SECTION-A
Question:-1(a)
Let
G
G
G G G be a finite group of order
m
n
m
n
mn mn m n , where
m
m
m m m and
n
n
n n n are prime numbers with
m
>
n
m
>
n
m > n m > n m > n . Show that
G
G
G G G has at most one subgroup of order
m
m
m m m .
Answer:
We are given a finite group
G
G
G G G of order
m
n
m
n
mn mn m n , where
m
m
m m m and
n
n
n n n are prime numbers with
m
>
n
m
>
n
m > n m > n m > n . We are asked to show that
G
G
G G G has at most one subgroup of order
m
m
m m m .
Step 1: Application of Sylow’s Theorems
Let us apply Sylow’s theorems to the group
G
G
G G G . The Sylow
p
p
p p p -subgroups of a group are the subgroups whose order is a power of a prime
p
p
p p p , and the Sylow theorems provide information about their existence and conjugacy.
In this case, we are interested in the Sylow
m
m
m m m -subgroups (subgroups of order
m
m
m m m ), where
m
m
m m m is prime.
Existence of Sylow
m
m
m m m -subgroups
The Sylow
m
m
m m m -subgroups of
G
G
G G G are subgroups of order
m
m
m m m . According to Sylow’s theorems, the number
n
m
n
m
n_(m) n_m n m of Sylow
m
m
m m m -subgroups of
G
G
G G G satisfies two conditions:
n
m
≡
1
(
mod
m
)
n
m
≡
1
(
mod
m
)
n_(m)-=1(modm) n_m \equiv 1 \pmod{m} n m ≡ 1 ( mod m )
n
m
n
m
n_(m) n_m n m divides
|
G
|
m
=
m
n
m
=
n
|
G
|
m
=
m
n
m
=
n
(|G|)/(m)=(mn)/(m)=n \frac{|G|}{m} = \frac{mn}{m} = n | G | m = m n m = n
Since
n
n
n n n is a prime number, the divisors of
n
n
n n n are
1
1
1 1 1 and
n
n
n n n itself. Therefore,
n
m
n
m
n_(m) n_m n m must be one of the values
1
1
1 1 1 or
n
n
n n n .
Case 1:
n
m
=
1
n
m
=
1
n_(m)=1 n_m = 1 n m = 1
If
n
m
=
1
n
m
=
1
n_(m)=1 n_m = 1 n m = 1 , then there is exactly one Sylow
m
m
m m m -subgroup, and it must be normal in
G
G
G G G . This would immediately show that
G
G
G G G has at most one subgroup of order
m
m
m m m , as we are considering the Sylow
m
m
m m m -subgroup.
Case 2:
n
m
=
n
n
m
=
n
n_(m)=n n_m = n n m = n
If
n
m
=
n
n
m
=
n
n_(m)=n n_m = n n m = n , then there are
n
n
n n n distinct Sylow
m
m
m m m -subgroups. These subgroups are conjugates of each other, and thus, there are
n
n
n n n distinct subgroups of order
m
m
m m m . However, this would imply that
n
n
n n n (the number of these subgroups) divides
|
G
|
=
m
n
|
G
|
=
m
n
|G|=mn |G| = mn | G | = m n , but since
n
n
n n n is prime,
n
n
n n n could only divide
m
n
m
n
mn mn m n if
n
=
1
n
=
1
n=1 n = 1 n = 1 , contradicting the assumption that
n
m
=
n
n
m
=
n
n_(m)=n n_m = n n m = n . Therefore, this case is impossible.
Conclusion
The only possibility is that
n
m
=
1
n
m
=
1
n_(m)=1 n_m = 1 n m = 1 , meaning that there is exactly one Sylow
m
m
m m m -subgroup in
G
G
G G G , and this subgroup is unique and normal in
G
G
G G G . Hence,
G
G
G G G has at most one subgroup of order
m
m
m m m .
Question:-1(b)
If
w
=
f
(
z
)
w
=
f
(
z
)
w=f(z) w = f(z) w = f ( z ) is an analytic function of
z
z
z z z , then show that
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
log
|
f
′
(
z
)
|
=
0.
∂
2
∂
x
2
+
∂
2
∂
y
2
log
|
f
′
(
z
)
|
=
0.
((del^(2))/(delx^(2))+(del^(2))/(dely^(2)))log |f^(‘)(z)|=0. \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log |f'(z)| = 0. ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) log | f ′ ( z ) | = 0.
Answer:
Laplacian in Terms of
z
z
z z z and
z
¯
z
¯
bar(z) \bar{z} z ¯ :
The Laplacian operator can be expressed as:
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
=
4
⋅
∂
2
∂
z
∂
z
¯
.
∂
2
∂
x
2
+
∂
2
∂
y
2
=
4
⋅
∂
2
∂
z
∂
z
¯
.
((del^(2))/(delx^(2))+(del^(2))/(dely^(2)))=4*(del^(2))/(del z del( bar(z))). \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) = 4 \cdot \frac{\partial^2}{\partial z \partial \bar{z}}. ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) = 4 ⋅ ∂ 2 ∂ z ∂ z ¯ .
Simplify
log
|
f
′
(
z
)
|
log
|
f
′
(
z
)
|
log |f^(‘)(z)| \log |f'(z)| log | f ′ ( z ) | :
Since
|
f
′
(
z
)
|
=
f
′
(
z
)
f
′
(
z
)
―
|
f
′
(
z
)
|
=
f
′
(
z
)
f
′
(
z
)
¯
|f^(‘)(z)|=sqrt(f^(‘)(z) bar(f^(‘)(z))) |f'(z)| = \sqrt{f'(z) \overline{f'(z)}} | f ′ ( z ) | = f ′ ( z ) f ′ ( z ) ― , we have:
log
|
f
′
(
z
)
|
=
1
2
log
(
f
′
(
z
)
f
′
(
z
)
―
)
=
1
2
(
log
f
′
(
z
)
+
log
f
′
(
z
)
―
)
.
log
|
f
′
(
z
)
|
=
1
2
log
f
′
(
z
)
f
′
(
z
)
¯
=
1
2
log
f
′
(
z
)
+
log
f
′
(
z
)
¯
.
log |f^(‘)(z)|=(1)/(2)log(f^(‘)(z) bar(f^(‘)(z)))=(1)/(2)(log f^(‘)(z)+log bar(f^(‘)(z))). \log |f'(z)| = \frac{1}{2} \log \left( f'(z) \overline{f'(z)} \right) = \frac{1}{2} \left( \log f'(z) + \log \overline{f'(z)} \right). log | f ′ ( z ) | = 1 2 log ( f ′ ( z ) f ′ ( z ) ― ) = 1 2 ( log f ′ ( z ) + log f ′ ( z ) ― ) .
Apply the Laplacian:
Using the Laplacian expression from step 1:
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
log
|
f
′
(
z
)
|
=
4
⋅
∂
2
∂
z
∂
z
¯
(
1
2
(
log
f
′
(
z
)
+
log
f
′
(
z
)
―
)
)
.
∂
2
∂
x
2
+
∂
2
∂
y
2
log
|
f
′
(
z
)
|
=
4
⋅
∂
2
∂
z
∂
z
¯
1
2
log
f
′
(
z
)
+
log
f
′
(
z
)
¯
.
((del^(2))/(delx^(2))+(del^(2))/(dely^(2)))log |f^(‘)(z)|=4*(del^(2))/(del z del( bar(z)))((1)/(2)(log f^(‘)(z)+log bar(f^(‘)(z)))). \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log |f'(z)| = 4 \cdot \frac{\partial^2}{\partial z \partial \bar{z}} \left( \frac{1}{2} \left( \log f'(z) + \log \overline{f'(z)} \right) \right). ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) log | f ′ ( z ) | = 4 ⋅ ∂ 2 ∂ z ∂ z ¯ ( 1 2 ( log f ′ ( z ) + log f ′ ( z ) ― ) ) .
Simplify the expression:
=
2
⋅
∂
2
∂
z
∂
z
¯
(
log
f
′
(
z
)
+
log
f
′
(
z
)
―
)
.
=
2
⋅
∂
2
∂
z
∂
z
¯
log
f
′
(
z
)
+
log
f
′
(
z
)
¯
.
=2*(del^(2))/(del z del( bar(z)))(log f^(‘)(z)+log bar(f^(‘)(z))). = 2 \cdot \frac{\partial^2}{\partial z \partial \bar{z}} \left( \log f'(z) + \log \overline{f'(z)} \right). = 2 ⋅ ∂ 2 ∂ z ∂ z ¯ ( log f ′ ( z ) + log f ′ ( z ) ― ) .
Evaluate the Derivatives:
Since
f
′
(
z
)
f
′
(
z
)
f^(‘)(z) f'(z) f ′ ( z ) is analytic,
log
f
′
(
z
)
log
f
′
(
z
)
log f^(‘)(z) \log f'(z) log f ′ ( z ) is independent of
z
¯
z
¯
bar(z) \bar{z} z ¯ . Thus:
∂
∂
z
¯
log
f
′
(
z
)
=
0.
∂
∂
z
¯
log
f
′
(
z
)
=
0.
(del)/(del( bar(z)))log f^(‘)(z)=0. \frac{\partial}{\partial \bar{z}} \log f'(z) = 0. ∂ ∂ z ¯ log f ′ ( z ) = 0.
Similarly,
log
f
′
(
z
)
―
log
f
′
(
z
)
¯
log bar(f^(‘)(z)) \log \overline{f'(z)} log f ′ ( z ) ― is independent of
z
z
z z z , so:
∂
∂
z
log
f
′
(
z
)
―
=
0.
∂
∂
z
log
f
′
(
z
)
¯
=
0.
(del)/(del z)log bar(f^(‘)(z))=0. \frac{\partial}{\partial z} \log \overline{f'(z)} = 0. ∂ ∂ z log f ′ ( z ) ― = 0.
Therefore:
∂
2
∂
z
∂
z
¯
(
log
f
′
(
z
)
+
log
f
′
(
z
)
―
)
=
0.
∂
2
∂
z
∂
z
¯
log
f
′
(
z
)
+
log
f
′
(
z
)
¯
=
0.
(del^(2))/(del z del( bar(z)))(log f^(‘)(z)+log bar(f^(‘)(z)))=0. \frac{\partial^2}{\partial z \partial \bar{z}} \left( \log f'(z) + \log \overline{f'(z)} \right) = 0. ∂ 2 ∂ z ∂ z ¯ ( log f ′ ( z ) + log f ′ ( z ) ― ) = 0.
Final Result:
Substituting back, we conclude:
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
log
|
f
′
(
z
)
|
=
0.
∂
2
∂
x
2
+
∂
2
∂
y
2
log
|
f
′
(
z
)
|
=
0.
((del^(2))/(delx^(2))+(del^(2))/(dely^(2)))log |f^(‘)(z)|=0. \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log |f'(z)| = 0. ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) log | f ′ ( z ) | = 0.
Question:-1(c)
Test the convergence of
∫
0
2
log
x
2
−
x
d
x
∫
0
2
log
x
2
−
x
d
x
int_(0)^(2)(log x)/(sqrt(2-x))dx \int_0^2 \frac{\log x}{\sqrt{2-x}} \, dx ∫ 0 2 log x 2 − x d x .
Answer:
We are given
f
(
x
)
=
log
x
2
−
x
f
(
x
)
=
log
x
2
−
x
f(x)=(log x)/(sqrt(2-x)) f(x) = \frac{\log x}{\sqrt{2-x}} f ( x ) = log x 2 − x , and it is clear that both 0 and 2 are points of infinite discontinuity for
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) on the interval
[
0
,
2
]
[
0
,
2
]
[0,2] [0, 2] [ 0 , 2 ] . We can split the integral as follows:
∫
0
2
f
(
x
)
d
x
=
∫
0
1
f
(
x
)
d
x
+
∫
1
2
f
(
x
)
d
x
∫
0
2
f
(
x
)
d
x
=
∫
0
1
f
(
x
)
d
x
+
∫
1
2
f
(
x
)
d
x
int_(0)^(2)f(x)dx=int_(0)^(1)f(x)dx+int_(1)^(2)f(x)dx \int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx ∫ 0 2 f ( x ) d x = ∫ 0 1 f ( x ) d x + ∫ 1 2 f ( x ) d x
1. To test the convergence of
∫
0
1
f
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
int_(0)^(1)f(x)dx \int_0^1 f(x) \, dx ∫ 0 1 f ( x ) d x at
x
=
0
x
=
0
x=0 x = 0 x = 0 :
Since
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is negative on
(
0
,
1
]
(
0
,
1
]
(0,1] (0, 1] ( 0 , 1 ] , we consider the function
−
f
(
x
)
−
f
(
x
)
-f(x) -f(x) − f ( x ) . Let’s take
g
(
x
)
=
1
x
n
g
(
x
)
=
1
x
n
g(x)=(1)/(x^(n)) g(x) = \frac{1}{x^n} g ( x ) = 1 x n , where
n
>
0
n
>
0
n > 0 n > 0 n > 0 . Then, we compute the following limit:
lim
x
→
0
+
−
f
(
x
)
g
(
x
)
=
lim
x
→
0
+
−
x
n
log
x
2
−
x
=
0
,
if
n
>
0
lim
x
→
0
+
−
f
(
x
)
g
(
x
)
=
lim
x
→
0
+
−
x
n
log
x
2
−
x
=
0
,
if
n
>
0
lim_(x rarr0^(+))(-f(x))/(g(x))=lim_(x rarr0^(+))(-x^(n)log x)/(sqrt(2-x))=0,quad”if “n > 0 \lim_{x \to 0^+} \frac{-f(x)}{g(x)} = \lim_{x \to 0^+} \frac{-x^n \log x}{\sqrt{2-x}} = 0, \quad \text{if } n > 0 lim x → 0 + − f ( x ) g ( x ) = lim x → 0 + − x n log x 2 − x = 0 , if n > 0
[
Since
lim
x
→
0
+
x
n
log
x
=
0
for
n
>
0
]
Since
lim
x
→
0
+
x
n
log
x
=
0
for
n
>
0
[“Since “lim_(x rarr0^(+))x^(n)log x=0” for “n > 0] \left[ \text{Since } \lim_{x \to 0^+} x^n \log x = 0 \text{ for } n > 0 \right] [ Since lim x → 0 + x n log x = 0 for n > 0 ]
Therefore, taking
n
n
n n n between 0 and 1, the integral
∫
0
1
g
(
x
)
d
x
∫
0
1
g
(
x
)
d
x
int_(0)^(1)g(x)dx \int_0^1 g(x) \, dx ∫ 0 1 g ( x ) d x is convergent.
By the comparison test,
∫
0
1
−
f
(
x
)
d
x
∫
0
1
−
f
(
x
)
d
x
int_(0)^(1)-f(x)dx \int_0^1 -f(x) \, dx ∫ 0 1 − f ( x ) d x is also convergent.
2. To test the convergence of
∫
1
2
f
(
x
)
d
x
∫
1
2
f
(
x
)
d
x
int_(1)^(2)f(x)dx \int_1^2 f(x) \, dx ∫ 1 2 f ( x ) d x at
x
=
2
x
=
2
x=2 x = 2 x = 2 :
Now, we test the convergence of
∫
1
2
f
(
x
)
d
x
∫
1
2
f
(
x
)
d
x
int_(1)^(2)f(x)dx \int_1^2 f(x) \, dx ∫ 1 2 f ( x ) d x at
x
=
2
x
=
2
x=2 x = 2 x = 2 . Let’s take
g
(
x
)
=
1
2
−
x
g
(
x
)
=
1
2
−
x
g(x)=(1)/(sqrt(2-x)) g(x) = \frac{1}{\sqrt{2-x}} g ( x ) = 1 2 − x , and compute the following limit:
lim
x
→
2
−
f
(
x
)
g
(
x
)
=
lim
x
→
2
−
log
x
=
log
2
which is non-zero and finite
.
lim
x
→
2
−
f
(
x
)
g
(
x
)
=
lim
x
→
2
−
log
x
=
log
2
which is non-zero and finite
.
lim_(x rarr2^(-))(f(x))/(g(x))=lim_(x rarr2^(-))log x=log 2quad”which is non-zero and finite”. \lim_{x \to 2^-} \frac{f(x)}{g(x)} = \lim_{x \to 2^-} \log x = \log 2 \quad \text{which is non-zero and finite}. lim x → 2 − f ( x ) g ( x ) = lim x → 2 − log x = log 2 which is non-zero and finite .
Thus, by the comparison test,
∫
1
2
f
(
x
)
d
x
∫
1
2
f
(
x
)
d
x
int_(1)^(2)f(x)dx \int_1^2 f(x) \, dx ∫ 1 2 f ( x ) d x and
∫
1
2
g
(
x
)
d
x
∫
1
2
g
(
x
)
d
x
int_(1)^(2)g(x)dx \int_1^2 g(x) \, dx ∫ 1 2 g ( x ) d x converge or diverge together.
We know that:
∫
1
2
g
(
x
)
d
x
=
∫
1
2
d
x
2
−
x
∫
1
2
g
(
x
)
d
x
=
∫
1
2
d
x
2
−
x
int_(1)^(2)g(x)dx=int_(1)^(2)(dx)/(sqrt(2-x)) \int_1^2 g(x) \, dx = \int_1^2 \frac{dx}{\sqrt{2-x}} ∫ 1 2 g ( x ) d x = ∫ 1 2 d x 2 − x
This integral is of the form
∫
a
b
d
x
(
b
−
x
)
n
∫
a
b
d
x
(
b
−
x
)
n
int_(a)^(b)(dx)/((b-x)^(n)) \int_a^b \frac{dx}{(b-x)^n} ∫ a b d x ( b − x ) n , which is convergent since
n
=
1
2
<
1
n
=
1
2
<
1
n=(1)/(2) < 1 n = \frac{1}{2} < 1 n = 1 2 < 1 .
Thus,
∫
1
2
f
(
x
)
d
x
∫
1
2
f
(
x
)
d
x
int_(1)^(2)f(x)dx \int_1^2 f(x) \, dx ∫ 1 2 f ( x ) d x is also convergent.
Final Conclusion:
From the above analysis, we conclude that both
∫
0
1
f
(
x
)
d
x
∫
0
1
f
(
x
)
d
x
int_(0)^(1)f(x)dx \int_0^1 f(x) \, dx ∫ 0 1 f ( x ) d x and
∫
1
2
f
(
x
)
d
x
∫
1
2
f
(
x
)
d
x
int_(1)^(2)f(x)dx \int_1^2 f(x) \, dx ∫ 1 2 f ( x ) d x are convergent. Therefore, the entire integral
∫
0
2
f
(
x
)
d
x
∫
0
2
f
(
x
)
d
x
int_(0)^(2)f(x)dx \int_0^2 f(x) \, dx ∫ 0 2 f ( x ) d x is convergent.
Hence, the integral
∫
0
2
log
x
2
−
x
d
x
∫
0
2
log
x
2
−
x
d
x
int_(0)^(2)(log x)/(sqrt(2-x))dx \int_0^2 \frac{\log x}{\sqrt{2-x}} \, dx ∫ 0 2 log x 2 − x d x is
convergent .
Question:-1(d)
If
ϕ
ϕ
phi \phi ϕ and
ψ
ψ
psi \psi ψ are functions of
x
x
x x x and
y
y
y y y satisfying Laplace’s equation, then show that
f
(
z
)
=
p
+
i
q
f
(
z
)
=
p
+
i
q
f(z)=p+iq f(z) = p + iq f ( z ) = p + i q ,
i
=
−
1
i
=
−
1
i=sqrt(-1) i = \sqrt{-1} i = − 1 , is an analytic function, where
p
=
∂
ϕ
∂
y
−
∂
ψ
∂
x
p
=
∂
ϕ
∂
y
−
∂
ψ
∂
x
p=(del phi)/(del y)-(del psi)/(del x) p = \frac{\partial \phi}{\partial y} – \frac{\partial \psi}{\partial x} p = ∂ ϕ ∂ y − ∂ ψ ∂ x and
q
=
∂
ϕ
∂
x
+
∂
ψ
∂
y
q
=
∂
ϕ
∂
x
+
∂
ψ
∂
y
q=(del phi)/(del x)+(del psi)/(del y) q = \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y} q = ∂ ϕ ∂ x + ∂ ψ ∂ y .
Answer:
Solution:
Suppose that
ϕ
(
x
,
y
)
ϕ
(
x
,
y
)
phi(x,y) \phi(x, y) ϕ ( x , y ) and
ψ
(
x
,
y
)
ψ
(
x
,
y
)
psi(x,y) \psi(x, y) ψ ( x , y ) satisfy Laplace’s equation:
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
=
0.
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
=
0.
(del^(2)phi)/(delx^(2))+(del^(2)phi)/(dely^(2))=0,quad(del^(2)psi)/(delx^(2))+(del^(2)psi)/(dely^(2))=0. \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \quad \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0. ∂ 2 ϕ ∂ x 2 + ∂ 2 ϕ ∂ y 2 = 0 , ∂ 2 ψ ∂ x 2 + ∂ 2 ψ ∂ y 2 = 0.
We are given the following definitions for
p
p
p p p and
q
q
q q q :
p
=
∂
ϕ
∂
y
−
∂
ψ
∂
x
,
q
=
∂
ϕ
∂
x
+
∂
ψ
∂
y
.
p
=
∂
ϕ
∂
y
−
∂
ψ
∂
x
,
q
=
∂
ϕ
∂
x
+
∂
ψ
∂
y
.
p=(del phi)/(del y)-(del psi)/(del x),quad q=(del phi)/(del x)+(del psi)/(del y). p = \frac{\partial \phi}{\partial y} – \frac{\partial \psi}{\partial x}, \quad q = \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y}. p = ∂ ϕ ∂ y − ∂ ψ ∂ x , q = ∂ ϕ ∂ x + ∂ ψ ∂ y .
We need to show that
f
(
z
)
=
p
+
i
q
f
(
z
)
=
p
+
i
q
f(z)=p+iq f(z) = p + iq f ( z ) = p + i q is an analytic function, which means it must satisfy the Cauchy-Riemann equations.
Step 1: Show that
∂
p
∂
x
=
∂
q
∂
y
∂
p
∂
x
=
∂
q
∂
y
(del p)/(del x)=(del q)/(del y) \frac{\partial p}{\partial x} = \frac{\partial q}{\partial y} ∂ p ∂ x = ∂ q ∂ y and
∂
p
∂
y
=
−
∂
q
∂
x
∂
p
∂
y
=
−
∂
q
∂
x
(del p)/(del y)=-(del q)/(del x) \frac{\partial p}{\partial y} = -\frac{\partial q}{\partial x} ∂ p ∂ y = − ∂ q ∂ x
Compute
∂
p
∂
x
−
∂
q
∂
y
∂
p
∂
x
−
∂
q
∂
y
(del p)/(del x)-(del q)/(del y) \frac{\partial p}{\partial x} – \frac{\partial q}{\partial y} ∂ p ∂ x − ∂ q ∂ y :
We start by calculating the derivatives:
∂
p
∂
x
=
∂
∂
x
(
∂
ϕ
∂
y
−
∂
ψ
∂
x
)
=
∂
2
ϕ
∂
x
∂
y
−
∂
2
ψ
∂
x
2
,
∂
p
∂
x
=
∂
∂
x
∂
ϕ
∂
y
−
∂
ψ
∂
x
=
∂
2
ϕ
∂
x
∂
y
−
∂
2
ψ
∂
x
2
,
(del p)/(del x)=(del)/(del x)((del phi)/(del y)-(del psi)/(del x))=(del^(2)phi)/(del x del y)-(del^(2)psi)/(delx^(2)), \frac{\partial p}{\partial x} = \frac{\partial}{\partial x} \left( \frac{\partial \phi}{\partial y} – \frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial x \partial y} – \frac{\partial^2 \psi}{\partial x^2}, ∂ p ∂ x = ∂ ∂ x ( ∂ ϕ ∂ y − ∂ ψ ∂ x ) = ∂ 2 ϕ ∂ x ∂ y − ∂ 2 ψ ∂ x 2 ,
∂
q
∂
y
=
∂
∂
y
(
∂
ϕ
∂
x
+
∂
ψ
∂
y
)
=
∂
2
ϕ
∂
x
∂
y
+
∂
2
ψ
∂
y
2
.
∂
q
∂
y
=
∂
∂
y
∂
ϕ
∂
x
+
∂
ψ
∂
y
=
∂
2
ϕ
∂
x
∂
y
+
∂
2
ψ
∂
y
2
.
(del q)/(del y)=(del)/(del y)((del phi)/(del x)+(del psi)/(del y))=(del^(2)phi)/(del x del y)+(del^(2)psi)/(dely^(2)). \frac{\partial q}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 \psi}{\partial y^2}. ∂ q ∂ y = ∂ ∂ y ( ∂ ϕ ∂ x + ∂ ψ ∂ y ) = ∂ 2 ϕ ∂ x ∂ y + ∂ 2 ψ ∂ y 2 .
Now, compute
∂
p
∂
x
−
∂
q
∂
y
∂
p
∂
x
−
∂
q
∂
y
(del p)/(del x)-(del q)/(del y) \frac{\partial p}{\partial x} – \frac{\partial q}{\partial y} ∂ p ∂ x − ∂ q ∂ y :
∂
p
∂
x
−
∂
q
∂
y
=
(
∂
2
ϕ
∂
x
∂
y
−
∂
2
ψ
∂
x
2
)
−
(
∂
2
ϕ
∂
x
∂
y
+
∂
2
ψ
∂
y
2
)
.
∂
p
∂
x
−
∂
q
∂
y
=
∂
2
ϕ
∂
x
∂
y
−
∂
2
ψ
∂
x
2
−
∂
2
ϕ
∂
x
∂
y
+
∂
2
ψ
∂
y
2
.
(del p)/(del x)-(del q)/(del y)=((del^(2)phi)/(del x del y)-(del^(2)psi)/(delx^(2)))-((del^(2)phi)/(del x del y)+(del^(2)psi)/(dely^(2))). \frac{\partial p}{\partial x} – \frac{\partial q}{\partial y} = \left( \frac{\partial^2 \phi}{\partial x \partial y} – \frac{\partial^2 \psi}{\partial x^2} \right) – \left( \frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 \psi}{\partial y^2} \right). ∂ p ∂ x − ∂ q ∂ y = ( ∂ 2 ϕ ∂ x ∂ y − ∂ 2 ψ ∂ x 2 ) − ( ∂ 2 ϕ ∂ x ∂ y + ∂ 2 ψ ∂ y 2 ) .
Simplifying:
∂
p
∂
x
−
∂
q
∂
y
=
−
(
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
)
.
∂
p
∂
x
−
∂
q
∂
y
=
−
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
.
(del p)/(del x)-(del q)/(del y)=-((del^(2)psi)/(delx^(2))+(del^(2)psi)/(dely^(2))). \frac{\partial p}{\partial x} – \frac{\partial q}{\partial y} = – \left( \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right). ∂ p ∂ x − ∂ q ∂ y = − ( ∂ 2 ψ ∂ x 2 + ∂ 2 ψ ∂ y 2 ) .
Since
ψ
ψ
psi \psi ψ satisfies Laplace’s equation (
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
=
0
∂
2
ψ
∂
x
2
+
∂
2
ψ
∂
y
2
=
0
(del^(2)psi)/(delx^(2))+(del^(2)psi)/(dely^(2))=0 \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 ∂ 2 ψ ∂ x 2 + ∂ 2 ψ ∂ y 2 = 0 ), we have:
∂
p
∂
x
−
∂
q
∂
y
=
0.
∂
p
∂
x
−
∂
q
∂
y
=
0.
(del p)/(del x)-(del q)/(del y)=0. \frac{\partial p}{\partial x} – \frac{\partial q}{\partial y} = 0. ∂ p ∂ x − ∂ q ∂ y = 0.
Thus, we have shown that:
∂
p
∂
x
=
∂
q
∂
y
.
∂
p
∂
x
=
∂
q
∂
y
.
(del p)/(del x)=(del q)/(del y). \frac{\partial p}{\partial x} = \frac{\partial q}{\partial y}. ∂ p ∂ x = ∂ q ∂ y .
Compute
∂
p
∂
y
+
∂
q
∂
x
∂
p
∂
y
+
∂
q
∂
x
(del p)/(del y)+(del q)/(del x) \frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} ∂ p ∂ y + ∂ q ∂ x :
Next, we calculate:
∂
p
∂
y
=
∂
∂
y
(
∂
ϕ
∂
y
−
∂
ψ
∂
x
)
=
∂
2
ϕ
∂
y
2
−
∂
2
ψ
∂
x
∂
y
,
∂
p
∂
y
=
∂
∂
y
∂
ϕ
∂
y
−
∂
ψ
∂
x
=
∂
2
ϕ
∂
y
2
−
∂
2
ψ
∂
x
∂
y
,
(del p)/(del y)=(del)/(del y)((del phi)/(del y)-(del psi)/(del x))=(del^(2)phi)/(dely^(2))-(del^(2)psi)/(del x del y), \frac{\partial p}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial y} – \frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial y^2} – \frac{\partial^2 \psi}{\partial x \partial y}, ∂ p ∂ y = ∂ ∂ y ( ∂ ϕ ∂ y − ∂ ψ ∂ x ) = ∂ 2 ϕ ∂ y 2 − ∂ 2 ψ ∂ x ∂ y ,
∂
q
∂
x
=
∂
∂
x
(
∂
ϕ
∂
x
+
∂
ψ
∂
y
)
=
∂
2
ϕ
∂
x
2
+
∂
2
ψ
∂
x
∂
y
.
∂
q
∂
x
=
∂
∂
x
∂
ϕ
∂
x
+
∂
ψ
∂
y
=
∂
2
ϕ
∂
x
2
+
∂
2
ψ
∂
x
∂
y
.
(del q)/(del x)=(del)/(del x)((del phi)/(del x)+(del psi)/(del y))=(del^(2)phi)/(delx^(2))+(del^(2)psi)/(del x del y). \frac{\partial q}{\partial x} = \frac{\partial}{\partial x} \left( \frac{\partial \phi}{\partial x} + \frac{\partial \psi}{\partial y} \right) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \psi}{\partial x \partial y}. ∂ q ∂ x = ∂ ∂ x ( ∂ ϕ ∂ x + ∂ ψ ∂ y ) = ∂ 2 ϕ ∂ x 2 + ∂ 2 ψ ∂ x ∂ y .
Now, compute
∂
p
∂
y
+
∂
q
∂
x
∂
p
∂
y
+
∂
q
∂
x
(del p)/(del y)+(del q)/(del x) \frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} ∂ p ∂ y + ∂ q ∂ x :
∂
p
∂
y
+
∂
q
∂
x
=
(
∂
2
ϕ
∂
y
2
−
∂
2
ψ
∂
x
∂
y
)
+
(
∂
2
ϕ
∂
x
2
+
∂
2
ψ
∂
x
∂
y
)
.
∂
p
∂
y
+
∂
q
∂
x
=
∂
2
ϕ
∂
y
2
−
∂
2
ψ
∂
x
∂
y
+
∂
2
ϕ
∂
x
2
+
∂
2
ψ
∂
x
∂
y
.
(del p)/(del y)+(del q)/(del x)=((del^(2)phi)/(dely^(2))-(del^(2)psi)/(del x del y))+((del^(2)phi)/(delx^(2))+(del^(2)psi)/(del x del y)). \frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} = \left( \frac{\partial^2 \phi}{\partial y^2} – \frac{\partial^2 \psi}{\partial x \partial y} \right) + \left( \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \psi}{\partial x \partial y} \right). ∂ p ∂ y + ∂ q ∂ x = ( ∂ 2 ϕ ∂ y 2 − ∂ 2 ψ ∂ x ∂ y ) + ( ∂ 2 ϕ ∂ x 2 + ∂ 2 ψ ∂ x ∂ y ) .
Simplifying:
∂
p
∂
y
+
∂
q
∂
x
=
∂
2
ϕ
∂
y
2
+
∂
2
ϕ
∂
x
2
.
∂
p
∂
y
+
∂
q
∂
x
=
∂
2
ϕ
∂
y
2
+
∂
2
ϕ
∂
x
2
.
(del p)/(del y)+(del q)/(del x)=(del^(2)phi)/(dely^(2))+(del^(2)phi)/(delx^(2)). \frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} = \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial x^2}. ∂ p ∂ y + ∂ q ∂ x = ∂ 2 ϕ ∂ y 2 + ∂ 2 ϕ ∂ x 2 .
Since
ϕ
ϕ
phi \phi ϕ satisfies Laplace’s equation (
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
(del^(2)phi)/(delx^(2))+(del^(2)phi)/(dely^(2))=0 \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 ∂ 2 ϕ ∂ x 2 + ∂ 2 ϕ ∂ y 2 = 0 ), we have:
∂
p
∂
y
+
∂
q
∂
x
=
0.
∂
p
∂
y
+
∂
q
∂
x
=
0.
(del p)/(del y)+(del q)/(del x)=0. \frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} = 0. ∂ p ∂ y + ∂ q ∂ x = 0.
Thus, we have shown that:
∂
p
∂
y
=
−
∂
q
∂
x
.
∂
p
∂
y
=
−
∂
q
∂
x
.
(del p)/(del y)=-(del q)/(del x). \frac{\partial p}{\partial y} = -\frac{\partial q}{\partial x}. ∂ p ∂ y = − ∂ q ∂ x .
Step 2: Continuity of
p
x
,
p
y
,
q
x
,
q
y
p
x
,
p
y
,
q
x
,
q
y
p_(x),p_(y),q_(x),q_(y) p_x, p_y, q_x, q_y p x , p y , q x , q y
Since
ϕ
ϕ
phi \phi ϕ and
ψ
ψ
psi \psi ψ are harmonic functions (they satisfy Laplace’s equation), their second derivatives are continuous. Therefore, the partial derivatives
p
x
,
p
y
,
q
x
,
q
y
p
x
,
p
y
,
q
x
,
q
y
p_(x),p_(y),q_(x),q_(y) p_x, p_y, q_x, q_y p x , p y , q x , q y are continuous.
Conclusion
From the above calculations, we have shown that:
∂
p
∂
x
=
∂
q
∂
y
,
∂
p
∂
y
=
−
∂
q
∂
x
,
∂
p
∂
x
=
∂
q
∂
y
,
∂
p
∂
y
=
−
∂
q
∂
x
,
(del p)/(del x)=(del q)/(del y),quad(del p)/(del y)=-(del q)/(del x), \frac{\partial p}{\partial x} = \frac{\partial q}{\partial y}, \quad \frac{\partial p}{\partial y} = -\frac{\partial q}{\partial x}, ∂ p ∂ x = ∂ q ∂ y , ∂ p ∂ y = − ∂ q ∂ x ,
and that
p
x
,
p
y
,
q
x
,
q
y
p
x
,
p
y
,
q
x
,
q
y
p_(x),p_(y),q_(x),q_(y) p_x, p_y, q_x, q_y p x , p y , q x , q y are all continuous. These are precisely the Cauchy-Riemann equations, which show that
f
(
z
)
=
p
+
i
q
f
(
z
)
=
p
+
i
q
f(z)=p+iq f(z) = p + iq f ( z ) = p + i q is an analytic function.
Thus,
f
(
z
)
=
p
+
i
q
f
(
z
)
=
p
+
i
q
f(z)=p+iq f(z) = p + iq f ( z ) = p + i q is an
analytic function .
Question:-1(e)
Use the two-phase method to solve the following linear programming problem:
Maximize
z
=
x
1
+
2
x
2
z
=
x
1
+
2
x
2
z=x_(1)+2x_(2) z = x_1 + 2x_2 z = x 1 + 2 x 2
subject to
x
1
−
x
2
≥
3
2
x
1
+
x
2
≤
10
x
1
,
x
2
≥
0
x
1
−
x
2
≥
3
2
x
1
+
x
2
≤
10
x
1
,
x
2
≥
0
{:[x_(1)-x_(2) >= 3],[2x_(1)+x_(2) <= 10],[x_(1)”,”x_(2) >= 0]:} \begin{aligned}
x_1 – x_2 &\geq 3 \\
2x_1 + x_2 &\leq 10 \\
x_1, x_2 &\geq 0
\end{aligned} x 1 − x 2 ≥ 3 2 x 1 + x 2 ≤ 10 x 1 , x 2 ≥ 0
Answer:
Solution Using the Two-Phase Method
We are given the following linear programming problem:
Maximize
z
=
x
1
+
2
x
2
z
=
x
1
+
2
x
2
z=x_(1)+2x_(2) z = x_1 + 2x_2 z = x 1 + 2 x 2
Subject to:
x
1
−
x
2
≥
3
(Constraint 1)
2
x
1
+
x
2
≤
10
(Constraint 2)
x
1
,
x
2
≥
0
x
1
−
x
2
≥
3
(Constraint 1)
2
x
1
+
x
2
≤
10
(Constraint 2)
x
1
,
x
2
≥
0
{:[x_(1)-x_(2) >= 3quad(Constraint 1)],[2x_(1)+x_(2) <= 10quad(Constraint 2)],[x_(1)”,”x_(2) >= 0]:} \begin{aligned}
x_1 – x_2 &\geq 3 \quad \text{(Constraint 1)} \\
2x_1 + x_2 &\leq 10 \quad \text{(Constraint 2)} \\
x_1, x_2 &\geq 0
\end{aligned} x 1 − x 2 ≥ 3 (Constraint 1) 2 x 1 + x 2 ≤ 10 (Constraint 2) x 1 , x 2 ≥ 0
Since the problem has a "≥" constraint, we will use the Two-Phase Method to solve it.
Step 1: Convert Inequalities to Equalities
Constraint 1:
x
1
−
x
2
≥
3
x
1
−
x
2
≥
3
x_(1)-x_(2) >= 3 x_1 – x_2 \geq 3 x 1 − x 2 ≥ 3
Introduce a
surplus variable
s
1
≥
0
s
1
≥
0
s_(1) >= 0 s_1 \geq 0 s 1 ≥ 0 and an
artificial variable
a
1
≥
0
a
1
≥
0
a_(1) >= 0 a_1 \geq 0 a 1 ≥ 0 :
x
1
−
x
2
−
s
1
+
a
1
=
3
x
1
−
x
2
−
s
1
+
a
1
=
3
x_(1)-x_(2)-s_(1)+a_(1)=3 x_1 – x_2 – s_1 + a_1 = 3 x 1 − x 2 − s 1 + a 1 = 3
Constraint 2:
2
x
1
+
x
2
≤
10
2
x
1
+
x
2
≤
10
2x_(1)+x_(2) <= 10 2x_1 + x_2 \leq 10 2 x 1 + x 2 ≤ 10
Introduce a
slack variable
s
2
≥
0
s
2
≥
0
s_(2) >= 0 s_2 \geq 0 s 2 ≥ 0 :
2
x
1
+
x
2
+
s
2
=
10
2
x
1
+
x
2
+
s
2
=
10
2x_(1)+x_(2)+s_(2)=10 2x_1 + x_2 + s_2 = 10 2 x 1 + x 2 + s 2 = 10
Step 2: Phase 1 – Minimize the Sum of Artificial Variables
The
Phase 1 objective is to minimize the sum of artificial variables (here, only
a
1
a
1
a_(1) a_1 a 1 ):
Minimize
w
=
a
1
Minimize
w
=
a
1
“Minimize “w=a_(1) \text{Minimize } w = a_1 Minimize w = a 1
Phase 1 Problem:
Minimize
w
=
a
1
Subject to:
x
1
−
x
2
−
s
1
+
a
1
=
3
2
x
1
+
x
2
+
s
2
=
10
x
1
,
x
2
,
s
1
,
s
2
,
a
1
≥
0
Minimize
w
=
a
1
Subject to:
x
1
−
x
2
−
s
1
+
a
1
=
3
2
x
1
+
x
2
+
s
2
=
10
x
1
,
x
2
,
s
1
,
s
2
,
a
1
≥
0
{:[“Minimize “w=a_(1)],[“Subject to:”],[x_(1)-x_(2)-s_(1)+a_(1)=3],[2x_(1)+x_(2)+s_(2)=10],[x_(1)”,”x_(2)”,”s_(1)”,”s_(2)”,”a_(1) >= 0]:} \begin{aligned}
\text{Minimize } w &= a_1 \\
\text{Subject to:} \\
x_1 – x_2 – s_1 + a_1 &= 3 \\
2x_1 + x_2 + s_2 &= 10 \\
x_1, x_2, s_1, s_2, a_1 &\geq 0
\end{aligned} Minimize w = a 1 Subject to: x 1 − x 2 − s 1 + a 1 = 3 2 x 1 + x 2 + s 2 = 10 x 1 , x 2 , s 1 , s 2 , a 1 ≥ 0
Initial Tableau for Phase 1:
We express
w
w
w w w in terms of non-basic variables:
w
=
a
1
=
3
−
x
1
+
x
2
+
s
1
w
=
a
1
=
3
−
x
1
+
x
2
+
s
1
w=a_(1)=3-x_(1)+x_(2)+s_(1) w = a_1 = 3 – x_1 + x_2 + s_1 w = a 1 = 3 − x 1 + x 2 + s 1
Basis
x
1
x
1
x_(1) x_1 x 1
x
2
x
2
x_(2) x_2 x 2
s
1
s
1
s_(1) s_1 s 1
s
2
s
2
s_(2) s_2 s 2
a
1
a
1
a_(1) a_1 a 1
RHS
a
1
a
1
a_(1) a_1 a 1
1
-1
-1
0
1
3
s
2
s
2
s_(2) s_2 s 2
2
1
0
1
0
10
w
w
w w w
-1
1
1
0
0
-3
Iteration 1:
Entering Variable:
x
1
x
1
x_(1) x_1 x 1 (most negative coefficient in
w
w
w w w -row).
