IGNOU MMT-004 Solved Assignment 2024 for M.Sc. MACS

IGNOU MMT-004 Solved Assignment 2024 | M.Sc. MACS

Solved By – Narendra Kr. Sharma – M.Sc (Mathematics Honors) – Delhi University

365.00

Share with your Friends

Details For MMT-004 Solved Assignment

IGNOU MMT-004 Assignment Question Paper 2024

mmt-003-solved-assignment-2024-qp-2afdf4f2-c576-4553-8e87-8dfd8225b98e

mmt-003-solved-assignment-2024-qp-2afdf4f2-c576-4553-8e87-8dfd8225b98e

MMT-003 Solved Assignment 2024 QP
  1. a) Let X = C [ 0 , 1 ] X = C [ 0 , 1 ] X=C[0,1]\mathrm{X}=\mathrm{C}[0,1]X=C[0,1]. Define d : X × X R d : X × X R d:X xx X rarrRd: X \times X \rightarrow \mathbf{R}d:X×XR by d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d(f,g)=int_(0)^(1)|f(t)-g(t)|dt,f,ginX\mathrm{d}(\mathrm{f}, \mathrm{g})=\int_0^1|\mathrm{f}(\mathrm{t})-\mathrm{g}(\mathrm{t})| \mathrm{dt}, \mathrm{f}, \mathrm{g} \in \mathrm{X}d(f,g)=01|f(t)g(t)|dt,f,gX where the integral is the Riemann integral. Show that d d ddd is a metric on X X XXX. Find d ( f , g ) d ( f , g ) d(f,g)d(f, g)d(f,g) where f ( x ) = 4 x f ( x ) = 4 x f(x)=4xf(x)=4 xf(x)=4x and g ( x ) = x 3 , x [ 0 , 1 ] g ( x ) = x 3 , x [ 0 , 1 ] g(x)=x^(3),x in[0,1]g(x)=x^3, x \in[0,1]g(x)=x3,x[0,1].
b) Let ( X , d ) X , d ) X,d)X, d)X,d) be a metric space and a X a X a in Xa \in XaX be a fixed point of X X XXX. Show that the function f a : X R f a : X R f_(a):X rarrRf_a: X \rightarrow \mathbf{R}fa:XR given by f a ( x ) = d ( x , a ) f a ( x ) = d ( x , a ) f_(a)(x)=d(x,a)\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{d}(\mathrm{x}, \mathrm{a})fa(x)=d(x,a) is continuous. Is it uniformly continuous? Justify you answer.
2. a) Let A A AAA and B B BBB be any two subsets of a metric space (X, d), then show that
i) int A = { E A = { E A=uu{E\mathrm{A}=\cup\{\mathrm{E}A={E : is open and E A } E A } EsubeA}\mathrm{E} \subseteq \mathrm{A}\}EA}
ii) int ( A B ) = int A int B int ( A B ) = int A int B int(AnnB)=int Ann int B\operatorname{int}(\mathrm{A} \cap \mathrm{B})=\operatorname{int} \mathrm{A} \cap \operatorname{int} \mathrm{B}int(AB)=intAintB
iii) int ( A B ) int ( A B ) quad int(A uu B)supe\quad \operatorname{int}(A \cup B) \supseteqint(AB) int A A A nnA \capA int B B BBB
iv) A B ¯ A ¯ B ¯ A B ¯ A ¯ B ¯ bar(AnnB)sube bar(A)nn bar(B)\overline{\mathrm{A} \cap \mathrm{B}} \subseteq \overline{\mathrm{A}} \cap \overline{\mathrm{B}}AB¯A¯B¯.
b) Find the interior, boundary and closure of the following sets A A A\mathbf{A}A in R R R\mathbf{R}R with the usual metric and discrete metric.
i) A = Q A = Q A=QA=\mathbf{Q}A=Q, the set of rationals in R R R\mathbf{R}R
ii) A = ] 1 , 2 ] ] 2 , 4 [ A = ] 1 , 2 ] ] 2 , 4 [ A=]1,2]uu]2,4[\mathrm{A}=] 1,2] \cup] 2,4[A=]1,2]]2,4[
3. a) Let ( X , d 1 ) X , d 1 (X,d_(1))\left(X, d_1\right)(X,d1) and ( Y , d 2 ) Y , d 2 (Y,d_(2))\left(Y, d_2\right)(Y,d2) be metric spaces. Show that f : X Y f : X Y f:X rarr Yf: X \rightarrow Yf:XY is continuous if and only if f ( A ¯ ) f ( A ) ¯ f ( A ¯ ) f ( A ) ¯ f( bar(A))sube bar(f(A))f(\bar{A}) \subseteq \overline{f(A)}f(A¯)f(A)¯ where A A AAA is any subset of X X XXX
b) Let ( X 1 , d 1 ) X 1 , d 1 (X_(1),d_(1))\left(\mathrm{X}_1, \mathrm{~d}_1\right)(X1, d1) and ( X 2 , d 2 ) X 2 , d 2 (X_(2),d_(2))\left(\mathrm{X}_2, \mathrm{~d}_2\right)(X2, d2) be two discrete metric spaces. Verify that the product metric on X 1 × X 2 X 1 × X 2 X_(1)xxX_(2)\mathrm{X}_1 \times \mathrm{X}_2X1×X2 is discrete.
c) Show that an infinite discrete metric space X X X\mathrm{X}X is bounded but not totally bounded.
