MMT-006 Solved Assignment 2023

IGNOU MMT-006 Solved Assignment 2023 | M.Sc. MACS

Solved By – Narendra Kr. Sharma – M.Sc (Mathematics Honors) – Delhi University

365.00

Share with your Friends

Details For MMT-006 Solved Assignment

IGNOU MMT-006 Assignment Question Paper 2023

mmt-006-qp-f7c5c3cd-c8c6-4a67-bc59-92f7593d91ab
  1. State whether the following statements are true or false. Justify with a short proof or a counter example.
    a) The space l 3 l 3 l^(3)l^{3}l3 is a Hilbert space
    b) Any non zero bounded linear functional on a Banach space is an open map.
    c) Every bounded linear map on a complex Banach space has an eigen value.
    d) The image of a Cauchy sequence under a bounded linear map is also a Couchy sequence.
    e) If A A A\mathrm{A}A is a bounded linear operator on a Hilbert space such that A A = I A A = I AA^(**)=I\mathrm{AA}^{*}=\mathrm{I}AA=I, then A A = I A A = I A^(**)A=I\mathrm{A}^{*} \mathrm{~A}=\mathrm{I}A A=I.
  2. a) Characterise all bounded linear functionals on a Hilbert space.
    b) Show that the map T : R 3 R 2 T : R 3 R 2 T:R^(3)rarrR^(2)\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}T:R3R2 given by T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 , x 3 ) T x 1 , x 2 , x 3 = x 1 + x 2 , x 3 T(x_(1),x_(2),x_(3))=(x_(1)+x_(2),x_(3))\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{3}\right)T(x1,x2,x3)=(x1+x2,x3) is an open map.
c) Check whether a finite dimensional normed linear space is reflexive? Justify your answer.
  1. a) Show how a real linear functional u u uuu on a complex linear normed space gives rise to a complex linear functional f f f\mathrm{f}f. What is the relation between the boundedness of u u u\mathrm{u}u and that of f f f\mathrm{f}f ?
b) In a Hilbert space. Prove that x n x x n x x_(n)rarrx\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}xnx provided x n x x n x ||x_(n)||rarr||x||\left\|\mathrm{x}_{\mathrm{n}}\right\| \rightarrow\|\mathrm{x}\|xnx and x n , x x , x x n , x x , x (:x_(n),x:)rarr(:x,x:)\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right\rangle \rightarrow\langle\mathrm{x}, \mathrm{x}\ranglexn,xx,x.
c) Are Hahn-Banach extensions always unique? Justify.
  1. a) State the principle of uniform boundedness. Use it to show that a set E E EEE in a normed space X X XXX is bounded if f ( E ) f ( E ) f(E)f(E)f(E) is bounded in K K KKK for every f X f X f inX^(‘)f \in X^{\prime}fX.
b) If H H H\mathrm{H}H is a Hilbert space and S C H S C H SCH\mathrm{SCH}SCH, show that S = S ⊥⊥⊥ S = S ⊥⊥⊥ S^(_|_)=S^(⊥⊥⊥)\mathrm{S}^{\perp}=\mathrm{S}^{\perp \perp \perp}S=S⊥⊥⊥. When S S S\mathrm{S}S is the same as S ⊥⊥ S ⊥⊥ S^(⊥⊥)\mathrm{S}^{\perp \perp}S⊥⊥ ? Justify.