Leaving Variable:
a
1
a
1
a_(1) a_1 a 1 (min ratio test:
3
/
1
=
3
3
/
1
=
3
3//1=3 3/1 = 3 3 / 1 = 3 ).
Pivot on
x
1
x
1
x_(1) x_1 x 1 :
Divide Row 1 by 1:
x
1
−
x
2
−
s
1
+
a
1
=
3
⟹
x
1
=
3
+
x
2
+
s
1
−
a
1
x
1
−
x
2
−
s
1
+
a
1
=
3
⟹
x
1
=
3
+
x
2
+
s
1
−
a
1
x_(1)-x_(2)-s_(1)+a_(1)=3Longrightarrowx_(1)=3+x_(2)+s_(1)-a_(1) x_1 – x_2 – s_1 + a_1 = 3 \implies x_1 = 3 + x_2 + s_1 – a_1 x 1 − x 2 − s 1 + a 1 = 3 ⟹ x 1 = 3 + x 2 + s 1 − a 1
Substitute
x
1
x
1
x_(1) x_1 x 1 into other rows:
Row 2:
2
(
3
+
x
2
+
s
1
−
a
1
)
+
x
2
+
s
2
=
10
⟹
6
+
3
x
2
+
2
s
1
−
2
a
1
+
s
2
=
10
2
(
3
+
x
2
+
s
1
−
a
1
)
+
x
2
+
s
2
=
10
⟹
6
+
3
x
2
+
2
s
1
−
2
a
1
+
s
2
=
10
2(3+x_(2)+s_(1)-a_(1))+x_(2)+s_(2)=10Longrightarrow6+3x_(2)+2s_(1)-2a_(1)+s_(2)=10 2(3 + x_2 + s_1 – a_1) + x_2 + s_2 = 10 \implies 6 + 3x_2 + 2s_1 – 2a_1 + s_2 = 10 2 ( 3 + x 2 + s 1 − a 1 ) + x 2 + s 2 = 10 ⟹ 6 + 3 x 2 + 2 s 1 − 2 a 1 + s 2 = 10
3
x
2
+
2
s
1
+
s
2
−
2
a
1
=
4
3
x
2
+
2
s
1
+
s
2
−
2
a
1
=
4
3x_(2)+2s_(1)+s_(2)-2a_(1)=4 3x_2 + 2s_1 + s_2 – 2a_1 = 4 3 x 2 + 2 s 1 + s 2 − 2 a 1 = 4
w
=
3
−
(
3
+
x
2
+
s
1
−
a
1
)
+
x
2
+
s
1
=
0
+
0
+
0
+
a
1
w
=
3
−
(
3
+
x
2
+
s
1
−
a
1
)
+
x
2
+
s
1
=
0
+
0
+
0
+
a
1
w=3-(3+x_(2)+s_(1)-a_(1))+x_(2)+s_(1)=0+0+0+a_(1) w = 3 – (3 + x_2 + s_1 – a_1) + x_2 + s_1 = 0 + 0 + 0 + a_1 w = 3 − ( 3 + x 2 + s 1 − a 1 ) + x 2 + s 1 = 0 + 0 + 0 + a 1
w
=
a
1
w
=
a
1
w=a_(1) w = a_1 w = a 1
Updated Tableau:
Basis
x
1
x
1
x_(1) x_1 x 1
x
2
x
2
x_(2) x_2 x 2
s
1
s
1
s_(1) s_1 s 1
s
2
s
2
s_(2) s_2 s 2
a
1
a
1
a_(1) a_1 a 1
RHS
x
1
x
1
x_(1) x_1 x 1
1
-1
-1
0
1
3
s
2
s
2
s_(2) s_2 s 2
0
3
2
1
-2
4
w
w
w w w
0
0
0
0
1
0
Optimality Check for Phase 1:
The
w
w
w w w -row has no negative coefficients, and
w
=
0
w
=
0
w=0 w = 0 w = 0 .
Conclusion: A feasible solution exists. Proceed to Phase 2 .
Step 3: Phase 2 – Solve the Original Problem
Remove the artificial variable
a
1
a
1
a_(1) a_1 a 1 and restore the original objective:
Maximize
z
=
x
1
+
2
x
2
Maximize
z
=
x
1
+
2
x
2
“Maximize “z=x_(1)+2x_(2) \text{Maximize } z = x_1 + 2x_2 Maximize z = x 1 + 2 x 2
Initial Tableau for Phase 2:
From Phase 1, the basis is
x
1
x
1
x_(1) x_1 x 1 and
s
2
s
2
s_(2) s_2 s 2 .
Express
z
z
z z z in terms of non-basic variables:
z
=
x
1
+
2
x
2
=
(
3
+
x
2
+
s
1
)
+
2
x
2
=
3
+
3
x
2
+
s
1
z
=
x
1
+
2
x
2
=
(
3
+
x
2
+
s
1
)
+
2
x
2
=
3
+
3
x
2
+
s
1
z=x_(1)+2x_(2)=(3+x_(2)+s_(1))+2x_(2)=3+3x_(2)+s_(1) z = x_1 + 2x_2 = (3 + x_2 + s_1) + 2x_2 = 3 + 3x_2 + s_1 z = x 1 + 2 x 2 = ( 3 + x 2 + s 1 ) + 2 x 2 = 3 + 3 x 2 + s 1
Basis
x
1
x
1
x_(1) x_1 x 1
x
2
x
2
x_(2) x_2 x 2
s
1
s
1
s_(1) s_1 s 1
s
2
s
2
s_(2) s_2 s 2
RHS
x
1
x
1
x_(1) x_1 x 1
1
-1
-1
0
3
s
2
s
2
s_(2) s_2 s 2
0
3
2
1
4
z
z
z z z
0
3
1
0
3
Iteration 1:
Entering Variable:
x
2
x
2
x_(2) x_2 x 2 (most positive coefficient in
z
z
z z z -row).
Leaving Variable:
s
2
s
2
s_(2) s_2 s 2 (min ratio test:
4
/
3
≈
1.33
4
/
3
≈
1.33
4//3~~1.33 4/3 \approx 1.33 4 / 3 ≈ 1.33 ).
Pivot on
x
2
x
2
x_(2) x_2 x 2 :
Divide Row 2 by 3:
x
2
+
2
3
s
1
+
1
3
s
2
=
4
3
x
2
+
2
3
s
1
+
1
3
s
2
=
4
3
x_(2)+(2)/(3)s_(1)+(1)/(3)s_(2)=(4)/(3) x_2 + \frac{2}{3}s_1 + \frac{1}{3}s_2 = \frac{4}{3} x 2 + 2 3 s 1 + 1 3 s 2 = 4 3
Substitute
x
2
x
2
x_(2) x_2 x 2 into other rows:
Row 1:
x
1
−
(
4
3
−
2
3
s
1
−
1
3
s
2
)
−
s
1
=
3
x
1
−
4
3
−
2
3
s
1
−
1
3
s
2
−
s
1
=
3
x_(1)-((4)/(3)-(2)/(3)s_(1)-(1)/(3)s_(2))-s_(1)=3 x_1 – \left( \frac{4}{3} – \frac{2}{3}s_1 – \frac{1}{3}s_2 \right) – s_1 = 3 x 1 − ( 4 3 − 2 3 s 1 − 1 3 s 2 ) − s 1 = 3
x
1
+
1
3
s
1
+
1
3
s
2
=
13
3
x
1
+
1
3
s
1
+
1
3
s
2
=
13
3
x_(1)+(1)/(3)s_(1)+(1)/(3)s_(2)=(13)/(3) x_1 + \frac{1}{3}s_1 + \frac{1}{3}s_2 = \frac{13}{3} x 1 + 1 3 s 1 + 1 3 s 2 = 13 3
z
=
3
+
3
(
4
3
−
2
3
s
1
−
1
3
s
2
)
+
s
1
=
7
−
s
1
−
s
2
z
=
3
+
3
4
3
−
2
3
s
1
−
1
3
s
2
+
s
1
=
7
−
s
1
−
s
2
z=3+3((4)/(3)-(2)/(3)s_(1)-(1)/(3)s_(2))+s_(1)=7-s_(1)-s_(2) z = 3 + 3\left( \frac{4}{3} – \frac{2}{3}s_1 – \frac{1}{3}s_2 \right) + s_1 = 7 – s_1 – s_2 z = 3 + 3 ( 4 3 − 2 3 s 1 − 1 3 s 2 ) + s 1 = 7 − s 1 − s 2
Updated Tableau:
Basis
x
1
x
1
x_(1) x_1 x 1
x
2
x
2
x_(2) x_2 x 2
s
1
s
1
s_(1) s_1 s 1
s
2
s
2
s_(2) s_2 s 2
RHS
x
1
x
1
x_(1) x_1 x 1
1
0
-1/3
1/3
13/3
x
2
x
2
x_(2) x_2 x 2
0
1
2/3
1/3
4/3
z
z
z z z
0
0
-1
-1
7
Optimality Check for Phase 2:
All coefficients in the
z
z
z z z -row are ≤ 0.
Conclusion: The current solution is optimal.
Final Solution
Optimal Values:
x
1
=
13
3
,
x
2
=
4
3
x
1
=
13
3
,
x
2
=
4
3
x_(1)=(13)/(3),quadx_(2)=(4)/(3) x_1 = \frac{13}{3}, \quad x_2 = \frac{4}{3} x 1 = 13 3 , x 2 = 4 3
Maximum
z
z
z z z :
z
=
x
1
+
2
x
2
=
13
3
+
2
⋅
4
3
=
21
3
=
7
z
=
x
1
+
2
x
2
=
13
3
+
2
⋅
4
3
=
21
3
=
7
z=x_(1)+2x_(2)=(13)/(3)+2*(4)/(3)=(21)/(3)=7 z = x_1 + 2x_2 = \frac{13}{3} + 2 \cdot \frac{4}{3} = \frac{21}{3} = 7 z = x 1 + 2 x 2 = 13 3 + 2 ⋅ 4 3 = 21 3 = 7
Verification of Constraints:
x
1
−
x
2
=
13
3
−
4
3
=
3
≥
3
x
1
−
x
2
=
13
3
−
4
3
=
3
≥
3
x_(1)-x_(2)=(13)/(3)-(4)/(3)=3 >= 3 x_1 – x_2 = \frac{13}{3} – \frac{4}{3} = 3 \geq 3 x 1 − x 2 = 13 3 − 4 3 = 3 ≥ 3 ✓
2
x
1
+
x
2
=
2
⋅
13
3
+
4
3
=
30
3
=
10
≤
10
2
x
1
+
x
2
=
2
⋅
13
3
+
4
3
=
30
3
=
10
≤
10
2x_(1)+x_(2)=2*(13)/(3)+(4)/(3)=(30)/(3)=10 <= 10 2x_1 + x_2 = 2 \cdot \frac{13}{3} + \frac{4}{3} = \frac{30}{3} = 10 \leq 10 2 x 1 + x 2 = 2 ⋅ 13 3 + 4 3 = 30 3 = 10 ≤ 10 ✓
Answer:
The optimal solution is
x
1
=
13
3
x
1
=
13
3
x_(1)=(13)/(3) x_1 = \frac{13}{3} x 1 = 13 3 ,
x
2
=
4
3
x
2
=
4
3
x_(2)=(4)/(3) x_2 = \frac{4}{3} x 2 = 4 3 , with
maximum
z
=
7
z
=
7
z=7 z = 7 z = 7 .
Question:-2(a)
Using Cauchy’s general principle of convergence, examine the convergence of the sequence
⟨
f
n
⟩
⟨
f
n
⟩
(:f_(n):) \langle f_n \rangle ⟨ f n ⟩ , where
f
n
=
1
+
1
1
!
+
1
2
!
+
⋯
+
1
n
!
f
n
=
1
+
1
1
!
+
1
2
!
+
⋯
+
1
n
!
f_(n)=1+(1)/(1!)+(1)/(2!)+cdots+(1)/(n!) f_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots +\frac{1}{n!} f n = 1 + 1 1 ! + 1 2 ! + ⋯ + 1 n !
Answer:
Solution Using Cauchy’s General Principle of Convergence
We examine the convergence of the sequence
⟨
f
n
⟩
⟨
f
n
⟩
(:f_(n):) \langle f_n \rangle ⟨ f n ⟩ , where:
f
n
=
1
+
1
1
!
+
1
2
!
+
⋯
+
1
n
!
.
f
n
=
1
+
1
1
!
+
1
2
!
+
⋯
+
1
n
!
.
f_(n)=1+(1)/(1!)+(1)/(2!)+cdots+(1)/(n!). f_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}. f n = 1 + 1 1 ! + 1 2 ! + ⋯ + 1 n ! .
Step 1: Recall Cauchy’s Criterion
A sequence
⟨
f
n
⟩
⟨
f
n
⟩
(:f_(n):) \langle f_n \rangle ⟨ f n ⟩ converges if and only if for every
ϵ
>
0
ϵ
>
0
epsilon > 0 \epsilon > 0 ϵ > 0 , there exists
N
∈
N
N
∈
N
N inN N \in \mathbb{N} N ∈ N such that for all
m
,
n
≥
N
m
,
n
≥
N
m,n >= N m, n \geq N m , n ≥ N ,
|
f
n
−
f
m
|
<
ϵ
.
|
f
n
−
f
m
|
<
ϵ
.
|f_(n)-f_(m)| < epsilon. |f_n – f_m| < \epsilon. | f n − f m | < ϵ .
Step 2: Compute
|
f
n
−
f
m
|
|
f
n
−
f
m
|
|f_(n)-f_(m)| |f_n – f_m| | f n − f m | (Assume
n
>
m
n
>
m
n > m n > m n > m )
|
f
n
−
f
m
|
=
∑
k
=
m
+
1
n
1
k
!
.
|
f
n
−
f
m
|
=
∑
k
=
m
+
1
n
1
k
!
.
|f_(n)-f_(m)|=sum_(k=m+1)^(n)(1)/(k!). |f_n – f_m| = \sum_{k=m+1}^n \frac{1}{k!}. | f n − f m | = ∑ k = m + 1 n 1 k ! .
Step 3: Bound the Difference
We know that for
k
≥
2
k
≥
2
k >= 2 k \geq 2 k ≥ 2 ,
1
k
!
≤
1
2
k
−
1
.
1
k
!
≤
1
2
k
−
1
.
(1)/(k!) <= (1)/(2^(k-1)). \frac{1}{k!} \leq \frac{1}{2^{k-1}}. 1 k ! ≤ 1 2 k − 1 .
This is because
k
!
=
2
⋅
3
⋅
…
⋅
k
≥
2
⋅
2
⋅
…
⋅
2
=
2
k
−
1
k
!
=
2
⋅
3
⋅
…
⋅
k
≥
2
⋅
2
⋅
…
⋅
2
=
2
k
−
1
k!=2*3*dots*k >= 2*2*dots*2=2^(k-1) k! = 2 \cdot 3 \cdot \ldots \cdot k \geq 2 \cdot 2 \cdot \ldots \cdot 2 = 2^{k-1} k ! = 2 ⋅ 3 ⋅ … ⋅ k ≥ 2 ⋅ 2 ⋅ … ⋅ 2 = 2 k − 1 .
Thus,
|
f
n
−
f
m
|
≤
∑
k
=
m
+
1
n
1
2
k
−
1
.
|
f
n
−
f
m
|
≤
∑
k
=
m
+
1
n
1
2
k
−
1
.
|f_(n)-f_(m)| <= sum_(k=m+1)^(n)(1)/(2^(k-1)). |f_n – f_m| \leq \sum_{k=m+1}^n \frac{1}{2^{k-1}}. | f n − f m | ≤ ∑ k = m + 1 n 1 2 k − 1 .
The right-hand side is a partial sum of a geometric series:
∑
k
=
m
+
1
n
1
2
k
−
1
<
∑
k
=
m
+
1
∞
1
2
k
−
1
=
1
/
2
m
1
−
1
/
2
=
1
2
m
−
1
.
∑
k
=
m
+
1
n
1
2
k
−
1
<
∑
k
=
m
+
1
∞
1
2
k
−
1
=
1
/
2
m
1
−
1
/
2
=
1
2
m
−
1
.
sum_(k=m+1)^(n)(1)/(2^(k-1)) < sum_(k=m+1)^(oo)(1)/(2^(k-1))=(1//2^(m))/(1-1//2)=(1)/(2^(m-1)). \sum_{k=m+1}^n \frac{1}{2^{k-1}} < \sum_{k=m+1}^\infty \frac{1}{2^{k-1}} = \frac{1/2^m}{1 – 1/2} = \frac{1}{2^{m-1}}. ∑ k = m + 1 n 1 2 k − 1 < ∑ k = m + 1 ∞ 1 2 k − 1 = 1 / 2 m 1 − 1 / 2 = 1 2 m − 1 .
Step 4: Apply Cauchy’s Criterion
For any
ϵ
>
0
ϵ
>
0
epsilon > 0 \epsilon > 0 ϵ > 0 , choose
N
N
N N N such that:
1
2
N
−
1
<
ϵ
.
1
2
N
−
1
<
ϵ
.
(1)/(2^(N-1)) < epsilon. \frac{1}{2^{N-1}} < \epsilon. 1 2 N − 1 < ϵ .
This holds for
N
>
1
+
log
2
(
1
ϵ
)
N
>
1
+
log
2
1
ϵ
N > 1+log_(2)((1)/(epsilon)) N > 1 + \log_2 \left( \frac{1}{\epsilon} \right) N > 1 + log 2 ( 1 ϵ ) .
Then, for all
m
,
n
≥
N
m
,
n
≥
N
m,n >= N m, n \geq N m , n ≥ N ,
|
f
n
−
f
m
|
<
1
2
m
−
1
≤
1
2
N
−
1
<
ϵ
.
|
f
n
−
f
m
|
<
1
2
m
−
1
≤
1
2
N
−
1
<
ϵ
.
|f_(n)-f_(m)| < (1)/(2^(m-1)) <= (1)/(2^(N-1)) < epsilon. |f_n – f_m| < \frac{1}{2^{m-1}} \leq \frac{1}{2^{N-1}} < \epsilon. | f n − f m | < 1 2 m − 1 ≤ 1 2 N − 1 < ϵ .
Conclusion
Since
⟨
f
n
⟩
⟨
f
n
⟩
(:f_(n):) \langle f_n \rangle ⟨ f n ⟩ satisfies Cauchy’s criterion, it is convergent.
Remark: The limit of this sequence is the famous mathematical constant
e
e
e e e :
lim
n
→
∞
f
n
=
e
.
lim
n
→
∞
f
n
=
e
.
lim_(n rarr oo)f_(n)=e. \lim_{n \to \infty} f_n = e. lim n → ∞ f n = e .
Final Answer
The sequence
⟨
f
n
⟩
⟨
f
n
⟩
(:f_(n):) \langle f_n \rangle ⟨ f n ⟩ converges by Cauchy’s general principle of convergence. Its limit is
e
e
e e e .
Question:-2(b)
Show that every homomorphic image of an abelian group is abelian, but the converse is not necessarily true.
Answer:
Proof: Every Homomorphic Image of an Abelian Group is Abelian
Let
G
G
G G G be an
abelian group (i.e.,
a
b
=
b
a
a
b
=
b
a
ab=ba ab = ba a b = b a for all
a
,
b
∈
G
a
,
b
∈
G
a,b in G a, b \in G a , b ∈ G ), and let
ϕ
:
G
→
H
ϕ
:
G
→
H
phi:G rarr H \phi: G \to H ϕ : G → H be a
group homomorphism . We show that the image
ϕ
(
G
)
ϕ
(
G
)
phi(G) \phi(G) ϕ ( G ) is also abelian.
Take any two elements in
ϕ
(
G
)
ϕ
(
G
)
phi(G) \phi(G) ϕ ( G ) :
Let
x
,
y
∈
ϕ
(
G
)
x
,
y
∈
ϕ
(
G
)
x,y in phi(G) x, y \in \phi(G) x , y ∈ ϕ ( G ) . Then, there exist
a
,
b
∈
G
a
,
b
∈
G
a,b in G a, b \in G a , b ∈ G such that:
x
=
ϕ
(
a
)
,
y
=
ϕ
(
b
)
.
x
=
ϕ
(
a
)
,
y
=
ϕ
(
b
)
.
x=phi(a),quad y=phi(b). x = \phi(a), \quad y = \phi(b). x = ϕ ( a ) , y = ϕ ( b ) .
Compute
x
y
x
y
xy xy x y and
y
x
y
x
yx yx y x :
Since
ϕ
ϕ
phi \phi ϕ is a homomorphism:
x
y
=
ϕ
(
a
)
ϕ
(
b
)
=
ϕ
(
a
b
)
,
x
y
=
ϕ
(
a
)
ϕ
(
b
)
=
ϕ
(
a
b
)
,
xy=phi(a)phi(b)=phi(ab), xy = \phi(a)\phi(b) = \phi(ab), x y = ϕ ( a ) ϕ ( b ) = ϕ ( a b ) ,
y
x
=
ϕ
(
b
)
ϕ
(
a
)
=
ϕ
(
b
a
)
.
y
x
=
ϕ
(
b
)
ϕ
(
a
)
=
ϕ
(
b
a
)
.
yx=phi(b)phi(a)=phi(ba). yx = \phi(b)\phi(a) = \phi(ba). y x = ϕ ( b ) ϕ ( a ) = ϕ ( b a ) .
Use the fact that
G
G
G G G is abelian:
Since
a
b
=
b
a
a
b
=
b
a
ab=ba ab = ba a b = b a in
G
G
G G G , we have:
x
y
=
ϕ
(
a
b
)
=
ϕ
(
b
a
)
=
y
x
.
x
y
=
ϕ
(
a
b
)
=
ϕ
(
b
a
)
=
y
x
.
xy=phi(ab)=phi(ba)=yx. xy = \phi(ab) = \phi(ba) = yx. x y = ϕ ( a b ) = ϕ ( b a ) = y x .
Conclusion:
Thus,
ϕ
(
G
)
ϕ
(
G
)
phi(G) \phi(G) ϕ ( G ) is abelian.
Counterexample: The Converse is Not True
Claim:
If every homomorphic image of a group
G
G
G G G is abelian, it does
not necessarily mean that
G
G
G G G itself is abelian.
Example:
Consider the
quaternion group
Q
8
Q
8
Q_(8) Q_8 Q 8 (the group of quaternions under multiplication):
Q
8
=
{
±
1
,
±
i
,
±
j
,
±
k
}
,
Q
8
=
{
±
1
,
±
i
,
±
j
,
±
k
}
,
Q_(8)={+-1,+-i,+-j,+-k}, Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \}, Q 8 = { ± 1 , ± i , ± j , ± k } ,
where:
i
2
=
j
2
=
k
2
=
−
1
,
i
j
=
k
,
j
k
=
i
,
k
i
=
j
,
and
j
i
=
−
k
,
k
j
=
−
i
,
i
k
=
−
j
.
i
2
=
j
2
=
k
2
=
−
1
,
i
j
=
k
,
j
k
=
i
,
k
i
=
j
,
and
j
i
=
−
k
,
k
j
=
−
i
,
i
k
=
−
j
.
i^(2)=j^(2)=k^(2)=-1,quad ij=k,quad jk=i,quad ki=j,quad”and “ji=-k,quad kj=-i,quad ik=-j. i^2 = j^2 = k^2 = -1, \quad ij = k, \quad jk = i, \quad ki = j, \quad \text{and } ji = -k, \quad kj = -i, \quad ik = -j. i 2 = j 2 = k 2 = − 1 , i j = k , j k = i , k i = j , and j i = − k , k j = − i , i k = − j .
Q
8
Q
8
Q_(8) Q_8 Q 8 is non-abelian (since, e.g.,
i
j
≠
j
i
i
j
≠
j
i
ij!=ji ij \neq ji i j ≠ j i ).
However, its only nontrivial homomorphic images are abelian:
The commutator subgroup of
Q
8
Q
8
Q_(8) Q_8 Q 8 is
{
±
1
}
{
±
1
}
{+-1} \{ \pm 1 \} { ± 1 } , so any homomorphism
ϕ
:
Q
8
→
H
ϕ
:
Q
8
→
H
phi:Q_(8)rarr H \phi: Q_8 \to H ϕ : Q 8 → H must satisfy:
ϕ
(
i
j
)
=
ϕ
(
i
)
ϕ
(
j
)
=
ϕ
(
j
)
ϕ
(
i
)
=
ϕ
(
j
i
)
,
ϕ
(
i
j
)
=
ϕ
(
i
)
ϕ
(
j
)
=
ϕ
(
j
)
ϕ
(
i
)
=
ϕ
(
j
i
)
,
phi(ij)=phi(i)phi(j)=phi(j)phi(i)=phi(ji), \phi(ij) = \phi(i)\phi(j) = \phi(j)\phi(i) = \phi(ji), ϕ ( i j ) = ϕ ( i ) ϕ ( j ) = ϕ ( j ) ϕ ( i ) = ϕ ( j i ) , which implies
ϕ
(
k
)
=
ϕ
(
−
k
)
ϕ
(
k
)
=
ϕ
(
−
k
)
phi(k)=phi(-k) \phi(k) = \phi(-k) ϕ ( k ) = ϕ ( − k ) . Thus,
ϕ
(
Q
8
)
ϕ
(
Q
8
)
phi(Q_(8)) \phi(Q_8) ϕ ( Q 8 ) is either:
Trivial (
{
e
}
{
e
}
{e} \{ e \} { e } ), or
A cyclic group of order 2 or 4 (all of which are abelian).
Conclusion:
Even though every homomorphic image of
Q
8
Q
8
Q_(8) Q_8 Q 8 is abelian,
Q
8
Q
8
Q_(8) Q_8 Q 8 itself is
not abelian .
Final Answer
Every homomorphic image of an abelian group is abelian.
The converse is false: A non-abelian group (like
Q
8
Q
8
Q_(8) Q_8 Q 8 ) can have all its homomorphic images abelian.
Thus, the property of being abelian is preserved under homomorphisms, but it is not necessarily inherited from homomorphic images.
Question:-2(c)
Find the function which is analytic inside and on the circle
C
:
z
=
e
i
θ
,
0
≤
θ
≤
2
π
C
:
z
=
e
i
θ
,
0
≤
θ
≤
2
π
C:z=e^(i theta),0 <= theta <= 2pi C: z = e^{i\theta}, 0 \leq \theta \leq 2\pi C : z = e i θ , 0 ≤ θ ≤ 2 π and has the value
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
a
4
−
2
a
2
cos
2
θ
+
1
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
a
4
−
2
a
2
cos
2
θ
+
1
((a^(2)-1)cos theta+i(a^(2)+1)sin theta)/(a^(4)-2a^(2)cos 2theta+1) \frac{(a^2 – 1) \cos \theta + i (a^2 + 1) \sin \theta}{a^4 – 2a^2 \cos 2\theta + 1} ( a 2 − 1 ) cos θ + i ( a 2 + 1 ) sin θ a 4 − 2 a 2 cos 2 θ + 1 on the circumference of
C
C
C C C , where
a
2
>
1
a
2
>
1
a^(2) > 1 a^2 > 1 a 2 > 1 .
Answer:
Step 1: Express
f
(
e
i
θ
)
f
(
e
i
θ
)
f(e^(i theta)) f(e^{i\theta}) f ( e i θ ) in Terms of
z
z
z z z and
z
―
z
¯
bar(z) \overline{z} z ―
On the unit circle
C
C
C C C ,
z
=
e
i
θ
z
=
e
i
θ
z=e^(i theta) z = e^{i\theta} z = e i θ , so
z
―
=
e
−
i
θ
z
¯
=
e
−
i
θ
bar(z)=e^(-i theta) \overline{z} = e^{-i\theta} z ― = e − i θ . We can express
cos
θ
cos
θ
cos theta \cos \theta cos θ and
sin
θ
sin
θ
sin theta \sin \theta sin θ as:
cos
θ
=
z
+
z
―
2
,
sin
θ
=
z
−
z
―
2
i
.
cos
θ
=
z
+
z
¯
2
,
sin
θ
=
z
−
z
¯
2
i
.
cos theta=(z+ bar(z))/(2),quad sin theta=(z- bar(z))/(2i). \cos \theta = \frac{z + \overline{z}}{2}, \quad \sin \theta = \frac{z – \overline{z}}{2i}. cos θ = z + z ― 2 , sin θ = z − z ― 2 i .
Also,
cos
2
θ
=
z
2
+
z
―
2
2
cos
2
θ
=
z
2
+
z
¯
2
2
cos 2theta=(z^(2)+ bar(z)^(2))/(2) \cos 2\theta = \frac{z^2 + \overline{z}^2}{2} cos 2 θ = z 2 + z ― 2 2 .
Substitute these into
f
(
e
i
θ
)
f
(
e
i
θ
)
f(e^(i theta)) f(e^{i\theta}) f ( e i θ ) :
f
(
z
)
=
(
a
2
−
1
)
(
z
+
z
―
2
)
+
i
(
a
2
+
1
)
(
z
−
z
―
2
i
)
a
4
−
2
a
2
(
z
2
+
z
―
2
2
)
+
1
.
f
(
z
)
=
(
a
2
−
1
)
z
+
z
¯
2
+
i
(
a
2
+
1
)
z
−
z
¯
2
i
a
4
−
2
a
2
z
2
+
z
¯
2
2
+
1
.
f(z)=((a^(2)-1)((z+ bar(z))/(2))+i(a^(2)+1)((z- bar(z))/(2i)))/(a^(4)-2a^(2)((z^(2)+ bar(z)^(2))/(2))+1). f(z) = \frac{(a^2 – 1)\left( \frac{z + \overline{z}}{2} \right) + i (a^2 + 1)\left( \frac{z – \overline{z}}{2i} \right)}{a^4 – 2a^2 \left( \frac{z^2 + \overline{z}^2}{2} \right) + 1}. f ( z ) = ( a 2 − 1 ) ( z + z ― 2 ) + i ( a 2 + 1 ) ( z − z ― 2 i ) a 4 − 2 a 2 ( z 2 + z ― 2 2 ) + 1 .
Simplify the numerator and denominator:
Numerator
=
(
a
2
−
1
)
(
z
+
z
―
)
+
(
a
2
+
1
)
(
z
−
z
―
)
2
=
(
a
2
z
+
a
2
z
―
−
z
−
z
―
+
a
2
z
−
a
2
z
―
+
z
−
z
―
)
2
=
2
a
2
z
−
2
z
―
2
=
a
2
z
−
z
―
.
Numerator
=
(
a
2
−
1
)
(
z
+
z
¯
)
+
(
a
2
+
1
)
(
z
−
z
¯
)
2
=
(
a
2
z
+
a
2
z
¯
−
z
−
z
¯
+
a
2
z
−
a
2
z
¯
+
z
−
z
¯
)
2
=
2
a
2
z
−
2
z
¯
2
=
a
2
z
−
z
¯
.
“Numerator”=((a^(2)-1)(z+ bar(z))+(a^(2)+1)(z- bar(z)))/(2)=((a^(2)z+a^(2) bar(z)-z- bar(z)+a^(2)z-a^(2) bar(z)+z- bar(z)))/(2)=(2a^(2)z-2 bar(z))/(2)=a^(2)z- bar(z). \text{Numerator} = \frac{(a^2 – 1)(z + \overline{z}) + (a^2 + 1)(z – \overline{z})}{2} = \frac{(a^2 z + a^2 \overline{z} – z – \overline{z} + a^2 z – a^2 \overline{z} + z – \overline{z})}{2} = \frac{2a^2 z – 2 \overline{z}}{2} = a^2 z – \overline{z}. Numerator = ( a 2 − 1 ) ( z + z ― ) + ( a 2 + 1 ) ( z − z ― ) 2 = ( a 2 z + a 2 z ― − z − z ― + a 2 z − a 2 z ― + z − z ― ) 2 = 2 a 2 z − 2 z ― 2 = a 2 z − z ― .
Denominator
=
a
4
−
a
2
(
z
2
+
z
―
2
)
+
1.
Denominator
=
a
4
−
a
2
(
z
2
+
z
¯
2
)
+
1.
“Denominator”=a^(4)-a^(2)(z^(2)+ bar(z)^(2))+1. \text{Denominator} = a^4 – a^2 (z^2 + \overline{z}^2) + 1. Denominator = a 4 − a 2 ( z 2 + z ― 2 ) + 1.
Thus:
f
(
z
)
=
a
2
z
−
z
―
a
4
−
a
2
(
z
2
+
z
―
2
)
+
1
.
f
(
z
)
=
a
2
z
−
z
¯
a
4
−
a
2
(
z
2
+
z
¯
2
)
+
1
.
f(z)=(a^(2)z- bar(z))/(a^(4)-a^(2)(z^(2)+ bar(z)^(2))+1). f(z) = \frac{a^2 z – \overline{z}}{a^4 – a^2 (z^2 + \overline{z}^2) + 1}. f ( z ) = a 2 z − z ― a 4 − a 2 ( z 2 + z ― 2 ) + 1 .
Step 2: Eliminate
z
―
z
¯
bar(z) \overline{z} z ― Using
z
z
―
=
1
z
z
¯
=
1
z bar(z)=1 z \overline{z} = 1 z z ― = 1
On the unit circle,
z
z
―
=
1
z
z
¯
=
1
z bar(z)=1 z \overline{z} = 1 z z ― = 1 , so
z
―
=
1
z
z
¯
=
1
z
bar(z)=(1)/(z) \overline{z} = \frac{1}{z} z ― = 1 z . Substitute
z
―
=
1
z
z
¯
=
1
z
bar(z)=(1)/(z) \overline{z} = \frac{1}{z} z ― = 1 z :
f
(
z
)
=
a
2
z
−
1
z
a
4
−
a
2
(
z
2
+
1
z
2
)
+
1
.
f
(
z
)
=
a
2
z
−
1
z
a
4
−
a
2
z
2
+
1
z
2
+
1
.
f(z)=(a^(2)z-(1)/(z))/(a^(4)-a^(2)(z^(2)+(1)/(z^(2)))+1). f(z) = \frac{a^2 z – \frac{1}{z}}{a^4 – a^2 \left( z^2 + \frac{1}{z^2} \right) + 1}. f ( z ) = a 2 z − 1 z a 4 − a 2 ( z 2 + 1 z 2 ) + 1 .
Multiply numerator and denominator by
z
2
z
2
z^(2) z^2 z 2 :
f
(
z
)
=
a
2
z
3
−
z
a
4
z
2
−
a
2
(
z
4
+
1
)
+
z
2
=
z
(
a
2
z
2
−
1
)
−
a
2
z
4
+
(
a
4
+
1
)
z
2
−
a
2
.
f
(
z
)
=
a
2
z
3
−
z
a
4
z
2
−
a
2
(
z
4
+
1
)
+
z
2
=
z
(
a
2
z
2
−
1
)
−
a
2
z
4
+
(
a
4
+
1
)
z
2
−
a
2
.
f(z)=(a^(2)z^(3)-z)/(a^(4)z^(2)-a^(2)(z^(4)+1)+z^(2))=(z(a^(2)z^(2)-1))/(-a^(2)z^(4)+(a^(4)+1)z^(2)-a^(2)). f(z) = \frac{a^2 z^3 – z}{a^4 z^2 – a^2 (z^4 + 1) + z^2} = \frac{z (a^2 z^2 – 1)}{-a^2 z^4 + (a^4 + 1) z^2 – a^2}. f ( z ) = a 2 z 3 − z a 4 z 2 − a 2 ( z 4 + 1 ) + z 2 = z ( a 2 z 2 − 1 ) − a 2 z 4 + ( a 4 + 1 ) z 2 − a 2 .
Factor the denominator:
−
a
2
z
4
+
(
a
4
+
1
)
z
2
−
a
2
=
−
a
2
(
z
4
−
(
a
2
+
1
a
2
)
z
2
+
1
)
.
−
a
2
z
4
+
(
a
4
+
1
)
z
2
−
a
2
=
−
a
2
(
z
4
−
(
a
2
+
1
a
2
)
z
2
+
1
)
.
-a^(2)z^(4)+(a^(4)+1)z^(2)-a^(2)=-a^(2)(z^(4)-(a^(2)+(1)/(a^(2)))z^(2)+1). -a^2 z^4 + (a^4 + 1) z^2 – a^2 = -a^2 (z^4 – (a^2 + \frac{1}{a^2}) z^2 + 1). − a 2 z 4 + ( a 4 + 1 ) z 2 − a 2 = − a 2 ( z 4 − ( a 2 + 1 a 2 ) z 2 + 1 ) .
Let
w
=
z
2
w
=
z
2
w=z^(2) w = z^2 w = z 2 , then the quadratic in
w
w
w w w is:
w
2
−
(
a
2
+
1
a
2
)
w
+
1
=
0.
w
2
−
a
2
+
1
a
2
w
+
1
=
0.
w^(2)-(a^(2)+(1)/(a^(2)))w+1=0. w^2 – \left( a^2 + \frac{1}{a^2} \right) w + 1 = 0. w 2 − ( a 2 + 1 a 2 ) w + 1 = 0.
The roots are:
w
=
a
2
+
1
a
2
±
(
a
2
+
1
a
2
)
2
−
4
2
=
a
2
+
1
a
2
±
a
4
+
2
+
1
a
4
−
4
2
=
a
2
+
1
a
2
±
(
a
2
−
1
a
2
)
2
.
w
=
a
2
+
1
a
2
±
a
2
+
1
a
2
2
−
4
2
=
a
2
+
1
a
2
±
a
4
+
2
+
1
a
4
−
4
2
=
a
2
+
1
a
2
±
a
2
−
1
a
2
2
.
w=(a^(2)+(1)/(a^(2))+-sqrt((a^(2)+(1)/(a^(2)))^(2)-4))/(2)=(a^(2)+(1)/(a^(2))+-sqrt(a^(4)+2+(1)/(a^(4))-4))/(2)=(a^(2)+(1)/(a^(2))+-(a^(2)-(1)/(a^(2))))/(2). w = \frac{a^2 + \frac{1}{a^2} \pm \sqrt{ \left( a^2 + \frac{1}{a^2} \right)^2 – 4 }}{2} = \frac{a^2 + \frac{1}{a^2} \pm \sqrt{a^4 + 2 + \frac{1}{a^4} – 4}}{2} = \frac{a^2 + \frac{1}{a^2} \pm \left( a^2 – \frac{1}{a^2} \right)}{2}. w = a 2 + 1 a 2 ± ( a 2 + 1 a 2 ) 2 − 4 2 = a 2 + 1 a 2 ± a 4 + 2 + 1 a 4 − 4 2 = a 2 + 1 a 2 ± ( a 2 − 1 a 2 ) 2 .
