \text{(6)} \end{align*}ϕx=u=λyx2+y2(4)ϕy=v=λxx2+y2(5)ϕz=w=0(6)
These equations indicate that ϕ ϕ phi\phiϕ is independent of z z zzz, and thus ϕ = ϕ ( x , y ) ϕ = ϕ ( x , y ) phi=phi(x,y)\phi = \phi(x, y)ϕ=ϕ(x,y).
Integrating equation (4), we get:
ϕ ( x , y ) = λ tan 1 ( x y ) + f ( y ) ϕ ( x , y ) = λ tan 1 x y + f ( y ) phi(x,y)=lambdatan^(-1)((x)/(y))+f(y)\phi(x, y) = \lambda \tan^{-1}\left(\frac{x}{y}\right) + f(y)ϕ(x,y)=λtan1(xy)+f(y)
Using equation (5), we find:
f ( y ) λ x x 2 + y 2 = 0 f ( y ) = λ x x 2 + y 2 f ( y ) λ x x 2 + y 2 = 0 f ( y ) = λ x x 2 + y 2 f^(‘)(y)-(lambda x)/(x^(2)+y^(2))=0=>f^(‘)(y)=(lambda x)/(x^(2)+y^(2))f^{\prime}(y) – \frac{\lambda x}{x^2+y^2} = 0 \Rightarrow f^{\prime}(y) = \frac{\lambda x}{x^2+y^2}f(y)λxx2+y2=0f(y)=λxx2+y2
Integrating f ( y ) f ( y ) f^(‘)(y)f^{\prime}(y)f(y), we obtain f ( y ) f ( y ) f(y)f(y)f(y) as a constant.
Therefore, the velocity potential ϕ ( x , y ) ϕ ( x , y ) phi(x,y)\phi(x, y)ϕ(x,y) is given by:
ϕ ( x , y ) = λ tan 1 ( x y ) + C ϕ ( x , y ) = λ tan 1 x y + C phi(x,y)=lambdatan^(-1)((x)/(y))+C\phi(x, y) = \lambda \tan^{-1}\left(\frac{x}{y}\right) + Cϕ(x,y)=λtan1(xy)+C
Conclusion
The given velocity field represents possible incompressible fluid motion. The streamlines are circular with centers on the Z-axis, and the motion is of a potential kind. The velocity potential ϕ ( x , y ) ϕ ( x , y ) phi(x,y)\phi(x, y)ϕ(x,y) is given by:
ϕ ( x , y ) = λ tan 1 ( x y ) + C ϕ ( x , y ) = λ tan 1 x y + C phi(x,y)=lambdatan^(-1)((x)/(y))+C\phi(x, y) = \lambda \tan^{-1}\left(\frac{x}{y}\right) + Cϕ(x,y)=λtan1(xy)+C
  1. (a) चार्पिट विधि का उपयोग करके आंशिक अवकल समीकरण p = ( z + q y ) 2 p = ( z + q y ) 2 p=(z+qy)^(2)p=(z+q y)^2p=(z+qy)2 का पूर्ण समाकल ज्ञात कीजिए।
Find a complete integral of the partial differential equation p = ( z + q y ) 2 p = ( z + q y ) 2 p=(z+qy)^(2)p=(z+q y)^2p=(z+qy)2 by using Charpit’s method.
Answer:
Introduction
In this problem, we are tasked with finding a complete integral of the partial differential equation p = ( z + q y ) 2 p = ( z + q y ) 2 p=(z+qy)^(2)p=(z+qy)^2p=(z+qy)2 using Charpit’s method.