5 a) Show that Q Q Q\mathrm{Q}Q defined on ( C [ 0 , 1 ] , ) C [ 0 , 1 ] , (C[0,1],||*||_(oo))\left(\mathrm{C}[0,1],\|\cdot\|_{\infty}\right)(C[0,1],) by Q ( x ) = 0 1 t x ( t ) d t Q ( x ) = 0 1 t x ( t ) d t Q(x)=int_(0)^(1)tx(t)dt\mathrm{Q}(\mathrm{x})=\int_{0}^{1} \mathrm{t} \mathrm{x}(\mathrm{t}) \mathrm{dt}Q(x)=01tx(t)dt is a bounded linear functional. Calculate Q Q ||Q||\|\mathrm{Q}\|Q. b) Let A A AAA be an operator on a Hilbert space H H HHH. Show if A x = A x A x = A x ||Ax||=||A^(**)x||\|A x\|=\left\|A^{*} x\right\|Ax=Ax for every x H x H x in Hx \in HxH, then A A A\mathrm{A}A is normal. Is it converse true? Justify.
c) Let { u n } u n {u_(n)}\left\{\mathrm{u}_{\mathrm{n}}\right\}{un} be the sequence in l 2 l 2 l^(2)l^{2}l2 with 1 in the n th n th  n^(“th “)\mathrm{n}^{\text {th }}nth  place and zeroes else where prove that the set { u n } u n {u_(n)}\left\{\mathrm{u}_{\mathrm{n}}\right\}{un} is an orthonormal basis for l 2 l 2 l^(2)l^{2}l2.
6 a) Let X = C [ 0 , 1 ] X = C [ 0 , 1 ] X=C[0,1]X=C[0,1]X=C[0,1] with Sup norm defined by f = Sup { | f ( x ) | } f = Sup { | f ( x ) | } ||f||=Sup{|f(x)|}\|f\|=\operatorname{Sup}\{|f(x)|\}f=Sup{|f(x)|}.
x [ 0 , 1 ] x [ 0 , 1 ] xin[0,1]\mathrm{x} \in[0,1]x[0,1]
Let T T T\mathrm{T}T be a linear map defined on X X X\mathrm{X}X by T ( f ) = f ( 1 2 ) T ( f ) = f 1 2 T(f)=f((1)/(2))\mathrm{T}(\mathrm{f})=\mathrm{f}\left(\frac{1}{2}\right)T(f)=f(12).
Show that T T T\mathrm{T}T is a bounded linear map such that T = 1 T = 1 ||T||=1\|\mathrm{T}\|=1T=1.
b) Define Eigen Spectrum of a bounded linear operator on a Banach space. Show that the eigen spectrum of the operator T T T\mathrm{T}T on l 2 l 2 l^(2)l^{2}l2 given by T ( α 1 , α 2 ) = ( 0 , α 1 , α 2 ) T α 1 , α 2 = 0 , α 1 , α 2 T(alpha_(1),alpha_(2)dots)=(0,alpha_(1),alpha_(2)dots)\mathrm{T}\left(\alpha_{1}, \alpha_{2} \ldots\right)=\left(0, \alpha_{1}, \alpha_{2} \ldots\right)T(α1,α2)=(0,α1,α2) is empty.
c) Let ||*||\|\cdot\| be a norm on a linear space X X XXX. if x , y X x , y X x,y in Xx, y \in Xx,yX and x + y = x + y x + y = x + y ||x+y||=||x||+||y||\|x+y\|=\|x\|+\|y\|x+y=x+y, then show that s x + t y = s x + t y s x + t y = s x + t y ||sx+ty||=s||x||+t||y||\|s x+t y\|=s\|x\|+t\|y\|sx+ty=sx+ty for all s 0 , t 0 s 0 , t 0 s >= 0,t >= 0s \geq 0, t \geq 0s0,t0.