Thus:
w
1
=
a
2
,
w
2
=
1
a
2
.
w
1
=
a
2
,
w
2
=
1
a
2
.
w_(1)=a^(2),quadw_(2)=(1)/(a^(2)). w_1 = a^2, \quad w_2 = \frac{1}{a^2}. w 1 = a 2 , w 2 = 1 a 2 .
So the denominator factors as:
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2))). -a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2}). − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) .
Thus:
f
(
z
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
f
(
z
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
f(z)=(z(a^(2)z^(2)-1))/(-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2))))=(z(a^(2)z^(2)-1))/(-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2)))). f(z) = \frac{z (a^2 z^2 – 1)}{-a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2})} = \frac{z (a^2 z^2 – 1)}{-a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2})}. f ( z ) = z ( a 2 z 2 − 1 ) − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) = z ( a 2 z 2 − 1 ) − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) .
Simplify:
f
(
z
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
f
(
z
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
z
(
a
2
z
2
−
1
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
.
f(z)=(z(a^(2)z^(2)-1))/(-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2))))=(z(a^(2)z^(2)-1))/(-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2)))). f(z) = \frac{z (a^2 z^2 – 1)}{-a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2})} = \frac{z (a^2 z^2 – 1)}{-a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2})}. f ( z ) = z ( a 2 z 2 − 1 ) − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) = z ( a 2 z 2 − 1 ) − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) .
Notice that
a
2
z
2
−
1
=
a
2
(
z
2
−
1
a
2
)
a
2
z
2
−
1
=
a
2
(
z
2
−
1
a
2
)
a^(2)z^(2)-1=a^(2)(z^(2)-(1)/(a^(2))) a^2 z^2 – 1 = a^2 (z^2 – \frac{1}{a^2}) a 2 z 2 − 1 = a 2 ( z 2 − 1 a 2 ) , so:
f
(
z
)
=
z
⋅
a
2
(
z
2
−
1
a
2
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
−
z
z
2
−
a
2
.
f
(
z
)
=
z
⋅
a
2
(
z
2
−
1
a
2
)
−
a
2
(
z
2
−
a
2
)
(
z
2
−
1
a
2
)
=
−
z
z
2
−
a
2
.
f(z)=(z*a^(2)(z^(2)-(1)/(a^(2))))/(-a^(2)(z^(2)-a^(2))(z^(2)-(1)/(a^(2))))=(-z)/(z^(2)-a^(2)). f(z) = \frac{z \cdot a^2 (z^2 – \frac{1}{a^2})}{-a^2 (z^2 – a^2)(z^2 – \frac{1}{a^2})} = \frac{-z}{z^2 – a^2}. f ( z ) = z ⋅ a 2 ( z 2 − 1 a 2 ) − a 2 ( z 2 − a 2 ) ( z 2 − 1 a 2 ) = − z z 2 − a 2 .
Thus:
f
(
z
)
=
z
a
2
−
z
2
.
f
(
z
)
=
z
a
2
−
z
2
.
f(z)=(z)/(a^(2)-z^(2)). f(z) = \frac{z}{a^2 – z^2}. f ( z ) = z a 2 − z 2 .
Step 3: Verify Analyticity Inside
C
C
C C C
The function
f
(
z
)
=
z
a
2
−
z
2
f
(
z
)
=
z
a
2
−
z
2
f(z)=(z)/(a^(2)-z^(2)) f(z) = \frac{z}{a^2 – z^2} f ( z ) = z a 2 − z 2 has singularities at
z
=
±
a
z
=
±
a
z=+-a z = \pm a z = ± a . Since
a
2
>
1
a
2
>
1
a^(2) > 1 a^2 > 1 a 2 > 1 ,
|
a
|
>
1
|
a
|
>
1
|a| > 1 |a| > 1 | a | > 1 , so
z
=
±
a
z
=
±
a
z=+-a z = \pm a z = ± a lie
outside the unit circle
C
C
C C C . Therefore,
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) is analytic inside and on
C
C
C C C .
Step 4: Check Boundary Values
On
C
C
C C C ,
z
=
e
i
θ
z
=
e
i
θ
z=e^(i theta) z = e^{i\theta} z = e i θ , so:
f
(
e
i
θ
)
=
e
i
θ
a
2
−
e
i
2
θ
.
f
(
e
i
θ
)
=
e
i
θ
a
2
−
e
i
2
θ
.
f(e^(i theta))=(e^(i theta))/(a^(2)-e^(i2theta)). f(e^{i\theta}) = \frac{e^{i\theta}}{a^2 – e^{i 2\theta}}. f ( e i θ ) = e i θ a 2 − e i 2 θ .
We can verify that this matches the given expression:
e
i
θ
a
2
−
e
i
2
θ
=
cos
θ
+
i
sin
θ
a
2
−
cos
2
θ
−
i
sin
2
θ
.
e
i
θ
a
2
−
e
i
2
θ
=
cos
θ
+
i
sin
θ
a
2
−
cos
2
θ
−
i
sin
2
θ
.
(e^(i theta))/(a^(2)-e^(i2theta))=(cos theta+i sin theta)/(a^(2)-cos 2theta-i sin 2theta). \frac{e^{i\theta}}{a^2 – e^{i 2\theta}} = \frac{ \cos \theta + i \sin \theta }{ a^2 – \cos 2\theta – i \sin 2\theta }. e i θ a 2 − e i 2 θ = cos θ + i sin θ a 2 − cos 2 θ − i sin 2 θ .
Multiply numerator and denominator by the conjugate of the denominator:
=
(
cos
θ
+
i
sin
θ
)
(
a
2
−
cos
2
θ
+
i
sin
2
θ
)
(
a
2
−
cos
2
θ
)
2
+
sin
2
2
θ
.
=
(
cos
θ
+
i
sin
θ
)
(
a
2
−
cos
2
θ
+
i
sin
2
θ
)
(
a
2
−
cos
2
θ
)
2
+
sin
2
2
θ
.
=((cos theta+i sin theta)(a^(2)-cos 2theta+i sin 2theta))/((a^(2)-cos 2theta)^(2)+sin^(2)2theta). = \frac{ (\cos \theta + i \sin \theta)(a^2 – \cos 2\theta + i \sin 2\theta) }{ (a^2 – \cos 2\theta)^2 + \sin^2 2\theta }. = ( cos θ + i sin θ ) ( a 2 − cos 2 θ + i sin 2 θ ) ( a 2 − cos 2 θ ) 2 + sin 2 2 θ .
The denominator simplifies to:
a
4
−
2
a
2
cos
2
θ
+
cos
2
2
θ
+
sin
2
2
θ
=
a
4
−
2
a
2
cos
2
θ
+
1.
a
4
−
2
a
2
cos
2
θ
+
cos
2
2
θ
+
sin
2
2
θ
=
a
4
−
2
a
2
cos
2
θ
+
1.
a^(4)-2a^(2)cos 2theta+cos^(2)2theta+sin^(2)2theta=a^(4)-2a^(2)cos 2theta+1. a^4 – 2 a^2 \cos 2\theta + \cos^2 2\theta + \sin^2 2\theta = a^4 – 2 a^2 \cos 2\theta + 1. a 4 − 2 a 2 cos 2 θ + cos 2 2 θ + sin 2 2 θ = a 4 − 2 a 2 cos 2 θ + 1.
The numerator is:
(
cos
θ
)
(
a
2
−
cos
2
θ
)
−
sin
θ
sin
2
θ
+
i
[
sin
θ
(
a
2
−
cos
2
θ
)
+
cos
θ
sin
2
θ
]
.
(
cos
θ
)
(
a
2
−
cos
2
θ
)
−
sin
θ
sin
2
θ
+
i
sin
θ
(
a
2
−
cos
2
θ
)
+
cos
θ
sin
2
θ
.
(cos theta)(a^(2)-cos 2theta)-sin theta sin 2theta+i[sin theta(a^(2)-cos 2theta)+cos theta sin 2theta]. (\cos \theta)(a^2 – \cos 2\theta) – \sin \theta \sin 2\theta + i \left[ \sin \theta (a^2 – \cos 2\theta) + \cos \theta \sin 2\theta \right]. ( cos θ ) ( a 2 − cos 2 θ ) − sin θ sin 2 θ + i [ sin θ ( a 2 − cos 2 θ ) + cos θ sin 2 θ ] .
Using trigonometric identities:
cos
θ
cos
2
θ
+
sin
θ
sin
2
θ
=
cos
θ
,
sin
θ
cos
2
θ
−
cos
θ
sin
2
θ
=
−
sin
θ
,
cos
θ
cos
2
θ
+
sin
θ
sin
2
θ
=
cos
θ
,
sin
θ
cos
2
θ
−
cos
θ
sin
2
θ
=
−
sin
θ
,
cos theta cos 2theta+sin theta sin 2theta=cos theta,quad sin theta cos 2theta-cos theta sin 2theta=-sin theta, \cos \theta \cos 2\theta + \sin \theta \sin 2\theta = \cos \theta, \quad \sin \theta \cos 2\theta – \cos \theta \sin 2\theta = -\sin \theta, cos θ cos 2 θ + sin θ sin 2 θ = cos θ , sin θ cos 2 θ − cos θ sin 2 θ = − sin θ ,
we get:
Numerator
=
(
a
2
cos
θ
−
cos
θ
)
+
i
(
a
2
sin
θ
+
sin
θ
)
=
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
.
Numerator
=
(
a
2
cos
θ
−
cos
θ
)
+
i
(
a
2
sin
θ
+
sin
θ
)
=
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
.
“Numerator”=(a^(2)cos theta-cos theta)+i(a^(2)sin theta+sin theta)=(a^(2)-1)cos theta+i(a^(2)+1)sin theta. \text{Numerator} = (a^2 \cos \theta – \cos \theta) + i (a^2 \sin \theta + \sin \theta) = (a^2 – 1) \cos \theta + i (a^2 + 1) \sin \theta. Numerator = ( a 2 cos θ − cos θ ) + i ( a 2 sin θ + sin θ ) = ( a 2 − 1 ) cos θ + i ( a 2 + 1 ) sin θ .
Thus:
f
(
e
i
θ
)
=
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
a
4
−
2
a
2
cos
2
θ
+
1
,
f
(
e
i
θ
)
=
(
a
2
−
1
)
cos
θ
+
i
(
a
2
+
1
)
sin
θ
a
4
−
2
a
2
cos
2
θ
+
1
,
f(e^(i theta))=((a^(2)-1)cos theta+i(a^(2)+1)sin theta)/(a^(4)-2a^(2)cos 2theta+1), f(e^{i\theta}) = \frac{ (a^2 – 1) \cos \theta + i (a^2 + 1) \sin \theta }{ a^4 – 2 a^2 \cos 2\theta + 1 }, f ( e i θ ) = ( a 2 − 1 ) cos θ + i ( a 2 + 1 ) sin θ a 4 − 2 a 2 cos 2 θ + 1 ,
which matches the given boundary condition.
Final Answer
The desired analytic function is:
f
(
z
)
=
z
a
2
−
z
2
.
f
(
z
)
=
z
a
2
−
z
2
.
f(z)=(z)/(a^(2)-z^(2)). f(z) = \boxed{ \frac{z}{a^2 – z^2} }. f ( z ) = z a 2 − z 2 .
Question:-3(a)
Locate the poles and their order for the function
f
(
z
)
=
1
z
(
sin
π
z
)
(
z
+
1
2
)
f
(
z
)
=
1
z
(
sin
π
z
)
z
+
1
2
f(z)=(1)/(z(sin pi z)(z+(1)/(2))) f(z) = \frac{1}{z (\sin \pi z) \left( z + \frac{1}{2} \right)} f ( z ) = 1 z ( sin π z ) ( z + 1 2 ) . Also, find the residue of
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) at these poles.
Answer:
Step 1: Identify the Poles of
f
(
z
)
f
(
z
)
f(z) f(z) f ( z )
The function is given by:
f
(
z
)
=
1
z
sin
(
π
z
)
(
z
+
1
2
)
.
f
(
z
)
=
1
z
sin
(
π
z
)
z
+
1
2
.
f(z)=(1)/(z sin(pi z)(z+(1)/(2))). f(z) = \frac{1}{z \sin(\pi z) \left( z + \frac{1}{2} \right)}. f ( z ) = 1 z sin ( π z ) ( z + 1 2 ) .
The denominator is zero when any of the following conditions are met:
z
=
0
z
=
0
z=0 z = 0 z = 0 ,
sin
(
π
z
)
=
0
sin
(
π
z
)
=
0
sin(pi z)=0 \sin(\pi z) = 0 sin ( π z ) = 0 ,
z
+
1
2
=
0
z
+
1
2
=
0
z+(1)/(2)=0 z + \frac{1}{2} = 0 z + 1 2 = 0 .
Thus, the poles are located at:
z
=
0
z
=
0
z=0 z = 0 z = 0 ,
z
=
n
z
=
n
z=n z = n z = n (where
n
∈
Z
n
∈
Z
n inZ n \in \mathbb{Z} n ∈ Z and
n
≠
0
n
≠
0
n!=0 n \neq 0 n ≠ 0 ),
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 .
However, we must check the order of each pole.
Step 2: Determine the Order of Each Pole
Pole at
z
=
0
z
=
0
z=0 z = 0 z = 0 :
The term
z
z
z z z in the denominator gives a simple pole (order 1).
sin
(
π
z
)
sin
(
π
z
)
sin(pi z) \sin(\pi z) sin ( π z ) has a simple zero at
z
=
0
z
=
0
z=0 z = 0 z = 0 because
sin
(
π
z
)
≈
π
z
sin
(
π
z
)
≈
π
z
sin(pi z)~~pi z \sin(\pi z) \approx \pi z sin ( π z ) ≈ π z near
z
=
0
z
=
0
z=0 z = 0 z = 0 .
Thus, the denominator behaves like
z
⋅
π
z
⋅
(
1
2
)
=
π
2
z
2
z
⋅
π
z
⋅
1
2
=
π
2
z
2
z*pi z*((1)/(2))=(pi)/(2)z^(2) z \cdot \pi z \cdot \left( \frac{1}{2} \right) = \frac{\pi}{2} z^2 z ⋅ π z ⋅ ( 1 2 ) = π 2 z 2 near
z
=
0
z
=
0
z=0 z = 0 z = 0 .
Therefore,
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) has a pole of order 2 at
z
=
0
z
=
0
z=0 z = 0 z = 0 .
Poles at
z
=
n
z
=
n
z=n z = n z = n (where
n
∈
Z
∖
{
0
}
n
∈
Z
∖
{
0
}
n inZ\\{0} n \in \mathbb{Z} \setminus \{0\} n ∈ Z ∖ { 0 } ):
sin
(
π
z
)
sin
(
π
z
)
sin(pi z) \sin(\pi z) sin ( π z ) has simple zeros at
z
=
n
z
=
n
z=n z = n z = n for all integers
n
≠
0
n
≠
0
n!=0 n \neq 0 n ≠ 0 .
The other terms
z
z
z z z and
z
+
1
2
z
+
1
2
z+(1)/(2) z + \frac{1}{2} z + 1 2 are non-zero at
z
=
n
z
=
n
z=n z = n z = n (for
n
≠
0
,
−
1
2
n
≠
0
,
−
1
2
n!=0,-(1)/(2) n \neq 0, -\frac{1}{2} n ≠ 0 , − 1 2 ).
Thus,
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) has simple poles at
z
=
n
z
=
n
z=n z = n z = n (for
n
∈
Z
∖
{
0
,
−
1
2
}
n
∈
Z
∖
{
0
,
−
1
2
}
n inZ\\{0,-(1)/(2)} n \in \mathbb{Z} \setminus \{0, -\frac{1}{2}\} n ∈ Z ∖ { 0 , − 1 2 } ).
Pole at
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 :
The term
z
+
1
2
z
+
1
2
z+(1)/(2) z + \frac{1}{2} z + 1 2 gives a simple pole (order 1).
sin
(
π
z
)
sin
(
π
z
)
sin(pi z) \sin(\pi z) sin ( π z ) is non-zero at
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 since
sin
(
−
π
2
)
=
−
1
≠
0
sin
−
π
2
=
−
1
≠
0
sin(-(pi)/(2))=-1!=0 \sin\left(-\frac{\pi}{2}\right) = -1 \neq 0 sin ( − π 2 ) = − 1 ≠ 0 .
z
z
z z z is also non-zero (
z
=
−
1
2
≠
0
z
=
−
1
2
≠
0
z=-(1)/(2)!=0 z = -\frac{1}{2} \neq 0 z = − 1 2 ≠ 0 ).
Thus,
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) has a simple pole at
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 .
Step 3: Compute the Residues at Each Pole
The residue of
f
(
z
)
f
(
z
)
f(z) f(z) f ( z ) at a pole
z
=
a
z
=
a
z=a z = a z = a of order
m
m
m m m is given by:
Res
(
f
,
a
)
=
1
(
m
−
1
)
!
lim
z
→
a
d
m
−
1
d
z
m
−
1
(
(
z
−
a
)
m
f
(
z
)
)
.
Res
(
f
,
a
)
=
1
(
m
−
1
)
!
lim
z
→
a
d
m
−
1
d
z
m
−
1
(
z
−
a
)
m
f
(
z
)
.
“Res”(f,a)=(1)/((m-1)!)lim_(z rarr a)(d^(m-1))/(dz^(m-1))((z-a)^(m)f(z)). \text{Res}(f, a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left( (z-a)^m f(z) \right). Res ( f , a ) = 1 ( m − 1 ) ! lim z → a d m − 1 d z m − 1 ( ( z − a ) m f ( z ) ) .
Residue at
z
=
0
z
=
0
z=0 z = 0 z = 0 (order 2):
Compute:
Res
(
f
,
0
)
=
lim
z
→
0
d
d
z
(
z
2
f
(
z
)
)
=
lim
z
→
0
d
d
z
(
1
sin
(
π
z
)
(
z
+
1
2
)
)
.
Res
(
f
,
0
)
=
lim
z
→
0
d
d
z
z
2
f
(
z
)
=
lim
z
→
0
d
d
z
1
sin
(
π
z
)
z
+
1
2
.
“Res”(f,0)=lim_(z rarr0)(d)/(dz)(z^(2)f(z))=lim_(z rarr0)(d)/(dz)((1)/(sin(pi z)(z+(1)/(2)))). \text{Res}(f, 0) = \lim_{z \to 0} \frac{d}{dz} \left( z^2 f(z) \right) = \lim_{z \to 0} \frac{d}{dz} \left( \frac{1}{\sin(\pi z) \left( z + \frac{1}{2} \right)} \right). Res ( f , 0 ) = lim z → 0 d d z ( z 2 f ( z ) ) = lim z → 0 d d z ( 1 sin ( π z ) ( z + 1 2 ) ) .
Let
g
(
z
)
=
1
sin
(
π
z
)
(
z
+
1
2
)
g
(
z
)
=
1
sin
(
π
z
)
z
+
1
2
g(z)=(1)/(sin(pi z)(z+(1)/(2))) g(z) = \frac{1}{\sin(\pi z) \left( z + \frac{1}{2} \right)} g ( z ) = 1 sin ( π z ) ( z + 1 2 ) . Then:
g
′
(
z
)
=
−
π
cos
(
π
z
)
(
z
+
1
2
)
+
sin
(
π
z
)
sin
2
(
π
z
)
(
z
+
1
2
)
2
.
g
′
(
z
)
=
−
π
cos
(
π
z
)
z
+
1
2
+
sin
(
π
z
)
sin
2
(
π
z
)
z
+
1
2
2
.
g^(‘)(z)=-(pi cos(pi z)(z+(1)/(2))+sin(pi z))/(sin^(2)(pi z)(z+(1)/(2))^(2)). g'(z) = -\frac{\pi \cos(\pi z) \left( z + \frac{1}{2} \right) + \sin(\pi z)}{\sin^2(\pi z) \left( z + \frac{1}{2} \right)^2}. g ′ ( z ) = − π cos ( π z ) ( z + 1 2 ) + sin ( π z ) sin 2 ( π z ) ( z + 1 2 ) 2 .
Evaluate at
z
=
0
z
=
0
z=0 z = 0 z = 0 :
g
′
(
0
)
=
−
π
⋅
1
⋅
1
2
+
0
0
⋅
(
1
2
)
2
(undefined)
.
g
′
(
0
)
=
−
π
⋅
1
⋅
1
2
+
0
0
⋅
1
2
2
(undefined)
.
g^(‘)(0)=-(pi*1*(1)/(2)+0)/(0*((1)/(2))^(2))quad(undefined). g'(0) = -\frac{\pi \cdot 1 \cdot \frac{1}{2} + 0}{0 \cdot \left( \frac{1}{2} \right)^2} \quad \text{(undefined)}. g ′ ( 0 ) = − π ⋅ 1 ⋅ 1 2 + 0 0 ⋅ ( 1 2 ) 2 (undefined) .
Instead, use the Laurent series expansion or recognize that:
sin
(
π
z
)
≈
π
z
−
π
3
z
3
6
,
1
sin
(
π
z
)
≈
1
π
z
+
π
z
6
.
sin
(
π
z
)
≈
π
z
−
π
3
z
3
6
,
1
sin
(
π
z
)
≈
1
π
z
+
π
z
6
.
sin(pi z)~~pi z-(pi^(3)z^(3))/(6),quad(1)/(sin(pi z))~~(1)/(pi z)+(pi z)/(6). \sin(\pi z) \approx \pi z – \frac{\pi^3 z^3}{6}, \quad \frac{1}{\sin(\pi z)} \approx \frac{1}{\pi z} + \frac{\pi z}{6}. sin ( π z ) ≈ π z − π 3 z 3 6 , 1 sin ( π z ) ≈ 1 π z + π z 6 .
Thus:
f
(
z
)
≈
1
z
(
1
π
z
+
π
z
6
)
1
1
2
=
2
π
z
2
+
π
3
.
f
(
z
)
≈
1
z
1
π
z
+
π
z
6
1
1
2
=
2
π
z
2
+
π
3
.
f(z)~~(1)/(z)((1)/(pi z)+(pi z)/(6))(1)/((1)/(2))=(2)/(piz^(2))+(pi)/(3). f(z) \approx \frac{1}{z} \left( \frac{1}{\pi z} + \frac{\pi z}{6} \right) \frac{1}{\frac{1}{2}} = \frac{2}{\pi z^2} + \frac{\pi}{3}. f ( z ) ≈ 1 z ( 1 π z + π z 6 ) 1 1 2 = 2 π z 2 + π 3 .
The coefficient of
1
z
1
z
(1)/(z) \frac{1}{z} 1 z is
0
0
0 0 0 , so:
Res
(
f
,
0
)
=
0.
Res
(
f
,
0
)
=
0.
“Res”(f,0)=0. \text{Res}(f, 0) = 0. Res ( f , 0 ) = 0.
Residues at
z
=
n
z
=
n
z=n z = n z = n (simple poles,
n
∈
Z
∖
{
0
,
−
1
2
}
n
∈
Z
∖
{
0
,
−
1
2
}
n inZ\\{0,-(1)/(2)} n \in \mathbb{Z} \setminus \{0, -\frac{1}{2}\} n ∈ Z ∖ { 0 , − 1 2 } ):
For a simple pole, the residue is:
Res
(
f
,
n
)
=
lim
z
→
n
(
z
−
n
)
f
(
z
)
=
1
n
⋅
π
cos
(
π
n
)
⋅
(
n
+
1
2
)
.
Res
(
f
,
n
)
=
lim
z
→
n
(
z
−
n
)
f
(
z
)
=
1
n
⋅
π
cos
(
π
n
)
⋅
n
+
1
2
.
“Res”(f,n)=lim_(z rarr n)(z-n)f(z)=(1)/(n*pi cos(pi n)*(n+(1)/(2))). \text{Res}(f, n) = \lim_{z \to n} (z – n) f(z) = \frac{1}{n \cdot \pi \cos(\pi n) \cdot \left( n + \frac{1}{2} \right)}. Res ( f , n ) = lim z → n ( z − n ) f ( z ) = 1 n ⋅ π cos ( π n ) ⋅ ( n + 1 2 ) .
Since
cos
(
π
n
)
=
(
−
1
)
n
cos
(
π
n
)
=
(
−
1
)
n
cos(pi n)=(-1)^(n) \cos(\pi n) = (-1)^n cos ( π n ) = ( − 1 ) n , this simplifies to:
Res
(
f
,
n
)
=
(
−
1
)
n
n
(
n
+
1
2
)
π
.
Res
(
f
,
n
)
=
(
−
1
)
n
n
n
+
1
2
π
.
“Res”(f,n)=((-1)^(n))/(n(n+(1)/(2))pi). \text{Res}(f, n) = \frac{(-1)^n}{n \left( n + \frac{1}{2} \right) \pi}. Res ( f , n ) = ( − 1 ) n n ( n + 1 2 ) π .
Residue at
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 (simple pole):
Compute:
Res
(
f
,
−
1
2
)
=
lim
z
→
−
1
2
(
z
+
1
2
)
f
(
z
)
=
1
−
1
2
⋅
sin
(
−
π
2
)
=
1
−
1
2
⋅
(
−
1
)
=
2.
Res
f
,
−
1
2
=
lim
z
→
−
1
2
z
+
1
2
f
(
z
)
=
1
−
1
2
⋅
sin
−
π
2
=
1
−
1
2
⋅
(
−
1
)
=
2.
“Res”(f,-(1)/(2))=lim_(z rarr-(1)/(2))(z+(1)/(2))f(z)=(1)/(-(1)/(2)*sin(-(pi)/(2)))=(1)/(-(1)/(2)*(-1))=2. \text{Res}\left( f, -\frac{1}{2} \right) = \lim_{z \to -\frac{1}{2}} \left( z + \frac{1}{2} \right) f(z) = \frac{1}{-\frac{1}{2} \cdot \sin\left( -\frac{\pi}{2} \right)} = \frac{1}{-\frac{1}{2} \cdot (-1)} = 2. Res ( f , − 1 2 ) = lim z → − 1 2 ( z + 1 2 ) f ( z ) = 1 − 1 2 ⋅ sin ( − π 2 ) = 1 − 1 2 ⋅ ( − 1 ) = 2.
Final Answer
Poles and their orders:
z
=
0
z
=
0
z=0 z = 0 z = 0 : Pole of order 2 .
z
=
n
z
=
n
z=n z = n z = n (for
n
∈
Z
∖
{
0
,
−
1
2
}
n
∈
Z
∖
{
0
,
−
1
2
}
n inZ\\{0,-(1)/(2)} n \in \mathbb{Z} \setminus \{0, -\frac{1}{2}\} n ∈ Z ∖ { 0 , − 1 2 } ): Simple poles (order 1 ).
z
=
−
1
2
z
=
−
1
2
z=-(1)/(2) z = -\frac{1}{2} z = − 1 2 : Simple pole (order 1 ).
Residues:
Res
(
f
,
0
)
=
0
Res
(
f
,
0
)
=
0
“Res”(f,0)=0 \text{Res}(f, 0) = \boxed{0} Res ( f , 0 ) = 0 .
Res
(
f
,
n
)
=
(
−
1
)
n
π
n
(
n
+
1
2
)
Res
(
f
,
n
)
=
(
−
1
)
n
π
n
n
+
1
2
“Res”(f,n)=((-1)^(n))/(pi n(n+(1)/(2))) \text{Res}(f, n) = \boxed{ \frac{(-1)^n}{\pi n \left( n + \frac{1}{2} \right)} } Res ( f , n ) = ( − 1 ) n π n ( n + 1 2 ) (for
n
∈
Z
∖
{
0
,
−
1
2
}
n
∈
Z
∖
{
0
,
−
1
2
}
n inZ\\{0,-(1)/(2)} n \in \mathbb{Z} \setminus \{0, -\frac{1}{2}\} n ∈ Z ∖ { 0 , − 1 2 } ).
Res
(
f
,
−
1
2
)
=
2
Res
f
,
−
1
2
=
2
“Res”(f,-(1)/(2))=2 \text{Res}\left( f, -\frac{1}{2} \right) = \boxed{2} Res ( f , − 1 2 ) = 2 .
Question:-3(b)
Answer:
Step 1: Find the General Term
U
n
(
x
)
U
n
(
x
)
U_(n)(x) U_n(x) U n ( x )
The sum of the first
n
n
n n n terms is given by:
S
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
.
S
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
.
S_(n)(x)=(1)/(2n^(2))log(1+n^(4)x^(2)). S_n(x) = \frac{1}{2n^2} \log(1 + n^4 x^2). S n ( x ) = 1 2 n 2 log ( 1 + n 4 x 2 ) .
The general term
U
n
(
x
)
U
n
(
x
)
U_(n)(x) U_n(x) U n ( x ) can be found as:
U
n
(
x
)
=
S
n
(
x
)
−
S
n
−
1
(
x
)
,
U
n
(
x
)
=
S
n
(
x
)
−
S
n
−
1
(
x
)
,
U_(n)(x)=S_(n)(x)-S_(n-1)(x), U_n(x) = S_n(x) – S_{n-1}(x), U n ( x ) = S n ( x ) − S n − 1 ( x ) ,
with
S
0
(
x
)
=
0
S
0
(
x
)
=
0
S_(0)(x)=0 S_0(x) = 0 S 0 ( x ) = 0 . Thus,
U
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
−
1
2
(
n
−
1
)
2
log
(
1
+
(
n
−
1
)
4
x
2
)
.
U
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
−
1
2
(
n
−
1
)
2
log
(
1
+
(
n
−
1
)
4
x
2
)
.
U_(n)(x)=(1)/(2n^(2))log(1+n^(4)x^(2))-(1)/(2(n-1)^(2))log(1+(n-1)^(4)x^(2)). U_n(x) = \frac{1}{2n^2} \log(1 + n^4 x^2) – \frac{1}{2(n-1)^2} \log(1 + (n-1)^4 x^2). U n ( x ) = 1 2 n 2 log ( 1 + n 4 x 2 ) − 1 2 ( n − 1 ) 2 log ( 1 + ( n − 1 ) 4 x 2 ) .
Step 2: Check Pointwise Convergence of
∑
U
n
(
x
)
∑
U
n
(
x
)
sumU_(n)(x) \sum U_n(x) ∑ U n ( x )
We need to verify that
∑
n
=
1
∞
U
n
(
x
)
∑
n
=
1
∞
U
n
(
x
)
sum_(n=1)^(oo)U_(n)(x) \sum_{n=1}^{\infty} U_n(x) ∑ n = 1 ∞ U n ( x ) converges for all
x
∈
[
0
,
1
]
x
∈
[
0
,
1
]
x in[0,1] x \in [0,1] x ∈ [ 0 , 1 ] . Observe that:
S
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
.
S
n
(
x
)
=
1
2
n
2
log
(
1
+
n
4
x
2
)
.
S_(n)(x)=(1)/(2n^(2))log(1+n^(4)x^(2)). S_n(x) = \frac{1}{2n^2} \log(1 + n^4 x^2). S n ( x ) = 1 2 n 2 log ( 1 + n 4 x 2 ) .
For
x
=
0
x
=
0
x=0 x = 0 x = 0 ,
S
n
(
0
)
=
0
S
n
(
0
)
=
0
S_(n)(0)=0 S_n(0) = 0 S n ( 0 ) = 0 , so the series converges to
0
0
0 0 0 .
For
x
>
0
x
>
0
x > 0 x > 0 x > 0 , as
n
→
∞
n
→
∞
n rarr oo n \to \infty n → ∞ ,
n
4
x
2
→
∞
n
4
x
2
→
∞
n^(4)x^(2)rarr oo n^4 x^2 \to \infty n 4 x 2 → ∞ , and:
log
(
1
+
n
4
x
2
)
≈
log
(
n
4
x
2
)
=
4
log
n
+
2
log
x
.
log
(
1
+
n
4
x
2
)
≈
log
(
n
4
x
2
)
=
4
log
n
+
2
log
x
.
log(1+n^(4)x^(2))~~log(n^(4)x^(2))=4log n+2log x. \log(1 + n^4 x^2) \approx \log(n^4 x^2) = 4 \log n + 2 \log x. log ( 1 + n 4 x 2 ) ≈ log ( n 4 x 2 ) = 4 log n + 2 log x .
Thus,
S
n
(
x
)
≈
4
log
n
+
2
log
x
2
n
2
→
0
as
n
→
∞
.
S
n
(
x
)
≈
4
log
n
+
2
log
x
2
n
2
→
0
as
n
→
∞
.
S_(n)(x)~~(4log n+2log x)/(2n^(2))rarr0quad”as “n rarr oo. S_n(x) \approx \frac{4 \log n + 2 \log x}{2n^2} \to 0 \quad \text{as } n \to \infty. S n ( x ) ≈ 4 log n + 2 log x 2 n 2 → 0 as n → ∞ .
The series
∑
U
n
(
x
)
∑
U
n
(
x
)
sumU_(n)(x) \sum U_n(x) ∑ U n ( x ) converges pointwise to
S
(
x
)
=
lim
n
→
∞
S
n
(
x
)
=
0
S
(
x
)
=
lim
n
→
∞
S
n
(
x
)
=
0
S(x)=lim_(n rarr oo)S_(n)(x)=0 S(x) = \lim_{n \to \infty} S_n(x) = 0 S ( x ) = lim n → ∞ S n ( x ) = 0 .
Step 3: Differentiate
S
n
(
x
)
S
n
(
x
)
S_(n)(x) S_n(x) S n ( x ) to Find
U
n
′
(
x
)
U
n
′
(
x
)
U_(n)^(‘)(x) U_n'(x) U n ′ ( x )
Compute the derivative of
S
n
(
x
)
S
n
(
x
)
S_(n)(x) S_n(x) S n ( x ) :
S
n
′
(
x
)
=
1
2
n
2
⋅
2
n
4
x
1
+
n
4
x
2
=
n
2
x
1
+
n
4
x
2
.
S
n
′
(
x
)
=
1
2
n
2
⋅
2
n
4
x
1
+
n
4
x
2
=
n
2
x
1
+
n
4
x
2
.
S_(n)^(‘)(x)=(1)/(2n^(2))*(2n^(4)x)/(1+n^(4)x^(2))=(n^(2)x)/(1+n^(4)x^(2)). S_n'(x) = \frac{1}{2n^2} \cdot \frac{2 n^4 x}{1 + n^4 x^2} = \frac{n^2 x}{1 + n^4 x^2}. S n ′ ( x ) = 1 2 n 2 ⋅ 2 n 4 x 1 + n 4 x 2 = n 2 x 1 + n 4 x 2 .
The general term for the differentiated series is:
U
n
′
(
x
)
=
S
n
′
(
x
)
−
S
n
−
1
′
(
x
)
=
n
2
x
1
+
n
4
x
2
−
(
n
−
1
)
2
x
1
+
(
n
−
1
)
4
x
2
.
U
n
′
(
x
)
=
S
n
′
(
x
)
−
S
n
−
1
′
(
x
)
=
n
2
x
1
+
n
4
x
2
−
(
n
−
1
)
2
x
1
+
(
n
−
1
)
4
x
2
.
U_(n)^(‘)(x)=S_(n)^(‘)(x)-S_(n-1)^(‘)(x)=(n^(2)x)/(1+n^(4)x^(2))-((n-1)^(2)x)/(1+(n-1)^(4)x^(2)). U_n'(x) = S_n'(x) – S_{n-1}'(x) = \frac{n^2 x}{1 + n^4 x^2} – \frac{(n-1)^2 x}{1 + (n-1)^4 x^2}. U n ′ ( x ) = S n ′ ( x ) − S n − 1 ′ ( x ) = n 2 x 1 + n 4 x 2 − ( n − 1 ) 2 x 1 + ( n − 1 ) 4 x 2 .
We show that
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) does
not converge uniformly on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] . Consider the partial sums:
∑
k
=
1
n
U
k
′
(
x
)
=
S
n
′
(
x
)
=
n
2
x
1
+
n
4
x
2
.
∑
k
=
1
n
U
k
′
(
x
)
=
S
n
′
(
x
)
=
n
2
x
1
+
n
4
x
2
.
sum_(k=1)^(n)U_(k)^(‘)(x)=S_(n)^(‘)(x)=(n^(2)x)/(1+n^(4)x^(2)). \sum_{k=1}^n U_k'(x) = S_n'(x) = \frac{n^2 x}{1 + n^4 x^2}. ∑ k = 1 n U k ′ ( x ) = S n ′ ( x ) = n 2 x 1 + n 4 x 2 .
The limit function is:
S
′
(
x
)
=
lim
n
→
∞
S
n
′
(
x
)
=
0
for all
x
∈
[
0
,
1
]
.
S
′
(
x
)
=
lim
n
→
∞
S
n
′
(
x
)
=
0
for all
x
∈
[
0
,
1
]
.
S^(‘)(x)=lim_(n rarr oo)S_(n)^(‘)(x)=0quad”for all “x in[0,1]. S'(x) = \lim_{n \to \infty} S_n'(x) = 0 \quad \text{for all } x \in [0,1]. S ′ ( x ) = lim n → ∞ S n ′ ( x ) = 0 for all x ∈ [ 0 , 1 ] .
However, the convergence is not uniform because:
sup
x
∈
[
0
,
1
]
|
S
n
′
(
x
)
−
S
′
(
x
)
|
=
sup
x
∈
[
0
,
1
]
|
n
2
x
1
+
n
4
x
2
|
.
sup
x
∈
[
0
,
1
]
|
S
n
′
(
x
)
−
S
′
(
x
)
|
=
sup
x
∈
[
0
,
1
]
n
2
x
1
+
n
4
x
2
.
s u p_(x in[0,1])|S_(n)^(‘)(x)-S^(‘)(x)|=s u p_(x in[0,1])|(n^(2)x)/(1+n^(4)x^(2))|. \sup_{x \in [0,1]} |S_n'(x) – S'(x)| = \sup_{x \in [0,1]} \left| \frac{n^2 x}{1 + n^4 x^2} \right|. sup x ∈ [ 0 , 1 ] | S n ′ ( x ) − S ′ ( x ) | = sup x ∈ [ 0 , 1 ] | n 2 x 1 + n 4 x 2 | .
The maximum of
n
2
x
1
+
n
4
x
2
n
2
x
1
+
n
4
x
2
(n^(2)x)/(1+n^(4)x^(2)) \frac{n^2 x}{1 + n^4 x^2} n 2 x 1 + n 4 x 2 occurs at
x
=
1
n
2
x
=
1
n
2
x=(1)/(n^(2)) x = \frac{1}{n^2} x = 1 n 2 :
n
2
x
1
+
n
4
x
2
|
x
=
1
n
2
=
n
2
⋅
1
n
2
1
+
n
4
⋅
1
n
4
=
1
2
.
n
2
x
1
+
n
4
x
2
x
=
1
n
2
=
n
2
⋅
1
n
2
1
+
n
4
⋅
1
n
4
=
1
2
.
(n^(2)x)/(1+n^(4)x^(2))|_(x=(1)/(n^(2)))=(n^(2)*(1)/(n^(2)))/(1+n^(4)*(1)/(n^(4)))=(1)/(2). \left. \frac{n^2 x}{1 + n^4 x^2} \right|_{x = \frac{1}{n^2}} = \frac{n^2 \cdot \frac{1}{n^2}}{1 + n^4 \cdot \frac{1}{n^4}} = \frac{1}{2}. n 2 x 1 + n 4 x 2 | x = 1 n 2 = n 2 ⋅ 1 n 2 1 + n 4 ⋅ 1 n 4 = 1 2 .
Thus,
sup
x
∈
[
0
,
1
]
|
S
n
′
(
x
)
|
=
1
2
↛
0
as
n
→
∞
.
sup
x
∈
[
0
,
1
]
|
S
n
′
(
x
)
|
=
1
2
↛
0
as
n
→
∞
.
s u p_(x in[0,1])|S_(n)^(‘)(x)|=(1)/(2)↛0quad”as “n rarr oo. \sup_{x \in [0,1]} |S_n'(x)| = \frac{1}{2} \not\to 0 \quad \text{as } n \to \infty. sup x ∈ [ 0 , 1 ] | S n ′ ( x ) | = 1 2 ↛ 0 as n → ∞ .
This shows that
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) does
not converge uniformly on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] .
Step 5: Justify Term-by-Term Differentiation
Despite the non-uniform convergence of
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) , we can still differentiate the series term-by-term because:
∑
U
n
(
x
)
∑
U
n
(
x
)
sumU_(n)(x) \sum U_n(x) ∑ U n ( x ) converges pointwise to
S
(
x
)
=
0
S
(
x
)
=
0
S(x)=0 S(x) = 0 S ( x ) = 0 .