4. a) Find the first derivative f ( a ) f ( a ) f^(‘)(a)\mathrm{f}^{\prime}(\mathbf{a})f(a) of the function f f f\mathrm{f}f defined by f : R 3 R 2 f : R 3 R 2 f:R^(3)rarrR^(2)f: \mathbf{R}^3 \rightarrow \mathbf{R}^2f:R3R2 given by f ( x , y , z ) = ( x y z , x + y + z 2 ) f ( x , y , z ) = x y z , x + y + z 2 f(x,y,z)=(xyz,x+y+z^(2))f(x, y, z)=\left(x y z, x+y+z^2\right)f(x,y,z)=(xyz,x+y+z2) where a = ( 1 . 1 , 2 ) a = ( 1 . 1 , 2 ) a=(1.-1,2)\mathbf{a}=(1 .-1,2)a=(1.1,2).
b) Let E E E\mathrm{E}E be an open subset of R n R n R^(n)\mathbf{R}^nRn and f : E R m f : E R m f:E rarrR^(m)f: E \rightarrow \mathbf{R}^mf:ERm be a function such that each of its components function f i f i f_(i)f_ifi are differentiable, then show that f f fff is differentiable. Is the converse of this result true? Justify your answer.
c) Near what points may the surface z 2 + x z + y = 0 z 2 + x z + y = 0 z^(2)+xz+y=0z^2+x z+y=0z2+xz+y=0 be represented uniquely as a graph of a differentiable function z = k ( x , y ) z = k ( x , y ) z=k(x,y)\mathrm{z}=\mathrm{k}(\mathrm{x}, \mathrm{y})z=k(x,y) ? Locate such a point.
5. a) Use the method of Lagrange’s multiplier method to find the shortest possible distance from the ellipse x 2 + 2 y 2 = 2 x 2 + 2 y 2 = 2 x^(2)+2y^(2)=2x^2+2 y^2=2x2+2y2=2 to the line x + y = 2 x + y = 2 x+y=2x+y=2x+y=2.
b) Find the directional derivative of the function f : R 4 R 3 f : R 4 R 3 f:R^(4)rarrR^(3)f: \mathbf{R}^4 \rightarrow \mathbf{R}^3f:R4R3 defined by
f ( x , y , z , w ) = ( x 2 y , x y z , x 2 + y 2 + z 2 ) f ( x , y , z , w ) = x 2 y , x y z , x 2 + y 2 + z 2 f(x,y,z,w)=(x^(2)y,xyz,x^(2)+y^(2)+z^(2))f(x, y, z, w)=\left(x^2 y, x y z, x^2+y^2+z^2\right)f(x,y,z,w)=(x2y,xyz,x2+y2+z2)
at a = ( 1 , 2 , 1 , 2 ) a = ( 1 , 2 , 1 , 2 ) a=(1,2,-1,-2)\mathrm{a}=(1,2,-1,-2)a=(1,2,1,2) in the direction v = ( 0 , 1 , 2 , 2 ) v = ( 0 , 1 , 2 , 2 ) v=(0,1,2,-2)\mathrm{v}=(0,1,2,-2)v=(0,1,2,2).
6. a) Let A be a compact non-empty subset of a metric space (X, d) and let F be a closed subset of X X XXX such that A F = ϕ A F = ϕ A nn F=phiA \cap F=\phiAF=ϕ, then show that d ( A , F ) > 0 d ( A , F ) > 0 d(A,F) > 0d(A, F)>0d(A,F)>0 where d ( A , F ) = inf { d ( a , b ) : a A , b F } d ( A , F ) = inf { d ( a , b ) : a A , b F } d(A,F)=i n f{d(a,b):a in A,b in F}d(A, F)=\inf \{d(a, b): a \in A, b \in F\}d(A,F)=inf{d(a,b):aA,bF}.
b) Give an example of the following with justification
i) A vector-valued function f : R 3 R 3 f : R 3 R 3 f:R^(3)rarrR^(3)f: \mathbf{R}^3 \rightarrow \mathbf{R}^3f:R3R3 which is not differentiable at ( 0 , 0 , 0 ) ( 0 , 0 , 0 ) (0,0,0)(0,0,0)(0,0,0).
ii) A function which is Legesgue measurable on R R R\mathbf{R}R.
c) Show that the components of a metric space is either identical or pairwise disjoint.
7. a) Let Q Q Q\mathbf{Q}Q be the set of rationals with the metric defined on Q Q Q\mathbf{Q}Q by d : Q × Q R d : Q × Q R d:QxxQrarrRd: \mathbf{Q} \times \mathbf{Q} \rightarrow \mathbf{R}d:Q×QR, defined by d ( x , y ) = | x y | , x , y R d ( x , y ) = | x y | , x , y R d(x,y)=|x-y|,AA x,y inRd(x, y)=|x-y|, \forall x, y \in \mathbf{R}d(x,y)=|xy|,x,yR.
Show that { ( 1 + 1 n ) n } 1 + 1 n n {(1+(1)/(n))^(n)}\left\{\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}\right\}{(1+1n)n} is Cauchy sequence in Q Q Q\mathbf{Q}Q, but does not converge in Q Q Q\mathbf{Q}Q and { 1 3 n } 1 3 n {(1)/(3^(n))}\left\{\frac{1}{3^n}\right\}{13n} is a Cauchy sequence Q Q Q\mathbf{Q}Q which converges in Q Q Q\mathbf{Q}Q to the limit 0 .
b) Which of the following sets are totally bounded? Give reasons for your answer. Are they compact?
i) 2 N 2 N quad2N\quad 2 \mathbf{N}2N in ( N , d ) ( N , d ) (N,d)(\mathbf{N}, d)(N,d) where d d ddd is the discrete metric.
ii) [ 0 , 2 ] [ 5 , 10 ] [ 0 , 2 ] [ 5 , 10 ] quad[0,2]uu[5,10]\quad[0,2] \cup[5,10][0,2][5,10] in ( R , d ) ( R , d ) (R,d)(\mathbf{R}, d)(R,d) where d d ddd is the Euclidean metric.