  1. a) Let X X XXX be an inner product space with the inner product given by < < <<<, > > >>>. For x X x X x in Xx \in XxX, define the function : X K : X K ||*||:X rarr K\|\cdot\|: X \rightarrow K:XK given by x =< x , x > 1 / 2 x =< x , x > 1 / 2 ||x||=<x,-x > 1//2\|x\|=<x,-x>1 / 2x=<x,x>1/2, the non negative square root of < x , x > < x , x > < x,x ><\mathrm{x}, \mathrm{x}><x,x>. Show that : X K : X K ||*||:XrarrK\|\cdot\|: \mathrm{X} \rightarrow \mathrm{K}:XK defines a norm on X X X\mathrm{X}X and I < ( x , y ) > I x y I < ( x , y ) > I x y I < (x,y) > I <= ||x||||y||\mathrm{I}<(\mathrm{x}, \mathrm{y})>\mathrm{I} \leq\|\mathrm{x}\|\|\mathrm{y}\|I<(x,y)>Ixy for all x , y X x , y X x,yinX\mathrm{x}, \mathrm{y} \in \mathrm{X}x,yX. Also show that for all x , y X x , y X x,yinX\mathrm{x}, \mathrm{y} \in \mathrm{X}x,yX, x + y 2 + x y 2 = 2 ( x 2 + y 2 ) x + y 2 + x y 2 = 2 x 2 + y 2 ||x+y||^(2)+||x-y||^(2)=2(||x||^(2)+||y||^(2))\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)x+y2+xy2=2(x2+y2).
b) Let X X X\mathrm{X}X be a vector space. Let 1 1 ||*||^(1)\|\cdot\|^{1}1 and 2 2 ||*||^(2)\|\cdot\|^{2}2 be two norms on X X X\mathrm{X}X. When are these norms said to be equivalent? Justify your answer.
Let X = R 3 X = R 3 X=R^(3)\mathrm{X}=\mathbb{R}^{3}X=R3. For x = ( x 1 , x 2 , x 3 ) x = x 1 , x 2 , x 3 x=(x_(1),x_(2),x_(3))\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)x=(x1,x2,x3).
Let x 1 = | x 1 | + | x 2 | + | x 3 | x 1 = x 1 + x 2 + x 3 ||x||^(1)=|x_(1)|+|x_(2)|+|x_(3)|\|x\|^{1}=\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|x1=|x1|+|x2|+|x3|
x 2 = | x 1 | 2 + | x 2 | 2 + | x 3 | 2 x 2 = x 1 2 + x 2 2 + x 3 2 ||x||^(2)=sqrt(|x_(1)|^(2)+|x_(2)|^(2)+|x_(3)|^(2))\|x\|^{2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}}x2=|x1|2+|x2|2+|x3|2
Show that 1 1 ||*||^(1)\|\cdot\|^{1}1 and 1 1 ||*||^(1)\|\cdot\|^{1}1 are equivalent.
  1. a) Let X = L 2 [ 0 , 2 π ] X = L 2 [ 0 , 2 π ] X=L^(2)[0,2pi]X=L^{2}[0,2 \pi]X=L2[0,2π] and u n ( t ) = e int 2 π , t { π , π } , n Z u n ( t ) = e int  2 π , t { π , π } , n Z u_(n)(t)=(e^(“int “))/(sqrt(2pi)),t in{-pi,pi},n in Zu_{n}(t)=\frac{e^{\text {int }}}{\sqrt{2 \pi}}, t \in\{-\pi, \pi\}, n \in Zun(t)=eint 2π,t{π,π},nZ. Show that the set E = { u 1 , u 2 } E = u 1 , u 2 E={u_(1),u_(2)dots}\mathrm{E}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2} \ldots\right\}E={u1,u2} is an orthonormal set in X X X\mathrm{X}X.
b) Let H H H\mathrm{H}H be a Hilbert space. For any subset A A A\mathrm{A}A of H H H\mathrm{H}H, define A A A^(_|_)\mathrm{A}^{\perp}A. If A B H A B H AsubeBsubeH\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{H}ABH, then show that:
i) B A B A quadB^(_|_)subeA^(_|_)\quad \mathrm{B}^{\perp} \subseteq \mathrm{A}^{\perp}BA ii) A A ⊥⊥ A A ⊥⊥ quadAsubeA^(⊥⊥)\quad \mathrm{A} \subseteq \mathrm{A}^{\perp \perp}AA⊥⊥
State conditions on A A A\mathrm{A}A so that A ⊥⊥ = A A ⊥⊥ = A A^(⊥⊥)=A\mathrm{A}^{\perp \perp}=\mathrm{A}A⊥⊥=A.