Step 1: Formulate the Given Equation

The given equation is:
f ( x , y , z , p , q ) = ( z + q y ) 2 p (1) f ( x , y , z , p , q ) = ( z + q y ) 2 p (1) f(x,y,z,p,q)=(z+qy)^(2)-p quad(1)f(x, y, z, p, q) = (z+qy)^2 – p \quad \text{(1)}f(x,y,z,p,q)=(z+qy)2p(1)

Step 2: Charpit’s Auxiliary Equations

Charpit’s method involves deriving auxiliary equations. The auxiliary equations are:
d p f x + p f z = d q f y + q f z = d z p f p q f q = d x f p = d y f q d p f x + p f z = d q f y + q f z = d z p f p q f q = d x f p = d y f q (dp)/((del f)/(del x)+p(del f)/(del z))=(dq)/((del f)/(del y)+q(del f)/(del z))=(dz)/(-p(del f)/(del p)-q(del f)/(del q))=(dx)/(-(del f)/(del p))=(dy)/(-(del f)/(del q))\frac{dp}{\frac{\partial f}{\partial x} + p\frac{\partial f}{\partial z}} = \frac{dq}{\frac{\partial f}{\partial y} + q\frac{\partial f}{\partial z}} = \frac{dz}{-p\frac{\partial f}{\partial p} – q\frac{\partial f}{\partial q}} = \frac{dx}{-\frac{\partial f}{\partial p}} = \frac{dy}{-\frac{\partial f}{\partial q}}dpfx+pfz=dqfy+qfz=dzpfpqfq=dxfp=dyfq
Applying these equations to our problem:
d p 2 p ( z + q y ) = d q 4 q ( z + q y ) = d z p 2 q y ( z + q y ) = d x = d y 2 y ( z + q y ) d p 2 p ( z + q y ) = d q 4 q ( z + q y ) = d z p 2 q y ( z + q y ) = d x = d y 2 y ( z + q y ) (dp)/(2p(z+qy))=(dq)/(4q(z+qy))=(dz)/(p-2qy(z+qy))=dx=(dy)/(-2y(z+qy))\frac{dp}{2p(z+qy)} = \frac{dq}{4q(z+qy)} = \frac{dz}{p-2qy(z+qy)} = dx = \frac{dy}{-2y(z+qy)}dp2p(z+qy)=dq4q(z+qy)=dzp2qy(z+qy)=dx=dy2y(z+qy)

Step 3: Solve for d p d p dpdpdp and d y d y dydydy

Taking the first and fifth fractions:
d p 2 p ( z + q y ) = d y 2 y ( z + q y ) d p 2 p ( z + q y ) = d y 2 y ( z + q y ) (dp)/(2p(z+qy))=(dy)/(-2y(z+qy))\frac{dp}{2p(z+qy)} = \frac{dy}{-2y(z+qy)}dp2p(z+qy)=dy2y(z+qy)
Integrate these expressions:
d p p = d y y log ( p ) = log ( a ) log ( y ) p = a y (2) d p p = d y y log ( p ) = log ( a ) log ( y ) p = a y (2) {:[(dp)/(p)=-(dy)/(y)],[log(p)=log(a)-log(y)],[p=(a)/(y)quad(2)]:}\begin{aligned} \frac{dp}{p} &= -\frac{dy}{y} \\ \log(p) &= \log(a) – \log(y) \\ p &= \frac{a}{y} \quad \text{(2)} \end{aligned}dpp=dyylog(p)=log(a)log(y)p=ay(2)

Step 4: Substitute into the Given Equation

Substituting (2) into (1):
( z + q y ) 2 = a y ( z + q y ) 2 = a y (z+qy)^(2)=(a)/(y)(z+qy)^2 = \frac{a}{y}(z+qy)2=ay
Solving for q y q y qyqyqy:
q y = a y z q y = a y z qy=(sqrta)/(sqrty)-zqy = \frac{\sqrt{a}}{\sqrt{y}} – zqy=ayz
Isolating q q qqq:
q = a y y z y (3) q = a y y z y (3) q=(sqrta)/(ysqrty)-(z)/(y)quad(3)q = \frac{\sqrt{a}}{y\sqrt{y}} – \frac{z}{y} \quad \text{(3)}q=ayyzy(3)