Each
U
n
(
x
)
U
n
(
x
)
U_(n)(x) U_n(x) U n ( x ) is continuously differentiable on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] .
The differentiated series
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) converges pointwise to
S
′
(
x
)
=
0
S
′
(
x
)
=
0
S^(‘)(x)=0 S'(x) = 0 S ′ ( x ) = 0 .
By the term-by-term differentiation theorem , if:
The original series
∑
U
n
(
x
)
∑
U
n
(
x
)
sumU_(n)(x) \sum U_n(x) ∑ U n ( x ) converges pointwise,
The differentiated series
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) converges uniformly on compact subsets (which it does, since
S
n
′
(
x
)
→
0
S
n
′
(
x
)
→
0
S_(n)^(‘)(x)rarr0 S_n'(x) \to 0 S n ′ ( x ) → 0 pointwise),
then the series can be differentiated term-by-term. Here, the key is that the non-uniformity of
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) at
x
=
0
x
=
0
x=0 x = 0 x = 0 does not violate the conditions for term-by-term differentiation because the convergence is uniform on any interval
[
δ
,
1
]
[
δ
,
1
]
[delta,1] [\delta, 1] [ δ , 1 ] for
δ
>
0
δ
>
0
delta > 0 \delta > 0 δ > 0 .
Final Answer
The series
∑
n
=
1
∞
U
n
(
x
)
∑
n
=
1
∞
U
n
(
x
)
sum_(n=1)^(oo)U_(n)(x) \sum_{n=1}^{\infty} U_n(x) ∑ n = 1 ∞ U n ( x ) can be differentiated term-by-term on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] , yielding:
d
d
x
(
∑
n
=
1
∞
U
n
(
x
)
)
=
∑
n
=
1
∞
U
n
′
(
x
)
,
d
d
x
∑
n
=
1
∞
U
n
(
x
)
=
∑
n
=
1
∞
U
n
′
(
x
)
,
(d)/(dx)(sum_(n=1)^(oo)U_(n)(x))=sum_(n=1)^(oo)U_(n)^(‘)(x), \frac{d}{dx} \left( \sum_{n=1}^{\infty} U_n(x) \right) = \sum_{n=1}^{\infty} U_n'(x), d d x ( ∑ n = 1 ∞ U n ( x ) ) = ∑ n = 1 ∞ U n ′ ( x ) ,
even though
∑
U
n
′
(
x
)
∑
U
n
′
(
x
)
sumU_(n)^(‘)(x) \sum U_n'(x) ∑ U n ′ ( x ) does
not converge uniformly on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] .
Question:-3(c)
Using the duality principle, solve the following linear programming problem:
Minimize
z
=
4
x
1
+
3
x
2
+
x
3
z
=
4
x
1
+
3
x
2
+
x
3
z=4x_(1)+3x_(2)+x_(3) z = 4x_1 + 3x_2 + x_3 z = 4 x 1 + 3 x 2 + x 3
subject to
x
1
+
2
x
2
+
4
x
3
≥
12
3
x
1
+
2
x
2
+
x
3
≥
8
x
1
,
x
2
,
x
3
≥
0
x
1
+
2
x
2
+
4
x
3
≥
12
3
x
1
+
2
x
2
+
x
3
≥
8
x
1
,
x
2
,
x
3
≥
0
{:[x_(1)+2x_(2)+4x_(3) >= 12],[3x_(1)+2x_(2)+x_(3) >= 8],[x_(1)”,”x_(2)”,”x_(3) >= 0]:} \begin{aligned}
x_1 + 2x_2 + 4x_3 &\geq 12 \\
3x_1 + 2x_2 + x_3 &\geq 8 \\
x_1, x_2, x_3 &\geq 0
\end{aligned} x 1 + 2 x 2 + 4 x 3 ≥ 12 3 x 1 + 2 x 2 + x 3 ≥ 8 x 1 , x 2 , x 3 ≥ 0
Answer:
Maximize
z
=
−
4
x
1
−
3
x
2
−
x
3
+
0
S
1
+
0
S
2
z
=
−
4
x
1
−
3
x
2
−
x
3
+
0
S
1
+
0
S
2
z=-4x_(1)-3x_(2)-x_(3)+0S_(1)+0S_(2) z = -4x_1 – 3x_2 – x_3 + 0S_1 + 0S_2 z = − 4 x 1 − 3 x 2 − x 3 + 0 S 1 + 0 S 2
subject to
−
x
1
−
2
x
2
−
4
x
3
+
S
1
=
−
12
−
3
x
1
−
2
x
2
−
x
3
+
S
2
=
−
8
x
1
,
x
2
,
x
3
,
S
1
,
S
2
≥
0
−
x
1
−
2
x
2
−
4
x
3
+
S
1
=
−
12
−
3
x
1
−
2
x
2
−
x
3
+
S
2
=
−
8
x
1
,
x
2
,
x
3
,
S
1
,
S
2
≥
0
{:[-x_(1)-2x_(2)-4x_(3)+S_(1)=-12],[-3x_(1)-2x_(2)-x_(3)+S_(2)=-8],[x_(1)”,”x_(2)”,”x_(3)”,”S_(1)”,”S_(2) >= 0]:} \begin{aligned}
-x_1 – 2x_2 – 4x_3 + S_1 &= -12 \\
-3x_1 – 2x_2 – x_3 + S_2 &= -8 \\
x_1, x_2, x_3, S_1, S_2 &\geq 0
\end{aligned} − x 1 − 2 x 2 − 4 x 3 + S 1 = − 12 − 3 x 1 − 2 x 2 − x 3 + S 2 = − 8 x 1 , x 2 , x 3 , S 1 , S 2 ≥ 0
Iteration-1
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
S
1
0
−
12
−
1
−
2
−
4
1
0
−
12
S
2
0
−
8
−
3
−
2
−
1
0
1
−
8
z
=
0
Z
j
0
0
0
0
0
0
0
C
j
−
Z
j
−
4
−
3
−
1
0
0
0
Ratio
=
C
j
−
Z
j
S
1
,
j
4
1.5
0.25
↑
−
−
and
S
1
,
j
<
0
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
S
1
0
−
12
−
1
−
2
−
4
1
0
−
12
S
2
0
−
8
−
3
−
2
−
1
0
1
−
8
z
=
0
Z
j
0
0
0
0
0
0
0
C
j
−
Z
j
−
4
−
3
−
1
0
0
0
Ratio
=
C
j
−
Z
j
S
1
,
j
4
1.5
0.25
↑
−
−
and
S
1
,
j
<
0
{:[“B”,C_(B),X_(B),x_(1),x_(2),x_(3),S_(1),S_(2),”RHS”],[S_(1),0,-12,-1,-2,-4,1,0,-12],[S_(2),0,-8,-3,-2,-1,0,1,-8],[z=0,Z_(j),0,0,0,0,0,0,0],[,C_(j)-Z_(j),-4,-3,-1,0,0,0],[“Ratio”=(C_(j)-Z_(j))/(S_(1,j)),,,4,1.5,0.25 uarr,-,-],[“and “S_(1,j) < 0,,,,,,,]:} \begin{array}{c|cccccc|c}
\text{B} & C_B & X_B & x_1 & x_2 & x_3 & S_1 & S_2 & \text{RHS} \\
\hline
S_1 & 0 & -12 & -1 & -2 & -4 & 1 & 0 & -12 \\
S_2 & 0 & -8 & -3 & -2 & -1 & 0 & 1 & -8 \\
\hline
z = 0 & Z_j & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& C_j – Z_j & -4 & -3 & -1 & 0 & 0 & 0 \\
\hline
\text{Ratio} = \frac{C_j – Z_j}{S_{1,j}} & & & 4 & 1.5 & 0.25\uparrow & – & – \\
\text{and } S_{1,j} < 0 & & & & & & & \\
\end{array} B C B X B x 1 x 2 x 3 S 1 S 2 RHS S 1 0 − 12 − 1 − 2 − 4 1 0 − 12 S 2 0 − 8 − 3 − 2 − 1 0 1 − 8 z = 0 Z j 0 0 0 0 0 0 0 C j − Z j − 4 − 3 − 1 0 0 0 Ratio = C j − Z j S 1 , j 4 1.5 0.25 ↑ − − and S 1 , j < 0
Minimum negative
X
B
X
B
X_(B) X_B X B is -12 and its row index is 1. So, the leaving basis variable is
S
1
S
1
S_(1) S_1 S 1 .
Iteration-2
Minimum positive ratio is 0.25 and its column index is 3. So, the entering variable is
x
3
x
3
x_(3) x_3 x 3 .
The pivot element is -4.
Entering =
x
3
x
3
x_(3) x_3 x 3 , Departing =
S
1
S
1
S_(1) S_1 S 1 , Key Element = -4
R
1
(
new
)
=
R
1
(
old
)
÷
(
−
4
)
R
1
(
new
)
=
R
1
(
old
)
÷
(
−
4
)
R_(1)(“new”)=R_(1)(“old”)-:(-4) R_1(\text{new}) = R_1(\text{old}) \div (-4) R 1 ( new ) = R 1 ( old ) ÷ ( − 4 )
R
1
(
old
)
−
12
−
1
−
2
−
4
1
0
−
12
R
1
(
new
)
3
1
4
1
2
1
−
1
4
0
3
R
1
(
old
)
−
12
−
1
−
2
−
4
1
0
−
12
R
1
(
new
)
3
1
4
1
2
1
−
1
4
0
3
{:[R_(1)(“old”),-12,-1,-2,-4,1,0,-12],[R_(1)(“new”),3,(1)/(4),(1)/(2),1,-(1)/(4),0,3]:} \begin{array}{c|cccccc|c}
R_1(\text{old}) & -12 & -1 & -2 & -4 & 1 & 0 & -12 \\
R_1(\text{new}) & 3 & \frac{1}{4} & \frac{1}{2} & 1 & -\frac{1}{4} & 0 & 3 \\
\end{array} R 1 ( old ) − 12 − 1 − 2 − 4 1 0 − 12 R 1 ( new ) 3 1 4 1 2 1 − 1 4 0 3
R
2
(
new
)
=
R
2
(
old
)
+
R
1
(
new
)
R
2
(
new
)
=
R
2
(
old
)
+
R
1
(
new
)
R_(2)(“new”)=R_(2)(“old”)+R_(1)(“new”) R_2(\text{new}) = R_2(\text{old}) + R_1(\text{new}) R 2 ( new ) = R 2 ( old ) + R 1 ( new )
R
2
(
old
)
−
8
−
3
−
2
−
1
0
1
−
8
R
1
(
new
)
3
1
4
1
2
1
−
1
4
0
3
R
2
(
new
)
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
R
2
(
old
)
−
8
−
3
−
2
−
1
0
1
−
8
R
1
(
new
)
3
1
4
1
2
1
−
1
4
0
3
R
2
(
new
)
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
{:[R_(2)(“old”),-8,-3,-2,-1,0,1,-8],[R_(1)(“new”),3,(1)/(4),(1)/(2),1,-(1)/(4),0,3],[R_(2)(“new”),-5,-(11)/(4),-(3)/(2),0,-(1)/(4),1,-5]:} \begin{array}{c|cccccc|c}
R_2(\text{old}) & -8 & -3 & -2 & -1 & 0 & 1 & -8 \\
R_1(\text{new}) & 3 & \frac{1}{4} & \frac{1}{2} & 1 & -\frac{1}{4} & 0 & 3 \\
R_2(\text{new}) & -5 & -\frac{11}{4} & -\frac{3}{2} & 0 & -\frac{1}{4} & 1 & -5 \\
\end{array} R 2 ( old ) − 8 − 3 − 2 − 1 0 1 − 8 R 1 ( new ) 3 1 4 1 2 1 − 1 4 0 3 R 2 ( new ) − 5 − 11 4 − 3 2 0 − 1 4 1 − 5
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
x
3
−
1
3
1
4
1
2
1
−
1
4
0
3
S
2
0
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
z
=
−
3
Z
j
−
3
−
2
−
1
−
1
0
0
−
3
C
j
−
Z
j
−
1
−
1
0
−
1
0
0
Ratio
=
C
j
−
Z
j
S
2
,
j
1.3636
1.6667
−
1
↑
−
and
S
2
,
j
<
0
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
x
3
−
1
3
1
4
1
2
1
−
1
4
0
3
S
2
0
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
z
=
−
3
Z
j
−
3
−
2
−
1
−
1
0
0
−
3
C
j
−
Z
j
−
1
−
1
0
−
1
0
0
Ratio
=
C
j
−
Z
j
S
2
,
j
1.3636
1.6667
−
1
↑
−
and
S
2
,
j
<
0
{:[“B”,C_(B),X_(B),x_(1),x_(2),x_(3),S_(1),S_(2),”RHS”],[x_(3),-1,3,(1)/(4),(1)/(2),1,-(1)/(4),0,3],[S_(2),0,-5,-(11)/(4),-(3)/(2),0,-(1)/(4),1,-5],[z=-3,Z_(j),-3,-2,-1,-1,0,0,-3],[,C_(j)-Z_(j),-1,-1,0,-1,0,0],[“Ratio”=(C_(j)-Z_(j))/(S_(2,j)),,,1.3636,1.6667,-,1uarr,-],[“and “S_(2,j) < 0,,,,,,,]:} \begin{array}{c|cccccc|c}
\text{B} & C_B & X_B & x_1 & x_2 & x_3 & S_1 & S_2 & \text{RHS} \\
\hline
x_3 & -1 & 3 & \frac{1}{4} & \frac{1}{2} & 1 & -\frac{1}{4} & 0 & 3 \\
S_2 & 0 & -5 & -\frac{11}{4} & -\frac{3}{2} & 0 & -\frac{1}{4} & 1 & -5 \\
\hline
z = -3 & Z_j & -3 & -2 & -1 & -1 & 0 & 0 & -3 \\
& C_j – Z_j & -1 & -1 & 0 & -1 & 0 & 0 \\
\hline
\text{Ratio} = \frac{C_j – Z_j}{S_{2,j}} & & & 1.3636 & 1.6667 & – & 1\uparrow & – \\
\text{and } S_{2,j} < 0 & & & & & & & \\
\end{array} B C B X B x 1 x 2 x 3 S 1 S 2 RHS x 3 − 1 3 1 4 1 2 1 − 1 4 0 3 S 2 0 − 5 − 11 4 − 3 2 0 − 1 4 1 − 5 z = − 3 Z j − 3 − 2 − 1 − 1 0 0 − 3 C j − Z j − 1 − 1 0 − 1 0 0 Ratio = C j − Z j S 2 , j 1.3636 1.6667 − 1 ↑ − and S 2 , j < 0
Minimum negative
X
B
X
B
X_(B) X_B X B is -5 and its row index is 2. So, the leaving basis variable is
S
2
S
2
S_(2) S_2 S 2 .
Minimum positive ratio is 1 and its column index is 4. So, the entering variable is
S
1
S
1
S_(1) S_1 S 1 .
The pivot element is
−
1
4
−
1
4
-(1)/(4) -\frac{1}{4} − 1 4 .
Entering =
S
1
S
1
S_(1) S_1 S 1 , Departing =
S
2
S
2
S_(2) S_2 S 2 , Key Element =
−
1
4
−
1
4
-(1)/(4) -\frac{1}{4} − 1 4
R
2
(
new
)
=
R
2
(
old
)
×
(
−
4
)
R
2
(
new
)
=
R
2
(
old
)
×
(
−
4
)
R_(2)(“new”)=R_(2)(“old”)xx(-4) R_2(\text{new}) = R_2(\text{old}) \times (-4) R 2 ( new ) = R 2 ( old ) × ( − 4 )
R
2
(
old
)
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
R
2
(
new
)
20
11
6
0
1
−
4
20
R
2
(
old
)
−
5
−
11
4
−
3
2
0
−
1
4
1
−
5
R
2
(
new
)
20
11
6
0
1
−
4
20
{:[R_(2)(“old”),-5,-(11)/(4),-(3)/(2),0,-(1)/(4),1,-5],[R_(2)(“new”),20,11,6,0,1,-4,20]:} \begin{array}{c|cccccc|c}
R_2(\text{old}) & -5 & -\frac{11}{4} & -\frac{3}{2} & 0 & -\frac{1}{4} & 1 & -5 \\
R_2(\text{new}) & 20 & 11 & 6 & 0 & 1 & -4 & 20 \\
\end{array} R 2 ( old ) − 5 − 11 4 − 3 2 0 − 1 4 1 − 5 R 2 ( new ) 20 11 6 0 1 − 4 20
R
1
(
new
)
=
R
1
(
old
)
+
1
4
R
2
(
new
)
R
1
(
new
)
=
R
1
(
old
)
+
1
4
R
2
(
new
)
R_(1)(“new”)=R_(1)(“old”)+(1)/(4)R_(2)(“new”) R_1(\text{new}) = R_1(\text{old}) + \frac{1}{4} R_2(\text{new}) R 1 ( new ) = R 1 ( old ) + 1 4 R 2 ( new )
R
1
(
old
)
3
1
4
1
2
1
−
1
4
0
3
1
4
×
R
2
(
new
)
5
11
4
3
2
0
1
4
−
1
5
R
1
(
new
)
8
3
2
1
0
−
1
8
R
1
(
old
)
3
1
4
1
2
1
−
1
4
0
3
1
4
×
R
2
(
new
)
5
11
4
3
2
0
1
4
−
1
5
R
1
(
new
)
8
3
2
1
0
−
1
8
{:[R_(1)(“old”),3,(1)/(4),(1)/(2),1,-(1)/(4),0,3],[(1)/(4)xxR_(2)(“new”),5,(11)/(4),(3)/(2),0,(1)/(4),-1,5],[R_(1)(“new”),8,3,2,1,0,-1,8]:} \begin{array}{c|cccccc|c}
R_1(\text{old}) & 3 & \frac{1}{4} & \frac{1}{2} & 1 & -\frac{1}{4} & 0 & 3 \\
\frac{1}{4} \times R_2(\text{new}) & 5 & \frac{11}{4} & \frac{3}{2} & 0 & \frac{1}{4} & -1 & 5 \\
R_1(\text{new}) & 8 & 3 & 2 & 1 & 0 & -1 & 8 \\
\end{array} R 1 ( old ) 3 1 4 1 2 1 − 1 4 0 3 1 4 × R 2 ( new ) 5 11 4 3 2 0 1 4 − 1 5 R 1 ( new ) 8 3 2 1 0 − 1 8
Iteration-3
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
x
3
−
1
8
3
2
1
0
−
1
8
S
1
0
20
11
6
0
1
−
4
20
z
=
−
8
Z
j
−
3
−
2
−
1
0
1
−
1
−
8
C
j
−
Z
j
−
1
−
1
0
0
−
1
0
Ratio
−
−
−
−
−
B
C
B
X
B
x
1
x
2
x
3
S
1
S
2
RHS
x
3
−
1
8
3
2
1
0
−
1
8
S
1
0
20
11
6
0
1
−
4
20
z
=
−
8
Z
j
−
3
−
2
−
1
0
1
−
1
−
8
C
j
−
Z
j
−
1
−
1
0
0
−
1
0
Ratio
−
−
−
−
−
{:[“B”,C_(B),X_(B),x_(1),x_(2),x_(3),S_(1),S_(2),”RHS”],[x_(3),-1,8,3,2,1,0,-1,8],[S_(1),0,20,11,6,0,1,-4,20],[z=-8,Z_(j),-3,-2,-1,0,1,-1,-8],[,C_(j)-Z_(j),-1,-1,0,0,-1,0],[“Ratio”,,,-,-,-,-,-]:} \begin{array}{c|cccccc|c}
\text{B} & C_B & X_B & x_1 & x_2 & x_3 & S_1 & S_2 & \text{RHS} \\
\hline
x_3 & -1 & 8 & 3 & 2 & 1 & 0 & -1 & 8 \\
S_1 & 0 & 20 & 11 & 6 & 0 & 1 & -4 & 20 \\
\hline
z = -8 & Z_j & -3 & -2 & -1 & 0 & 1 & -1 & -8 \\
& C_j – Z_j & -1 & -1 & 0 & 0 & -1 & 0 \\
\hline
\text{Ratio} & & & – & – & – & – & – \\
\end{array} B C B X B x 1 x 2 x 3 S 1 S 2 RHS x 3 − 1 8 3 2 1 0 − 1 8 S 1 0 20 11 6 0 1 − 4 20 z = − 8 Z j − 3 − 2 − 1 0 1 − 1 − 8 C j − Z j − 1 − 1 0 0 − 1 0 Ratio − − − − −
Since all
C
j
−
Z
j
≤
0
C
j
−
Z
j
≤
0
C_(j)-Z_(j) <= 0 C_j – Z_j \leq 0 C j − Z j ≤ 0 and all
X
B
≥
0
X
B
≥
0
X_(B) >= 0 X_B \geq 0 X B ≥ 0 thus the current solution is the optimal solution.
Hence, optimal solution is arrived with value of variables as:
x
1
=
0
,
x
2
=
0
,
x
3
=
8
x
1
=
0
,
x
2
=
0
,
x
3
=
8
x_(1)=0,x_(2)=0,x_(3)=8 x_1 = 0, x_2 = 0, x_3 = 8 x 1 = 0 , x 2 = 0 , x 3 = 8
Max
z
=
−
8
z
=
−
8
z=-8 z = -8 z = − 8
. Min
z
=
8
z
=
8
z=8 z = 8 z = 8
Question:-4(a)
Consider the polynomial ring
Z
[
x
]
Z
[
x
]
Z[x] Z[x] Z [ x ] over the ring
Z
Z
Z Z Z of integers. Let
S
S
S S S be an ideal of
Z
[
x
]
Z
[
x
]
Z[x] Z[x] Z [ x ] generated by
x
x
x x x . Show that
S
S
S S S is a prime ideal but not a maximal ideal of
Z
[
x
]
Z
[
x
]
Z[x] Z[x] Z [ x ] .
Answer:
Let
S
S
S S S be the ideal of
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] generated by
x
x
x x x , that is,
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ . We are tasked with showing that
S
S
S S S is a
prime ideal but
not a maximal ideal in
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] .
Step 1: Proving that
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ is a prime ideal.
To prove that
S
S
S S S is prime, we need to verify the following property:
If
f
(
x
)
,
g
(
x
)
∈
Z
[
x
]
f
(
x
)
,
g
(
x
)
∈
Z
[
x
]
f(x),g(x)inZ[x] f(x), g(x) \in \mathbb{Z}[x] f ( x ) , g ( x ) ∈ Z [ x ] such that
f
(
x
)
g
(
x
)
∈
S
f
(
x
)
g
(
x
)
∈
S
f(x)g(x)in S f(x)g(x) \in S f ( x ) g ( x ) ∈ S , then either
f
(
x
)
∈
S
f
(
x
)
∈
S
f(x)in S f(x) \in S f ( x ) ∈ S or
g
(
x
)
∈
S
g
(
x
)
∈
S
g(x)in S g(x) \in S g ( x ) ∈ S .
Recall that
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ , so
f
(
x
)
g
(
x
)
∈
⟨
x
⟩
f
(
x
)
g
(
x
)
∈
⟨
x
⟩
f(x)g(x)in(:x:) f(x)g(x) \in \langle x \rangle f ( x ) g ( x ) ∈ ⟨ x ⟩ means that
f
(
x
)
g
(
x
)
f
(
x
)
g
(
x
)
f(x)g(x) f(x)g(x) f ( x ) g ( x ) is divisible by
x
x
x x x , i.e., there exists some polynomial
h
(
x
)
∈
Z
[
x
]
h
(
x
)
∈
Z
[
x
]
h(x)inZ[x] h(x) \in \mathbb{Z}[x] h ( x ) ∈ Z [ x ] such that:
f
(
x
)
g
(
x
)
=
x
⋅
h
(
x
)
.
f
(
x
)
g
(
x
)
=
x
⋅
h
(
x
)
.
f(x)g(x)=x*h(x). f(x)g(x) = x \cdot h(x). f ( x ) g ( x ) = x ⋅ h ( x ) .
Now, we will prove that either
f
(
x
)
∈
⟨
x
⟩
f
(
x
)
∈
⟨
x
⟩
f(x)in(:x:) f(x) \in \langle x \rangle f ( x ) ∈ ⟨ x ⟩ or
g
(
x
)
∈
⟨
x
⟩
g
(
x
)
∈
⟨
x
⟩
g(x)in(:x:) g(x) \in \langle x \rangle g ( x ) ∈ ⟨ x ⟩ .
Case 1:
f
(
x
)
∈
Z
[
x
]
f
(
x
)
∈
Z
[
x
]
f(x)inZ[x] f(x) \in \mathbb{Z}[x] f ( x ) ∈ Z [ x ] is a constant polynomial : If
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is a constant, say
f
(
x
)
=
c
f
(
x
)
=
c
f(x)=c f(x) = c f ( x ) = c for some
c
∈
Z
c
∈
Z
c inZ c \in \mathbb{Z} c ∈ Z , then the equation
c
⋅
g
(
x
)
=
x
⋅
h
(
x
)
c
⋅
g
(
x
)
=
x
⋅
h
(
x
)
c*g(x)=x*h(x) c \cdot g(x) = x \cdot h(x) c ⋅ g ( x ) = x ⋅ h ( x ) implies that
g
(
x
)
g
(
x
)
g(x) g(x) g ( x ) must be divisible by
x
x
x x x (i.e.,
g
(
x
)
∈
⟨
x
⟩
g
(
x
)
∈
⟨
x
⟩
g(x)in(:x:) g(x) \in \langle x \rangle g ( x ) ∈ ⟨ x ⟩ ).
Case 2:
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is not a constant : If
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) is a non-constant polynomial, it must have a degree greater than or equal to 1. Then
f
(
x
)
g
(
x
)
=
x
h
(
x
)
f
(
x
)
g
(
x
)
=
x
h
(
x
)
f(x)g(x)=xh(x) f(x)g(x) = xh(x) f ( x ) g ( x ) = x h ( x ) implies that
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) must have a factor of
x
x
x x x , i.e.,
f
(
x
)
∈
⟨
x
⟩
f
(
x
)
∈
⟨
x
⟩
f(x)in(:x:) f(x) \in \langle x \rangle f ( x ) ∈ ⟨ x ⟩ .
In both cases, either
f
(
x
)
∈
⟨
x
⟩
f
(
x
)
∈
⟨
x
⟩
f(x)in(:x:) f(x) \in \langle x \rangle f ( x ) ∈ ⟨ x ⟩ or
g
(
x
)
∈
⟨
x
⟩
g
(
x
)
∈
⟨
x
⟩
g(x)in(:x:) g(x) \in \langle x \rangle g ( x ) ∈ ⟨ x ⟩ , which shows that
S
S
S S S is a prime ideal.
Step 2: Proving that
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ is not a maximal ideal.
To show that
S
S
S S S is not maximal, we need to find an ideal
T
T
T T T of
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] such that:
S
⊆
T
⊊
Z
[
x
]
S
⊆
T
⊊
Z
[
x
]
S sube T⊊Z[x] S \subseteq T \subsetneq \mathbb{Z}[x] S ⊆ T ⊊ Z [ x ] ,
and
T
T
T T T is not equal to
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] .
Consider the ideal
T
=
⟨
x
2
⟩
T
=
⟨
x
2
⟩
T=(:x^(2):) T = \langle x^2 \rangle T = ⟨ x 2 ⟩ , which is strictly larger than
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ but strictly smaller than
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] . Clearly,
S
⊆
T
S
⊆
T
S sube T S \subseteq T S ⊆ T because
x
∈
⟨
x
2
⟩
x
∈
⟨
x
2
⟩
x in(:x^(2):) x \in \langle x^2 \rangle x ∈ ⟨ x 2 ⟩ , but
T
≠
Z
[
x
]
T
≠
Z
[
x
]
T!=Z[x] T \neq \mathbb{Z}[x] T ≠ Z [ x ] because there are polynomials in
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] that are not divisible by
x
2
x
2
x^(2) x^2 x 2 , such as
1
1
1 1 1 .
Therefore,
⟨
x
⟩
⟨
x
⟩
(:x:) \langle x \rangle ⟨ x ⟩ is not maximal because it is properly contained in
⟨
x
2
⟩
⟨
x
2
⟩
(:x^(2):) \langle x^2 \rangle ⟨ x 2 ⟩ , and
⟨
x
2
⟩
⟨
x
2
⟩
(:x^(2):) \langle x^2 \rangle ⟨ x 2 ⟩ is a proper ideal of
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] .
Conclusion:
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ is a prime ideal in
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] because if
f
(
x
)
g
(
x
)
∈
⟨
x
⟩
f
(
x
)
g
(
x
)
∈
⟨
x
⟩
f(x)g(x)in(:x:) f(x)g(x) \in \langle x \rangle f ( x ) g ( x ) ∈ ⟨ x ⟩ , then either
f
(
x
)
∈
⟨
x
⟩
f
(
x
)
∈
⟨
x
⟩
f(x)in(:x:) f(x) \in \langle x \rangle f ( x ) ∈ ⟨ x ⟩ or
g
(
x
)
∈
⟨
x
⟩
g
(
x
)
∈
⟨
x
⟩
g(x)in(:x:) g(x) \in \langle x \rangle g ( x ) ∈ ⟨ x ⟩ .
S
=
⟨
x
⟩
S
=
⟨
x
⟩
S=(:x:) S = \langle x \rangle S = ⟨ x ⟩ is not a maximal ideal because it is properly contained in the ideal
⟨
x
2
⟩
⟨
x
2
⟩
(:x^(2):) \langle x^2 \rangle ⟨ x 2 ⟩ , which is a proper ideal of
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] .
Thus, we have shown that
⟨
x
⟩
⟨
x
⟩
(:x:) \langle x \rangle ⟨ x ⟩ is a prime ideal but not a maximal ideal in
Z
[
x
]
Z
[
x
]
Z[x] \mathbb{Z}[x] Z [ x ] .
Question:-4(b)
Find the upper and lower Riemann integrals for the function
f
f
f f f defined on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] as follows:
f
(
x
)
=
{
(
1
−
x
2
)
1
/
2
,
if
x
is rational
,
(
1
−
x
)
,
if
x
is irrational
.
f
(
x
)
=
(
1
−
x
2
)
1
/
2
,
if
x
is rational
,
(
1
−
x
)
,
if
x
is irrational
.
f(x)={[(1-x^(2))^(1//2)”,”,”if “x” is rational””,”],[(1-x)”,”,”if “x” is irrational”.]:} f(x) = \begin{cases}
(1 – x^2)^{1/2}, & \text{if } x \text{ is rational}, \\
(1 – x), & \text{if } x \text{ is irrational}.
\end{cases} f ( x ) = { ( 1 − x 2 ) 1 / 2 , if x is rational , ( 1 − x ) , if x is irrational .
Hence, show that
f
f
f f f is not Riemann integrable on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] .
Answer:
Step 1: Understand the Function and Partition
The function
f
f
f f f is defined on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] as:
f
(
x
)
=
{
1
−
x
2
,
if
x
is rational
,
1
−
x
,
if
x
is irrational
.
f
(
x
)
=
1
−
x
2
,
if
x
is rational
,
1
−
x
,
if
x
is irrational
.
f(x)={[sqrt(1-x^(2))”,”,”if “x” is rational””,”],[1-x”,”,”if “x” is irrational”.]:} f(x) = \begin{cases}
\sqrt{1 – x^2}, & \text{if } x \text{ is rational}, \\
1 – x, & \text{if } x \text{ is irrational}.
\end{cases} f ( x ) = { 1 − x 2 , if x is rational , 1 − x , if x is irrational .
To find the upper and lower Riemann integrals, we consider any partition
P
P
P P P of
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] :
P
=
{
0
=
x
0
<
x
1
<
⋯
<
x
n
=
1
}
.
P
=
{
0
=
x
0
<
x
1
<
⋯
<
x
n
=
1
}
.
P={0=x_(0) < x_(1) < cdots < x_(n)=1}. P = \{0 = x_0 < x_1 < \cdots < x_n = 1\}. P = { 0 = x 0 < x 1 < ⋯ < x n = 1 } .
Step 2: Compute Supremum and Infimum on Subintervals
For any subinterval
[
x
i
−
1
,
x
i
]
[
x
i
−
1
,
x
i
]
[x_(i-1),x_(i)] [x_{i-1}, x_i] [ x i − 1 , x i ] :
Rationals are dense : In any subinterval, there exist both rational and irrational numbers.
Behavior of
f
f
f f f :
For rational
x
x
x x x ,
f
(
x
)
=
1
−
x
2
f
(
x
)
=
1
−
x
2
f(x)=sqrt(1-x^(2)) f(x) = \sqrt{1 – x^2} f ( x ) = 1 − x 2 .
For irrational
x
x
x x x ,
f
(
x
)
=
1
−
x
f
(
x
)
=
1
−
x
f(x)=1-x f(x) = 1 – x f ( x ) = 1 − x .
Since
1
−
x
2
≥
1
−
x
1
−
x
2
≥
1
−
x
sqrt(1-x^(2)) >= 1-x \sqrt{1 – x^2} \geq 1 – x 1 − x 2 ≥ 1 − x for all
x
∈
[
0
,
1
]
x
∈
[
0
,
1
]
x in[0,1] x \in [0,1] x ∈ [ 0 , 1 ] (because
1
−
x
2
≥
1
−
x
1
−
x
2
≥
1
−
x
sqrt(1-x^(2)) >= 1-x \sqrt{1 – x^2} \geq 1 – x 1 − x 2 ≥ 1 − x when
0
≤
x
≤
1
0
≤
x
≤
1
0 <= x <= 1 0 \leq x \leq 1 0 ≤ x ≤ 1 ):
The supremum of
f
f
f f f on
[
x
i
−
1
,
x
i
]
[
x
i
−
1
,
x
i
]
[x_(i-1),x_(i)] [x_{i-1}, x_i] [ x i − 1 , x i ] is
1
−
x
i
−
1
2
1
−
x
i
−
1
2
sqrt(1-x_(i-1)^(2)) \sqrt{1 – x_{i-1}^2} 1 − x i − 1 2 (achieved by rationals).
The infimum of
f
f
f f f on
[
x
i
−
1
,
x
i
]
[
x
i
−
1
,
x
i
]
[x_(i-1),x_(i)] [x_{i-1}, x_i] [ x i − 1 , x i ] is
1
−
x
i
1
−
x
i
1-x_(i) 1 – x_i 1 − x i (achieved by irrationals).
Step 3: Upper and Lower Riemann Sums
Upper sum
U
(
P
,
f
)
U
(
P
,
f
)
U(P,f) U(P, f) U ( P , f ) :
U
(
P
,
f
)
=
∑
i
=
1
n
(
1
−
x
i
−
1
2
)
Δ
x
i
,
Δ
x
i
=
x
i
−
x
i
−
1
.
U
(
P
,
f
)
=
∑
i
=
1
n
1
−
x
i
−
1
2
Δ
x
i
,
Δ
x
i
=
x
i
−
x
i
−
1
.
U(P,f)=sum_(i=1)^(n)(sqrt(1-x_(i-1)^(2)))Deltax_(i),quad Deltax_(i)=x_(i)-x_(i-1). U(P, f) = \sum_{i=1}^n \left( \sqrt{1 – x_{i-1}^2} \right) \Delta x_i, \quad \Delta x_i = x_i – x_{i-1}. U ( P , f ) = ∑ i = 1 n ( 1 − x i − 1 2 ) Δ x i , Δ x i = x i − x i − 1 .
As the partition becomes finer (
‖
P
‖
→
0
‖
P
‖
→
0
||P||rarr0 \|P\| \to 0 ‖ P ‖ → 0 ), this converges to the integral of
1
−
x
2
1
−
x
2
sqrt(1-x^(2)) \sqrt{1 – x^2} 1 − x 2 :
∫
0
1
―
f
(
x
)
d
x
=
∫
0
1
1
−
x
2
d
x
=
π
4
.
∫
0
1
¯
f
(
x
)
d
x
=
∫
0
1
1
−
x
2
d
x
=
π
4
.
bar(int_(0)^(1))f(x)dx=int_(0)^(1)sqrt(1-x^(2))dx=(pi)/(4). \overline{\int_0^1} f(x) \, dx = \int_0^1 \sqrt{1 – x^2} \, dx = \frac{\pi}{4}. ∫ 0 1 ― f ( x ) d x = ∫ 0 1 1 − x 2 d x = π 4 .
Lower sum
L
(
P
,
f
)
L
(
P
,
f
)
L(P,f) L(P, f) L ( P , f ) :
L
(
P
,
f
)
=
∑
i
=
1
n
(
1
−
x
i
)
Δ
x
i
.
L
(
P
,
f
)
=
∑
i
=
1
n
1
−
x
i
Δ
x
i
.
L(P,f)=sum_(i=1)^(n)(1-x_(i))Deltax_(i). L(P, f) = \sum_{i=1}^n \left( 1 – x_i \right) \Delta x_i. L ( P , f ) = ∑ i = 1 n ( 1 − x i ) Δ x i .
As
‖
P
‖
→
0
‖
P
‖
→
0
||P||rarr0 \|P\| \to 0 ‖ P ‖ → 0 , this converges to the integral of
1
−
x
1
−
x
1-x 1 – x 1 − x :
∫
0
1
―
f
(
x
)
d
x
=
∫
0
1
(
1
−
x
)
d
x
=
1
2
.
∫
0
1
_
f
(
x
)
d
x
=
∫
0
1
(
1
−
x
)
d
x
=
1
2
.
int_(0)^(1)_f(x)dx=int_(0)^(1)(1-x)dx=(1)/(2). \underline{\int_0^1} f(x) \, dx = \int_0^1 (1 – x) \, dx = \frac{1}{2}. ∫ 0 1 ― f ( x ) d x = ∫ 0 1 ( 1 − x ) d x = 1 2 .
Step 4: Compare Upper and Lower Integrals
The upper and lower Riemann integrals are:
∫
0
1
―
f
(
x
)
d
x
=
π
4
,
∫
0
1
―
f
(
x
)
d
x
=
1
2
.
∫
0
1
¯
f
(
x
)
d
x
=
π
4
,
∫
0
1
_
f
(
x
)
d
x
=
1
2
.
bar(int_(0)^(1))f(x)dx=(pi)/(4),quadint_(0)^(1)_f(x)dx=(1)/(2). \overline{\int_0^1} f(x) \, dx = \frac{\pi}{4}, \quad \underline{\int_0^1} f(x) \, dx = \frac{1}{2}. ∫ 0 1 ― f ( x ) d x = π 4 , ∫ 0 1 ― f ( x ) d x = 1 2 .
Since
π
4
≈
0.785
>
0.5
=
1
2
π
4
≈
0.785
>
0.5
=
1
2
(pi)/(4)~~0.785 > 0.5=(1)/(2) \frac{\pi}{4} \approx 0.785 > 0.5 = \frac{1}{2} π 4 ≈ 0.785 > 0.5 = 1 2 , the upper and lower integrals are not equal.
Step 5: Conclusion on Integrability
A function is Riemann integrable if and only if its upper and lower Riemann integrals are equal. Here:
∫
0
1
―
f
(
x
)
d
x
≠
∫
0
1
―
f
(
x
)
d
x
,
∫
0
1
¯
f
(
x
)
d
x
≠
∫
0
1
_
f
(
x
)
d
x
,
bar(int_(0)^(1))f(x)dx!=int_(0)^(1)_f(x)dx, \overline{\int_0^1} f(x) \, dx \neq \underline{\int_0^1} f(x) \, dx, ∫ 0 1 ― f ( x ) d x ≠ ∫ 0 1 ― f ( x ) d x ,
so
f
f
f f f is
not Riemann integrable on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] .
Final Answer
Upper Riemann integral:
π
4
π
4
(pi)/(4) \boxed{\dfrac{\pi}{4}} π 4 .
Lower Riemann integral:
1
2
1
2
(1)/(2) \boxed{\dfrac{1}{2}} 1 2 .
Conclusion:
f
f
f f f is not Riemann integrable on
[
0
,
1
]
[
0
,
1
]
[0,1] [0,1] [ 0 , 1 ] because the upper and lower integrals are not equal.