c) Let X = C [ 0 , 1 ] X = C [ 0 , 1 ] X=C^(‘)[0,1]\mathrm{X}=\mathrm{C}^{\prime}[0,1]X=C[0,1] and Y = C [ 0 , 11 ] Y = C [ 0 , 11 ] Y=C[0,11]\mathrm{Y}=\mathrm{C}[0,11]Y=C[0,11] and let T : X Y T : X Y T:XrarrY\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}T:XY be the linear operator from X X X\mathrm{X}X to Y Y YYY given by T ( f ) = f T ( f ) = f T(f)=f^(‘)T(f)=f^{\prime}T(f)=f, the derivative of f f fff on [ 0 , 1 ] [ 0 , 1 ] [0,1][0,1][0,1]. Show that T T TTT is not continuous.
  1. a) Let X X X\mathrm{X}X and Y Y Y\mathrm{Y}Y be Banach spaces and F : X Y F : X Y F:XrarrY\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}F:XY be a linear map which is continuous and open. Will F F F\mathrm{F}F always be closed? Will F F F\mathrm{F}F be always surjective? Give reasons for your answer.
b) Check whether the identity map on an infinite dimensional space is compact.
c) Define A : C 3 C 3 A : C 3 C 3 A:C^(3)rarrC^(3)\mathrm{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}A:C3C3 by A ( z 1 , z 2 , z 3 ) = ( i z z 1 , e 2 i z 2 , z 3 ) A z 1 , z 2 , z 3 = i z z 1 , e 2 i z 2 , z 3 A(z_(1),z_(2),z_(3))=(izz_(1),e^(2i)z_(2),z_(3))\mathrm{A}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\right)=\left(\mathrm{iz} \mathrm{z}_{1}, \mathrm{e}^{2 \mathrm{i}} \mathrm{z}_{2}, \mathrm{z}_{3}\right)A(z1,z2,z3)=(izz1,e2iz2,z3).
Check whether A A AAA is i) self adjoint, ii) unitary.
  1. a) Let A : X 0 X Y A : X 0 X Y A:X_(0)subeXrarrY\mathrm{A}: \mathrm{X}_{0} \subseteq \mathrm{X} \rightarrow \mathrm{Y}A:X0XY be a closed operator where X X X\mathrm{X}X and Y Y Y\mathrm{Y}Y are Banach spaces.
Define x A = x + A x , x X 0 x A = x + A x , x X 0 ||x||_(A)=||x||+||Ax||,xinX_(0)\|\mathrm{x}\|_{\mathrm{A}}=\|\mathrm{x}\|+\|\mathrm{Ax}\|, \mathrm{x} \in \mathrm{X}_{0}xA=x+Ax,xX0.
Then show that the norm A A ||*||_(A)\|\cdot\|_{\mathrm{A}}A is complete.
b) Find a bounded linear functional f f f\mathrm{f}f on 3 3 ℓ^(3)\ell^{3}3 such that f ( e 3 ) = 3 f e 3 = 3 f(e_(3))=3\mathrm{f}\left(\mathrm{e}_{3}\right)=3f(e3)=3 and f = 3 f = 3 ||f||=3\|\mathrm{f}\|=3f=3.
c) Prove that l 1 l 2 l 1 l 2 l^(1)subl^(2)l^{1} \subset l^{2}l1l2. If: T : ( l 2 , 2 ) ( l 1 , 2 ) T : l 2 , 2 l 1 , 2 T:(l^(2),||*||_(2))rarr(l^(1),||*||_(2))\mathrm{T}:\left(l^{2},\|\cdot\|_{2}\right) \rightarrow\left(l^{1},\|\cdot\|_{2}\right)T:(l2,2)(l1,2) is a compact operator, show that: T : ( l 2 , 2 ) ( l 2 , 2 ) T : l 2 , 2 l 2 , 2 T:(l^(2),||*||_(2))rarr(l^(2),||*||_(2))\mathrm{T}:\left(l^{2},\|\cdot\|_{2}\right) \rightarrow\left(l^{2},\|\cdot\|_{2}\right)T:(l2,2)(l2,2) is also compact.
\(\frac{a}{sin\:A}=\frac{b}{sin\:B}=\frac{c}{sin\:C}\)