Step 5: Derive d z d z dzdzdz

Now, we need to find d z d z dzdzdz using our expressions for p p ppp and q q qqq:
d z = p d x + q d y = ( a y ) d x + ( a y y z y ) d y = y d z + z d y = a d x + a y 1 2 d y d z = p d x + q d y = a y d x + a y y z y d y = y d z + z d y = a d x + a y 1 2 d y {:[dz=pdx+qdy],[=((a)/(y))dx+((sqrta)/(ysqrty)-(z)/(y))dy],[=ydz+zdy=adx+sqrtay^(-(1)/(2))dy]:}\begin{aligned} dz &= p\,dx + q\,dy \\ &= \left(\frac{a}{y}\right)dx + \left(\frac{\sqrt{a}}{y\sqrt{y}} – \frac{z}{y}\right)dy \\ &= y\,dz + z\,dy = a\,dx + \sqrt{a}y^{-\frac{1}{2}}\,dy \end{aligned}dz=pdx+qdy=(ay)dx+(ayyzy)dy=ydz+zdy=adx+ay12dy

Step 6: Integrate to Find a Complete Integral

Integrating the above expression:
y d z + z d y = a d x + a y 1 2 d y y d z + z d y = a d x + a y 1 2 d y ydz+zdy=adx+sqrtay^(-(1)/(2))dyy\,dz + z\,dy = a\,dx + \sqrt{a}y^{-\frac{1}{2}}\,dyydz+zdy=adx+ay12dy
We obtain:
y z = a x + 2 a y + b y z = a x + 2 a y + b yz=ax+2sqrt(ay)+byz = ax + 2\sqrt{ay} + byz=ax+2ay+b
where a a aaa and b b bbb are arbitrary constants.
Hence, the complete integral of the partial differential equation p = ( z + q y ) 2 p = ( z + q y ) 2 p=(z+qy)^(2)p=(z+qy)^2p=(z+qy)2 is:
y z = a x + 2 a y + b y z = a x + 2 a y + b yz=ax+2sqrt(ay)+byz = ax + 2\sqrt{ay} + byz=ax+2ay+b
with a a aaa and b b bbb as arbitrary constants.
(b) न्यूटन के पश्चांतर अंतर्वेशन सूत्र की व्युत्पत्ति कीजिए तथा त्रुटि-विश्लेषण भी कीजिए।
Derive Newton’s backward difference interpolation formula and also do error analysis.
Answer:
Introduction
In this problem, we will derive Newton’s backward difference interpolation formula and conduct an error analysis.

Step 1: Formulate the Given Equation

Let y = f ( x ) y = f ( x ) y=f(x)y = f(x)y=f(x) be a function that takes values y 0 , y 1 , y 2 , , y n y 0 , y 1 , y 2 , , y n y_(0),y_(1),y_(2),dots,y_(n)y_0, y_1, y_2, \ldots, y_ny0,y1,y2,,yn corresponding to x 0 , x 1 , x 2 , , x n x 0 , x 1 , x 2 , , x n x_(0),x_(1),x_(2),dots,x_(n)x_0, x_1, x_2, \ldots, x_nx0,x1,x2,,xn with an interval of differencing h h hhh.

Step 2: Define ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x)

Define ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) as a polynomial of degree n n nnn in x x xxx that represents y = f ( x ) y = f ( x ) y=f(x)y = f(x)y=f(x) such that f ( x r ) = ϕ ( x r ) f ( x r ) = ϕ ( x r ) f(x_(r))=phi(x_(r))f(x_r) = \phi(x_r)f(xr)=ϕ(xr) for r = 0 , 1 , 2 , , n r = 0 , 1 , 2 , , n r=0,1,2,dots,nr = 0, 1, 2, \ldots, nr=0,1,2,,n.