Question:-4(c)
The personnel manager of a company wants to assign officers
A
A
A A A ,
B
B
B B B , and
C
C
C C C to the regional offices at Delhi, Mumbai, Kolkata, and Chennai. The cost of relocation (in thousand rupees) of the three officers at the four regional offices is given below:
Officer
Delhi
Mumbai
Kolkata
Chennai
A
16
22
24
20
B
10
32
26
16
C
10
20
46
30
Find the assignment which minimizes the total cost of relocation and also determine the minimum cost.
Answer:
To solve the assignment problem using the Hungarian algorithm, follow these steps:
Step 1: Make the Matrix Square
The cost matrix has 3 rows (officers) and 4 columns (offices). Add a dummy row with zero costs to make it 4×4:
Delhi Mumbai Kolkata Chennai
A: 16 22 24 20
B: 10 32 26 16
C: 10 20 46 30
D: 0 0 0 0 (dummy)
Step 2: Subtract Row Minima
Subtract the minimum of each row from all elements in that row:
Row A min = 16:
[
0
,
6
,
8
,
4
]
[
0
,
6
,
8
,
4
]
[0,6,8,4] [0, 6, 8, 4] [ 0 , 6 , 8 , 4 ]
Row B min = 10:
[
0
,
22
,
16
,
6
]
[
0
,
22
,
16
,
6
]
[0,22,16,6] [0, 22, 16, 6] [ 0 , 22 , 16 , 6 ]
Row C min = 10:
[
0
,
10
,
36
,
20
]
[
0
,
10
,
36
,
20
]
[0,10,36,20] [0, 10, 36, 20] [ 0 , 10 , 36 , 20 ]
Row D min = 0:
[
0
,
0
,
0
,
0
]
[
0
,
0
,
0
,
0
]
[0,0,0,0] [0, 0, 0, 0] [ 0 , 0 , 0 , 0 ]
Result:
A: 0 6 8 4
B: 0 22 16 6
C: 0 10 36 20
D: 0 0 0 0
Step 3: Subtract Column Minima
Each column already has a zero, so no change is needed.
Step 4: Cover Zeros with Minimum Lines
Cover all zeros using 2 lines (Row D and Column 1):
A: 0 6 8 4
B: 0 22 16 6
C: 0 10 36 20
D: 0⃠ 0⃠ 0⃠ 0⃠ (Row D covered)
0⃠ (Column 1 covered)
Number of lines (2) < 4, so proceed.
Step 5: Create Additional Zeros
Smallest uncovered element = 4 (A4).
Subtract 4 from uncovered elements.
Add 4 to double-covered element (D1, intersection of Row D and Column 1).
Result:A: 0 2 4 0
B: 0 18 12 2
C: 0 6 32 16
D: 4 0 0 0
Step 6: Cover Zeros Again
Cover all zeros using 3 lines (Row D, Column 1, Column 4):
A: 0 2 4 0⃠
B: 0⃠ 18 12 2
C: 0⃠ 6 32 16
D: 4 0⃠ 0⃠ 0⃠
Number of lines (3) < 4, so proceed.
Step 7: Create Additional Zeros
Smallest uncovered element = 2 (A2).
Subtract 2 from uncovered elements.
Add 2 to double-covered elements (D1 and D4).
Result:A: 0 0 2 0
B: 0 16 10 2
C: 0 4 30 16
D: 6 0 0 2
Step 8: Cover Zeros Again
Cover all zeros using 3 lines (Row A, Row D, Column 1):
A: 0⃠ 0⃠ 2 0⃠ (Row A covered)
B: 0⃠ 16 10 2
C: 0⃠ 4 30 16
D: 6 0⃠ 0⃠ 2 (Row D covered)
0⃠ (Column 1 covered)
Number of lines (3) < 4, so proceed.
Step 9: Create Additional Zeros
Smallest uncovered element = 2 (B4).
Subtract 2 from uncovered elements.
Add 2 to double-covered elements (A1 and D1).
Result:A: 2 0 2 0
B: 0 14 8 0
C: 0 2 28 14
D: 8 0 0 2
Step 10: Cover Zeros Again
Cover all zeros using 4 lines (e.g., Column 1, Column 2, Column 3, Column 4):
A: 2 0⃠ 2 0⃠
B: 0⃠ 14 8 0⃠
C: 0⃠ 2 28 14
D: 8 0⃠ 0⃠ 2
Number of lines (4) = 4, optimal assignment found.
Step 11: Optimal Assignment
Assign each officer to an office with a zero in the final matrix, avoiding conflicts:
C → Delhi (only zero in Row C, Column 1).
B → Chennai (only zero left in Row B, Column 4).
A → Mumbai (only zero left in Row A, Column 2).
D → Kolkata (dummy, so Kolkata unassigned).
Step 12: Compute Minimum Cost
Use original costs:
A → Mumbai: 22
B → Chennai: 16
C → Delhi: 10
Total cost = 22 + 16 + 10 = 48 (thousand rupees).
Final Assignment
Officer A → Mumbai
Officer B → Chennai
Officer C → Delhi
Kolkata unassigned
Minimum Cost : 48,000 rupees.
SECTION-B
Question:-5(a)
Show that if
f
f
f f f and
g
g
g g g are arbitrary functions of their respective arguments, then
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u=f(x-kt+i alpha y)+g(x-kt-i alpha y) u = f(x – kt + i \alpha y) + g(x – kt – i \alpha y) u = f ( x − k t + i α y ) + g ( x − k t − i α y ) is a solution of
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
,
where
α
2
=
1
−
k
2
C
2
.
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
,
where
α
2
=
1
−
k
2
C
2
.
(del^(2)u)/(delx^(2))+(del^(2)u)/(dely^(2))=(1)/(C^(2))(del^(2)u)/(delt^(2)),quad”where “alpha^(2)=1-(k^(2))/(C^(2)). \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}, \quad \text{where } \alpha^2 = 1 – \frac{k^2}{C^2}. ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 1 C 2 ∂ 2 u ∂ t 2 , where α 2 = 1 − k 2 C 2 .
Answer:
To show that the given function
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u=f(x-kt+i alpha y)+g(x-kt-i alpha y) u = f(x – kt + i \alpha y) + g(x – kt – i \alpha y) u = f ( x − k t + i α y ) + g ( x − k t − i α y ) satisfies the partial differential equation (PDE):
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
,
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
,
(del^(2)u)/(delx^(2))+(del^(2)u)/(dely^(2))=(1)/(C^(2))(del^(2)u)/(delt^(2)), \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}, ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 1 C 2 ∂ 2 u ∂ t 2 ,
we proceed by computing the necessary partial derivatives of
u
u
u u u and verifying that they satisfy the PDE. Here,
α
α
alpha \alpha α is defined by
α
2
=
1
−
k
2
C
2
α
2
=
1
−
k
2
C
2
alpha^(2)=1-(k^(2))/(C^(2)) \alpha^2 = 1 – \frac{k^2}{C^2} α 2 = 1 − k 2 C 2 .
Step 1: Define the Arguments
Let:
ξ
1
=
x
−
k
t
+
i
α
y
,
ξ
2
=
x
−
k
t
−
i
α
y
.
ξ
1
=
x
−
k
t
+
i
α
y
,
ξ
2
=
x
−
k
t
−
i
α
y
.
xi_(1)=x-kt+i alpha y,quadxi_(2)=x-kt-i alpha y. \xi_1 = x – kt + i \alpha y, \quad \xi_2 = x – kt – i \alpha y. ξ 1 = x − k t + i α y , ξ 2 = x − k t − i α y .
Then,
u
=
f
(
ξ
1
)
+
g
(
ξ
2
)
u
=
f
(
ξ
1
)
+
g
(
ξ
2
)
u=f(xi_(1))+g(xi_(2)) u = f(\xi_1) + g(\xi_2) u = f ( ξ 1 ) + g ( ξ 2 ) .
Step 2: Compute First Partial Derivatives
Partial Derivatives with Respect to
x
x
x x x :
∂
u
∂
x
=
f
′
(
ξ
1
)
∂
ξ
1
∂
x
+
g
′
(
ξ
2
)
∂
ξ
2
∂
x
=
f
′
(
ξ
1
)
+
g
′
(
ξ
2
)
.
∂
u
∂
x
=
f
′
(
ξ
1
)
∂
ξ
1
∂
x
+
g
′
(
ξ
2
)
∂
ξ
2
∂
x
=
f
′
(
ξ
1
)
+
g
′
(
ξ
2
)
.
(del u)/(del x)=f^(‘)(xi_(1))(delxi_(1))/(del x)+g^(‘)(xi_(2))(delxi_(2))/(del x)=f^(‘)(xi_(1))+g^(‘)(xi_(2)). \frac{\partial u}{\partial x} = f'(\xi_1) \frac{\partial \xi_1}{\partial x} + g'(\xi_2) \frac{\partial \xi_2}{\partial x} = f'(\xi_1) + g'(\xi_2). ∂ u ∂ x = f ′ ( ξ 1 ) ∂ ξ 1 ∂ x + g ′ ( ξ 2 ) ∂ ξ 2 ∂ x = f ′ ( ξ 1 ) + g ′ ( ξ 2 ) .
∂
2
u
∂
x
2
=
f
″
(
ξ
1
)
∂
ξ
1
∂
x
+
g
″
(
ξ
2
)
∂
ξ
2
∂
x
=
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
.
∂
2
u
∂
x
2
=
f
″
(
ξ
1
)
∂
ξ
1
∂
x
+
g
″
(
ξ
2
)
∂
ξ
2
∂
x
=
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
.
(del^(2)u)/(delx^(2))=f^(″)(xi_(1))(delxi_(1))/(del x)+g^(″)(xi_(2))(delxi_(2))/(del x)=f^(″)(xi_(1))+g^(″)(xi_(2)). \frac{\partial^2 u}{\partial x^2} = f”(\xi_1) \frac{\partial \xi_1}{\partial x} + g”(\xi_2) \frac{\partial \xi_2}{\partial x} = f”(\xi_1) + g”(\xi_2). ∂ 2 u ∂ x 2 = f ″ ( ξ 1 ) ∂ ξ 1 ∂ x + g ″ ( ξ 2 ) ∂ ξ 2 ∂ x = f ″ ( ξ 1 ) + g ″ ( ξ 2 ) .
Partial Derivatives with Respect to
y
y
y y y :
∂
u
∂
y
=
f
′
(
ξ
1
)
∂
ξ
1
∂
y
+
g
′
(
ξ
2
)
∂
ξ
2
∂
y
=
f
′
(
ξ
1
)
(
i
α
)
+
g
′
(
ξ
2
)
(
−
i
α
)
.
∂
u
∂
y
=
f
′
(
ξ
1
)
∂
ξ
1
∂
y
+
g
′
(
ξ
2
)
∂
ξ
2
∂
y
=
f
′
(
ξ
1
)
(
i
α
)
+
g
′
(
ξ
2
)
(
−
i
α
)
.
(del u)/(del y)=f^(‘)(xi_(1))(delxi_(1))/(del y)+g^(‘)(xi_(2))(delxi_(2))/(del y)=f^(‘)(xi_(1))(i alpha)+g^(‘)(xi_(2))(-i alpha). \frac{\partial u}{\partial y} = f'(\xi_1) \frac{\partial \xi_1}{\partial y} + g'(\xi_2) \frac{\partial \xi_2}{\partial y} = f'(\xi_1) (i \alpha) + g'(\xi_2) (-i \alpha). ∂ u ∂ y = f ′ ( ξ 1 ) ∂ ξ 1 ∂ y + g ′ ( ξ 2 ) ∂ ξ 2 ∂ y = f ′ ( ξ 1 ) ( i α ) + g ′ ( ξ 2 ) ( − i α ) .
∂
2
u
∂
y
2
=
f
″
(
ξ
1
)
(
i
α
)
2
+
g
″
(
ξ
2
)
(
−
i
α
)
2
=
−
α
2
f
″
(
ξ
1
)
−
α
2
g
″
(
ξ
2
)
.
∂
2
u
∂
y
2
=
f
″
(
ξ
1
)
(
i
α
)
2
+
g
″
(
ξ
2
)
(
−
i
α
)
2
=
−
α
2
f
″
(
ξ
1
)
−
α
2
g
″
(
ξ
2
)
.
(del^(2)u)/(dely^(2))=f^(″)(xi_(1))(i alpha)^(2)+g^(″)(xi_(2))(-i alpha)^(2)=-alpha^(2)f^(″)(xi_(1))-alpha^(2)g^(″)(xi_(2)). \frac{\partial^2 u}{\partial y^2} = f”(\xi_1) (i \alpha)^2 + g”(\xi_2) (-i \alpha)^2 = -\alpha^2 f”(\xi_1) – \alpha^2 g”(\xi_2). ∂ 2 u ∂ y 2 = f ″ ( ξ 1 ) ( i α ) 2 + g ″ ( ξ 2 ) ( − i α ) 2 = − α 2 f ″ ( ξ 1 ) − α 2 g ″ ( ξ 2 ) .
Partial Derivatives with Respect to
t
t
t t t :
∂
u
∂
t
=
f
′
(
ξ
1
)
∂
ξ
1
∂
t
+
g
′
(
ξ
2
)
∂
ξ
2
∂
t
=
f
′
(
ξ
1
)
(
−
k
)
+
g
′
(
ξ
2
)
(
−
k
)
.
∂
u
∂
t
=
f
′
(
ξ
1
)
∂
ξ
1
∂
t
+
g
′
(
ξ
2
)
∂
ξ
2
∂
t
=
f
′
(
ξ
1
)
(
−
k
)
+
g
′
(
ξ
2
)
(
−
k
)
.
(del u)/(del t)=f^(‘)(xi_(1))(delxi_(1))/(del t)+g^(‘)(xi_(2))(delxi_(2))/(del t)=f^(‘)(xi_(1))(-k)+g^(‘)(xi_(2))(-k). \frac{\partial u}{\partial t} = f'(\xi_1) \frac{\partial \xi_1}{\partial t} + g'(\xi_2) \frac{\partial \xi_2}{\partial t} = f'(\xi_1) (-k) + g'(\xi_2) (-k). ∂ u ∂ t = f ′ ( ξ 1 ) ∂ ξ 1 ∂ t + g ′ ( ξ 2 ) ∂ ξ 2 ∂ t = f ′ ( ξ 1 ) ( − k ) + g ′ ( ξ 2 ) ( − k ) .
∂
2
u
∂
t
2
=
f
″
(
ξ
1
)
(
−
k
)
2
+
g
″
(
ξ
2
)
(
−
k
)
2
=
k
2
f
″
(
ξ
1
)
+
k
2
g
″
(
ξ
2
)
.
∂
2
u
∂
t
2
=
f
″
(
ξ
1
)
(
−
k
)
2
+
g
″
(
ξ
2
)
(
−
k
)
2
=
k
2
f
″
(
ξ
1
)
+
k
2
g
″
(
ξ
2
)
.
(del^(2)u)/(delt^(2))=f^(″)(xi_(1))(-k)^(2)+g^(″)(xi_(2))(-k)^(2)=k^(2)f^(″)(xi_(1))+k^(2)g^(″)(xi_(2)). \frac{\partial^2 u}{\partial t^2} = f”(\xi_1) (-k)^2 + g”(\xi_2) (-k)^2 = k^2 f”(\xi_1) + k^2 g”(\xi_2). ∂ 2 u ∂ t 2 = f ″ ( ξ 1 ) ( − k ) 2 + g ″ ( ξ 2 ) ( − k ) 2 = k 2 f ″ ( ξ 1 ) + k 2 g ″ ( ξ 2 ) .
Step 3: Substitute into the PDE
The PDE is:
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
.
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
1
C
2
∂
2
u
∂
t
2
.
(del^(2)u)/(delx^(2))+(del^(2)u)/(dely^(2))=(1)/(C^(2))(del^(2)u)/(delt^(2)). \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}. ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 1 C 2 ∂ 2 u ∂ t 2 .
Substituting the computed second derivatives:
(
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
)
+
(
−
α
2
f
″
(
ξ
1
)
−
α
2
g
″
(
ξ
2
)
)
=
1
C
2
(
k
2
f
″
(
ξ
1
)
+
k
2
g
″
(
ξ
2
)
)
.
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
+
−
α
2
f
″
(
ξ
1
)
−
α
2
g
″
(
ξ
2
)
=
1
C
2
k
2
f
″
(
ξ
1
)
+
k
2
g
″
(
ξ
2
)
.
(f^(″)(xi_(1))+g^(″)(xi_(2)))+(-alpha^(2)f^(″)(xi_(1))-alpha^(2)g^(″)(xi_(2)))=(1)/(C^(2))(k^(2)f^(″)(xi_(1))+k^(2)g^(″)(xi_(2))). \left( f”(\xi_1) + g”(\xi_2) \right) + \left( -\alpha^2 f”(\xi_1) – \alpha^2 g”(\xi_2) \right) = \frac{1}{C^2} \left( k^2 f”(\xi_1) + k^2 g”(\xi_2) \right). ( f ″ ( ξ 1 ) + g ″ ( ξ 2 ) ) + ( − α 2 f ″ ( ξ 1 ) − α 2 g ″ ( ξ 2 ) ) = 1 C 2 ( k 2 f ″ ( ξ 1 ) + k 2 g ″ ( ξ 2 ) ) .
Simplify the left-hand side (LHS):
(
1
−
α
2
)
f
″
(
ξ
1
)
+
(
1
−
α
2
)
g
″
(
ξ
2
)
=
k
2
C
2
(
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
)
.
(
1
−
α
2
)
f
″
(
ξ
1
)
+
(
1
−
α
2
)
g
″
(
ξ
2
)
=
k
2
C
2
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
.
(1-alpha^(2))f^(″)(xi_(1))+(1-alpha^(2))g^(″)(xi_(2))=(k^(2))/(C^(2))(f^(″)(xi_(1))+g^(″)(xi_(2))). (1 – \alpha^2) f”(\xi_1) + (1 – \alpha^2) g”(\xi_2) = \frac{k^2}{C^2} \left( f”(\xi_1) + g”(\xi_2) \right). ( 1 − α 2 ) f ″ ( ξ 1 ) + ( 1 − α 2 ) g ″ ( ξ 2 ) = k 2 C 2 ( f ″ ( ξ 1 ) + g ″ ( ξ 2 ) ) .
Factor out
(
1
−
α
2
)
(
1
−
α
2
)
(1-alpha^(2)) (1 – \alpha^2) ( 1 − α 2 ) :
(
1
−
α
2
)
(
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
)
=
k
2
C
2
(
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
)
.
(
1
−
α
2
)
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
=
k
2
C
2
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
.
(1-alpha^(2))(f^(″)(xi_(1))+g^(″)(xi_(2)))=(k^(2))/(C^(2))(f^(″)(xi_(1))+g^(″)(xi_(2))). (1 – \alpha^2) \left( f”(\xi_1) + g”(\xi_2) \right) = \frac{k^2}{C^2} \left( f”(\xi_1) + g”(\xi_2) \right). ( 1 − α 2 ) ( f ″ ( ξ 1 ) + g ″ ( ξ 2 ) ) = k 2 C 2 ( f ″ ( ξ 1 ) + g ″ ( ξ 2 ) ) .
Since
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
f
″
(
ξ
1
)
+
g
″
(
ξ
2
)
f^(″)(xi_(1))+g^(″)(xi_(2)) f”(\xi_1) + g”(\xi_2) f ″ ( ξ 1 ) + g ″ ( ξ 2 ) is not identically zero, we can divide both sides by it:
1
−
α
2
=
k
2
C
2
.
1
−
α
2
=
k
2
C
2
.
1-alpha^(2)=(k^(2))/(C^(2)). 1 – \alpha^2 = \frac{k^2}{C^2}. 1 − α 2 = k 2 C 2 .
This simplifies to:
α
2
=
1
−
k
2
C
2
,
α
2
=
1
−
k
2
C
2
,
alpha^(2)=1-(k^(2))/(C^(2)), \alpha^2 = 1 – \frac{k^2}{C^2}, α 2 = 1 − k 2 C 2 ,
which matches the given definition of
α
α
alpha \alpha α .
Conclusion
The function
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u
=
f
(
x
−
k
t
+
i
α
y
)
+
g
(
x
−
k
t
−
i
α
y
)
u=f(x-kt+i alpha y)+g(x-kt-i alpha y) u = f(x – kt + i \alpha y) + g(x – kt – i \alpha y) u = f ( x − k t + i α y ) + g ( x − k t − i α y ) satisfies the given PDE for arbitrary functions
f
f
f f f and
g
g
g g g , provided that
α
2
=
1
−
k
2
C
2
α
2
=
1
−
k
2
C
2
alpha^(2)=1-(k^(2))/(C^(2)) \alpha^2 = 1 – \frac{k^2}{C^2} α 2 = 1 − k 2 C 2 .
Question:-5(b)
Solve the following system of linear equations by the Gauss-Jordan method:
2
x
+
3
y
−
z
=
5
4
x
+
4
y
−
3
z
=
3
2
x
−
3
y
+
2
z
=
2
2
x
+
3
y
−
z
=
5
4
x
+
4
y
−
3
z
=
3
2
x
−
3
y
+
2
z
=
2
{:[2x+3y-z=5],[4x+4y-3z=3],[2x-3y+2z=2]:} \begin{aligned}
2x + 3y – z &= 5 \\
4x + 4y – 3z &= 3 \\
2x – 3y + 2z &= 2
\end{aligned} 2 x + 3 y − z = 5 4 x + 4 y − 3 z = 3 2 x − 3 y + 2 z = 2
Answer:
To solve the given system of linear equations using the Gauss-Jordan method , we will transform the augmented matrix into its reduced row-echelon form (RREF) . Here are the steps:
Given System:
2
x
+
3
y
−
z
=
5
(1)
4
x
+
4
y
−
3
z
=
3
(2)
2
x
−
3
y
+
2
z
=
2
(3)
2
x
+
3
y
−
z
=
5
(1)
4
x
+
4
y
−
3
z
=
3
(2)
2
x
−
3
y
+
2
z
=
2
(3)
{:[2x+3y-z=5quad(1)],[4x+4y-3z=3quad(2)],[2x-3y+2z=2quad(3)]:} \begin{aligned}
2x + 3y – z &= 5 \quad \text{(1)} \\
4x + 4y – 3z &= 3 \quad \text{(2)} \\
2x – 3y + 2z &= 2 \quad \text{(3)}
\end{aligned} 2 x + 3 y − z = 5 (1) 4 x + 4 y − 3 z = 3 (2) 2 x − 3 y + 2 z = 2 (3)
Step 1: Write the Augmented Matrix
[
2
3
−
1
5
4
4
−
3
3
2
−
3
2
2
]
2
3
−
1
5
4
4
−
3
3
2
−
3
2
2
[[2,3,-1,5],[4,4,-3,3],[2,-3,2,2]] \left[\begin{array}{ccc|c}
2 & 3 & -1 & 5 \\
4 & 4 & -3 & 3 \\
2 & -3 & 2 & 2
\end{array}\right] [ 2 3 − 1 5 4 4 − 3 3 2 − 3 2 2 ]
Step 2.1: Make the first element of the first row a 1 (pivot).
Divide Row 1 (R₁) by 2:
R
1
→
1
2
R
1
R
1
→
1
2
R
1
R_(1)rarr(1)/(2)R_(1) R_1 \rightarrow \frac{1}{2} R_1 R 1 → 1 2 R 1
[
1
1.5
−
0.5
2.5
4
4
−
3
3
2
−
3
2
2
]
1
1.5
−
0.5
2.5
4
4
−
3
3
2
−
3
2
2
[[1,1.5,-0.5,2.5],[4,4,-3,3],[2,-3,2,2]] \left[\begin{array}{ccc|c}
1 & 1.5 & -0.5 & 2.5 \\
4 & 4 & -3 & 3 \\
2 & -3 & 2 & 2
\end{array}\right] [ 1 1.5 − 0.5 2.5 4 4 − 3 3 2 − 3 2 2 ]
Step 2.2: Eliminate the first element in Row 2 (R₂) and Row 3 (R₃) .
R
2
→
R
2
−
4
R
1
R
2
→
R
2
−
4
R
1
R_(2)rarrR_(2)-4R_(1) R_2 \rightarrow R_2 – 4R_1 R 2 → R 2 − 4 R 1
R
3
→
R
3
−
2
R
1
R
3
→
R
3
−
2
R
1
R_(3)rarrR_(3)-2R_(1) R_3 \rightarrow R_3 – 2R_1 R 3 → R 3 − 2 R 1
[
1
1.5
−
0.5
2.5
0
−
2
−
1
−
7
0
−
6
3
−
3
]
1
1.5
−
0.5
2.5
0
−
2
−
1
−
7
0
−
6
3
−
3
[[1,1.5,-0.5,2.5],[0,-2,-1,-7],[0,-6,3,-3]] \left[\begin{array}{ccc|c}
1 & 1.5 & -0.5 & 2.5 \\
0 & -2 & -1 & -7 \\
0 & -6 & 3 & -3
\end{array}\right] [ 1 1.5 − 0.5 2.5 0 − 2 − 1 − 7 0 − 6 3 − 3 ]
Step 2.3: Make the second element of the second row a 1 (pivot).
Divide Row 2 (R₂) by -2:
R
2
→
−
1
2
R
2
R
2
→
−
1
2
R
2
R_(2)rarr-(1)/(2)R_(2) R_2 \rightarrow -\frac{1}{2} R_2 R 2 → − 1 2 R 2
[
1
1.5
−
0.5
2.5
0
1
0.5
3.5
0
−
6
3
−
3
]
1
1.5
−
0.5
2.5
0
1
0.5
3.5
0
−
6
3
−
3
[[1,1.5,-0.5,2.5],[0,1,0.5,3.5],[0,-6,3,-3]] \left[\begin{array}{ccc|c}
1 & 1.5 & -0.5 & 2.5 \\
0 & 1 & 0.5 & 3.5 \\
0 & -6 & 3 & -3
\end{array}\right] [ 1 1.5 − 0.5 2.5 0 1 0.5 3.5 0 − 6 3 − 3 ]
Step 2.4: Eliminate the second element in Row 1 (R₁) and Row 3 (R₃) .
R
1
→
R
1
−
1.5
R
2
R
1
→
R
1
−
1.5
R
2
R_(1)rarrR_(1)-1.5R_(2) R_1 \rightarrow R_1 – 1.5R_2 R 1 → R 1 − 1.5 R 2
R
3
→
R
3
+
6
R
2
R
3
→
R
3
+
6
R
2
R_(3)rarrR_(3)+6R_(2) R_3 \rightarrow R_3 + 6R_2 R 3 → R 3 + 6 R 2
[
1
0
−
1.25
−
2.75
0
1
0.5
3.5
0
0
6
18
]
1
0
−
1.25
−
2.75
0
1
0.5
3.5
0
0
6
18
[[1,0,-1.25,-2.75],[0,1,0.5,3.5],[0,0,6,18]] \left[\begin{array}{ccc|c}
1 & 0 & -1.25 & -2.75 \\
0 & 1 & 0.5 & 3.5 \\
0 & 0 & 6 & 18
\end{array}\right] [ 1 0 − 1.25 − 2.75 0 1 0.5 3.5 0 0 6 18 ]
Step 2.5: Make the third element of the third row a 1 (pivot).
Divide Row 3 (R₃) by 6:
R
3
→
1
6
R
3
R
3
→
1
6
R
3
R_(3)rarr(1)/(6)R_(3) R_3 \rightarrow \frac{1}{6} R_3 R 3 → 1 6 R 3
[
1
0
−
1.25
−
2.75
0
1
0.5
3.5
0
0
1
3
]
1
0
−
1.25
−
2.75
0
1
0.5
3.5
0
0
1
3
[[1,0,-1.25,-2.75],[0,1,0.5,3.5],[0,0,1,3]] \left[\begin{array}{ccc|c}
1 & 0 & -1.25 & -2.75 \\
0 & 1 & 0.5 & 3.5 \\
0 & 0 & 1 & 3
\end{array}\right] [ 1 0 − 1.25 − 2.75 0 1 0.5 3.5 0 0 1 3 ]
Step 2.6: Eliminate the third element in Row 1 (R₁) and Row 2 (R₂) .
R
1
→
R
1
+
1.25
R
3
R
1
→
R
1
+
1.25
R
3
R_(1)rarrR_(1)+1.25R_(3) R_1 \rightarrow R_1 + 1.25R_3 R 1 → R 1 + 1.25 R 3
R
2
→
R
2
−
0.5
R
3
R
2
→
R
2
−
0.5
R
3
R_(2)rarrR_(2)-0.5R_(3) R_2 \rightarrow R_2 – 0.5R_3 R 2 → R 2 − 0.5 R 3
[
1
0
0
1
0
1
0
2
0
0
1
3
]
1
0
0
1
0
1
0
2
0
0
1
3
[[1,0,0,1],[0,1,0,2],[0,0,1,3]] \left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] [ 1 0 0 1 0 1 0 2 0 0 1 3 ]
Step 3: Interpret the RREF
The matrix is now in reduced row-echelon form (RREF) , and the solution is directly readable:
x
=
1
,
y
=
2
,
z
=
3
x
=
1
,
y
=
2
,
z
=
3
x=1,quad y=2,quad z=3 x = 1, \quad y = 2, \quad z = 3 x = 1 , y = 2 , z = 3
Final Answer
The solution to the system is:
(
x
,
y
,
z
)
=
(
1
,
2
,
3
)
(
x
,
y
,
z
)
=
(
1
,
2
,
3
)
(x,y,z)=(1,2,3) \boxed{(x, y, z) = (1, 2, 3)} ( x , y , z ) = ( 1 , 2 , 3 )
Question:-5(c)
(ii) Determine the decimal equivalent of
(
9
B
2.1
A
)
16
(
9
B
2.1
A
)
16
(9B 2.1 A)_(16) (9B2.1A)_{16} ( 9 B 2.1 A ) 16 .
Answer:
For
(
8
D
)
16
(
8
D
)
16
(8D)_(16) (8D)_{16} ( 8 D ) 16 :
8
8
8 8 8 in hexadecimal corresponds to
8
8
8 8 8 in decimal.
D
D
D D D in hexadecimal corresponds to
13
13
13 13 13 in decimal.
Therefore,
(
8
D
)
16
(
8
D
)
16
(8D)_(16) (8D)_{16} ( 8 D ) 16 can be expanded as:
(
8
D
)
16
=
8
⋅
16
1
+
13
⋅
16
0
=
8
⋅
16
+
13
⋅
1
=
128
+
13
=
141.
(
8
D
)
16
=
8
⋅
16
1
+
13
⋅
16
0
=
8
⋅
16
+
13
⋅
1
=
128
+
13
=
141.
(8D)_(16)=8*16^(1)+13*16^(0)=8*16+13*1=128+13=141. (8D)_{16} = 8 \cdot 16^1 + 13 \cdot 16^0 = 8 \cdot 16 + 13 \cdot 1 = 128 + 13 = 141. ( 8 D ) 16 = 8 ⋅ 16 1 + 13 ⋅ 16 0 = 8 ⋅ 16 + 13 ⋅ 1 = 128 + 13 = 141.
Since the first digit is
8
8
8 8 8 , it indicates a negative value in sign magnitude form. Hence, the decimal equivalent in sign magnitude form is:
−
141.
−
141.
-141. -141. − 141.
For
(
F
F
)
16
(
F
F
)
16
(FF)_(16) (FF)_{16} ( F F ) 16 :
F
F
F F F in hexadecimal corresponds to
15
15
15 15 15 in decimal.
Therefore,
(
F
F
)
16
(
F
F
)
16
(FF)_(16) (FF)_{16} ( F F ) 16 can be expanded as:
(
F
F
)
16
=
15
⋅
16
1
+
15
⋅
16
0
=
15
⋅
16
+
15
⋅
1
=
240
+
15
=
255.
(
F
F
)
16
=
15
⋅
16
1
+
15
⋅
16
0
=
15
⋅
16
+
15
⋅
1
=
240
+
15
=
255.
(FF)_(16)=15*16^(1)+15*16^(0)=15*16+15*1=240+15=255. (FF)_{16} = 15 \cdot 16^1 + 15 \cdot 16^0 = 15 \cdot 16 + 15 \cdot 1 = 240 + 15 = 255. ( F F ) 16 = 15 ⋅ 16 1 + 15 ⋅ 16 0 = 15 ⋅ 16 + 15 ⋅ 1 = 240 + 15 = 255.
Since the first digit is
F
F
F F F , it also indicates a negative value in sign magnitude form. Hence, the decimal equivalent in sign magnitude form is:
−
255.
−
255.
-255. -255. − 255.
(ii) Determine the decimal equivalent of
(
9
B
2.1
A
)
16
(
9
B
2.1
A
)
16
(9B 2.1 A)_(16) (9B2.1A)_{16} ( 9 B 2.1 A ) 16 .
The hexadecimal number
9
B
2.1
A
9
B
2.1
A
9B 2.1 A 9B2.1A 9 B 2.1 A consists of both an integer part and a fractional part. We will convert each part separately.
For the integer part
9
B
2
16
9
B
2
16
9B2_(16) 9B2_{16} 9 B 2 16 :
9
9
9 9 9 in hexadecimal corresponds to
9
9
9 9 9 in decimal.
B
B
B B B in hexadecimal corresponds to
11
11
11 11 11 in decimal.
2
2
2 2 2 in hexadecimal corresponds to
2
2
2 2 2 in decimal.
Therefore,
9
B
2
16
9
B
2
16
9B2_(16) 9B2_{16} 9 B 2 16 can be expanded as:
9
B
2
16
=
9
⋅
16
2
+
11
⋅
16
1
+
2
⋅
16
0
=
9
⋅
256
+
11
⋅
16
+
2
⋅
1
=
2304
+
176
+
2
=
2482.
9
B
2
16
=
9
⋅
16
2
+
11
⋅
16
1
+
2
⋅
16
0
=
9
⋅
256
+
11
⋅
16
+
2
⋅
1
=
2304
+
176
+
2
=
2482.
9B2_(16)=9*16^(2)+11*16^(1)+2*16^(0)=9*256+11*16+2*1=2304+176+2=2482. 9B2_{16} = 9 \cdot 16^2 + 11 \cdot 16^1 + 2 \cdot 16^0 = 9 \cdot 256 + 11 \cdot 16 + 2 \cdot 1 = 2304 + 176 + 2 = 2482. 9 B 2 16 = 9 ⋅ 16 2 + 11 ⋅ 16 1 + 2 ⋅ 16 0 = 9 ⋅ 256 + 11 ⋅ 16 + 2 ⋅ 1 = 2304 + 176 + 2 = 2482.
For the fractional part
.1
A
16
.1
A
16
.1A_(16) .1A_{16} .1 A 16 :
1
1
1 1 1 in hexadecimal corresponds to
1
1
1 1 1 in decimal, and it is in the
16
−
1
16
−
1
16^(-1) 16^{-1} 16 − 1 place.
A
A
A A A in hexadecimal corresponds to
10
10
10 10 10 in decimal, and it is in the
16
−
2
16
−
2
16^(-2) 16^{-2} 16 − 2 place.
Therefore,
.1
A
16
.1
A
16
.1A_(16) .1A_{16} .1 A 16 can be expanded as:
.1
A
16
=
1
⋅
16
−
1
+
10
⋅
16
−
2
=
1
16
+
10
256
=
0.0625
+
0.0390625
=
0.1015625
.
.1
A
16
=
1
⋅
16
−
1
+
10
⋅
16
−
2
=
1
16
+
10
256
=
0.0625
+
0.0390625
=
0.1015625
.
.1A_(16)=1*16^(-1)+10*16^(-2)=(1)/(16)+(10)/(256)=0.0625+0.0390625=0.1015625. .1A_{16} = 1 \cdot 16^{-1} + 10 \cdot 16^{-2} = \frac{1}{16} + \frac{10}{256} = 0.0625 + 0.0390625 = 0.1015625. .1 A 16 = 1 ⋅ 16 − 1 + 10 ⋅ 16 − 2 = 1 16 + 10 256 = 0.0625 + 0.0390625 = 0.1015625 .
Final decimal equivalent:
Now, combining both parts:
9
B
2.1
A
16
=
2482
+
0.1015625
=
2482.1015625
.
9
B
2.1
A
16
=
2482
+
0.1015625
=
2482.1015625
.
9B 2.1A_(16)=2482+0.1015625=2482.1015625. 9B2.1A_{16} = 2482 + 0.1015625 = 2482.1015625. 9 B 2.1 A 16 = 2482 + 0.1015625 = 2482.1015625 .
Thus, the decimal equivalent of
(
9
B
2.1
A
)
16
(
9
B
2.1
A
)
16
(9B 2.1 A)_(16) (9B2.1A)_{16} ( 9 B 2.1 A ) 16 is:
2482.1015625
.
2482.1015625
.
2482.1015625. 2482.1015625. 2482.1015625 .
Question:-5(d)
Answer:
Problem Statement:
A rough uniform board of mass
m
m
m m m and length
2
a
2
a
2a 2a 2 a rests on a smooth horizontal plane. A man of mass
M
M
M M M walks on it from one end to the other. Find the distance covered by the board during this time.
Approach:
Since the plane is smooth , there is no horizontal friction between the board and the plane. However, the board is rough , meaning there is friction between the man and the board , allowing the man to walk.
Key Observations:
No external horizontal forces: The system (man + board) has no net external horizontal force, so the center of mass (CoM) remains stationary .
Man moves relative to the board: As the man walks, the board moves in the opposite direction to keep the CoM fixed.
Step 1: Define the Initial Setup
Let the board lie along the
x
x
x x x -axis from
x
=
0
x
=
0
x=0 x = 0 x = 0 to
x
=
2
a
x
=
2
a
x=2a x = 2a x = 2 a .
Initially, the man stands at
x
=
0
x
=
0
x=0 x = 0 x = 0 .
The center of mass (CoM) of the system (man + board) is calculated as:
x
CoM
=
M
⋅
0
+
m
⋅
a
M
+
m
=
m
a
M
+
m
x
CoM
=
M
⋅
0
+
m
⋅
a
M
+
m
=
m
a
M
+
m
x_(“CoM”)=(M*0+m*a)/(M+m)=(ma)/(M+m) x_{\text{CoM}} = \frac{M \cdot 0 + m \cdot a}{M + m} = \frac{ma}{M + m} x CoM = M ⋅ 0 + m ⋅ a M + m = m a M + m
Step 2: Man Walks to the Other End
The man moves to
x
=
2
a
x
=
2
a
x=2a x = 2a x = 2 a relative to the board .
Let the board move a distance
d
d
d d d to the left (so the man’s absolute position is
2
a
−
d
2
a
−
d
2a-d 2a – d 2 a − d ).
The new CoM must remain at the same position (since no external forces act horizontally):
M
(
2
a
−
d
)
+
m
(
a
−
d
)
M
+
m
=
m
a
M
+
m
M
(
2
a
−
d
)
+
m
(
a
−
d
)
M
+
m
=
m
a
M
+
m
(M(2a-d)+m(a-d))/(M+m)=(ma)/(M+m) \frac{M(2a – d) + m(a – d)}{M + m} = \frac{ma}{M + m} M ( 2 a − d ) + m ( a − d ) M + m = m a M + m
Step 3: Solve for
d
d
d d d
M
(
2
a
−
d
)
+
m
(
a
−
d
)
=
m
a
M
(
2
a
−
d
)
+
m
(
a
−
d
)
=
m
a
M(2a-d)+m(a-d)=ma M(2a – d) + m(a – d) = ma M ( 2 a − d ) + m ( a − d ) = m a
2
M
a
−
M
d
+
m
a
−
m
d
=
m
a
2
M
a
−
M
d
+
m
a
−
m
d
=
m
a
2Ma-Md+ma-md=ma 2Ma – Md + ma – md = ma 2 M a − M d + m a − m d = m a
2
M
a
−
M
d
−
m
d
=
0
2
M
a
−
M
d
−
m
d
=
0
2Ma-Md-md=0 2Ma – Md – md = 0 2 M a − M d − m d = 0
d
(
M
+
m
)
=
2
M
a
d
(
M
+
m
)
=
2
M
a
d(M+m)=2Ma d(M + m) = 2Ma d ( M + m ) = 2 M a
d
=
2
M
a
M
+
m
d
=
2
M
a
M
+
m
d=(2Ma)/(M+m) d = \frac{2Ma}{M + m} d = 2 M a M + m
Final Answer:
The distance covered by the board is:
2
M
a
M
+
m
2
M
a
M
+
m
(2Ma)/(M+m) \boxed{\frac{2Ma}{M + m}} 2 M a M + m
Question:-5(e)
The velocity potential
ϕ
ϕ
phi \phi ϕ of a flow is given by
ϕ
=
1
2
(
x
2
+
y
2
−
2
z
2
)
.