c) Which of the following sets are connected sets in R 2 R 2 R^(2)\mathbf{R}^2R2 with the metric given against it? Justify your answer.
i) A = { ( x , y ) : 0 x 1 , 0 y 2 } A = { ( x , y ) : 0 x 1 , 0 y 2 } quadA={(x,y):0 <= x <= 1,0 <= y <= 2}\quad \mathrm{A}=\{(\mathrm{x}, \mathrm{y}): 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 2\}A={(x,y):0x1,0y2} under the standard metric.
ii) A = { ( x , y ) : x 2 + y 2 = 1 } A = ( x , y ) : x 2 + y 2 = 1 A={(x,y):x^(2)+y^(2)=1}\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^2+\mathrm{y}^2=1\right\}A={(x,y):x2+y2=1} under the discrete metric.
8. a) Consider Z Z Z\mathbf{Z}Z and let F 1 F 1 F_(1)\mathcal{F}_1F1 denote the class of subsets of Z Z Z\mathbf{Z}Z, given by F 1 = { A Z F 1 = { A Z F_(1)={AsubZ\mathcal{F}_1=\{\mathrm{A} \subset \mathbf{Z}F1={AZ : either A A A\mathrm{A}A is finite or A c A c A^(c)\mathrm{A}^{\mathrm{c}}Ac is finite }. Check whether F 1 F 1 F_(1)\mathcal{F}_1F1 is a σ σ sigma\sigmaσ algebra or not.
b) Let A be any set in R R R\mathbf{R}R, show that m ( A ) = m ( A + x ) m ( A ) = m ( A + x ) m^(**)(A)=m^(**)(A+x)m^*(A)=m^*(A+x)m(A)=m(A+x) where m m m^(**)m^*m denotes the outer measure.
c) Find the measure of the following sets.
i) E = n = 1 ( a 1 n , b ) E = n = 1 a 1 n , b quad E=nnn_(n=1)^(oo)(a-(1)/(n),b)\quad E=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, b\right)E=n=1(a1n,b)
ii) E = Q { 1 , 2 , 3 , 4 } E = Q { 1 , 2 , 3 , 4 } E=Quu{1,2,3,4}\mathrm{E}=\mathbf{Q} \cup\{1,2,3,4\}E=Q{1,2,3,4}
iii) E = ] 5 , 7 [ [ 7 , 7.5 ] E = ] 5 , 7 [ [ 7 , 7.5 ] E=]5,7[uu[7,7.5]\mathrm{E}=] 5,7[\cup[7,7.5]E=]5,7[[7,7.5].
9. a) Show that if f f fff is measurable, then the function f a ( x ) f a ( x ) f^(a)(x)f^a(x)fa(x) given by
f a ( x ) = { a if f ( x ) > a f ( x ) if f ( x ) a f a ( x ) = a if f ( x ) > a f ( x ) if f ( x ) a f^(a)(x)={[a,” if “f(x) > a],[f(x),” if “f(x) <= a]:}f^a(x)=\left\{\begin{array}{cc} a & \text { if } f(x)>a \\ f(x) & \text { if } f(x) \leq a \end{array}\right.fa(x)={a if f(x)>af(x) if f(x)a
is also measurable.
b) Verify Bounded Convergence Theorem for the sequence of functions { f n } f n {f_(n)}\left\{f_n\right\}{fn} where
f n ( x ) = 1 ( 1 + x / n ) n , 0 x 1 , n N f n ( x ) = 1 ( 1 + x / n ) n , 0 x 1 , n N f_(n)(x)=(1)/((1+x//n)^(n)),0 <= x <= 1,ninN\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{1}{(1+\mathrm{x} / \mathrm{n})^{\mathrm{n}}}, 0 \leq \mathrm{x} \leq 1, \mathrm{n} \in \mathbf{N}fn(x)=1(1+x/n)n,0x1,nN
c) Find the fourier series of the function f f fff defined by
f ( x ) = { x 2 , π < x 0 x 2 , 0 < x < π f ( x ) = x 2 , π < x 0 x 2 , 0 < x < π f(x)={[-x^(2)”,”-pi < x <= 0],[x^(2)”,”0 < x < pi]:}f(x)=\left\{\begin{array}{c} -x^2,-\pi<x \leq 0 \\ x^2, 0<x<\pi \end{array}\right.f(x)={x2,π<x0x2,0<x<π
  1. State whether the following statements are True or False. Justify your answers.
    a) The sequence { ( 1 n , 1 n ) : n N } 1 n , 1 n : n N {((1)/(n),(1)/(n)):ninN}\left\{\left(\frac{1}{\mathrm{n}}, \frac{1}{\mathrm{n}}\right): \mathrm{n} \in \mathbf{N}\right\}{(1n,1n):nN} is convergent in R 2 R 2 R^(2)\mathbf{R}^2R2 under the discrete metric on R 2 R 2 R^(2)\mathbf{R}^2R2.
    b) A subset in a metric space is compact if it is closed.
    c) Continuous image of a path connected space is path connected.
    d) The second derivative of a linear map from R n R n R^(n)\mathbf{R}^nRn to R m R m R^(m)\mathbf{R}^mRm never vanishes.
    e) If A f d m = A g d m A f d m = A g d m int_(A)fdm=int_(A)gdm\int_{\mathrm{A}} \mathrm{fdm}=\int_{\mathrm{A}} \mathrm{gdm}Afdm=Agdm for all A M A M Ain M\mathrm{A} \in \boldsymbol{M}AM, then f = g f = g f=g\mathrm{f}=\mathrm{g}f=g.
\(2\:sin\:\theta \:sin\:\phi =-cos\:\left(\theta +\phi \right)+cos\:\left(\theta -\phi \right)\)