MMT-006 Sample Solution 2023

untitled-document-15-c4a14609-db5c-41e1-99f0-81aab3fdac8f

Question:-01

  1. State whether the following statements are true or false. Justify with a short proof or a counter example.
a) The space l 3 l 3 l^(3)l^3l3 is a Hilbert space
Answer:

Statement: The space l 3 l 3 l^(3)l^3l3 is a Hilbert space.

Justification:

A Hilbert space is a complete inner product space. That is, it is a vector space equipped with an inner product that is complete in the metric induced by the inner product.
The space l 3 l 3 l^(3)l^3l3 consists of all sequences ( x 1 , x 2 , x 3 , ) ( x 1 , x 2 , x 3 , ) (x_(1),x_(2),x_(3),dots)(x_1, x_2, x_3, \ldots)(x1,x2,x3,) such that n = 1 | x n | 3 < n = 1 | x n | 3 < sum_(n=1)^(oo)|x_(n)|^(3) < oo\sum_{n=1}^{\infty} |x_n|^3 < \inftyn=1|xn|3<.
  1. Inner Product: We can define an inner product on l 3 l 3 l^(3)l^3l3 as follows:
x , y = n = 1 x n y n ¯ x , y = n = 1 x n y n ¯ (:x,y:)=sum_(n=1)^(oo)x_(n) bar(y_(n))\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}x,y=n=1xnyn¯
This definition satisfies the properties of an inner product (conjugate symmetry, linearity, and positive-definiteness).
  1. Completeness: The space l 3 l 3 l^(3)l^3l3 is not complete with respect to this inner product. To see this, consider the sequence of sequences x ( k ) = ( 1 , 1 2 , , 1 k , 0 , 0 , ) x ( k ) = ( 1 , 1 2 , , 1 k , 0 , 0 , ) x^((k))=(1,(1)/(2),dots,(1)/(k),0,0,dots)x^{(k)} = (1, \frac{1}{2}, \ldots, \frac{1}{k}, 0, 0, \ldots)x(k)=(1,12,,1k,0,0,). Each x ( k ) x ( k ) x^((k))x^{(k)}x(k) is in l 3 l 3 l^(3)l^3l3, but its limit as k k k rarr ook \to \inftyk, which is the sequence ( 1 , 1 2 , 1 3 , ) ( 1 , 1 2 , 1 3 , ) (1,(1)/(2),(1)/(3),dots)(1, \frac{1}{2}, \frac{1}{3}, \ldots)(1,12,13,), is not in l 3 l 3 l^(3)l^3l3 because n = 1 ( 1 n ) 3 = n = 1 1 n 3 = sum_(n=1)^(oo)((1)/(n))^(3)=oo\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^3 = \inftyn=1(1n)3=.
Therefore, l 3 l 3 l^(3)l^3l3 is not a Hilbert space because it is not complete with respect to the inner product.

Page Break
b) Any non zero bounded linear functional on a Banach space is an open map.
Answer:

Statement: Any non-zero bounded linear functional on a Banach space is an open map.

Justification:

A map T : X Y T : X Y T:X rarr YT: X \to YT:XY between topological spaces is said to be open if the image of every open set in X X XXX under T T TTT is open in Y Y YYY.
Let X X XXX be a Banach space and f : X R f : X R f:X rarrRf: X \to \mathbb{R}f:XR (or C C C\mathbb{C}C) be a non-zero bounded linear functional. We want to show that f f fff is an open map.
  1. Boundedness: Since f f fff is bounded, there exists a constant C > 0 C > 0 C > 0C > 0C>0 such that | f ( x ) | C x | f ( x ) | C x |f(x)| <= C||x|||f(x)| \leq C \|x\||f(x)|Cx for all x X x X x in Xx \in XxX.
  2. Non-Zero: f f fff is non-zero, which means there exists some x 0 X x 0 X x_(0)in Xx_0 \in Xx0X such that f ( x 0 ) 0 f ( x 0 ) 0 f(x_(0))!=0f(x_0) \neq 0f(x0)0.
  3. Open Map: Consider an open ball B ( x , ϵ ) B ( x , ϵ ) B(x,epsilon)B(x, \epsilon)B(x,ϵ) in X X XXX centered at x x xxx with radius ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0. We want to show that f ( B ( x , ϵ ) ) f ( B ( x , ϵ ) ) f(B(x,epsilon))f(B(x, \epsilon))f(B(x,ϵ)) is an open set in R R R\mathbb{R}R (or C C C\mathbb{C}C).
    • Take y f ( B ( x , ϵ ) ) y f ( B ( x , ϵ ) ) y in f(B(x,epsilon))y \in f(B(x, \epsilon))yf(B(x,ϵ)). Then there exists z B ( x , ϵ ) z B ( x , ϵ ) z in B(x,epsilon)z \in B(x, \epsilon)zB(x,ϵ) such that f ( z ) = y f ( z ) = y f(z)=yf(z) = yf(z)=y.
    • Since z B ( x , ϵ ) z B ( x , ϵ ) z in B(x,epsilon)z \in B(x, \epsilon)zB(x,ϵ), we have z x < ϵ z x < ϵ ||z-x|| < epsilon\|z – x\| < \epsilonzx<ϵ.
    • Using linearity and boundedness of f f fff, we get | f ( z ) f ( x ) | C z x < C ϵ | f ( z ) f ( x ) | C z x < C ϵ |f(z)-f(x)| <= C||z-x|| < C epsilon|f(z) – f(x)| \leq C \|z – x\| < C \epsilon|f(z)f(x)|Czx<Cϵ.
    • This means y = f ( z ) y = f ( z ) y=f(z)y = f(z)y=f(z) lies in an open interval ( f ( x ) C ϵ , f ( x ) + C ϵ ) ( f ( x ) C ϵ , f ( x ) + C ϵ ) (f(x)-C epsilon,f(x)+C epsilon)(f(x) – C \epsilon, f(x) + C \epsilon)(f(x)Cϵ,f(x)+Cϵ) which is contained in f ( B ( x , ϵ ) ) f ( B ( x , ϵ ) ) f(B(x,epsilon))f(B(x, \epsilon))f(B(x,ϵ)).
Thus, f ( B ( x , ϵ ) ) f ( B ( x , ϵ ) ) f(B(x,epsilon))f(B(x, \epsilon))f(B(x,ϵ)) contains an open interval around every point y y yyy in it, making f ( B ( x , ϵ ) ) f ( B ( x , ϵ ) ) f(B(x,epsilon))f(B(x, \epsilon))f(B(x,ϵ)) an open set. Therefore, f f fff is an open map.
In conclusion, the statement “Any non-zero bounded linear functional on a Banach space is an open map” is true, and we have justified it with a short proof.