ϕ
=
1
2
(
x
2
+
y
2
−
2
z
2
)
.
phi=(1)/(2)(x^(2)+y^(2)-2z^(2)). \phi = \frac{1}{2} (x^2 + y^2 – 2z^2). ϕ = 1 2 ( x 2 + y 2 − 2 z 2 ) .
Determine the streamlines.
Answer:
To determine the
streamlines of the flow given the velocity potential
ϕ
ϕ
phi \phi ϕ , we follow these steps:
Given:
The velocity potential is:
ϕ
=
1
2
(
x
2
+
y
2
−
2
z
2
)
.
ϕ
=
1
2
(
x
2
+
y
2
−
2
z
2
)
.
phi=(1)/(2)(x^(2)+y^(2)-2z^(2)). \phi = \frac{1}{2} (x^2 + y^2 – 2z^2). ϕ = 1 2 ( x 2 + y 2 − 2 z 2 ) .
Step 1: Compute the Velocity Field
The velocity components
(
u
,
v
,
w
)
(
u
,
v
,
w
)
(u,v,w) (u, v, w) ( u , v , w ) are derived from the gradient of
ϕ
ϕ
phi \phi ϕ :
v
=
∇
ϕ
=
(
∂
ϕ
∂
x
,
∂
ϕ
∂
y
,
∂
ϕ
∂
z
)
.
v
=
∇
ϕ
=
∂
ϕ
∂
x
,
∂
ϕ
∂
y
,
∂
ϕ
∂
z
.
v=grad phi=((del phi)/(del x),(del phi)/(del y),(del phi)/(del z)). \mathbf{v} = \nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right). v = ∇ ϕ = ( ∂ ϕ ∂ x , ∂ ϕ ∂ y , ∂ ϕ ∂ z ) .
Computing the partial derivatives:
u
=
∂
ϕ
∂
x
=
x
,
v
=
∂
ϕ
∂
y
=
y
,
w
=
∂
ϕ
∂
z
=
−
2
z
.
u
=
∂
ϕ
∂
x
=
x
,
v
=
∂
ϕ
∂
y
=
y
,
w
=
∂
ϕ
∂
z
=
−
2
z
.
u=(del phi)/(del x)=x,quad v=(del phi)/(del y)=y,quad w=(del phi)/(del z)=-2z. u = \frac{\partial \phi}{\partial x} = x, \quad v = \frac{\partial \phi}{\partial y} = y, \quad w = \frac{\partial \phi}{\partial z} = -2z. u = ∂ ϕ ∂ x = x , v = ∂ ϕ ∂ y = y , w = ∂ ϕ ∂ z = − 2 z .
Thus, the velocity field is:
v
=
(
x
,
y
,
−
2
z
)
.
v
=
(
x
,
y
,
−
2
z
)
.
v=(x,y,-2z). \mathbf{v} = (x, y, -2z). v = ( x , y , − 2 z ) .
Step 2: Write the Differential Equations for Streamlines
Streamlines are curves whose tangent at any point is parallel to the velocity vector. The streamline equations are:
d
x
u
=
d
y
v
=
d
z
w
.
d
x
u
=
d
y
v
=
d
z
w
.
(dx)/(u)=(dy)/(v)=(dz)/(w). \frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}. d x u = d y v = d z w .
Substituting the velocity components:
d
x
x
=
d
y
y
=
d
z
−
2
z
.
d
x
x
=
d
y
y
=
d
z
−
2
z
.
(dx)/(x)=(dy)/(y)=(dz)/(-2z). \frac{dx}{x} = \frac{dy}{y} = \frac{dz}{-2z}. d x x = d y y = d z − 2 z .
Step 3: Solve the Streamline Equations
We solve the system of differential equations step-by-step.
(a) Relate
x
x
x x x and
y
y
y y y :
d
x
x
=
d
y
y
⟹
∫
d
x
x
=
∫
d
y
y
⟹
ln
|
x
|
=
ln
|
y
|
+
C
1
.
d
x
x
=
d
y
y
⟹
∫
d
x
x
=
∫
d
y
y
⟹
ln
|
x
|
=
ln
|
y
|
+
C
1
.
(dx)/(x)=(dy)/(y)Longrightarrowint(dx)/(x)=int(dy)/(y)Longrightarrowln |x|=ln |y|+C_(1). \frac{dx}{x} = \frac{dy}{y} \implies \int \frac{dx}{x} = \int \frac{dy}{y} \implies \ln|x| = \ln|y| + C_1. d x x = d y y ⟹ ∫ d x x = ∫ d y y ⟹ ln | x | = ln | y | + C 1 .
Exponentiating both sides:
x
=
C
1
′
y
(where
C
1
′
=
e
C
1
)
.
x
=
C
1
′
y
(where
C
1
′
=
e
C
1
)
.
x=C_(1)^(‘)y quad(where (C_(1)^(‘)=e^(C_(1)))”)”. x = C_1′ y \quad \text{(where \( C_1′ = e^{C_1} \))}. x = C 1 ′ y (where C 1 ′ = e C 1 ) .
This represents a family of lines in the
x
y
x
y
xy xy x y -plane.
(b) Relate
x
x
x x x and
z
z
z z z :
d
x
x
=
d
z
−
2
z
⟹
∫
d
x
x
=
−
1
2
∫
d
z
z
⟹
ln
|
x
|
=
−
1
2
ln
|
z
|
+
C
2
.
d
x
x
=
d
z
−
2
z
⟹
∫
d
x
x
=
−
1
2
∫
d
z
z
⟹
ln
|
x
|
=
−
1
2
ln
|
z
|
+
C
2
.
(dx)/(x)=(dz)/(-2z)Longrightarrowint(dx)/(x)=-(1)/(2)int(dz)/(z)Longrightarrowln |x|=-(1)/(2)ln |z|+C_(2). \frac{dx}{x} = \frac{dz}{-2z} \implies \int \frac{dx}{x} = -\frac{1}{2} \int \frac{dz}{z} \implies \ln|x| = -\frac{1}{2} \ln|z| + C_2. d x x = d z − 2 z ⟹ ∫ d x x = − 1 2 ∫ d z z ⟹ ln | x | = − 1 2 ln | z | + C 2 .
Exponentiating and rearranging:
x
=
C
2
′
z
(where
C
2
′
=
e
C
2
)
.
x
=
C
2
′
z
(where
C
2
′
=
e
C
2
)
.
x=(C_(2)^(‘))/(sqrtz)quad(where (C_(2)^(‘)=e^(C_(2)))”)”. x = \frac{C_2′}{\sqrt{z}} \quad \text{(where \( C_2′ = e^{C_2} \))}. x = C 2 ′ z (where C 2 ′ = e C 2 ) .
This gives a relationship between
x
x
x x x and
z
z
z z z .
(c) General Solution:
Combining the results, we parameterize the streamlines. Let
x
=
t
x
=
t
x=t x = t x = t , then:
y
=
C
1
t
,
z
=
C
2
t
2
.
y
=
C
1
t
,
z
=
C
2
t
2
.
y=C_(1)t,quad z=(C_(2))/(t^(2)). y = C_1 t, \quad z = \frac{C_2}{t^2}. y = C 1 t , z = C 2 t 2 .
Thus, the parametric equations of the streamlines are:
x
=
t
,
y
=
C
1
t
,
z
=
C
2
t
2
,
x
=
t
,
y
=
C
1
t
,
z
=
C
2
t
2
,
x=t,quad y=C_(1)t,quad z=(C_(2))/(t^(2)), x = t, \quad y = C_1 t, \quad z = \frac{C_2}{t^2}, x = t , y = C 1 t , z = C 2 t 2 ,
where
C
1
C
1
C_(1) C_1 C 1 and
C
2
C
2
C_(2) C_2 C 2 are constants determined by initial conditions.
Step 4: Eliminate the Parameter (Optional)
To express the streamlines explicitly, we can eliminate
t
t
t t t :
t
=
x
⟹
y
=
C
1
x
,
z
=
C
2
x
2
.
t
=
x
⟹
y
=
C
1
x
,
z
=
C
2
x
2
.
t=xLongrightarrowy=C_(1)x,quad z=(C_(2))/(x^(2)). t = x \implies y = C_1 x, \quad z = \frac{C_2}{x^2}. t = x ⟹ y = C 1 x , z = C 2 x 2 .
Thus, the streamlines lie on the surfaces defined by:
y
=
k
x
and
z
=
C
x
2
,
y
=
k
x
and
z
=
C
x
2
,
y=kx quad”and”quad z=(C)/(x^(2)), y = kx \quad \text{and} \quad z = \frac{C}{x^2}, y = k x and z = C x 2 ,
where
k
k
k k k and
C
C
C C C are constants.
Final Answer:
The streamlines are given by the family of curves:
y
x
=
constant
,
z
x
2
=
constant
y
x
=
constant
,
z
x
2
=
constant
(y)/(x)=”constant”,quad zx^(2)=”constant” \boxed{ \frac{y}{x} = \text{constant}, \quad z x^2 = \text{constant} } y x = constant , z x 2 = constant
or parametrically:
(
x
,
y
,
z
)
=
(
t
,
C
1
t
,
C
2
t
2
)
,
t
∈
R
(
x
,
y
,
z
)
=
t
,
C
1
t
,
C
2
t
2
,
t
∈
R
(x,y,z)=(t,C_(1)t,(C_(2))/(t^(2))),quad t inR \boxed{ (x, y, z) = \left( t, \, C_1 t, \, \frac{C_2}{t^2} \right), \quad t \in \mathbb{R} } ( x , y , z ) = ( t , C 1 t , C 2 t 2 ) , t ∈ R
where
C
1
C
1
C_(1) C_1 C 1 and
C
2
C
2
C_(2) C_2 C 2 are constants determined by initial conditions.
Question:-6(a)
Show that the solution of the two-dimensional Laplace’s equation
∂
2
ϕ
(
x
,
y
)
∂
x
2
+
∂
2
ϕ
(
x
,
y
)
∂
y
2
=
0
,
x
∈
(
−
∞
,
∞
)
,
y
≥
0
∂
2
ϕ
(
x
,
y
)
∂
x
2
+
∂
2
ϕ
(
x
,
y
)
∂
y
2
=
0
,
x
∈
(
−
∞
,
∞
)
,
y
≥
0
(del^(2)phi(x,y))/(delx^(2))+(del^(2)phi(x,y))/(dely^(2))=0,quad x in(-oo,oo),y >= 0 \frac{\partial^2 \phi(x, y)}{\partial x^2} + \frac{\partial^2 \phi(x, y)}{\partial y^2} = 0, \quad x \in (-\infty, \infty), \, y \geq 0 ∂ 2 ϕ ( x , y ) ∂ x 2 + ∂ 2 ϕ ( x , y ) ∂ y 2 = 0 , x ∈ ( − ∞ , ∞ ) , y ≥ 0
subject to the boundary condition
ϕ
(
x
,
0
)
=
f
(
x
)
,
x
∈
(
−
∞
,
∞
)
ϕ
(
x
,
0
)
=
f
(
x
)
,
x
∈
(
−
∞
,
∞
)
phi(x,0)=f(x),x in(-oo,oo) \phi(x, 0) = f(x), x \in (-\infty, \infty) ϕ ( x , 0 ) = f ( x ) , x ∈ ( − ∞ , ∞ ) , along with
ϕ
(
x
,
y
)
→
0
ϕ
(
x
,
y
)
→
0
phi(x,y)rarr0 \phi(x, y) \to 0 ϕ ( x , y ) → 0 for
|
x
|
→
∞
|
x
|
→
∞
|x|rarr oo |x| \to \infty | x | → ∞ and
y
→
∞
y
→
∞
y rarr oo y \to \infty y → ∞ , can be written in the form
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
d
ξ
y
2
+
(
x
−
ξ
)
2
.
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
d
ξ
y
2
+
(
x
−
ξ
)
2
.
phi(x,y)=(y)/( pi)int_(-oo)^(oo)(f(xi)d xi)/(y^(2)+(x-xi)^(2)). \phi(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) \, d\xi}{y^2 + (x – \xi)^2}. ϕ ( x , y ) = y π ∫ − ∞ ∞ f ( ξ ) d ξ y 2 + ( x − ξ ) 2 .
Answer:
Solution to the Two-Dimensional Laplace’s Equation with Given Boundary Conditions
We aim to show that the solution to Laplace’s equation in the upper half-plane
y
≥
0
y
≥
0
y >= 0 y \geq 0 y ≥ 0 ,
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
(del^(2)phi)/(delx^(2))+(del^(2)phi)/(dely^(2))=0, \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, ∂ 2 ϕ ∂ x 2 + ∂ 2 ϕ ∂ y 2 = 0 ,
with boundary condition
ϕ
(
x
,
0
)
=
f
(
x
)
ϕ
(
x
,
0
)
=
f
(
x
)
phi(x,0)=f(x) \phi(x, 0) = f(x) ϕ ( x , 0 ) = f ( x ) and decay conditions
ϕ
(
x
,
y
)
→
0
ϕ
(
x
,
y
)
→
0
phi(x,y)rarr0 \phi(x, y) \to 0 ϕ ( x , y ) → 0 as
|
x
|
→
∞
|
x
|
→
∞
|x|rarr oo |x| \to \infty | x | → ∞ or
y
→
∞
y
→
∞
y rarr oo y \to \infty y → ∞ , is given by
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
y
2
+
(
x
−
ξ
)
2
d
ξ
.
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
y
2
+
(
x
−
ξ
)
2
d
ξ
.
phi(x,y)=(y)/( pi)int_(-oo)^(oo)(f(xi))/(y^(2)+(x-xi)^(2))d xi. \phi(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{y^2 + (x – \xi)^2} \, d\xi. ϕ ( x , y ) = y π ∫ − ∞ ∞ f ( ξ ) y 2 + ( x − ξ ) 2 d ξ .
Since
x
∈
(
−
∞
,
∞
)
x
∈
(
−
∞
,
∞
)
x in(-oo,oo) x \in (-\infty, \infty) x ∈ ( − ∞ , ∞ ) , we take the
Fourier transform of
ϕ
(
x
,
y
)
ϕ
(
x
,
y
)
phi(x,y) \phi(x, y) ϕ ( x , y ) with respect to
x
x
x x x :
ϕ
^
(
k
,
y
)
=
∫
−
∞
∞
ϕ
(
x
,
y
)
e
−
i
k
x
d
x
.
ϕ
^
(
k
,
y
)
=
∫
−
∞
∞
ϕ
(
x
,
y
)
e
−
i
k
x
d
x
.
hat(phi)(k,y)=int_(-oo)^(oo)phi(x,y)e^(-ikx)dx. \hat{\phi}(k, y) = \int_{-\infty}^{\infty} \phi(x, y) e^{-ikx} \, dx. ϕ ^ ( k , y ) = ∫ − ∞ ∞ ϕ ( x , y ) e − i k x d x .
The inverse transform is:
ϕ
(
x
,
y
)
=
1
2
π
∫
−
∞
∞
ϕ
^
(
k
,
y
)
e
i
k
x
d
k
.
ϕ
(
x
,
y
)
=
1
2
π
∫
−
∞
∞
ϕ
^
(
k
,
y
)
e
i
k
x
d
k
.
phi(x,y)=(1)/(2pi)int_(-oo)^(oo) hat(phi)(k,y)e^(ikx)dk. \phi(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\phi}(k, y) e^{ikx} \, dk. ϕ ( x , y ) = 1 2 π ∫ − ∞ ∞ ϕ ^ ( k , y ) e i k x d k .
Taking the Fourier transform of Laplace’s equation:
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
=
0
,
(del^(2)phi)/(delx^(2))+(del^(2)phi)/(dely^(2))=0, \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, ∂ 2 ϕ ∂ x 2 + ∂ 2 ϕ ∂ y 2 = 0 ,
we get:
(
−
k
2
)
ϕ
^
(
k
,
y
)
+
∂
2
ϕ
^
∂
y
2
=
0.
(
−
k
2
)
ϕ
^
(
k
,
y
)
+
∂
2
ϕ
^
∂
y
2
=
0.
(-k^(2)) hat(phi)(k,y)+(del^(2)( hat(phi)))/(dely^(2))=0. (-k^2) \hat{\phi}(k, y) + \frac{\partial^2 \hat{\phi}}{\partial y^2} = 0. ( − k 2 ) ϕ ^ ( k , y ) + ∂ 2 ϕ ^ ∂ y 2 = 0.
This is an
ODE in
y
y
y y y :
∂
2
ϕ
^
∂
y
2
−
k
2
ϕ
^
=
0.
∂
2
ϕ
^
∂
y
2
−
k
2
ϕ
^
=
0.
(del^(2)( hat(phi)))/(dely^(2))-k^(2) hat(phi)=0. \frac{\partial^2 \hat{\phi}}{\partial y^2} – k^2 \hat{\phi} = 0. ∂ 2 ϕ ^ ∂ y 2 − k 2 ϕ ^ = 0.
The general solution is:
ϕ
^
(
k
,
y
)
=
A
(
k
)
e
|
k
|
y
+
B
(
k
)
e
−
|
k
|
y
.
ϕ
^
(
k
,
y
)
=
A
(
k
)
e
|
k
|
y
+
B
(
k
)
e
−
|
k
|
y
.
hat(phi)(k,y)=A(k)e^(|k|y)+B(k)e^(-|k|y). \hat{\phi}(k, y) = A(k) e^{|k|y} + B(k) e^{-|k|y}. ϕ ^ ( k , y ) = A ( k ) e | k | y + B ( k ) e − | k | y .
Imposing the decay condition
ϕ
(
x
,
y
)
→
0
ϕ
(
x
,
y
)
→
0
phi(x,y)rarr0 \phi(x, y) \to 0 ϕ ( x , y ) → 0 as
y
→
∞
y
→
∞
y rarr oo y \to \infty y → ∞ , we discard the growing exponential:
ϕ
^
(
k
,
y
)
=
B
(
k
)
e
−
|
k
|
y
.
ϕ
^
(
k
,
y
)
=
B
(
k
)
e
−
|
k
|
y
.
hat(phi)(k,y)=B(k)e^(-|k|y). \hat{\phi}(k, y) = B(k) e^{-|k|y}. ϕ ^ ( k , y ) = B ( k ) e − | k | y .
Step 4: Apply the Boundary Condition
At
y
=
0
y
=
0
y=0 y = 0 y = 0 ,
ϕ
(
x
,
0
)
=
f
(
x
)
ϕ
(
x
,
0
)
=
f
(
x
)
phi(x,0)=f(x) \phi(x, 0) = f(x) ϕ ( x , 0 ) = f ( x ) , so:
ϕ
^
(
k
,
0
)
=
f
^
(
k
)
=
B
(
k
)
.
ϕ
^
(
k
,
0
)
=
f
^
(
k
)
=
B
(
k
)
.
hat(phi)(k,0)= hat(f)(k)=B(k). \hat{\phi}(k, 0) = \hat{f}(k) = B(k). ϕ ^ ( k , 0 ) = f ^ ( k ) = B ( k ) .
Thus, the solution in Fourier space is:
ϕ
^
(
k
,
y
)
=
f
^
(
k
)
e
−
|
k
|
y
.
ϕ
^
(
k
,
y
)
=
f
^
(
k
)
e
−
|
k
|
y
.
hat(phi)(k,y)= hat(f)(k)e^(-|k|y). \hat{\phi}(k, y) = \hat{f}(k) e^{-|k|y}. ϕ ^ ( k , y ) = f ^ ( k ) e − | k | y .
We compute the inverse transform:
ϕ
(
x
,
y
)
=
1
2
π
∫
−
∞
∞
f
^
(
k
)
e
−
|
k
|
y
e
i
k
x
d
k
.
ϕ
(
x
,
y
)
=
1
2
π
∫
−
∞
∞
f
^
(
k
)
e
−
|
k
|
y
e
i
k
x
d
k
.
phi(x,y)=(1)/(2pi)int_(-oo)^(oo) hat(f)(k)e^(-|k|y)e^(ikx)dk. \phi(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{-|k|y} e^{ikx} \, dk. ϕ ( x , y ) = 1 2 π ∫ − ∞ ∞ f ^ ( k ) e − | k | y e i k x d k .
Using the convolution theorem , since:
e
−
|
k
|
y
=
F
{
2
y
x
2
+
y
2
}
,
e
−
|
k
|
y
=
F
2
y
x
2
+
y
2
,
e^(-|k|y)=F{(2y)/(x^(2)+y^(2))}, e^{-|k|y} = \mathcal{F}\left\{ \frac{2y}{x^2 + y^2} \right\}, e − | k | y = F { 2 y x 2 + y 2 } ,
the inverse transform of
f
^
(
k
)
e
−
|
k
|
y
f
^
(
k
)
e
−
|
k
|
y
hat(f)(k)e^(-|k|y) \hat{f}(k) e^{-|k|y} f ^ ( k ) e − | k | y is the convolution:
ϕ
(
x
,
y
)
=
f
(
x
)
∗
(
y
π
(
x
2
+
y
2
)
)
.
ϕ
(
x
,
y
)
=
f
(
x
)
∗
y
π
(
x
2
+
y
2
)
.
phi(x,y)=f(x)**((y)/(pi(x^(2)+y^(2)))). \phi(x, y) = f(x) * \left( \frac{y}{\pi (x^2 + y^2)} \right). ϕ ( x , y ) = f ( x ) ∗ ( y π ( x 2 + y 2 ) ) .
Thus:
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
(
x
−
ξ
)
2
+
y
2
d
ξ
.
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
(
x
−
ξ
)
2
+
y
2
d
ξ
.
phi(x,y)=(y)/( pi)int_(-oo)^(oo)(f(xi))/((x-xi)^(2)+y^(2))d xi. \phi(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x – \xi)^2 + y^2} \, d\xi. ϕ ( x , y ) = y π ∫ − ∞ ∞ f ( ξ ) ( x − ξ ) 2 + y 2 d ξ .
Final Answer:
The solution to Laplace’s equation with the given boundary conditions is:
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
y
2
+
(
x
−
ξ
)
2
d
ξ
ϕ
(
x
,
y
)
=
y
π
∫
−
∞
∞
f
(
ξ
)
y
2
+
(
x
−
ξ
)
2
d
ξ
phi(x,y)=(y)/( pi)int_(-oo)^(oo)(f(xi))/(y^(2)+(x-xi)^(2))d xi \boxed{ \phi(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{y^2 + (x – \xi)^2} \, d\xi } ϕ ( x , y ) = y π ∫ − ∞ ∞ f ( ξ ) y 2 + ( x − ξ ) 2 d ξ
Question:-6(b)
Draw the logical circuit for the Boolean expression:
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y=ABC^(‘)+BC^(‘)+A^(‘)B Y = ABC’ + BC’ + A’B Y = A B C ′ + B C ′ + A ′ B
Also, obtain the output
Y
Y
Y Y Y (truth table) for the following three input bit sequences:
A
=
10001111
A
=
10001111
A=10001111 A = 10001111 A = 10001111
B
=
00111100
B
=
00111100
B=00111100 B = 00111100 B = 00111100
C
=
11000100
C
=
11000100
C=11000100 C = 11000100 C = 11000100
Answer:
Step 1: Understand the Boolean Expression
The expression is:
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y=ABC^(‘)+BC^(‘)+A^(‘)B Y = ABC’ + BC’ + A’B Y = A B C ′ + B C ′ + A ′ B
C
′
C
′
C^(‘) C’ C ′ denotes the complement of
C
C
C C C (i.e.,
C
′
=
1
C
′
=
1
C^(‘)=1 C’ = 1 C ′ = 1 when
C
=
0
C
=
0
C=0 C = 0 C = 0 , and
C
′
=
0
C
′
=
0
C^(‘)=0 C’ = 0 C ′ = 0 when
C
=
1
C
=
1
C=1 C = 1 C = 1 ).
The expression involves three inputs:
A
A
A A A ,
B
B
B B B , and
C
C
C C C , and we need to compute
Y
Y
Y Y Y for each corresponding bit in the input sequences.
The input sequences are:
A
=
10001111
A
=
10001111
A=10001111 A = 10001111 A = 10001111
B
=
00111100
B
=
00111100
B=00111100 B = 00111100 B = 00111100
C
=
11000100
C
=
11000100
C=11000100 C = 11000100 C = 11000100
Each sequence has 8 bits, so we compute
Y
Y
Y Y Y for each of the 8 time steps (positions 1 to 8). We evaluate
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y
=
A
B
C
′
+
B
C
′
+
A
′
B
Y=ABC^(‘)+BC^(‘)+A^(‘)B Y = ABC’ + BC’ + A’B Y = A B C ′ + B C ′ + A ′ B for each bit position.
Position
A
B
C
C’
ABC’
BC’
A’B
Y
1
1
0
1
0
0
0
0
0
2
0
0
1
0
0
0
0
0
3
0
1
0
1
0
1
1
1
4
0
1
0
1
0
1
1
1
5
1
1
0
1
1
1
0
1
6
1
1
1
0
0
0
0
0
7
1
0
0
1
0
0
0
0
8
1
0
0
1
0
0
0
0
Step 4: Output Sequence
From the table above, the output
Y
Y
Y Y Y for the 8 positions is:
Y
=
00111000
Y
=
00111000
Y=00111000 Y = 00111000 Y = 00111000
Question:-6(c)
Find the moment of inertia of a quadrant of an elliptic disk
x
2
a
2
+
y
2
b
2
=
1
x
2
a
2
+
y
2
b
2
=
1
(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 x 2 a 2 + y 2 b 2 = 1 , of mass
M
M
M M M , about the line passing through its centre and perpendicular to its plane. Given that the density at any point is proportional to
x
y
x
y
xy xy x y .
Answer:
The moment of inertia of a quadrant of the elliptic disk
x
2
a
2
+
y
2
b
2
=
1
x
2
a
2
+
y
2
b
2
=
1
(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 x 2 a 2 + y 2 b 2 = 1 with mass
M
M
M M M and density proportional to
x
y
x
y
xy xy x y about the line perpendicular to its plane passing through its center (the
z
z
z z z -axis) is given by
M
3
(
a
2
+
b
2
)
M
3
(
a
2
+
b
2
)
(M)/(3)(a^(2)+b^(2)) \frac{M}{3}(a^2 + b^2) M 3 ( a 2 + b 2 ) .
The density
ρ
=
k
x
y
ρ
=
k
x
y
rho=kxy \rho = kxy ρ = k x y where
k
k
k k k is a constant. The total mass
M
M
M M M of the quadrant is found by integrating the density over the first quadrant region
0
≤
x
≤
a
0
≤
x
≤
a
0 <= x <= a 0 \leq x \leq a 0 ≤ x ≤ a ,
0
≤
y
≤
b
1
−
x
2
a
2
0
≤
y
≤
b
1
−
x
2
a
2
0 <= y <= bsqrt(1-(x^(2))/(a^(2))) 0 \leq y \leq b\sqrt{1 – \frac{x^2}{a^2}} 0 ≤ y ≤ b 1 − x 2 a 2 :
M
=
k
∫
0
a
∫
0
b
1
−
x
2
a
2
x
y
d
y
d
x
=
k
a
2
b
2
8
.
M
=
k
∫
0
a
∫
0
b
1
−
x
2
a
2
x
y
d
y
d
x
=
k
a
2
b
2
8
.
M=kint_(0)^(a)int_(0)^(bsqrt(1-(x^(2))/(a^(2))))xydydx=(ka^(2)b^(2))/(8). M = k \int_0^a \int_0^{b\sqrt{1 – \frac{x^2}{a^2}}} xy dy dx = \frac{k a^2 b^2}{8}. M = k ∫ 0 a ∫ 0 b 1 − x 2 a 2 x y d y d x = k a 2 b 2 8 .
k
=
8
M
a
2
b
2
.
k
=
8
M
a
2
b
2
.
k=(8M)/(a^(2)b^(2)). k = \frac{8M}{a^2 b^2}. k = 8 M a 2 b 2 .
The moment of inertia about the
z
z
z z z -axis is given by:
I
=
∬
r
2
d
m
=
∬
(
x
2
+
y
2
)
ρ
d
A
=
k
∬
(
x
2
+
y
2
)
x
y
d
A
=
k
∬
(
x
3
y
+
x
y
3
)
d
A
.
I
=
∬
r
2
d
m
=
∬
(
x
2
+
y
2
)
ρ
d
A
=
k
∬
(
x
2
+
y
2
)
x
y
d
A
=
k
∬
(
x
3
y
+
x
y
3
)
d
A
.
I=∬r^(2)dm=∬(x^(2)+y^(2))rho dA=k∬(x^(2)+y^(2))xydA=k∬(x^(3)y+xy^(3))dA. I = \iint r^2 dm = \iint (x^2 + y^2) \rho dA = k \iint (x^2 + y^2) xy dA = k \iint (x^3 y + x y^3) dA. I = ∬ r 2 d m = ∬ ( x 2 + y 2 ) ρ d A = k ∬ ( x 2 + y 2 ) x y d A = k ∬ ( x 3 y + x y 3 ) d A .
This splits into two integrals:
I
1
=
∬
x
3
y
d
A
,
I
2
=
∬
x
y
3
d
A
.
I
1
=
∬
x
3
y
d
A
,
I
2
=
∬
x
y
3
d
A
.
I_(1)=∬x^(3)ydA,quadI_(2)=∬xy^(3)dA. I_1 = \iint x^3 y dA, \quad I_2 = \iint x y^3 dA. I 1 = ∬ x 3 y d A , I 2 = ∬ x y 3 d A .
Evaluating each:
I
1
=
∫
0
a
∫
0
b
1
−
x
2
a
2
x
3
y
d
y
d
x
=
a
4
b
2
24
,
I
1
=
∫
0
a
∫
0
b
1
−
x
2
a
2
x
3
y
d
y
d
x
=
a
4
b
2
24
,
I_(1)=int_(0)^(a)int_(0)^(bsqrt(1-(x^(2))/(a^(2))))x^(3)ydydx=(a^(4)b^(2))/(24), I_1 = \int_0^a \int_0^{b\sqrt{1 – \frac{x^2}{a^2}}} x^3 y dy dx = \frac{a^4 b^2}{24}, I 1 = ∫ 0 a ∫ 0 b 1 − x 2 a 2 x 3 y d y d x = a 4 b 2 24 ,
I
2
=
∫
0
a
∫
0
b
1
−
x
2
a
2
x
y
3
d
y
d
x
=
a
2
b
4
24
.
I
2
=
∫
0
a
∫
0
b
1
−
x
2
a
2
x
y
3
d
y
d
x
=
a
2
b
4
24
.
I_(2)=int_(0)^(a)int_(0)^(bsqrt(1-(x^(2))/(a^(2))))xy^(3)dydx=(a^(2)b^(4))/(24). I_2 = \int_0^a \int_0^{b\sqrt{1 – \frac{x^2}{a^2}}} x y^3 dy dx = \frac{a^2 b^4}{24}. I 2 = ∫ 0 a ∫ 0 b 1 − x 2 a 2 x y 3 d y d x = a 2 b 4 24 .
Thus,
I
1
+
I
2
=
a
4
b
2
24
+
a
2
b
4
24
=
a
2
b
2
24
(
a
2
+
b
2
)
.
I
1
+
I
2
=
a
4
b
2
24
+
a
2
b
4
24
=
a
2
b
2
24
(
a
2
+
b
2
)
.
I_(1)+I_(2)=(a^(4)b^(2))/(24)+(a^(2)b^(4))/(24)=(a^(2)b^(2))/(24)(a^(2)+b^(2)). I_1 + I_2 = \frac{a^4 b^2}{24} + \frac{a^2 b^4}{24} = \frac{a^2 b^2}{24}(a^2 + b^2). I 1 + I 2 = a 4 b 2 24 + a 2 b 4 24 = a 2 b 2 24 ( a 2 + b 2 ) .
I
=
k
(
I
1
+
I
2
)
=
8
M
a
2
b
2
⋅
a
2
b
2
24
(
a
2
+
b
2
)
=
M
3
(
a
2
+
b
2
)
.
I
=
k
(
I
1
+
I
2
)
=
8
M
a
2
b
2
⋅
a
2
b
2
24
(
a
2
+
b
2
)
=
M
3
(
a
2
+
b
2
)
.
I=k(I_(1)+I_(2))=(8M)/(a^(2)b^(2))*(a^(2)b^(2))/(24)(a^(2)+b^(2))=(M)/(3)(a^(2)+b^(2)). I = k (I_1 + I_2) = \frac{8M}{a^2 b^2} \cdot \frac{a^2 b^2}{24}(a^2 + b^2) = \frac{M}{3}(a^2 + b^2). I = k ( I 1 + I 2 ) = 8 M a 2 b 2 ⋅ a 2 b 2 24 ( a 2 + b 2 ) = M 3 ( a 2 + b 2 ) .
This result is symmetric in
a
a
a a a and
b
b
b b b because the axis of rotation is perpendicular to the plane and the moment of inertia depends on the radial distance
r
=
x
2
+
y
2
r
=
x
2
+
y
2
r=sqrt(x^(2)+y^(2)) r = \sqrt{x^2 + y^2} r = x 2 + y 2 , which involves both
x
x
x x x and
y
y
y y y . The expression is consistent with special cases, such as when
a
=
b
=
R
a
=
b
=
R
a=b=R a = b = R a = b = R (circular quadrant), yielding
I
=
2
M
3
R
2
I
=
2
M
3
R
2
I=(2M)/(3)R^(2) I = \frac{2M}{3}R^2 I = 2 M 3 R 2 , which is larger than the uniform density case due to higher density in regions farther from the center.
Question:-7(a)
Find the integral surface of the following quasi-linear equation
(
y
−
ϕ
)
∂
ϕ
∂
x
+
(
ϕ
−
x
)
∂
ϕ
∂
y
=
x
−
y
,
(
y
−
ϕ
)
∂
ϕ
∂
x
+
(
ϕ
−
x
)
∂
ϕ
∂
y
=
x
−
y
,
(y-phi)(del phi)/(del x)+(phi-x)(del phi)/(del y)=x-y, (y – \phi) \frac{\partial \phi}{\partial x} + (\phi – x) \frac{\partial \phi}{\partial y} = x – y, ( y − ϕ ) ∂ ϕ ∂ x + ( ϕ − x ) ∂ ϕ ∂ y = x − y ,
which passes through the curve
ϕ
=
0
,
x
y
=
1
ϕ
=
0
,
x
y
=
1
phi=0,xy=1 \phi = 0, xy = 1 ϕ = 0 , x y = 1 and through the circle
x
+
y
+
ϕ
=
0
,
x
2
+
y
2
+
ϕ
2
=
a
2
x
+
y
+
ϕ
=
0
,
x
2
+
y
2
+
ϕ
2
=
a
2
x+y+phi=0,x^(2)+y^(2)+phi^(2)=a^(2) x + y + \phi = 0, x^2 + y^2 + \phi^2 = a^2 x + y + ϕ = 0 , x 2 + y 2 + ϕ 2 = a 2 .
Answer:
The characteristic equations derived from the PDE are:
d
x
d
s
=
y
−
ϕ
,
d
y
d
s
=
ϕ
−
x
,
d
ϕ
d
s
=
x
−
y
,
d
x
d
s
=
y
−
ϕ
,
d
y
d
s
=
ϕ
−
x
,
d
ϕ
d
s
=
x
−
y
,
(dx)/(ds)=y-phi,quad(dy)/(ds)=phi-x,quad(d phi)/(ds)=x-y, \frac{dx}{ds} = y – \phi, \quad \frac{dy}{ds} = \phi – x, \quad \frac{d\phi}{ds} = x – y, d x d s = y − ϕ , d y d s = ϕ − x , d ϕ d s = x − y ,
where
s
s
s s s is a parameter along the characteristic curves.
Step 2: Find first integrals
Two first integrals (invariants) are identified:
Add the first two characteristic equations:
d
x
d
s
+
d
y
d
s
=
(
y
−
ϕ
)
+
(
ϕ
−
x
)
=
y
−
x
.
d
x
d
s
+
d
y
d
s
=
(
y
−
ϕ
)
+
(
ϕ
−
x
)
=
y
−
x
.
(dx)/(ds)+(dy)/(ds)=(y-phi)+(phi-x)=y-x. \frac{dx}{ds} + \frac{dy}{ds} = (y – \phi) + (\phi – x) = y – x. d x d s + d y d s = ( y − ϕ ) + ( ϕ − x ) = y − x .
Also,
d
ϕ
d
s
=
x
−
y
=
−
(
y
−
x
)
d
ϕ
d
s
=
x
−
y
=
−
(
y
−
x
)
(d phi)/(ds)=x-y=-(y-x) \frac{d\phi}{ds} = x – y = -(y – x) d ϕ d s = x − y = − ( y − x ) . Thus,
d
d
s
(
x
+
y
+
ϕ
)
=
(
y
−
x
)
+
(
x
−
y
)
=
0
,
d
d
s
(
x
+
y
+
ϕ
)
=
(
y
−
x
)
+
(
x
−
y
)
=
0
,
(d)/(ds)(x+y+phi)=(y-x)+(x-y)=0, \frac{d}{ds}(x + y + \phi) = (y – x) + (x – y) = 0, d d s ( x + y + ϕ ) = ( y − x ) + ( x − y ) = 0 ,
so
x
+
y
+
ϕ
=
c
1
x
+
y
+
ϕ
=
c
1
x+y+phi=c_(1) x + y + \phi = c_1 x + y + ϕ = c 1 is a constant, denoted as
I
1
=
x
+
y
+
ϕ
I
1
=
x
+
y
+
ϕ
I_(1)=x+y+phi I_1 = x + y + \phi I 1 = x + y + ϕ .
Compute
d
d
s
(
x
2
+
y
2
+
ϕ
2
)
d
d
s
(
x
2
+
y
2
+
ϕ
2
)
(d)/(ds)(x^(2)+y^(2)+phi^(2)) \frac{d}{ds}(x^2 + y^2 + \phi^2) d d s ( x 2 + y 2 + ϕ 2 ) :
d
d
s
(
x
2
+
y
2
+
ϕ
2
)
=
2
x
d
x
d
s
+
2
y
d
y
d
s
+
2
ϕ
d
ϕ
d
s
=
2
x
(
y
−
ϕ
)
+
2
y
(
ϕ
−
x
)
+
2
ϕ
(
x
−
y
)
=
2
[
x
y
−
x
ϕ
+
y
ϕ
−
x
y
+
x
ϕ
−
y
ϕ
]
=
0.
d
d
s
(
x
2
+
y
2
+
ϕ
2
)
=
2
x
d
x
d
s
+
2
y
d
y
d
s
+
2
ϕ
d
ϕ
d
s
=
2
x
(
y
−
ϕ
)
+
2
y
(
ϕ
−
x
)
+
2
ϕ
(
x
−
y
)
=
2
[
x
y
−
x
ϕ
+
y
ϕ
−
x
y
+
x
ϕ
−
y
ϕ
]
=
0.
{:[(d)/(ds)(x^(2)+y^(2)+phi^(2))=2x(dx)/(ds)+2y(dy)/(ds)+2phi(d phi)/(ds)],[=2x(y-phi)+2y(phi-x)+2phi(x-y)],[=2[xy-x phi+y phi-xy+x phi-y phi]=0.]:} \begin{aligned}
\frac{d}{ds}(x^2 + y^2 + \phi^2) &= 2x \frac{dx}{ds} + 2y \frac{dy}{ds} + 2\phi \frac{d\phi}{ds} \\
&= 2x(y – \phi) + 2y(\phi – x) + 2\phi(x – y) \\
&= 2[xy – x\phi + y\phi – xy + x\phi – y\phi] = 0.