MMT-004 Sample Solution 2024

mmt-004-solved-assignment-2024-ss-020cab3d-1c01-486f-9bdf-7506d86b97ee

mmt-004-solved-assignment-2024-ss-020cab3d-1c01-486f-9bdf-7506d86b97ee

MMT-004 Solved Assignment 2024 SS
  1. a) Let X = C [ 0 , 1 ] X = C [ 0 , 1 ] X=C[0,1]\mathrm{X}=\mathrm{C}[0,1]X=C[0,1]. Define d : X × X R d : X × X R d:X xx X rarrRd: X \times X \rightarrow \mathbf{R}d:X×XR by d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t , f , g X d(f,g)=int_(0)^(1)|f(t)-g(t)|dt,f,ginX\mathrm{d}(\mathrm{f}, \mathrm{g})=\int_0^1|\mathrm{f}(\mathrm{t})-\mathrm{g}(\mathrm{t})| \mathrm{dt}, \mathrm{f}, \mathrm{g} \in \mathrm{X}d(f,g)=01|f(t)g(t)|dt,f,gX where the integral is the Riemann integral. Show that d d ddd is a metric on X X XXX. Find d ( f , g ) d ( f , g ) d(f,g)d(f, g)d(f,g) where f ( x ) = 4 x f ( x ) = 4 x f(x)=4xf(x)=4 xf(x)=4x and g ( x ) = x 3 , x [ 0 , 1 ] g ( x ) = x 3 , x [ 0 , 1 ] g(x)=x^(3),x in[0,1]g(x)=x^3, x \in[0,1]g(x)=x3,x[0,1].
Answer:
To show that d d ddd is a metric on X X XXX, we need to verify the following properties for all f , g , h X f , g , h X f,g,h in Xf, g, h \in Xf,g,hX:
  1. Non-negativity: d ( f , g ) 0 d ( f , g ) 0 d(f,g) >= 0d(f, g) \geq 0d(f,g)0
  2. Identity of indiscernibles: d ( f , g ) = 0 d ( f , g ) = 0 d(f,g)=0d(f, g) = 0d(f,g)=0 if and only if f = g f = g f=gf = gf=g
  3. Symmetry: d ( f , g ) = d ( g , f ) d ( f , g ) = d ( g , f ) d(f,g)=d(g,f)d(f, g) = d(g, f)d(f,g)=d(g,f)
  4. Triangle inequality: d ( f , h ) d ( f , g ) + d ( g , h ) d ( f , h ) d ( f , g ) + d ( g , h ) d(f,h) <= d(f,g)+d(g,h)d(f, h) \leq d(f, g) + d(g, h)d(f,h)d(f,g)+d(g,h)
Let’s verify each property:
  1. Non-negativity:
    For any f , g X f , g X f,g in Xf, g \in Xf,gX, the absolute value function | | | | |*||\cdot||| ensures that | f ( t ) g ( t ) | 0 | f ( t ) g ( t ) | 0 |f(t)-g(t)| >= 0|f(t) – g(t)| \geq 0|f(t)g(t)|0 for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Therefore, the integral 0 1 | f ( t ) g ( t ) | d t 0 1 | f ( t ) g ( t ) | d t int_(0)^(1)|f(t)-g(t)|dt\int_0^1 |f(t) – g(t)| \, dt01|f(t)g(t)|dt is also non-negative. Hence, d ( f , g ) 0 d ( f , g ) 0 d(f,g) >= 0d(f, g) \geq 0d(f,g)0.
  2. Identity of indiscernibles:
    If f = g f = g f=gf = gf=g, then f ( t ) g ( t ) = 0 f ( t ) g ( t ) = 0 f(t)-g(t)=0f(t) – g(t) = 0f(t)g(t)=0 for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1], so d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 0 d t = 0 d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 0 d t = 0 d(f,g)=int_(0)^(1)|f(t)-g(t)|dt=int_(0)^(1)0dt=0d(f, g) = \int_0^1 |f(t) – g(t)| \, dt = \int_0^1 0 \, dt = 0d(f,g)=01|f(t)g(t)|dt=010dt=0.