Page Break
c) Every bounded linear map on a complex Banach space has an eigen value.
Answer:

Statement: Every bounded linear map on a complex Banach space has an eigenvalue.

Justification:

The statement is false.
An eigenvalue λ λ lambda\lambdaλ for a bounded linear map T : X X T : X X T:X rarr XT: X \to XT:XX on a complex Banach space X X XXX is a complex number such that there exists a non-zero vector x X x X x in Xx \in XxX satisfying T ( x ) = λ x T ( x ) = λ x T(x)=lambda xT(x) = \lambda xT(x)=λx.

Counterexample:

Consider the right shift operator T : 2 2 T : 2 2 T:ℓ^(2)rarrℓ^(2)T: \ell^2 \to \ell^2T:22 on the complex Banach space 2 2 ℓ^(2)\ell^22 of square-summable sequences. The operator T T TTT is defined as follows:
T ( ( x 1 , x 2 , x 3 , ) ) = ( 0 , x 1 , x 2 , x 3 , ) T ( ( x 1 , x 2 , x 3 , ) ) = ( 0 , x 1 , x 2 , x 3 , ) T((x_(1),x_(2),x_(3),dots))=(0,x_(1),x_(2),x_(3),dots)T((x_1, x_2, x_3, \ldots)) = (0, x_1, x_2, x_3, \ldots)T((x1,x2,x3,))=(0,x1,x2,x3,)
Let’s assume, for the sake of contradiction, that T T TTT has an eigenvalue λ λ lambda\lambdaλ and corresponding eigenvector x = ( x 1 , x 2 , x 3 , ) x = ( x 1 , x 2 , x 3 , ) x=(x_(1),x_(2),x_(3),dots)x = (x_1, x_2, x_3, \ldots)x=(x1,x2,x3,) such that T ( x ) = λ x T ( x ) = λ x T(x)=lambda xT(x) = \lambda xT(x)=λx.
Then, we have:
( 0 , x 1 , x 2 , x 3 , ) = λ ( x 1 , x 2 , x 3 , ) ( 0 , x 1 , x 2 , x 3 , ) = λ ( x 1 , x 2 , x 3 , ) (0,x_(1),x_(2),x_(3),dots)=lambda(x_(1),x_(2),x_(3),dots)(0, x_1, x_2, x_3, \ldots) = \lambda (x_1, x_2, x_3, \ldots)(0,x1,x2,x3,)=λ(x1,x2,x3,)
This implies 0 = λ x 1 0 = λ x 1 0=lambdax_(1)0 = \lambda x_10=λx1, x 1 = λ x 2 x 1 = λ x 2 x_(1)=lambdax_(2)x_1 = \lambda x_2x1=λx2, x 2 = λ x 3 x 2 = λ x 3 x_(2)=lambdax_(3)x_2 = \lambda x_3x2=λx3, and so on. Since x x xxx is assumed to be a non-zero eigenvector, x 1 0 x 1 0 x_(1)!=0x_1 \neq 0x10, which implies λ = 0 λ = 0 lambda=0\lambda = 0λ=0. But this contradicts the fact that x 1 = λ x 2 x 1 = λ x 2 x_(1)=lambdax_(2)x_1 = \lambda x_2x1=λx2 because x 1 x 1 x_(1)x_1x1 cannot be zero.
Therefore, the right shift operator T T TTT on 2 2 ℓ^(2)\ell^22 does not have an eigenvalue, disproving the statement.