Step 3: Write ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) as a Polynomial

Express ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) as a polynomial:
ϕ ( x ) = a 0 + a 1 ( x x n ) + a 2 ( x x n ) ( x x n 1 ) + + a n ( x x n ) ( x x n 1 ) ( x x 1 ) ϕ ( x ) = a 0 + a 1 ( x x n ) + a 2 ( x x n ) ( x x n 1 ) + + a n ( x x n ) ( x x n 1 ) ( x x 1 ) phi(x)=a_(0)+a_(1)(x-x_(n))+a_(2)(x-x_(n))(x-x_(n-1))+dots+a_(n)(x-x_(n))(x-x_(n-1))dots(x-x_(1))\phi(x) = a_0 + a_1(x – x_n) + a_2(x – x_n)(x – x_{n-1}) + \ldots + a_n(x – x_n)(x – x_{n-1}) \ldots (x – x_1)ϕ(x)=a0+a1(xxn)+a2(xxn)(xxn1)++an(xxn)(xxn1)(xx1)

Step 4: Determine Coefficients a 0 , a 1 , , a n a 0 , a 1 , , a n a_(0),a_(1),dots,a_(n)a_0, a_1, \ldots, a_na0,a1,,an

Calculate the coefficients a 0 , a 1 , , a n a 0 , a 1 , , a n a_(0),a_(1),dots,a_(n)a_0, a_1, \ldots, a_na0,a1,,an by matching the values of ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) and f ( x ) f ( x ) f(x)f(x)f(x) at the corresponding points:
For r = 0 r = 0 r=0r = 0r=0:
y n = a 0 a 0 = y n y n = a 0 a 0 = y n y_(n)=a_(0)Longrightarrowa_(0)=y_(n)y_n = a_0 \implies a_0 = y_nyn=a0a0=yn
For r = 1 r = 1 r=1r = 1r=1:
y n 1 = y n + a 1 ( h ) a 1 h = y n y n 1 = y n a 1 = y n 1 ! h y n 1 = y n + a 1 ( h ) a 1 h = y n y n 1 = y n a 1 = y n 1 ! h y_(n-1)=y_(n)+a_(1)(-h)Longrightarrowa_(1)h=y_(n)-y_(n-1)=grady_(n)Longrightarrowa_(1)=(grady_(n))/(1!h)y_{n-1} = y_n + a_1(-h) \implies a_1h = y_n – y_{n-1} = \nabla y_n \implies a_1 = \frac{\nabla y_n}{1!h}yn1=yn+a1(h)a1h=ynyn1=yna1=yn1!h
For r = 2 r = 2 r=2r = 2r=2:
y n 2 = y n 2 y n + 2 y n 1 + ( 2 h ) 2 a 2 a 2 = y n 2 y n 1 + y n 2 2 h 2 = 2 y n 2 ! h 2 y n 2 = y n 2 y n + 2 y n 1 + ( 2 h ) 2 a 2 a 2 = y n 2 y n 1 + y n 2 2 h 2 = 2 y n 2 ! h 2 y_(n-2)=y_(n)-2y_(n)+2y_(n-1)+(2h)^(2)a_(2)Longrightarrowa_(2)=(y_(n)-2y_(n-1)+y_(n-2))/(2h^(2))=(grad^(2)y_(n))/(2!h^(2))y_{n-2} = y_n – 2y_n + 2y_{n-1} + (2h)^2a_2 \implies a_2 = \frac{y_n – 2y_{n-1} + y_{n-2}}{2h^2} = \frac{\nabla^2 y_n}{2!h^2}yn2=yn2yn+2yn1+(2h)2a2a2=yn2yn1+yn22h2=2yn2!h2
Similarly, for r = 3 r = 3 r=3r = 3r=3 to n n nnn:
a r = r y n r ! h r a r = r y n r ! h r a_(r)=(grad ^(r)y_(n))/(r!h^(r))a_r = \frac{\nabla^r y_n}{r!h^r}ar=rynr!hr

Step 5: Express ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) Using Coefficients