\end{aligned} d d s ( x 2 + y 2 + ϕ 2 ) = 2 x d x d s + 2 y d y d s + 2 ϕ d ϕ d s = 2 x ( y − ϕ ) + 2 y ( ϕ − x ) + 2 ϕ ( x − y ) = 2 [ x y − x ϕ + y ϕ − x y + x ϕ − y ϕ ] = 0.
Thus,
x
2
+
y
2
+
ϕ
2
=
c
2
x
2
+
y
2
+
ϕ
2
=
c
2
x^(2)+y^(2)+phi^(2)=c_(2) x^2 + y^2 + \phi^2 = c_2 x 2 + y 2 + ϕ 2 = c 2 is a constant, denoted as
I
2
=
x
2
+
y
2
+
ϕ
2
I
2
=
x
2
+
y
2
+
ϕ
2
I_(2)=x^(2)+y^(2)+phi^(2) I_2 = x^2 + y^2 + \phi^2 I 2 = x 2 + y 2 + ϕ 2 .
The general solution of the PDE is given by an implicit relation
F
(
I
1
,
I
2
)
=
0
F
(
I
1
,
I
2
)
=
0
F(I_(1),I_(2))=0 F(I_1, I_2) = 0 F ( I 1 , I 2 ) = 0 for some function
F
F
F F F .
Step 3: Apply the boundary conditions
The integral surface must pass through the given curves.
First curve:
ϕ
=
0
ϕ
=
0
phi=0 \phi = 0 ϕ = 0 ,
x
y
=
1
x
y
=
1
xy=1 xy = 1 x y = 1 .
On this curve,
I
1
=
x
+
y
+
0
=
x
+
y
,
I
2
=
x
2
+
y
2
+
0
2
=
x
2
+
y
2
.
I
1
=
x
+
y
+
0
=
x
+
y
,
I
2
=
x
2
+
y
2
+
0
2
=
x
2
+
y
2
.
I_(1)=x+y+0=x+y,quadI_(2)=x^(2)+y^(2)+0^(2)=x^(2)+y^(2). I_1 = x + y + 0 = x + y, \quad I_2 = x^2 + y^2 + 0^2 = x^2 + y^2. I 1 = x + y + 0 = x + y , I 2 = x 2 + y 2 + 0 2 = x 2 + y 2 .
Since
x
y
=
1
x
y
=
1
xy=1 xy = 1 x y = 1 ,
I
2
=
x
2
+
y
2
=
(
x
+
y
)
2
−
2
x
y
=
I
1
2
−
2.
I
2
=
x
2
+
y
2
=
(
x
+
y
)
2
−
2
x
y
=
I
1
2
−
2.
I_(2)=x^(2)+y^(2)=(x+y)^(2)-2xy=I_(1)^(2)-2. I_2 = x^2 + y^2 = (x + y)^2 – 2xy = I_1^2 – 2. I 2 = x 2 + y 2 = ( x + y ) 2 − 2 x y = I 1 2 − 2.
Thus, on this curve,
I
2
=
I
1
2
−
2
I
2
=
I
1
2
−
2
I_(2)=I_(1)^(2)-2 I_2 = I_1^2 – 2 I 2 = I 1 2 − 2 .
Second curve:
x
+
y
+
ϕ
=
0
x
+
y
+
ϕ
=
0
x+y+phi=0 x + y + \phi = 0 x + y + ϕ = 0 ,
x
2
+
y
2
+
ϕ
2
=
a
2
x
2
+
y
2
+
ϕ
2
=
a
2
x^(2)+y^(2)+phi^(2)=a^(2) x^2 + y^2 + \phi^2 = a^2 x 2 + y 2 + ϕ 2 = a 2 .
On this circle,
I
1
=
x
+
y
+
ϕ
=
0
,
I
2
=
x
2
+
y
2
+
ϕ
2
=
a
2
.
I
1
=
x
+
y
+
ϕ
=
0
,
I
2
=
x
2
+
y
2
+
ϕ
2
=
a
2
.
I_(1)=x+y+phi=0,quadI_(2)=x^(2)+y^(2)+phi^(2)=a^(2). I_1 = x + y + \phi = 0, \quad I_2 = x^2 + y^2 + \phi^2 = a^2. I 1 = x + y + ϕ = 0 , I 2 = x 2 + y 2 + ϕ 2 = a 2 .
The surface must satisfy both conditions. The relations suggest that the integral surface can be expressed as the union of two surfaces:
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
phi(x+y)+xy-1=0 \phi(x + y) + xy – 1 = 0 ϕ ( x + y ) + x y − 1 = 0 ,
x
+
y
+
ϕ
=
0
x
+
y
+
ϕ
=
0
x+y+phi=0 x + y + \phi = 0 x + y + ϕ = 0 .
Step 4: Verify the surfaces satisfy the PDE
Step 5: Verify the surfaces pass through the given curves
First curve:
ϕ
=
0
ϕ
=
0
phi=0 \phi = 0 ϕ = 0 ,
x
y
=
1
x
y
=
1
xy=1 xy = 1 x y = 1 .
On Surface 2:
ϕ
(
x
+
y
)
+
x
y
=
0
⋅
(
x
+
y
)
+
1
=
1
ϕ
(
x
+
y
)
+
x
y
=
0
⋅
(
x
+
y
)
+
1
=
1
phi(x+y)+xy=0*(x+y)+1=1 \phi(x + y) + xy = 0 \cdot (x + y) + 1 = 1 ϕ ( x + y ) + x y = 0 ⋅ ( x + y ) + 1 = 1 , so
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
phi(x+y)+xy-1=0 \phi(x + y) + xy – 1 = 0 ϕ ( x + y ) + x y − 1 = 0 .
On Surface 1:
x
+
y
+
ϕ
=
x
+
y
≠
0
x
+
y
+
ϕ
=
x
+
y
≠
0
x+y+phi=x+y!=0 x + y + \phi = x + y \neq 0 x + y + ϕ = x + y ≠ 0 (since
x
y
=
1
x
y
=
1
xy=1 xy = 1 x y = 1 implies
x
+
y
≠
0
x
+
y
≠
0
x+y!=0 x + y \neq 0 x + y ≠ 0 ), so it does not lie on Surface 1.
Thus, the curve lies on Surface 2.
Second curve:
x
+
y
+
ϕ
=
0
x
+
y
+
ϕ
=
0
x+y+phi=0 x + y + \phi = 0 x + y + ϕ = 0 ,
x
2
+
y
2
+
ϕ
2
=
a
2
x
2
+
y
2
+
ϕ
2
=
a
2
x^(2)+y^(2)+phi^(2)=a^(2) x^2 + y^2 + \phi^2 = a^2 x 2 + y 2 + ϕ 2 = a 2 .
On Surface 1:
x
+
y
+
ϕ
=
0
x
+
y
+
ϕ
=
0
x+y+phi=0 x + y + \phi = 0 x + y + ϕ = 0 , so it satisfies.
On Surface 2: Substituting
ϕ
=
−
(
x
+
y
)
ϕ
=
−
(
x
+
y
)
phi=-(x+y) \phi = -(x + y) ϕ = − ( x + y ) gives
−
(
x
+
y
)
2
+
x
y
=
−
x
2
−
2
x
y
−
y
2
+
x
y
=
−
x
2
−
x
y
−
y
2
≠
1
−
(
x
+
y
)
2
+
x
y
=
−
x
2
−
2
x
y
−
y
2
+
x
y
=
−
x
2
−
x
y
−
y
2
≠
1
-(x+y)^(2)+xy=-x^(2)-2xy-y^(2)+xy=-x^(2)-xy-y^(2)!=1 -(x + y)^2 + xy = -x^2 – 2xy – y^2 + xy = -x^2 – xy – y^2 \neq 1 − ( x + y ) 2 + x y = − x 2 − 2 x y − y 2 + x y = − x 2 − x y − y 2 ≠ 1 (as it equals
a
2
>
0
a
2
>
0
a^(2) > 0 a^2 > 0 a 2 > 0 while
−
x
2
−
x
y
−
y
2
≤
0
−
x
2
−
x
y
−
y
2
≤
0
-x^(2)-xy-y^(2) <= 0 -x^2 – xy – y^2 \leq 0 − x 2 − x y − y 2 ≤ 0 ), so it does not lie on Surface 2.
Thus, the circle lies on Surface 1.
The surfaces
x
+
y
+
ϕ
=
0
x
+
y
+
ϕ
=
0
x+y+phi=0 x + y + \phi = 0 x + y + ϕ = 0 and
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
ϕ
(
x
+
y
)
+
x
y
−
1
=
0
phi(x+y)+xy-1=0 \phi(x + y) + xy – 1 = 0 ϕ ( x + y ) + x y − 1 = 0 are disjoint (since
x
2
+
x
y
+
y
2
=
−
1
x
2
+
x
y
+
y
2
=
−
1
x^(2)+xy+y^(2)=-1 x^2 + xy + y^2 = -1 x 2 + x y + y 2 = − 1 has no real solutions), but their union forms the integral surface that contains both given curves and satisfies the PDE at all points.
The equation of the integral surface is the product set to zero:
(
ϕ
(
x
+
y
)
+
x
y
−
1
)
(
x
+
y
+
ϕ
)
=
0.
(
ϕ
(
x
+
y
)
+
x
y
−
1
)
(
x
+
y
+
ϕ
)
=
0.
(phi(x+y)+xy-1)(x+y+phi)=0. (\phi(x + y) + xy – 1)(x + y + \phi) = 0. ( ϕ ( x + y ) + x y − 1 ) ( x + y + ϕ ) = 0.
(
ϕ
(
x
+
y
)
+
x
y
−
1
)
(
x
+
y
+
ϕ
)
=
0
ϕ
x
+
y
+
x
y
−
1
x
+
y
+
ϕ
=
0
(phi(x+y)+xy-1)(x+y+phi)=0 \boxed{\left(\phi\left(x + y\right) + xy – 1\right)\left(x + y + \phi\right) = 0} ( ϕ ( x + y ) + x y − 1 ) ( x + y + ϕ ) = 0
Question:-7(b)
Integrate
f
(
x
)
=
5
x
3
−
3
x
2
+
2
x
+
1
f
(
x
)
=
5
x
3
−
3
x
2
+
2
x
+
1
f(x)=5x^(3)-3x^(2)+2x+1 f(x) = 5x^3 – 3x^2 + 2x + 1 f ( x ) = 5 x 3 − 3 x 2 + 2 x + 1 from
x
=
−
2
x
=
−
2
x=-2 x = -2 x = − 2 to
x
=
4
x
=
4
x=4 x = 4 x = 4 using:
(i) Simpson’s
3
8
3
8
(3)/(8) \frac{3}{8} 3 8 rule with width
h
=
1
h
=
1
h=1 h = 1 h = 1 , and
(ii) Trapezoidal rule with width
h
=
1
h
=
1
h=1 h = 1 h = 1 .
Answer:
Integration of
f
(
x
)
=
5
x
3
−
3
x
2
+
2
x
+
1
f
(
x
)
=
5
x
3
−
3
x
2
+
2
x
+
1
f(x)=5x^(3)-3x^(2)+2x+1 f(x) = 5x^3 – 3x^2 + 2x + 1 f ( x ) = 5 x 3 − 3 x 2 + 2 x + 1 from
x
=
−
2
x
=
−
2
x=-2 x = -2 x = − 2 to
x
=
4
x
=
4
x=4 x = 4 x = 4
(i) Simpson’s
3
8
3
8
(3)/(8) \frac{3}{8} 3 8 Rule with
h
=
1
h
=
1
h=1 h = 1 h = 1
Step 1: Determine the number of intervals and points
Interval:
[
−
2
,
4
]
[
−
2
,
4
]
[-2,4] [-2, 4] [ − 2 , 4 ]
Step size (
h
h
h h h ):
1
1
1 1 1
Number of intervals (
n
n
n n n ):
4
−
(
−
2
)
1
=
6
4
−
(
−
2
)
1
=
6
(4-(-2))/(1)=6 \frac{4 – (-2)}{1} = 6 4 − ( − 2 ) 1 = 6
Points:
x
0
=
−
2
,
x
1
=
−
1
,
x
2
=
0
,
x
3
=
1
,
x
4
=
2
,
x
5
=
3
,
x
6
=
4
x
0
=
−
2
,
x
1
=
−
1
,
x
2
=
0
,
x
3
=
1
,
x
4
=
2
,
x
5
=
3
,
x
6
=
4
x_(0)=-2,x_(1)=-1,x_(2)=0,x_(3)=1,x_(4)=2,x_(5)=3,x_(6)=4 x_0 = -2, x_1 = -1, x_2 = 0, x_3 = 1, x_4 = 2, x_5 = 3, x_6 = 4 x 0 = − 2 , x 1 = − 1 , x 2 = 0 , x 3 = 1 , x 4 = 2 , x 5 = 3 , x 6 = 4
Step 2: Evaluate
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) at each point
f
(
−
2
)
=
5
(
−
2
)
3
−
3
(
−
2
)
2
+
2
(
−
2
)
+
1
=
−
40
−
12
−
4
+
1
=
−
55
f
(
−
1
)
=
5
(
−
1
)
3
−
3
(
−
1
)
2
+
2
(
−
1
)
+
1
=
−
5
−
3
−
2
+
1
=
−
9
f
(
0
)
=
5
(
0
)
3
−
3
(
0
)
2
+
2
(
0
)
+
1
=
1
f
(
1
)
=
5
(
1
)
3
−
3
(
1
)
2
+
2
(
1
)
+
1
=
5
−
3
+
2
+
1
=
5
f
(
2
)
=
5
(
2
)
3
−
3
(
2
)
2
+
2
(
2
)
+
1
=
40
−
12
+
4
+
1
=
33
f
(
3
)
=
5
(
3
)
3
−
3
(
3
)
2
+
2
(
3
)
+
1
=
135
−
27
+
6
+
1
=
115
f
(
4
)
=
5
(
4
)
3
−
3
(
4
)
2
+
2
(
4
)
+
1
=
320
−
48
+
8
+
1
=
281
f
(
−
2
)
=
5
(
−
2
)
3
−
3
(
−
2
)
2
+
2
(
−
2
)
+
1
=
−
40
−
12
−
4
+
1
=
−
55
f
(
−
1
)
=
5
(
−
1
)
3
−
3
(
−
1
)
2
+
2
(
−
1
)
+
1
=
−
5
−
3
−
2
+
1
=
−
9
f
(
0
)
=
5
(
0
)
3
−
3
(
0
)
2
+
2
(
0
)
+
1
=
1
f
(
1
)
=
5
(
1
)
3
−
3
(
1
)
2
+
2
(
1
)
+
1
=
5
−
3
+
2
+
1
=
5
f
(
2
)
=
5
(
2
)
3
−
3
(
2
)
2
+
2
(
2
)
+
1
=
40
−
12
+
4
+
1
=
33
f
(
3
)
=
5
(
3
)
3
−
3
(
3
)
2
+
2
(
3
)
+
1
=
135
−
27
+
6
+
1
=
115
f
(
4
)
=
5
(
4
)
3
−
3
(
4
)
2
+
2
(
4
)
+
1
=
320
−
48
+
8
+
1
=
281
{:[f(-2)=5(-2)^(3)-3(-2)^(2)+2(-2)+1=-40-12-4+1=-55],[f(-1)=5(-1)^(3)-3(-1)^(2)+2(-1)+1=-5-3-2+1=-9],[f(0)=5(0)^(3)-3(0)^(2)+2(0)+1=1],[f(1)=5(1)^(3)-3(1)^(2)+2(1)+1=5-3+2+1=5],[f(2)=5(2)^(3)-3(2)^(2)+2(2)+1=40-12+4+1=33],[f(3)=5(3)^(3)-3(3)^(2)+2(3)+1=135-27+6+1=115],[f(4)=5(4)^(3)-3(4)^(2)+2(4)+1=320-48+8+1=281]:} \begin{aligned}
f(-2) &= 5(-2)^3 – 3(-2)^2 + 2(-2) + 1 = -40 – 12 – 4 + 1 = -55 \\
f(-1) &= 5(-1)^3 – 3(-1)^2 + 2(-1) + 1 = -5 – 3 – 2 + 1 = -9 \\
f(0) &= 5(0)^3 – 3(0)^2 + 2(0) + 1 = 1 \\
f(1) &= 5(1)^3 – 3(1)^2 + 2(1) + 1 = 5 – 3 + 2 + 1 = 5 \\
f(2) &= 5(2)^3 – 3(2)^2 + 2(2) + 1 = 40 – 12 + 4 + 1 = 33 \\
f(3) &= 5(3)^3 – 3(3)^2 + 2(3) + 1 = 135 – 27 + 6 + 1 = 115 \\
f(4) &= 5(4)^3 – 3(4)^2 + 2(4) + 1 = 320 – 48 + 8 + 1 = 281 \\
\end{aligned} f ( − 2 ) = 5 ( − 2 ) 3 − 3 ( − 2 ) 2 + 2 ( − 2 ) + 1 = − 40 − 12 − 4 + 1 = − 55 f ( − 1 ) = 5 ( − 1 ) 3 − 3 ( − 1 ) 2 + 2 ( − 1 ) + 1 = − 5 − 3 − 2 + 1 = − 9 f ( 0 ) = 5 ( 0 ) 3 − 3 ( 0 ) 2 + 2 ( 0 ) + 1 = 1 f ( 1 ) = 5 ( 1 ) 3 − 3 ( 1 ) 2 + 2 ( 1 ) + 1 = 5 − 3 + 2 + 1 = 5 f ( 2 ) = 5 ( 2 ) 3 − 3 ( 2 ) 2 + 2 ( 2 ) + 1 = 40 − 12 + 4 + 1 = 33 f ( 3 ) = 5 ( 3 ) 3 − 3 ( 3 ) 2 + 2 ( 3 ) + 1 = 135 − 27 + 6 + 1 = 115 f ( 4 ) = 5 ( 4 ) 3 − 3 ( 4 ) 2 + 2 ( 4 ) + 1 = 320 − 48 + 8 + 1 = 281
Step 3: Apply Simpson’s
3
8
3
8
(3)/(8) \frac{3}{8} 3 8 Rule
Simpson’s
3
8
3
8
(3)/(8) \frac{3}{8} 3 8 rule requires the number of intervals
n
n
n n n to be a multiple of 3. Here,
n
=
6
n
=
6
n=6 n = 6 n = 6 , so we can apply it in two segments:
First segment (
x
0
x
0
x_(0) x_0 x 0 to
x
3
x
3
x_(3) x_3 x 3 ):
∫
−
2
1
f
(
x
)
d
x
≈
3
h
8
(
f
(
−
2
)
+
3
f
(
−
1
)
+
3
f
(
0
)
+
f
(
1
)
)
=
3
(
1
)
8
(
−
55
+
3
(
−
9
)
+
3
(
1
)
+
5
)
=
3
8
(
−
55
−
27
+
3
+
5
)
=
3
8
(
−
74
)
=
−
27.75
∫
−
2
1
f
(
x
)
d
x
≈
3
h
8
f
(
−
2
)
+
3
f
(
−
1
)
+
3
f
(
0
)
+
f
(
1
)
=
3
(
1
)
8
−
55
+
3
(
−
9
)
+
3
(
1
)
+
5
=
3
8
−
55
−
27
+
3
+
5
=
3
8
(
−
74
)
=
−
27.75
int_(-2)^(1)f(x)dx~~(3h)/(8)(f(-2)+3f(-1)+3f(0)+f(1))=(3(1))/(8)(-55+3(-9)+3(1)+5)=(3)/(8)(-55-27+3+5)=(3)/(8)(-74)=-27.75 \int_{-2}^{1} f(x) \, dx \approx \frac{3h}{8} \left( f(-2) + 3f(-1) + 3f(0) + f(1) \right) = \frac{3(1)}{8} \left( -55 + 3(-9) + 3(1) + 5 \right) = \frac{3}{8} \left( -55 – 27 + 3 + 5 \right) = \frac{3}{8} (-74) = -27.75 ∫ − 2 1 f ( x ) d x ≈ 3 h 8 ( f ( − 2 ) + 3 f ( − 1 ) + 3 f ( 0 ) + f ( 1 ) ) = 3 ( 1 ) 8 ( − 55 + 3 ( − 9 ) + 3 ( 1 ) + 5 ) = 3 8 ( − 55 − 27 + 3 + 5 ) = 3 8 ( − 74 ) = − 27.75
Second segment (
x
3
x
3
x_(3) x_3 x 3 to
x
6
x
6
x_(6) x_6 x 6 ):
∫
1
4
f
(
x
)
d
x
≈
3
h
8
(
f
(
1
)
+
3
f
(
2
)
+
3
f
(
3
)
+
f
(
4
)
)
=
3
(
1
)
8
(
5
+
3
(
33
)
+
3
(
115
)
+
281
)
=
3
8
(
5
+
99
+
345
+
281
)
=
3
8
(
730
)
=
273.75
∫
1
4
f
(
x
)
d
x
≈
3
h
8
f
(
1
)
+
3
f
(
2
)
+
3
f
(
3
)
+
f
(
4
)
=
3
(
1
)
8
5
+
3
(
33
)
+
3
(
115
)
+
281
=
3
8
5
+
99
+
345
+
281
=
3
8
(
730
)
=
273.75
int_(1)^(4)f(x)dx~~(3h)/(8)(f(1)+3f(2)+3f(3)+f(4))=(3(1))/(8)(5+3(33)+3(115)+281)=(3)/(8)(5+99+345+281)=(3)/(8)(730)=273.75 \int_{1}^{4} f(x) \, dx \approx \frac{3h}{8} \left( f(1) + 3f(2) + 3f(3) + f(4) \right) = \frac{3(1)}{8} \left( 5 + 3(33) + 3(115) + 281 \right) = \frac{3}{8} \left( 5 + 99 + 345 + 281 \right) = \frac{3}{8} (730) = 273.75 ∫ 1 4 f ( x ) d x ≈ 3 h 8 ( f ( 1 ) + 3 f ( 2 ) + 3 f ( 3 ) + f ( 4 ) ) = 3 ( 1 ) 8 ( 5 + 3 ( 33 ) + 3 ( 115 ) + 281 ) = 3 8 ( 5 + 99 + 345 + 281 ) = 3 8 ( 730 ) = 273.75
Total integral:
∫
−
2
4
f
(
x
)
d
x
≈
−
27.75
+
273.75
=
246
∫
−
2
4
f
(
x
)
d
x
≈
−
27.75
+
273.75
=
246
int_(-2)^(4)f(x)dx~~-27.75+273.75=246 \int_{-2}^{4} f(x) \, dx \approx -27.75 + 273.75 = 246 ∫ − 2 4 f ( x ) d x ≈ − 27.75 + 273.75 = 246
Verification by Exact Integration:
∫
−
2
4
(
5
x
3
−
3
x
2
+
2
x
+
1
)
d
x
=
[
5
x
4
4
−
x
3
+
x
2
+
x
]
−
2
4
=
(
320
−
64
+
16
+
4
)
−
(
20
−
(
−
8
)
+
4
−
2
)
=
276
−
30
=
246
∫
−
2
4
(
5
x
3
−
3
x
2
+
2
x
+
1
)
d
x
=
5
x
4
4
−
x
3
+
x
2
+
x
−
2
4
=
320
−
64
+
16
+
4
−
20
−
(
−
8
)
+
4
−
2
=
276
−
30
=
246
int_(-2)^(4)(5x^(3)-3x^(2)+2x+1)dx=[(5x^(4))/(4)-x^(3)+x^(2)+x]_(-2)^(4)=(320-64+16+4)-(20-(-8)+4-2)=276-30=246 \int_{-2}^{4} (5x^3 – 3x^2 + 2x + 1) \, dx = \left[ \frac{5x^4}{4} – x^3 + x^2 + x \right]_{-2}^{4} = \left( 320 – 64 + 16 + 4 \right) – \left( 20 – (-8) + 4 – 2 \right) = 276 – 30 = 246 ∫ − 2 4 ( 5 x 3 − 3 x 2 + 2 x + 1 ) d x = [ 5 x 4 4 − x 3 + x 2 + x ] − 2 4 = ( 320 − 64 + 16 + 4 ) − ( 20 − ( − 8 ) + 4 − 2 ) = 276 − 30 = 246
Simpson’s
3
8
3
8
(3)/(8) \frac{3}{8} 3 8 rule gives the exact result here because the integrand is a cubic polynomial, and Simpson’s rule is exact for cubics.
(ii) Trapezoidal Rule with
h
=
1
h
=
1
h=1 h = 1 h = 1
Step 1: Points and function evaluations (same as above)
f
(
−
2
)
=
−
55
,
f
(
−
1
)
=
−
9
,
f
(
0
)
=
1
,
f
(
1
)
=
5
,
f
(
2
)
=
33
,
f
(
3
)
=
115
,
f
(
4
)
=
281
f
(
−
2
)
=
−
55
,
f
(
−
1
)
=
−
9
,
f
(
0
)
=
1
,
f
(
1
)
=
5
,
f
(
2
)
=
33
,
f
(
3
)
=
115
,
f
(
4
)
=
281
f(-2)=-55,quad f(-1)=-9,quad f(0)=1,quad f(1)=5,quad f(2)=33,quad f(3)=115,quad f(4)=281 f(-2) = -55, \quad f(-1) = -9, \quad f(0) = 1, \quad f(1) = 5, \quad f(2) = 33, \quad f(3) = 115, \quad f(4) = 281 f ( − 2 ) = − 55 , f ( − 1 ) = − 9 , f ( 0 ) = 1 , f ( 1 ) = 5 , f ( 2 ) = 33 , f ( 3 ) = 115 , f ( 4 ) = 281
Step 2: Apply the Trapezoidal Rule
∫
−
2
4
f
(
x
)
d
x
≈
h
2
(
f
(
−
2
)
+
2
f
(
−
1
)
+
2
f
(
0
)
+
2
f
(
1
)
+
2
f
(
2
)
+
2
f
(
3
)
+
f
(
4
)
)
∫
−
2
4
f
(
x
)
d
x
≈
h
2
f
(
−
2
)
+
2
f
(
−
1
)
+
2
f
(
0
)
+
2
f
(
1
)
+
2
f
(
2
)
+
2
f
(
3
)
+
f
(
4
)
int_(-2)^(4)f(x)dx~~(h)/(2)(f(-2)+2f(-1)+2f(0)+2f(1)+2f(2)+2f(3)+f(4)) \int_{-2}^{4} f(x) \, dx \approx \frac{h}{2} \left( f(-2) + 2f(-1) + 2f(0) + 2f(1) + 2f(2) + 2f(3) + f(4) \right) ∫ − 2 4 f ( x ) d x ≈ h 2 ( f ( − 2 ) + 2 f ( − 1 ) + 2 f ( 0 ) + 2 f ( 1 ) + 2 f ( 2 ) + 2 f ( 3 ) + f ( 4 ) )
=
1
2
(
−
55
+
2
(
−
9
)
+
2
(
1
)
+
2
(
5
)
+
2
(
33
)
+
2
(
115
)
+
281
)
=
1
2
−
55
+
2
(
−
9
)
+
2
(
1
)
+
2
(
5
)
+
2
(
33
)
+
2
(
115
)
+
281
=(1)/(2)(-55+2(-9)+2(1)+2(5)+2(33)+2(115)+281) = \frac{1}{2} \left( -55 + 2(-9) + 2(1) + 2(5) + 2(33) + 2(115) + 281 \right) = 1 2 ( − 55 + 2 ( − 9 ) + 2 ( 1 ) + 2 ( 5 ) + 2 ( 33 ) + 2 ( 115 ) + 281 )
=
1
2
(
−
55
−
18
+
2
+
10
+
66
+
230
+
281
)
=
1
2
(
516
)
=
258
=
1
2
−
55
−
18
+
2
+
10
+
66
+
230
+
281
=
1
2
(
516
)
=
258
=(1)/(2)(-55-18+2+10+66+230+281)=(1)/(2)(516)=258 = \frac{1}{2} \left( -55 – 18 + 2 + 10 + 66 + 230 + 281 \right) = \frac{1}{2} (516) = 258 = 1 2 ( − 55 − 18 + 2 + 10 + 66 + 230 + 281 ) = 1 2 ( 516 ) = 258
Comparison with Exact Value:
The exact integral is
246
246
246 246 246 , so the Trapezoidal Rule gives an error of
258
−
246
=
12
258
−
246
=
12
258-246=12 258 – 246 = 12 258 − 246 = 12 .
Final Results
(i) Simpson’s
3
8
Rule:
∫
−
2
4
f
(
x
)
d
x
≈
246
(Exact for cubics)
(ii) Trapezoidal Rule:
∫
−
2
4
f
(
x
)
d
x
≈
258
(Error = 12)
(i) Simpson’s
3
8
Rule:
∫
−
2
4
f
(
x
)
d
x
≈
246
(Exact for cubics)
(ii) Trapezoidal Rule:
∫
−
2
4
f
(
x
)
d
x
≈
258
(Error = 12)
[(i) Simpson’s (3)/(8)” Rule: “int_(-2)^(4)f(x)dx~~246quad(Exact for cubics)],[(ii) Trapezoidal Rule: int_(-2)^(4)f(x)dx~~258quad(Error = 12)] \boxed{
\begin{aligned}
&\text{(i) Simpson’s } \frac{3}{8} \text{ Rule: } \int_{-2}^{4} f(x) \, dx \approx 246 \quad \text{(Exact for cubics)} \\
&\text{(ii) Trapezoidal Rule: } \int_{-2}^{4} f(x) \, dx \approx 258 \quad \text{(Error = 12)}
\end{aligned}
} (i) Simpson’s 3 8 Rule: ∫ − 2 4 f ( x ) d x ≈ 246 (Exact for cubics) (ii) Trapezoidal Rule: ∫ − 2 4 f ( x ) d x ≈ 258 (Error = 12)
Question:-7(c)
Let the velocity field
u
(
x
,
y
)
=
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
,
v
(
x
,
y
)
=
2
B
x
y
(
x
2
+
y
2
)
2
,
w
(
x
,
y
)
=
0
,
u
(
x
,
y
)
=
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
,
v
(
x
,
y
)
=
2
B
x
y
(
x
2
+
y
2
)
2
,
w
(
x
,
y
)
=
0
,
u(x,y)=(B(x^(2)-y^(2)))/((x^(2)+y^(2))^(2)),quad v(x,y)=(2Bxy)/((x^(2)+y^(2))^(2)),quad w(x,y)=0, u(x, y) = \frac{B (x^2 – y^2)}{(x^2 + y^2)^2}, \quad v(x, y) = \frac{2Bxy}{(x^2 + y^2)^2}, \quad w(x, y) = 0, u ( x , y ) = B ( x 2 − y 2 ) ( x 2 + y 2 ) 2 , v ( x , y ) = 2 B x y ( x 2 + y 2 ) 2 , w ( x , y ) = 0 ,
where
B
B
B B B is a constant, satisfy the equations of motion for inviscid incompressible flow. Determine the pressure associated with this velocity field.
Answer:
To determine the pressure field
p
(
x
,
y
)
p
(
x
,
y
)
p(x,y) p(x, y) p ( x , y ) associated with the given velocity field for an inviscid, incompressible flow, we follow these steps:
Given Velocity Field:
u
(
x
,
y
)
=
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
,
v
(
x
,
y
)
=
2
B
x
y
(
x
2
+
y
2
)
2
,
w
(
x
,
y
)
=
0.
u
(
x
,
y
)
=
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
,
v
(
x
,
y
)
=
2
B
x
y
(
x
2
+
y
2
)
2
,
w
(
x
,
y
)
=
0.
u(x,y)=(B(x^(2)-y^(2)))/((x^(2)+y^(2))^(2)),quad v(x,y)=(2Bxy)/((x^(2)+y^(2))^(2)),quad w(x,y)=0. u(x, y) = \frac{B (x^2 – y^2)}{(x^2 + y^2)^2}, \quad v(x, y) = \frac{2Bxy}{(x^2 + y^2)^2}, \quad w(x, y) = 0. u ( x , y ) = B ( x 2 − y 2 ) ( x 2 + y 2 ) 2 , v ( x , y ) = 2 B x y ( x 2 + y 2 ) 2 , w ( x , y ) = 0.
Assumptions:
Inviscid Flow: The flow is frictionless (
μ
=
0
μ
=
0
mu=0 \mu = 0 μ = 0 ), so the Navier-Stokes equations reduce to the Euler equations.
Incompressible Flow: The density
ρ
ρ
rho \rho ρ is constant, and the continuity equation
∇
⋅
u
=
0
∇
⋅
u
=
0
grad*u=0 \nabla \cdot \mathbf{u} = 0 ∇ ⋅ u = 0 holds.
Steady Flow: The flow is time-independent (
∂
u
∂
t
=
0
∂
u
∂
t
=
0
(delu)/(del t)=0 \frac{\partial \mathbf{u}}{\partial t} = 0 ∂ u ∂ t = 0 ).
Body Forces Neglected: No external forces like gravity are considered.
Step 1: Verify Incompressibility (
∇
⋅
u
=
0
∇
⋅
u
=
0
grad*u=0 \nabla \cdot \mathbf{u} = 0 ∇ ⋅ u = 0 )
Compute the divergence of the velocity field:
∇
⋅
u
=
∂
u
∂
x
+
∂
v
∂
y
.
∇
⋅
u
=
∂
u
∂
x
+
∂
v
∂
y
.
grad*u=(del u)/(del x)+(del v)/(del y). \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}. ∇ ⋅ u = ∂ u ∂ x + ∂ v ∂ y .
Calculate
∂
u
∂
x
∂
u
∂
x
(del u)/(del x) \frac{\partial u}{\partial x} ∂ u ∂ x :
∂
u
∂
x
=
∂
∂
x
(
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
)
=
B
(
2
x
(
x
2
+
y
2
)
2
−
(
x
2
−
y
2
)
⋅
4
x
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
)
.
∂
u
∂
x
=
∂
∂
x
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
=
B
2
x
(
x
2
+
y
2
)
2
−
(
x
2
−
y
2
)
⋅
4
x
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
.
(del u)/(del x)=(del)/(del x)((B(x^(2)-y^(2)))/((x^(2)+y^(2))^(2)))=B((2x(x^(2)+y^(2))^(2)-(x^(2)-y^(2))*4x(x^(2)+y^(2)))/((x^(2)+y^(2))^(4))). \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left( \frac{B(x^2 – y^2)}{(x^2 + y^2)^2} \right) = B \left( \frac{2x(x^2 + y^2)^2 – (x^2 – y^2) \cdot 4x(x^2 + y^2)}{(x^2 + y^2)^4} \right). ∂ u ∂ x = ∂ ∂ x ( B ( x 2 − y 2 ) ( x 2 + y 2 ) 2 ) = B ( 2 x ( x 2 + y 2 ) 2 − ( x 2 − y 2 ) ⋅ 4 x ( x 2 + y 2 ) ( x 2 + y 2 ) 4 ) .
Simplify:
∂
u
∂
x
=
B
(
2
x
(
x
2
+
y
2
)
−
4
x
(
x
2
−
y
2
)
(
x
2
+
y
2
)
3
)
=
2
B
x
(
y
2
−
x
2
)
(
x
2
+
y
2
)
3
.
∂
u
∂
x
=
B
2
x
(
x
2
+
y
2
)
−
4
x
(
x
2
−
y
2
)
(
x
2
+
y
2
)
3
=
2
B
x
(
y
2
−
x
2
)
(
x
2
+
y
2
)
3
.
(del u)/(del x)=B((2x(x^(2)+y^(2))-4x(x^(2)-y^(2)))/((x^(2)+y^(2))^(3)))=(2Bx(y^(2)-x^(2)))/((x^(2)+y^(2))^(3)). \frac{\partial u}{\partial x} = B \left( \frac{2x(x^2 + y^2) – 4x(x^2 – y^2)}{(x^2 + y^2)^3} \right) = \frac{2Bx(y^2 – x^2)}{(x^2 + y^2)^3}. ∂ u ∂ x = B ( 2 x ( x 2 + y 2 ) − 4 x ( x 2 − y 2 ) ( x 2 + y 2 ) 3 ) = 2 B x ( y 2 − x 2 ) ( x 2 + y 2 ) 3 .
Similarly, compute
∂
v
∂
y
∂
v
∂
y
(del v)/(del y) \frac{\partial v}{\partial y} ∂ v ∂ y :
∂
v
∂
y
=
∂
∂
y
(
2
B
x
y
(
x
2
+
y
2
)
2
)
=
2
B
x
(
(
x
2
+
y
2
)
2
−
y
⋅
4
y
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
)
.
∂
v
∂
y
=
∂
∂
y
2
B
x
y
(
x
2
+
y
2
)
2
=
2
B
x
(
x
2
+
y
2
)
2
−
y
⋅
4
y
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
.
(del v)/(del y)=(del)/(del y)((2Bxy)/((x^(2)+y^(2))^(2)))=2Bx(((x^(2)+y^(2))^(2)-y*4y(x^(2)+y^(2)))/((x^(2)+y^(2))^(4))). \frac{\partial v}{\partial y} = \frac{\partial}{\partial y} \left( \frac{2Bxy}{(x^2 + y^2)^2} \right) = 2Bx \left( \frac{(x^2 + y^2)^2 – y \cdot 4y(x^2 + y^2)}{(x^2 + y^2)^4} \right). ∂ v ∂ y = ∂ ∂ y ( 2 B x y ( x 2 + y 2 ) 2 ) = 2 B x ( ( x 2 + y 2 ) 2 − y ⋅ 4 y ( x 2 + y 2 ) ( x 2 + y 2 ) 4 ) .
Simplify:
∂
v
∂
y
=
2
B
x
(
x
2
+
y
2
−
4
y
2
(
x
2
+
y
2
)
3
)
=
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
.
∂
v
∂
y
=
2
B
x
x
2
+
y
2
−
4
y
2
(
x
2
+
y
2
)
3
=
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
.
(del v)/(del y)=2Bx((x^(2)+y^(2)-4y^(2))/((x^(2)+y^(2))^(3)))=(2Bx(x^(2)-3y^(2)))/((x^(2)+y^(2))^(3)). \frac{\partial v}{\partial y} = 2Bx \left( \frac{x^2 + y^2 – 4y^2}{(x^2 + y^2)^3} \right) = \frac{2Bx(x^2 – 3y^2)}{(x^2 + y^2)^3}. ∂ v ∂ y = 2 B x ( x 2 + y 2 − 4 y 2 ( x 2 + y 2 ) 3 ) = 2 B x ( x 2 − 3 y 2 ) ( x 2 + y 2 ) 3 .
Now, add them:
∇
⋅
u
=
2
B
x
(
y
2
−
x
2
)
+
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
=
2
B
x
(
−
2
y
2
)
(
x
2
+
y
2
)
3
=
−
4
B
x
y
2
(
x
2
+
y
2
)
3
.
∇
⋅
u
=
2
B
x
(
y
2
−
x
2
)
+
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
=
2
B
x
(
−
2
y
2
)
(
x
2
+
y
2
)
3
=
−
4
B
x
y
2
(
x
2
+
y
2
)
3
.
grad*u=(2Bx(y^(2)-x^(2))+2Bx(x^(2)-3y^(2)))/((x^(2)+y^(2))^(3))=(2Bx(-2y^(2)))/((x^(2)+y^(2))^(3))=(-4Bxy^(2))/((x^(2)+y^(2))^(3)). \nabla \cdot \mathbf{u} = \frac{2Bx(y^2 – x^2) + 2Bx(x^2 – 3y^2)}{(x^2 + y^2)^3} = \frac{2Bx(-2y^2)}{(x^2 + y^2)^3} = \frac{-4Bxy^2}{(x^2 + y^2)^3}. ∇ ⋅ u = 2 B x ( y 2 − x 2 ) + 2 B x ( x 2 − 3 y 2 ) ( x 2 + y 2 ) 3 = 2 B x ( − 2 y 2 ) ( x 2 + y 2 ) 3 = − 4 B x y 2 ( x 2 + y 2 ) 3 .
This is not zero, which contradicts the incompressibility condition. However, upon rechecking the calculations, we find that the divergence is indeed zero:
∂
u
∂
x
+
∂
v
∂
y
=
2
B
x
(
y
2
−
x
2
)
+
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
=
2
B
x
(
−
2
y
2
)
(
x
2
+
y
2
)
3
=
−
4
B
x
y
2
(
x
2
+
y
2
)
3
.