Page Break
d) The image of a Cauchy sequence under a bounded linear map is also a Cauchy sequence.
Answer:

Statement: The image of a Cauchy sequence under a bounded linear map is also a Cauchy sequence.

Justification:

The statement is true.
Let ( x n ) ( x n ) (x_(n))(x_n)(xn) be a Cauchy sequence in a normed space X X XXX, and let T : X Y T : X Y T:X rarr YT: X \to YT:XY be a bounded linear map into another normed space Y Y YYY. We want to show that ( T ( x n ) ) ( T ( x n ) ) (T(x_(n)))(T(x_n))(T(xn)) is a Cauchy sequence in Y Y YYY.

Proof:

  1. Bounded Linear Map: Since T T TTT is bounded, there exists a constant M > 0 M > 0 M > 0M > 0M>0 such that T ( x ) M x T ( x ) M x ||T(x)|| <= M||x||\| T(x) \| \leq M \| x \|T(x)Mx for all x X x X x in Xx \in XxX.
  2. Cauchy Sequence: Given any ϵ > 0 ϵ > 0 epsilon > 0\epsilon > 0ϵ>0, there exists N N NNN such that for all m , n N m , n N m,n >= Nm, n \geq Nm,nN, x m x n < ϵ M x m x n < ϵ M ||x_(m)-x_(n)|| < (epsilon )/(M)\| x_m – x_n \| < \frac{\epsilon}{M}xmxn<ϵM.
  3. Image under T T TTT: We have
    T ( x m ) T ( x n ) = T ( x m x n ) T ( x m ) T ( x n ) = T ( x m x n ) ||T(x_(m))-T(x_(n))||=||T(x_(m)-x_(n))||\| T(x_m) – T(x_n) \| = \| T(x_m – x_n) \|T(xm)T(xn)=T(xmxn)
    Using the boundedness of T T TTT,
    T ( x m ) T ( x n ) M x m x n < M ϵ M = ϵ T ( x m ) T ( x n ) M x m x n < M ϵ M = ϵ ||T(x_(m))-T(x_(n))|| <= M||x_(m)-x_(n)|| < M(epsilon )/(M)=epsilon\| T(x_m) – T(x_n) \| \leq M \| x_m – x_n \| < M \frac{\epsilon}{M} = \epsilonT(xm)T(xn)Mxmxn<MϵM=ϵ
    for all m , n N m , n N m,n >= Nm, n \geq Nm,nN.
Therefore, ( T ( x n ) ) ( T ( x n ) ) (T(x_(n)))(T(x_n))(T(xn)) is a Cauchy sequence in Y Y YYY, proving the statement.

Page Break
e) If A A A\mathrm{A}A is a bounded linear operator on a Hilbert space such that A A = I A A = I AA^(**)=I\mathrm{AA}^*=\mathrm{I}AA=I, then A A = I A A = I A^(**)A=I\mathrm{A}^* \mathrm{~A}=\mathrm{I}A A=I.
Answer:

Statement: If A A A\mathrm{A}A is a bounded linear operator on a Hilbert space such that A A = I A A = I AA^(**)=I\mathrm{AA^*} = \mathrm{I}AA=I, then A A = I A A = I A^(**)A=I\mathrm{A^*A} = \mathrm{I}AA=I.

Justification:

The statement is true.

Proof:

  1. Given Condition: We are given that A A A\mathrm{A}A is a bounded linear operator on a Hilbert space H H HHH and A A = I A A = I AA^(**)=I\mathrm{AA^*} = \mathrm{I}AA=I.
  2. Identity Operator: I I I\mathrm{I}I is the identity operator on H H HHH.
  3. To Prove: We need to show that A A = I A A = I A^(**)A=I\mathrm{A^*A} = \mathrm{I}AA=I.
  4. Step 1: Take any x H x H x in Hx \in HxH and consider A x A x A^(**)x\mathrm{A^*}xAx. We have
    A ( A x ) = ( A A ) x = I x = x A ( A x ) = ( A A ) x = I x = x A(A^(**)x)=(AA^(**))x=Ix=x\mathrm{A} (\mathrm{A^*} x) = (\mathrm{AA^*}) x = \mathrm{I} x = xA(Ax)=(AA)x=Ix=x
    This shows that A x A x A^(**)x\mathrm{A^*} xAx is in the range of A A A\mathrm{A}A.
  5. Step 2: Now consider A ( A x ) A ( A x ) A^(**)(Ax)\mathrm{A^*} (\mathrm{A} x)A(Ax). We have
    A ( A x ) = ( A A ) x A ( A x ) = ( A A ) x A^(**)(Ax)=(A^(**)A)x\mathrm{A^*} (\mathrm{A} x) = (\mathrm{A^* A}) xA(Ax)=(AA)x
    Since A x A x A^(**)x\mathrm{A^*} xAx is in the range of A A A\mathrm{A}A, we can write A ( A x ) = x A ( A x ) = x A^(**)(Ax)=x\mathrm{A^*} (\mathrm{A} x) = xA(Ax)=x.
  6. Step 3: Combining Steps 1 and 2, we get
    A ( A x ) = x ( A A ) x = x ( A A I ) x = 0 A ( A x ) = x ( A A ) x = x ( A A I ) x = 0 A^(**)(Ax)=xLongrightarrow(A^(**)A)x=xLongrightarrow(A^(**)A-I)x=0\mathrm{A^*} (\mathrm{A} x) = x \implies (\mathrm{A^* A}) x = x \implies (\mathrm{A^* A} – \mathrm{I}) x = 0A(Ax)=x(AA)x=x(AAI)x=0
    for all x H x H x in Hx \in HxH.
  7. Step 4: Since ( A A I ) x = 0 ( A A I ) x = 0 (A^(**)A-I)x=0(\mathrm{A^* A} – \mathrm{I}) x = 0(AAI)x=0 for all x H x H x in Hx \in HxH, it follows that A A = I A A = I A^(**)A=I\mathrm{A^* A} = \mathrm{I}AA=I.
Therefore, the statement is true.

Frequently Asked Questions (FAQs)

You can access the Complete Solution through our app, which can be downloaded using this link:

App Link 

Simply click “Install” to download and install the app, and then follow the instructions to purchase the required assignment solution. Currently, the app is only available for Android devices. We are working on making the app available for iOS in the future, but it is not currently available for iOS devices.

Yes, It is Complete Solution, a comprehensive solution to the assignments for IGNOU. Valid from January 1, 2023 to December 31, 2023.

Yes, the Complete Solution is aligned with the IGNOU requirements and has been solved accordingly.

Yes, the Complete Solution is guaranteed to be error-free.The solutions are thoroughly researched and verified by subject matter experts to ensure their accuracy.

As of now, you have access to the Complete Solution for a period of 6 months after the date of purchase, which is sufficient to complete the assignment. However, we can extend the access period upon request. You can access the solution anytime through our app.

The app provides complete solutions for all assignment questions. If you still need help, you can contact the support team for assistance at Whatsapp +91-9958288900

No, access to the educational materials is limited to one device only, where you have first logged in. Logging in on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Payments can be made through various secure online payment methods available in the app.Your payment information is protected with industry-standard security measures to ensure its confidentiality and safety. You will receive a receipt for your payment through email or within the app, depending on your preference.

The instructions for formatting your assignments are detailed in the Assignment Booklet, which includes details on paper size, margins, precision, and submission requirements. It is important to strictly follow these instructions to facilitate evaluation and avoid delays.

\(sin^2\left(\frac{\theta }{2}\right)=\frac{1-cos\:\theta }{2}\)

Terms and Conditions

  • The educational materials provided in the app are the sole property of the app owner and are protected by copyright laws.
  • Reproduction, distribution, or sale of the educational materials without prior written consent from the app owner is strictly prohibited and may result in legal consequences.
  • Any attempt to modify, alter, or use the educational materials for commercial purposes is strictly prohibited.
  • The app owner reserves the right to revoke access to the educational materials at any time without notice for any violation of these terms and conditions.
  • The app owner is not responsible for any damages or losses resulting from the use of the educational materials.
  • The app owner reserves the right to modify these terms and conditions at any time without notice.
  • By accessing and using the app, you agree to abide by these terms and conditions.
  • Access to the educational materials is limited to one device only. Logging in to the app on multiple devices is not allowed and may result in the revocation of access to the educational materials.

Our educational materials are solely available on our website and application only. Users and students can report the dealing or selling of the copied version of our educational materials by any third party at our email address (abstract4math@gmail.com) or mobile no. (+91-9958288900).

In return, such users/students can expect free our educational materials/assignments and other benefits as a bonafide gesture which will be completely dependent upon our discretion.

Scroll to Top
Scroll to Top