Writing u = x x n h u = x x n h u=(x-x_(n))/(h)u=\frac{x-x_n}{h}u=xxnh we get
x x n = u h x x n = u h x-x_(n)=uhx-x_n=u hxxn=uh
Therefore x x n 1 = x x n + x n x n 1 = ( u h ) + h = ( u + 1 ) h x x n 1 = x x n + x n x n 1 = ( u h ) + h = ( u + 1 ) h x-x_(n-1)=x-x_(n)+x_(n)-x_(n-1)=(uh)+h=(u+1)hx-x_{n-1}=x-x_n+x_n-x_{n-1}=(u h)+h=(u+1) hxxn1=xxn+xnxn1=(uh)+h=(u+1)h
x x n 2 = ( u + 2 ) h , , ( x x 1 ) = u + ( n 1 ) h x x n 2 = ( u + 2 ) h , , x x 1 = u + ( n 1 ) h =>x-x_(n-2)=(u+2)h,dots,(x-x_(1))=u+(n-1)h\Rightarrow x-x_{n-2}=(u+2) h, \ldots,\left(x-x_1\right)=u+(n-1) hxxn2=(u+2)h,,(xx1)=u+(n1)h
Substitute the calculated coefficients into the expression for ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x):
ϕ ( x ) = y n + y n 1 ! h ( x x n ) + 2 y n 2 ! h 2 ( x x n ) ( x x n 1 ) + + n y n n ! h n ( x x n ) ( x x n 1 ) ( x x 1 ) = y n + u y n 1 ! + u ( u + 1 ) 2 ! 2 y n + u ( u + 1 ) ( u + 2 ) 3 ! 3 y n + + u ( u + 1 ) ( u + n 1 ) n ! n y n ϕ ( x ) = y n + y n 1 ! h ( x x n ) + 2 y n 2 ! h 2 ( x x n ) ( x x n 1 ) + + n y n n ! h n ( x x n ) ( x x n 1 ) ( x x 1 ) = y n + u y n 1 ! + u ( u + 1 ) 2 ! 2 y n + u ( u + 1 ) ( u + 2 ) 3 ! 3 y n + + u ( u + 1 ) ( u + n 1 ) n ! n y n {:[phi(x)=y_(n)+(grady_(n))/(1!h)(x-x_(n))+(grad^(2)y_(n))/(2!h^(2))(x-x_(n))(x-x_(n-1))+dots],[quad+(grad ^(n)y_(n))/(n!h^(n))(x-x_(n))(x-x_(n-1))dots(x-x_(1))],[=y_(n)+(u grady_(n))/(1!)+(u(u+1))/(2!)grad^(2)y_(n)+(u(u+1)(u+2))/(3!)grad^(3)y_(n)+dots],[quad+(u(u+1)dots(u+n-1))/(n!)grad ^(n)y_(n)]:}\begin{aligned} \phi(x) &= y_n + \frac{\nabla y_n}{1!h}(x – x_n) + \frac{\nabla^2 y_n}{2!h^2}(x – x_n)(x – x_{n-1}) + \ldots \\ &\quad+ \frac{\nabla^n y_n}{n!h^n}(x – x_n)(x – x_{n-1}) \ldots (x – x_1) \\ &= y_n + \frac{u \nabla y_n}{1!} + \frac{u(u+1)}{2!}\nabla^2 y_n + \frac{u(u+1)(u+2)}{3!}\nabla^3 y_n + \ldots \\ &\quad+ \frac{u(u+1)\ldots(u+n-1)}{n!}\nabla^n y_n \end{aligned}ϕ(x)=yn+yn1!h(xxn)+2yn2!h2(xxn)(xxn1)++nynn!hn(xxn)(xxn1)(xx1)=yn+uyn1!+u(u+1)2!2yn+u(u+1)(u+2)3!3yn++u(u+1)(u+n1)n!nyn