    Conversely, if d ( f , g ) = 0 d ( f , g ) = 0 d(f,g)=0d(f, g) = 0d(f,g)=0, then 0 1 | f ( t ) g ( t ) | d t = 0 0 1 | f ( t ) g ( t ) | d t = 0 int_(0)^(1)|f(t)-g(t)|dt=0\int_0^1 |f(t) – g(t)| \, dt = 001|f(t)g(t)|dt=0. Since the integrand is non-negative, it must be zero almost everywhere, implying that f ( t ) = g ( t ) f ( t ) = g ( t ) f(t)=g(t)f(t) = g(t)f(t)=g(t) for almost all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Since f f fff and g g ggg are continuous, they must be equal everywhere on [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1], so f = g f = g f=gf = gf=g.
  3. Symmetry:
    By the properties of the absolute value function, | f ( t ) g ( t ) | = | g ( t ) f ( t ) | | f ( t ) g ( t ) | = | g ( t ) f ( t ) | |f(t)-g(t)|=|g(t)-f(t)||f(t) – g(t)| = |g(t) – f(t)||f(t)g(t)|=|g(t)f(t)| for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1]. Therefore, d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 | g ( t ) f ( t ) | d t = d ( g , f ) d ( f , g ) = 0 1 | f ( t ) g ( t ) | d t = 0 1 | g ( t ) f ( t ) | d t = d ( g , f ) d(f,g)=int_(0)^(1)|f(t)-g(t)|dt=int_(0)^(1)|g(t)-f(t)|dt=d(g,f)d(f, g) = \int_0^1 |f(t) – g(t)| \, dt = \int_0^1 |g(t) – f(t)| \, dt = d(g, f)d(f,g)=01|f(t)g(t)|dt=01|g(t)f(t)|dt=d(g,f).
  4. Triangle inequality:
    For any f , g , h X f , g , h X f,g,h in Xf, g, h \in Xf,g,hX and for all t [ 0 , 1 ] t [ 0 , 1 ] t in[0,1]t \in [0, 1]t[0,1], we have | f ( t ) h ( t ) | = | f ( t ) g ( t ) + g ( t ) h ( t ) | | f ( t ) g ( t ) | + | g ( t ) h ( t ) | | f ( t ) h ( t ) | = | f ( t ) g ( t ) + g ( t ) h ( t ) | | f ( t ) g ( t ) | + | g ( t ) h ( t ) | |f(t)-h(t)|=|f(t)-g(t)+g(t)-h(t)| <= |f(t)-g(t)|+|g(t)-h(t)||f(t) – h(t)| = |f(t) – g(t) + g(t) – h(t)| \leq |f(t) – g(t)| + |g(t) – h(t)||f(t)h(t)|=|f(t)g(t)+g(t)h(t)||f(t)g(t)|+|g(t)h(t)| by the triangle inequality for real numbers. Integrating both sides over [ 0 , 1 ] [ 0 , 1 ] [0,1][0, 1][0,1] gives:
    0 1 | f ( t ) h ( t ) | d t 0 1 ( | f ( t ) g ( t ) | + | g ( t ) h ( t ) | ) d t = 0 1 | f ( t ) g ( t ) | d t + 0 1 | g ( t ) h ( t ) | d t = d ( f , g ) + d ( g , h ) 0 1 | f ( t ) h ( t ) | d t 0 1 ( | f ( t ) g ( t ) | + | g ( t ) h ( t ) | ) d t = 0 1 | f ( t ) g ( t ) | d t + 0 1 | g ( t ) h ( t ) | d t = d ( f , g ) + d ( g , h ) int_(0)^(1)|f(t)-h(t)|dt <= int_(0)^(1)(|f(t)-g(t)|+|g(t)-h(t)|)dt=int_(0)^(1)|f(t)-g(t)|dt+int_(0)^(1)|g(t)-h(t)|dt=d(f,g)+d(g,h)\int_0^1 |f(t) – h(t)| \, dt \leq \int_0^1 (|f(t) – g(t)| + |g(t) – h(t)|) \, dt = \int_0^1 |f(t) – g(t)| \, dt + \int_0^1 |g(t) – h(t)| \, dt = d(f, g) + d(g, h)01|f(t)h(t)|dt01(|f(t)g(t)|+|g(t)h(t)|)dt=01|f(t)g(t)|dt+01|g(t)h(t)|dt=d(f,g)+d(g,h)
    Thus, d ( f , h ) d ( f , g ) + d ( g , h ) d ( f , h ) d ( f , g ) + d ( g , h ) d(f,h) <= d(f,g)+d(g,h)d(f, h) \leq d(f, g) + d(g, h)d(f,h)d(f,g)+d(g,h).
Since all four properties are satisfied, d d ddd is a metric on X X XXX.
Next, let’s find d ( f , g ) d ( f , g ) d(f,g)d(f, g)d(f,g) where f ( x ) = 4 x f ( x ) = 4 x f(x)=4xf(x) = 4xf(x)=4x and g ( x ) = x 3 g ( x ) = x 3 g(x)=x^(3)g(x) = x^3g(x)=x3 for x [ 0 , 1 ] x [ 0 , 1 ] x in[0,1]x \in [0, 1]x[0,1]:
d ( f , g ) = 0 1 | 4 x x 3 | d x d ( f , g ) = 0 1 | 4 x x 3 | d x d(f,g)=int_(0)^(1)|4x-x^(3)|dxd(f, g) = \int_0^1 |4x – x^3| \, dxd(f,g)=01|4xx3|dx
To evaluate this integral, we can split it into regions where the integrand is positive or negative:
  1. For 0 x 2 0 x 2 0 <= x <= 20 \leq x \leq 20x2, 4 x x 3 4 x x 3 4x >= x^(3)4x \geq x^34xx3, so | 4 x x 3 | = 4 x x 3 | 4 x x 3 | = 4 x x 3 |4x-x^(3)|=4x-x^(3)|4x – x^3| = 4x – x^3|4xx3|=4xx3.
  2. For 2 < x 1 2 < x 1 2 < x <= 12 < x \leq 12<x1, 4 x < x 3 4 x < x 3 4x < x^(3)4x < x^34x<x3, so | 4 x x 3 | = x 3 4 x | 4 x x 3 | = x 3 4 x |4x-x^(3)|=x^(3)-4x|4x – x^3| = x^3 – 4x|4xx3|=x34x.
Thus, we can rewrite the integral as:
d ( f , g ) = 0 2 ( 4 x x 3 ) d x + 2 1 ( x 3 4 x ) d x d ( f , g ) = 0 2 ( 4 x x 3 ) d x + 2 1 ( x 3 4 x ) d x d(f,g)=int_(0)^(2)(4x-x^(3))dx+int_(2)^(1)(x^(3)-4x)dxd(f, g) = \int_0^{2} (4x – x^3) \, dx + \int_{2}^1 (x^3 – 4x)\, dxd(f,g)=02(4xx3)dx+21(x34x)dx
Now, we can calculate these integrals:
d ( f , g ) = [ 2 x 2 1 4 x 4 ] 0 2 + [ 1 4 x 4 2 x 2 ] 2 1 = ( 2 ( 2 ) 2 1 4 ( 2 ) 4 ) ( 0 0 ) + ( 1 4 ( 1 ) 4 2 ( 1 ) 2 ) ( 1 4 ( 2 ) 4 2 ( 2 ) 2 ) = ( 8 4 ) + ( 1 4 2 ) ( 4 8 ) = 4 7 4 ( 4 ) = 16 4 7 4 + 16 4 = 25 4 = 6.25 d ( f , g ) = 2 x 2 1 4 x 4 0 2 + 1 4 x 4 2 x 2 2 1 = 2 ( 2 ) 2 1 4 ( 2 ) 4 0 0 + 1 4 ( 1 ) 4 2 ( 1 ) 2 1 4 ( 2 ) 4 2 ( 2 ) 2 = 8 4 + 1 4 2 4 8 = 4 7 4 ( 4 ) = 16 4 7 4 + 16 4 = 25 4 = 6.25 {:[d(f”,”g)=[2x^(2)-(1)/(4)x^(4)]_(0)^(2)+[(1)/(4)x^(4)-2x^(2)]_(2)^(1)],[=(2(2)^(2)-(1)/(4)(2)^(4))-(0-0)+((1)/(4)(1)^(4)-2(1)^(2))-((1)/(4)(2)^(4)-2(2)^(2))],[=(8-4)+((1)/(4)-2)-(4-8)],[=4-(7)/(4)-(-4)],[=(16)/(4)-(7)/(4)+(16)/(4)],[=(25)/(4)],[=6.25]:}\begin{align*} d(f, g) &= \left[2x^2 – \frac{1}{4}x^4\right]_0^{2} + \left[\frac{1}{4}x^4 – 2x^2\right]_{2}^1 \\ &= \left(2(2)^2 – \frac{1}{4}(2)^4\right) – \left(0 – 0\right) + \left(\frac{1}{4}(1)^4 – 2(1)^2\right) – \left(\frac{1}{4}(2)^4 – 2(2)^2\right) \\ &= \left(8 – 4\right) + \left(\frac{1}{4} – 2\right) – \left(4 – 8\right) \\ &= 4 – \frac{7}{4} – (-4) \\ &= \frac{16}{4} – \frac{7}{4} + \frac{16}{4} \\ &= \frac{25}{4} \\ &= 6.25 \end{align*}d(f,g)=[2x214x4]02+[14x42x2]21=(2(2)214(2)4)(00)+(14(1)42(1)2)(14(2)42(2)2)=(84)+(142)(48)=474(4)=16474+164=254=6.25
Therefore, d ( f , g ) = 6.25 d ( f , g ) = 6.25 d(f,g)=6.25d(f, g) = 6.25d(f,g)=6.25.
b) Let ( X , d ) X , d ) X,d)X, d)X,d) be a metric space and a X a X a in Xa \in XaX be a fixed point of X X XXX. Show that the function f a : X R f a : X R f_(a):X rarrRf_a: X \rightarrow \mathbf{R}fa:XR given by f a ( x ) = d ( x , a ) f a ( x ) = d ( x , a ) f_(a)(x)=d(x,a)\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{d}(\mathrm{x}, \mathrm{a})fa(x)=d(x,a) is continuous. Is it uniformly continuous? Justify you answer.
Answer:
To show that the function f a : X R f a : X R f_(a):X rarrRf_a: X \rightarrow \mathbf{R}fa:XR given by f a ( x ) = d ( x , a ) f a ( x ) = d ( x , a ) f_(a)(x)=d(x,a)f_a(x) = d(x, a)fa(x)=d(x,a) is continuous, we need to show that for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y X x , y X x,y in Xx, y \in Xx,yX, if d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, then | f a ( x ) f a ( y ) | < ϵ | f a ( x ) f a ( y ) | < ϵ |f_(a)(x)-f_(a)(y)| < epsilon|f_a(x) – f_a(y)| < \epsilon|fa(x)fa(y)|<ϵ.
Let ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0 be given. Set δ = ϵ δ = ϵ delta=epsilon\delta = \epsilonδ=ϵ. Then, for any x , y X x , y X x,y in Xx, y \in Xx,yX such that d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, we have:
| f a ( x ) f a ( y ) | = | d ( x , a ) d ( y , a ) | d ( x , y ) (by the triangle inequality) < δ = ϵ | f a ( x ) f a ( y ) | = | d ( x , a ) d ( y , a ) | d ( x , y ) (by the triangle inequality) < δ = ϵ {:[|f_(a)(x)-f_(a)(y)|=|d(x”,”a)-d(y”,”a)|],[ <= d(x”,”y)quad(by the triangle inequality)],[ < delta],[=epsilon]:}\begin{align*} |f_a(x) – f_a(y)| &= |d(x, a) – d(y, a)| \\ &\leq d(x, y) \quad \text{(by the triangle inequality)} \\ &< \delta \\ &= \epsilon \end{align*}|fa(x)fa(y)|=|d(x,a)d(y,a)|d(x,y)(by the triangle inequality)<δ=ϵ
Hence, f a f a f_(a)f_afa is continuous.
Now, let’s consider whether f a f a f_(a)f_afa is uniformly continuous. A function is uniformly continuous if for every ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists a δ > 0 δ > 0 delta > 0\delta > 0δ>0 such that for all x , y X x , y X x,y in Xx, y \in Xx,yX, if d ( x , y ) < δ d ( x , y ) < δ d(x,y) < deltad(x, y) < \deltad(x,y)<δ, then | f a ( x ) f a ( y ) | < ϵ | f a ( x ) f a ( y ) | < ϵ |f_(a)(x)-f_(a)(y)| < epsilon|f_a(x) – f_a(y)| < \epsilon|fa(x)fa(y)|<ϵ, where δ δ delta\deltaδ does not depend on the choice of x x xxx or y y yyy.
In metric spaces, continuity and uniform continuity are not always equivalent. However, if the metric space X X XXX is compact, then every continuous function from X X XXX to R R R\mathbf{R}R is uniformly continuous. This is a consequence of the Heine-Cantor theorem.
If the metric space X X XXX is not compact, we cannot guarantee that f a f a f_(a)f_afa is uniformly continuous. For example, consider the metric space ( R , d ) ( R , d ) (R,d)(\mathbf{R}, d)(R,d) where d ( x , y ) = | x y | d ( x , y ) = | x y | d(x,y)=|x-y|d(x, y) = |x – y|d(x,y)=|xy| is the standard metric on R R R\mathbf{R}R. The function f a ( x ) = | x a | f a ( x ) = | x a | f_(a)(x)=|x-a|f_a(x) = |x – a|fa(x)=|xa| is continuous but not uniformly continuous on R R R\mathbf{R}R.
In conclusion, the function f a f a f_(a)f_afa is continuous, but it is not necessarily uniformly continuous unless the metric space X X XXX has additional properties, such as compactness.