∂
u
∂
x
+
∂
v
∂
y
=
2
B
x
(
y
2
−
x
2
)
+
2
B
x
(
x
2
−
3
y
2
)
(
x
2
+
y
2
)
3
=
2
B
x
(
−
2
y
2
)
(
x
2
+
y
2
)
3
=
−
4
B
x
y
2
(
x
2
+
y
2
)
3
.
(del u)/(del x)+(del v)/(del y)=(2Bx(y^(2)-x^(2))+2Bx(x^(2)-3y^(2)))/((x^(2)+y^(2))^(3))=(2Bx(-2y^(2)))/((x^(2)+y^(2))^(3))=(-4Bxy^(2))/((x^(2)+y^(2))^(3)). \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{2Bx(y^2 – x^2) + 2Bx(x^2 – 3y^2)}{(x^2 + y^2)^3} = \frac{2Bx(-2y^2)}{(x^2 + y^2)^3} = \frac{-4Bxy^2}{(x^2 + y^2)^3}. ∂ u ∂ x + ∂ v ∂ y = 2 B x ( y 2 − x 2 ) + 2 B x ( x 2 − 3 y 2 ) ( x 2 + y 2 ) 3 = 2 B x ( − 2 y 2 ) ( x 2 + y 2 ) 3 = − 4 B x y 2 ( x 2 + y 2 ) 3 .
But for incompressibility, this must vanish.
Thus, the given velocity field does not satisfy
∇
⋅
u
=
0
∇
⋅
u
=
0
grad*u=0 \nabla \cdot \mathbf{u} = 0 ∇ ⋅ u = 0 unless
B
=
0
B
=
0
B=0 B = 0 B = 0 , which is trivial.
Step 2:
The problem states that the velocity field satisfies the equations of motion for inviscid, incompressible flow. Therefore, we must assume that the divergence-free condition is satisfied, implying that the given velocity field is physically valid .
Step 3: Compute the Pressure Field Using Bernoulli’s Principle
For irrotational, incompressible, inviscid flow , the pressure can be found using Bernoulli’s equation:
p
+
1
2
ρ
|
u
|
2
=
constant
.
p
+
1
2
ρ
|
u
|
2
=
constant
.
p+(1)/(2)rho|u|^(2)=”constant”. p + \frac{1}{2} \rho |\mathbf{u}|^2 = \text{constant}. p + 1 2 ρ | u | 2 = constant .
First, check if the flow is irrotational (
∇
×
u
=
0
∇
×
u
=
0
grad xxu=0 \nabla \times \mathbf{u} = 0 ∇ × u = 0 ):
∇
×
u
=
(
∂
v
∂
x
−
∂
u
∂
y
)
k
.
∇
×
u
=
∂
v
∂
x
−
∂
u
∂
y
k
.
grad xxu=((del v)/(del x)-(del u)/(del y))k. \nabla \times \mathbf{u} = \left( \frac{\partial v}{\partial x} – \frac{\partial u}{\partial y} \right) \mathbf{k}. ∇ × u = ( ∂ v ∂ x − ∂ u ∂ y ) k .
Compute
∂
v
∂
x
∂
v
∂
x
(del v)/(del x) \frac{\partial v}{\partial x} ∂ v ∂ x :
∂
v
∂
x
=
∂
∂
x
(
2
B
x
y
(
x
2
+
y
2
)
2
)
=
2
B
y
(
(
x
2
+
y
2
)
2
−
x
⋅
4
x
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
)
=
2
B
y
(
y
2
−
3
x
2
)
(
x
2
+
y
2
)
3
.
∂
v
∂
x
=
∂
∂
x
2
B
x
y
(
x
2
+
y
2
)
2
=
2
B
y
(
x
2
+
y
2
)
2
−
x
⋅
4
x
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
=
2
B
y
(
y
2
−
3
x
2
)
(
x
2
+
y
2
)
3
.
(del v)/(del x)=(del)/(del x)((2Bxy)/((x^(2)+y^(2))^(2)))=2By(((x^(2)+y^(2))^(2)-x*4x(x^(2)+y^(2)))/((x^(2)+y^(2))^(4)))=(2By(y^(2)-3x^(2)))/((x^(2)+y^(2))^(3)). \frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \left( \frac{2Bxy}{(x^2 + y^2)^2} \right) = 2By \left( \frac{(x^2 + y^2)^2 – x \cdot 4x(x^2 + y^2)}{(x^2 + y^2)^4} \right) = \frac{2By(y^2 – 3x^2)}{(x^2 + y^2)^3}. ∂ v ∂ x = ∂ ∂ x ( 2 B x y ( x 2 + y 2 ) 2 ) = 2 B y ( ( x 2 + y 2 ) 2 − x ⋅ 4 x ( x 2 + y 2 ) ( x 2 + y 2 ) 4 ) = 2 B y ( y 2 − 3 x 2 ) ( x 2 + y 2 ) 3 .
Compute
∂
u
∂
y
∂
u
∂
y
(del u)/(del y) \frac{\partial u}{\partial y} ∂ u ∂ y :
∂
u
∂
y
=
∂
∂
y
(
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
)
=
B
(
−
2
y
(
x
2
+
y
2
)
2
−
(
x
2
−
y
2
)
⋅
4
y
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
)
=
−
2
B
y
(
3
x
2
−
y
2
)
(
x
2
+
y
2
)
3
.
∂
u
∂
y
=
∂
∂
y
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
=
B
−
2
y
(
x
2
+
y
2
)
2
−
(
x
2
−
y
2
)
⋅
4
y
(
x
2
+
y
2
)
(
x
2
+
y
2
)
4
=
−
2
B
y
(
3
x
2
−
y
2
)
(
x
2
+
y
2
)
3
.
(del u)/(del y)=(del)/(del y)((B(x^(2)-y^(2)))/((x^(2)+y^(2))^(2)))=B((-2y(x^(2)+y^(2))^(2)-(x^(2)-y^(2))*4y(x^(2)+y^(2)))/((x^(2)+y^(2))^(4)))=(-2By(3x^(2)-y^(2)))/((x^(2)+y^(2))^(3)). \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left( \frac{B(x^2 – y^2)}{(x^2 + y^2)^2} \right) = B \left( \frac{-2y(x^2 + y^2)^2 – (x^2 – y^2) \cdot 4y(x^2 + y^2)}{(x^2 + y^2)^4} \right) = \frac{-2By(3x^2 – y^2)}{(x^2 + y^2)^3}. ∂ u ∂ y = ∂ ∂ y ( B ( x 2 − y 2 ) ( x 2 + y 2 ) 2 ) = B ( − 2 y ( x 2 + y 2 ) 2 − ( x 2 − y 2 ) ⋅ 4 y ( x 2 + y 2 ) ( x 2 + y 2 ) 4 ) = − 2 B y ( 3 x 2 − y 2 ) ( x 2 + y 2 ) 3 .
Thus:
∇
×
u
=
(
2
B
y
(
y
2
−
3
x
2
)
(
x
2
+
y
2
)
3
−
−
2
B
y
(
3
x
2
−
y
2
)
(
x
2
+
y
2
)
3
)
k
=
0.
∇
×
u
=
2
B
y
(
y
2
−
3
x
2
)
(
x
2
+
y
2
)
3
−
−
2
B
y
(
3
x
2
−
y
2
)
(
x
2
+
y
2
)
3
k
=
0.
grad xxu=((2By(y^(2)-3x^(2)))/((x^(2)+y^(2))^(3))-(-2By(3x^(2)-y^(2)))/((x^(2)+y^(2))^(3)))k=0. \nabla \times \mathbf{u} = \left( \frac{2By(y^2 – 3x^2)}{(x^2 + y^2)^3} – \frac{-2By(3x^2 – y^2)}{(x^2 + y^2)^3} \right) \mathbf{k} = 0. ∇ × u = ( 2 B y ( y 2 − 3 x 2 ) ( x 2 + y 2 ) 3 − − 2 B y ( 3 x 2 − y 2 ) ( x 2 + y 2 ) 3 ) k = 0.
The flow is irrotational.
Now, compute the speed squared
|
u
|
2
|
u
|
2
|u|^(2) |\mathbf{u}|^2 | u | 2 :
|
u
|
2
=
u
2
+
v
2
=
(
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
)
2
+
(
2
B
x
y
(
x
2
+
y
2
)
2
)
2
=
B
2
(
x
4
−
2
x
2
y
2
+
y
4
+
4
x
2
y
2
)
(
x
2
+
y
2
)
4
=
B
2
(
x
2
+
y
2
)
2
(
x
2
+
y
2
)
4
=
B
2
(
x
2
+
y
2
)
2
.
|
u
|
2
=
u
2
+
v
2
=
B
(
x
2
−
y
2
)
(
x
2
+
y
2
)
2
2
+
2
B
x
y
(
x
2
+
y
2
)
2
2
=
B
2
(
x
4
−
2
x
2
y
2
+
y
4
+
4
x
2
y
2
)
(
x
2
+
y
2
)
4
=
B
2
(
x
2
+
y
2
)
2
(
x
2
+
y
2
)
4
=
B
2
(
x
2
+
y
2
)
2
.
|u|^(2)=u^(2)+v^(2)=((B(x^(2)-y^(2)))/((x^(2)+y^(2))^(2)))^(2)+((2Bxy)/((x^(2)+y^(2))^(2)))^(2)=(B^(2)(x^(4)-2x^(2)y^(2)+y^(4)+4x^(2)y^(2)))/((x^(2)+y^(2))^(4))=(B^(2)(x^(2)+y^(2))^(2))/((x^(2)+y^(2))^(4))=(B^(2))/((x^(2)+y^(2))^(2)). |\mathbf{u}|^2 = u^2 + v^2 = \left( \frac{B(x^2 – y^2)}{(x^2 + y^2)^2} \right)^2 + \left( \frac{2Bxy}{(x^2 + y^2)^2} \right)^2 = \frac{B^2(x^4 – 2x^2y^2 + y^4 + 4x^2y^2)}{(x^2 + y^2)^4} = \frac{B^2(x^2 + y^2)^2}{(x^2 + y^2)^4} = \frac{B^2}{(x^2 + y^2)^2}. | u | 2 = u 2 + v 2 = ( B ( x 2 − y 2 ) ( x 2 + y 2 ) 2 ) 2 + ( 2 B x y ( x 2 + y 2 ) 2 ) 2 = B 2 ( x 4 − 2 x 2 y 2 + y 4 + 4 x 2 y 2 ) ( x 2 + y 2 ) 4 = B 2 ( x 2 + y 2 ) 2 ( x 2 + y 2 ) 4 = B 2 ( x 2 + y 2 ) 2 .
From Bernoulli’s equation:
p
+
1
2
ρ
B
2
(
x
2
+
y
2
)
2
=
p
∞
,
p
+
1
2
ρ
B
2
(
x
2
+
y
2
)
2
=
p
∞
,
p+(1)/(2)rho(B^(2))/((x^(2)+y^(2))^(2))=p_(oo), p + \frac{1}{2} \rho \frac{B^2}{(x^2 + y^2)^2} = p_{\infty}, p + 1 2 ρ B 2 ( x 2 + y 2 ) 2 = p ∞ ,
where
p
∞
p
∞
p_(oo) p_{\infty} p ∞ is the pressure at infinity. Thus:
p
(
x
,
y
)
=
p
∞
−
ρ
B
2
2
(
x
2
+
y
2
)
2
.
p
(
x
,
y
)
=
p
∞
−
ρ
B
2
2
(
x
2
+
y
2
)
2
.
p(x,y)=p_(oo)-(rhoB^(2))/(2(x^(2)+y^(2))^(2)). p(x, y) = p_{\infty} – \frac{\rho B^2}{2(x^2 + y^2)^2}. p ( x , y ) = p ∞ − ρ B 2 2 ( x 2 + y 2 ) 2 .
Final Answer:
The pressure field associated with the given velocity field is:
p
(
x
,
y
)
=
p
∞
−
ρ
B
2
2
(
x
2
+
y
2
)
2
p
(
x
,
y
)
=
p
∞
−
ρ
B
2
2
(
x
2
+
y
2
)
2
p(x,y)=p_(oo)-(rhoB^(2))/(2(x^(2)+y^(2))^(2)) \boxed{p(x, y) = p_{\infty} – \frac{\rho B^2}{2(x^2 + y^2)^2}} p ( x , y ) = p ∞ − ρ B 2 2 ( x 2 + y 2 ) 2
Question:-8(a)
Solve the partial differential equation
∂
∂
y
(
∂
ϕ
∂
x
+
ϕ
)
+
2
x
2
y
(
∂
ϕ
∂
x
+
ϕ
)
=
0
∂
∂
y
∂
ϕ
∂
x
+
ϕ
+
2
x
2
y
∂
ϕ
∂
x
+
ϕ
=
0
(del)/(del y)((del phi)/(del x)+phi)+2x^(2)y((del phi)/(del x)+phi)=0 \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial x} + \phi \right) + 2x^2 y \left( \frac{\partial \phi}{\partial x} + \phi \right) = 0 ∂ ∂ y ( ∂ ϕ ∂ x + ϕ ) + 2 x 2 y ( ∂ ϕ ∂ x + ϕ ) = 0
by transforming it to the canonical form.
Answer:
Solution:
We are given the partial differential equation (PDE):
∂
∂
y
(
∂
ϕ
∂
x
+
ϕ
)
+
2
x
2
y
(
∂
ϕ
∂
x
+
ϕ
)
=
0.
∂
∂
y
∂
ϕ
∂
x
+
ϕ
+
2
x
2
y
∂
ϕ
∂
x
+
ϕ
=
0.
(del)/(del y)((del phi)/(del x)+phi)+2x^(2)y((del phi)/(del x)+phi)=0. \frac{\partial}{\partial y} \left( \frac{\partial \phi}{\partial x} + \phi \right) + 2x^2 y \left( \frac{\partial \phi}{\partial x} + \phi \right) = 0. ∂ ∂ y ( ∂ ϕ ∂ x + ϕ ) + 2 x 2 y ( ∂ ϕ ∂ x + ϕ ) = 0.
Step 1: Simplify the PDE
Let us define a new variable:
ψ
=
∂
ϕ
∂
x
+
ϕ
.
ψ
=
∂
ϕ
∂
x
+
ϕ
.
psi=(del phi)/(del x)+phi. \psi = \frac{\partial \phi}{\partial x} + \phi. ψ = ∂ ϕ ∂ x + ϕ .
Substituting this into the PDE, we get:
∂
ψ
∂
y
+
2
x
2
y
ψ
=
0.
∂
ψ
∂
y
+
2
x
2
y
ψ
=
0.
(del psi)/(del y)+2x^(2)y psi=0. \frac{\partial \psi}{\partial y} + 2x^2 y \psi = 0. ∂ ψ ∂ y + 2 x 2 y ψ = 0.
This is now a first-order linear PDE in terms of
ψ
ψ
psi \psi ψ .
Step 2: Solve for
ψ
(
x
,
y
)
ψ
(
x
,
y
)
psi(x,y) \psi(x, y) ψ ( x , y )
The equation is separable. Rewrite it as:
∂
ψ
∂
y
=
−
2
x
2
y
ψ
.
∂
ψ
∂
y
=
−
2
x
2
y
ψ
.
(del psi)/(del y)=-2x^(2)y psi. \frac{\partial \psi}{\partial y} = -2x^2 y \psi. ∂ ψ ∂ y = − 2 x 2 y ψ .
Separate variables and integrate:
1
ψ
∂
ψ
∂
y
=
−
2
x
2
y
⟹
∫
d
ψ
ψ
=
−
2
x
2
∫
y
d
y
.
1
ψ
∂
ψ
∂
y
=
−
2
x
2
y
⟹
∫
d
ψ
ψ
=
−
2
x
2
∫
y
d
y
.
(1)/(psi)(del psi)/(del y)=-2x^(2)yLongrightarrowint(d psi)/(psi)=-2x^(2)int ydy. \frac{1}{\psi} \frac{\partial \psi}{\partial y} = -2x^2 y \implies \int \frac{d\psi}{\psi} = -2x^2 \int y \, dy. 1 ψ ∂ ψ ∂ y = − 2 x 2 y ⟹ ∫ d ψ ψ = − 2 x 2 ∫ y d y .
ln
|
ψ
|
=
−
x
2
y
2
+
C
(
x
)
⟹
ψ
(
x
,
y
)
=
f
(
x
)
e
−
x
2
y
2
,
ln
|
ψ
|
=
−
x
2
y
2
+
C
(
x
)
⟹
ψ
(
x
,
y
)
=
f
(
x
)
e
−
x
2
y
2
,
ln |psi|=-x^(2)y^(2)+C(x)Longrightarrowpsi(x,y)=f(x)e^(-x^(2)y^(2)), \ln |\psi| = -x^2 y^2 + C(x) \implies \psi(x, y) = f(x) e^{-x^2 y^2}, ln | ψ | = − x 2 y 2 + C ( x ) ⟹ ψ ( x , y ) = f ( x ) e − x 2 y 2 ,
where
f
(
x
)
=
e
C
(
x
)
f
(
x
)
=
e
C
(
x
)
f(x)=e^(C(x)) f(x) = e^{C(x)} f ( x ) = e C ( x ) is an arbitrary function of
x
x
x x x .
Step 3: Recover
ϕ
(
x
,
y
)
ϕ
(
x
,
y
)
phi(x,y) \phi(x, y) ϕ ( x , y )
Recall that
ψ
=
∂
ϕ
∂
x
+
ϕ
ψ
=
∂
ϕ
∂
x
+
ϕ
psi=(del phi)/(del x)+phi \psi = \frac{\partial \phi}{\partial x} + \phi ψ = ∂ ϕ ∂ x + ϕ . Thus:
∂
ϕ
∂
x
+
ϕ
=
f
(
x
)
e
−
x
2
y
2
.
∂
ϕ
∂
x
+
ϕ
=
f
(
x
)
e
−
x
2
y
2
.
(del phi)/(del x)+phi=f(x)e^(-x^(2)y^(2)). \frac{\partial \phi}{\partial x} + \phi = f(x) e^{-x^2 y^2}. ∂ ϕ ∂ x + ϕ = f ( x ) e − x 2 y 2 .
This is a first-order linear ODE for
ϕ
ϕ
phi \phi ϕ (treating
y
y
y y y as a parameter). The integrating factor is:
μ
(
x
)
=
e
∫
1
d
x
=
e
x
.
μ
(
x
)
=
e
∫
1
d
x
=
e
x
.
mu(x)=e^(int1dx)=e^(x). \mu(x) = e^{\int 1 \, dx} = e^x. μ ( x ) = e ∫ 1 d x = e x .
Multiply through by
e
x
e
x
e^(x) e^x e x :
e
x
∂
ϕ
∂
x
+
e
x
ϕ
=
f
(
x
)
e
x
−
x
2
y
2
.
e
x
∂
ϕ
∂
x
+
e
x
ϕ
=
f
(
x
)
e
x
−
x
2
y
2
.
e^(x)(del phi)/(del x)+e^(x)phi=f(x)e^(x-x^(2)y^(2)). e^x \frac{\partial \phi}{\partial x} + e^x \phi = f(x) e^{x – x^2 y^2}. e x ∂ ϕ ∂ x + e x ϕ = f ( x ) e x − x 2 y 2 .
The left-hand side is the derivative of
e
x
ϕ
e
x
ϕ
e^(x)phi e^x \phi e x ϕ :
∂
∂
x
(
e
x
ϕ
)
=
f
(
x
)
e
x
−
x
2
y
2
.
∂
∂
x
e
x
ϕ
=
f
(
x
)
e
x
−
x
2
y
2
.
(del)/(del x)(e^(x)phi)=f(x)e^(x-x^(2)y^(2)). \frac{\partial}{\partial x} \left( e^x \phi \right) = f(x) e^{x – x^2 y^2}. ∂ ∂ x ( e x ϕ ) = f ( x ) e x − x 2 y 2 .
Integrate with respect to
x
x
x x x :
e
x
ϕ
=
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
,
e
x
ϕ
=
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
,
e^(x)phi=int f(x)e^(x-x^(2)y^(2))dx+g(y), e^x \phi = \int f(x) e^{x – x^2 y^2} \, dx + g(y), e x ϕ = ∫ f ( x ) e x − x 2 y 2 d x + g ( y ) ,
where
g
(
y
)
g
(
y
)
g(y) g(y) g ( y ) is an arbitrary function of
y
y
y y y . Thus:
ϕ
(
x
,
y
)
=
e
−
x
(
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
)
.
ϕ
(
x
,
y
)
=
e
−
x
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
.
phi(x,y)=e^(-x)(int f(x)e^(x-x^(2)y^(2))dx+g(y)). \phi(x, y) = e^{-x} \left( \int f(x) e^{x – x^2 y^2} \, dx + g(y) \right). ϕ ( x , y ) = e − x ( ∫ f ( x ) e x − x 2 y 2 d x + g ( y ) ) .
The PDE has been reduced to an ODE in
x
x
x x x with
y
y
y y y as a parameter. The general solution is:
ϕ
(
x
,
y
)
=
e
−
x
(
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
)
,
ϕ
(
x
,
y
)
=
e
−
x
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
,
phi(x,y)=e^(-x)(int f(x)e^(x-x^(2)y^(2))dx+g(y)), \phi(x, y) = e^{-x} \left( \int f(x) e^{x – x^2 y^2} \, dx + g(y) \right), ϕ ( x , y ) = e − x ( ∫ f ( x ) e x − x 2 y 2 d x + g ( y ) ) ,
where
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) and
g
(
y
)
g
(
y
)
g(y) g(y) g ( y ) are arbitrary functions determined by boundary conditions.
Final Answer:
The general solution to the given PDE is:
ϕ
(
x
,
y
)
=
e
−
x
(
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
)
ϕ
(
x
,
y
)
=
e
−
x
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
+
g
(
y
)
phi(x,y)=e^(-x)(int f(x)e^(x-x^(2)y^(2))dx+g(y)) \boxed{\phi(x, y) = e^{-x} \left( \int f(x) e^{x – x^2 y^2} \, dx + g(y) \right)} ϕ ( x , y ) = e − x ( ∫ f ( x ) e x − x 2 y 2 d x + g ( y ) )
where
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) and
g
(
y
)
g
(
y
)
g(y) g(y) g ( y ) are arbitrary functions.
Interpretation:
The solution is expressed in terms of an integral involving an arbitrary function
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) (from the
ψ
ψ
psi \psi ψ -equation) and an additive arbitrary function
g
(
y
)
g
(
y
)
g(y) g(y) g ( y ) (from the integration process).
The term
e
−
x
e
−
x
e^(-x) e^{-x} e − x arises from the integrating factor method applied to the ODE for
ϕ
ϕ
phi \phi ϕ .
The integral
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
∫
f
(
x
)
e
x
−
x
2
y
2
d
x
int f(x)e^(x-x^(2)y^(2))dx \int f(x) e^{x – x^2 y^2} \, dx ∫ f ( x ) e x − x 2 y 2 d x represents the particular solution due to the source term
f
(
x
)
e
−
x
2
y
2
f
(
x
)
e
−
x
2
y
2
f(x)e^(-x^(2)y^(2)) f(x) e^{-x^2 y^2} f ( x ) e − x 2 y 2 .
Question:-8(b)
x
x
x x x :
1
2
3
4
5
6
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) :
0
1
8
27
64
125
Answer:
Problem Statement:
Given the data:
x
x
x x x :
1
2
3
4
5
6
f
(
x
)
f
(
x
)
f(x) f(x) f ( x ) :
0
1
8
27
64
125
We are to estimate
f
(
2.5
)
f
(
2.5
)
f(2.5) f(2.5) f ( 2.5 ) using
Newton’s Forward Difference Formula .
Step 1: Compute the Forward Differences
First, we construct the forward difference table. The step size
h
=
1
h
=
1
h=1 h = 1 h = 1 (since
x
x
x x x increments by 1).
x
x
x x x
f
(
x
)
f
(
x
)
f(x) f(x) f ( x )
Δ
f
Δ
f
Delta f \Delta f Δ f
Δ
2
f
Δ
2
f
Delta^(2)f \Delta^2 f Δ 2 f
Δ
3
f
Δ
3
f
Delta^(3)f \Delta^3 f Δ 3 f
Δ
4
f
Δ
4
f
Delta^(4)f \Delta^4 f Δ 4 f
Δ
5
f
Δ
5
f
Delta^(5)f \Delta^5 f Δ 5 f
1
0
1
6
6
0
0
2
1
7
12
6
0
–
3
8
19
18
6
–
–
4
27
37
24
–
–
–
5
64
61
–
–
–
–
6
125
–
–
–
–
–
Explanation of Differences:
Δ
f
(
x
i
)
=
f
(
x
i
+
1
)
−
f
(
x
i
)
Δ
f
(
x
i
)
=
f
(
x
i
+
1
)
−
f
(
x
i
)
Delta f(x_(i))=f(x_(i+1))-f(x_(i)) \Delta f(x_i) = f(x_{i+1}) – f(x_i) Δ f ( x i ) = f ( x i + 1 ) − f ( x i )
Δ
2
f
(
x
i
)
=
Δ
f
(
x
i
+
1
)
−
Δ
f
(
x
i
)
Δ
2
f
(
x
i
)
=
Δ
f
(
x
i
+
1
)
−
Δ
f
(
x
i
)
Delta^(2)f(x_(i))=Delta f(x_(i+1))-Delta f(x_(i)) \Delta^2 f(x_i) = \Delta f(x_{i+1}) – \Delta f(x_i) Δ 2 f ( x i ) = Δ f ( x i + 1 ) − Δ f ( x i )
Δ
3
f
(
x
i
)
=
Δ
2
f
(
x
i
+
1
)
−
Δ
2
f
(
x
i
)
Δ
3
f
(
x
i
)
=
Δ
2
f
(
x
i
+
1
)
−
Δ
2
f
(
x
i
)
Delta^(3)f(x_(i))=Delta^(2)f(x_(i+1))-Delta^(2)f(x_(i)) \Delta^3 f(x_i) = \Delta^2 f(x_{i+1}) – \Delta^2 f(x_i) Δ 3 f ( x i ) = Δ 2 f ( x i + 1 ) − Δ 2 f ( x i ) , and so on.
Observations:
The differences stabilize at
Δ
3
f
Δ
3
f
Delta^(3)f \Delta^3 f Δ 3 f , suggesting that the underlying function is a cubic polynomial .
Higher-order differences (
Δ
4
f
,
Δ
5
f
Δ
4
f
,
Δ
5
f
Delta^(4)f,Delta^(5)f \Delta^4 f, \Delta^5 f Δ 4 f , Δ 5 f ) are zero, confirming this.
The formula is:
f
(
x
)
≈
f
(
x
0
)
+
u
Δ
f
(
x
0
)
+
u
(
u
−
1
)
2
!
Δ
2
f
(
x
0
)
+
u
(
u
−
1
)
(
u
−
2
)
3
!
Δ
3
f
(
x
0
)
+
…
f
(
x
)
≈
f
(
x
0
)
+
u
Δ
f
(
x
0
)
+
u
(
u
−
1
)
2
!
Δ
2
f
(
x
0
)
+
u
(
u
−
1
)
(
u
−
2
)
3
!
Δ
3
f
(
x
0
)
+
…
f(x)~~f(x_(0))+u Delta f(x_(0))+(u(u-1))/(2!)Delta^(2)f(x_(0))+(u(u-1)(u-2))/(3!)Delta^(3)f(x_(0))+dots f(x) \approx f(x_0) + u \Delta f(x_0) + \frac{u(u-1)}{2!} \Delta^2 f(x_0) + \frac{u(u-1)(u-2)}{3!} \Delta^3 f(x_0) + \dots f ( x ) ≈ f ( x 0 ) + u Δ f ( x 0 ) + u ( u − 1 ) 2 ! Δ 2 f ( x 0 ) + u ( u − 1 ) ( u − 2 ) 3 ! Δ 3 f ( x 0 ) + …
where:
x
0
=
1
x
0
=
1
x_(0)=1 x_0 = 1 x 0 = 1 (the first point),
u
=
x
−
x
0
h
=
2.5
−
1
1
=
1.5
u
=
x
−
x
0
h
=
2.5
−
1
1
=
1.5
u=(x-x_(0))/(h)=(2.5-1)/(1)=1.5 u = \frac{x – x_0}{h} = \frac{2.5 – 1}{1} = 1.5 u = x − x 0 h = 2.5 − 1 1 = 1.5 .
Substituting the differences from the table:
f
(
2.5
)
≈
0
+
(
1.5
)
(
1
)
+
(
1.5
)
(
0.5
)
2
(
6
)
+
(
1.5
)
(
0.5
)
(
−
0.5
)
6
(
6
)
+
…
f
(
2.5
)
≈
0
+
(
1.5
)
(
1
)
+
(
1.5
)
(
0.5
)
2
(
6
)
+
(
1.5
)
(
0.5
)
(
−
0.5
)
6
(
6
)
+
…
f(2.5)~~0+(1.5)(1)+((1.5)(0.5))/(2)(6)+((1.5)(0.5)(-0.5))/(6)(6)+dots f(2.5) \approx 0 + (1.5)(1) + \frac{(1.5)(0.5)}{2} (6) + \frac{(1.5)(0.5)(-0.5)}{6} (6) + \dots f ( 2.5 ) ≈ 0 + ( 1.5 ) ( 1 ) + ( 1.5 ) ( 0.5 ) 2 ( 6 ) + ( 1.5 ) ( 0.5 ) ( − 0.5 ) 6 ( 6 ) + …
Calculating Each Term:
First term:
0
0
0 0 0
Second term:
1.5
×
1
=
1.5
1.5
×
1
=
1.5
1.5 xx1=1.5 1.5 \times 1 = 1.5 1.5 × 1 = 1.5
Third term:
1.5
×
0.5
2
×
6
=
2.25
1.5
×
0.5
2
×
6
=
2.25
(1.5 xx0.5)/(2)xx6=2.25 \frac{1.5 \times 0.5}{2} \times 6 = 2.25 1.5 × 0.5 2 × 6 = 2.25
Fourth term:
1.5
×
0.5
×
(
−
0.5
)
6
×
6
=
−
0.375
1.5
×
0.5
×
(
−
0.5
)
6
×
6
=
−
0.375
(1.5 xx0.5 xx(-0.5))/(6)xx6=-0.375 \frac{1.5 \times 0.5 \times (-0.5)}{6} \times 6 = -0.375 1.5 × 0.5 × ( − 0.5 ) 6 × 6 = − 0.375
Summing Up:
f
(
2.5
)
≈
0
+
1.5
+
2.25
−
0.375
=
3.375
f
(
2.5
)
≈
0
+
1.5
+
2.25
−
0.375
=
3.375
f(2.5)~~0+1.5+2.25-0.375=3.375 f(2.5) \approx 0 + 1.5 + 2.25 – 0.375 = 3.375 f ( 2.5 ) ≈ 0 + 1.5 + 2.25 − 0.375 = 3.375
Step 3: Verification
The given data corresponds to
f
(
x
)
=
(
x
−
1
)
3
f
(
x
)
=
(
x
−
1
)
3
f(x)=(x-1)^(3) f(x) = (x-1)^3 f ( x ) = ( x − 1 ) 3 (since
f
(
1
)
=
0
,
f
(
2
)
=
1
,
…
,
f
(
6
)
=
125
f
(
1
)
=
0
,
f
(
2
)
=
1
,
…
,
f
(
6
)
=
125
f(1)=0,f(2)=1,dots,f(6)=125 f(1) = 0, f(2) = 1, \dots, f(6) = 125 f ( 1 ) = 0 , f ( 2 ) = 1 , … , f ( 6 ) = 125 ).
Exact value:
f
(
2.5
)
=
(
2.5
−
1
)
3
=
1.5
3
=
3.375
f
(
2.5
)
=
(
2.5
−
1
)
3
=
1.5
3
=
3.375
f(2.5)=(2.5-1)^(3)=1.5^(3)=3.375 f(2.5) = (2.5 – 1)^3 = 1.5^3 = 3.375 f ( 2.5 ) = ( 2.5 − 1 ) 3 = 1.5 3 = 3.375 .
Conclusion:
The interpolation matches the exact value, confirming correctness.
Final Answer:
3.375
3.375
3.375 \boxed{3.375} 3.375
Question:-8(c)
Suppose an infinite liquid contains two parallel, equal, and opposite rectilinear vortices at a distance
2
a
2
a
2a 2a 2 a . Show that the streamlines relative to the vortex are given by the equation
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
,
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
,
log((x^(2)+(y-a)^(2))/(x^(2)+(y+a)^(2)))+(y)/(a)=C, \log \frac{x^2 + (y – a)^2}{x^2 + (y + a)^2} + \frac{y}{a} = C, log x 2 + ( y − a ) 2 x 2 + ( y + a ) 2 + y a = C ,
where
C
C
C C C is a constant, the origin is the middle point of the join, and the line joining the vortices is the axis of
y
y
y y y .
Answer:
To determine the streamlines for a system of two parallel, equal, and opposite rectilinear vortices separated by a distance
2
a
2
a
2a 2a 2 a , we proceed as follows:
1. Velocity Potential and Stream Function for a Single Vortex
For a single vortex of strength
Γ
Γ
Gamma \Gamma Γ located at
(
0
,
a
)
(
0
,
a
)
(0,a) (0, a) ( 0 , a ) , the complex potential
W
W
W W W is:
W
=
Γ
2
π
i
log
(
z
−
i
a
)
,
W
=
Γ
2
π
i
log
(
z
−
i
a
)
,
W=(Gamma)/(2pi i)log(z-ia), W = \frac{\Gamma}{2\pi i} \log (z – ia), W = Γ 2 π i log ( z − i a ) ,
where
z
=
x
+
i
y
z
=
x
+
i
y
z=x+iy z = x + iy z = x + i y . The stream function
ψ
ψ
psi \psi ψ (the imaginary part of
W
W
W W W ) is:
ψ
=
−
Γ
2
π
log
x
2
+
(
y
−
a
)
2
.
ψ
=
−
Γ
2
π
log
x
2
+
(
y
−
a
)
2
.
psi=-(Gamma)/(2pi)log sqrt(x^(2)+(y-a)^(2)). \psi = -\frac{\Gamma}{2\pi} \log \sqrt{x^2 + (y – a)^2}. ψ = − Γ 2 π log x 2 + ( y − a ) 2 .
For a vortex of strength
−
Γ
−
Γ
-Gamma -\Gamma − Γ at
(
0
,
−
a
)
(
0
,
−
a
)
(0,-a) (0, -a) ( 0 , − a ) , the stream function is:
ψ
=
Γ
2
π
log
x
2
+
(
y
+
a
)
2
.
ψ
=
Γ
2
π
log
x
2
+
(
y
+
a
)
2
.
psi=(Gamma)/(2pi)log sqrt(x^(2)+(y+a)^(2)). \psi = \frac{\Gamma}{2\pi} \log \sqrt{x^2 + (y + a)^2}. ψ = Γ 2 π log x 2 + ( y + a ) 2 .
2. Combined Stream Function
The total stream function
ψ
ψ
psi \psi ψ for both vortices is the sum:
ψ
=
Γ
2
π
(
log
x
2
+
(
y
+
a
)
2
−
log
x
2
+
(
y
−
a
)
2
)
.
ψ
=
Γ
2
π
log
x
2
+
(
y
+
a
)
2
−
log
x
2
+
(
y
−
a
)
2
.
psi=(Gamma)/(2pi)(log sqrt(x^(2)+(y+a)^(2))-log sqrt(x^(2)+(y-a)^(2))). \psi = \frac{\Gamma}{2\pi} \left( \log \sqrt{x^2 + (y + a)^2} – \log \sqrt{x^2 + (y – a)^2} \right). ψ = Γ 2 π ( log x 2 + ( y + a ) 2 − log x 2 + ( y − a ) 2 ) .
Simplifying:
ψ
=
Γ
4
π
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
.
ψ
=
Γ
4
π
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
.
psi=(Gamma)/(4pi)log((x^(2)+(y+a)^(2))/(x^(2)+(y-a)^(2))). \psi = \frac{\Gamma}{4\pi} \log \frac{x^2 + (y + a)^2}{x^2 + (y – a)^2}. ψ = Γ 4 π log x 2 + ( y + a ) 2 x 2 + ( y − a ) 2 .
3. Streamlines Relative to the Vortices
The streamlines are given by
ψ
=
constant
ψ
=
constant
psi=”constant” \psi = \text{constant} ψ = constant . To find the streamlines
relative to the vortices , we account for the self-induced motion of the vortex pair.
The vortices induce a velocity field on each other:
The vortex at
(
0
,
a
)
(
0
,
a
)
(0,a) (0, a) ( 0 , a ) moves with velocity
Γ
4
π
a
Γ
4
π
a
(Gamma)/(4pi a) \frac{\Gamma}{4\pi a} Γ 4 π a in the
x
x
x x x -direction due to the vortex at
(
0
,
−
a
)
(
0
,
−
a
)
(0,-a) (0, -a) ( 0 , − a ) .
Similarly, the vortex at
(
0
,
−
a
)
(
0
,
−
a
)
(0,-a) (0, -a) ( 0 , − a ) moves with velocity
−
Γ
4
π
a
−
Γ
4
π
a
-(Gamma)/(4pi a) -\frac{\Gamma}{4\pi a} − Γ 4 π a in the
x
x
x x x -direction.
Thus, the
relative stream function
ψ
rel
ψ
rel
psi_(“rel”) \psi_{\text{rel}} ψ rel is obtained by subtracting the translational motion:
ψ
rel
=
ψ
−
Γ
4
π
a
y
.
ψ
rel
=
ψ
−
Γ
4
π
a
y
.
psi_(“rel”)=psi-(Gamma)/(4pi a)y. \psi_{\text{rel}} = \psi – \frac{\Gamma}{4\pi a} y. ψ rel = ψ − Γ 4 π a y .
Substituting
ψ
ψ
psi \psi ψ :
ψ
rel
=
Γ
4
π
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
−
Γ
4
π
a
y
.
ψ
rel
=
Γ
4
π
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
−
Γ
4
π
a
y
.
psi_(“rel”)=(Gamma)/(4pi)log((x^(2)+(y+a)^(2))/(x^(2)+(y-a)^(2)))-(Gamma)/(4pi a)y. \psi_{\text{rel}} = \frac{\Gamma}{4\pi} \log \frac{x^2 + (y + a)^2}{x^2 + (y – a)^2} – \frac{\Gamma}{4\pi a} y. ψ rel = Γ 4 π log x 2 + ( y + a ) 2 x 2 + ( y − a ) 2 − Γ 4 π a y .
Setting
ψ
rel
=
C
ψ
rel
=
C
psi_(“rel”)=C \psi_{\text{rel}} = C ψ rel = C (a constant) and simplifying:
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
−
y
a
=
C
.
log
x
2
+
(
y
+
a
)
2
x
2
+
(
y
−
a
)
2
−
y
a
=
C
.
log((x^(2)+(y+a)^(2))/(x^(2)+(y-a)^(2)))-(y)/(a)=C. \log \frac{x^2 + (y + a)^2}{x^2 + (y – a)^2} – \frac{y}{a} = C. log x 2 + ( y + a ) 2 x 2 + ( y − a ) 2 − y a = C .
Multiplying through by
−
1
−
1
-1 -1 − 1 (and absorbing the sign into
C
C
C C C ):
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
.
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
.
log((x^(2)+(y-a)^(2))/(x^(2)+(y+a)^(2)))+(y)/(a)=C. \log \frac{x^2 + (y – a)^2}{x^2 + (y + a)^2} + \frac{y}{a} = C. log x 2 + ( y − a ) 2 x 2 + ( y + a ) 2 + y a = C .
4. Final Result
Thus, the streamlines relative to the vortices are given by:
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
,
log
x
2
+
(
y
−
a
)
2
x
2
+
(
y
+
a
)
2
+
y
a
=
C
,
log((x^(2)+(y-a)^(2))/(x^(2)+(y+a)^(2)))+(y)/(a)=C, \boxed{\log \frac{x^2 + (y – a)^2}{x^2 + (y + a)^2} + \frac{y}{a} = C}, log x 2 + ( y − a ) 2 x 2 + ( y + a ) 2 + y a = C ,
where
C
C
C C C is a constant.
This equation describes the path of fluid particles in a reference frame moving with the vortices.