Step 6: Error Analysis

The error in the Newton’s backward interpolation formula is given by:
R ( x ) = n + 1 y n ( n + 1 ) ! u ( u + 1 ) ( u + n ) R ( x ) = n + 1 y n ( n + 1 ) ! u ( u + 1 ) ( u + n ) R(x)=(grad^(n+1)y_(n))/((n+1)!)u(u+1)dots(u+n)R(x) = \frac{\nabla^{n+1} y_n}{(n+1)!}u(u+1)\ldots(u+n)R(x)=n+1yn(n+1)!u(u+1)(u+n)
Here, u = x x n u = x x n u=x-x_(n)u = x – x_nu=xxn.
This error term quantifies the difference between the interpolated polynomial and the actual function f ( x f ( x f(xf(xf(x).
Conclusion
We have successfully derived Newton’s backward difference interpolation formula and conducted an error analysis to evaluate the interpolation error.
(c) दर्शाइए कि सम्मिश्र विभव tan 1 z tan 1 z tan^(-1)z\tan ^{-1} ztan1z के लिए धारा-रेखाएँ तथा समविभव वक्र, वृत्त हैं। किसी भी बिन्दु पर वेग निकालिए तथा z = ± i z = ± i z=+-iz=\pm iz=±i पर विचित्रता जाँचिए।
Show that for the complex potential tan 1 z tan 1 z tan^(-1)z\tan ^{-1} ztan1z, the streamlines and equipotential curves are circles. Find the velocity at any point and check the singularities at z = ± i z = ± i z=+-iz=\pm iz=±i.
Answer:
Introduction
In this problem, we will analyze the complex potential tan 1 z tan 1 z tan^(-1)z\tan^{-1}ztan1z and show that the streamlines and equipotential curves are circles. Additionally, we will find the velocity at any point and examine the singularities at z = ± i z = ± i z=+-iz = \pm iz=±i.

Step 1: Define the Complex Potential

The complex potential is given by:
w = ϕ + i Ψ = tan 1 z (1) w = ϕ + i Ψ = tan 1 z (1) w=phi+i Psi=tan^(-1)z quad(1)w = \phi + i \Psi = \tan^{-1} z \quad \text{(1)}w=ϕ+iΨ=tan1z(1)
We will use this complex potential to derive various properties.

Step 2: Calculate w ¯ w ¯ bar(w)\bar{w}w¯

Calculate the complex conjugate of the potential:
w ¯ = ϕ i Ψ = tan 1 z ¯ (2) w ¯ = ϕ i Ψ = tan 1 z ¯ (2) bar(w)=phi-i Psi=tan^(-1) bar(z)quad(2)\bar{w} = \phi – i \Psi = \tan^{-1} \bar{z} \quad \text{(2)}w¯=ϕiΨ=tan1z¯(2)

Step 3: Subtract w ¯ w ¯ bar(w)\bar{w}w¯ from w w www

Subtract equation (2) from equation (1):
2 i Ψ = tan 1 z tan 1 z ¯ 2 i Ψ = tan 1 z tan 1 z ¯ 2i Psi=tan^(-1)z-tan^(-1) bar(z)2 i \Psi = \tan^{-1} z – \tan^{-1} \bar{z}2iΨ=tan1ztan1z¯
Simplify:
tan 2 i Ψ = 2 i y 1 + x 2 + y 2 tan 2 i Ψ = 2 i y 1 + x 2 + y 2 tan 2i Psi=(2iy)/(1+x^(2)+y^(2))\tan 2i \Psi = \frac{2i y}{1 + x^2 + y^2}tan2iΨ=2iy1+x2+y2
This leads to:
x 2 + y 2 + 1 = 2 y coth 2 Ψ (3) x 2 + y 2 + 1 = 2 y coth 2 Ψ (3) x^(2)+y^(2)+1=2y coth 2Psiquad(3)x^2 + y^2 + 1 = 2y \coth 2\Psi \quad \text{(3)}x2+y2+1=2ycoth2Ψ(3)

Step 4: Analyze Streamlines

The streamlines Ψ = constant Ψ = constant Psi=”constant”\Psi = \text{constant}Ψ=constant represent circles, as described by equation (3).