Frequently Asked Questions (FAQs)

You can access the Complete Solution through our app, which can be downloaded using this link:

App Link 

Simply click “Install” to download and install the app, and then follow the instructions to purchase the required assignment solution. Currently, the app is only available for Android devices. We are working on making the app available for iOS in the future, but it is not currently available for iOS devices.

Yes, It is Complete Solution, a comprehensive solution to the assignments for IGNOU. Valid from January 1, 2023 to December 31, 2023.

Yes, the Complete Solution is aligned with the IGNOU requirements and has been solved accordingly.

Yes, the Complete Solution is guaranteed to be error-free.The solutions are thoroughly researched and verified by subject matter experts to ensure their accuracy.

As of now, you have access to the Complete Solution for a period of 6 months after the date of purchase, which is sufficient to complete the assignment. However, we can extend the access period upon request. You can access the solution anytime through our app.

The app provides complete solutions for all assignment questions. If you still need help, you can contact the support team for assistance at Whatsapp +91-9958288900

No, access to the educational materials is limited to one device only, where you have first logged in. Logging in on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Payments can be made through various secure online payment methods available in the app.Your payment information is protected with industry-standard security measures to ensure its confidentiality and safety. You will receive a receipt for your payment through email or within the app, depending on your preference.

The instructions for formatting your assignments are detailed in the Assignment Booklet, which includes details on paper size, margins, precision, and submission requirements. It is important to strictly follow these instructions to facilitate evaluation and avoid delays.

\(b^2=c^2+a^2-2ac\:Cos\left(B\right)\)

Terms and Conditions

  • The educational materials provided in the app are the sole property of the app owner and are protected by copyright laws.
  • Reproduction, distribution, or sale of the educational materials without prior written consent from the app owner is strictly prohibited and may result in legal consequences.
  • Any attempt to modify, alter, or use the educational materials for commercial purposes is strictly prohibited.
  • The app owner reserves the right to revoke access to the educational materials at any time without notice for any violation of these terms and conditions.
  • The app owner is not responsible for any damages or losses resulting from the use of the educational materials.
  • The app owner reserves the right to modify these terms and conditions at any time without notice.
  • By accessing and using the app, you agree to abide by these terms and conditions.
  • Access to the educational materials is limited to one device only. Logging in to the app on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Our educational materials are solely available on our website and application only. Users and students can report the dealing or selling of the copied version of our educational materials by any third party at our email address (abstract4math@gmail.com) or mobile no. (+91-9958288900).

In return, such users/students can expect free our educational materials/assignments and other benefits as a bonafide gesture which will be completely dependent upon our discretion.

Scroll to Top
Scroll to Top