Step 5: Add w w www and w ¯ w ¯ bar(w)\bar{w}w¯

Add equation (1) and equation (2):
2 ϕ = tan 1 z + tan 1 z ¯ = tan 1 z z ¯ 1 z z ¯ 2 ϕ = tan 1 z + tan 1 z ¯ = tan 1 z z ¯ 1 z z ¯ 2phi=tan^(-1)z+tan^(-1) bar(z)=tan^(-1)((z-( bar(z)))/(1-z( bar(z))))2\phi = \tan^{-1} z + \tan^{-1} \bar{z} = \tan^{-1} \frac{z – \bar{z}}{1 – z\bar{z}}2ϕ=tan1z+tan1z¯=tan1zz¯1zz¯
Simplify:
1 x 2 y 2 = 2 x cot 2 ϕ (4) 1 x 2 y 2 = 2 x cot 2 ϕ (4) 1-x^(2)-y^(2)=2x cot 2phiquad(4)1 – x^2 – y^2 = 2x \cot 2\phi \quad \text{(4)}1x2y2=2xcot2ϕ(4)

Step 6: Analyze Equipotential Curves

The equipotential curves ϕ = constant ϕ = constant phi=”constant”\phi = \text{constant}ϕ=constant also represent circles, orthogonal to the streamlines Ψ = constant Ψ = constant Psi=”constant”\Psi = \text{constant}Ψ=constant, forming a co-axial system. These circles have limit points at z = ± i z = ± i z=+-iz = \pm iz=±i, as described by equation (4).

Step 7: Find Velocity Components

The velocity components ( u , v ) ( u , v ) (u,v)(u, v)(u,v) are calculated as:
w z = u + i v = 1 z 2 + 1 (5) w z = u + i v = 1 z 2 + 1 (5) (del w)/(del z)=-u+iv=(1)/(z^(2)+1)quad(5)\frac{\partial w}{\partial z} = -u + iv = \frac{1}{z^2 + 1} \quad \text{(5)}wz=u+iv=1z2+1(5)

Step 8: Identify Singularities

The denominator of equation (5) vanishes at z = ± i z = ± i z=+-iz = \pm iz=±i, indicating singularities at these points.

Step 9: Analyze Singularities

Analyzing the singularity at z = + i z = + i z=+iz = +iz=+i:
Substitute z = i + z 1 z = i + z 1 z=i+z_(1)z = i + z_1z=i+z1, where | z 1 | z 1 |z_(1)|\left|z_1\right||z1| is very small:
u + i v = d w d z = d w d z 1 = 1 1 + ( 1 + 2 i z 1 ) = 1 2 i z 1 u + i v = d w d z = d w d z 1 = 1 1 + 1 + 2 i z 1 = 1 2 i z 1 -u+iv=(dw)/(dz)=(dw)/(dz_(1))=(1)/(1+(-1+2iz_(1)))=(1)/(2iz_(1))-u+i v=\frac{\mathbf{d} w}{\mathbf{d} z}=\frac{\mathbf{d} w}{\mathbf{d} z_1}=\frac{1}{1+\left(-1+2 i z_1\right)}=\frac{1}{2 i z_1}u+iv=dwdz=dwdz1=11+(1+2iz1)=12iz1
By integrating, we find:
w = 1 2 i log z 1 w = 1 2 i log z 1 w=-(1)/(2)i log z_(1)w = -\frac{1}{2}i \log z_1w=12ilogz1
This implies that the singularity at z = + i z = + i z=+iz = +iz=+i is a vortex of strength k = 1 2 k = 1 2 k=-(1)/(2)k = -\frac{1}{2}k=12 with circulation π k π k -pi k-\pi kπk.
Similarly, the singularity at z = i z = i z=-iz = -iz=i is a vortex of strength k = 1 2 k = 1 2 k=(1)/(2)k = \frac{1}{2}k=12 with circulation π k π k pi k\pi kπk.
Conclusion
We have shown that for the complex potential tan 1 z tan 1 z tan^(-1)z\tan^{-1}ztan1z, the streamlines and equipotential curves are circles. We have also found the velocity at any point and examined the singularities at z = ± i z = ± i z=+-iz = \pm iz=±i.
Scroll to Top
Scroll to Top